EXHIBIT 5

## Exhibit 5: U.S. Patent No. 7,469,381 and WO 01/029702 / U.S. Patent No. 7,152,210 to Van Den Hoven et al.

| U.S. Pat. No. 7,469,381 | WO 01/029702 / U.S. Patent No. 7,152,210 to Van Den Hoven et al. ${ }^{1}$ |
| :--- | :--- |
| Claim 1 | Van Den Hoven discloses a computer-implemented method. <br> For example, Van Den Hoven discloses that "[a] general purpose computer can be programmed to <br> method, comprising: <br> function as the device by means of a computer program product." Van Den Hoven at Abstract. |
| (a) at a device with a touch <br> screen display | Van Den Hoven discloses a computer-implemented method at a device with a touch screen. <br> For example, Van Den Hoven also discloses that the device can have a touch screen input. For <br> example, Van Den Hoven discloses that an "input stroke could be made with a finger, or with a <br> stylus or other input device." Van Den Hoven at p. 6, lns. 21-22. |
| (b) displaying a first portion of <br> an electronic document; | Van Den Hoven discloses displaying a first portion of an electronic document. For example, Van <br> Den Hoven discloses "an easy, simple and intuitive way to browse an image collection" by <br> "continuously scrolling the sequence [of images] in the browsing area." Van Den Hoven at p.2, lns. <br> $16-20 . ~ T h i s ~ i m a g e ~ c o l l e c t i o n ~ i s ~ a n ~ e l e c t r o n i c ~ d o c u m e n t ~ c o m p r i s e d ~ o f ~ i n d i v i d u a l ~ i m a g e s . ~$ |
| As the method in Van Den Hoven scrolls through the sequence of images, it will display a first |  |
| portion of the list of images: |  |

[^0]

\(\left.$$
\begin{array}{|l|l|}\hline & \begin{array}{r}\text { The browsing means } 101 \text { is arranged to show the sequence } 102 \text { by continuously } \\
\text { scrolling } 107 \text { the sequence } 102 \text { in the browsing area 103. The sequence 102 is } \\
\text { usually too large to fit in the browsing area completely. This is indicated in FIG. } 1 \text { by } \\
\text { showing the portions of the sequence } 102 \text { that do not fit in the browsing area 103 in a } \\
\text { dashed form. The scrolling } 107 \text { will result in those portions being shown eventually. }\end{array} \\
& \begin{array}{l}\text { Van Den Hoven at p. 5, lns. 17-21. In this way, Van Den Hoven will display different portions of } \\
\text { the image sequence as it scrolls. }\end{array} \\
\hline \begin{array}{l}\text { (e) wherein the second portion } \\
\text { is different from the first } \\
\text { portion: }\end{array} & \begin{array}{l}\text { The second portion of the sequence of images displayed in response to the change in scrolling speed } \\
\text { or direction will be different from the first portion, since the sequence is being scrolled. }\end{array}
$$ <br>
For example, Van Den Hoven discloses: <br>
The browsing means 101 is arranged to show the sequence 102 by continuously <br>
scrolling 107 the sequence 102 in the browsing area 103. The sequence 102 is <br>
usually too large to fit in the browsing area completely. This is indicated in FIG. 1 by <br>
showing the portions of the sequence 102 that do not fit in the browsing area 103 in a <br>

dashed form. The scrolling 107 will result in those portions being shown eventually.\end{array}\right\}\)| Van Den Hoven at p. 5, lns. 17-21. In this way, Van Den Hoven will display different portions of |
| :--- |
| the image sequence as it scrolls. |





|  | dependent on whether friction is simulated." Van Den Hoven p. 6, lns. $28-32$. <br> Second, Van Den Hoven discloses a response that is a translation in a reverse direction. For <br> example, Van Den Hoven discloses that "[t]he scrolling 107 of the sequence 102 can be made <br> infinitely long by . . automatically reversing the direction of the scrolling 107." Van Den Hoven at <br> p. 6, lns. 1-4. When the document reverses direction, the area beyond the edge of the document <br> (which as discussed above could be the "border area" at the top or bottom of the image collection, <br> or alternatively could be images appearing above or below the subset of images comprising the <br> electronic document) will no longer be displayed, and a different portion of the image collection <br> will be displayed as a result of the scrolling operation. <br> In light of these disclosures, in my opinion it would be obvious in light of Van Den Hoven to |
| :--- | :--- |
| monitor when "the stroking gesture ends," and at that point, to reverse the direction of the image |  |
| scrolling. |  |


| movement of the object is on the touch screen display. | device." Van Den Hoven at p. 6, lns. 21-22. |
| :---: | :---: |
| Claim 4 |  |
| The computer-implemented method of claim 1, wherein the object is a finger. | Van Den Hoven discloses that the object used as an input device can be a finger. Van Den Hoven at p. 6, lns. 21-22 ("This input stroke could be made with a finger, or with a stylus or other input device."). |
| Claim 5 |  |
| The computer-implemented method of claim 1 , wherein the first direction is a vertical direction, a horizontal direction, or a diagonal direction. | Van Den Hoven discloses that the first direction is vertical, horizontal, or diagonal. <br> For example, Van Den Hoven discloses: <br> A typical way of implementing scrolling 107 is by presenting the representations in a linear list, either horizontally or vertically, which is moved in an appropriate direction. For a vertical list, as shown in FIG. 1, the sequence 102 is moved downward. Of course, other directions are also possible. It is not even necessary for the representations to be presented as a linear list. The browsing area 103 could be positioned in a curved form around the display area 106, so that the sequence 102 is scrolled around the display area 106. The browsing area 103 could also be positioned at the straight or curved edge of the device, so that it is easy to locate and use for a user. The scrolling 107 could also follow a semi-random pattern in the browsing area 103. <br> Van Den Hoven at p. 5, lns. 22-30. |
| Claim 6 |  |
| The computer-implemented method of claim 1, wherein the electronic document is a web page. | Currently not at issue. |
| Claim 7 |  |
| The computer-implemented method of claim 1, wherein the | Van Den Hoven discloses the electronic document is at least one digital image. |


| electronic document is a digital <br> image. | Currently not at issue. |
| :--- | :--- |
| Claim 8 | The computer-implemented <br> method of claim 1, wherein the <br> electronic document is a word <br> processing, spreadsheet, email <br> or presentation document. |
| Claim 9 Den Hoven discloses the electronic document includes a list of items. For example, Van Den |  |
| The computer-implemented <br> method of claim 1, wherein the <br> electronic document includes a <br> list of items. | Hoven discloses scrolling through a sequence of images, which is a list of items. Van Den Hoven <br> discloses that "the browsing means is arranged to show the sequence by continuously scrolling the <br> sequence in the browsing area." Van Den Hoven at p. 1, lns 18-20. |
| Claim 10 | Van Den Hoven discloses that the second direction is opposite the first direction. For example, <br> The computer-implemented <br> method of claim 1, wherein the <br> vecond direction is opposite the <br> first direction |
| reverse when the end of the sequence is encountered. See Van Den Hoven at p. 6ill automatically <br> Likewise, Van Den Hoven discloses that "the direction of an input stroke in the browsing area 103 <br> can be used to vary the direction of the scrolling 107 of the sequence 102. If the input stroke is in <br> the direction opposite to the direction of the scrolling 107, the scrolling 107 should now go in the <br> reverse direction. The speed of the scrolling 107 can be made dependent on the speed of the input <br> stroke, as described above." Id. at p. 6, ln. 33 to p. 7, ln 3. |  |


|  |  |
| :--- | :--- |
| Claim 11 |  |
| The computer-implemented <br> method of claim 1, wherein <br> translating in the first direction <br> prior to reaching an edge of the <br> document has an associated <br> speed of translation that <br> corresponds to a speed of <br> movement of the object. | Currently not at issue. |
| Claim 12 | Currently not at issue. |
| The computer-implemented <br> method of claim 1, wherein <br> translating in the first direction <br> is in accordance with a <br> simulation of an equation of <br> motion having friction. |  |
| Claim 13 |  |
| The computer-implemented <br> method of claim 1, wherein the <br> area beyond the edge of the <br> document is black, gray, a solid <br> color, or white. | Van Den Hoven discloses the area beyond the edge of the document is black, gray, a solid color, or <br> white. For example the horizontal portions of the border areas 201, 203, 205, 207, and 209 in Fig. <br> 2, beyond the edge of the electronic document, are shown as area of solid color: |


|  | FIG. 2 |
| :---: | :---: |
| Claim 14 |  |
| The computer-implemented method of claim 1 , wherein the area beyond the edge of the document is visually distinct from the document. | Van Den Hoven discloses the area beyond the edge of the document is visually distinct from the document. For example, the border areas 201, 203, 205, 207, and 209 in Fig. 2 are visually distinct from the electronic document. |
| Claim 15 |  |
| The computer-implemented method of claim 1, wherein translating the document in the second direction is a damped motion. | Currently not at issue. |
| Claim 16 |  |
| The computer-implemented | See claim 1(f). |


| method of claim 1, wherein <br> changing from translating in the <br> first direction to translating in <br> the second direction until the <br> area beyond the edge of the <br> document is no longer <br> displayed makes the edge of the <br> electronic document appear to <br> be elastically attached to an <br> edge of the touch screen display <br> or to an edge displayed on the <br> touch screen display. |  |
| :--- | :--- |
| Claim 17 |  |
| The computer-implemented | Currently not at issue. |
| method of claim 1, wherein |  |
| translating in the first direction |  |
| prior to reaching the edge of the |  |
| electronic document has a first |  |
| associated translating distance |  |
| that corresponds to a distance |  |
| of movement of the object prior |  |
| to reaching the edge of the |  |
| electronic document; and |  |
| wherein displaying an area |  |
| beyond the edge of the |  |
| electronic document comprises |  |
| translating the electronic |  |
| document in the first direction |  |
| for a second associated |  |
| translating distance, wherein |  |
| the second associated |  |
| translating distance is less than |  |
| a distance of movement of the |  |


| object after reaching the edge <br> of the electronic document. |  |
| :--- | :--- |
| Claim 18 |  |
| The computer-implemented <br> method of claim 1, wherein <br> translating in the first direction <br> prior to reaching the edge of the <br> electronic document has a first <br> associated translating speed that <br> corresponds to a speed of <br> movement of the object, and <br> wherein displaying an area <br> beyond the edge of the <br> electronic document comprises <br> translating the electronic <br> document in the first direction <br> at a second associated <br> translating speed, wherein the <br> second associated translating <br> speed is slower than the first <br> associated translating speed. |  |
| Claim 19 |  |
| A device, comprising: | See preamble of claim 1. |
| a touch screen display; | See claim 1(a). |
| one or more processors; | See preamble of claim 1. |
| memory; and | See preamble of claim 1. |
| one or more programs, wherein <br> the one or more programs are <br> stored in the memory and <br> configured to be executed by <br> the one or more processors, the <br> programs including: | See preamble of claim 1. |
| instructions for displaying a | See claim 1(b). |


| first portion of an electronic <br> document; |  |
| :--- | :--- |
| instructions for detecting a <br> movement of an object on or <br> near the touch screen display; <br> instructions for translating the <br> electronic document displayed <br> on the touch screen display in a <br> first direction to display a <br> second portion of the electronic <br> document, wherein the second <br> portion is different from the <br> first portion, in response to 1(c) - 1(e). <br> detecting the movement; |  |
| instructions for displaying an <br> area beyond an edge of the <br> electronic document and <br> displaying a third portion of the <br> electronic document, wherein <br> the third portion is smaller than <br> the first portion, in response to |  |
| the edge of the electronic |  |
| document being reached while |  |
| translating the electronic |  |
| document in the first direction |  |
| while the object is still detected |  |
| on or near the touch screen |  |
| display; and |  |$\quad$.


| displayed to display a fourth <br> portion of the electronic <br> document, wherein the fourth <br> portion is different from the <br> first portion, in response to <br> detecting that the object is no <br> longer on or near the touch <br> screen display. |  |
| :--- | :--- |
| Claim 20 |  |
| A computer readable storage <br> medium having stored therein <br> instructions, which when <br> executed by a device with a <br> touch screen display, cause the <br> device to: | See preamble of claim 1 and claim 1(a). |
| display a first portion of an <br> electronic document; | See claim 1(b). |
| detect a movement of an object <br> on or near the touch screen <br> display; translate the electronic <br> document displayed on the <br> touch screen display in a first <br> direction to display a second <br> portion of the electronic <br> document, wherein the second <br> portion is different from the <br> first portion, in response to <br> detecting the movement; |  |
| display an area beyond an edge <br> of the electronic document and <br> display a third portion of the <br> electronic document, wherein <br> the third portion is smaller than | See claim 1(f) - 1(g). |


| the first portion, if the edge of <br> the electronic document is <br> reached while translating the <br> electronic document in the first <br> direction while the object is still <br> detected on or near the touch <br> screen display; and |  |
| :--- | :--- |
| translate the electronic <br> document in a second direction <br> until the area beyond the edge <br> of the electronic document is no |  |
| longer displayed to display a |  |
| fourth portion of the electronic |  |
| document, wherein the fourth |  |
| portion is different from the |  |
| first portion, in response to |  |
| detecting that the object is no |  |
| longer on or near the touch |  |
| screen display. |  |


[^0]:    ${ }^{1}$ Cites are to WO 01/029702 .

