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ABSTRACT 
Emerging organic light-emitting diode (OLED)-based displays 
obviate external lighting; and consume drastically different power 
when displaying different colors, due to their emissive nature. 
This creates a pressing need for OLED display power models for 
system energy management, optimization as well as energy-
efficient GUI design, given the display content or even the graph-
ical user interface (GUI) code. In this work, we present a compre-
hensive treatment of power modeling of OLED displays, provid-
ing models that estimate power consumption based on pixel, im-
age, and code, respectively. These models feature various tra-
deoffs between computation efficiency and accuracy so that they 
can be employed in different layers of a mobile system. We vali-
date the proposed models using a commercial QVGA OLED 
module. For example, our statistical learning-based image-level 
model reduces computation by 1600 times while keeping the error 
below 10%, compared to the more accurate pixel-level model.   

Categories and Subject Descriptors 
I.6.5 [Simulation and Modeling]: Model Development 

General Terms 
Algorithms, Measurement, Human Factors 

Keywords 
OLED Display, Graphic User Interface, Low Power 

1. INTRODUCTION 
Energy consumption is an important design concern for mobile 
embedded systems that are battery-powered and thermally con-
strained. Displays have been known as one of the major power 
consumers in mobile systems [1-4]. Conventional liquid crystal 
display (LCD) systems provide very little flexibility for power 
saving because the LCD panel consumes almost constant power 
regardless of the display content while the external lighting domi-
nates the system power consumption. In contrast, the power con-
sumption by emerging organic light-emitting diode (OLED)-based 
displays [5] is highly dependent on the display content because 
their pixels are emissive. For example, our measurement shows 
that a commercial QVGA OLED display consumes 3 and 0.7 
Watts showing black text on a white background and white text 
on a black background, respectively. Such dependence on display 
content leads to new challenges to the modeling and optimization 
of display power consumption. First, it makes it much more diffi-
cult to account display energy consumption in the operating sys-

tem for optimized decisions. Second, GUI designers will have a 
huge influence on the energy cost of applications, which is not 
their conventional concern. As a result, there is a great need of 
OLED display power models for use at different layers of a com-
puting system and different stages of system design. 
In this work, we provide a comprehensive treatment of OLED 
display power modeling. In particular, we make three contribu-
tions by addressing the following research questions. 
First, given the complete bitmap of the display content, how to 
estimate its power consumption on an OLED display with the best 
accuracy? An accurate pixel-level model is the foundation for 
modeling OLED display power. We base our pixel-level model on 
thorough measurements of a commercial QVGA OLED module. 
In contrast to the linear model assumed by previous work [6], we 
show that the power consumption is nonlinear to the intensity 
levels of the color components. Our nonlinear power model 
achieves 99% average accuracy against measurement of the com-
mercial OLED display module. This is presented in Section 4. 
Second, given the complete bitmap of the display content, how to 
estimate the power consumption with as few pixels as possible? 
This image-level model is important because accessing informa-
tion of a large number of pixels can be costly due to memory and 
processing activities. We formulate the tradeoff as a sampling 
problem and provide a statistical optimal solution that outper-
forms both random and periodical sampling methods. Our solu-
tion achieves 90% accuracy with 1600 times reduction in sam-
pling numbers. This is presented in Section 5. 
Third, given the code specification of a GUI, how to estimate its 
power consumption on an OLED display? This code-level model 
is important to GUI designers as well as application and system 
based energy management. We use the code specification to count 
pixels of various colors and calculate the power consumption of 
the OLED display. Our model guarantees over 95% accuracy for 
10 benchmark GUIs. This is presented in Section 6. 
To the best of our knowledge, this is the first public study that 
addresses the three research questions above. The modeling me-
thods presented here provide powerful mechanisms for operating 
systems and applications to construct energy-conserving policies 
for OLED displays. They will also enable GUI designers of mo-
bile systems to build adaptable and energy-efficient GUIs; and 
empower end users to make informed tradeoffs between battery 
lifetime and usability.  
The rest of the paper is organized as follows. We provide back-
ground and address related work in Section 2. We describe the 
experimental setup used in this study in Section 3. From Sections 
4 to 6, we present the power models and their experimental vali-
dations. We conclude in Section 7. 

2. BACKGROUND AND RELATED WORK 
How Display Works. Figure 1 illustrates the relationships be-
tween the display and the rest of the system. The main processor, 
or application processor, runs the operating system (OS) and 
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application software with GUIs. Note the windowing system can 
be either part of the OS, e.g. Windows, or a standalone process, 
e.g. X Window under Linux. the graphics processing unit, often 
including a graphics accelerator and a LCD controller in a system-
on-a-chip for mobile devices, generates the bitmap of the display 
content and stores it in a memory called frame buffer; the bitmap 
is sent to the display for displaying. Each unit of this bitmap is 
described using sRGB, or standard RGB, color space, in which a 
color is specified by ሺܴ, ,ܩ  ሻ, the intensity level of red, green andܤ
blue component. Because sRGB uses gamma correction to cope 
with the nonlinearity introduced by cathode ray tube (CRT) dis-
plays, the intensity level of each component and its corresponding 
luminance follow a nonlinear relation [7].  
OLED Display. Organic light-emitting diode or OLED [5, 8] is 
an emerging display technology that provides much wider view 
angle and higher image quality than conventional LCDs . The key 
difference in power characteristics between an OLED display and 
a LCD is that an OLED display does not require external lighting 
because its pixels are emissive. Each pixel of an OLED display 
consists of three types of devices, corresponding to red, green and 
blue components, respectively. Moreover, the red, green, and blue 
components of a pixel have different luminance efficacies. As a 
result, the color of a pixel directly impacts its power consumption 
and GUI has a significant impact on the display power. In con-
trast, color only has negligible power impact on LCDs and illumi-
nation of external lighting dominates. OLED displays and LCDs 
have a very similar organization, including a panel of addressable 
pixels, LCD or OLED, control circuitry that generates the control 
and data signals for the panel based on display content, and inter-
face to the graphics processing unit. In this work, we address the 
power consumption of the display and focus on the variance in-
troduced by the OLED panel. Our power models take input from 
different places of the system and can be implemented either as a 
software tool, an operating system module, or an extra circuit. 
We focus on the power consumption by a constant screen because 
of the following two reasons. First, a display spends most time 
displaying a constant screen, even for high-definition video that 
requires 30 updates per second. Second, our measurement showed 
that the power consumption by an OLED display during updating 
is close to the average of those by the constant screens before and 
after the updating. Therefore, the energy contribution by OLED 
display updating is very small and can be readily estimated from 
the power models of a constant screen. However, we note that 

screen updating may incur considerable energy overhead in graph-
ics processing unit, frame buffer, and data buses, which are out of 
the scope of this work. 
Related Work. HP Labs pioneered energy reduction for OLED 
displays [6, 9, 10]. Yet no real OLED displays were reported in 
the work. The power model employed was pixel-level, thus ex-
pensive to use, and incorrectly assumed a linear relationship be-
tween intensity levels of color components and power consump-
tion. As we will show, the relationship is indeed nonlinear. The 
IBM Linux Wrist Watch was one of the earliest users of OLED 
displays [11]. The work, however, did not employ or provide a 
power model for the OLED display. There is also a large body of 
work on energy optimization of conventional LCD systems [2, 4, 
12-23]. While many of the proposed techniques may be applied to 
OLED displays, they are orthogonal to the power modeling tech-
niques presented in this work. 

3. EXPERIMENTAL SETUP 
Benchmark GUI Images. To evaluate the proposed power mod-
els, we collect 300 GUI images from three Windows Mobile-
based cell phones, HTC Touch, HTC Mogul, and HTC Wizard, all 
with a resolution of QVGA (240×320). On each phone, we ex-
haust all the varying GUI screens, representative of everyday use 
of a smart phone (e-mail, web browser, games, etc). We also cap-
ture screens with different color themes available. 
Measurement Setup. For our experimental validation, we use a 
2.8” OLED QVGA display module with an integrated driver cir-
cuit, µOLED-32028-PMD3T, from 4D Systems [24]. We connect 
it to a PC using a micro USB interface, which also supplies power 
to it. Through the USB, we can send commands to the OLED 
module to display images. The display module employs a standard 
16-bit (5,6,5) RGB setting. That is, there are five, six, and five bits 
to represent the intensity of red, green, and blue component, re-
spectively. In this work, we call their numbers the intensity level 
or value of the three color components. 
We obtain the power consumption of the OLED module by mea-
suring the current it draws from the USB interface and its input 
voltage. Figure 2 shows the measurement setup with a DAQ board 
from Measurement Computing and the OLED module. To over-
come the variance among different measurements of the same 
image, we take an average of 1000 measurements for each image. 

4. PIXEL-LEVEL POWER MODEL 
We first present a pixel-level power model that estimates the 
power consumption of OLED modules based on the RGB specifi-
cation of each pixel. It is intended to be the most accurate and 
constitutes the baseline for models based on more abstract de-
scriptions of the display content. 

 

Figure 1. Display system in a typical mobile system. The three 
power models proposed require input of different abstrac-
tions and provide different accuracy-efficiency tradeoffs 
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Figure 2. Measurement setup of the QVGA OLED module 
used in our experimental validation 



Power Model of OLED Module. We model the power contri-
buted by a single pixel, specified in ሺܴ, ,ܩ  ሻ, asܤ

௣ܲ௜௫௘௟ሺܴ, ,ܩ ሻܤ ൌ ݂ሺܴሻ ൅ ݄ሺܩሻ ൅ ݇ሺܤሻ, 

where ݂ሺܴሻ , ݄ሺܩሻ and ݇ሺܤሻ are power consumption of red, green 
and blue devices of the pixel, respectively. And the power con-
sumption of an OLED display with ݊ pixels is 

ܲ ൌ ܥ ൅ ∑ ሼ݂ሺܴ௜ሻ ൅ ݄ሺܩ௜ሻ ൅ ݇ሺܤ௜ሻሽ௡
௜ୀଵ . 

Note that the model includes a constant, ܥ, to account for static 
power contribution made by non-pixel part of the display, which 
is independent with the pixel values. This pixel model has a ge-
neric form that applies to all the colorful OLED display modules. 
Power Models for RGB Components. We obtain ܥ by measur-
ing the power consumption of a completely black screen. To ob-
tain ݂ሺܴሻ, we fill the screen with colors in which the green and 
blue components are kept zero and the red component, ܴ, varies 
from 0 to 31, enumerating every possible intensity level. For each 
measurement, we subtract out ܥ to get just the power contribution 
by the red pixel component, or ݂ሺܴሻ. We obtain ݄ሺܩሻ and ݇ሺܤሻ 
similarly. Figure 3 (a) presents the measured data for all three 
components. Apparently, the power contribution by pixel compo-
nents is a nonlinear function, instead of a linear function as as-
sumed in [6], of the intensity level. The nonlinearity is due to the 
gamma correction in sRGB standard.  After transforming the in-
tensity level into linear RGB format, which is the indication of 
luminance, we obtain a linear relation between pixel power con-
sumption and intensity, as shown in Figure 3(b).  
The measured data can be directly used to estimate the power 
consumption of displaying an image on the OLED display 
through simple table lookup. One can also apply curve fitting to 
obtain close-form functions for ݂ሺܴሻ, ݄ሺܩሻ, and ݇ሺܤሻ. 
Estimation vs. Measurement. Figure 4 shows the histogram of 
the error of the estimation against the measurement for the 300 
benchmark images. It shows that 63% of the samples have no 
more than 1% error and 93% have no more than 3% errors. The 
average absolute error is only 1%. 
It is important to note that although we derived the pixel-level 
power model from a specific OLED display, the methodology can 

be largely extended to other OLED displays with a similar RGB 
organization. 

5. IMAGE-LEVEL POWER MODEL 
We next present models that estimate power consumption given 
the image to display. They are important for a system to assess the 
display power cost when the pixel information is known, e.g. from 
the frame buffer. A straightforward image-level model can be a 
simple application of the pixel-level model to all pixels. Such a 
method, unfortunately, is exceedingly expensive. Modern displays 
can have hundreds of thousands or millions of pixels. The cost of 
a large number of pixel power calculations and the overhead of 
accessing the frame buffer can be prohibitively high for the sys-
tem. Our solution to this problem is to estimate the power based 
on a small subset of pixels, or sampling. 

5.1 Problem Formulation 
The power consumption by an image on an OLED display can be 
described by a vector of ܰ elements, i.e., ݕ ൌ ሺݕଵ, ,ଶݕ … ,  ேሻ், inݕ
which ݕ௡  denote the power consumption of the ݅ -th pixel, 
݅ ൌ 1,2,… , ܰ . The total display power can be calculated as 
ݎ݁ݓ݋ܲ ൌ ૚்ݕ ൌ ∑ ௜ேݕ

௜ୀଵ . 
Sampling is to select ܭ pixels out of ܰ and use the average of ܭ 
samples to approximate the average of all ܰ pixels. For each pix-
el, we use a random variable to indicate whether this pixel is sam-
pled or not, i.e., ௜ܺ ൌ 1 when the ݅-th pixel is sampled; otherwise 
௜ܺ ൌ 0. Thus, the sampling of an image can be represented by a 

vector ܺ ൌ ሺ ଵܺ, ܺଶ, … , ܺேሻ் . And denote the joint probabilistic 
distribution of them as ௑݂ሺݔሻ ൌ ௑݂భ,௑మ,…,௑ಿሺݔଵ, ,ଶݔ … ,  ேሻ. Givenݔ
an image, ݕ, the estimation error can be calculated as 
 

ߝ ൌ ௑ܧ ൥ቆ
ݕ்ܺ
ܭ

െ
૚்ݕ
ܰ
ቇ
ଶ

൩ ൌ ௑భ,௑మ,…,௑ಿܧ ൥ቆ
∑ ௜ܺݕ௜௜ୀே
௜ୀଵ

ܭ
െ
∑ ௜௜ୀேݕ
௜ୀଵ

ܰ
ቇ
ଶ

൩ 

ൌ නቆ
∑ ௜௜ୀேݕ௜ݔ
௜ୀଵ

ܭ
െ
∑ ௜௜ୀேݕ
௜ୀଵ

ܰ
ቇ
ଶ

௑݂భ,௑మ,…,௑ಿሺݔଵ, ,ଶݔ … ,  .ݔேሻ݀ݔ

Therefore, an optimal sampling given the image can be obtained 
by finding ௑݂ሺݔሻ  that leads to the minimal ε, or ௑݂

ሻݔሺכ ൌ
arg min׊௙೉ሺ௫ሻ   . ߝ

Now, we consider all possible images by treating the power con-
sumption of an image as a random vector, ܻ ൌ ሺ ଵܻ, ଶܻ, … , ேܻሻ் , 
and denote the joint probabilistic distribution as ݃௒ሺݕሻ ൌ
݃௒భ,௒మ,…,௒ಿ ሺݕଵ, ,ଶݕ … , -ேሻ. Then the optimal sampling for all imݕ
ages can be found as ௑݂כሺݔሻ ൌ arg min׊௙೉ሺ௫ሻ   ሿ , i.e., findingߝ௒ሾܧ
a probability simplex ݌ ൌ ሺ݌ଵ, ,ଶ݌ … , ൻಿ಼ൿሻ݌

்  such that ܧ௒ሾߝሿ  is 
minimal, where ݌௝ ൌ ሺܾܺ݋ݎ݌ ൌ  ሺ௝ሻ is the ݆-th possibleݔ ሺ௝ሻሻ andݔ
combination of ܺ. This is a linear programming problem, i.e., 

 

 
Figure 3. Intensity Level vs. Power Consumption for the R, 
G, and B components of an OLED pixel  
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Figure 4. Histogram of percent errors observed for the 300 
benchmark GUIs using our pixel-level power model 
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minන෍ ௝݌ ቆ
∑ ௜ݔ

ሺ௝ሻݕ௜௜ୀே
௜ୀଵ

ܭ
െ
∑ ௜௜ୀேݕ
௜ୀଵ

ܰ
ቇ
ଶ

݃௒భ,௒మ,…,௒ಿሺݕଵ, ,ଶݕ … , ݕேሻ݀ݕ
ൻಿ಼ൿ 

௝ୀଵ
 

s.t. ∑ ௝௝݌ ൌ 1 and  ݌௝ ൒ 0 

It is, however, impractical to obtain the joint distribution 
݃௒భ,௒మ,…,௒ಿ ሺݕଵ, ,ଶݕ … , ேሻݕ , because the dimension is too high. 
Therefore, we transform the objective function to eliminate the 
join distribution as below. 

න෍ ௝݌ ൭
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ሺ௝ሻݕ௜௜ୀே
௜ୀଵ
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െ
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௜ୀଵ

ܰ
൱
ଶ

݃௒భ,௒మ,…,௒ಿሺݕଵ, ,ଶݕ … , ݕேሻ݀ݕ
ൻಿ಼ൿ 

௝ୀଵ
 

ൌ ௑ܧ ቈ൬
ܺ
ܭ
െ
૚
ܰ
൰
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െ
૚
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൰቉ ൌ෍ ҧܾሺ௝ሻܣ௝ܾሺ௝ሻ்݌
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in which ܣҧ ൌ ௒ሾ்ܻܻሿ and ܾ௜ܧ
ሺ௝ሻ ൌ ௫೔

ሺೕሻ

௄
െ ଵ

ே
, for ݅ ൌ 1,2,… , ܰ. 

Therefore, the key to an accurate estimation is to obtain a good 
knowledge of the expectation of outer products of all possible 
images, which can be statistically learned from a set of training 
images by using the mean of the outer products of the training 
images to approximate the expectation ܣҧ. 

5.2 Practical Learning-based Sampling 
There are two critical barriers for the practical implementation of 
the statistically optimal sampling. First, the linear programming 
problem described above is very difficult, if possible, to solve 
because of the extremely high dimension, i.e. ൻே௄ൿ  or N-choose-K. 
To address this issue, we divide the image into much smaller win-
dows, and then solve the linear programming problem for each 
window. By preparing a training set for the window at every posi-
tion within an image, we are able to obtain an optimal sampling 
solution for every window. Second, the solution requires generat-
ing a large number of random numbers, which is expensive for 
mobile embedded platforms. Therefore, instead of random sam-
pling, we decide to use deterministic sampling method in which 
we seek to solve a combinatorial problem to find the samples for 
each window such that ܾሺ௝ሻ்ܣҧܾሺ௝ሻ achieves the minimal. That is, 

min ቀ௑
௄
െ ૚

ே
ቁ
்
ҧܣ ቀ௑

௄
െ ૚

ே
ቁ  

s.t. ݔ௜ ൌ ∑ and ,0 ݎ݋ 1 ௜௜ݔ ൌ  ܭ

Another practical issue is the number of samples to take from 
each window, or K in the formulation above. Given a fixed sam-
pling rate, or the total number of samples, there are two strategies. 
One can increase the window size, therefore reduce the number of 
windows, but allow more samples per window. Or one can reduce 
the window size, therefore increase the number of windows, but 
allow fewer samples per window. The second strategy obviously 
is more efficient because the computational load increases much 
faster with the window size than with the number of samples per 
window. We also experimentally compared the accuracy of these 
two strategies. We found that there is no difference in accuracy 
between them. Therefore, we take the second strategy in our im-
age-level mode, i.e. a single sample is taken from each window. 

5.3 Experimental Results 
To evaluate our proposed learning-based sampling method 
(Learning-based), we compare its performance against three other 
sampling methods, described below.  

• Periodical sampling:  an image is divided into non-
overlapping windows of the same size, exactly the same as 
Learning-based sampling but the bottom right pixel of each 
window is selected. 

• Local Random sampling: one pixel is randomly selected 
from each window.  

• Global Random sampling: pixels are randomly selected from 
the whole image. The number of pixels is kept the same as 
the number of windows in the first three methods. 

Collectively these benchmark sampling methods will highlight the 
effectiveness of the design decisions made in Section 5.2. It is 
important to note that for learning-based sampling, we employ a 
bootstrapping method to improve the reliability of accuracy eval-
uation because training is involved. That is, we divide the 300 
benchmark images evenly into 10 groups, i.e. 30 in each. Then we 
use nine groups as training set and test the 10th group. We repeat 
the process 10 times using different groups as the test group and 
the report the average accuracy. 
We investigate the tradeoff between sampling rate and accuracy 
by varying the window size from 5×5, 10×10, 20×20, 40×40, to 
80×80. This leads to a sampling rate between 1/25 and 1/6400.   
Figure 5 (a) presents the tradeoffs between estimation error and 
window size over the 300 benchmark GUIs described in Section 
3. It clearly shows that as window sizes increases, or sample rates 
decreases, the estimation error increases, for all four sampling 
methods. Figure 5 (a) clearly shows that our learning-based me-
thod achieves the best tradeoffs between accuracy and sampling 
rate. When window size is 40×40 and a 1600 times reduction in 
pixels needed for power estimation, learning based sampling me-
thod achieves accuracy of 90%.  
Figure 5 (b) presents the run-time of all four sampling methods on 
a Lenovo T61 laptop with a Core 2 Duo T7300 2GHz processor 
and a 2GB memory. It clearly demonstrates the advantage in effi-
ciency of deterministic methods, i.e. Learning-based and Periodi-
cal. With the comparable accuracy, Learning-based sampling is at 
least three times faster than the random methods, both Global and 
Local. This will lead to significant efficiency improvement when 
the power model is employed in mobile embedded systems for 
energy management and optimization. 
In summary, our learning-based sampling method achieves the 
best tradeoff between accuracy and efficiency. We note that the 
learning-based method achieves this through training, which can 

 

 
Figure 5. Comparison of four different sampling methods
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be compute-intensive. However, training can be carried off-line 
and therefore does not consume any resource at run-time. 

6. Code-Level Power Model 
Both pixel and image-level models require that the RGB informa-
tion is available for all pixels of the display content. In this sec-
tion, we present a power model that is based on the code specifi-
cation of the display content. This is possible because graphical 
user interfaces (GUIs) are usually described in high-level pro-
gramming languages, e.g. C# and Java, and are highly structured 
and modular. The code-level model can be even more efficient 
than the sampling-based image-level power model because they 
do not need to access the frame buffer. Therefore, it can be readily 
employed directly by the application or the operating system. In 
addition, they also provide a tool for GUI designers to evaluate 
their designs at an early stage.  
We take an object-oriented approach because modern GUIs are 
composed of multiple objects, each with specified properties, e.g. 
size, location, and color. Moreover, GUI programming is also 
object-oriented. Developers rarely specify the graphics details; 
instead they extensively reuse a “library” of customizable com-
mon objects, e.g. buttons, menus, and lists. They customize these 
objects by specifying their properties and their relationship with 
each other within a GUI. Our methodology for code-based power 
modeling is first estimating power contribution by individual GUI 
objects based on their properties and then estimating the total 
power based on the composition of these objects. 

6.1 Power by GUI Object  
We can view a GUI object as a group of pixels with designated 
colors. By accounting the number of pixels with each color that 
appear in an object, we can obtain its power consumption using 
the pixel-level power model. To obtain the estimated power for 
the object, we enhance the object class with a pixel list property 
that records the ሺܴ, ,ܩ -ሻ values and pixel number ܰ of each colܤ
or. Therefore, by utilizing our pixel-level power model, we can 
calculate the power consumption of an object with ܭ colors as 

௢ܲ௕௝௘௖௧ ൌ ∑ ௜ܰ ൈ ௣ܲ௜௫௘௟ሺܿݎ݋݈݋௜ሻ௄
௜ୀଵ . 

In most cases, a GUI object only has three colors, i.e., border 
color, background color and foreground (text) color. All three can 
be obtained from the GUI object’s properties. Knowing the geo-
metric specification of the object, usually rectangular, we can 
calculate the number of pixels for both background and border 
colors. Then we create a pixel list of two entries for this object, 
which includes the ሺܴ, ,ܩ -ሻ  values of colors and their corresܤ
ponding pixel numbers. By extending the pixel list, we are able to 
handle more complicated objects with arbitrary shapes and more 
colors. 

Text is a special object property and needs a special treatment. 
Unlike the color information available from the object properties, 
the pixel number of text is not easy to obtain. Thus, we build a 
library for all the ASCII characters; the library contains the num-
ber of pixels of each character based on its font type and size. 
Thus, we are able to account the total number of pixels of a whole 
text string, which we should subtract from the background pixel 
number. For our experiments, we have constructed the library for 
Times New Roman and Tahoma of font sizes 12 and 9, which are 
the most common on Windows Mobile devices.  

6.2 Power by Composition of Objects 
A GUI usually consists of multiple objects. Simply aggregating 
the power of all of the objects is not accurate enough because they 
may overlap with each other. To consider the effect of overlap-
ping, we maintain a pixel list (ࡵࢁࡳ࢒࢖) for the whole GUI based on 
the pixel list of each objects. We first sort the objects from back to 
front in the GUI. Denote the sorted object list includes ࢔ objects 
…,૛ࡻ,૚ࡻ ,  with the sequence from the back to the front, and ,࢔ࡻ
the pixel list of ࢏ࡻ is ࢏࢒࢖. As shown in Figure 6, we go through all 
the objects one by one while checking their overlapping situation.  
If two objects overlap with each other, we update the pixel list of 
the object in the back by subtracting the number of pixels being 
covered. Finally, we merge all the pixel lists by combining the 
pixels with the same color together. We describe how we deal 
with two special effects of GUIs below. 
Dynamic Objects. Some GUI objects can have multiple states. 
For example, a radio button has two states, checked and non-
checked; a menu has even more states when different items are 
activated. For these objects, we maintain a pixel list for each state 
and treat each state as an individual object in the procedure de-
scribed above. 
Themes. Many operating systems support color themes that con-
tain pre-defined graphical details, such as colors and fonts, so that 
GUIs of different applications will follow a coherent style. For 
instance, in Windows Mobile and C#, BackColor and ForeColor 
can be either specified using ሺܴ, ,ܩ  ሻ or selected from a set ofܤ
pre-defined colors, such as Window and ControlText. These sys-
tem colors are determined by the theme of Windows Mobile. For-
tunately, the color and font information can be obtained in the 
GUI code in the runtime for power estimation.  

6.3 Experimental Results 
We have implemented the object-based power estimation on .NET 
Compact Framework and C#, for Windows Mobile-based mobile 
embedded systems. In C#, most GUI objects belong to namespace 
System.Windows.Controls. All objects provide height, width, and 
background color, which are enough for power estimation.  We 
use eight sample programs with 10 GUIs from the Windows Mo-
bile 5.0 SDK R2 to evaluate the implementation. Using code-level 
model, we estimate the power consumption of the 10 GUIs, and 
compare the results with the estimation from the pixel-level model 
and measurement. Figure 7 presents the results and shows that our 
code-level model with text achieves higher than 95% accuracy for 
all the benchmark GUIs. 

7. Conclusions 
In this work, we provided models for efficient and accurate power 
estimation for OLED displays, at pixel, image, and code levels, 
respectively. The pixel-level model built from measurements 
achieves 99% accuracy in power estimation for 300 benchmark 

for i = 2 to n  
        for j = 1 to i − 1 
                if Oi ∩ Oj ≠ Ø  
                        update(plj); 
                end 
        end 
end 
for k = 1 to n  
        plGUI = merge(plGUI, plk);  
end 

Figure 6. Power estimation for a composition of GUI objects  



images. By aggregating the power of a small group of pixels in-
stead of all the pixels in an image, our image-level power model 
reduces the computation cost by 1600 times, while achieving 90% 
accuracy in power estimation. Our code-level model utilizes spe-
cification of the GUI objects to calculate the power consumption, 
which guarantees 95% accuracy. 
The three power models we presented require different inputs and 
provide different tradeoffs between accuracy and efficiency. 
Therefore, we intend them for implementation and use at different 
system components. The pixel and image-level models are best 
for implementation in hardware or the operating system because 
they need to access the frame buffer. In contrast, the code-level 
model is best for implementation in application software or GUI 
development kits due to its dependence on knowing the composi-
tion of GUI object. All three models can provide power estimation 
for the system to better manage and optimize energy consumption, 
for the end user to make better tradeoffs between usability and 
battery lifetime, and for GUI designers to design energy-efficient 
GUIs. 
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Figure 7. Power estimation comparison 
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