

EXHIBIT 2

Apple Inc. v. Samsung Electronics Co. Ltd. et al Doc. 174 Att. 2

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/5:2011cv01846/239768/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2011cv01846/239768/174/2.html
http://dockets.justia.com/

Power Modeling of Graphical User Interfaces on OLED
Displays

Mian Dong Yung-Seok Kevin Choi Lin Zhong
Department of Electrical & Computer Engineering, Rice University, Houston, TX 77025

{dongmian, ykc1,lzhong}@rice.edu

ABSTRACT
Emerging organic light-emitting diode (OLED)-based displays
obviate external lighting; and consume drastically different power
when displaying different colors, due to their emissive nature.
This creates a pressing need for OLED display power models for
system energy management, optimization as well as energy-
efficient GUI design, given the display content or even the graph-
ical user interface (GUI) code. In this work, we present a compre-
hensive treatment of power modeling of OLED displays, provid-
ing models that estimate power consumption based on pixel, im-
age, and code, respectively. These models feature various tra-
deoffs between computation efficiency and accuracy so that they
can be employed in different layers of a mobile system. We vali-
date the proposed models using a commercial QVGA OLED
module. For example, our statistical learning-based image-level
model reduces computation by 1600 times while keeping the error
below 10%, compared to the more accurate pixel-level model.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development

General Terms
Algorithms, Measurement, Human Factors

Keywords
OLED Display, Graphic User Interface, Low Power

1. INTRODUCTION
Energy consumption is an important design concern for mobile
embedded systems that are battery-powered and thermally con-
strained. Displays have been known as one of the major power
consumers in mobile systems [1-4]. Conventional liquid crystal
display (LCD) systems provide very little flexibility for power
saving because the LCD panel consumes almost constant power
regardless of the display content while the external lighting domi-
nates the system power consumption. In contrast, the power con-
sumption by emerging organic light-emitting diode (OLED)-based
displays [5] is highly dependent on the display content because
their pixels are emissive. For example, our measurement shows
that a commercial QVGA OLED display consumes 3 and 0.7
Watts showing black text on a white background and white text
on a black background, respectively. Such dependence on display
content leads to new challenges to the modeling and optimization
of display power consumption. First, it makes it much more diffi-
cult to account display energy consumption in the operating sys-

tem for optimized decisions. Second, GUI designers will have a
huge influence on the energy cost of applications, which is not
their conventional concern. As a result, there is a great need of
OLED display power models for use at different layers of a com-
puting system and different stages of system design.
In this work, we provide a comprehensive treatment of OLED
display power modeling. In particular, we make three contribu-
tions by addressing the following research questions.
First, given the complete bitmap of the display content, how to
estimate its power consumption on an OLED display with the best
accuracy? An accurate pixel-level model is the foundation for
modeling OLED display power. We base our pixel-level model on
thorough measurements of a commercial QVGA OLED module.
In contrast to the linear model assumed by previous work [6], we
show that the power consumption is nonlinear to the intensity
levels of the color components. Our nonlinear power model
achieves 99% average accuracy against measurement of the com-
mercial OLED display module. This is presented in Section 4.
Second, given the complete bitmap of the display content, how to
estimate the power consumption with as few pixels as possible?
This image-level model is important because accessing informa-
tion of a large number of pixels can be costly due to memory and
processing activities. We formulate the tradeoff as a sampling
problem and provide a statistical optimal solution that outper-
forms both random and periodical sampling methods. Our solu-
tion achieves 90% accuracy with 1600 times reduction in sam-
pling numbers. This is presented in Section 5.
Third, given the code specification of a GUI, how to estimate its
power consumption on an OLED display? This code-level model
is important to GUI designers as well as application and system
based energy management. We use the code specification to count
pixels of various colors and calculate the power consumption of
the OLED display. Our model guarantees over 95% accuracy for
10 benchmark GUIs. This is presented in Section 6.
To the best of our knowledge, this is the first public study that
addresses the three research questions above. The modeling me-
thods presented here provide powerful mechanisms for operating
systems and applications to construct energy-conserving policies
for OLED displays. They will also enable GUI designers of mo-
bile systems to build adaptable and energy-efficient GUIs; and
empower end users to make informed tradeoffs between battery
lifetime and usability.
The rest of the paper is organized as follows. We provide back-
ground and address related work in Section 2. We describe the
experimental setup used in this study in Section 3. From Sections
4 to 6, we present the power models and their experimental vali-
dations. We conclude in Section 7.

2. BACKGROUND AND RELATED WORK
How Display Works. Figure 1 illustrates the relationships be-
tween the display and the rest of the system. The main processor,
or application processor, runs the operating system (OS) and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-497-3/09/07….5.00.

application software with GUIs. Note the windowing system can
be either part of the OS, e.g. Windows, or a standalone process,
e.g. X Window under Linux. the graphics processing unit, often
including a graphics accelerator and a LCD controller in a system-
on-a-chip for mobile devices, generates the bitmap of the display
content and stores it in a memory called frame buffer; the bitmap
is sent to the display for displaying. Each unit of this bitmap is
described using sRGB, or standard RGB, color space, in which a
color is specified by ሺܴ, ,ܩ ሻ, the intensity level of red, green andܤ
blue component. Because sRGB uses gamma correction to cope
with the nonlinearity introduced by cathode ray tube (CRT) dis-
plays, the intensity level of each component and its corresponding
luminance follow a nonlinear relation [7].
OLED Display. Organic light-emitting diode or OLED [5, 8] is
an emerging display technology that provides much wider view
angle and higher image quality than conventional LCDs . The key
difference in power characteristics between an OLED display and
a LCD is that an OLED display does not require external lighting
because its pixels are emissive. Each pixel of an OLED display
consists of three types of devices, corresponding to red, green and
blue components, respectively. Moreover, the red, green, and blue
components of a pixel have different luminance efficacies. As a
result, the color of a pixel directly impacts its power consumption
and GUI has a significant impact on the display power. In con-
trast, color only has negligible power impact on LCDs and illumi-
nation of external lighting dominates. OLED displays and LCDs
have a very similar organization, including a panel of addressable
pixels, LCD or OLED, control circuitry that generates the control
and data signals for the panel based on display content, and inter-
face to the graphics processing unit. In this work, we address the
power consumption of the display and focus on the variance in-
troduced by the OLED panel. Our power models take input from
different places of the system and can be implemented either as a
software tool, an operating system module, or an extra circuit.
We focus on the power consumption by a constant screen because
of the following two reasons. First, a display spends most time
displaying a constant screen, even for high-definition video that
requires 30 updates per second. Second, our measurement showed
that the power consumption by an OLED display during updating
is close to the average of those by the constant screens before and
after the updating. Therefore, the energy contribution by OLED
display updating is very small and can be readily estimated from
the power models of a constant screen. However, we note that

screen updating may incur considerable energy overhead in graph-
ics processing unit, frame buffer, and data buses, which are out of
the scope of this work.
Related Work. HP Labs pioneered energy reduction for OLED
displays [6, 9, 10]. Yet no real OLED displays were reported in
the work. The power model employed was pixel-level, thus ex-
pensive to use, and incorrectly assumed a linear relationship be-
tween intensity levels of color components and power consump-
tion. As we will show, the relationship is indeed nonlinear. The
IBM Linux Wrist Watch was one of the earliest users of OLED
displays [11]. The work, however, did not employ or provide a
power model for the OLED display. There is also a large body of
work on energy optimization of conventional LCD systems [2, 4,
12-23]. While many of the proposed techniques may be applied to
OLED displays, they are orthogonal to the power modeling tech-
niques presented in this work.

3. EXPERIMENTAL SETUP
Benchmark GUI Images. To evaluate the proposed power mod-
els, we collect 300 GUI images from three Windows Mobile-
based cell phones, HTC Touch, HTC Mogul, and HTC Wizard, all
with a resolution of QVGA (240×320). On each phone, we ex-
haust all the varying GUI screens, representative of everyday use
of a smart phone (e-mail, web browser, games, etc). We also cap-
ture screens with different color themes available.
Measurement Setup. For our experimental validation, we use a
2.8” OLED QVGA display module with an integrated driver cir-
cuit, µOLED-32028-PMD3T, from 4D Systems [24]. We connect
it to a PC using a micro USB interface, which also supplies power
to it. Through the USB, we can send commands to the OLED
module to display images. The display module employs a standard
16-bit (5,6,5) RGB setting. That is, there are five, six, and five bits
to represent the intensity of red, green, and blue component, re-
spectively. In this work, we call their numbers the intensity level
or value of the three color components.
We obtain the power consumption of the OLED module by mea-
suring the current it draws from the USB interface and its input
voltage. Figure 2 shows the measurement setup with a DAQ board
from Measurement Computing and the OLED module. To over-
come the variance among different measurements of the same
image, we take an average of 1000 measurements for each image.

4. PIXEL-LEVEL POWER MODEL
We first present a pixel-level power model that estimates the
power consumption of OLED modules based on the RGB specifi-
cation of each pixel. It is intended to be the most accurate and
constitutes the baseline for models based on more abstract de-
scriptions of the display content.

Figure 1. Display system in a typical mobile system. The three
power models proposed require input of different abstrac-
tions and provide different accuracy-efficiency tradeoffs

Windowing System

Application Software
with GUIs

Frame Buffer

Graphics Driver

Code‐Level
Model

Image‐Level
Model

Pixel‐Level
Model

Operating System

Main Processor

Graphics
Processing Unit

Display System
(focus of this work)

Input

Input

Figure 2. Measurement setup of the QVGA OLED module
used in our experimental validation

Power Model of OLED Module. We model the power contri-
buted by a single pixel, specified in ሺܴ, ,ܩ ሻ, asܤ

௣ܲ௜௫௘௟ሺܴ, ,ܩ ሻܤ ൌ ݂ሺܴሻ ൅ ݄ሺܩሻ ൅ ݇ሺܤሻ,

where ݂ሺܴሻ , ݄ሺܩሻ and ݇ሺܤሻ are power consumption of red, green
and blue devices of the pixel, respectively. And the power con-
sumption of an OLED display with ݊ pixels is

ܲ ൌ ܥ ൅ ∑ ሼ݂ሺܴ௜ሻ ൅ ݄ሺܩ௜ሻ ൅ ݇ሺܤ௜ሻሽ௡
௜ୀଵ .

Note that the model includes a constant, ܥ, to account for static
power contribution made by non-pixel part of the display, which
is independent with the pixel values. This pixel model has a ge-
neric form that applies to all the colorful OLED display modules.
Power Models for RGB Components. We obtain ܥ by measur-
ing the power consumption of a completely black screen. To ob-
tain ݂ሺܴሻ, we fill the screen with colors in which the green and
blue components are kept zero and the red component, ܴ, varies
from 0 to 31, enumerating every possible intensity level. For each
measurement, we subtract out ܥ to get just the power contribution
by the red pixel component, or ݂ሺܴሻ. We obtain ݄ሺܩሻ and ݇ሺܤሻ
similarly. Figure 3 (a) presents the measured data for all three
components. Apparently, the power contribution by pixel compo-
nents is a nonlinear function, instead of a linear function as as-
sumed in [6], of the intensity level. The nonlinearity is due to the
gamma correction in sRGB standard. After transforming the in-
tensity level into linear RGB format, which is the indication of
luminance, we obtain a linear relation between pixel power con-
sumption and intensity, as shown in Figure 3(b).
The measured data can be directly used to estimate the power
consumption of displaying an image on the OLED display
through simple table lookup. One can also apply curve fitting to
obtain close-form functions for ݂ሺܴሻ, ݄ሺܩሻ, and ݇ሺܤሻ.
Estimation vs. Measurement. Figure 4 shows the histogram of
the error of the estimation against the measurement for the 300
benchmark images. It shows that 63% of the samples have no
more than 1% error and 93% have no more than 3% errors. The
average absolute error is only 1%.
It is important to note that although we derived the pixel-level
power model from a specific OLED display, the methodology can

be largely extended to other OLED displays with a similar RGB
organization.

5. IMAGE-LEVEL POWER MODEL
We next present models that estimate power consumption given
the image to display. They are important for a system to assess the
display power cost when the pixel information is known, e.g. from
the frame buffer. A straightforward image-level model can be a
simple application of the pixel-level model to all pixels. Such a
method, unfortunately, is exceedingly expensive. Modern displays
can have hundreds of thousands or millions of pixels. The cost of
a large number of pixel power calculations and the overhead of
accessing the frame buffer can be prohibitively high for the sys-
tem. Our solution to this problem is to estimate the power based
on a small subset of pixels, or sampling.

5.1 Problem Formulation
The power consumption by an image on an OLED display can be
described by a vector of ܰ elements, i.e., ݕ ൌ ሺݕଵ, ,ଶݕ … , ேሻ், inݕ
which ݕ௡ denote the power consumption of the ݅ -th pixel,
݅ ൌ 1,2,… , ܰ . The total display power can be calculated as
ݎ݁ݓ݋ܲ ൌ ૚்ݕ ൌ ∑ ௜ேݕ

௜ୀଵ .
Sampling is to select ܭ pixels out of ܰ and use the average of ܭ
samples to approximate the average of all ܰ pixels. For each pix-
el, we use a random variable to indicate whether this pixel is sam-
pled or not, i.e., ௜ܺ ൌ 1 when the ݅-th pixel is sampled; otherwise
௜ܺ ൌ 0. Thus, the sampling of an image can be represented by a

vector ܺ ൌ ሺ ଵܺ, ܺଶ, … , ܺேሻ் . And denote the joint probabilistic
distribution of them as ௑݂ሺݔሻ ൌ ௑݂భ,௑మ,…,௑ಿሺݔଵ, ,ଶݔ … , ேሻ. Givenݔ
an image, ݕ, the estimation error can be calculated as

ߝ ൌ ௑ܧ ൥ቆ
ݕ்ܺ
ܭ

െ
૚்ݕ
ܰ
ቇ
ଶ

൩ ൌ ௑భ,௑మ,…,௑ಿܧ ൥ቆ
∑ ௜ܺݕ௜௜ୀே
௜ୀଵ

ܭ
െ
∑ ௜௜ୀேݕ
௜ୀଵ

ܰ
ቇ
ଶ

൩

ൌ නቆ
∑ ௜௜ୀேݕ௜ݔ
௜ୀଵ

ܭ
െ
∑ ௜௜ୀேݕ
௜ୀଵ

ܰ
ቇ
ଶ

௑݂భ,௑మ,…,௑ಿሺݔଵ, ,ଶݔ … , .ݔேሻ݀ݔ

Therefore, an optimal sampling given the image can be obtained
by finding ௑݂ሺݔሻ that leads to the minimal ε, or ௑݂

ሻݔሺכ ൌ
arg min׊௙೉ሺ௫ሻ . ߝ

Now, we consider all possible images by treating the power con-
sumption of an image as a random vector, ܻ ൌ ሺ ଵܻ, ଶܻ, … , ேܻሻ் ,
and denote the joint probabilistic distribution as ݃௒ሺݕሻ ൌ
݃௒భ,௒మ,…,௒ಿ ሺݕଵ, ,ଶݕ … , -ேሻ. Then the optimal sampling for all imݕ
ages can be found as ௑݂כሺݔሻ ൌ arg min׊௙೉ሺ௫ሻ ሿ , i.e., findingߝ௒ሾܧ
a probability simplex ݌ ൌ ሺ݌ଵ, ,ଶ݌ … , ൻಿ಼ൿሻ݌

் such that ܧ௒ሾߝሿ is
minimal, where ݌௝ ൌ ሺܾܺ݋ݎ݌ ൌ ሺ௝ሻ is the ݆-th possibleݔ ሺ௝ሻሻ andݔ
combination of ܺ. This is a linear programming problem, i.e.,

Figure 3. Intensity Level vs. Power Consumption for the R,
G, and B components of an OLED pixel

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60

Po
w
er
 (µ

W
)

sRGB Value

(a)Blue
Red
Green

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Po
w
er
 (µ

W
)

Linear RGB Value

(b)Blue
Red
Green

Figure 4. Histogram of percent errors observed for the 300
benchmark GUIs using our pixel-level power model

0

30

60

90

‐8% ‐6% ‐4% ‐2% 0% 2% 4% 6% 8%

of
 O
cc
ur
en

ce
s

Relative Error (%)

minන෍ ௝݌ ቆ
∑ ௜ݔ

ሺ௝ሻݕ௜௜ୀே
௜ୀଵ

ܭ
െ
∑ ௜௜ୀேݕ
௜ୀଵ

ܰ
ቇ
ଶ

݃௒భ,௒మ,…,௒ಿሺݕଵ, ,ଶݕ … , ݕேሻ݀ݕ
ൻಿ಼ൿ

௝ୀଵ

s.t. ∑ ௝௝݌ ൌ 1 and ݌௝ ൒ 0

It is, however, impractical to obtain the joint distribution
݃௒భ,௒మ,…,௒ಿ ሺݕଵ, ,ଶݕ … , ேሻݕ , because the dimension is too high.
Therefore, we transform the objective function to eliminate the
join distribution as below.

න෍ ௝݌ ൭
∑ ௜ݔ

ሺ௝ሻݕ௜௜ୀே
௜ୀଵ

ܭ
െ
∑ ௜௜ୀேݕ
௜ୀଵ

ܰ
൱
ଶ

݃௒భ,௒మ,…,௒ಿሺݕଵ, ,ଶݕ … , ݕேሻ݀ݕ
ൻಿ಼ൿ

௝ୀଵ

ൌ ௑ܧ ቈ൬
ܺ
ܭ
െ
૚
ܰ
൰
்

௒ሾ்ܻܻሿܧ ൬
ܺ
ܭ
െ
૚
ܰ
൰቉ ൌ෍ ҧܾሺ௝ሻܣ௝ܾሺ௝ሻ்݌

ൻಿ಼ൿ

௝ୀଵ

in which ܣҧ ൌ ௒ሾ்ܻܻሿ and ܾ௜ܧ
ሺ௝ሻ ൌ ௫೔

ሺೕሻ

௄
െ ଵ

ே
, for ݅ ൌ 1,2,… , ܰ.

Therefore, the key to an accurate estimation is to obtain a good
knowledge of the expectation of outer products of all possible
images, which can be statistically learned from a set of training
images by using the mean of the outer products of the training
images to approximate the expectation ܣҧ.

5.2 Practical Learning-based Sampling
There are two critical barriers for the practical implementation of
the statistically optimal sampling. First, the linear programming
problem described above is very difficult, if possible, to solve
because of the extremely high dimension, i.e. ൻே௄ൿ or N-choose-K.
To address this issue, we divide the image into much smaller win-
dows, and then solve the linear programming problem for each
window. By preparing a training set for the window at every posi-
tion within an image, we are able to obtain an optimal sampling
solution for every window. Second, the solution requires generat-
ing a large number of random numbers, which is expensive for
mobile embedded platforms. Therefore, instead of random sam-
pling, we decide to use deterministic sampling method in which
we seek to solve a combinatorial problem to find the samples for
each window such that ܾሺ௝ሻ்ܣҧܾሺ௝ሻ achieves the minimal. That is,

min ቀ௑
௄
െ ૚

ே
ቁ
்
ҧܣ ቀ௑

௄
െ ૚

ே
ቁ

s.t. ݔ௜ ൌ ∑ and ,0 ݎ݋ 1 ௜௜ݔ ൌ ܭ

Another practical issue is the number of samples to take from
each window, or K in the formulation above. Given a fixed sam-
pling rate, or the total number of samples, there are two strategies.
One can increase the window size, therefore reduce the number of
windows, but allow more samples per window. Or one can reduce
the window size, therefore increase the number of windows, but
allow fewer samples per window. The second strategy obviously
is more efficient because the computational load increases much
faster with the window size than with the number of samples per
window. We also experimentally compared the accuracy of these
two strategies. We found that there is no difference in accuracy
between them. Therefore, we take the second strategy in our im-
age-level mode, i.e. a single sample is taken from each window.

5.3 Experimental Results
To evaluate our proposed learning-based sampling method
(Learning-based), we compare its performance against three other
sampling methods, described below.

• Periodical sampling: an image is divided into non-
overlapping windows of the same size, exactly the same as
Learning-based sampling but the bottom right pixel of each
window is selected.

• Local Random sampling: one pixel is randomly selected
from each window.

• Global Random sampling: pixels are randomly selected from
the whole image. The number of pixels is kept the same as
the number of windows in the first three methods.

Collectively these benchmark sampling methods will highlight the
effectiveness of the design decisions made in Section 5.2. It is
important to note that for learning-based sampling, we employ a
bootstrapping method to improve the reliability of accuracy eval-
uation because training is involved. That is, we divide the 300
benchmark images evenly into 10 groups, i.e. 30 in each. Then we
use nine groups as training set and test the 10th group. We repeat
the process 10 times using different groups as the test group and
the report the average accuracy.
We investigate the tradeoff between sampling rate and accuracy
by varying the window size from 5×5, 10×10, 20×20, 40×40, to
80×80. This leads to a sampling rate between 1/25 and 1/6400.
Figure 5 (a) presents the tradeoffs between estimation error and
window size over the 300 benchmark GUIs described in Section
3. It clearly shows that as window sizes increases, or sample rates
decreases, the estimation error increases, for all four sampling
methods. Figure 5 (a) clearly shows that our learning-based me-
thod achieves the best tradeoffs between accuracy and sampling
rate. When window size is 40×40 and a 1600 times reduction in
pixels needed for power estimation, learning based sampling me-
thod achieves accuracy of 90%.
Figure 5 (b) presents the run-time of all four sampling methods on
a Lenovo T61 laptop with a Core 2 Duo T7300 2GHz processor
and a 2GB memory. It clearly demonstrates the advantage in effi-
ciency of deterministic methods, i.e. Learning-based and Periodi-
cal. With the comparable accuracy, Learning-based sampling is at
least three times faster than the random methods, both Global and
Local. This will lead to significant efficiency improvement when
the power model is employed in mobile embedded systems for
energy management and optimization.
In summary, our learning-based sampling method achieves the
best tradeoff between accuracy and efficiency. We note that the
learning-based method achieves this through training, which can

Figure 5. Comparison of four different sampling methods

0%

10%

20%

30%

5×5 10×10 20×20 40×40 80×80

Er
ro
r

Window Size (pixel × pixel)

Learning‐based
Periodical
Local Random
Global Random

(a)

500

5000

50000

500000

5×5 10×10 20×20 40×40 80×80Ru
nn

in
g
Ti
m
e
(n
s)

Window Size (pixel × pixel)

Learning‐based
Periodical
Local Random
Global Random

(b)

be compute-intensive. However, training can be carried off-line
and therefore does not consume any resource at run-time.

6. Code-Level Power Model
Both pixel and image-level models require that the RGB informa-
tion is available for all pixels of the display content. In this sec-
tion, we present a power model that is based on the code specifi-
cation of the display content. This is possible because graphical
user interfaces (GUIs) are usually described in high-level pro-
gramming languages, e.g. C# and Java, and are highly structured
and modular. The code-level model can be even more efficient
than the sampling-based image-level power model because they
do not need to access the frame buffer. Therefore, it can be readily
employed directly by the application or the operating system. In
addition, they also provide a tool for GUI designers to evaluate
their designs at an early stage.
We take an object-oriented approach because modern GUIs are
composed of multiple objects, each with specified properties, e.g.
size, location, and color. Moreover, GUI programming is also
object-oriented. Developers rarely specify the graphics details;
instead they extensively reuse a “library” of customizable com-
mon objects, e.g. buttons, menus, and lists. They customize these
objects by specifying their properties and their relationship with
each other within a GUI. Our methodology for code-based power
modeling is first estimating power contribution by individual GUI
objects based on their properties and then estimating the total
power based on the composition of these objects.

6.1 Power by GUI Object
We can view a GUI object as a group of pixels with designated
colors. By accounting the number of pixels with each color that
appear in an object, we can obtain its power consumption using
the pixel-level power model. To obtain the estimated power for
the object, we enhance the object class with a pixel list property
that records the ሺܴ, ,ܩ -ሻ values and pixel number ܰ of each colܤ
or. Therefore, by utilizing our pixel-level power model, we can
calculate the power consumption of an object with ܭ colors as

௢ܲ௕௝௘௖௧ ൌ ∑ ௜ܰ ൈ ௣ܲ௜௫௘௟ሺܿݎ݋݈݋௜ሻ௄
௜ୀଵ .

In most cases, a GUI object only has three colors, i.e., border
color, background color and foreground (text) color. All three can
be obtained from the GUI object’s properties. Knowing the geo-
metric specification of the object, usually rectangular, we can
calculate the number of pixels for both background and border
colors. Then we create a pixel list of two entries for this object,
which includes the ሺܴ, ,ܩ -ሻ values of colors and their corresܤ
ponding pixel numbers. By extending the pixel list, we are able to
handle more complicated objects with arbitrary shapes and more
colors.

Text is a special object property and needs a special treatment.
Unlike the color information available from the object properties,
the pixel number of text is not easy to obtain. Thus, we build a
library for all the ASCII characters; the library contains the num-
ber of pixels of each character based on its font type and size.
Thus, we are able to account the total number of pixels of a whole
text string, which we should subtract from the background pixel
number. For our experiments, we have constructed the library for
Times New Roman and Tahoma of font sizes 12 and 9, which are
the most common on Windows Mobile devices.

6.2 Power by Composition of Objects
A GUI usually consists of multiple objects. Simply aggregating
the power of all of the objects is not accurate enough because they
may overlap with each other. To consider the effect of overlap-
ping, we maintain a pixel list (ࡵࢁࡳ࢒࢖) for the whole GUI based on
the pixel list of each objects. We first sort the objects from back to
front in the GUI. Denote the sorted object list includes ࢔ objects
…,૛ࡻ,૚ࡻ , with the sequence from the back to the front, and ,࢔ࡻ
the pixel list of ࢏ࡻ is ࢏࢒࢖. As shown in Figure 6, we go through all
the objects one by one while checking their overlapping situation.
If two objects overlap with each other, we update the pixel list of
the object in the back by subtracting the number of pixels being
covered. Finally, we merge all the pixel lists by combining the
pixels with the same color together. We describe how we deal
with two special effects of GUIs below.
Dynamic Objects. Some GUI objects can have multiple states.
For example, a radio button has two states, checked and non-
checked; a menu has even more states when different items are
activated. For these objects, we maintain a pixel list for each state
and treat each state as an individual object in the procedure de-
scribed above.
Themes. Many operating systems support color themes that con-
tain pre-defined graphical details, such as colors and fonts, so that
GUIs of different applications will follow a coherent style. For
instance, in Windows Mobile and C#, BackColor and ForeColor
can be either specified using ሺܴ, ,ܩ ሻ or selected from a set ofܤ
pre-defined colors, such as Window and ControlText. These sys-
tem colors are determined by the theme of Windows Mobile. For-
tunately, the color and font information can be obtained in the
GUI code in the runtime for power estimation.

6.3 Experimental Results
We have implemented the object-based power estimation on .NET
Compact Framework and C#, for Windows Mobile-based mobile
embedded systems. In C#, most GUI objects belong to namespace
System.Windows.Controls. All objects provide height, width, and
background color, which are enough for power estimation. We
use eight sample programs with 10 GUIs from the Windows Mo-
bile 5.0 SDK R2 to evaluate the implementation. Using code-level
model, we estimate the power consumption of the 10 GUIs, and
compare the results with the estimation from the pixel-level model
and measurement. Figure 7 presents the results and shows that our
code-level model with text achieves higher than 95% accuracy for
all the benchmark GUIs.

7. Conclusions
In this work, we provided models for efficient and accurate power
estimation for OLED displays, at pixel, image, and code levels,
respectively. The pixel-level model built from measurements
achieves 99% accuracy in power estimation for 300 benchmark

for i = 2 to n
 for j = 1 to i − 1
 if Oi ∩ Oj ≠ Ø
 update(plj);
 end
 end
end
for k = 1 to n
 plGUI = merge(plGUI, plk);
end

Figure 6. Power estimation for a composition of GUI objects

images. By aggregating the power of a small group of pixels in-
stead of all the pixels in an image, our image-level power model
reduces the computation cost by 1600 times, while achieving 90%
accuracy in power estimation. Our code-level model utilizes spe-
cification of the GUI objects to calculate the power consumption,
which guarantees 95% accuracy.
The three power models we presented require different inputs and
provide different tradeoffs between accuracy and efficiency.
Therefore, we intend them for implementation and use at different
system components. The pixel and image-level models are best
for implementation in hardware or the operating system because
they need to access the frame buffer. In contrast, the code-level
model is best for implementation in application software or GUI
development kits due to its dependence on knowing the composi-
tion of GUI object. All three models can provide power estimation
for the system to better manage and optimize energy consumption,
for the end user to make better tradeoffs between usability and
battery lifetime, and for GUI designers to design energy-efficient
GUIs.

8. ACKNOWLEDGMENTS
The work is supported in part by NSF Award IIS/HCC 0713249
and by the Texas Instruments Leadership University program. The
authors would like to thank the anonymous reviewers whose
comments helped improve the final version of this paper.

9. REFERENCES
[1] F. Gatti, A. Acquaviva, L. Benini, and B. Ricco, "Low Power

Control Techniques For TFT LCD Displays," in Proc. Int.
Conf. Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), Grenoble, France, 2002.

[2] W.-C. Cheng, Y. Hou, and M. Pedram, "Power Minimization
in a Backlit TFT-LCD Display by Concurrent Brightness and
Contrast Scaling," in Proc. Conf. Design, Automation and
Test in Europe (DATE), Paris, France, 2004.

[3] L. Zhong and N. K. Jha, "Energy efficiency of handheld
computer interfaces: limits, characterization and practice," in
Proc. ACM/USENIX Int. Conf. Mobile Systems, Applications,
and Services (MobiSys), Seattle, Washington, USA, 2005.

[4] L. Cheng, S. Mohapatra, M. E. Zarki, N. Dutt, and N. Venka-
tasubramanian, "Quality-based backlight optimization for
video playback on handheld devices," Advanced Multimedia,
vol. 2007, pp. 4-4, 2007.

[5] S. R. Forrest, "The road to high efficiency organic light emit-
ting devices," Organic Electronics, vol. 4, pp. 45-48, 2003.

[6] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan, "Energy-
Adaptive Display System Designs for Future Mobile Envi-
ronments," in Proc. ACM/USENIX Int. Conf. Mobile Sys-
tems, Applications, and Services (MobiSys) San Francisco,
California, USA, 2003.

[7] C. A. Poynton, Digital Video and HDTV: Algorithms and
Interfaces. San Francisco: Morgan Kaufmann, 2003.

[8] J. Shinar, Organic Light-Emitting Devices: A Survey: Sprin-
ger, 2004.

[9] T. Harter, S. Vroegindeweij, E. Geelhoed, M. Manahan, and
P. Ranganathan, "Energy-aware user interfaces: an evalua-
tion of user acceptance," in Proc. ACM Conf Human Factors
in Computing Systems (CHI), Vienna, Austria, 2004.

[10] P. Ranganathan, E. Geelhoed, M. Manahan, and K. Nicholas,
"Energy-Aware User Interfaces and Energy-Adaptive Dis-
plays," IEEE COMPUTER, pp. 31-38, 2006.

[11] N. Kamijoh, T. Inoue, C. M. Olsen, M. T. Raghunath, and C.
Narayanaswami, "Energy trade-offs in the IBM wristwatch
computer," in Proc. IEEE Int. Sym. Wearable Computers,
Zurich, Switzerland, 2001.

[12] I. Choi, H. Shim, and N. Chang, "Low-power color TFT
LCD display for hand-held embedded systems," in Proc. Int.
Sym. Low Power Electronics and Design (ILSPED), Monte-
rey, California, USA, 2002.

[13] N. Chang, I. Choi, and H. Shim, "DLS: dynamic backlight
luminance scaling of liquid crystal display," IEEE Trans.
Very Large Scale Integration (VLSI) Systems, vol. 12, pp.
837-846, 2004.

[14] H. Shim, N. Chang, and M. Pedram, "A Backlight Power
Management Framework for Battery-Operated Multimedia
Systems," IEEE Design & Test, vol. 21, pp. 388-396, 2004.

[15] A. K. Bhowmik and R. J. Brennan, "System-Level Display
Power Reduction Technologies for Portable Computing and
Communications Devices," in Proc. IEEE Int. Conf. Portable
Information Devices, Orlando, Florida , USA, 2007.

[16] A. Iranli, H. Fatemi, and M. Pedram, "HEBS: histogram
equalization for backlight scaling," in Proc. Conf. Design,
Automation and Test in Europe (DATE), 2005, pp. 346-351
Vol. 1.

[17] W.-C. Cheng and C.-F. Chao, "Minimization for LED-
backlit TFT-LCDs," in Proc. ACM/IEEE Design Automation
Conf. (DAC), San Francisco, California, USA, 2006.

[18] A. Iranli and M. Pedram, "DTM: dynamic tone mapping for
backlight scaling," in Proc. ACM/IEEE Design Automation
Conf.(DAC), Anaheim, California, USA, 2005.

[19] C.-N. Wu and W.-C. Cheng, "Viewing direction-aware back-
light scaling," in Proc. ACM Great Lakes Sym. VLSI
(GLVLSI), Stresa-Lago Maggiore, Italy, 2007.

[20] W.-C. Cheng and C.-F. Chao, "Perception-guided power
minimization for color sequential displays," in Proc. ACM
Great Lakes Sym. VLSI (GLVLSI), Philadelphia, PA, USA,
2006.

[21] W.-C. Cheng, C.-F. Hsu, and C.-F. Chao, "Temporal vision-
guided energy minimization for portable displays," in Proc.
Int. Sym. Low Power Electronics and Design (ISLPED), Te-
gernsee, Bavaria, Germany, 2006.

[22] S. Salerno, A. Bocca, E. Macii, and M. Poncino, "Limited
intra-word transition codes: an energy-efficient bus encoding
for LCD display interfaces," in Proc. Int. Sym. Low Power
Electronics and Design (ISLPED), Newport Beach, Califor-
nia, USA, 2004.

[23] H. Shim, N. Chang, and M. Pedram, "A compressed frame
buffer to reduce display power consumption in mobile sys-
tems," in Proc. IEEE Conf. Asia South Pacific Design Auto-
mation (ASPDAC), Yokohama, Japan, 2004.

[24] 4D Systems，http://www.4dsystems.com.au/.

Figure 7. Power estimation comparison

2.4
2.6
2.8
3.0
3.2
3.4

1 2 3 4 5 6 7 8 9 10

Po
w
er
 (W

)

GUI #

Code‐level model
Pixel‐level model
Measurement

