Textscape, LLC v. Google, Inc. Doc. 51 Att. 6

GOOGLE INC.’S MOTION FOR SUMMARY JUDGMENT OF INVALIDITY
OF CLAIM 1 OF U.S. PATENT NO. 5,713,740

Exhibit E

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/5:2009cv04552/223045/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2009cv04552/223045/51/6.html
http://dockets.justia.com/

United States Patent 9
Wroblewski et al.

O OO 0000

US005339391A
(111 Patent Number: 5,339,391

451 Date of Patent: Aug. 16, 1994

{54) COMPUTER DISPLAY UNIT WITH
ATTRIBUTE ENHANCED SCROLL BAR

[75] Inventors: David A. Wroblewski, Austin, Tex.;
William C. Hill, Montville, N.J.;
Timothy P. McCandless, Austin, Tex.

[73] Assignee: Microelectronics And Computer
Technology Corporation, Austin, Tex.

[21] Appl. No.: 102,021

[22] Filed: Aug. 4, 1993
Related U.S. Application Data
[63] Continuation of Ser. No. 523,117, May 14, 1990, aban-
doned.
[51] Inmt. CLS . rrereeeeenaeeaerans GO6F 15/62
[52] US. Cl .ocrerecernneeeeanenene 395/157; 345/123
[58] Field of Searchc.cccovevenennennn. 395/155-161,

395/133; 345/121, 123-125, 127, 129, 134, 119,
118; 364/401, 423; 368/41

[56] References Cited
U.S. PATENT DOCUMENTS
4,831,556 5/1989 OORNO ..coerereeerevranererrrnereennnes 395/157
4,852,042 7/1989 Zur Muhlen et al. 364/401
4,881,179 11/1989 Vincent 395/161 X
4,962,473 10/1990 Crainccoeereeeeveererverevereennnns 364/423
4,975,690 12/1990 TOITES ..ccvvceurrvercrervercesernaens 345/119
5,001,697 3/1991 Torres 394/157 X
5,023,851 6/1991 Murray et al. ...ccoveceeenennnnen 368/41

5,039,937 8/1991 Mandt et al. ... 3957161 X

5,095,448 3/1992 Obuchi et al. 395/155 X
5,129,057 7/1992 Strope et al.c..iveieeenennae 395/161
OTHER PUBLICATIONS

“Foss, Tools for Reading and Browsing Hypertext”,
Information Processing and Management, pp. 407418,
1989.

GrandView Reference Guide, Symantec Corp., 1988,
pp. 121-124.

Linton et al, “Composing User Interfaces with Inter-
views”, IEEE, 1989, pp. 8-22.

Olsen, D., “Mike: The Menu Interaction Kontrol Envi-
ronment”, Oct. 1986, pp. 318-344.

Linton et al, “Composing user Interfaces with Inter-
views”, Feb. 1989, Computer, pp. 8-22.

Lampson, ‘“Personal Distributed Computing: The Alto

And Ethernet Software,” A History of Personal Work-
stations, ed., Adele Goldberg, ACM Press, New York,
N.Y., 1988, pp.315-323.

Card et al., “The Psychology of Human-Computer
Interaction,” Lawrence Erlbaum Associates, Hillsdale,
N.J., 1983, pp. 216-221.

Augarten et al., “The NeXT User’s Reference Manual”,
NeXT, Inc., 1989, pp. 44-48.

Johnson et al.,, “The Xerox Star: A Retrospective,”
Computer, Sept. 1989, pp. 11-29.

Goldberg, “Smalltalk-The Interactive Programming
Environment,” Addison-Wesley Publishing Co., Read-
ing, Mass., 1984, pp. 11-13, 26-28, 37-41, 4648, 56, and
108-110.

Salvendy, “Handbook of Human Factors,” John Wiley
& Sons, New York, 1987, pp. 1526-1541.

Roberts, “Evaluation of Computer Text Editors,” Re-
port SSL-79-9, Xerox Applied Information-Processing
Psychology Project, Systems, Sciences Laboratory,
Palo Alto Research Center, Palo Alto, Calif., 1979, pp.
1-184.

Olsen Jr., “Bookmarks: An Enhanced Scroll Bar,”
ACM Transactions on Graphics, vol. 11, No. 3, Jul. 1992,
Pp. 291-295.

Primary Examiner—Heather R. Herndon
Assistant Examiner—John E. Breene
Attorney, Agent, or Firm—David M. Sigmond

[57] ABSTRACT

An attribute-enhanced scroll bar is graphically dis-
played. A selected portion of a stored data file, for
example a document, is displayed in a display field, and
a scroll bar field including a scroll bar is used to indicate
the position of the displayed portion relative to the
entire data file. In addition, maps of significant task-
specific attributes of the data file, for example particular
character strings within a document, are displayed in
the scroll bar field of the display along with the scroll
bar. The attribute maps indicate the location of the
significant attributes within the data file. In addition, the
attributes are highlighted within the portion of the data
file that is displayed in the display field.

34 Claims, 4 Drawing Sheets

16—~
1718
such as the

18

AL

interdisciplina
merges cogaitive, computing,
ing sciences. Due 10 the rapid pace of
technological change,

ence of human~computer ia

little consensus on what the core knowiedge

of the discipline should be. In other
sciences, the d

organisms
ir biology, bas proved to be a useful foun-
dation for sclentific activity. This paper

tior 35 a sciesce. es

a model of the basic components of the in-

terface 3nd covernge of sowme of the major
principles

cognitive
the basis for human—computer interaction.

. there i as yet no sci-
teraction and
of tsxomomies,

ol 1

user interface ac-

that form

. e . e e v e T
- e s . - - . . = .
e e e - = . .

toft: Marked lino to top (shift-loft: to bottom): Middle: Movo to 11%; Right: Top tino to mark.
Scroll Maps: 1: Empty, 2: Occurancoa of "ist",
Thu 1@ Hay 11121142 MHroblewski {(+MeuCyce)CL DHy User Input

]b & geroll nap as defined above, Use tAl

(defnethod (Screll-Nap-Length Binary-serelli-nap) ()
(1ength cache))

(defnethod (Screll-Nap-Enpty? Winary-Scrall-Nap) ()
(null cache)}

AFTRIBUTE -NNPPED-SCROLL-BAR

TAts (3 the scroll bar definteton dteelf, HNote that the flavor is based on
nargin-seroll-bar, vhAich neans ve (nherit all the nornal scroll bar funetionality
fron the Synbolicy inplenentation of scroll bars. MWovever, attribute-napped
scroll bars have sone additional state variables, as described belov, and must
redefine the draving routines to add the naps vhen required.

=<« Nap Nanagenent Instance Variables ---

Attribute-napped-scroll-bars can display nultiple naps. The scroll bar assigns
uchlr'u: a synbolic nane, and also records the order in vhich to display the
scro ars.

nap-order ~ a KX} of synbols, indicating the outside-to~inside order in
which to drav the naps. [The firse nap vill be drav closer to

8 the outside of the scroll bar, and the last one will be drava
] closer to the inside of the fcroll bar,]2
naned-naps ~ an al wvhose elenent are of the forn ((naned . (nap)) vhere

<(nane> I3 an elenent of the nap-order lq. and (nap) {3
s B to find vhat actual

nap corresponds te a lopical nane,

overlay-naps ~ nornally, seroll naps are drav side-by-side vithin the shaft of
scroll bar, This isn’t the only vay to conpose then, hovever,
¢ (s allowvable to nark cercain naps as “overlay” naps, and they
]Q vill take up entire vidth of the scroll bar vhen drav, rather than
spliting up space vith the other naps, 0On a color display, one
could have overley naps in one color and the nornal naps in another,
and in this vay have nore naps displayed.

=== Draving Optiniration Instance Variables ~---

TAe most straiphforvard inplenentation of attribute-napped-scroll-bars has

poor perfornance character e, because 1t redravs the entire scroll bar

sach tine the position of the elevator car i3 updated, This inplenentation
tries to pet better perfornance by conputing an off-screen bitnap containing
"background {nape” of the scroll bar, That i3, the ends of the scroll bar,
enpty shaft, and the narkings for the various scroll naps known. Once conputed,

n—

LIBP Font-Tock) attribute-nepped-scroli-bsrs.iisp Ydetentedrel~?-2rsourcedscrol i-naps 6Ct (3) ¢ [Hore

14

3: Linoa modifled olnco fast snvo.

/q.

sbove and belou)

15

JuRRJ ‘SN

Y661 ‘91 ‘Sny

v 30 1 199YS

16€°6€E€°S

User interface design and analysis is an
inherently interdisciplinary activity that
merges cognitive, computing, and engineer-
ing sciences. Due to the rapid pace of
technological change, there is as yet no sci-
ence of human-computer interaction and
little consensus on what the core knowledge
of the discipline should be. In other
sciences, the develo ment of taxonomies,

g yiof living organisms
in biology, has proved to be a useful foun-
dation for scienuﬁc actmty. This paper
jof user interface ac-
tivity as a possxble ‘basis for the eventual
development of human-—com uter interac-

a model of the bas:c components of the in-
terface and coverage of some of the major
cognitive engineering principles that form

the basis for human-computer interaction.

Jusjed ‘S'N

$661 ‘91 ‘Sny

¥ 30 T 39934S

I6€°6€E°S

U.S. Patent

Aug. 16, 1994 Sheet 3 of 4 5,339,391

G,

DRAN ELEVATOR SHAFT(S)

V

/
{32

ANY
SCROLL

M=CURRENT
scroLL T34
A MAP

CAR

DRAW ELEVATOR

4-39

v

P=NEXT INTERVAL
IN M

\L (37

PLOT P ON
ELEVATOR SHAFT

C3g

U.S. Patent Aug. 16, 1994 Sheet 4 of 4 5,339,391

13 -
DIsSpPLAY 11
SCREEN
I —1~12
16—
43
44
L
INTERFACE
40
. t
' 46
42
/ ' |
PROGRAM |LOAD
STORAGE |7~ 7 MEMORT ==
41

%/L. 5

5,339,391

1

COMPUTER DISPLAY UNIT WITH ATTRIBUTE
ENHANCED SCROLL BAR

CROSS-REFERENCE TO RELATED
APPLICATIONS

This is a continuation of U.S. application Ser. No.
07/523,117 filed May 14, 1990, now abandoned.

A portion of the disclosure of this patent document 10

contains material which is subject to copyright protec-
tion. The copyright owner has no objection to the fac-
simile reproduction by anyone of the patent document
or the patent disclosure, as it appears in the Patent and
Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

The invention generally relates to computer displays
and methods of operating computer displays and, more
particularly, to displays including a data display region
used to display a portion of a stored data file, and a
scroll bar display region used to display a scroll bar and
to display locations of significant data attributes within
the stored data file.

Presently, scroll bars occupy a scroll bar display
region or window and allocate a long rectangle of pix-
els, typically called a shaft, to represent the extent of a
stored data file, for example a document. Such scroll
bars provide one car, which is a colored or shaded
sub-rectangle located within the shaft, and which corre-
sponds to the portion of the data file which is presently
being displayed in a data display region or field of the

" display screen. When the car is moved through the
shaft, the data display field is updated to display the data
file contents corresponding to the new position of the
car. Thus, ordinary scroll bars indicate a single feature
of the display, i.e., which portion of the data file is
presently being displayed. Other than the relative
length of the entire data file, represented by the relative
sizes of the shaft and car, no other file-specific informa-
tion is displayed.

SUMMARY OF THE INVENTION

The present invention significantly extends the func-
tion of scroll bars by superimposing a map of the posi-
tions of significant attributes within a stored data file in
the scroll bar field of the display screen, while simulta-
neously highlighting those significant attributes in the
visible portion of the data file. The attribute maps are
displayed in addition to the scroll bar. The significant
attribute maps are displayed in the scroll bar field by
putting appropriate regions of the scroll bar shaft in a
contrasting color or shade, which serves to draw a
user’s attention.

With the attribute enhanced scroll bar of the present
invention, a user can determine the distribution of sig-
nificant attributes in the space defined by the stored data
file, and can determine the existence of significant data
attributes outside of the visible portion of the data file
presently being displayed in the data display field of the
screen.

Examples of significant data attributes include words
or phrases within a document, and information about
the time of character input, time of editing, an indica-
tion of the document author, or any other document
specific information. In addition, the attribute-enhanced
scroll bar of the present invention can be displayed
independent of the underlying data file, and will serve

15

25

35

45

50

55

60

65

2
to recall attributes of the file, the state of the task for
which the file exists, and will allow the file to be easily
opened to a desired place.
As a result, significant task-specific attributes of the
data file being displayed are visually indexed against a

scroll bar, which allows users to navigate easily through
the file.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a display screen with an
attribute-enhanced scroll bar according to the present
invention;

FIG. 2 is an illustration of a display screen with two
attribute-enhanced scroll bars according to another
embodiment of the present invention;

FIG. 3 is a more detailed illustration of an attribute-
enhanced scroll bar according to the present invention
wherein different attributes are simultaneously dis-
played;

FIG. 4 is a flow diagram illustrating the operation of
the invention; and

FIG. § is a diagram of a computer system illustrating
use of the attribute-enhanced scroll bar of the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring to FIG. 1, a computer display screen is
shown illustrating an embodiment of the present inven-
tion. Display screen 11 is divided into several display
fields or windows 12, 13, 14 and 15.

Display field 12 is used to display a selected portion
of a stored data file, for example, a document. The file
used for illustrative purposes in FIG. 1 is a computer
program. Display fields 14 and 15 can be used, for ex-
ample, to display identifying data relating to the data
file being displayed, type fonts, and format data such as
margins, tabs, and the like.

Display field 13 is an attribute-enhanced scroll bar
according to the present invention. Display field 13
includes a substantiaily rectangular region, or shaft 16,
and a shaded rectangular region, or car 17. The length
of shaft 16 is representative of the length of the data file,
a portion of which is displayed in field 12. The position
of car 17 within shaft 16 is indicative of the position of
the portion of the data file displayed in field 12 relative
to the entire length of the data file. Thus, in FIG. 1, the
spatial relationship between and relative sizes of shaft 16
and car 17 indicate that the portion of the data file dis-
played in display field 12 is the fourth page of a 13-page
document. In addition, the size of car 17 relative to shaft
16 is indicative of the length of the page displayed in
field 12 relative to the length of the entire data file.

Also displayed in shaft 16 are attribute maps includ-
ing indicia 18 and 19. Attribute indicia 18 and 19 indi-
cate the position of significant attributes within the data
file represented by shaft 16. In FIG. 1, three attribute
maps are displayed within shaft 16. The first attribute
map is empty, and no indicia therefor are included in
shaft 16. The second attribute map includes indicia 18,
and in the illustration of FIG. 1, indicates the locations
of the character string “ist” within the data file repre-
sented by shaft 16. Also displayed is a third attribute
map which includes single indicium 19. In the example
of FIG. 1, the third attribute map indicates the location
of the lines within the data file represented by shaft 16

5,339,391

3
which were changed since the last time the data file was
saved.

In addition to displaying attribute maps within shaft
16, the individual attributes are simultaneously high-
lighted within the portion of the data file displayed in
field 12. In the example of FIG. 1, the character string
“ist” occurs three times in the portion displayed in field
12, the occurrences of which correspond to the three
indicia 18 contained within car 17. The vertical posi-
tions of indicia 18 within car 17 correspond to the verti-
cal positions of the character strings highlighted in the
portion of the data file displayed in field 12.

Included in display field 15 is a data field identifying
the three scroll maps appearing in shaft 16.

It should be emphasized that more or less than three
scroll maps can be included within shaft 16, and that
different types of indicia can be used to indicate the
location of the mapped data attributes. For example,
different shades or colors can be used within a scroll
map to identify different types of data within a given
map. Then, if a stored document is authored by several
different authors, the indicia in a corresponding attri-
bute map could have a different color, or gray shade,
assigned to each different author. Another example
would be to assign different gray shades or colors to
different times of editorial revisions of the data file.
Portions of the data file recently added or edited would
result in indicia of one shade or color while editorial
editions or revisions of later vintage would bear differ-
ent shades or colors throughout the spectrum.

In addition, as illustrated in FIG. 2, more than one
. scroll bar field can be included, for example, a vertical
scroll bar field including shaft 16 and car 17, and a
horizontal scroll bar field including shaft 16z and car
17a. Asin FIG. 1, the position of car 17 relative to shaft
16 indicates the vertical position within the data file of
the portion displayed in field 12, and the vertical posi-
tions of the indicia of the attribute maps within shaft 16
indicate the vertical location of the relevant data attri-
butes within the displayed file. Similarly, the position of
car 17z within shaft 16« indicates the horizontal posi-
tion within the data file of the portion displayed in field
12, and the horizontal positions of the indicia of the
attribute maps within shaft 16a indicate the horizontal
location of the relevant attributes within the displayed
file.

FIG. 3 illustrates an enhanced scroll bar according to
the present invention including four attribute maps.
Shaft 16 includes car 17 and they function together as
described above. The first attribute map includes indicia
23, the second attribute map includes indicia 24, the
third attribute map includes indicia 26 and 264, and the
fourth attribute map includes indicia 27. As above, the
positions of the respective indicia along shaft 16 are
indicative of the positions of the relevant attributes
within the data file represented by the length of shaft 16.
As shown, the colors or shades used for the indicia can
change from map to map, as illustrated by indicia 23, 24
and 26, and the colors or shades of the indicia can
change within a single map, as illustrated by indicia 26
and 26a. In addition, the shape of the indicia can change
as is illustrated by the rectangular shapes of indicia 23,
24 and 26, and the line-shape of indicia 27. Line-shaped
indicia 27 can be used, for example, to indicate the sepa-
rations between different sections or chapters of a docu-
ment. Thus, the different shapes, sizes, shades and/or
colors of the attribute indicia can be used to distinguish

20

60

65

4

different attribute maps, or to distinguish attributes
within the same map, or both.

FIG. 3 illustrates how a significant amount of infor-
mation can be obtained about a data file by viewing the
featural representation of the data file offered by the
enhanced scroll bar alone.

FIG. 4 shows the flow diagram of the present inven-
tion, Initially, at the beginning of the process indicated
by start block 31, the elevator shaft or shafts for the
scroll bar field are drawn on the screen in block 32.
Then, in decision block 33, it is determined whether any
scroll maps remain to be formatted and displayed. If so,
the number of the scroll map is determined in block 34,
and the intervals (i.e., start point and end point) of the
desired attribute within the relevant scroll map are
determined and plotted in the loop including decision
block 36 and operation blocks 37 and 38.

In decision block 36, it is determined whether any
intervals remain to be plotted in the particular map
under consideration. If so, operation block 37 deter-
mines the next interval within the map, and block 38
plots that interval on the shaft.

‘When decision block 36 determines that the last inter-
val within a particular map has been plotted, control is
returned to decision block 33 where it is determined
whether additional scroll maps remain to be plotted.

Once all scroll maps have been plotted, control is
transferred to block 39 where the car or cars are drawn
within the shaft. The procedure is then terminated.

Referring to FIG. 5, to use the attribute enhanced
scroll bar of the present invention, a computer system,
which includes a central processing unit (CPU) 49, first
loads the enhanced scroll bar algorithm of the present
invention into memory 41 from program storage me-
dium 42. The enhanced scroll bar algorithm is dia-
grammed in FIG. 4, and is shown in detail in the pro-
gram listing below. Program storage medium 42 can be
any machine readable storage medium such as, for ex-
ample, a floppy or hard magnetic or optical disk, or a
programmable read-only memory. Display 11, includ-
ing data display field 12 and scroll bar field 13, is con-
nected in a known manner through display control bus
43, display interface 44 and internal data/address bus 46
to CPU 440.

The computer system can be any suitable computer
and hardware display, preferably capable of displaying
bit mapped graphics. In the preferred embodiment, the
Symbolics 3600-family computers in the Genera soft-
ware environment are used. These work stations are
publicly available from the Symbolics Corporation.

However, it will be understood that the particular
hardware used can be of any type. Virtually any work
station in the computer marketplace which bundles
software for window-based interfaces, or which has
independent vendors of such software, would be ac-
ceptable. For example, acceptable alternatives include
computer systems manufactured by IBM, all IBM PC
compatibles, Apple MaclIntosh, Microsoft, NeXt, DEC,
Sun Microsystems, and others.)

The foregoing description of the invention has been
directed to a particular preferred embodiment for pur-
poses of explanation and illustration. It will be apparent,
however, to those skilled in this art that many modifica-
tions, additions and deletions may be made without
departing from the essence of the invention. It is the
applicants’ intention in the following claims to cover all
equivalent modifications and variations as fall within
the scope of the invention.

+5,339,391
5 6
The enhanced scroll bar routine of the present inven- 3600-family computers in the Genera software environ-
tion is shown in the program listing that follows. The ment. Versions for other computers are readily produc-
program is written in LISP language for the Symbolics ible by practitioners skilled in the art.

:

¢
‘
H
;
;
H
¢
H
‘
’
:
H
H
H
s
H
H
H
H

-*- Mode: LISP; Syntax: Common-lisp; Package: DYNAMIC-WINDOWS; Base: 10; ~*—

R TR P R PRI R RO AN AR SRR AN SO RN R BRGSO R AR RO AR AR AR IR RASRI R AR R P RSP R A SRR AR RRERA DI PR

Copyxight 1990 Microelectronics And Computer Technology Corporation.
All Rights Resarved.

H
i
i
;
:
:
‘
:

Shareholders of MCC may reproduce and distribute this material for
internal purposes by retaining MCC’s copyright notice and proprietary
legends and markings on all complete and partial copies.

ACA Confidential and Proprietary. .

;
; This file defines the a structure called a “map”™ and a new kind of scroll bar
; that highlights the intervals of the map inside the normal image of a scroll bar.

o v S S S A

The map i3 defined by the flavor basic~scroll-map. The most common use

of maps will be the flavor binary-scroll—-map, which defines a set of intervals
over which some attribute is considered to have the binary value "1~ all
other Intervals are considered to have the binary value "0~. The map does pot
commit to the meaning of the intervals, so the implementation could be used
for many things, such as finding the hits in the textual search of a buffer,
or for finding the important regions in a display of g¢g2ographic information.

The scroll bar is defined as flavor attribute-mapped=-scroll-bar.
It is based on the flavor margin-scroll-bar, defined by Symbolics,
and only adds the additional functiconality needed to overlay the
maps on the normal scroll bar. For the scroll bar drawing
routines, this required an extensive rewrite because the image the
scroll bar shaft can now be more expensive to compute than an
ordinary scroll bar, therefore we cache the bit-image offscreen and
recompute it only when neccesary.

;
H
7
;
H -
s
;
e

i

AR C T TR AR RS L AP AR R AR LR ARSI ZRA IR AP R A RS R PR AP SR F R AR R PR R R PR R F R E R R PR RBR AR

fvar *Hhite-Pattern* (tv:make-gray 2 2 #000 #000))
efvar *Black-Pattern* “[tvimake-gray 2 2 §oll #oll)).

B
;
H
H
;
H
:
d
d
;

L R P O T P PR P A

These acroll bars will look at these variables to see how they should fill their parts.

LR .

{defvar *Elevator-Car-Gray* tv:33s-gray)
(defvar *Elevator-shaft-gray* *white-pattern*)
{defvar *Elevator-End-Gray* *white-pattern”)

BASIC-SCROLL-MAP . -
The base flavor off of which all scroll map t.'lavors ought to be built.
This is an abstract flavor and should not be instantiated.

LY

{defflavor Basic-Scroll-Map .
[§]
) o

BINARY-SCROLL-MAP

This structure represents a map of intervals in a document.
Intervals represented pass some threshold-of interest in some along
some feature, although it doesn’t matter that that feature is.
These maps are "binary™ because they don’t allow for degreees of
strength in each interval. FEach interval is 100% “"on™, each area
not included in an interval is 100% “off". Clients of this
structure only know that they can ask to map over each intarval in
turn and do something. They do not know whether it iz computed on
the fly or precomputed and cached (which it is uvsually).

; The representation of intervals stored in a map is defined by the

: <creator of the map, who supplies a function to retrieve the

; start-point and end-point. for each element in the set of intervals.
; For instance, the degenerate case is where each interval is

: represented by a single number, and the accessor for the start and
; end points is #’identity. Another representation might use a

; dotted pair to represent the interval, and the accessors would be
; -#’'car and #’cdr. Still . another might use ZWEI datastructure to

; represent the intervals.

Consumers of a map are allowed to apply a function to each of the
intervals in the map. The function (MAP-SCROLL-MAP <map> <function>)
applies <function> to each interval in <map>. <function> should
take three arguments: (1) the interval datastructure itself (2)

the start point, and (3) the end point.

One of these is given to screll bars so they know where the
interesting peints in the document are.

Ne % s ME SE Mo e my &g N W Ne S0 wE N Ne Ap Se S0 S Ye S5 v S0 % &2 %A e N e N

5,339,391
7

The functions that can be called on scroll maps are:

Lo

MAKE-INSTANCE =~ normal flavor object maker, allows the following
init keywords.

“w o

representing intervals, whose actual implementation is up
the caller.

get the startpoint of the interval.

3
:
b
H
:
:
q
:
H
;

get the endpoint of the interval.
of the map. This is reflacted in the mouse documentation

MAP-SCROLL-MAP scroll-map function
Applies <function> (a 3~arg function) to each point in the
scroll map. <function> takes the interval, its startpoint, an
its endpoint as argument. Its return value 1s ignored.

SCROLL~MAP~LENGTH scroll-map
Returns an integer.

SCROLL-MAP-PRINTABLE-XKEY scroll-map
Returns a string, or NIL if no printable key is available.

(defflavor Binary-Scroll~Map
({cache nil)
{startpoint—-accesscr #’identity)
(endpoint-accegsor $#‘identity)
(printable-key nil}))
{(basic-scroll-map)
sinitable-instance~variables
sreadable-instance-variables
:writable-instance~variables
(:conc-name "SCROLL~MAP-"))

(defmethod (Map-scroll-map Binary-screll-map) {(functien)
{dolist {interval cache)
(funcall function interval (funcall startpoinw-accessor interval)
nNy»

(defmethod (Scroll-Map-lLength Binary-scroll-map) ()
(length cache)) . '

(defmethod (Scroll-Map-Empty? Binary-Seroll-Map) ()
{null cache)})-

ATTRIBUTE-MAPPED~SCROLL-~BAR

redafine the drawing routines to add the maps when required.
~=— Map Managemant Instance Variables —-

each map a symbolic name, and also records the order in which to
scroll bars.

closer to the inside of the scroll bar.
named~maps - an alist whose element are of the form (<name> .

a scroll map as defined above. Use this list to
map corresponds to a logical name.

:CACHE The values to store in the map. This is a 1list of datastructures

to

:STARTPOINT-ACCESSOR A function to apply to members of the cache to
:ENDPOINT-ACCESSOR A function to apply to members of the cache to

:PRINTABLE-XEY A string that can be printed indicating the contents

line.

d

{funcall endpoint-accessor interval

This i3 the scroll bar dafinition itself. Note that the flavor is based on
margin-scroll-bar, which means we inherit all the normal scroll bar functionality
from the Symbolics implementation of scroll bars. However, attribute-mapped
scroll bars have some additional state variables, as described below, and must

Attribute-mapped-scroll~bars can display multiple maps. The scroll bar assigns

display the

map-order — a list of symbols, indicating the outside-to~inside order in
which to draw the maps. The first map will be draw closer to
the outside of the scroll bar, and the last one will be drawn

<map>) where

<name> is an element of the map-order list, and <map> is

find what actual

Y

overlay-maps - normally, scroll maps are draw side-by-side within the shaft of
scroll bar. This isn’t the only way to compose them, however.

TR TR YO YR TR VI PR TR TR O PR PR

It is allowable to mark certain maps as "overlay” maps, and they
will take up entire width of the scroll bar when draw, rather than_
spliting up space with the other maps. On a color display., one
could have overlay maps in one color and the normal maps in another,
and in this way have more maps displayed.

==~ Drawing Optimization Instance Variables --<

The most str—aighforwaxd implementation of attribute-mapped-scroll-bars has

poor performance characteristics, because it redraws the entire scroll bar

each time the position of the elevator car is updated. This implementation
tries to get bettew performance by computing an off-screen bitmap containing
"background image” of the scroll bar. That 1s, the ends of the scroll bar,
empty shaft, and the markings for the various scroll maps known. Once computed,
the background image can bae pariodically updated when free cycles are available.
The scroll bar is draw by first bitblt-ing the background image ontc the screen,

5,339,391
9 10

then superimposing the elevator car ractangle onto that image. If the scroll
has already been drawn, only the car needs to move, then we erase the elevator

car (by bitblting the appropriate subrectangle of the background image back onto
the screen) and redraw the elevator .car in the new position.

image-tick — a boolean. indicating whether the contents of the image-cache !
are out of date, and should be recomputed.

;
:
7
B
H
B
;

image-cache - the off~screen bitmap containing the image of the elevator shaft,
the elevator ends, and the scroll maps associated with the
scroll bar. This can be marked as invalid by setting the
image-tick instance variable to T.

P T T N R O T
B R

Defflavor Attributo—&ppod-s-c:oll-ﬁt:

{{map-~order nil)
{named-maps nil) -
{overlayed-maps nil)
{image-tick t)
{image-cache nil))

{margin~scroll-bar)
:initable-~instance-variables
:readable~instance-variables
)

{(Defmethod (Get-~Named-Scroll-Map Attribute-Mapped-Scroll-Bar)
; Returns the scroll map indicated or the default value.
; : <name> is typically a keyword symbol.
{Scl:Getf Named-Maps Name Default))

(Name &Optional (Default Nil})

(Defmethod {Set-Named-Scroll-Map Attribute-Mapped-Scroll-Bar)
T))
; ; Sets the scroll bar map named <name> to be the new map.
(Unless (Or {(Member Name Map-Order) {(Null Map})
(If Exror-If-Unknown-Name ')
{Error "The map named ~3 is not defined in this screll bar." Name)
(Setf Map-Order (Nconc Map-Order (List Name))}))
(Setf (Scl:Getf Named-Maps Name} Map))

(Name Map &Optional (Error-If~Unknown-Name

(Defmethod (Set-Map—~Order Attribute-Mapped-Scroll-Bar) (List~Of-Map-Names)
: Sets the order of maps to those indicated.
: ; Each element of list-of-map-names can be either a symbol or a list of the form (loverlay <symbob).
; This initializes the vaniables overtay-maps and map-order.
(Setf Overlayed-Maps Nil)
" (Mapcar #° (Lambda (E) (When (Listp E) (Push (Second E) Overlayed-Maps}))) List-Of-Map-Names)
(Setf Map-Order (Mapcar #° (Lambda (E) (If (Atom E) E (Second E))) List-Of-Map-Names)))

{Defmethod (Get-Map—Oxdar Attribute-Mapped-Scroll-Bar) ()
-z ; Returns the order of displayed maps.
(Copy—Liat Map-Order)).

(de fmethod (Ensure-Image-Cacha ltttibut.—mppod-.c:oll-bnr) <)
: This makes sure the image-cache state variable is filled with an appropriate bit aray.
: : Sometimes this gets called when windowrange is NIL. Then it should do nothing...
(Hhen Window-Range
{Labels {($Image-Cache-Dims (Height)
{(Ecase (Scroll-Bar-Margin)
({:Left :Right} (Values Height (Tv:Round-Up Elevator-Thickness 32)))
{{:Top :Bottom) (Values Elevator-Thickness (Tv:iRound-Up Height 32)})}}))
{Or Image-Cache
(Multiple-Value-Bind (Dl D2) ($Image-Cache-Dims (Range-Size Window-Range))
-, {(Setf Image—-Cache (Make-Array (List Dl D2) :Element-Type ‘Bit)))))}))

(defmethod (Orientation Attribute-mapped-scroll-bar} ()
: : Returns thorizontal or :vertical
{cond {({member (scroll-bar-margin) ‘ (:left :right)}) :vertical)
{{member (scroll-bar-margin) ’ (:top :bottom)) :horizontal}})

(Defmethod (Draw-Scroll-Map-In-Band Attribute-mapped-scroll-bar) (Map Avail-Range Array

Band-Start Band-End &optional (alu
tv:alu-seta))

(Let* {{(Bar-Top El®vator-Thickness) ; start of shatt proper past end targets
(Bar-Bottom (- (~ {Range-Max Window-Range) {Range-Min Window-Range)) Elevator-Thickness))
{Bar~-Length (- Bar-Bottom Bar-Top)})
(F : {/ Bar-Length Avail-~-Range))
{Orientation {Orientation Self))}
(Map-Scroll-Map
Map
(Lambda (Interval Startpoint Endpoint)
(Declare (Ignore Interval))
{Let ({Start-Line {max bar-top {(+ (Flooz (* Startpoint F)) Bar-Topl})
(End-Line (min bar-bottom (+ (Ceiling {(* Endpoint F)) Bar-Top))}}} !
{Loop For I From Start-Line To End~Line Do
{(Ecase Orientatiocn _
{:Vertical (Tv:sDraw-Line Band-Start I Band-End I Alu T Array})
(:Horizontal (Tv:ADraw-Line I Band-Start I Band-End Alu T ﬂrray)))))))))

5,339,391
11 12

(defvar *Hup-Spacihq* 1)

{(defun Compute-Map-Width (elevator-width number-of~maps}
; ; Given a width for the elevator, and the number of maps to displiay, this
: function computes the pixel-width that each attribute map will occupy.
; ; itreturns an integer.
{setf elevator-width (- elevator-width 2)) : subtractoff outer edges. -
(floor {- elevator-width (* (1+ number-of-maps) *map-spacing*)) number-of-maps})

(defmethod (Draw-Scroll-Maps-On-Arxrzay Attributa-mpped—sc:oll-bu) (avail-rénqe array &optional (alu tv:a
lu-seta))
(declare (ignorxe alu))
{let ({n-split-maps (- (length map-order) (length overlayed-maps)}}) -numberofmapstosphtspaceamong
{cond ((zerop n-split-maps)
; All the maps are overlays
(1oop for m in map~order
for real-map = (qet-named-scroll-—map self m)
when real-map
do (draw-scroll-map-in-band :elf xeal-map avail-range array 2 (- eleva:or-thxckness 3)

(t
+'; There.is a mixture of overlays and splits.
(let* ((current-band-start 2)
(map-width ~ (compute-map-width elevator-thickness n-split-maps))
(band-inc {(+ map-width *map-spacing*)))
(loop for m in map-order
for real-map = (get-named-scroll-map self m)
when real-map
do
(Lf {member m overlayed-maps)
(draw-scroll-map-in-band self real-map avail-range array 2 (- elevator-thickne
ss 3)) .
- (draw-scroll-map-in-band self real-map avail-range array
current-band-start (+ current-band-start map-width -1
})
{incf current-band-start band-inc))
- else do ({incf current-band-start band-inc))}})))

(defmethod (Compute-BG-Image Attribute-mapped-scroll-bar) (window)
; This draws a new version of the scroll bar background (i.e. the top, bottom, and shaft without the elevator car
; into the bit array known as “image-cache*, which is stored in an instance variable of the scroll bar.
(ensure-image-cache self)
(let ((orientation (orjentation 'self))

(end-size elevator-thickness)
(window-min (ringe-min window-range})
{(window~max (range-max window-range)})

(labels ((rectangle (width height x y temp)
(when (and (plusp width) (plusp height))
(ecase orientation
(:vertical {ddraw~-rectangle width height x y boole-ior temp))
(zhorizontal (tddraw-rectangle height width y x boole-ior temp)))))
(bblt (width height x y pattern phase temp &optional (alu boole-ior))
(vhen (and (plusp width) (plusp height})
(ecase orientation
{:vertical (bitblt alu width height pattern 0 phase temp x y))
(zherizontal (bitblt alu height width pattern phase 0 temp y x)))))
(a~box (begin end edge-thickness fill-pattern fill-phase temp)
(rectangle elevator-thickness edge~thickness 0 begin temp)
(rectangle elevator-thickness edge-thickness ¢ (~ end edge-thickness) temp)
{rectangle edge-thickness (~ (- end begin) (* edge-thickness 2)) 0 (+ begin edge-thickness
) temp) - .
{rectangle edge-thickness {(~ (- end begin) (* edge-thickness 2)) (- (+ 0 elevator-thicknes
s) edge-thickness)
(+ begin edge-thickness) temp)
{when fill-pattern
(bblt (- elevator-thickness (* edge-thickness 2)) (- (- end begin) (* edge-thickness 2))
{+ 0 edge~thickness) (+ begin edge-~thickness) fill-pattern (+ fill~phase edge-thic
kness) temp))) ’
(draw-cable (begin end phase temp)
(let ({(shaft-gray 'black-—pattern'))
(bblt *elevator-cable-thickness* - end begin} O begin shaft-gray phase temp)
" (bblt *elevator-cable-thickness* (- end begin) (1~ elevator-thickness) begin shaft-gray
phase temp)
{bblt (- elevator-thickness *elevator-cable-thickness* *elevator-cable-thickness*} (- en
d begin)
1 begin
elevator-shaft-gray phase t'emp)

7z Clearﬂ'oewhole thing -
{(bblt elevator=-thickness (- window-max wzndow-m;n) 00 't.h:.te-pattexn' 0 image~-cache tv: alu-:eta)
; : === 1. Draw the top and bottomn targets
(a-box 0 end-size *elevator-box-thickness* *elevator-end-gray* 0 image-cache)
(a~box (-~ (- window-max window=-min) end-size) (- window-max windowe-min)
elevator-box-thickness *elevator-end-gray* 0 image-cache)
:; == 2. Draw the cables
{draw-cable end-size (- (~ window-max window-min) end-size) 0 image-cache)

5,339,391
13 14

{(multiple-value~bind (nil nil min-avail max-avail} (send window :y-scroll-position)
(draw-scroll-maps-on-array self (- max-avail min-~avail) image-cache))

irage tick is T if the bg image has *never® been drawn, and NIL if it has even ever been drawn once.
This is to help avoid the problem of existing scroll bars not knowing about the bg-image-cache.

(YRR TI VT
Mo s v

{setf image-tick nil}))}))

{defmethod (Redraw-Elevator-Special Attribute-mapped-scroll-bar) (window force &Laux {orientation (orienta
tion self)))
{(tv:prepare-sheet {window)
(multiple-value-bind (1 tp) (margin~component-edges self window)
{multiple-value~-bind {min-vis total-vis min-avail max-avail) (ecase orientation

stion)) (:horizontal {send window :tx-scroll-
pos on

(:vertical {send window :y~-scroll-
position)})
(let* ((displayed-min (range-min displayed-range})
(displayed-max (range-max displayed-range))

{window-min {range-min window-range))
{window—-max {range-max window-range})
(height (range—-size window-range))
- (width slevator-thickness)
(max-vis (+ min-vis total-vis))
{(end-size elevator-thickness)
(left {+ 1 shaft-whitespace~thickness))
- (top . {+ tp shaft-whitespace-thickness)))

{multiple~value-bind (elevator-min elevator-max)
(stack-let* ({available-range (makXe-range min-avail max-avail)}
(visible-range {make~-range min-vis max-vis))
{shaft—-range (make-range (min (+ window-min end-size) window-max)
(max (- window-max end-size) window-min))}})
{compute-scroll-bar-ends available-range visible-range shaft-range))
: ; — Return immediately if no change.
{(when (and (eql elevator-min displayed-min) (eql elevator-max displayed-max)} {(not force))
{return-from redraw-elevator-special))
; : — Draw the n:ain body of the elevator:
{(cond (force
: ; Draw the whols thing when forced.
(ecase orientation
{:verticzl {tv:sheet-draw-l-bit-raster width height image-cache 0 0 nil left wind
‘ow—-min : -
tvialu~seta tv:alu-setz window))
(:horizontal (tv:sheet-draw-l-bit-raster height width image-cache 0 0 nil window-mi
n top
tvsalu-seta tv:alu-setz window)))
. {setf cable-drawn t}}
(t
(ecase orientation
{:vertical {(tv:sheet-bitblt tv:alu-seta width (range-size displayed-range) image-cac
he -
0 (- (range-min displayed-range) window-min) nil
left {(range~min displayed-range) window))
{:horizontal (tv:sheet-bitblt tv:alu-seta (range-size displayed-range) width image-c
ache
{~ (range-min displayed-range} window~min) 0
nil (range-min displayed-range) top window)
IR R
;: ; — Draw the elevator car:
(alter-range displayed-range elevato:;min elevator-max}
(ecase orientation
(:vertical
; : left, right, top, bottom .
{tv:sheet-draw-line (l+ left) elevator-min (+ left width -1) elevator-min tv:ialu-seta t wi
ndow) .
’ {tv:sheet-draw-line {1+ left) {1~ elevator-max) (+ left width -1} (1- elevator-max) tv:alu
-seta t window)
(tv:sheet-bitblt tv:ialu-ior (~ width 2) (- elevator-max elevator-min 2}
elevator-car-gray 0 0
nil. {1+ left) (14 elevator-min) window})
(:horizeontal .
{tv:sheet-draw-line elevator-min (1+ top) elevator-min (+ top width =-1) tv:alu-seta t wind
ow} . -
(tv:sheet~draw-line {l- elevator-max} (1+ top} (1- elevator-max) {+ top width -1) tv:alu-s
eta t window)
{tv:sheet-bitblt tv:alu-ior (- elevator~max elevator-min 2) (- width 2)
elevator~car-gray 0 0
nil (1+ elevator-min) (l+ top} window))
(DD DREE

(Defmethod {Draw-Elevator-If-Needed Attribute-Mapped-Scroll-Bar) (Window Alu Force)
{declare {ignore alu))
(let {{message (ecase (orientation self)
{:horizontal :x-scroll-position)
. {:vertical sy-scroll-position)}})
{multiple-value-bind (min-vis tot-vis min-avail max-avail) (send window message)
{stack-let ((vis {make-range mip-vis (+ min-vis tot-~vis)})

5,339,391
15 16

{avail (make-range min-avail max-avail}))
(cond ({range-equal vis avail) -

(margin-component~erase self window)
(setf cable-drawn nil))
{t
(redraw-elevator-special self window .

{or force (null cable~drawn) image-tick

(null (range-min displayed-range})})))})}})

(defmethod (Draw-Elevator-If-Requested Attribute-mapped-scroll-bar) (window alu force)
{declare (ignore alu)) _
* {redraw-elevator-special self window (or force (null cable-drawn) image-tick (null (range-min displayed
-range)))}))
(defmethod (Margin-Scroll-Bar-Draw-Elevator Attribute-Mapped-Scroll-Bar) (window alu &Goptional force)
- ;; The main interface to the rest of the Symbolics window system manager is this function.
:: Itis called from the operating system when the operating system has delermined that the
; : scroll bar ought to be drawn.
(unless (eq visibility :suppressed)
: : If we somehow escaped initialization, clean up
(unless (and (range-min window-range) (range-max window-range))
({margin-component-after-redefine-margins~kludge self window))
{ensure-image-cache self)
> Draw the scroll bar, supressing display if it blows out
{let~if (eq (cli::follow-synonym-stream *debug~io*) window)
{(*debug-io* "Error drawing scroll bar®))
(unless (catch-error-restart (error "Suppress the scroll bar entirely™)
(catch-error-restart (abort "Skip drawing the scroll bar™)
+: Main body
(ecase visibility
({:normal :temporary-normal)
(when image-tick (compute-bg-image self window))}
{redraw-elevator-special self window
(or force (null cable-drawn)
image-tick
(null (range-min displayed-range))})))
(:if-requested
{(when image-tick (compute~bg-image self window))
{draw-elevator-if-requested self window alu force))
(:ifneeded
{(vhen image-tick (compute-bg-image self window))
{draw-elevator-if-needed self window alu force)))
)
{(setq visibility :suppressed)})))

(De fmethod (Margin-Component-Change-0f£-Size-Or-Margins Attribute-Mapped-Scroll-Bar :After) (Window)
(ceclare (:.q-no:e window)) -
: This method is called whenever the window has been reshaped by the user. The primary -
; ; method is implemented by dwmargin-scroll-bar, but this :after demon causes the new instance
; ; variables for a attribute-mapped-scroll-bar to also be reset, cating the scroll bar’s image to
; ; be recomputed from scratch.

(setf image-cache nil ; clear the cache, forcing a new bit-aray o be allocated
image-tick t) ; set the flag that says “redraw the image in the cache.”
displayed~range)

-- window-level interface
~—== This code is the way to tell windows with dw:margin-mixin -

~-~~ how to add and remove screoll maps to the scroll bars in -
--~~ various margin (i.e. :left :top :right :bottom). It is the —--
~--- highest level of functional abstracttion for this code .-

PR YRR TR PR P N R TR TR T

efmethod (Scroll-Bar-In-Margin Dw:Margin-Mixin) (margin)
{(dolist (component dw::margin-components)
{(when (and (typep component ’Attribute-mapped~scroll-bar)
(or (eq (dw::margin-scroll-bar-margin component) margin)
(and (eq (dw::margin-scroll-bar-margin component) :default)
(eq *default~scroll-~bar-margin* margin))))
{return component)})}

(defmethod (Get-Named-Scroll-Map-In-Margin Dw:Margin-Mixin) (margin name &aux s)
: ; Returns a scroll map if:
:; a)ascroll bar exists in the margin specified
:; b)ithas a scroll bar map of the proper name
{and (setf s (scroll-bar-in-margin self margin))
{get-named-scroll-map s name)))

(defmethod (Set-Named-Scroll-Map-In-Margin Dw: Ku:gin-)(ixin) (margin name map faux 3)
(if (setf s (scroll-bar-in-margin self margin))
(set~named-scroll-map s name map t)
(cerror "There is no scroll bar in the ~s margin.” margin)))

{defmethod (Set-Scroll-Map-Order-In-Margin Dw:Margin-Mixin) (margin list-of-names &aux s)
(Lf (setf 3 (scroll-bar-in-margin self margin))
(set-map~order s list~of-names)

5,339,391

17

in.” margin))})

18

{cerzoxr “Skip defining these scroll map names and continue.® “There is no scroll bar in the ~s marg

{defmethod (Redraw-Scroll-Map-In-Margin Dw:Margin-Mixin) (margin Zaux s)

" (When (Setf S (Scroll-Bar-In-Margin Self Hargin))
{Compute-Bg-~Image 5 Self)
{Margin-Component-Draw S Self Tv:Alu-Seta)))

What is claimed is:

1. In an interactive data display computer system
including a processing unit for processing data, a mem-
ory for storing a data file, and a data display screen for
displaying data to a user, said data display screen in-
cluding a data display field in a first region and a scroll
bar field in a second region separated form said first
region, a method of presenting a user with an attribute-
enhanced scroll bar comprising:

display in said data display field a portion of some but
not all of said data file;

displaying in said scroll bar field a shaft representing
a length of said data file;

displaying in said scroll bar field a car within said
shaft representing a position of said portion relative
to said length; and

displaying in said scroll bar field an attribute map
within said shaft comprising indicia representing a
position of each occurrence of selected data in said
data field relative to said length, said attribute map
being visually distinguishable from said car.

2. The method of claim 1, wherein said indicia further
indicate a relative size of said selected data relative to
said length.

3. The method of claim 1, wherein said shaft is rectan-
gularly-shaped and positioned lengthwise between a
vertical edge of said data display screen and a vertical
edge of said data display field, and said shaft represents
an entire vertical length of said data file.

4. The method of claim 3, wherein said shaft is posi-
tioned adjacent to said vertical edges.

5. The method of claim 3, further comprising:

displaying in said scroll bar field a second shaft
wherein said second shaft is rectangularly-shaped
and positioned lengthwise between a horizontal
edge of said data display screen and a horizontal
edge of said data display field, and said second shaft
represents an entire horizontal length of said data
file; displaying in said scroll bar field a second car
within said second shaft representing a position of
said portion relative to- said entire horizontal
length; and

displaying in said scroll bar field a second attribute
map within said second shaft comprising second
indicia representing a position of each occurrence
of said selected data in said data file relative to said
entire horizontal length, said second attribute map
being visually distinguishable from said second car.

6. The method of claim 1, further comprising:

a second attribute map within said shaft comprising
second indicia representing a position of each oc-
currence of a second selected data in said data file
relative to said length, said second attribute map
being visually distinguishable from said car, and
said second selected data being distinct from said
selected data.

7. The method of claim 6, wherein said indicia and’

said second indicia are visually distingunishable form one
another.

8. The method of claim 7, wherein said indicia and
said second indicia are different shapes.

10

15

9. The method of claim 7, wherein said indicia and
said second indicia are different colors.

10. The method of claim 7, wherein said indicia and
said second indicia are different shades.

11. The method of claim 6, wherein said indicia and
said second indicia are positioned in separate spaced
regions of said shaft.

12. The method of claim 6, wherein said indicia fur-

" ther indicate a relative size of said selected data relative

20

25

30

35

45

50

55

65

1o said length, and said second indicia further indicate a
relative size of said second selected data relative to said
length.

13. A computer display unit comprising:

a central processing unit;

a memory accessed by the central processing unit;

a display screen which receives data from the central
processing unit;

means for displaying a data display field in a first
region of said display screen and a scroll bar field in
a second region of said display screen separated
from said first region;

means for displaying in said data display field a por-
tion containing some but not all of a data file stored
in said memory;

means for displaying in said scroll bar field a shaft
representing a length of said data file;

means for displaying in said scroil bar field a car
within said shaft representing a position and size of
said portion relative to said length; and

means for displaying in said scroll bar field an attri-
bute map within said shaft comprising indicia rep-
resenting a position of each occurrence of selected
data in said data file relative to said length, said
attribute map being visually distinguishable from
said car.

14. In an interactive data display computer system
including a processing unit for processing data, a mem-
ory for storing a data file, and a data display screen for
displaying data to a user, said data display screen pro-
viding in separate regions a data display field and a
scroll bar field, a method of visually presenting a user
with an attribute-enhanced scroll bar comprising the
steps of:

displaying within said data display field a portion of
said data file containing some but not all of said
data file; and

displaying within said scroll bar field;

(1) a shaft representing a length of said data file, said
length of said data file exceeding said displayed
portion of said data file;

(ii) a car within said shaft wherein a spatial relation-
ship between said car and said shaft visually indi-
cates to said user a relative size and position of said
displayed portion of said data file with respect to
said length of said data file; and

(iii) an attribute map within said shaft visually distin-
guishable from said car wherein a spatial relation-
ship between said attribute map and said shaft visu-
ally indicates to said user a position of each occur-
rence of selected information in said data file with
respect to said length of said data file.

5,339,391

19

15. The method of claim 14, wherein said shaft is
rectangularly-shaped and positioned lengthwise be-
tween a horizontal edge of said data display screen and
a horizontal edge of said data display field, and said 5
shaft represents a entire horizontal length of said data
file.

16. The method of claim 14, wherein said shaft is
rectangularly-shaped positioned lengthwise between a
‘vertical edge of said data display screen and a vertical
edge of said data display field, and said shaft represents
a entire vertical length of said data file.

17. The method of claim 14, further comprising a
'second attribute map within said shaft visually distin-
guishable form said attribute map and said car wherein
a spatial relationship between said second attribute map
and said shaft visually indicates to said user a position of
each occurrence of second selected information in said
data file with respect to said length of said data file,
wherein said selected information is distinct from said
second selected information, and said attribute map is
displayed simultaneously with said second attribute
map.

18. The method of claim 17 wherein said data display
screen displays said attribute maps with different shapes
and said attribute maps are visually distinguishable by
having different shapes.

19. The method of claim 17 wherein said data display
screen displays said attribute maps with different colors
and said attribute maps are visually distinguishable by
having different colors. .

20. The method of claim 17 wherein said data display
screen displays said attribute maps with different shades
and said attribute maps are visvally distinguishable by ;5
having different shades.

21. The method of claim 17 wherein said data display
screen displays said attribute maps in separate spaced
regions of said shaft and said attribute maps are visually
distinguishable by being positioned in separate spaced 49
regions of said shaft.

22. The method of claim 14 wherein said selected
information in said data file consists of portions of a
document.

23. The method of claim 14 wherein said selected 45
information in said data file consists of character strings.

24. The method of claim 14 wherein said shaft and
said car are rectangularly-shaped.

25. The method of claim 14 wherein said length of
said data file exceeds a displayed length of said dis- 50
played portion of said data file.

26. The method of claim 14 wherein said data display

20

30

55

65

20

field and said scroll bar field occupy adjacent non-over-
lapping regions on said data display screen.

27. The method of claim 14, further comprising dis-
playing in said scroll bar field:

(iv) a second shaft representing a second length of
said data file, said shaft and said second shaft occu-
pying separate non-overlapping regions in said
scroll bar field, said second length of said data file
exceeding a corresponding length of said displayed
portion of said data file;

(v) a second car within said second shaft wherein a
spatial relationship between said second car and
said second shaft visually indicates to said user a
relative size and position of said displayed portion
of said data file with respect to said second length
of said data file; and

(vi) a second attribute map within said second shaft
visually distinguishable from said second scroll bar
wherein a spatial relationship between said second
attribute map and said second shaft visually indi-
cates to said user a position of each occurrence of
said selected information in said data file with re-
spect to said second length of said data file.

28. The method of claim 27 wherein said shaft and
said second shaft are positioned orthogonal to one an-
other.

29. The method of claim 28 wherein said shaft repre-
sents an entire horizontal length of said data file, and
said second shaft represents an entire vertical length of

said data file.

30. The method of claim 14 wherein said user selects

said selected information in said data file.

31. The method of claim 14 wherein said user selects
an appearance of said attribute map without affecting an
ability of said attribute map to visually indicate to said
user the position of each occurrence of said selected
information in said data file with respect to said length
of said data file.

32. The method of claim 31 wherein said apparatus of
said attribute map is shape, color, shade, or combina-
tions thereof.

33. The method of claim 14 wherein said attribute
map further indicates a relative size of each occurrence
of said selected information in said data file with respect
to said length of said data file.

34. The method of claim 14 wherein said length of
said data file is one of vertical or horizontal length, and
said attribute map only indicates the position of said
selected information in said data file with respect to said

one of vertical or horizontal length of said data file.
* * * *x k¥

