Textscape, LLC v. Google, Inc. Doc. 51 Att. 7

GOOGLE INC.’S MOTION FOR SUMMARY JUDGMENT OF INVALIDITY
OF CLAIM 1 OF U.S. PATENT NO. 5,713,740

Exhibit F

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/5:2009cv04552/223045/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2009cv04552/223045/51/7.html
http://dockets.justia.com/

SERIAL
NUMBER

Y (Series
i of 1987}

071523.117 057167907 fysd

.”:;/, iﬁjﬁgﬁg;yuk‘.A_.
\57 2301

- —— ‘ —= G

12 DAIVD A. WROBLEWSKI, AUSTIN, TX: WILL'C. HILLs -AUSTIN, TX; TIMOTHR P.

1 MC CANDLESS, AUSTIN, TX: . : 4
g - ‘
<

[, SERIALN UMBER FILINGDATE| ¢
" '(‘v

g

b

¢

*x CONTINUING DATA*********************
VERIFIED

---.ﬁfﬁ-;.

¥*FOREIGNIPCT APPLICATIONS************‘
VERIFIED N

FOREIGN FILING LICENSE. GRANTED 06.1‘08/‘90»

i | Foreign prldrlly claimed O yes &f no - AQ STATEOR | SHEETS | JTOTAL INDEP FILING FEE ATTORNEY'S
4Kl | 35 USC ™ 119 conditions met - 1 yes #Hno QISL ED COUNTRY DRV!?S CLAIMS | CLAIMS RECEIVED | DOCKETNO.
verfied and Acknowledged —Examm Sinitials —> Ixe 0 4 19 >ls s7n.onlwiconts

DAVID D. BAHLER
ARNOLD; WHITE % DURKEE
P.0. BOX 4433
. HOUSTON, TX 77210

ADDRESS

W TH ATTIABUTE ~ENHIN CED SCLILL _BAL
COMPUTER DISPLAY UNIT AND METHOD OF OPERATING SAME

Hl PARTS OF APPLICATION ' ' ‘ :
FILED SEPARATELY

} NOTICE OF ALLOWANCE MAILED PREPARED FOR ISSUE ' CLAIMS ALLOWED

, { Total Claims - | Print Claim 8
Assistant Examiner Docket Clerk ' i
ISSUE FEE C ' . DRAWING

Date Paid ' ' N Sheets Drwg. | Flgs. Drwg.

Primary Examiner

ISSUE CLASSIFICATION ~ JISSUE
"I BATCH.
Cl S . g
ass ubclass INumBER
Label :
Area WARNING: The Information disclosed herein may be restrlcted Unauthorlzod dlsclosure

prohibited by the United States Code Title 35, Sections 122, 181 and'368. - .
Possession outside the U.S. Patent & Trademark Office is restricted to authorlzed
and contraclors only

.o v,
én PTO-438A B . : ’ B
{ 2156) .

i = — —
. . . .

L /sy

PATENT

MICO:015

(f COMPUTER DISPLAY UNIT AND METHOD OF OPERATING SAME

"By:

David A. Wroblewski
Will C. Hill
Timothy P. McCandless

“Express Mait” mailing label
e B 264 108 735

DaleofDepo;II May 14 1990

I hereby certify that this paper or fee is being deposited with
the United Statés Postal Service “Express Mail Post Office to
Addressee” service under 37 CFR 1.10 on the date indicated
above and is addressed to the Commissioner of Patents and
Trademarks, Washington, D.C. 20231.

Mitchell Gentry

(m or %nnt% name persAKw rﬁlm\g ’E%)r fee) N

(S1gnaiure of pers person matlmg paper or fes)

N
01782311

10

15

20

25

30

A portion of the disclbsure of this patent document
contains material which is subject to copyright protection.
Tﬁ; copyright owner has no objection to the facsimile
reproductioh by anyone of the patent docﬁment or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright

rights whatsoever.

‘BACKGROUND OF THE INVENTION

The invention generally relates to combuter displays and
methods of operating computer displays and, more particularly,
to'displays.including a data display region used to display a
portion of a stored data fiie, and a scroll bar display region
used to display a scroll bar and to'display locations of
significant data attributes within the stored data file.

Presently, scroll bars occupy a scroll bar display region
or window and allocate.a long rectangle of pixels, typically
called a shaft, to represent the extent of a stored data file,
for exampie'a document. Such scroll bars provide one car,
which is a colored or shaded éub-rectangle-located within the
shaft, and which corresponds to the portion of the data file
which is presently being displayed in a data display region or
field of the display screen. When the car is moved through
the shaft, the data display field is updated'toldisplay the

'data file contents corresponding to the new position of the

car. Thus, ofdinary scroll bars indicate a single feature of
the display, i.e., which portion of the data file is presently
being displayed. Other than the relative length of the entire
data file, represented by the relative sizes of the shaft and

car, hq other file-specific information is displayed.

10

15

20

25

30

SUMMARY OF THE INVENTION

The present invention significantly extends the function
of scroll bars by superimposing a map of the positions of
significant attributes within a stored data file in the scroll
par field of the display screen, while simultaneously
highlighting those significant attributes in the visible
portion'of the data file. The attribute maps are displayed in
addition to the scroll bar. The significant attribute maps are
displayed in the scroll bar field by putting appropriate
regions of the scroll bar shaft in a contrasting color or
shade, Which.serves to draw a user's attenﬁion. ' _

With the attribute enhanced scroll bar of the present
invention, a user can determine the distribution of significant
attributes in the space defined by the stored data file, and
can determine the existence of significant data attributes
outside of the visible portion of the data file presently being
displayed in the data display field of the screen.

Examples of significant data attributes include words or
phrases within a documeﬁt, and information about the time of
character input, time of editing, an indication of the document'
author, or any other document specific information. In
addition, the attribute-enhanced scroll bar of the present
invention can be displayed independent of the underlying data
file, and will. serve to recall attributes of the file, the
state of the task for which the file exists, and will allow the
file to be easily opened to a desired place.

As a resuit,'significant task~-specific attributes of the
data file being displayed are visually indexed against a scroll
bar, which allows users to navigate easily through the file.

6884
Highlight

6884
Highlight

10

15

20

25

30

35

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is an. illustration of a display screen with an
attribute-enhanced scroll bar according to the present
invention; , '

Fig.,z is an illustration of a display screen with two
attribute-enhanced scroll bars according to another embodiment
of the present invention;' ‘ .

'Fig. 3 is a more detailed illustration of an attribute-
enhanced scroll bar according to the present invention wherein
different attributes are simultaneously displayed; :

Fig. 4 is a flow diagram illustrating the operation of the
invéntion; and .

Fig. 5 is a diagram of a cdmputer‘system illustrating use

of the attribute-enhanced scroll bar of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to Fig. 1, a computer display screen is shown
illustrating an embodiment of the present invention. Display
screen 11 is divided into several display fields or windows 12,
13, 14 and 15.

_ Display field 12 is used to display a selected portion of
a stored data file, for example, a ddcﬁment. The file uéed
for illustrative purposes in Fig. 1 is a computer program.
Display fields 14 and 15 can be used, for example, to display
identifying data relatingito the data file being displayed,
type fonts, and format data such as margins, tabs, and the
like. _
' bisplay field 13 is an attribute-enhancéd scroll bar
according to the present invention. Display field 13 includes
a substantially rectangular region, or shaft 16, and a shaded
rectangular region, or car 17. The length of shaft 16 is
representative of the length of the data file, a portion of
which is displayed in field 12. The position of car 17 within

4

10

15

20

25

30

35

shaft 16 is indicative of the bosition of the portion of the
data file displayed in field 12 relative to the entire length
of the data file. Thus, in Fig. 1, the spatial relationship
between and relative sizes of shaft 16 and car 17 indicate that
the portion of the data file displayed in display field 12 is
the fourth page of a 13-page document. In addition, the size

of car 17 relative to shaft 16 is indicative of the length of

the page displayed in field 12 relative to the length of the
entire data file.
- Also displayed in shaft 16 are attribute maps including

indicia 18 and 19. Attribute indicia 18 and 19 indicate the

position of significant attributes within the data file
represented by shaft 16. 1In Fig. 1, three attribute maps are
displayed within shaft 16. The first attribute map is empty,-
and no indicia therefor are included in shaft 16. The second
attribute map includes indicia 18, and -in the illustration of

"Fig. 1, indicates the locations of the character string "ist"

within the data file represented by shaft 16. -Also displayed
is a third attribute map which includes single indicium 19.
In the example of Fig. 1, the third attribute map indicates the
location of the lines within the data file represented by shaft
16 .which were chénged since the last time the data file was
saved.

In addition to displaying attribute maps within shaft 16,
the individual atﬁributes.are simultaneously highlighted within

~the portion of the data file displayed in field 12. In the

example of Fig. 1, the character string "ist" occurs three

times in the portion displayed in field 12, the occurrences of

which correspond to the three indicia 18 contained within car
17. The vertical positions of indicia 18 within .car 17
correspond to the vertical positions of the character strings
highlighted in the portion of the data file displayed in field
12. | | |

Included in display field 15 is a data field identifying
the three scroll maps appearing in shaft 16. '

5

10

15

It should be -emphasized that more or less than three
scroll maps can be included within shaft 16, and that different
types of indicia can be used to indicate the location of the
mapped data attributes. For example, different shades or
colors can be used within a scroll map to identify different
types of data within a given map. Then, if a stored document
is "authored by several different authors, the indicia in a
corresponding'attribute map could have a different color, or

‘'gray shade, assigned to each different author. Another example

would be to assign different gray shades or colors to different
times of editorial revisions of the data file. Portions of the

data file recently added or edited would result in indicia of

one shade or color while editorial editions or revisions of
lafér vintage would bear different shades or colors throughout
the spectrum. ' ' '

In addition, as'illustrated in Fig. 2, more than one
scroll bar field can be included, for example, a vertical

scroll bar. field including shaft 16 and car 17, and a

horizontal scroll bar field including shaft 16a and car 17a.
As in Fig. 1, the position of car 17 relative to shaft 16
indicates the vertical positioh within the data file of the
portion displayed in field 12, and the vertical positions of
the indicia of the attribute maps within shaft 16 indicate the
vertical location of the relevant data attributes within the
diSplayed-file. ‘Similarly, the position of car 17a within
shaft 16a indicates the horizontal position within the data
file of the poftion displayed in field 12, and,the horizontal
positions of the indicia of the attribute maps within shaft 16a
indicate the horizdntal location of the relevant attributes
within the displayed file. | |
Fig. 3 illustrates an enhanced scroll bar according to the
present invention including four attribute maps. Shaft 16
includes car 17 and they function together as described above.

The first attribute map includes indicia 23, the second

attribute map. includes indicia 24, the third attribute map

6

10

15

20

25

30

35

includes indiéia 26 and 26a;'and the fourth attribute map

~includes indicia 27. As above, the positions of the respective

indicia along shaft 16 are indicative of the positions of the
relevant attributes within the data file represented by the
length of shaft 16. As shown; the colors or shades uéed for
the indicia can change from map to map, as illustrated by
indicia 23, 24 and 26, and the colors or shades of the indicia
can change within a single map, as illustrated by indicia 26
and 26a. In addition, the shape of the indicia can change as

is illustrated by the rectangular shapes of indicia 23, 24 and

26, and the line-shape of indicia 27. Line-shaped indicia 27
can be used;'for example, to indicate the separations between
different sections or chapters of a décument. - Thus, the
different'shapes, sizes, shades and/or éolors of the attribute

indicia can be used to distinguish different attribute maps,

or to distinguish- attributes within the same. map, or both.

Fig. 3 illustrates how a significant amount of information
can be obtained about a data file by viewing the featural
representation bf the data file offered by the enhanced scroll
bar alone.

Fig. 4 shows the flow diagram of the present invention.
Initially, at the beginning of the process indicated by start
block 31, the elevator shaft or shafts for the scroll bar field
are drawn on the screen in block 32. Then, in decision bléck
33, it is determined whether any scroll maps remain to be
formatted and displayed. If so, the number of the scroll map
is determined in block 34, and the intervals (i.e., start point
and end point) of the desired attribute within the relevant
scroll map are determined and plotted in the loop including
decision block 36 and operation blocks 37 and 38.

In decision block §6, it is determined whether any
intervals . remain to be plotted in the particular map under
consideration. If so, operation block 37 determines the next
interval within the map, and block 38 plots that interval . on
the shaft. | |

6884
Highlight

- Dpt 5/!0/90
A a%.yw ;-:,&Qi\md,

weH s"/w/‘)t

When decision block 36 determines that the last

~within a particular map has been plotted, control is returned :
to decision block 33 where it is determined whether additional
scroll maps remain to be plotted.

5 ‘Once all scroll maps have been plotted, control is
“transferred to block 39 where the car or cars are drawn within
the shaft. The procedure is then terminated.

Referrlng to Fig. 5, to use the attrlbute enhanced scroll
bar of the present invention, a computer system, which includes"

10 a central processing unit (CPU) 40, first loads the enhanced
" scroll bar algorlthm of the present invention into memory 41
- from program storage medium 42. The enhanced scroll bar
algorithm is diagrammed in Fig. 4, and is shown in detail in
the program 1isting:below. .Prcgram storage medium 42 can be
15 . any machine readable storage medium euch as, for example, a
| floppy or hard magnetic or optical disk, or a programmable
L¢Qldt *'lﬂ@J'read-only memory. Display 11, including data display field 12
e VP S .
Den SY”MO and scroll f;eld 13, is connected in a known manner through
ZAH 'Z/;/fa display cont’rol bus 43, display interface 44 and internal
20 data/address bus 46 to CPU 40.
L The computer system can be anx&computer and hardware
display, preferably capable of displaying bit mapped graphics.
In the preferred embodiment, the Symbolics ‘3600-family
computers in the Genera software environment are used. These
25 work statione_ are publicly available from the Symbolics
Corporation.

However, it will be understood that the partlcular
hardware used can be of ‘any type. Virtually any work station
in the computer marketplace which bundles software for window-

30 | based interfaces, or which.has independent vendors of such
software, would be acceptable. For example, acceptable
alternatives include computer systems manufactured by IBM, all
IBM PC compatibles, Apple MacIntosh, Microsoft, NeXt, DEC, Sun

Microsystems, and others.

The enhanced scroll bar routine of the present invention

is shown in the program listing that follows. The program is

written in LISP ”language for the .Symbolics 3600-family
computers in the Genera software environment. Versions for
other computers are readily producible by practitioners skilled

~in the art.

|0

-*- Mode: LISP; Syntax: Common-lisp; Package: DYNAMIC-WINDOWS; Base: 10; -*-

T I I T I T I O T I

Copyright 1990 Microelectronics And Computer Technology Corporation.
All Rights Reserved.

Shareholders of MCC may repreoduce and distribute this material for
internal purposes by retaining MCC’s copyright notice and proprietary

legends and markings on all complete and partial copiles.

ACA Confidential and Proprietary.

Se %o %a we wE Ne % %e e Se N ve S N
e Na Se e Se Sk Se Se %1 e Su Se Ne e N Ne

This file defines the a structure called a "map” and a new kind of scroll bar
that highlights the intervals of the map inside the normal image of a scroll bar.

The map is defined by the flavor basic-scroll-map. The most common use

of maps will be the flavor binary-scroll-map, which defines a set of intervals
over which some attribute is considered to have the binary value 1", all
other intervals are considered to have the binary value "0". The map does not
commit to the meaning of the intervals, so the implementation could be used
for many things, such as finding the hits in the textual search of a buffer,
or for finding the important regions in a display of gaographic information.

The scroll bar is defined as flavor attribute-mapped-scroll-bar.

It is based on the flavor margin-scroll-bar, defined by Symbolics,
and only adds the additional functionality needed to overlay the
.maps on the normal scroll bar. For the scroll bar drawing
routines, this regquired an extensive rewrite because the image the
scroll bar shaft can now be more expensive to compute than an
ordinary scroll bar, therefore we cache the bit-image offscreen and
recompute it only when neccesary. .)

HA AR AN AR A AR R AR AR A SR AR A RA AR A AR A A AR AR A AR AR A A A A R A A ARk pd okt

e s e e Se %2 Se %2 4s s Se g Sa 4s N 4 %e e N e Se Se Ne Ne N S Ve e N S0 e Ve v e

fvar *Whitae-Pattern* (tv:make-gray 2 2 #000 #000))
fvar *Black-Pattern* (tv:make-gray-2 2 #o0ll #o0ll))

we % we (D (D Se v S Ne ve Yo e e e e Se e e Ne S Ve e Se

e N N e

These scroll bars will look at these variables to see how they should fill their parts.

efvar *Elevator-Car-Gray* tv:33%-gray)
efvar *Elevator-shaft-gray* *white-pattern*)
efvar *Elevator-End-Gray* *white-pattern*)

s BASIC-SCROLL-MAP

; The base flavor off of which all scroll map flavors ought to be built.
; This is an abstract flavor and should not be instantiated.
e

AR TR TR T P g

fflavor Basic-Scroll-Map
{)
)

BINARY~SCROLL-MAP

This structure represents a map of intervals in a document.
Intervals represented pass some threshold of interest in some along
some feature, although it doesn’t matter that that feature is.
These maps are "binary® because they don’t allow for degreees of
strength in each interval. Each interval is 100% "on", each area
not included in an interval is 100% "of Clients of this
structure only know that they can ask to map over each interval in
turn and do something. They do not know whether it is computed on
the fly or precomputed and cached (which 1t is usually).

The representation of intervals stored in a map is defined by the
creator of the map, who supplies a function to retrieve the
start-point and end-point for each element in the set of intervals.
For instance, the degenerate case is where each interval is
represented by a single number, and the accessor for the start and
end points is #’identity. Another representation might use a
dotted pair to represent the interval, and the accessors would be
#’car and #’cdr. Still another might use ZWEI datastructure to
represent the intervals.

Consumers of a map are allowed to apply a function to each of the
intervals in the map. The function (MAP-SCROLL-MAP <map> <function>)

Ne e Ne Ne e e Se S Se i Se o ve S Se Sy S5 Se Se W Ve Se e Ve ve e

Nb e Se e e Ne e v %o s vy Se e e % e Ne % wa e Se v Ve % N
e e Ve i e %2 %k N TE N Se.ve Ne Ve % e Yo Yo Y Ve S e Ve e W

46— |l

mfrancis
Highlight

applies <function> to eadach interval in <map>. <function> should
take three arguments: (1} the interval datastructure itself (2)
the start point, and (3} the end point.

One of these is given to scroll bars so they know where the
interesting peints in the document arxe.

The:functions that can be called on scroll maps are:

MAKE-INSTANCE - normal flavor object maker, allows the following
init keywords.

:CACHE The values to store in the map. This Is a list of datastructures
representing 1ntervals, whose actual implementation is up to
the caller.

: STARTPOINT-ACCESSOR A function to apply to members of the «wache to
get the startpoint of the interval.

:ENDPOINT-ACCESSOR A function to apply to members of the cache to
get the endpoint of the interval.

:PRINTABLE-KEY A string that can be printed ind;catxng the contents
of the map. This is reflected in the mouse documentation line.

MAP-SCROLL-MAP scroll-map function

"Applies <function> (a 3~arg function) to each point in the

scroll map. <function> takes the interval, its startpoint, and
its endpoint as argument. Its return value is ignored.

SCROLL-MAP-LENGTH scroll-map
" Returns an Integer.

SCROLL~MAP-PRINTABLE~KEY scroll-map
Returns a string, or NIL if no printable key is available.

DI T T T T T S S Y T TR TR VP

fflavor Binary-Scroll-Map
{{cache) nil))
(startpoint~accesscr #‘/identity)
{endpoint-accessor #identity)
(printable-key nil))
(basic-scroll-map)
initable-instance-variables
treadable-instance-variables
twritable~instance-variables
{:conc-name “SCROLL-MAP-"}}

(defmethod (Map-scroll-map Binary-scroll-map) (function)
(dolist (interval cache) .
(funcall function interval (funcall startpoint-accessor intgrval) (funcall endpoint-accessor interval

IBRN.

{defmethod (Screll-Map-Length Binary-scroll-map) ()
{length cache))

(defmethod (Scroll-Map-Empty? Binary-Scroll-Map) ()_
{null cache))

AT\

ATTRIBUTE-MAPPED-SCROLL-BAR

This is the scroll bar definition itself. Note that the flavor is based on
margin-scroll-bar, which means we .inherit all the normal scroll bar functionality
from the Symbolics implementation of scroll bars. However, attribute-mapped

. scroll bars have some additional state variables, as described below, and must
redefine the drawing routines to add the maps when required.

--- Map Management Instance Variables ---
Attribute-mapped-scroll-bars can display multiple maps. The scroll bar assigns
each map a symbolic name, and also records the crder in which to display the
scroll bars. : '
map-order - a list of symbols, indicating the outside~to-inside order in
' which to draw the maps. The first map will be draw closer to
the outside of the scroll bar, and the last one will be drawn
closer to the inside of the scroll bar.

named-maps’ -~ an alist whose element are of the form (<name> . <map>) where
<name> is an element of the map-order list, and <map> is
a scroll map as defined above. Use this list to find what actual
map corresponds to a logical name. \'
overlay-maps - normally, scroll maps are draw side-by-side within the shaft of
scroll bar. This 1isn’t the only way to compose them, however.
It is allowable to mark certain maps as "overlay” maps, and they
will take up entire width of the scroll bar when draw, rather than_
spliting up space with the other maps. On a color display, one
could have overlay maps In one color and the normal maps in another,
and in this way have more maps displayed.

~=-- Drawing Optimization Instance Variables -—-

The most stralghforward implementation of attribute-mapped-scroll-bars has

poor performance characteristics, because it redraws the entire scroll bar

each time the position of the elevator car 1s updated. This implementation
tries to get better performance by computing an off-screen bitmap containing
"background image” of the scroll bar. That is, the ends of the scroll bar,
empty shaft, and the markings for the various scroll maps known. COnce computed,
the background image can be periodically updated when free cycles are available.
The scroll bar 1s draw by first bitblt-ing the backgiound image onto the screen,
then superimposing the elevator car rectangle onto that image. If the scroll
has already been drawn, only the car needs to move, then we erase the elevator
car (by bitblting the appropriate subrectangle of the background image back onto
the screen) and redraw the elevator car in the new position.

image~tick - a boolean, indicating whether the contents of the image-cache
are out of date, and should be recomputed.

image-cache ~ the off-screen bitmap containing the image of the elevator shaft,
the elevator ends, and the scroll maps associated with the
scroll bar. This can be marked as invalid by setting the
image-tick instance variable to T.

o M Se %E B Ne W B W %y Se S5 e % A5 %a A e a Se A0 Se Ye Ve Ma % me e %a %6 % S %m e Ye % s ve e %s e s ve Ve e e e %' ne e be wn
(B e Ss S5 Se %a o %e Se %e e N6 %o e v e e %a e e S S0 N6 Ve %u Na s Ve Ve %% e N e 4 Ve T N Ve Sa A Ap e A4 A W6 e % e Ym e e 4p v wp e

[S+ ™ Su %a Sr Ne %e e %o e S e e e Me Y %a Ne 45 e %e e e o Ne e Ye Se % e Ve N Ve-We %a N e vp e s %a e %y A Sa N6 e % % %e v %

fflavor Attributae-Mappaed-Scroll~Bar

({map-order nil)

{named~maps nil) :) -
{overlayed-maps " nil}

{image~tick t)

(image-cache nil))

{(margin~scroll-bar)
:initable-instance-variables
:readable-instance-variables
}

N

{Defmethod .{Get-Named-Scroll-Map Attribute-Mapped-Scroll-Bar}) (Name &Optional (Default Nil))
_: ; Returns the scroll map indicated or the default value. .
; : <name> is typically a keyword symbol.
(Scl:Getf Named-Maps Name Default))

(Defmethod (Set-Named-Scroll-Map Attribute-Mapped-Scroll-Bar) (Name Map &Optional (Error-If-Unknown-Name
T))
: + Sets the scroll bar map named <name> to be the new map.
{Unless (Or (Member Name Map-Order) (Null Map))
{If Error-If-Unknown-Name ' .
(Error "The map named ~s3 is not defined in this scroll bar."” Name)

212

95

(Setf Map-Order (Ncébnc Map-Order (List Name})}))
(Setf (Scl:Getf Named-Maps Name) Map))

(Defmethod (Set-Map—Order Attributo-Mapped-Scroll-Bar) (List-Of-Map—Names)
: ; Sets the order of maps to those indicated.

: : Each element of list-of-map-names can be either'a symbol or a list of the form (:overlay <symbols)
; This initializes the variables overlay-maps and map-order.
(Setf Overlayed-Maps Nil)

{Mapcar #' {Lambda (E). (When (Listp E)

{Push (Second E)} Overlayed-Maps))) List-Of-Map~Names)

{Setf Map~Crder (Mapcar #‘ (Lambda (E} (If {(Atom E} E (Second E)})

{Defmethod (Get-Map-Orderxr Attributae-Mapped-Scroll-Bar) ()

; + Returns the order of displayed maps. .
(Copy-List Map=-Order))

List-Of~Map-Names) })

(defmethod (Ensure-Image-Cache Attribute-mappad-scroll-bar) ()

; This makes sure the image-cache state variable is filled with an appropriate bit array.
; Sometimes this gets called when window-range is NIL. Then it should do nothmg
(When Window-Range

(Labels (({($Image-Cache-Dims {Height)

{Ecase (Scroll-Bar-Margin}

{{:Left :Right)

{(:Top :Bottom)

{Values Height (Tv'Round—Up Elevator-Thickness 32)))
{Or Image-Cache

{(Values Elevator-Thickness (Tv:Round-Up Height 32)}))))
(Multiple-Value-Bind (D1 D2) ($Image-Cache-Dims (Range-Size Window-Range))
(Setf Image-Cache (Make-Array (List D1 D2)

:Element-Type ‘Bit)})))))
(defmethod (Orientation Attribute-mapped-scroll-bar)
; ; Returns :horizontal or .vertical

{cond {(member (scroll-bar-margin} ’ {:left :Qight))
{ {member

iveértical)
*(:top :bottom})

thorizontal)))
(Defmethed (Draw-Scroll-Map-In—Band Attribute-mapped-scroll-bar)
tv:alu-ﬁeta))

{Let*

(scroll~bar-margin)

(Map Avail-Range Array
Band-Start Band-End &optional (alu
((Bar-Top Elevator-Thickness)

: start of shaft proper past end targets

(Bar-Bottom (- (- {Range-Max Window-Range) {(Range-Min Window-Range)) Elevator-Thickness))
(Bar-Length (- Bar-Bottom Bar-Top})
(F {/ Bar-Length Avail-Range))
{(Orientation (Orientation Self})}
(Map-Scroll-Map

Map

#’ {Lambda (Interval Startpoint Endpoint)

{Declare (Ignore Interval))

(Let ((Start~Line (max bar-top (+ (Floor (* Startpoint F)) Bar- Top))))
(End-Line {min bar~bottom (+ (Ceiling (* Endpoint F))} Bar- Top))))
{Loop For I From Start-Line To End-Line Do
(Ecase Orientation
{:Vertical {Tv: %Draw-Line Band- Start I Band-End I Alu T Array}}
{:Horizontal .

(Tv:$Draw-Line I Bapd Start I Band-End Alu T Array)))})})}}
{defvar *Map-Spacing* i)

(defun Compute-Map-Width (elevator-width number-of-maps)
; Given a width for the elevator, and the number of maps to display, this

; ; function computes the plxel-wvdth that each attribute map will occupy.

: ; Itreturns an integer.
{setf elevator-width {- elevator-width 2)) ; subtractoff outer edges.
{floor {- elevator-width {* {1+ number-of-maps) *map-spacing*)) number-ocf-maps)}
(defmethod (Draw-Scrol1—Maps-0n-Array Attribute—mapped—scroll bar)
lu-seta))

' (declare (ignore alu})

{avail-range array &optional
(let

{alu tv:a
({n-split-maps (- {length map-order)

{(length overlayed-maps))))
(cond ((zerop n-split-maps) .
: ; ; All the maps are overlays
(loop for m in map-order
for real-map = (get-named-scroll-map self m)
when real-map
do

; number of maps to split space among...

{draw-scroll-map-in-band self real-map avail-range array 2 {- elevator-thickness 3)
(t
; Thereis a mtxture of overlays and sphts
(let* { (current-band-start 2)

{map-width

(compute-map-width elevator-thickness n-split-maps))

A3 1Y

~ R .

{band-inc (+ map-width *map-spacing*)})
{loop for m in map-ocrder :
for real-map = (get-named-scroll-map self m)
when real-map
do

(if- (member m oveflayed—maps)
. {draw-scroll-map-in-band self real-map avail-range array 2 (- elevator-thickne
ss 3)))
(draw-scroll-map-in-band gself real-map avall-range array
’ current-band-start {+ current-band-start map-width -1

(incf current-band-start band-inc))
else do (incf current-band-start band-inc)})})))))

(defmethod (Compute-BG-Image Attribute-mapped-scroll-bar) (window)
: ; This draws a new version of the scroll bar background {i.e. the top, bottom, and shaft without the elevator car
; » into the bit array known as “image-cache”, which is stered in an instance variable of the scroll bar.
(ensure-image-cache self)
{let ({{orientation (orientation self))

(end-size elevator-thickness)
(window-min (range-min window-range))
(window-max (range-max window-range)))}

(labels {({rectangle {width height x y temp)
{when (and (plusp width) {plusp height}} -
{ecase orlientation ’
(:vertical {$draw-rectangle width height x y boole-ior temp))
(:horizontal (%draw-rectangle height width y x boole~ior temp)))}})
(bblt (width height x y pattern phase temp &optional {(alu boocle-ior))
{when (and (plusp width) (plusp height))
(ecase orientation
(:vertical {bitblt alu width height pattern 0 phase temp x y))
{(:horizontal (bitblt alu height width pattern phase 0 temp y x}))))
{a-box (begin end edge-thickness fill-pattern fill-phase temp)
{rectangle elevator-thickness edge-~thickness 0 begin temp)
(rectangle elevator-thickness edge-thickness 0 (-~ end edge-thickness) temp)
(rectangle edge-thickness (- (- end begin) (¥ edge-thickness 2)) 0 (+ begin edge-thickness
) temp)
(rectangle edge-thickness (- (- end begin) (* edge-thickness 2)) (- (+ 0 elevator-thicknes
s} edge-thickness) '
(+ begin edge~thickness) temp)
{vhen fill-pattern Co . N
(bblt (~ elevator-thickness (* edge~thickness 2)) (- {- end begin) {* edge~thickness 2))
"' (+ 0 edge-thickness) (+ begin edge-thickness) fill-pattern (+ fill-phase edge-thic
kness) temp)))
(draw-cable (begin end phase temp)
(let ((shaft—gray *black-pattern*))

{bblt *elevator-cable-thickness* (- end begin) 0 begin shaft-gray phase temp)

(bblt *elevator-cable-thickness* (- end begin) (1~ elevator-thickness) begin shaft-gray
phase temp) . - . .
(bblt (- elevator~-thickness *elevator-cable-thickness* *elevator-cable-thickness*) (- en
d begin) ' ' : '

1 begin .
elevator-shaft-gray phase temp)

)
: : Clear the whole thing
{bblt elevator-thickness {- window-max window-mih) O 0 *white-pattern* 0 image-cache tv:ialu-seta)
;: === 1. Draw the top and bottom targets
(a-box 0O end-size *elevator-box-thickness* *elevator-end-gray* 0 image-cache)
ta=box (- (- window-max window-min} end-size) (- window-max window-min}
glevator~-box-thickness *elevator-end-gray* 0 image-cache)

;: === 2. Draw the cables .
(draw-cable end-size (- (-~ window~max window-min) end-size) 0 image-cache)
(multiple~value-bind (nil nil min-avail max-avail) (send window :y-scroll-position)

(Hraw—scroll-maps—on—array self (- max-avail min-avail) image-cache}) .

imagé tick is T if the bg image has *never* been drawn, and NIL if it has even ever been drawn once.
; : This is to help avoid the problem of existing scroll bars not knowing about the bg-image-cache.

(setf image-tick nil}})))

{defmethod (Redraw-Elevator-Special Attribute-mapped—scro;l-bar) {window force &aux (orientation (orienta.

tion self}))
{tv:prepare-sheet -{window}
{multiple-value~bind (1 tp} (margin-component-edges self window)
{multiple-value-bind (min-vis total-vis min-avail max-~avail) (ecase orientation
{:horizontal (send window :x-scroll-

5

position)) .
(:vertical (send window :y-scroll-
position)))
(let* ((displayed-min (range-min displayed-range))
{(displayed-max (range-max displayed-range)}

{(window-min {range—~min window-range}))

{(window-max {(range-max window-range))

{height {range-size window-range))

{(width elevator-thickness) T
(max~vis {+ min-vis total-vis))’

{end-size elevator-thickness)

{left (+ 1 shaft-whitespace~thickness))

(top i (+ tp shaft-whitespace-thickness)))

{multiple-value-bind (elevator-min elevator-max) .
{stack~let* ((available-range {(make-range min-~avail max=-avail))

{visible-range {make-range min-vis max-vis})
'(shaft-range (make-range (min (+ window-min end-size) window-max)
(max (- window-max end-size) window-min))}))

{compute-scroll-bar-ends available- range visible-range shaft~range))
: ; -— Return immediately if no change.
{when (and (eql elevator-min displayed-mln) {eql elevator-max displayed-max) {(not force)}
(return—-from redraw-elevator-special}} .))
-1 ; —- Draw the main body of the elevalor
(cond (force

: Draw the whole thing when forced.
(ecase orientation
{:verticel (tv:isheet-draw-l-bit-raster width height image-cache 0 0 nil left wind
ow-min - . .
' tv:alu-seta tvialu-setz window))
(thorizontal (tv:sheet~draw~-l~bit-raster height width image-cache 0 0 nil window-mi
n top : .)
tv:alu-seta tvialu-setz window)))
{setf cable-drawn t})}
{t
(ecase orientation
{(:vertical (tv sheet-bitblt tv:alu-seta width (range-size displayed~range) image~cac
he .
0 (- {(range-min displayed-range) window-min) nil
left (range-min displayed~range) window))
(:horizontal {tv:sheet-bitblt tv:i:alu-seta (range-size displayed-range} width image-c
ache . . :
(- (range-min displayed-range} window-min) 0
nil {(range-min displayed-range} top window)
1Y)
: » --— Draw the elevator car:
{alter~range displayed-range elevator-min elevator-max}
(ecase orientation
(:vertical
: 2 left, right, top, bottom
{tv:sheet~draw-line (1+ left) elevator-min (+ left width -1} elevator-min tv:alu-seta t wi
ndow) :

. (tv:isheet-draw-line (1+ left)} (1- elevator-max) (+ left width -1) (l- elevator-max) tv:alu
-seta t window) : : .
_(tv:sheet-bitblt tv:alu-ior (- width 2) (- elevator-max elevator-min 2)
elevator-car-gray 0 0 . .
. nil (1+ left) {1+ elevator-min) window))
{thorizontal ' . .
(tv:sheet-draw-line elevator-min {1+ top) elevator-min (+ top width -1) tv:alu-seta t wind
ow) : . .
(tvisheet-draw-line (1- elevator-max) {1+ top) {1- elevator-max) {+ top width -1) twv:alu-s
eta t window) :
(tv:sheet-bitblt tv:alu~ior (- elevator-max elevator-min 2) (- width 2)
elevator-car-gray 0 0O
.) nil {1+ elevator-min) {1+ top} window})
IBRERERD: :

{(Defmethod (Draw-Elevator-If-Neaded Attribuﬁe—Mapped-Scroll—Bar) {(Window Alu Force)
(declare (ignore alu)} '
(let {(message (ecase (orientation self)
{:horizontal :x-scroll-position)

{:vertical ty~scroll-position)})}
(multiple-value-bind (min-vis tot-vis min-avail max-avail) (send window message)
(stack-let ((vis {make-range min-vis (+ min-vis tot-~vis})))

tavail (make-range min-avail max-avail))}
{cond ({range-equal wvis avail)
{margin-compconent~erase self window) -

510 | - 5

(setf cable-drawn nil)})
(t
(redraw-elevator- special self window
(or force (null cable-drawn) image- tlck
(null (range-min displayed-range))))))}))).)

(defmethod (Draw-Elevator-If~-Raquastad Attribute-mapped-scroll-bar) (window alu force)
(declare (ignore alu))

{redraw-elevator-special self window (or force (null cable-drawn) image-tick (null (r&nge-min displayed

-range)))))

(defmethod (Margin-Scroll-Bar-Draw-Elevator Attribute-xapped-Scrbll-Bar) (window alu &optional force)

; The main interface to the rest of the Symbolics window system manager is this function.
,- ; ltis called from the operating system when the operating system has determined that the
: ; scroll bar ought to be drawn.
(unless (eq visibility .suppressed)
: If we somehow escaped initialization, clean up)
(unless (and (range-min window-range) (range-max window-range))
{margin-component-after-redefine-margins-kludge self window))
(ensure-image-cache self) -
; 7 Draw the scroll bar, supressing display if it blows out.
(let-if (eq (cli::follow-synonym-stream *debug—io*) window)
((*debug-io* "Error drawing scroll bar"))
{unless (catch-error-restart (error "Suppress the scroll bar entirely")
(catch-error-restart (abort "Skip drawing the scroll bar")
: : Main body
(ecase visibility
{{:normal :temporary-normal}
. (when image-tick (compute-bg-image self window))
(redraw-elevator~-special self window
{or force (null cable-drawn)
image- tick
{null (range-min dlsplayed-range)))))
(:if-requested
(when image-tick (compute-bg~image self window)) -
(draw~elevator-if-requested self window alu force))
(:if-needed '
(when image-tick (compute-bg-image self window})
{(draw-elevator~if-needed self window alu force}))
T))
(setq visibility :suppressed)))))

(Defmethod (Margin-Component-Change-0£f-Size-Or-Margins Attribute-Mapped-Scroll~Bar :After)
(declare (ignore window))
: ; This method is called whenaever the window has been reshaped by the user. The primary
; method is implemented by dw:margin-scroll-bar, but this :after demon causes the new instance
; ; variables for a attribute-mapped-scroll-bar to also be reset, causing the scroll bar's image to
; ; be recomputed from scratch. -
(setf image-cache nil
image-tick t)
displayed-range)

clear the cache, forcing a new bit-array to be allocated
set the flag that says "redraw the image in the cache.”

e ne

::: == window-level interface =——-————————cmemme e —— e ———
;3: =——-— This code is the way to tell windows with dw:margin-mixin --
;:: =---- how to add and remove scroll maps to the scroll bars in -
;¢ =~=-=- various margin (i.e. :left :top :right :bottom). It is the --
::: =--=-- highest level of functional abstracttion for this code -

v

(defmethod (Scroll-Bar-In-Margin Dw:Margin-Mixin) (margin)
(dolist (component dw::margin-components)
(when (and (typep component ‘Attribute-mapped-scroll-bar)
(or (eq (dw::margin-scroll-bar-margin component) margin)
{and (eq (dw::margin-scroll-bar-margin component) :default)
(eq *default-scroll-bar-margin* margin))))
{return component))))

(defmethod (Get-Named-Scroll—Map—In-Margin Dw: Margin-Mixin) (margin name &aux s)
; : Returns a scroll map if:
; ; a) a scroll bar exists in the margin specified
; b) it has a scroll bar map of the proper name
{and (setf s (scroll-bar-in-margin self margin))
(get-named-scroll-map s name)))

{(Window)

(defmethod (Sot-Namad—Scroll—Map-IA;Maiéin Dw:Margin-Mixin) (margin name map &aux s)
{(if (setf s (scroll-bar-in-margin self margin})
{set-named-scroll-map s name map t}
{cerrer "There is no scroll bar in the ~a3 margin.” margin}))

" (defmethod (Sot-Sc:oll-Hap-Order—In-Hazgin Dw:Margin-Mixin) (margin list-of-names &aux s}
(if (setf s (scroll-bar-in-margin self margin)}
(set-map-order s list-of-names) .
(cerror "Skip defining these scroll map names and continue.” "There ia no scroll bar in the ~s marg
in." margin)))

({defmethod (Redraw-Scroll-Map-In-Margin Dw: Hargin—Mixin) (margin &aux s)
(When (Setf S (Scroll-Bar-In-Margin Self Margin})
{Compute~Bg-Image S Self)
(Margin-Component-Draw S Self Tv:Alu-Seta)))

17 \%

The foregoing— description of the invention has been
difected to a particular preferred embodiment for purposes of
explanation and illustration. It will be apparent, however,
to thqse.skilled'in this art that many modifications, additions
and deletiéns-may be made without départing from the essence
of the invention; It is the applicants' intention in the
following claims to cover all equivalent modifications and
variations as fall within the scope of the invention.

WHAT IS CLAIMED IS:

: (N_ 1. In an Igteractive data display system wherein a user is
f§wb/ 612//> presented with\a data display screen including a data display
5 ' field and a data scroil bar field, said method comprising:
displaying im\ said data display field a portion of . a
, stored daty file; ‘
displaying in sald data scroll bar field indicia of a

position of said portion within said data file; and

10 displaying in said ta scroll bar field indicia of a
position within gaid data file of at least one
attribute of said data file. \

2. The method of claim 1, further comprising labeling within

15 said data file said at least one attribute.

3. ° The methbd of claim 2, wherein said step of displaying
said portion further comprises highlighting all said attributes

appearing within said portion.

ébﬁ 4, The method of claim 1, wherein said step of displaying
/guﬁy said indicia comprisges displaying indicia of a horizontal

position of said at leasSt one attribute within said data file.

25 5. The meth of claim 4, wherein a horizontal position of
said indicia with said data,scroll bar field is indicative

of said horizontal p

ition of said at least one attribute

within said data file.

30 ? 6. The method oX claim 1, wherein said step of displaying

6L said indicia compri®es displaying indicia of a vertical
/ﬁ”p/ position of said at least one attribute within said data file.
7. The method of claim wherein a vertical position of said
35 indicia within said data scro

& .
bar field is indicative of said

19

vertical posiﬁib
~data—file.-

'Sf'gﬁid at least one attribute within said

~4 8. The method of claim 1, wherein said step of displaying

said indicia further comprises:

indicia of a horizontal position within said
ile of said at least one attribute; and

10
9. The method of aim 1, wherein said étep of displaying
indicia further comprises:
displaying a plunrality of attribute maps in said data
scroll bar fileld, each attribute map including
15 positional indicia of respective attributes of said
data file.
10. The method of im 9, wEerein said indicia in different
attribute maps are visual distinguishable from one another.
20 ' , .
%, 11.'_The method ®f claim 10, wherein said indicia in different
Cb attribute maps ar& different shapes.
12. The method of claim 10, wherein said indicia in different
25 attribute maps are different colors.
13. The method of clailn 10, wherein said indicia in different.
attribute maps are different shades.
30 ' ' 14. The method Of_claim 9, wherein indicia within at least one
attribute map are vIgually distinguishable from one another.
A A
15. The method of claim 10, wherein said indicia within said
at least one attribute map e different shapes.
35

20

10

15

20

25

16.

ethod of ‘claim 10, wherein said indicia within said

‘at least one attribute map are different colors.

17. The method\of claim 10, wherein said indicia within said.
at least one atthibute map are different shades.

18. A program stovrage device. readable by a machine and
tangibly embodying \ a. representation of a program of
instructions adaptablle to be ‘executed by said machine to
perform the method of any one of claims 1 through 17.

19. A computer display unit comprising:
a central prodessin unit; A
a memory accessed by\the céntralvprocessing ﬁnit;
a display screen coupled to the central processing unit,
' for visually displaying data from .the_ central
processing unit;
means for displaying a ortion of a stored data file in
a first field of sald display;
means for displaying in \a second field of said display
indicia of a posifi n of said portion within said
stored data file; an ‘
means for displaying in \said second field positional
indicia of at least one attribute within said stored

data file.

o

21

10

Y T ABSTRACT
Lt L ~

An attribute-enhaﬁced scroll bar is presented. A selected

'pﬁrt;pn of a stored data file, for example a document, is

displayed_in a display field, and a scroll bar field including
a scroll bar is used to indicate the position of the displayed
portion relative to the entire data file. 1In addition, maps

" of significant task-specific attributes of the data file, for

example particular character strings within a document, are
displayed in the scroll bar field of the display along with the
scroll bar. 'The attribute maps indicate the location of the
signifidant attributes within the data file. In addition, the
attributes are highlighted within the portion of the data file
that is displayed in the dispiay field.

15 ‘ .
c&&ﬁﬁﬁz— g:\mico\015\PA\01.bah

Do Shelqo
V/p/{(5//y90
wey <liefao

22

-

lng
lled

Jrawin
F

1

i

rigina

11/52311%

gl

[ro19G pue anoqu wuoy)

anduy J3sn IME 13(943n3e) INSNILqoa ZpiTZETT Aoy At
DAE | 9 pa po 69 0 3 e 0 d de 0

O © do D 9 O DAQ PP o 0q © 9 103 O

ny)

108 £dou-||0JI8¢IIM0B(Z-L- | I4(IIUIIFP¢_dS} | 849q- | |04I8-pIddRU-33INq} J31Q (300 | -3u04 ds1y) soewz|

‘PRINcVO2 #duR ‘uACUY SIPU 110435 SNORARA #YI 40f SOUIYIRU ByI puw ‘3feys Azdus
‘40q 210426 #y3 Jo spus 8yl “S3 IWy) "4vq 110435 #y3 Jo ,e0wuy puno+Syowq,
Ougupeiuod deultq vesids-ffo ue Supinduas Aq 22uvusofind is338q 300 03 s0343
UORIRIUIUSIIUS S1YL ‘PeIVpdn S1 4w 40Jensle sy3 Jo uopiisod ey3 sup) yowe

4%q 110408 843JUS Sy3 Snoipes 37 esneosq ‘soiffRl+s3ovivyd> eouvviofisd icod

VY £49Q-110495-paddPU_SINGI 4330 JO UORIVIUILS IV PIPNLO[yStRils ISOU By

- SP)QRIIB) IURISUT LOIIOIRIVIFAg OUINRAF o

‘pafvydsip sdeu s.so0u sawy AR s1y} up pue
TAPYIJOUR U TRV JRWIOU YT PUP 10]03 SUO U SADW AR)I8AO anwy ppnos
U0 ‘AP]OSIP 40105 ® U | "SORU 4BYJO BY3 Y3IIn ed0ds dn Suryaids
URYF 4BYIR4 NDIp UBYA 1RQ 110405 8Y3 fO YIPRA Bajjus On BYRI 111N T
A3 puw ‘EdVV AV148N0,, ST SAVW UIDILSD YU OF B)QONO]}® S§ 27
T4ONBNOY ‘UBY] #5000 OF AP AJUO YT I,USE SIY] '4Rq 110435
F0 3foys syg vIyIIn Bp1S-AQ-spLS NRIp BUR EAVU 110405 ‘AllRuiou — sdew_Av)ion0

aupy wopf0) ® 03 SPUCdERii403 deu

1®n3ow yeyn puif o3 1 Sty3 #s; -enoqe paupfap sv dew o438 w . S
&1 ¢ovw> puv ‘F) 41epio-deu sy3 Jo Jususls uw 53 (euRu) .

suoyn ((dwuy ° (URU)) Waof 8Y7 fO 84% Jususls ssoyn ERe ve - sdeu-pauey

tdwg J10435 sy3 Jo spEsul sy3 03 4950}

unBIp 8 111N SUC ISP] BY] PUR ‘49q 110438 Y3 JO spIsSIN0 ey3

03 488013 NAVIP 8 2138 JRU 3543[eyl “EIVV 8Y3 ARIP O3 YIIYN
UR 48p10 PISUI-0F-8PISIN0G #y3 Oula@orpul ‘S)OqUAS fo H~ ® . s8pio-deu
. *s4eq 10498
Y3 ARJdSIP 03 Y2IYn Ul 48pUO BY3 §P.LOIS4 OSI® PuUP ‘suwu 2310quis w dew yave
Subpsse 4wq 210408 By SORU #)d13)nu AR}dSIp URD S$49Q-110425-padovu-03NqL i3y
--= $8]QUIACH BIURISUT JuSWITEURY dBL)

‘PRAInbas usyn £deW SY] PPR 03 SIUIIN04 Ouln%.p ey supfepes

ISNY puR ‘NOJ8Q PIQIIISEp §% ‘SBIQRIIRA BIVIS]VUCIIIPPP SUOS BAVY §4RQ 110495
PaJIVU_BINGLIFIR T4BNINON "SIRQ 110435 JO uORIRIUSUS DU 52310GQuAs Y3 wouf
AIIIPUORIIUNS DG]]04IS JPNIOU BY]]IV FTIBYUR BN SURSW yORYA ‘4Rq-1 10425 -Upbavu
Uo prseq §3 40nR2] By2 2043 BJON “J13531 UORIRUEISEP 4Nq 210495 #Yy3 S3 SIYY

JH8- 1109250 Iddbi- 31N T 1Y

: ’ ((34oed |nu)
:Ano-_l—_e..uw..a..a:;&aannwlnnzl:euumy vo:uu:uu_uv

((3yoea yY36u3y)
() (deu-jjoaas-Lseujg yibuay-dey- {oJ435) poyjauyap)

[L11} I—J

e oK -
coLnl

i Dra

Ams o awing
As Original Fijeq

RS2

User interface design and analysis is an
inherently interdisciplinary activity that
merges cognitive, computing, and engineer-
ing sciences. Due to the rapid pace of
technological change, there is as yet no sci-
ence of human-computer interaction and
little consensus on what the core knowledge
of the discipline should be. In other
sciences, the ment of taxonomies,
such as the{ jof living organisms
in biology, has proved to be a useful foun-

proposes ajf of user interface ac-
tivity as a possible basis for the eventual

development of human-computer interac-
tion as a science. This X0 i

a model of the basic components of the in-
terface and coverage of some of the major
cognitive engineering principles that form

the basis for human-computer interaction.

l

;r .

117923117

R N X Tverrery

16

ocrint Of Drawing
- .As Original Fileq

/525117

Draw elevator shaft(s)
. : - /

scroll

maps?,
- Im = current .
scroll | 3y
A - map |

No

Fl&.‘il

v

Draw elevator| «q
car g

v

36

Remainind\ Yes
inTenvals

inm?

P = next wrsvac

inm

Y

Piot P on
elevator shaft

.

17

L8

:Aﬂiﬁ: Uf‘ Dr‘zwing

As Orizinal Fileq

S eerER /523117

13T 11

16— -
J-47%
. 4
~ = INTERRCE
Pt T

A | | H
STORAGE [2% memory ==

i [_Lu
Fie. 5

