Exhibit J (Submitted Under Seal)

Jason Kim

1903 South Harvard Blvd. Los Angeles, CA

(323) 608-3740 the1jasonkim@gmail.com

March 19, 2012

Certificate of Translation

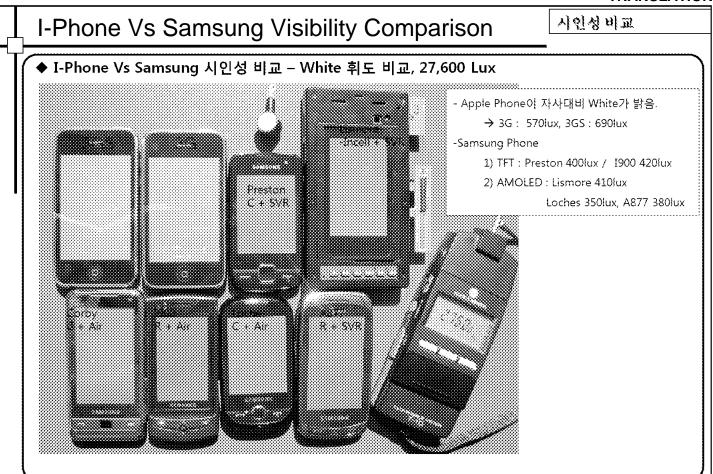
I hereby certify that this Korean to English translation of pages SAMNDCA10281750 through SAMNDCA10281756 of the document with the beginning Bates number SAMNDCA10281750 is an accurate and complete rendering of the contents of the source document to the best of my knowledge, except for the word "TRANSLATION" at the upper right corner of each translated page. I further certify that I translated said document and that I am fluent in both Korean and English with seven years of professional experience in Korean to English translation.

BY:

I-Phone Visibility Consideration & Mobile Division Response Plan Proposal

2009.09.07

Platform Development Team Visual Part


I-Phone Vs Samsung Visibility Comparison

시인성비교

♦ I-Phone Vs Samsung 시인성 비교

		I-Ph	none				Samsung			,		
	1	3G	3GS		TF	FT		<u> </u>	AMOLED			
구분	조도값	cico	: AP)	Corby	Corby	Preston	1900	Loches	Lismore	A877	Remark	
		C(GG+AR) + TFT(AR)		C + Air	Incell +SVR	C + SVR	R + Air	C + Air	Incell +SVR	R + SVR		
	0 lux	184.7	154.1	857.3	909.4	1059.0	482.5	666136.4	68971.1	276276.6		
C/R	500 lux	114.2	116.8	115.7	404.3	176.1	65.1	173.8	400.9	150.4	→ AR 및 SVR	
(x:1)	1500 lux	67.5	69.4	35.2	171.9	70.7	30.4	61.9	136.0	40.2	적용시 CR값 우수	
	30,000 lux	8.2	9.9		_	6.2	2.6	4.2	8.8	3.7		
	0 lux	427.5	499.3	293.2	336.2	330.2	369.8	293.1	382.1	259.7		
White 휘도	500 lux	441.2	522.4	288.	337.2	330.1	374.4	295.3	363.8	265.9	상대적 I-Phone우수	
(cd/m ²)	1500 lux	443	536.1	281.7	347.2	328.6	368.8	303.2	367.5	265.5	→ 휘도 개선 필 요	
	30,000 lux	571.8	690.1	_	_	402	423.4	352.6	414	380.6		
	0 lux	2.314	3.240	0.342	0.3697	0.3118	0.7665	0.00044	0.00554	1 4	{ 1	
Black 화도	500 lux	3.862	4.472	2.490	0.8340	1.875	5.751	1.699	0.9074	1.768	R-type 적용시 CR 저하	
(cd/m ²)	1500 lux	6.560	7.724	8.0	2.020	4.646	12.14	4.901	2.703	6.601	→ C-type 확대	
	30,000 lux	69.97	69.36	-1	i -	64.75	160.2	83.22	47	102.5	적용 검토	

- 측정조건 : 0lx(암실), 500lx(실내형광등환경), 1500lx(야외환경-그늘밑), 30,000lx (오전 10시 태양 아래) 사용장비 : CS-2000
- 기준 : 명실 C/R 우수 **60이상** , White 휘도 우수 : **400이상** , Black 휘도 우수 : **8 이하**

I-Phone Vs Samsung Visibility Comparison

시인성비교

▶ I-Phone Vs Samsung 시인성 비교 –Balck 휘도 비교, 25,200 lux

- → 3G , 3GS : 70 lux
- -Samsung Phone
 - → C-TSP + Air : 90~100 lux
 - → C-TSP + SVR: 45~65 lux (Incell 포함)
 - → R-TSP + Air : 160~180 lux
 - → R-TSP + SVR: 90~100 lux

중간값임.

- Apple I-phone의 Black 휘도값은 : C-TSP + Air와 C-TSP+SVR과
- I-Phone의 경우, TSP 야랫면과 LCD 윗면에 AR처리 함으로서 Black 휘도를 개선함.

I-Phone LCD Visibility Analysis

시인성비교

◆ I-Phone LCD 시인성 분석

▶ 원인1. 반투과형 LCD 사용 및 LTPS Panel 사용을 통한 개구율 향상

1) 개선 부분: LTPS Panel 사용, a-Si Panel 대비 라인 폭 감소로 개구율 향상

2) 개선 효과 : a-Si 대비 15 ~ 20% 밝기 향상, 반투과형 LCD으로 인한 휘도 증가 → White 휘도 향상.

▶ 원인2. 광특성 자재 사용 : TSP AR-coating 적용 및 LCD AR-Pol 적용

1) 개선 부분 : 3G, 3GS TSP 아랫면 AR 적용 및 LCD AR-Pol 적용

2) 개선 효과 : 4~7% 반사율, 투과율 개선 효과 (AR면당 2~3.5%의 개선효과)

▶ 원인3. 高 휘도 LED 사용 및 구동전류 20mA 이상 사용.

1) 적용 LED P/N : Nichia社 NSSW006, 6개 적용 (Size: 3.8x1.2x0.6)

2) 적용 LED 특징 : High-end LED, typ 2,200mcd at IF typ.20mA ※ 무선사 LED SPEC : typ 1,900mcd at IF typ.20mA

3) Set상 LCD LED 구동 전류: 20mA 이상 적용.

※ 무선사 LCD LED 전류 SPEC: typ. 15mA, max 20mA

iPhone 30	G Set상 특성
휘도(cd/m²)	500mcd (max 단계)
Gamma	2.1~2.3 이상
명암비	200 : 1
균일도	97.00%
White Balance	0.010@7000K
색재현율(NTSC)	70%
계조선형성(△u'v')	0.005

• I-Phone LCD 특징 : 높은 해상도(ppi)에도 휘도가 높음.

- 163ppi / 480cd

- 무선사 기준 350 mcd 이상 (WQVGA 기준)

.

Samsung Visibility Improvement Plan

시인성비교

◆ 시인성 개선 방향 (CR 개선)

- White 휘도 개선: LCD LED의 개선(고휘도, 전류 상향 조정), LCD AR-Pol 적용

+ C-type TSP 적용 확대 , SVR 혹은 AR처리

- Black 휘도 개선 : C-type TSP 적용 확대, SVR 혹은 AR처리

◆시인성 개선 대책

해결안	개선 방안	개선 효과	적용 방안
	1. 고휘도 LED 사용 검토 (White 휘도 개선)	실내시인성 향상	- 현, LED SPEC 1900mcd → 2200mcd 수준 변경 검토 ※ 단가 상승요인 발생 예상
LCD 개선	2. AR-Pol 적용 검토	2~3.5% 반사율 향상	- 현, AG Pol에서 변경 검토 ※ AG 대비 0.05~0.1t 두께 증가 및 단가 상승 발생 예상됨.
	3. CR 개선 - 2000:1 이상 적용 검토	실외시인성 향상	- LCD CR SPEC 상향 조정 진행
	1. C-type TSP 확대 적용	R-type 대비 10% 향상	
TCD 78 At	2. SVR 적용 검토	7~8% 반사율 향상	- SVR 공정 및 품질 확보
TSP 개선 및 반사율 개선	3. 표면처리 적극 검토 - AR 처리 검토 : 2~3.5% 개선	2~3.5% 반사율 향상	- TSP 표면 처리 검토 : AR 처리 → C-type 아래면 적용 검토 ※ 단가 상승요인 및 품질 문제 예상

Reference) I-Phone Vs Samsung Visibility Comparison 시인성비교

◆ I-Phone Vs Samsung H/W Specification Comparison

		I-Ph	one	Samsung								
구분	세부	TI	TFT		Τŧ	<u> </u>	AMOLED					
, -	. al 3	3G	3GS	Corby	Corby Incell+SVR	Preston +SVR	1900	Loches	Lismore Incell+SVR	A877 +SVR		
Optical Property	Structure Diagram			2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	¥r.	8888 27. 78888	•••••••••••••••••••••••••••••••••••••••		STEELES STEELES	BBBB 7, 88888		
	투과율	93%	94%	90%	96%	95%	80%	90%	96%	86%		
	반사율	6%	5%	9%	4%	4%	20%	9%	4%	12%		
	총 두께	3.9T	3.9T	3.45T	3.2T	3.45T	3.9T	2.7T	2.64T	3.04T		
	제조사	TMD	TMD	SMD	SMD	SMD	EPSON	SMD	SMD	EPSON		
	Pol	AR	AR	AG	AG	AG	AG	AG	HC	AG		
LCD	두께	1.90t 바닥 Sus	1.90t 바닥 Sus	2.1t	2.1t	2.1t	2.25t	1.44t	1.44t	1.44t		
	투과형태	반투과형	반투과형	투과형	투과형	투과형	투과형	자체 발광	자체 발광	자체 발광		
	구조	GG	GG	GFF	LCD 일체형	GFF+SVR	FFG-ANR	GF	LCD 일체형	FFG-Clear		
TSP	제조사	TPK	TPK	Synapex	SMD	S-MAC	디지텍	Melfas	SMD	모린스		
	표면처리	상단 - 하단 AR	상단 AF 하단 AR	-	-	-	-	-	-	-		

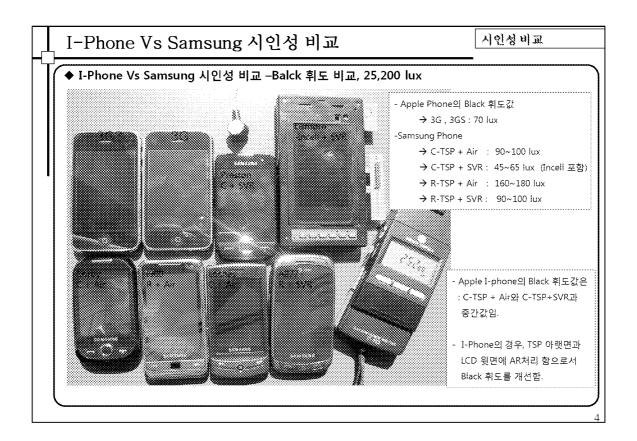
I-Phone 시인성 고찰 및 무선사 대책案

2009. 09. 07

Platform 개발팀 Visual Part

I-Phone Vs Samsung 시인성 비교

시인성비교


♦ I-Phone Vs Samsung 시인성 비교

		I-Ph	one				Samsung					
		3G	3GS		Ti	- T			AMOLED			
구분	조도값	cico	+AR)	Corby	Corby	Preston	1900	Loches	Lismore	A877	Remark	
			T(AR)	C + Air	Incell +SVR	C + SVR	R + Air	C + Air	Incell +SVR	R + SVR		
	0 lux	184.7	154.1	857.3	909.4	1059.0	482.5	666136.4	68971.1	276276.6		
C/R	500 lux	114.2	116.8	115.7	404.3	176.1	65.1	173.8	400.9	150.4	→ AR 및 SVR 적용시 CR값 우수	
(x:1)	1500 lux	67.5	69.4	35.2	171.9	70.7	30.4	61.9	136.0	40.2		
	30,000 lux	8.2	9.9	-	-	6.2	2.6	4.2	8.8	3.7		
	0 lux	427.5	499.3	293.2	336.2	330.2	369.8		259.7			
White 휘도	500 lux	441.2	522.4	288.	337.2	330.1	374.4	295.3	363.8	265.9	상대적 I-Phone우수	
(cd/m²)	1500 lux	443	536.1	281.7	347.2	328.6	368.8	303.2	367.5	265.5	→ 휘도 개선 필 요	
	30,000 lux	571.8	690.1	-	-	402	423.4	352.6	414	380.6		
	0 lux	2.314	3.240	0.342	0.3697	0.3118	0.7665	0.00044	0.00554	0.00094		
Black 휘도	500 lux	3.862	4.472	2.490	0.8340	1.875	5.751	1.699	0.9074	1.768	R-type 적용시 CR 저하	
(cd/m²)	1500 lux	6.560	7.724	8.0	2.020	4.646	12.14	4.901	2.703	6.601	→ C-type 확대	
	30,000 lux	69.97	69.36	-	-	64.75	160.2	83.22	47	102.5	적용 검토	

[■] 측정조건 : 0lx(암실), 500lx(실내형광등환경), 1500lx(야외환경-그늘밑), 30,000lx (오전 10시 태양 아래) ■ 사용장비 : CS-2000

[■] 기준 : 명실 C/R 우수 **60이상 ,** White 휘도 우수 : **400이상 ,** Black 휘도 우수 : **8 이하**

I-Phone LCD 시인성 분석

시인성비교

◆ I-Phone LCD 시인성 분석

▶ 원인1. 반투과형 LCD 사용 및 LTPS Panel 사용을 통한 개구율 향상

1) 개선 부분: LTPS Panel 사용, a-Si Panel 대비 라인 폭 감소로 개구율 향상

2) 개선 효과 : a-Si 대비 15 ~ 20% 밝기 향상, 반투과형 LCD으로 인한 휘도 증가 → White 휘도 향상.

▶ 원인2. 광특성 자재 사용 : TSP AR-coating 적용 및 LCD AR-Pol 적용

1) 개선 부분 : 3G, 3GS TSP 아랫면 AR 적용 및 LCD AR-Pol 적용

2) 개선 효과 : 4~7% 반사율, 투과율 개선 효과 (AR면당 2~3.5%의 개선효과)

▶ 원인3. 高 휘도 LED 사용 및 구동전류 20mA 이상 사용.

1) 적용 LED P/N : Nichia社 NSSW006 , 6개 적용 (Size : 3.8x1.2x0.6)

2) 적용 LED 특징 : High-end LED, typ 2,200mcd at IF typ.20mA 🧪 무선사 LED SPEC : typ 1,900mcd at IF typ.20mA

3) Set상 LCD LED 구동 전류 : 20mA 이상 적용.

※ 무선사 LCD LED 전류 SPEC: typ. 15mA, max 20mA

iPhone 3	G Set상 특성
휘도(cd/m²)	500mcd (max 단계)
Gamma	2.1~2.3 이상
명암비	200 : 1
균일도	97.00%
White Balance	0.010@7000K
색재현율(NTSC)	70%
계조선형성(△u'v')	0.005

• I-Phone LCD 특징 : 높은 해상도(ppi)에도 휘도가 높음.

- 163ppi / 480cd
- 무선사 기준 350 mcd 이상 (WQVGA 기준)

Ć

Samsung 시인성 개선 대책

시인성비교

◆ 시인성 개선 방향 (CR 개선)

- White 휘도 개선: LCD LED의 개선(고휘도, 전류 상향 조정), LCD AR-Pol 적용

+ C-type TSP 적용 확대 , SVR 혹은 AR처리

- Black 휘도 개선 : C-type TSP 적용 확대, SVR 혹은 AR처리

◆시인성 개선 대책

해결안	개선 방안	개선 효과	적용 방안
	1. 고휘도 LED 사용 검토 (White 휘도 개선)	살내시인성 향상	- 현, LED SPEC 1900mcd → 2200mcd 수준 변경 검토 ※ 단가 상승요인 발생 예상
LCD 개선	2. AR-Pol 적용 검토	2~3.5% 반사율 향상	- 현, AG Pol에서 변경 검토 ※ AG 대비 0.05~0.1t 두께 증가 및 단가 상승 발생 예상됨.
	3. CR 개선 - 2000:1 이상 적용 검토	실외시인성 향상	- LCD CR SPEC 상향 조정 진행
	1. C-type TSP 확대 적용	R-type 대비 10% 향상	
TCD 78 14	2. SVR 적용 검토	7~8% 반사율 향상	- SVR 공정 및 품질 확보
TSP 개선 및 반사율 개선	3. 표면처리 적극 검토 - AR 처리 검토 : 2~3.5% 개선	2~3.5% 반사율 향상	- TSP 표면 처리 검토 : AR 처리 → C-type 아래면 적용 검토 ※ 단가 상승요인 및 품질 문제 예상

♦ I-P	hone V	s Samsun	g H/W 人	양 비교						
		I-Ph	ione				Samsung			
구분	세부	T	FT		Tf		AMOLED			
	" '	3G	3GS	Corby	Corby Incell+SVR	Preston +SVR	1900	Loches	Lismore Incell+SVR	A877 +SVR
광특성	구조도			8 2000		8888EZE8888	***************************************			
	투과율	93%	94%	90%	96%	95%	80%	90%	96%	86%
	반사율	6%	5%	9%	4%	4%	20%	9%	4%	12%
	총 두께	3.9T	3.9T	3.45T	3.2T	3.45T	3.9T	2.7T	2.64T	3.04T
	제조사	TMD	TMD	SMD	SMD	SMD	EPSON	SMD	SMD	EPSON
	Pol	AR	AR	AG	AG	AG	AG	AG	HC	AG
LCD	두께	1.90t 바닥 Sus	1.90t 바닥 Sus	2.1t	2.1t	2.1t	2.25t	1.44t	1.44t	1.44t
	투과형태	반투과형	반투과형	투과형	투과형	투과형	투과형	자체 발광	자체 발광	자체 발
	구조	GG	GG	GFF	LCD 일체형	GFF+SVR	FFG-ANR	GF	LCD 일체형	FFG-Cle
TSP	제조사	TPK	TPK	Synopex	SMD	S-MAC	디지텍	Melfas	SMD	모린스
135	표면처리	상단 - 하단 AR	상단 AF 하단 AR	-	-	-	-	-	-	-