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Chapter 2

PROXIMITY IMAGE FORMATION AND TOPOLOGY

Limited hand and finger tracking experiments have previously been con-
ducted with a variety of sensing technologies. This chapter begins with a review of
these sensing technologies and explains why proximity sensing arrays are particularly
well-suited for everyday applications of hand tracking. Then the chapter discusses
proximity image pre-processing such as background object removal, sensor offset
adaptation, and electrical noise filtering. The chapter concludes with a sampling
of proximity images which illustrate the typical features and arrangements of hand
contacts. This hand topology section is particularly important to the understand-
ing of the contact segmentation and identification algorithms in Chapters 3 and 4,

which rely heavily on relative contact shape and position constraints.

2.1 Related Methods for Hand Motion Sensing

Hand position and motion can conceivably be detected with mechanical or
electromagnetic sensors attached to the hand, with remote optical or acoustical
sensors, or with proximity or pressure sensors mounted on an object in the user’s
environment. At first glance the attached sensor methods seem advantageous be-
cause they can capture three-dimensional hand activity in free space, unconstrained
by the physical form factor of an interfacing object. Data gloves and computer vi-
sion systems have been popular in virtual reality experiments for this reason. Such

systems are clearly appropriate for capturing the free-space hand gestures and sign
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language as they appear in communication between humans, but several factors

make them impractical for everyday human-computer interaction.

2.1.1 Free-Space Gestures

The first problem lies with holding or slowly adjusting hand position in free
space. The quick, relative motions of sign language may be easy to perform, but
holding the unsupported hands out in front of the body for extended periods is very
tiring [152, 153]. In such postures fingertip positions are also somewhat unstable, so
considerably less precision is possible than when some part of the hand or arm rests
against a firm object. Also, it is very difficult for a computer to distinguish motions
intended to be instructions for the computer from postural adjustments or gestures
to co-workers. This is known as the gesture saliency problem. To appreciate the
difficulty of this problem, consider how often we humans mistakenly think someone
is gesturing at us when the gesture is actually intended for someone behind us or
no one at all. If the direction of gaze of the sender is not known, determining the

intended recipient of gestures is even more troublesome.

2.1.2 Data Gloves

Free-space motion sensing technologies have limitations as well. Though
DataGloves [148] can potentially capture the entire range of finger flexion and ex-
tension, in practice the flexion sensors are imprecise yet expensive and cumbersome
to wear. Furthermore, as a bodily attachment, gloves must often be removed when
the user resumes non-computer tasks. This is both a practical disadvantage and
an ergonomic disadvantage because it discourages users from taking rest breaks
and mixing in non-computer tasks which rely on other muscle groups. FakeSpace,
Inc. [36] markets pinch or chord gloves for virtual reality systems which detect con-
tact between electrically conducting fingertip pads rather than general flexion and

extension of the fingers. The lack of flexion sensors reduces cost, and consistent with
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the design philosophy of this dissertation, such physical fingertip contact turns out

to be more reliable and easier to learn than free-space finger motion gestures [60].

2.1.3 Video Gesture Recognition

Computer vision technologies avoid the encumbrance of wearing gloves but
cannot always infer fingertip location. Assuming decent lighting is available, much
of the luminosity information that a video camera supplies is unnecessary for finger
tracking, and must be filtered out with computationally intensive algorithms [115].
The body of the hand can occlude the fingertips at some camera and hand angles.
Occlusion and limited camera resolution also make it very difficult to determine

exactly when the fingers touch a surface.

2.1.4 Benefits of Surface Contact

Most importantly, the emphasis on hand tracking in three-dimensional free
space ignores the long history of manipulating hand tools and musical instruments
which provide rich haptic feedback as the tool is acquired. While economics may
preclude customizing the shapes of general-purpose input devices as much as hand
tools are customized, detection of contact with a physical surface provides, at the
bare minimum, a clear demarcation between motions on the surface that the com-
puter is intended to recognize and motions away from the surface that the computer
should ignore. Though individual finger activity on a surface is constrained to two-
and-a-half dimensions, Chapter 5 will demonstrate that extra degrees of freedom
can be extracted from rotational and scaling motions of multiple fingers on a sur-
face. For many applications the improved clarity of user intent and tactile feedback
that surface contact imparts will more than make up for the slight reduction in

movement freedom.
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2.1.5 Sensing Finger Presence

Technologies which have been applied to detecting finger or stylus contact
include resistive membranes, surface acoustic wave, active optics and finger capaci-
tance sensing (see Lee’s 1984 Master’s Thesis [88] for an early review). Most imple-
mentations are limited to unambiguous location of a single finger because they rely
on what Lee calls “projective” sensor matrices. In a projective matrix (Figure 2.1a),

one sensor element is allocated to each row and column at the edge of the active

a) b)

Figure 2.1: The two basic multi-touch proximity sensor arrangements. In a), “pro-
jective” row and column spanning sensors integrate across each row
and column electrode and only need connections at the edges of the
matrix. Touching fingertips can be counted by counting the maxima in
the column signals assuming the fingertips lie in a roughly horizontal
row unobstructed by thumb or palms. The square sensors in b) only
integrate over the local square. The exact locations of any number
of fingertip-sized contacts can be interpolated from the 2D array of
square sensors, but a connection matrix must be run underneath the
sensor array to connect the sensors to signal processing circuitry.

area. Finger presence anywhere along a row will register on that row’s sensor, so

that a finger affects roughly one row and one column sensor. While the total number
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of sensors needed is related to only the square root of the active area, multiple finger
contacts can confuse these systems [88]. As was true in 1984, the surface acoustic
wave and infrared touchscreens as well as capacitive touchpads on the market still
suffer from this limitation.

Some devices on the market partially utilize multiple fingers despite the am-
biguities of projective sensing. For example, touchpads manufactured by Logitech,
Inc. [15, 78] for laptop computers are able to detect the presence of up to three fin-
gertips. The patent to Bisset and Kasser [15] explains that this is done by assuming
the fingers lie in a row and counting the number of maxima in the column projec-
tion. However, as will be seen in Figures 2.2 and 2.3 below, this projection maxima
counting method becomes ambiguous for larger touch surfaces in which one hand
part can intersect the same column as another, such as when both fingers and palms
touch the sensing area or the hand rotates so fingers lie diagonally or in a column.

Figures 2.2 and 2.3 demonstrate the limitations of this projection approach
compared to the two-dimensional arrays of sensors (Figure 2.1b) to be discussed
in Section 2.1.7. Fingertip, thumb, and palm heel surface contacts are simulated
with two-dimensional Gaussians of varying widths on the 2D square grid. The grid
samples the Gaussians at 2.5 mm intervals such as would occur in a capacitive
sensing array with moderate spatial resolution. The darkness of the squares is
proportional to the finger capacitance or proximity sampled at the square. The
projective signals which would be measured from the row and column spanning
electrodes of Bisset and Kasser [15] are simulated by integrating over each row of
the 2D array to obtain the horizontal bar plots to the left of each grid and by
integrating over each column to obtain the vertical bar plots under each grid.

Figure 2.2 shows the projection sensing ambiguities which can occur when

the fingertip row is not horizontal, but lies diagonally instead due to various hand

34



"N

c)

"N

ok k. 2 2k ok k. 2 2k

i

T
1T
1T
I

|I Il V
O
~

Ty

ITYTREEN

Figure 2.2: Projection sensor ambiguities for various diagonal arrangements of

fingertips. The different fingertip contact arrangements shown on the
square sensor grid in a)-c) all produce the same row and column pro-
jections (horizontal and vertical bar plots), preventing the projection
method from determining the hand rotation, though it can still count
the fingertip maxima. In d) the fingertips are so close together that
the projection minima between fingertips disappear, preventing fin-
gertip counting, though the diagonal minima are still discernable in
the square sensor grid.
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rotations. In Figure 2.2a-c four maxima appear in both the row and column pro-
jections (bar plots), indicating at least four objects are touching the surface, but
the projections are the same in each case even though the fingertip arrangements
(grid) differ. The same projections could be obtained from a 4 x 4 array of 16
fingertips also, though most human operators will not have that many fingertips. In
Figure 2.2d the fingertips are so close together in their diagonal row that the pro-
jection maxima merge, though local maxima are still clearly separated by diagonal
partial minima in the sampled 2D array.

Figure 2.3 shows how fingertip counting from projection sensors is occluded
by the presence of thumb and palms in a neutral hand position. In Figure 2.3a
four fingertips lie in a slight arc, producing four maxima in the column projections
and one in the row projection. Figure 2.3b includes the thumb in nearly the same
column as the index fingertip, causing an additional maximum in the row projection
(horizontal bars) only. The index fingertip is removed in Figure 2.3¢c; because the
thumb is still in the same columns, the number of projection maxima does not
change, though the amplitudes change somewhat. Because the amplitudes also
depend on how lightly each finger touches the surface, the change in projection
amplitudes cannot reliably resolve this ambiguity; the amplitude changes could also
be a result of a lightening in hand pressure. In Figure 2.3d the palms touch as
well, leaving three maxima in the row projection but causing the column projection
maxima to merge into just two. Therefore from the row projection one could surmise
that some palms, the thumb, and some fingertips are touching, but one can no
longer tell how many fingertips are touching because the palm column projections
get integrated with and obscure the fingertip column signals.

As Lee points out, measuring projections from additional angles such as di-

agonals can help disambiguate multiple contacts, as is done in tomography systems,
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Figure 2.3: Ambiguities in projective sensing caused by presence of the thumb and

palms in the same columns as fingertips. a) simply contains a slightly
arched row of fingertips producing four column projection maxima
(vertical bars at bottom) and one row projection maximum in the
horizontal bars. Adding a thumb contact in b) adds a row maximum
but not a column maximum because the thumb intersects nearly the
same columns as the index fingertip. Removing the index fingertip
in ¢) does not chance the number of projection maxima, meaning
fingertips cannot be counted reliably in the presence of the thumb.
Adding the palms in d) further obscures the fingertip row projection
maxima, which get merged with those of the palms.
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but details inside concave contacts will still be undetectable [88]. The number of un-
ambiguously locatable contacts is generally one less than the number of projection
angles utilized [88]. McAvinney’s “Sensor Frame” [107,108,129], an attachment to
the screen of a computer monitor which senses intersection of fingers with infrared
beams from four directions, utilizes this tomography approach to unambiguously

locate up to three fingers.

2.1.6 Tactile Imaging

This complex tomography approach can be avoided with a regular two-
dimensional array of individually addressable sensors (Figure 2.1b), in which each
sensor corresponds to a pixel in a “tactile image.” Layered resistive-membrane
pressure sensors can be constructed economically in this configuration, but their
substantial activation force is ergonomically inferior to zero-activation-force prox-
imity sensing. Another approach is to place a camera under a translucent tabletop
and image the shadow of the hands [81,110]. Unfortunately the bulky optics under
the table will limit portability and leg room, and such systems cannot differentiate
finger pressure [88]. Active optical imaging with an array of infrared transmitters
and receivers on the surface could easily detect finger proximity, but would be pro-

hibitively expensive and power consumptive.

2.1.7 Capacitance-Sensing Electrode Arrays

The remaining option is to measure the capacitance between the fingers and
an insulated array of metal electrodes. The presence of a finger effectively increases
the electrode capacitance to ground since the capacitance between the conductive
fingertip flesh and an electrode plate is typically a few pF but the capacitance of
the human body with respect to earth ground is relatively large (about 100pF') [88].
Since the capacitance between parallel plates drops quickly in inverse proportion

to the distance between the plates, this technique can only detect fingers within a
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few millimeters of the electrodes. Spatial resolution increases dramatically as the
fingers approach the electrodes. Precision of .2 mm can easily be obtained with 4
mm electrode spacings by computing a finger centroid, i.e., interpolating between
neighboring electrodes. The capacitive technique also indicates finger force up to a
couple Newtons because the effective capacitor area increases as the fingertip pulp
flattens against the surface [134]. While the limited proximity sensing range of
electrode arrays ensures fingertip proximity information is clear and uncluttered,
it also prevents detection of the finger joints and palms unless the whole hand is
flattened against the surface.

Lee built the first such array in 1984 with 7mm by 4mm metal electrodes
arranged in 32 rows and 64 columns. The “Fast Multiple-Touch-Sensitive Input
Device (FMTSID)” total active area measured 12” by 16”7, with a .075mm Mylar
dielectric to insulate fingers from electrodes. Each electrode had one diode con-
nected to a row charging line and a second diode connected to a column discharging
line. Electrode capacitance changes were measured singly or in rectangular groups
by raising the voltage on one or more row lines, selectively charging the electrodes
in those rows, and then timing the discharge of selected columns to ground through
a discharge resistor. The principal disadvantage of Lee’s design was that the column
diode reverse bias capacitances allowed interference between electrodes in the same
column. Even with 2048 electrodes and suitable interpolation between electrodes,
the electrode spacing was probably too coarse to reproduce the fine mouse posi-
tioning achieved with current single-finger touchpads [46-48,50,51,111]. Though
its scanning rate depended irregularly on the number of and positions of surface
contacts, for ten fingers it would have only been able to achieve 1-5 fps, which is
much too slow for either typing or gesture applications.

Rubine [129, 130] reports seeing another multi-touch tablet demonstrated at
AT&T in 1988 by Robert Boie which could detect all ten fingers. It boasted a 30
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fps frame rate and resolution of 1 mil (.025 mm) in lateral position and 10 bits in
pressure. Possibly it measured sensor capacitance with the synchronous detection
technology in a 1995 patent by Boie et al. [17] that briefly mentions multi-touch

tablets as an application.

2.1.8 The MTS’s Parallelogram Electrode Array

The MTS contains a 16 x 96 electrode array (Figure 2.4) much like those
in the above multi-touch tablets. It employs a special wedge electrode geometry to
reduce the number of rows necessary by a factor of three without causing serious
non-uniformities in vertical position interpolation. This reduction in electrode count
speeds fabrication of research prototype arrays by lowering the discrete part count,
but would not necessarily be beneficial for volume manufacturing techniques.

Rectangular electrodes (Figure 2.5) like those used by Lee [88] are more
sensitive to vertical position changes near the top and bottom of the electrodes,
where it is possible to interpolate between two electrodes, than in the middle of an
electrode. If a finger is in the middle, the electrode is so tall that the electrodes
above and below do not register enough signal to get a reliable interpolation.

In contrast, the vertically interleaved parallelogram electrodes interpolate via
their physical geometry. The ratio of the horizontal cross-sections between electrodes
in a column varies continuously with vertical location of an object (Figure 2.6a-d)).
Though this improves uniformity of vertical interpolation compared to rectangular
electrodes of the similar height, it also has the effect of vertically smearing signals,
making it difficult to distinguish objects which appear in the same electrode column
less than one row spacing apart. For research prototyping purposes this is tolerable
because the fingers tend to lie in a row, no more than one per column. However,
once in awhile the thumb or pinky pass behind and intersect columns of the other
fingertips, becoming indistinguishable from the fingertip in front of them (see Sec-

tion 2.3.3). Also, as is discussed in Appendix B, vertical interpolation biases do arise
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a) b) C) d) e)

Figure 2.5: A 3 x 3 section a) of rectangular electrode array. Vertical interpolation
between top and bottom electrodes works in b)-c) but not in d)-e).

for small contacts which are not centered on or between columns of the parallelo-
gram electrode array. Thus a commercial product, especially one which attempts to
recognize a handwriting grip or stylus, would have to abandon the electrode count

savings of this scheme for traditional square electrodes and a smaller row spacing.

a b o d

Figure 2.6: Vertical interpolation on the parallelogram electrode array is uniform
in a)-d) since ratio of hatched cross sections on top and bottom elec-
trodes changes gradually.
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2.1.9 No Motion Blur on MTS

Another important characteristic of the MTS is that the sensing array multi-
plexes much of the integration, buffering and quantization circuitry. Therefore the
capacitance of each electrode is measured over a relatively short period of a few
hundred microseconds compared to the total array scanning period of ten to twenty
milliseconds. This contrasts with the CCD arrays typically used in video cameras
which integrate incoming photons at each pixel over most of the period between
readouts. An advantage of the MTS’s relatively short integration time is that M'T'S
proximity images do not exhibit motion blur. However, if the scanning rate is not
fast enough, quick finger taps over an electrode can occur entirely between mea-
surements of that electrode and be completely missed. When tapping key regions
during touch typing, fingers usually remain on the surface for at least 50 ms, but
the scan period must be somewhat smaller than this for reliable detection. During
the experiments conducted for this dissertation, the array scan frequency or frame
rate has been set to 50 fps (corresponding to a period of 20 ms), which ensures
that each finger tap shows up in at least one scan. However, at this rate the peak
finger pressure as the fingertip bottoms out onto the surface in the middle of the
tap cannot be measured accurately because the single scan detecting the tap might
occur near the beginning or end of the tap cycle when the finger is barely touching
the surface. Minor changes to the scanning hardware can easily push the frame rate
to 100 fps, which will allow peak finger pressure to be measured fairly accurately

even for extremely quick taps.

2.2 Tactile Image Formation and Background Removal
While designing a tactile sensor array for robotic fingertips nearly 20 years
ago, Danny Hillis [59] realized how much easier touch imaging is than computer

vision:
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. analyzing a tactile image is like analyzing a visual image with con-
trolled background, illumination, and point of view ... the properties
that we actually measure are very close, in kind, to the properties that
we wish to infer.

Comparing background segmentation techniques in vision-based and tactile hand

imaging systems will verify his insight.

2.2.1 Optical Image Segmentation

Ahmad’s real-time 3D hand tracker [3] segments the background by matching
image patches to known skin color h