EXHIBIT B

IN THE UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF CALIFORNIA SAN JOSE DIVISION

```
ELAN MICROELECTRONICS )
CORPORATION, )
    Plaintiff, )
and Counterclaim Defendant, )
    -vs- ) CASE NO. C-09-01531 RS
APPLE, INC., )
    Defendant, )
and Counterclaim Plaintiff, )
```

\qquad

``` )
```

DATE:

TIME:

LOCATION:
WEIL, GOTSHAL \& MANGES, LLP 201 Redwood Shores Parkway Redwood Shores, California

REPORTED BY: Anne M. Torreano, CSR, RPR, CCRR Certified Shorthand Reporter License Number C-10520

DEPOSITION OF ROBERT DEZMELYK - 4/9/2010

02:49:48	1	A. I have to take a quick scan.
02:50:10	2	I don't see any at the moment. I mean, that's
02:50:16	3	its principal role certainly.
02:50:18	4	Q. Can you think of any other function that it
02:50:20	5	performs besides that principal function?
02:50:23	6	A. That is set forth here?
02:50:25	7	Q. In the patent, yeah.
02:50:26	8	A. I mean, I don't see one.
02:50:28	9	Q. There's another part of figure 2. It's
02:50:36	10	labeled 70. It's called "Circuit to measure changes in
02:50:38	11	capacitance of sensor conductors."
02:50:40	12	Do you see that?
02:50:40	13	A. Right.
02:50:41	14	Q. What is the function of that circuit, circuit
02:50:46	15	70 in figure 2?
02:50:47	16	A. Well, 70 is basically, as it's set forth --
02:50:53	17	again, I direct you to column 5 and about 45. It
02:50:59	18	converts capacitance values from a circuit 70 -- well,
02:51:04	19	the output of 70 is the input -- 70 's basically giving
02:51:09	20	you, you know, kind of capacitance to voltage. In this
02:51:14	21	case it looks from A to D it's capacitance to voltage.
02:51:15	22	And as we talked about before, there's
02:51:17	23	circuits -- there's a variety of circuits which will
02:51:20	24	give you a measured signal based on the amount of
02:51:25	25	capacitance that's presented on a conductor connected

02:51:28 1 to that. converters.

This particular one, I was using the RC oscillator example before. Since this is, you know, being connected to an A to D converter, more likely it's some circuit which gives you an analog voltage level output that's proportional to the capacitance present on its input conductor.
Q. And are there any other functions that measuring circuit performs besides that one?
A. Well, it's -- I mean, in the broad sense all of these components are part of the total functionality of the device. In other words, their presence and their operation is how you determine if you have contact at all. Ultimately they give the data that lets you determine location of the fingers, you know, how many you have, whether they're touching.

So in the broadest description of their function, they're necessary for the operation of the device. In particular definition of what does it do, that's -- it serves the purpose. As it says, it measures the changes in capacitance in the sensor
Q. And what about the analog-to-digital converter box 80? What's the function of that?
A. Well, again, in the narrow sense it does what

DEPOSITION OF ROBERT DEZMELYK - 4/9/2010

03:39:01	1	response to the removal and reappearance of said second
03:39:05	2	maxima within a predetermined period of time.
03:39:07	3	Do you see what I'm talking about there?
03:39:10	4	A. Yes, I do.
03:39:10	5	Q. Now, is that a function, that is, providing a
03:39:13	6	click function in response to the removal and
03:39:15	7	reappearance of said second maxima within a
03:39:18	8	predetermined period of time, is that a function that's
03:39:22	9	going to be performed and implemented by a computer?
03:39:24	10	A. Normally. I mean, either by the
03:39:26	11	microcontroller or the host computer.
03:39:29	12	Q. Is there -- to perform that sort of processing
03:39:33	13	there's going to be some sort of algorithm that's going
03:39:36	14	to be processed; is that right?
03:39:37	15	A. There are steps you would take, right. You
03:39:42	16	would write software to do that.
03:39:44	17	Q. Is there a description of that software
03:39:46	18	algorithm in the ' 352 patent for how to do that?
03:39:49	19	A. Well, there's a whole section about dealing
03:39:53	20	with and processing and understanding how many fingers
03:39:56	21	are touching and being removed and how you do scans and
03:40:00	22	know how many fingers are on the surface.
03:40:04	23	I think if we -- basically the entire section
03:40:10	24	of -- you know, going down, starting at 11 and
03:40:14	25	continuing through 13 talks about examples of how you

DEPOSITION OF ROBERT DEZMELYK - 4/9/2010

```
03:40:17 1 would determine, you know, multiple fingers and then
03:40:22 2
03:40:26 3
03:40:29 4
03:40:29 5
03:40:30 6
03:40:33 7
03:40:34 8
03:40:38 9
03:40:43 10
03:40:45 11
03:40:47 12
03:40:49 13
03:40:52 14
03:40:54 15
03:40:57 16
03:41:00 17
03:41:04 18
03:41:04 19
03:41:07 20
03:41:08 21
03:41:11 22
03:41:12 23
03:41:13 24
03:41:16 25
```

```
what -- you know, how you would scan repeatedly and
look at whether you had one fingers, two fingers, et
cetera.
    So that is sufficient to explain the process
        of doing that, particularly in light of what people
        already know how to do.
    Q. And is that description a description of an
        algorithm that's going to tell you how to provide that
        click function in response to the removal and
        reappearance of the second maxima within a
        predetermined period of time?
    A. Well, I think the description there is more
        than sufficient for a practitioner at the time to know
        what to do. It may not be expressed in like a flow
        chart, but it's set forth, you know, in description in
        a way that would be sufficient so someone knew what to
        do.
    Q. There's a functional description in there,
        correct, in those columns, 12, 13?
            A. I don't know how you use the word
        "functional." There's a description of what to do in
        essence.
    Q. Yeah, what functions to perform, what to do,
        as you just said.
```

DEPOSITION OF ROBERT DEZMELYK - 4/9/2010

```
03:41:17 1
```

03:41:20 2
03:41:22 3
03:41:27 4
03:41:30 5

03:41:38 6

03:41:42 7

03:41:43 8

03:41:44 9

03:41:46 10

03:41:54 11

03:41:57 12
03:42:00 13
$03: 42: 0314$

03:42:07 15

03:42:08 16
$03: 42: 10 \quad 17$

03:42:12 18

03:42:15 19

03:42:18 20
03:42:19 21
03:42:20 22
03:42:23 23
03:42:40 24
$03: 42: 43 \quad 25$

What I'm asking is, is there some sort of description of software algorithm that would say this is the way to do that and this is how you would process that in order to accomplish that function?
A. Well, I think the description here does give the information to the person who's the practitioner that they need to have.
Q. To do what?
A. To do -- to make that determination. In other words, to say if -- the process of -- say we're taking the click events in the simple case of a button up, button down. Practitioners at the time definitely know, you know, how to make a packet that's button up or button down. That's a long-known understood concept in mouse design.

So the person who's reading this already knows about that background and knows about, you know, I generate a down packet, I generate an up packet. I mean, they know about that part of it.

And so when look at, to me, reading the sections that I pointed out, and I can try to get you the more detailed lines by, you know, picking them out for you, it tells you what you need to do to do that.
Q. When you say "it tells you what you need to do to do that," are you saying that with this description

```
03:42:47 1 of the operations in terms of putting fingers down and
03:42:50 2
03:42:54 3
03:42:57 4
03:43:00 5
03:43:08 6
03:43:12 7
03:43:14 8
03:43:20 9
03:43:25 10
03:43:28 11
03:43:31 12
03:43:36 13
03:43:40 14
03:43:40 15
03:43:43 16
03:43:45 17
03:43:47 18
03:43:50 19
03:44:00 20
03:44:03 21
03:44:07 22
03:44:10 23
03:44:13 24
03:44:17 25
```

```
lifting them up, that someone could go ahead and write
some sort of an algorithm that would do that?
    A. Right. And, I mean, there's also a set of
        things in, you know, figures 8-2, 9-1, et cetera, that
        relate to that process.
    Q. But the algorithms that are described in
        figures 8 and 9 and 5 and 6 and all, those aren't
        setting forth in an algorithm how you would perform
        that function of providing a click function in response
        to the removal and reappearance of a second maxima
        within a predetermined period of time; correct?
            A. Well, I don't agree with your
        characterization.
    Q. So point out to me in figure 8 or figure 9
        Or --
            A. Let's turn to --
            Q. -- or figure 5 or 6 where that's described.
            A. Let's look just for figure 8-1 in a minute.
        And look at the bottom of figure 8-1 where there's been
        some processing. There's an X compute and Y compute.
        There's been some determination of the number of
        fingers that are present, and then it turns the page
        onto the remainder of figure 8-2, which is on sheet 15
        of the patent.
```

03:44:19	1	And then it -- just as an exemplary example
03:44:23	2	here, I won't to try to say exhaustively, but if you
03:44:26	3	look at decision point 905, if the test is that the
03:44:31	4	button was previously up and we have finger 2, then
03:44:35	5	we're going to take the step of reporting button equals
03:44:39	6	down, and we're going to set button previous equal to
03:44:42	7	down.
03:44:42	8	And then at a later scan we're going to come
03:44:44	9	back through here again, and perhaps we're going to
03:44:47	10	find that we were in -- the case listed as 910 in that
03:44:51	11	decision block, if we fall into that decision block,
03:44:53	12	button previous would be down, in other words, if that,
03:44:56	13	and, you know, we have one of these cases, and then
03:44:59	14	we're going to, of course, report button up.
03:45:02	15	The process of reporting a button down to the
03:45:05	16	host system followed by a button up report would
03:45:07	17	constitute a click to the host processor. In other
03:45:09	18	words, the event of a button down and a button up.
03:45:13	19	A practitioner at the time, once you tell them
03:45:15	20	report button equals down, they understand what that
03:45:17	21	means. In other words, that says make the serial
03:45:21	22	output bytes in the packet that match up with a button
03:45:25	23	down event on a mouse, which is a kind of standardized
03:45:28	24	known operation.
03:45:30	25	So I think they've set forth here a

03:45:33	1	description of how to do it.
03:45:34	2	Q. So where in figure 8-1 and figure 8-2 say that
03:45:39	3	it is the second maxima that is being removed and
03:45:41	4	reappearing within a predetermined period of time?
03:45:44	5	A. Well, first I'll note that I don't think that
03:45:49	6	it has to say that, but notice that if you look at
03:46:03	7	decision block 905, it's making two tests. The first
03:46:06	8	tests is the button previous is up, meaning that we're
03:46:09	9	not reporting a button down. In the second test, and
03:46:12	10	finger equals 2, and if we look back to see what the X
03:46:19	11	finger is, if I dig into the document here, I believe X
03:46:26	12	finger will be a count of fingers.
03:46:28	13	Q. Right. So what tells you in this algorithm,
03:46:30	14	this flow chart figures $8-1$ and 8-2, that it is the
03:46:34	15	second finger that is the second maxima as opposed to
03:46:39	16	the first maxima?
03:46:44	17	A. I would generally interpret that if I had a
03:46:51	18	count of fingers and it went zero, one and two, that
03:46:54	19	two would be the second one.
03:46:55	20	Q. So where it says finger equals two in figure
03:47:00	21	8-1 and figure 8-2, your testimony is that that is a
03:47:04	22	reference to the second finger as opposed to the total
03:47:07	23	number of fingers being detected?
03:47:11	24	A. No, I think it's the count of fingers, but
03:47:18	25	since we're scanning repeatedly, the -- notice you have

03:47:26	1	the previous finger count -- okay. And the state of
03:47:37	2	whether I'm generating a button depends later on
03:47:40	3	whether I have finger equals zero or finger equals one.
03:47:46	4	But again, see, I think that it's an erroneous
03:47:52	5	way of looking at this claim to say I have to see a
03:47:59	6	algorithm that in the absence of any knowledge about
03:48:02	7	process teaches, you know, a beginner how to do it.
03:48:06	8	Q. I'm just asking a question. I'm just trying
03:48:08	9	to understand whether there is something set out in
03:48:11	10	figure 8-1 or figure 8-2 or anywhere else in the patent
03:48:16	11	that tells you specifically that it is the second
03:48:19	12	maximum that appears and is removed and reappears,
03:48:23	13	whether that is described in any of these algorithms,
03:48:28	14	how you would determine that it's the removal and
03:48:30	15	reappearance of the second maxima.
03: 48:32	16	A. Okay. Well, let me try to explain that. If
03:48:35	17	we look at column 12, let me just see if I can go back
03:48:40	18	to this. Let me just review it for a moment here.
03:48:53	19	Okay. Look at the bottom of column 13. I
03:49:47	20	direct you to that. And again, this has to be taken in
03:49:51	21	a totality. So it's not like you find one exact spot.
03:49:55	22	You have to read the entire document to understand it
03:49:57	23	as a practitioner, and that gives you the understanding
03:49:59	24	of it.
03:50:00	25	But if we look at this paragraph starting at

03:50:04	1	approximately line 59, referring next to figures 8 and
03:50:08	2	9, the generalized case associated with figures 7-F1
03:50:12	3	and 2 but also applicable to the remaining functions
03:50:15	4	may be better appreciated.
03:50:17	5	In the exemplary algorithms shown in figures 8
03:50:30	6	and 9 -- and 8, of course, is what? 8-1 is what we've
03:50:31	7	been looking at. "A determination is made whether
03:50:32	8	zero, one or two fingers are in contact with the
03:50:34	9	touchpad. Depending on how many fingers are
03:50:37	10	identified, various operations are permitted.
03:50:40	11	"It will be appreciated that figure 8 is an
03:50:42	12	analogous to figure $5^{\prime \prime}$ and so on. For convenience,
03:50:44	13	steps unchanged are left in, and then it describes how
03:50:47	14	that process goes. And when you look at that and
03:50:54	15	looking at the number of fingers, that explains to you,
03:51:00	16	to me at least as a practitioner, what you would do,
03:51:03	17	the type of steps would you do to do this determination
03:51:09	18	of providing a click function in response to the
03:51:13	19	removal and reappearance.
03:51:15	20	Q. All right. And where in the portions that you
03:51:18	21	just referred us to or anywhere else in the patent does
03:51:21	22	it tell you how you can determine that a click function
03:51:26	23	is being provided in response to the removal and
03:51:28	24	reappearance of the second maxima as opposed to the
03:51:32	25	first maxima?

04:32:28 1 of the context it's being used in

04:32:29 2

04:32:33 3

04:32:39 4
$04: 32: 415$
$04: 32: 456$
$04: 32: 46 \quad 7$
$04: 32: 478$
$04: 32: 48 \quad 9$
$04: 32: 50 \quad 10$
$04: 32: 5611$

04:32:57 12

04:32:59 13

04:33:08 14

04:33:11 15

04:33:14 16

04:33:19 17

04:33:28 18

04:33:32 19

04:33:35 20

04:33:36 21

04:33:38 22

04:33:41 23

04:33:49 24

04:33:51 25
of the context it's being used in.
Q. There's a reference to a touchpad program containing virtual actuation zone profiles that describe how the virtual actuation zones are distributed around the touchpad relative to the data sensor coordinates.

You see what I'm referring to?
A. Yes. that stores not just one but potentially multiple virtual actuation zone profiles; correct? which is related to the user interface, the user interface is shown sort of the whole device, and it construct in that paragraph -- I mean, it says profiles, but it seems that there may be one set of them. that would be a single program, for controlling
Q. So the idea there is that I can have a program
A. Right. The idea -- I mean, 38 is shown back in figure 2. It's a -- like a microcontroller. And it notes that it may store this idea of a touchpad program seems that yes -- I don't see that there's a necessary

I mean, I don't know if it's important, but just sort of parsing that paragraph by itself it says that the touch paid may store a touchpad program. So different aspects of the user interface. For example,

DEPOSITION OF ROBERT DEZMELYK - 4/9/2010

04:33:53	1	the touchpad program may continue virtual actuation
04:33:57	2	zone profiles that describe how the virtual actuation
04:34:00	3	zones are distributed.
04:34:02	4	I take "profile" there to mean that you may
04:34:04	5	have multiple actuation zone, in essence, data
04:34:08	6	structures to describe the zones. Not necessarily that
04:34:10	7	you have different sets of them, right, but that you
04:34:13	8	have, say, five zones and therefore, you would have
04:34:17	9	five profiles, one per zone, as the data structures
04:34:20	10	that represent that.
04:34:20	11	Q. Five profiles that -- all set in one
04:34:29	12	particular region, or can those profiles come and go in
04:34:32	13	different regions at different times?
04:34:34	14	A. Well, again, I'm just saying in terms of the
04:34:38	15	way I -- are you asking me to sort of interpret that
04:34:40	16	paragraph? The way I read that paragraph, that there
04:34:45	17	may be a set of more than one zone. In other words,
04:34:48	18	that these virtual actuation zones have a location that
04:34:54	19	is distributed around the touchpad relative to the
04:34:57	20	native sensor coordinates, and it also says what type
04:35:00	21	of value to output.
04:35:01	22	So my, you know, quick kind of interpretation
04:35:03	23	of that is that there's a data structure, maybe we'll
04:35:05	24	call it a profile, that's associated with one of these
04:35:08	25	actuation zones, and it has some set of characteristics

DEPOSITION OF ROBERT DEZMELYK - 4/9/2010

04:42:33	1	sensor?
04:42:33	2	A. Well, it certainly couldn't be detected
04:42:39	3	without that and the -- there's some process that goes
04:42:44	4	between, you know, a sensor which outputs some signal,
04:42:49	5	if we're perhaps being excited, and turning into a
04:42:52	6	coordinate.
04:42:53	7	And there's an in-between process there, but
04:42:56	8	you don't have coordinates until you have coordinates.
04:43:01	9	Q. And so there's some processing that goes on by
04:43:05	10	a chip or a computer or software or something that then
04:43:08	11	takes those raw values of amps or volts or current or
04:43:12	12	whatever and then says for each of the sensors, aha,
04:43:16	13	this is where that sensor is located?
04:43:19	14	A. No, this is not where the sensor's located,
04:43:21	15	but this is where the object's located that you're
04:43:24	16	trying to sense the position of.
04:43:25	17	Q. Which object? A finger or a stylus or
04:43:27	18	something like that?
04:43:28	19	A. Right. In other words, there's -- there are
04:43:31	20	sensors that can tell you where they're located. That
04:43:33	21	is, you can obtain the location of the sensor. But the
04:43:36	22	type of sensing devices that are, you know, we're
04:43:40	23	discussing here today are devices that are intended to
04:43:43	24	identify the location of an object usually in close
04:43:45	25	proximity to.

DEPOSITION OF ROBERT DEZMELYK - 4/9/2010
$04: 43: 47 \quad 1$

04:43:49 2
$04: 43: 513$

04:43:51 4
$04: 43: 525$

04:43:54 6

04:43:57 7

04:44:00 8
$04: 44: 00 \quad 9$

04:44:01 10

04:44:03 11

04:44:04 12

04:44:06 13

04:44:07 14

04:44:11 15

04:44:14 16

04:44:15 17

04:44:16 18

04:44:16 19

04:44:19 20

04:44:21 21

04:44:26 22

04:44:31 23
$04: 44: 35 \quad 24$
04:44:40 25
Q. Such as a finger or a stylus --
A. Right, right.
Q. -- or what-have-you?
A. You want to know where the finger is on the touchpad, touch screen, whatever. You don't want to know where is the touchpad relative to the room boundaries or relative, you know, to its place on the planet.
Q. I understand.
A. That's another kind of sensing.
Q. Got it.

All right. Paragraph 42 you say, "I may also testify that, 'Sensors configured to map the touchpad surface into native sensor coordinates' means sensors configured to produce signals indicating native sensor coordinates."

Do you see that?
A. Yes, I do.
Q. And what are you relying on as support for that proposition in the specification?
A. Well, the same citation and probably other places, and I think this -- the real point I'm trying to make here is that the coordinates in question are the coordinates of the object, not what might be seen as the coordinates of the sensor itself.

| 04:44:43 | 1 |
| :--- | :--- |\quad Q. All right. So I'm looking at the language in

DEPOSITION OF ROBERT DEZMELYK - 4/9/2010

04:47:00	1	roughly 37 or so, line 37 , says, "the sensor of the
04:47:04	2	touchpad 36 are configured" -- it literally reads
04:47:11	3	"produce signals," but I believe he means to say
04:47:12	4	"configured to produce signals associated with the
04:47:14	5	absolute position of an object on or near the touchpad.
04:47:17	6	"In most cases, the sensors of the touchpad 36
04:47:20	7	map the touchpad plane into native or physical sensor
04:47:24	8	coordinates 40. The native sensor coordinates 40 may
04:47:28	9	be based on Cartesian coordinates or Polar coordinates
04:47:32	10	as shown."
04:47:34	11	Then it goes on to explain that "when
04:47:35	12	Cartesian, the native sensor coordinates 40 typically
04:47:36	13	include" -- I'm sorry, my mistake in reading --
04:47:40	14	"typically correspond to X and Y coordinates and then a
04:47:43	15	corresponding Polar, as shown, the native sensor
04:47:47	16	coordinates typically correspond to radial and angular
04:47:49	17	coordinates r theta."
04:47:49	18	And then it says that you can have a bunch of
04:47:52	19	different types of, you know, resistive optical, et
04:47:56	20	cetera.
04:47:56	21	Q. So under your interpretation, how is it that
04:47:59	22	one of these signals that is produced by a sensor,
04:48:05	23	quote/unquote, indicates a native sensor coordinate?
04:48:08	24	How does a sensor do that?
04:48:10	25	A. Well, the outputs of the sensor -- the sensor

04:48:16	1	is designed so that the signals it generates,
04:48:22	2	potentially when it's excited by some excitation, but
04:48:25	3	the signals it generates are correlated to position.
04:48:28	4	So, for instance, to give kind of an example
04:48:31	5	of this in a literal sense, if you were to make a
04:48:34	6	capacitive, well, sensing grid of the type we've been
04:48:39	7	talking about, it's typical that you put the grid lines
04:48:46	8	down in a known spot so that when you get signals from
04:48:49	9	them you can calculate the position of the object
04:48:51	10	that's causing the capacitance.
04:48:53	11	If you put the capacitive pass down randomly,
04:48:56	12	you know, in some hypothetical, then you wouldn't be
04:48:59	13	able to calculate where the object was. You'd see a
04:49:02	14	bunch of varying capacitance, but you wouldn't know,
04:49:07	15	you know, where it came from. Right?
04:49:08	16	I mean, so you're configuring the sensors such
04:49:13	17	that the signals it generates are indicative or
04:49:17	18	actually relate to position.
04:49:18	19	Q. Right. The signals that are being generated
04:49:20	20	by the sensors don't themselves carry with them
04:49:24	21	positional information, do they?
04:49:26	22	The frequency or the amps or whatever, there's
04:49:28	23	no positional information in there, is there?
04:49:30	24	A. It may. They may. Depends on the sensor
04:49:34	25	type.

04:56:17	1	A. Right.
04:56:18	2	Q. All right. And I think what you said in your
04:56:20	3	report at paragraph 36 is that a cursor control
04:56:23	4	operation means providing cursor positioning data to
04:56:27	5	effect movement of the cursor; is that right?
04:56:29	6	A. Well, I said that it's a cursor tracking
04:56:36	7	operation that controls the movement of the cursor on
04:56:38	8	the screen.
04:56:39	9	Q. Where did you say that? I didn't see that
04:56:50	10	word "tracking," so maybe you can point that out to me.
04:56:54	11	A. Well, we're talking about my paragraph 36, and
04:56:58	12	I note that, you know, at 6:9-13, "The '218 patent
04:57:04	13	expressly states that a cursor control operation is a
04:57:06	14	cursor tracking operation. That is, an operation that
04:57:09	15	controls the movement of the cursor on the screen."
04:57:11	16	Q. Right. And what I'm trying to understand,
04:57:12	17	first of all, is we have some claim language, "cursor
04:57:16	18	control operation," and I first of all wanted to get
04:57:19	19	your opinion then on what you believe that term means,
04:57:26	20	how it should be construed by one of ordinary skill in
04:57:29	21	the art.
04:57:30	22	I thought you had construed it to mean
04:57:33	23	providing cursor positioning data to affect movement of
04:57:37	24	the cursor, but I may have that wrong.
04:57:42	25	A. Well, I mean, I guess you're asking sort of

04:59:01 1 04:59:05 2 04:59:08 3 $04: 59: 13 \quad 4$ 04:59:20 5 04:59:23 6 04:59:26 7 04:59:28 8 05:00:00 9 05:00:05 10 05:00:12 11 05:00:13 12 05:00:13 13 05:00:14 14 05:00:17 15 05:00:21 16 05:00:23 17 05:00:26 18 05:00:29 19 05:00:31 20 05:00:36 21 05:00:38 22 05:00:42 23

05:00:44 24
05:00:46 25
Q. All right. So now, with that construction in mind that you've provided there of what a cursor control operation is, can you point out to me where in the specification there are described three cursor control operations, a first one, a second one and a third one that are based on the duration of contact and gap intervals?
A. Okay. And I'll direct your attention back again to 6 to 9 to 13 where it explains column 6, lines 9 to 13 where it says, "As shown in part A of figure 5" --

THE REPORTER: Slow down.
THE WITNESS: I'll just read the -- "if the first contact interval lasts longer than the maximum tap interval," and then there's an example here in parentheses, "i.e., if T subscript $T 1$ is greater than T subscript max, the operation of the touch-sensitive cursor controlling input device during the first contact interval is identified as a cursor control operation, i.e., a cursor tracking operation."

And then it goes on to, "Thus, positional data relating to user's contact with a touch-sensitive input device is supplied to the computer system in order to effectuate cursor movement on the computer screen."

Now, going back to understand the context of

DEPOSITION OF ROBERT DEZMELYK - 4/9/2010

```
05:00:50 1 this to column 5, there's a section which deals with --
05:00:57 2
05:01:00 3
05:01:03 4
05:01:06 5
05:01:096
05:01:10 7
05:01:13 8
05:01:16 9
05:01:17 10
05:01:19 11
05:01:23 12
05:01:26 13
05:01:29 14
05:01:33 15
05:01:35 16
05:01:38 17
05:01:41 18
05:01:45 19
05:01:49 20
05:01:52 21
05:01:56 22
05:01:59 23
05:02:01 24
05:02:04 25
```

DEPOSITION OF ROBERT DEZMELYK - 4/9/2010

05:02:06		operation, which would be something on the order of
05:02:08	2	down, up, down, up, down, drag.
05:02:12	3	So to the extent that there's three cursor
05:02:15	4	control operations you asked me to identify, certainly
05:02:19	5	a cursor positioning would be one, dragging would be
05:02:24	6	two, click-and-drag would be three, and multi-click and
05:02:29	7	dragging would be four.
05:02:31	8	Q. There is in figure 2 of this patent, I
05:02:40	9	believe, an element called 215.
05:02:47	10	A. Right.
05:02:47	11	Q. And I believe that that's called a
05:02:49	12	balance-measuring circuit in the patent.
05:03:01	13	A. Counsel, do you perchance know what the
05:03:03	14	relative section is just to speed us up here?
05:03:07	15	Q. Column 4 is what I was focused on, but I
05:03:11	16	didn't want to limit you there.
05:03:13	17	A. I'll start there. Thank you.
05:03:30	18	Okay. I mean, in the interest of time, I'm
05:04:10	19	generally familiar with that paragraph.
05:04:12	20	Go ahead, please.
05:04:13	21	Q. All right. My question is, what is the
05:04:17	22	function of the balance-measuring circuit 215?
05:04:20	23	A. In general, this is a kind of top-level
05:04:28	24	description of this particular sensing means. In
05:04:36	25	general, there's a technique to determine, I guess,

DEPOSITION OF ROBERT DEZMELYK - 4/9/2010

