1		
2		
3		
4		
5	UNITED STA	TES DISTRICT COURT
6	NORTHERN DI	STRICT OF CALIFORNIA
7	SAN J	JOSE DIVISION
8	NAZOMI COMMUNICATIONS,	Case No. C-10-04686 RMW (related)
9	INC.,	ORDER CONSTRUING CLAIMS OF U.S.
10	Plaintiff,	PATENT NOS. 7,080,362 AND 7,225,436
11	V.	
12	NOKIA CORPORATION et al.,	
13	Defendants.	
14		
15	NAZOMI COMMUNICATIONS, INC.,	
16	Plaintiff,	
17		
18	V.	
19	SAMSUNG TELECOMMUNICATIONS	
20	AMERICA, L.L.C. et al.,	
21	Defendants.	
22		
23		
24	On November 28, 2012, the court he	eld a claim construction hearing for the purpose of
25	construing disputed terms as described below	w. At issue in this claim construction is the scope of
26	two of Nazomi Communications Inc.'s pater	nts. Nazomi generally argues for broad dictionary
27	definitions of the terms used in the patents,	while the defendants insist that the patent
28	specifications disclose and define a more lir	nited invention. For the reasons explained below, the
	CLAIM CONSTRUCTION ORDER CASE NO. C-10-04686 -RMW SW	- 1 -

23

1

court generally agrees with the defendants' narrower proposed constructions of the disputed terms.

I. BACKGROUND

4 Nazomi brings this patent infringement action against various technology companies, 5 alleging infringement of claims 1, 15, 17, 22, 26, 48, 66, 67, 68, 69, and 70 of U.S. Patent No. 6 7,080,362 (the '362 patent), and claims 1, 5, 12, and 14 of U.S. Patent No. 7,225,436 (the '436 7 patent) both continuations of U.S. Patent No. 6,332,215 (the '215 parent patent). The '362 patent 8 and '215 parent patent, both titled "Java Virtual Machine Hardware for RISC and CISC 9 Processors," and the '436 patent, titled "Java Hardware Acceleration Using Microcode Engine," 10 all relate to technology which uses hardware for accelerating the execution of stack-based 11 instructions like Java bytecodes. The specifications for the '215 patent and '362 patent are 12 essentially identical. The '436 patent also has the same disclosure but adds additional features. In 13 this case, Nazomi claims that many of defendants' consumer products infringe its patents by using 14 microprocessors with specialized hardware to accelerate the execution of Java programs.

15

A. The Technology

16 This case concerns technology for processing different types of machine code, or 17 "instruction sets," within the hardware of a computer. In particular, the patents relate to hardware 18 to accelerate the processing of "stack-based" as opposed to "register-based" instructions. A 19 "stack" and a "register" are different ways of storing data in memory and necessitate different 20 types of associated instructions to manipulate that memory in order to execute a program. Java 21 bytecodes and other stack-based instructions will not operate on a register-based system unless 22 the system first translates them to refer to registers instead of a stack or otherwise processes them. 23 On a typical computer with a register-based processor, a program is just a series of

instructions stored as 1s and 0s (most systems are 32-bits, which means a single instruction is made up of 32 1s and 0s). When a computer executes a program, the instructions that make up the program go through the well-defined process of the Central Processing Unit (CPU) pipeline known as the "fetch-decode-execute" cycle. First, the processor fetches the instruction in memory. Second, a decode unit converts the 1s and 0s of the instruction into hundreds if not CLAIM CONSTRUCTION ORDER CASE NO. C-10-04686 -RMW - 2 -

SW

thousands of control signals. Third, these control signals manipulate the registers and other logic
gates in the processor to perform the data manipulation or mathematical calculation indicated by
the instruction. Finally, the results of the manipulation are written back into a register as needed. *See* Dr. Babb Decl. at ¶ 11 (filed under seal); Decl. of Stephen Steele at ¶¶ 22-28, dkt. no. 405 ex.
3.¹

6

B. The Patented Invention

The patents relate to a method of accelerating the execution of stack-based instructions on
register-based processors. *See* '362 and '436 patents, Background and Summary of the Invention.
The prior art teaches that the way to execute stack-based instructions, like a Java bytecode, on a
register-based processor is by converting the stack-based instructions into register-based
instructions in software. *Id.* The patents accelerate this process by adding new hardware
elements that speed-up the conversion process and the execution of the instructions. *Id.*

13 Many register-based systems use a Java Virtual Machine—a software program—to 14 translate Java bytecodes into register-based instructions. This approach provides flexibility, but 15 slows overall execution speed. The patented invention "removes the bottleneck which previously 16 occurred when the Java Virtual Machine is run in software ... [by implementing] at least part of 17 the Java Virtual Machine in hardware as the hardware Java accelerator." '362 Patent col.2 ll.10-18 17. The '436 patent builds on this general invention by disclosing a way of more efficiently 19 handling interrupts—computer commands that require a shift from stack-based instructions to 20 register-based instructions and then back again. '436 patent col.2 11.5-59. The '436 patent also 21 discloses a parallel decode unit that translates multiple bytecodes concurrently into a lesser 22 number of register-based instructions. Id. col.6 11.20-25.

- 23
- 24 25

26

¹ The remainder of this Order cites to the docket for case number C-10-04686, the first filed case, but identical copies of these documents were also filed in C-10-05545 as well.

28

1 **C.**

Procedural History

2	Courts have previously considered and construed terms in patents related to Nazomi's
3	alleged inventions. In Nazomi Communications, Inc. v. Arm Holdings, PLC ("Nazomi 2002" to
4	distinguish it from the present cases), Nazomi and ARM disputed whether ARM's Jazelle
5	Revision 3 design infringed the '215 parent patent. See No. C-02-02521-JF (N.D. Cal. 2002).
6	Initially, the district court construed "instruction" and granted summary judgment of
7	noninfringement based upon its construction. Nazomi 2002 I, 2003 WL 24054503 (N.D. Cal.
8	Sept. 30, 2003). The Federal Circuit vacated and remanded, finding that the court's analysis was
9	inadequate. Nazomi 2002 II, 403 F.3d 1364 (Fed. Cir. 2005). Thereafter, the district court
10	conducted a detailed analysis of the term "instruction." Nazomi 2002 III, 2006 WL 2578374
11	(N.D. Cal. Sept. 6, 2006). Nazomi objected to the court's construction and appealed to the
12	Federal Circuit, but conceded that under the district court's construction of "instruction," Jazelle
13	Revision 3 based processors "would not infringe the '215 parent patent, literally or under the
14	doctrine of equivalents." Nazomi 2002, Resp. to Def.'s Summ. J. Mot., dkt. no. 259 at 3 (Jan. 19,
15	2007). The Federal Circuit affirmed the district court's construction, which ended the case.
16	Nazomi 2002 IV, 266 F. App'x 942, 942 (Fed. Cir. 2008).
17	In this case, Nazomi brings claims based upon the children of the '215 parent patent
18	against consumer product manufacturers that make products using processors incorporating
19	ARM's Jazelle Revision 3 design. ARM has intervened on behalf of defendants, and in addition
20	to arguing for particular claim constructions for the disputed terms addressed in this Order, it has
21	filed for summary judgment on behalf of all of the defendants.
22	II. LEGAL STANDARD
23	Claim construction is exclusively within the province of the court. Markman v. Westview
24	Instruments, Inc., 517 U.S. 370, 387 (1996). "It is a 'bedrock principle' of patent law that 'the
25	claims of a patent define the invention to which the patentee is entitled the right to exclude."
26	Phillips v. AWH Corp., 415 F.3d 1303, 1312 (Fed. Cir. 2005) (en banc) (internal citation omitted).
27	Claim terms "are generally given their ordinary and customary meaning," defined as "the
28	meaning the term would have to a person of ordinary skill in the art in question as of the
	CLAIM CONSTRUCTION ORDER CASE NO. C-10-04686 -RMW - 4 - SW

1 effective filing date of the patent application." Id. at 1313 (internal citation omitted). The skilled 2 artisan reads the claim term "in the context of the entire patent . . . including the specification." 3 Id. See also Multiform Desiccants, Inc. v. Medzam, Ltd., 133 F.3d 1473, 1477 (Fed. Cir. 1998). 4 In determining the meaning of a disputed claim limitation, the intrinsic evidence, including the 5 claim language, written description, and prosecution history, is the most significant. *Phillips*, 415 6 F.3d at 1315-17. The court reads claims in light of the specification, which is "the single best 7 guide to the meaning of a disputed term." *Id.* at 1315. Furthermore, "the interpretation to be 8 given a term can only be determined and confirmed with a full understanding of what the 9 inventors actually invented and intended to envelop with the claim." *Id.* at 1316 (quoting 10 Renishaw PLC v. Marposs Societa' per Azioni, 158 F.3d 1243, 1250 (Fed. Cir. 1998)). The words 11 of the claims must be understood as the inventor used them as revealed by the patent and 12 prosecution history. Id.

Although extrinsic evidence is less significant than the intrinsic record, the court may also reference extrinsic evidence to "shed useful light on the relevant art." *Id.* at 1317 (quoting *C.R. Bard, Inc. v. U.S. Surgical Corp.*, 388 F.3d 858, 862 (Fed. Cir. 2004)). "[T]echnical dictionaries may provide [help] to a court 'to better understand the underlying technology' and the way in which one of skill in the art might use the claim terms. . . . Such evidence . . . may be considered if the court deems it helpful in determining 'the true meaning of language used in the patent claims." *Id.* at 1318 (internal citations omitted).

Nazomi asserts, and defendants do not dispute, that for the purposes of these patents, a
person of ordinary skill in the art at the time of the invention would have either: (1) a bachelor of
science in computer engineering, electrical engineering, or computer science with about three
years of work experience in the field of computer architecture; or (2) a master's of science in
computer engineering, electrical engineering, or computer science with about a year of work

26

1	experience in the field of computer architecture. Pl.'s Opening Claim Construction Br. at 1, Dkt.
2	No. 402 ("Pl.'s Br."). There is no term whose construction turns on the level of skill in the art.

3	The court construes the five disputed terms that the parties identified as the "most
4	important" to the resolution of the case." ² The first term, "instructions," was at issue in the prior
5	Nazomi lawsuit, Nazomi 2002, involving the '215 parent patent. The term "instruction" (in the
6	singular) is also disputed with respect to U.S. Patent No. 6,338,160 (the '160 patent), in Case No.
7	C-10-05545 concurrently before this court. The court's construction of "instructions"
8	significantly affects the construction of the other terms. In particular, the parties dispute whether
9	the patent requires translation of stack-based instructions into register-based instructions. Jazelle
10	3 processors are capable of executing both stack- and register-based instructions, but do not
11	translate stack-based instructions into register-based instructions. Instead, the Jazelle 3 processor
12	takes stack-based instructions and converts them directly into control signals. These control
13	signals then control the registers and execute logic to execute the instructions. Under Nazomi's
14	proposed claim constructions, the '362 and '436 patents cover this conversion from stack-based
15	instructions to register-based control signals. Defendants propose a narrower construction that
16	does not cover their products.

17

III. CLAIM CONSTRUCTION

18 A. "Instructions"

19	Nazomi's Proposed Construction	Defendants' Proposed Construction
20	Program commands interpreted or compiled into machine language.	Either a stack-based instruction that is to be translated into a register-based instruction, or a
21		register-based instruction that is input to the CPU pipeline.
22		er e pipeinie.

The term "instructions" appears in every claim at issue. Nazomi proposes that the term

means "program commands interpreted or compiled into machine language" while the defendants

² The parties actually dispute additional terms, but under the Patent Local Rules the parties must identify 10 terms that are the "most significant to the resolution of the case," Patent L.R. 4-3(c), and five of the terms identified are from U.S. Patent No. 6,338,160 (the '160 patent) and thus not discussed in this order.

1 argue it should be "either a stack-based instruction that is to be translated into a register-based 2 instruction, or a register-based instruction that is input to the CPU pipeline." The defendants' 3 proposal is the construction adopted by the district court in *Nazomi 2002* and affirmed by the 4 Federal Circuit for the '215 parent patent, which is the parent of both the '362 and '436 patents, 5 the two patents-at-issue here. As explained below, the court generally should interpret the terms 6 in a family of patents consistently. Furthermore, collateral estoppel requires that this court adopt 7 the same construction for "instructions" in the '362 and '436 patents that Judge Fogel and the 8 Federal Circuit did for the '215 parent patent. Finally, the claims and specifications of the patents 9 support defendants' construction.

10

1. The Claims Must Be Construed the Same in Related Patents

11 Whenever possible, courts must construe claim terms consistently within a patent. 12 Southwall Techs., Inc. v. Cardinal IG Co., 54 F.3d 1570, 1579 (Fed. Cir. 1995). Courts should 13 also construe the same term consistently across related patents. Mycogen Plant Sci., Inc. v. 14 Monsanto Co., 252 F.3d 1306, 1311 (Fed. Cir. 2001), vacated on other grounds, 535 U.S. 1109 15 (2002); see also Toshiba Corp. v. Lexar Media, Inc., No. C-02-5273 MJJ, 2005 WL 6217120 16 (N.D. Cal. Jan. 24, 2005) ("Where patents-in-suit share the same disclosures, common terms are 17 construed consistently across all claims in both patents."); PCTEL, Inc. v. Agere Sys., Inc., No. C-18 03-2474 MJJ, 2005 WL 2206683 (N.D. Cal. Sept. 8, 2005) (same).

19 In Nazomi 2002, the court determined the meaning of "instruction" with respect to the '215 20 parent patent. 2006 WL 2578374, aff'd, 266 Fed. Appx. 935. The district court construed 21 "instruction" to mean "either a stack-based instruction that is to be translated into a register-based 22 instruction, or a register-based instruction that is input to the CPU pipeline." Id. at *8. The court 23 also held that an instruction must be upstream of the decode stage of the CPU pipeline and cannot 24 be the control signal that is the output of the decode stage. *Id.* The disclosures in '215 parent 25 patent are essentially identical to those in the '362 patent. Compare the '215 parent patent figs.1-26 7D and cols.1-7 with the '362 patent figs.1-7D and cols.1-7. Similarly, the '436 patent contains 27 the '215 parent patent's disclosures as well as additional disclosures. *Compare* the '215 parent

1	patent figs. 1-7D and cols.1-7 with the '436 patent figs.1-7D and cols.1-7. Because a court should
2	construe the same term the same across related patents, the court finds that the same construction
3	should apply to the '362 and '436 patents.
4	2. Collateral Estoppel
5	Similarly, collateral estoppel requires that "instructions" be construed the same here as it
6	was in Nazomi 2002. In order to establish collateral estoppel:
7	(1) the issue at stake must be identical to the one alleged in the prior
8 9	litigation; (2) the issue must have been actually litigated [by the party against whom preclusion is asserted] in the prior litigation; and (3) the determination of the issue in the prior litigation must
9 10	have been a critical and necessary part of the judgment in the earlier action.
11	Trevino v. Gates, 99 F.3d 911, 923 (9th Cir. 1996); see also Bayer AG. v. Biovail Corp., 279 F.3d
12	1340, 1345 (Fed. Cir. 2002) (holding that the law of the regional circuit determines the standard
13	for collateral estoppel). Collateral estoppel can apply to common issues in actions involving
14	different but related patents. See, e.g., Amgen, Inc. v. Genetics Inst., Inc., 98 F.3d 1328, 1329-32,
15	(Fed. Cir. 1996) (affirming summary judgment where a prior case had decided issues about a
16	different patent with the same specification). Nazomi argues that the issues at stake are not
17	identical, but does not contest that the issues were actually litigated or that the determination was
18	a necessary part of the judgment. See Pl.'s Responsive Claim Construction Br. 3-10, Dkt. No. 412
19	("Pl.'s Reply"). Therefore, the only question is whether the issues at stake are identical.
20	Here the parties are asking the court to construe the same term already twice construed by
21	other judges with respect to related patents. In Nazomi 2002, the Federal Circuit directed the
22	district court to look to the specification for the inventor's intended meaning for "instructions,"
23	finding that the inventor defined "instructions" in an indirect manner. Nazomi 2002 II, 403 F.3d
24	at 1369. On remand, the district court looked to the '215 parent patent specification and construed
25	"instructions." The Federal Circuit affirmed the district court's construction, in large part by
26	looking to the specification. Nazomi 2002 IV, 266 F. App'x at 940. The issue before this court is
27	the same because the patents share common disclosures. The '362 patent's specification and
28	

drawings are essentially identical to those in the '215 parent patent. The '436 patent contains all of the drawings of the '215 parent patent and much of the specification, plus additional material.

3 Nazomi objects that there are significant differences between the claims of the patents that 4 suggest different meanings and thus the issues are not identical. Although it is true that the 5 claims of these patents differ, the language in the claims must be understood in light of the 6 teachings of the specifications, which are essentially identical. The specification should be the 7 source of the definition of unclear terms in the claims, not a general dictionary definition such as 8 Nazomi proposes. See Phillips, 415 F.3d at 1320-21. Because all of the patents share a common 9 specification and the "specification is the single best guide to the meaning of a disputed term," id. 10 at 1321 (internal quotations omitted), the claim construction issue before this court is identical to 11 the one already decided in *Nazomi 2002*. Therefore, collateral estoppel applies.

12

1

2

3. Stack-Based Instructions Must Be Translated

13 The court must interpret a term "with the full understanding of what the inventors actually 14 invented and intended to envelop with the claim." Phillips, 415 F.3d at 1316. Even where the 15 claims of a patent might otherwise imply a broader claimed invention, if the specification as a 16 whole defines the invention more narrowly, it limits the claims to that narrower definition. See 17 C.R. Bard, Inc. v. U.S. Surgical Corp., 388 F.3d 858, 863 (Fed. Cir. 2004). The summary of the 18 invention is a good place to look for such limiting statements on the patent as a whole. Id. 19 Generally, the description of a single embodiment in the specification should not alone limit 20 broad claim language. See Absolute Software, Inc. v. Stealth Signal, Inc., 659 F. 3d 1121 (Fed. 21 Cir. 2011); Osteonics Corp. v. Wright Med. Tech., Inc., 540 F.3d 1337, 1345 (Fed. Cir. 2008). 22 However, where the specification describes an embodiment as the "primary objective" of the 23 invention, describes it as the "present invention," states that it is the invention, or otherwise 24 clearly and consistently uses a term in a more limited manner, the specification can limit 25 otherwise broad language. See id.; Verizon Services v. Vonage Holdings, 503 F.3d 1295, 1308 26 (Fed. Cir. 2007); Alloc, Inc. v. Int'l Trade Comm'n, 342 F.3d 1361, 1368 (Fed. Cir. 2003).

1 This case is similar to *Verizon Services v. Vonage Holdings*, where the Federal Circuit 2 limited the scope of the patent to how it described the invention in the Disclosure of the Invention 3 section. 503 F.3d at 1308 (Fed. Cir. 2007). The court held that where a patent "describes the 4 features of the 'present invention' as a whole, [the] description limits the scope of the invention." 5 Id. Similarly, in C.R. Bard v. U.S. Surgical, the court found that the summary of the invention 6 and the rest of the specification unequivocally defined the patent more narrowly than the claim 7 language otherwise indicated, thus requiring the narrower claim construction. C.R. Bard, 388 8 F.3d at 863-66.

9 Similar to *Verizon* and *C.R. Bard*, the specifications of the '362 and '436 patent clearly
10 limit the scope of the claimed invention to executing stack-based instructions by translating them
11 into register-based instructions. First, the summaries of both patents contain a description of the
12 "present invention," which requires translating bytecodes into native instructions. '362 patent
13 col.2 ll.7-8; '436 patent col.2 ll.6-8. The summaries emphasize that the primary advantage of the
14 patented invention over the prior art is to "translate Java[™] bytecodes into native instructions."
15 '362 patent at col.2 ll.14; '436 patent at col.2 ll.7-8.

16 Second, the rest of the patents' specifications so consistently describe the invention as a 17 hardware apparatus used to translate stack-based instructions into register-based instructions that 18 the inventor could not be said to have intended to claim anything else. The '362 patent repeatedly 19 refers to its invention and purpose as translating stack-based instructions into register-based 20 native instructions. See, e.g., '362 col.2 ll.6-8 ("The present invention generally relates to a 21 JavaTM hardware accelerator which can be used to quickly translate bytecodes into native 22 instructions."); *id.* at col.2 ll.25-28 ("[T]he hardware accelerators of the present invention are not 23 limited for use with JavaTM language and can be used with any stack-based language that is to be 24 converted to register-based native instructions."); *id.* at col.4 ll.8-9 ("The instructions translations") 25 unit is used to convert Java bytecodes to native instructions."); *id.* at col.5 ll.64-65 ("The Java 26 translating machine translates the Java bytecode into a native instruction."). Similarly, the '436 27 patent, which covers the same general invention, also clearly describes the patent as translating 28 stack- to register-based instructions. See, e.g., '436 Patent at col.2 ll.6-8 ("The present invention CLAIM CONSTRUCTION ORDER CASE NO. C-10-04686 -RMW - 10 -

generally relates to Java hardware accelerators used to translate Java bytecodes into native
instructions."); *id.* col.2 ll.19-22 ("Another embodiment of the present invention comprises a
hardware accelerator to convert stack-based instructions into register-based instructions."); *id.*col.2 ll.43-47 ("Yet another embodiment of the present invention comprises a hardware
accelerator operably connected to a central processing unit, the hardware accelerator adapted to
convert stack-based instructions into register-based instructions.").

7

4. Nazomi's "Some or All" Argument

8 Nazomi argues that the patent is not limited to translating stack-based instructions to 9 register-based instructions because language in the '362 and '436 patents describe the invention as 10 capable of doing "some or all" of a list of tasks which includes "translating bytecodes to native 11 instructions." '362 patent col.3 ll.10-19; '436 patent col.4 ll.1-15. In other words, according to 12 Nazomi, the patented hardware accelerator is not necessarily required to be able to translate 13 bytecodes to native instructions. However, such an interpretation of the "some or all" language is 14 nonsensical and ignores what the patent is all about. If the hardware accelerator does not do 15 translating of bytecodes to native instructions, it would not relate to what the "SUMMARY OF 16 THE INVENTION" says the invention relates to. "The present invention generally relates to a 17 Java hardware accelerator which can be used to quickly translate Java bytecodes into native instructions." Id. at col.2 ll.6-8. 18

The reasonable meaning of the list of tasks of which the invention can do "some or all" is
that it can do the task of translating bytecodes to native instructions and may also be able to do
some or all of the other listed tasks.

22

5. Construction of "Instructions"

For the reasons stated above, the court construes "instructions" as: "either stack-based instructions that are to be translated into register-based instructions, or register-based instructions that are input to the CPU pipeline." In either case the "instructions" must be upstream of the decode stage of the CPU pipeline. As used in the claims of the patent, "instructions" cannot mean the control signals that are the output of the decode stage.

"Processing the Stack-Based Instructions including Generating a Second Output" / "Second Output" B. 2

2	-	
3	Nazomi's Proposed Construction	Defendants' Proposed Construction
	Processing the stack-based instructions	Processing the stack-based instructions
4	including generating a second output: Receiving stack-based instructions and	including generating a second output: The stack-based instructions are translated into
5	generating a decoded output that is input to the	register-based instructions are translated into
6	execution unit.	
7	Second output: a decoded output that is input to the execute unit when stack-based	Second output: register-based instructions.
8	instructions are processed in a hardware accelerator mode.	
9		
10	-	imitation in claim 1 of the '362 patent that states
11	"processing the stack-based instruction including	
12	"second output." '362 patent col.7 ll.54-55. As	
13	dispute between the parties with regards to this o	
14	with regard to 'instruction.'" Pl.'s Reply at 10. I	
15	instructions requires translating them into registe	er-based instructions, see Part III.A.3 supra, and
16	for the reasons explained below, the "processing	" described in the phrase "processing the stack-
17	based instruction including generating a second	output," must include: (1) the translation of the
18	stack-based instructions into register-based instr	uctions, and (2) the fetch and decode of the
19	register-based instructions to convert them into	control signals.
20	Claim 1 of the '362 patent recites two para	allel limitations, the second of which is at issue
21	in this construction. '362 patent col.7 ll.49-58.	Because of the similarity of language in the two
22	limitations, the first limitation is essential to und	lerstanding the second. The claim requires:
23	1. "processing the <i>register-based</i> a <i>first output</i> , and processing the f	
24	using the data from the first regist	er file"
25	2. "processing <i>the stack-based</i> ins <i>second output</i> , and processing the unit using the operands from the f	second output in the execution
26		
27	<i>Id.</i> (emphasis added). The key to construing the	
28	the inputs to the execution unit. The court finds	that the first and second outputs must be of the
	CLAIM CONSTRUCTION ORDER CASE NO. C-10-04686 -RMW - 12 SW	2 -

same type, otherwise the execution unit would be required to take multiple types of output as an input, which would require needlessly redundant hardware.

The input to the execution unit is either processed register-based instructions (first output) or processed stack-based instructions (second output). The only processing of register-based instructions discussed in the patent is the decoding that converts register-based instructions into control signals. Therefore, the first output must be control signals.

On the other hand, the patent teaches that stack-based instructions undergo two types of
processing. First, they are translated into register-based instructions, and second those registerbased instructions are decoded into control signals. Because, as explained below, the outputs
(also the inputs to the execution unit) must be the same, the second output must also be control
signals.

12 If the second output were register-based instructions, then the execution unit would have 13 to include a decode unit to process those instructions into control signals. However, according to 14 the first claim limitation, the decoding of register-based instructions in the decode unit happens 15 outside of the execution unit. If the second output were register-based instructions, there would 16 be two identical decode units right next to each other, one immediately outside the execution 17 unit and another immediately inside. Thus, the only reasonable construction is that the second 18 output is control signals.

Therefore, the "second output" is construed as "control signals." And "processing the
stack-based instruction including generating a second output" is construed to mean: "the
processing of stack-based instructions by translating them into register-based instructions and
then decoding them into control signals."

23 24

1

2

3

4

5

6

25

26

27

C.

"Execution Unit"

Nazomi's Proposed Construction	Defendants' Proposed Construction
Hardware capable of executing instructions,	Claim 1: The execute logic of the execute state
including arithmetic or logical instructions, by	of the CPU
processing a decoded input.	Claim 48: The execute logic of the execute
	state of the CPU and the circuitry which
	translates stack-based instructions into register-
	based instructions and the register-based
	instruction fetch and decode units.

The patent only uses the term "execution unit" in the claims and not elsewhere in the written description. The parties agree that claim 1 uses "execution unit" synonymously with the "execute logic." *See* Pl.'s Br. 15; Defs.' Br. 21. The "execute logic" is described in the '362 patent and is the hardware that takes decoded instructions (control signals) as input and performs the "execute" phase of the CPU pipeline. '362 patent col.5 ll.20-25. In apparent contrast, claim 48 describes an "execution unit" that executes stack- and register-based *instructions* rather than control signals. '362 patent col.10 ll.59-62. Because the control signals themselves are not actually instructions, the "execute instructions" in claim 48 is either not the execute logic as the parties agree it is in claim 1, or claim 48 uses "executes" indirectly such that when it claims an "execution unit to execute instructions" it means that the "execution unit" executes the downstream result of processed instructions, which are control signals.

1. Other Claims

Claims 27, 74, 72, and 87 also use the term "execution unit," although none of the claims is at issue in this litigation. They do provide, however, some guidance as to the meaning of the term. The language of independent claims 27 and 74 support construing "execution unit" as the execute logic. Both claims describe limitations wherein the execution unit processes *decoded* instructions, which are control signals. *See* '362 patent col.9 ll.2-20, col.12 ll.29-47. Claims 1, 27, and 74 all indicate that instructions must be processed before they can be "executed" in the "execution unit," which is consistent with the execution unit being the execute logic, which takes control signals as input.

Claim 72, dependent on claim 48, provides some support for Nazomi's indirect execution
 argument. It adds a limitation describing possible upstream processing of an instruction before
 the instruction is executed in the execution unit. *Id.* at col.12 ll.21-26.

Finally, independent claim 87 uses language that mirrors the relevant language from claim 48, but does not otherwise provide any guidance on how to construe the term. *See* '362 patent col.13 ll.45-48 (claiming an "execution unit to process instructions of a plurality of instructions [sic] sets including a register-based instruction set and a stack-based instruction set.").

8

4

5

6

7

2. Reconciling the Different Uses

9 Courts should construe terms consistently throughout claims whenever possible. *See*10 *Callicrate v. Wadsworth Mfg., Inc.*, 427 F.3d 1361, 1371 (Fed. Cir. 2005). The '362 patent
11 specification, a Federal Circuit decision in *Nazomi 2002*, and the prosecution history provide
12 support for Nazomi's indirect execution argument, which is the only way to construe the term
13 "execution unit" consistently throughout the claim.

First, the specification describes the execute logic as executing "native instructions." '362 14 15 patent col.5 1.23. This description comes immediately after explaining how the execute logic is 16 downstream of the instruction decode, which converts instructions into control signals. At least 17 in this context, the patent uses "execute" indirectly. Similarly, in the section describing prior art 18 conversion of Java bytecodes using software, the patent explains that to "execute a JavaTM 19 program, a bytecode interpreter takes the Java[™] bytecodes, converts them to equivalent native 20 processor instructions and *executes* the Java[™] program." '362 patent col.1 ll.28-32. The patent 21 must be referring to indirect execution because the bytecode interpreter is software and thus does 22 not literally execute a program. The Federal Circuit made this same point about "execution" by 23 the bytecode interpreter in relation to the '215 parent patent. Nazomi 2002 IV, 266 Fed. Appx. at 24 940-41.

Second, the Federal Circuit also held that the patentee used execute indirectly in a
 different claim. The court construed "execute" as used in claim 30 of the '215 parent patent to
 "refer only to indirect causation." *Nazomi 2002 IV*, 266 Fed. Appx. at 940. Claim 30 claimed a
 central processing unit that included "an execution unit to execute the register-based instructions."
 CLAIM CONSTRUCTION ORDER
 CASE NO. C-10-04686 -RMW
 - 15 - SW

'215 parent patent col.8 ll.60-62. On remand, the district court said about the same issue that the
"inventor must have been referring to this downstream effect rather than indicating that native
instructions exist after the decode stage." *Nazomi 2002 III*, 2006 WL 2578374, *6 (N.D. Cal.
Sept. 6, 2006). The Federal Circuit and district court's construction in *Nazomi 2002* is consistent
with Nazomi's proposed construction of "execution unit" as the execute logic, which executes
instructions indirectly.

7 Finally, the prosecution history supports Nazomi's argument that the patent uses 8 "executes" indirectly in this context. In the prosecution history, the examiner questioned whether 9 the patent described the limitation that stack- and register-based instructions were executed in one 10 "execution unit." Anderson Decl., Ex. 6 at 30, Dkt. No. 409-8. The applicant's response points 11 the examiner to Figure 3 and argues that the execute logic (which can receive only control 12 signals) executes stack- and register-based instructions because they are processed upstream of 13 the execute logic. Id. For stack-based instructions, the applicant specifically points to accelerator 14 42 (an independent hardware unit upstream of the execute logic), which translates stack-based 15 instructions into register-based instructions, to explain how the execute logic can execute stack-16 based instructions. Id. The applicant concludes that, therefore, it is possible for stack- and 17 register-based instructions to be executed in the "execution unit." Id. This passage indicates that 18 the inventor was using the word "execute" indirectly. It also supports the argument that the 19 execution of stack-based instructions necessarily first requires translation into register-based 20 instructions as it is the only evidence provided by the applicant of how its claimed invention 21 could execute stack- and register-based instructions.

22

3. Construction of "Execution Unit"

The court construes "execution unit" as: "the execute logic." However, based upon the court's previous constructions and the arguments supporting the "execute logic" construction, the court also holds that the execution of *instructions* in the execution unit refers to indirect execution. Indirect execution requires circuitry which: (1) translates stack-based instructions into register-based instructions and (2) fetches and decodes register-based instructions into control

signals that are the input to the execution unit. As a practical matter in light of the construction of
 "instructions," there is no substantive difference between the parties' different constructions of
 "execution unit."

4

5

6

7

8

9

10

11

12

D. "Hardware Accelerator to Process Stack-Based Instructions"

Nazomi's Proposed Construction	Defendants' Proposed Construction
Hardware capable of accelerating the	Circuitry which can be used to translate stack-
processing of stack-based instructions.	based instructions into native instructions.

The primary dispute between the parties' constructions is whether the hardware accelerator requires circuitry to translate stack-based instructions into native instructions. *See* Pl.'s Br. at 20. As already decided above, the patents claim accelerating the execution of stackbased instructions by translating them into register-based instructions in hardware. Therefore, the term refers to "circuitry which can be used to translate stack-based instructions into register-based instructions."

13 Throughout the patent, the hardware accelerator is described as translating stack-based 14 instructions to register-based instructions. The summary of the invention defines it as relating to 15 "a JavaTM hardware accelerator which can be used to quickly translate bytecodes into native 16 instructions." '362 patent col.2 11.6-8. Similarly, the '436 patent's abstract summarizes the 17 hardware accelerator as "enabled to convert the Java[™] bytecodes into native instructions." '436 18 patent. Similar language appears throughout the patents, establishing that the invention, hardware 19 acceleration of stack-based instructions, is limited to accelerating by translating stack-based 20 instructions into native, register-based instructions. See Section A.3 supra.

Nazomi argues that claim differentiation requires its proposed construction be adopted.
The Federal Circuit, however, has held that claim differentiation is "not a hard and fast rule and
will be overcome by a contrary construction dictated by the written description or prosecution
history." *Seachange Int'l, Inc. v. C–COR, Inc.*, 413 F.3d 1361, 1369 (Fed. Cir. 2005). Where, as
here, there is arguably a conflict between the teachings of the specification and the doctrine of
claim differentiation, the teachings of the specification control. *See id.* Claim differentiation
cannot render a claim broader than that which the inventor disclosed as the invention in the

1	specification, and claims "written in different we	ords may ultimately cover substantially the same
2	subject matter." Id. (citing Multiform Desiccant	s, Inc. v. Medzam, Ltd., 133 F.3d 1473, 1480
3	(Fed. Cir. 1998). Dependent claim 4 of the '436	patent adds the limitation to claim 2 that "the
4	hardware accelerator processes the stack-based i	nstructions in cooperation with the execute logic
5	by converting the stack-based instructions into r	egister-based instructions for execution in the
6	execute logic." If this claim is read to suggest the	nat translation did not necessarily happen in claim
7	2, which recites "a hardware accelerator to proce	ess stack-based instructions," this interpretation
8	would contradict the other claims and all of the	disclosures in the '362 and '436 patent, which
9	demonstrate that the processing of stack-based in	nstructions requires translation. The teachings of
10	the specification must control over the doctrine	of claim differentiation.
11	Therefore, "hardware accelerator to proc	ess stack-based instructions" is construed as
12	"circuitry which can be used to translate stack-b	ased instructions into native instructions."
13	E. "Stack-Based Instructions"	
14	Nazomi's Proposed Construction	Defendants' Proposed Construction
15	Instructions that manipulate operands from an operand stack.	An instruction that instructs the processor to manipulate a push-down operand stack and that
16		does not refer to a register index of a register file.
17	There is little difference between the par	ties' proposed constructions. Defendants insist
18	that their definition reflects two fundamental dif	ferences between stacks and registers, which
19 20	Nazomi's definition does not reflect. The court	generally agrees with defendants' understanding
20	of "stack-based instructions," but finds that Naze	omi's construction reflects it.
21 22	First, defendants' definition specifies that	t the operand stack is a "push-down" stack. To
22	the extent defendants use "push-down" to reflect	t the last-in, first-out nature of stacks, the court
	agrees, but the term "push-down" is not used any	where in the patent. As part of his description of
24	Java, Judge Fogel explained stack-based memor	y as storing information "on a last-in, first-out
25 26	basis." <i>Nazomi 2002 III</i> , 2006 WL 2578374 at *	*1. Defendants used the phrase "last-in, first out"
26 27	as part of their tutorial and while Nazomi did no	t use that exact language, it implied the same
27 28		
20	CLAIM CONSTRUCTION ORDER	
	CASE NO. C-10-04686 -RMW - 1 SW	8 -

1	thing. Although "operand stack" is probably sufficiently descriptive, for clarity, the court will
2	add the modifier "last-in, first-out" to its construction.

3	Second, defendant	s' claim that their construction is superior because it reflects the
4	difference between stack-	and register-based instructions by noting that stack-based instructions
5	do not refer to registers. N	Nazomi, however, objects to defendants' construction to the extent
6	defendants would use thei	r construction to preclude implementation of an operand stack in a
7	register file, which is some	ething the '362 patent teaches. Of course, implementing the operand
8	stack in a register file requ	ires translating the stack-based instructions into register-based
9	instructions so that they ca	an actually refer to the registers. Defendants are correct that by
10	definition, stack-based ins	tructions do not refer to registers, but the court finds that Nazomi's
11	simpler construction is ad	equate to reflect this fact.
12	Therefore, the cou	rt construes "stack-based instructions" as "instructions that manipulate
13	operands from a last-in, fi	rst-out operand stack."
14		IV. ORDER
15	For the reasons set	forth above, the court construes the claims as follows:
16		
10	Claim Lerms	Construction
17	Claim Terms instructions	Construction either stack-based instructions that to be translated into a register-
		either stack-based instructions that to be translated into a register- based instructions, or register-based instructions that are input to the CPU pipeline. In either case the "instructions" must be
17		either stack-based instructions that to be translated into a register- based instructions, or register-based instructions that are input to the CPU pipeline. In either case the "instructions" must be upstream of the decode stage of the CPU pipeline. As used in the claims of the patent, "instruction" cannot mean the control signals
17 18		either stack-based instructions that to be translated into a register- based instructions, or register-based instructions that are input to the CPU pipeline. In either case the "instructions" must be upstream of the decode stage of the CPU pipeline. As used in the claims of the patent, "instruction" cannot mean the control signals that are the output of the decode stage
17 18 19		either stack-based instructions that to be translated into a register- based instructions, or register-based instructions that are input to the CPU pipeline. In either case the "instructions" must be upstream of the decode stage of the CPU pipeline. As used in the claims of the patent, "instruction" cannot mean the control signals
17 18 19 20	instructions second output processing the stack-	 either stack-based instructions that to be translated into a register- based instructions, or register-based instructions that are input to the CPU pipeline. In either case the "instructions" must be upstream of the decode stage of the CPU pipeline. As used in the claims of the patent, "instruction" cannot mean the control signals that are the output of the decode stage control signals processing of stack-based instructions by translating them into
17 18 19 20 21	instructions second output processing the stack- based instruction including generating	either stack-based instructions that to be translated into a register- based instructions, or register-based instructions that are input to the CPU pipeline. In either case the "instructions" must be upstream of the decode stage of the CPU pipeline. As used in the claims of the patent, "instruction" cannot mean the control signals that are the output of the decode stage control signals
 17 18 19 20 21 22 	instructions second output processing the stack- based instruction	 either stack-based instructions that to be translated into a register- based instructions, or register-based instructions that are input to the CPU pipeline. In either case the "instructions" must be upstream of the decode stage of the CPU pipeline. As used in the claims of the patent, "instruction" cannot mean the control signals that are the output of the decode stage control signals processing of stack-based instructions by translating them into register-based instructions and then decoding them into control
 17 18 19 20 21 22 23 	instructions second output processing the stack- based instruction including generating a second output	 either stack-based instructions that to be translated into a register- based instructions, or register-based instructions that are input to the CPU pipeline. In either case the "instructions" must be upstream of the decode stage of the CPU pipeline. As used in the claims of the patent, "instruction" cannot mean the control signals that are the output of the decode stage control signals processing of stack-based instructions by translating them into register-based instructions and then decoding them into control signals the execute logic.
 17 18 19 20 21 22 23 24 	instructions second output processing the stack- based instruction including generating a second output	 either stack-based instructions that to be translated into a register- based instructions, or register-based instructions that are input to the CPU pipeline. In either case the "instructions" must be upstream of the decode stage of the CPU pipeline. As used in the claims of the patent, "instruction" cannot mean the control signals that are the output of the decode stage control signals processing of stack-based instructions by translating them into register-based instructions and then decoding them into control signals the execute logic. However, the execution of <i>instructions</i> in the execution unit refers to indirect execution. Indirect execution requires circuitry
 17 18 19 20 21 22 23 24 25 	instructions second output processing the stack- based instruction including generating a second output	either stack-based instructions that to be translated into a register- based instructions, or register-based instructions that are input to the CPU pipeline. In either case the "instructions" must be upstream of the decode stage of the CPU pipeline. As used in the claims of the patent, "instruction" cannot mean the control signals that are the output of the decode stage control signals processing of stack-based instructions by translating them into register-based instructions and then decoding them into control signals the execute logic. However, the execution of <i>instructions</i> in the execution unit refers to indirect execution. Indirect execution requires circuitry which: (1) translates stack-based instructions into register-based
 17 18 19 20 21 22 23 24 25 26 	instructions second output processing the stack- based instruction including generating a second output	 either stack-based instructions that to be translated into a register- based instructions, or register-based instructions that are input to the CPU pipeline. In either case the "instructions" must be upstream of the decode stage of the CPU pipeline. As used in the claims of the patent, "instruction" cannot mean the control signals that are the output of the decode stage control signals processing of stack-based instructions by translating them into register-based instructions and then decoding them into control signals the execute logic. However, the execution of <i>instructions</i> in the execution unit refers to indirect execution. Indirect execution requires circuitry

1		unit.
2	hardware accelerator	circuitry, which can be used to translate stack-based instructions
3	to process stack- based instructions	into native instructions
	stack-based	instructions that manipulate operands from a last-in, first-out
4	instructions	operand stack.
5		
6		Rough I mald +
7	Dated: June 14, 2013	Ronald M. Whyte
8		United States District Court Judge
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
-0	CLAIM CONSTRUCTION ORDER CASE NO. C-10-04686 -RMW SW	- 20 -