
EXHIBIT O 

Apple Inc. v. Samsung Electronics Co. Ltd. et al Doc. 278 Att. 15

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/5:2011cv01846/239768/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2011cv01846/239768/278/15.html
http://dockets.justia.com/


AppLens and LaunchTile: Two Designs for One-Handed 
Thumb Use on Small Devices 

Amy K. Karlson, Benjamin B. Bederson 
Human-Computer Interaction Lab 

Computer Science Department 
Univ. of Maryland, College Park, MD, 20742 

{ akk, bederson}@cs.umd.edu 

John SanGiovanni 
Microsoft Research 

One Microsoft Way, Redmond, WA 98052 
johnsang@microsoft.com  

ABSTRACT 
We present two interfaces to support one-handed thumb use 
for PDAs and cell phones. Both use Scalable User Interface 
(ScUI) techniques to support multiple devices with different 
resolutions and aspect ratios. The designs use variations of 
zooming interface techniques to provide multiple views of 
application data: AppLens uses tabular fisheye to access 
nine applications, while LaunchTile uses pure zoom to 
access thirty-six applications. We introduce two sets of 
thumb gestures, each representing different philosophies for 
one-handed interaction. We conducted two studies to 
evaluate our designs. In the first study, we explored whether 
users could learn and execute the AppLens gesture set with 
minimal training. Participants performed more accurately 
and efficiently using gestures for directional navigation 
than using gestures for object interaction. In the second 
study, we gathered user reactions to each interface, as well 
as comparative preferences. With minimal exposure to each 
design, most users favored AppLens’s tabular fisheye
interface. 

Author Keywords 
One-handed, mobile devices, gestures, notification, Piccolo, 
thumb navigation, Zoomable User Interfaces (ZUIs). 

ACM Classification Keywords 
H.5.2. User Interfaces: Input Devices and Strategies, 
Interaction Styles, Screen Design; D.2.2 User Interfaces; 
I.3.6 Interaction Techniques 

INTRODUCTION 
The current generation of mobile computing hardware 
features a variety of devices for interaction with the system 
software. One such class of devices, typically referred to as 
“smartphones” , features a numeric keypad or miniature
thumb keyboard for input together with a screen for display 

output. These devices allow for single-handed interaction, 
which provides users with the ability to place calls and 
access information when one hand is otherwise occupied.  
However, because smartphones lack a touch-sensitive 
display, user interaction is constrained to a discrete set of 
keys, and thus the options for interaction design are limited 
to keypad-mapped functions and directional navigation. 
Another design approach, typically classified as a “Personal
Digital Assistant” (PDA) features a touch-sensitive display
surface designed primarily to be used with an included 
stylus. This design offers greater software design flexibility, 
but many of the small targets designed for a stylus are too 
small for fingertip actuation, making one-handed use 
difficult or impossible.  

Our goal is to create a new single-handed interaction 
system for both smartphone and PDA devices. In this work, 
we have focused on the problem navigating device 
applications, and have adopted two design strategies. The 
first leverages Scalable User Interface (ScUI) techniques 
[2,3] to allow the system to adapt to different screen 
resolutions as well as support both portrait and landscape 
device rotation. This architecture allows developers to 
create a single application that can target a wide variety of 
screen resolutions, and provides users with a consistent 
interface and interaction model across devices. We 
accomplish this using the University of Maryland’s
Piccolo.NET development toolkit for zoomable and 
scalable user interfaces [5,18]. 

Our second design strategy provides access to rich 
notification information from multiple applications. Most 
current PDA interfaces are designed for focused interaction 
with a single task or application, with limited consideration 
or display real estate allocated for notifications (e.g., email, 
appointment reminders) or monitoring of ambient 
information streams (e.g., stocks, sport scores). In our 
proposed designs, each application has a dynamic launch 
tile in the place of a static launch icon. This feature offers 
high-value at-a-glace information for several applications at 
once, as well as on-demand application launch when users 
desire more detailed information. 

In the work presented here, however, we limit our 
discussion of scalability and notification in favor of 
emphasizing the design features relevant to one-handed 

 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
Copyright 2005 ACM 1-58113-998-5/05/0004…$5.00.

201



interaction. We proceed by describing two designs: 
AppLens (characterized by zoom+fisheye) and LaunchTile 
(characterized by zoom+pan). The two approaches employ 
variations of zooming interface techniques [1] to overview 
several notification tiles, each roughly the size of a postage 
stamp. AppLens uses a tabular fisheye approach to provide 
integrated access to and notification for nine applications. 
LaunchTile uses pure zooming within a landscape of thirty-
six applications to accomplish the same goals.  

Fisheye and pure zoomable techniques both offer promise, 
but there are no clear guidelines as to when each approach 
should be used. Our approach in this work, therefore, has 
been to design and build the best interfaces we could with 
roughly the same functionality, and then compare and 
contrast the results. In this way, we hope to understand 
which design direction makes the most sense for this 
domain and to learn something about the trade-offs between 
the two approaches. 

For device interaction when using a touch-sensitive screen, 
both designs utilize a gestural system for navigation within 
the application’s zoomspace. While our designs do not
directly address one-handed text entry, they are compatible 
with a variety of existing single-handed text input 
techniques, including single- and multi-tap alphanumeric 
keypad input, as well as miniature thumb keyboards and 
unistroke input systems executed with a thumb (e.g., 
Graffiti [6], Quikwriting [17]). 

RELATED WORK 
Gestures have proven a popular interaction alternative when 
hardware alone fails to effectively support user tasks, 
typical of many nontraditional devices, from mobile 
computers to wall-sized displays [9]. Gestures can be very 
efficient, combining both command and operand in a single 
motion, and are space-conserving, reducing the need for 
software buttons and menus. However, the invisible nature 
of gestures can make them hard to remember, and 
recognition errors can negatively impact user satisfaction 
[15]. Recent research efforts pairing gestures with PDA-
sized devices have emphasized gestures based on changes 
in device position or orientation [10,21,28]. However, our 
work more closely resembles the onscreen gestures that 
have played a prominent role in stylus-based mobile 
computing (e.g., Power Browser [7]).  

Our thumb-as-stylus designs support usage scenarios in 
which only one hand is available for device operation, such 
as talking on the phone or carrying a briefcase. Although 
existing stylus-based gesture systems do not preclude the 
use of the thumb, we are not aware of any systems that have 
been specifically designed for the limited precision and 
extent of the thumb. The EdgeWrite [32] gesture-based 
stylus text entry system is particularly suited to mobile 
usage scenarios due to its use of physical barriers. 
EdgeWrite adaptation to one-handed mobile computing is 
compelling, but would require expanding the dedicated 
input area to accommodate thumb-resolution gestures.  

One handed device interaction has typically focused on text 
entry techniques, but beyond a numeric keypad, most one-
handed text entry systems require specialized hardware, 
such as accelerometers [25,30] or customized keyboards 
[16]. We instead address the more general task of system 
navigation and interaction, and restrict our designs to 
existing hardware. 

Commercial products have also emerged with related 
design goals. The Jackito PDA [14] supports thumb-only 
interaction, but presumes two handed use and is not gesture 
oriented. Lastly, Apple’s iPod is an elegant one-handed
interaction solution for audio play and storage [13], but is 
currently not designed for the type of generalized 
application interaction we propose. 

THE ZOOM+FISHEYE APPROACH: APPLENS 
AppLens provides one-handed access to nine applications, 
and is strongly motivated by DateLens, a tabular fisheye 
calendar [3]. We refer to AppLens as a “shell” application
for its role in organizing and managing access to other 
applications. 

Generalized Data Access Using Tabular Fisheyes 
Spence and Apperley [27] introduced the “bifocal display”
as one of the first examples of fisheye distortion applied to 
computer interfaces. Furnas extended the bifocal display to 
include cognitive perceptual strategies and introduced a set 
of analytical functions to automatically compute 
generalized fisheye effects [8]. Since then, fisheye 
distortion has been applied with mixed success across a 
variety of domains, including graphs [24], networks [26], 
spreadsheets [20], and documents [12,23].  

Bederson et al. [3] drew upon that work in developing 
DateLens, a space-conserving calendar for PDAs, which 
was shown to perform favorably for long-term scheduling 
and planning tasks when compared to a traditional calendar 
implementation. One of the strengths of DateLens was the 
pairing of distortion and scalability, which allowed the 
details of a single day to be viewed in the context of up to 
several months of appointment data. Also important was the 
design of effective representations for the variety of cell 
sizes and aspect ratios that resulted from tabular distortion. 
One drawback of DateLens, however, was that it required 
two-handed stylus interaction to actuate the small interface 
widgets. Our design extends the principles of DateLens to 
include one-handed thumb access and generalizes the 
approach for use across a variety of domains. 

We developed a scalable framework that provides a grid, 
tabular layout, and default views for cell contents at a 
variety of sizes and aspect ratios. We also developed a 
general API to make it simple for applications to be built 
within this framework; developers need only to replace a 
small number of cell views with representations that are 
meaningful within the target domain.  

202



      

 

   (a)                                                   (b) 

 

        (c)                                                (d)  

Figure 1. AppLens Zoom Levels: (a) Notification, (b) Full, 
(c, d) Context. 

AppLens Zoom Levels 
The AppLens shell (Figure 1) has been implemented within 
our generalized tabular fisheye framework, using a 3x3 
grid, and assigning one of nine applications to each cell. 
The support for tabular layout includes representations at 3 
zoom levels: Notification, Context and Full. 

Notification zoom distributes the available screen real estate 
equally among the 9 application tiles (Figure 1a). One tile 
(shown centered) remains reserved for settings, which can 
be used to configure the selection of applications which 
occupy the other 8 notification tiles. Generally, tiles at 
Notification size display high level static and/or dynamic 
application-specific notification information.  

Context zoom (Figure 1c) allocates roughly half the available 
display area to a single focus tile, compressing the remaining 
tiles according to a tabular fisheye distortion technique 
[3,20]. A tile at Context size typically appears much like a 
fully functional application, but selectively displays features 
to accommodate display constraints, and is not interactive. 
Tiles on the periphery of a Context zoom, called peripheral 

tiles, may be rendered quite differently depending on their 
position relative to the focus tile, which dictates whether the 
peripheral tile is a square, a wide-flat rectangle, or a narrow-
tall rectangle. To reduce visual overload, peripheral tiles are 
displayed at 40% transparency. The contents of distorted 
peripheral tiles are not themselves distorted, but rather 
change representation to provide the most meaning in the 
space available.  

The third and final Full zoom level expands a tile to a fully 
interactive application that occupies 100% of the display 
(Figure 1b). 

Gesture-Based Cursor Navigation 
Existing application designs for PDAs are often inappropriate 
for one-handed use due to their reliance on screen regions 
that typically cannot be reached while maintaining control of 
the device (e.g., accessing the Start menu in the upper left-
hand corner of a display while holding the device in the right 
hand), and the use of standard widgets that are too small for 
reliable thumb use (e.g., radio buttons, checkboxes, and on-
screen keyboards). In support of traditional designs, AppLens 
uses an object cursor to identify the on-screen object that is 
the current interaction target.  The cursor is depicted as a 
dynamically-sized rectangular orange border that users move 
from one on-screen object to another via command gestures. 
Cursors are not new to PDA interface design: the WebThumb 
[31] web browser includes a similar notion of cursor, but 
which is controlled via directional hardware, and others [29] 
have explored device tilting to manipulate PDA cursors. 

Neither the cursor nor gestures interfere with the most 
common stylus interactions of tap and tap+hold. Although 
gestures do overlap stylus drag commands, dragging is rarely 
used in handheld applications and could be distinguished 
from gestures by explicitly setting a gesture input mode. 

We established a core set of commands that would allow 
users to navigate applications using only the input cursor. 
Our command language supports directional navigation (UP, 
DOWN, LEFT, RIGHT) as well as two widget interaction 
commands: one equivalent to a stylus tap (ACTIVATE), and 
the other which negates widget activation (CANCEL), 
equivalent to tapping the stylus outside the target widget. We 
also include the convenience commands FORWARD and 
BACKWARD, equivalent to TAB and SHIFT-TAB on Windows 
PCs. 

Command Gestures 
Our use of gestures is motivated by Hirotaka’s observation
that the button positions on cell phones require interaction 
using a low, unstable grip [11]. PDA joysticks face a similar 
drawback in that they are typically located along the lower 
perimeter of the device. AppLens avoids this problem since 
its gestures can be issued anywhere on the screen. Each 
AppLens gesture is uniquely defined by a slope and 
direction, or vector, which allows gestures to be robust and 
highly personalizable; users can issue gestures of any length 
(beyond an activation threshold of 20 pixels) anywhere on 

203



the touch-sensitive surface. This flexibility lets users interact 
with our designs using the grasp that provides maximum 
stability in a mobile scenario. 

            

 

Figure 2. Screen area            Figure 3. The gesture set. 
accessible with one hand. 

We based the gesture set on the limited motion range of 
thumbs (Figure 2), with the goal of creating a gesture 
language that could be learned with minimal training. After 
informally experimenting with a variety of gestures, we 
developed a simple set of gestures with the aim of 
maximizing memorability and robustness of execution 
(Figure 3). We assigned the directional commands UP, DOWN, 
LEFT and RIGHT to spatial gestures that map directly to their 
function. We assigned ACTIVATE and CANCEL to the two 
gestures defined by pivoting the thumb from bottom to top 
and top to bottom respectively. We made these assignments 
both to reinforce their opposing relationship as well as for 
ergonomic ease in issuing common commands. Finally, we 
assigned the upper-left to lower-right diagonal to FORWARD 
due to its relative forward nature, and by similar reasoning, 
the reverse gesture to BACKWARD.  

The eight gesture commands can also be activated with a 
numeric keypad by mapping each to the key corresponding to 
the gesture endpoint: 1-BACKWARD, 3-ACTIVATE, 7-CANCEL, 
and 9-FORWARD. Since smartphones have a joystick that can 
be used for directional navigation, the keypad-to-command 
mapping is not necessary, but can be assigned as follows: 2-
UP, 4-LEFT, 6-RIGHT and 8-DOWN. 

Using Command Gestures within AppLens 
Users navigate between AppLens zoom levels using 
ACTIVATE and CANCEL gestures. As a rule, the ACTIVATE 
gesture behaves as a stylus tap on the current cursor target, 
thus its effects are target-specific. Since application tiles are 
non-interactive at Notification and Context zoom levels, the 
ACTIVATE gesture simply zooms in, animating the layout first 
from Notification to Context zoom, and then to Full zoom. 
Once at Full zoom, the input cursor transitions to the objects 
within the application, at which point the command gestures 
affect the current target widget. The CANCEL command 
negates the effects of the ACTIVATE command. At Full zoom, 
the effects of the CANCEL command depend on the location 
of the cursor and the state of its target. The CANCEL 
command will first deactivate an active target. If the current 
target is not in an active state, CANCEL will cause the 

application tile to animate from Full zoom to Context zoom, 
and if issued again, to Notification zoom. 

 

      (a)                                               (b) 

      

 

(c)  (d) 

Figure 4. Three LaunchTile zoom levels: (a, b) Zone, (c) 
World, (d) Application 

THE ZOOM+PAN APPROACH: LAUNCHTILE 
Our second design, LaunchTile proposes another way to 
interact with a grid of notification tiles. The primary shell of 
the LaunchTile design is an interactive zoomspace consisting 
of 36 application tiles, divided into 9 zones of 4 tiles each 
(Figure 4c). The 36 tile configuration is an exploration of the 
maximum number of applications that can reasonably fit 
within the display space. Since the design is fundamentally 
scalable, however, it can display any number of tiles up to 
36, and fewer may even be preferable. As a central design 
element, LaunchTile uses a large blue onscreen button, called 
Blue (Figure 4a), to unify the shell and applications with a 
consistent visual metaphor. Blue provides a consistent point 
of reference for zooming and panning navigation, with 
onscreen tiles, menus, and functions maintaining a consistent 
relative position to Blue. The LaunchTile zoomspace consists 
of 3 zoom levels: World (36 tiles, Figure 4c), Zone (4 tiles, 
Figures 4a and b) and Application (1 tile, Figure 4d). 

204



Zone View 
The Zone view of LaunchTile divides the screen area into 4 
equally-sized application tiles (Figure 4a). To view other 
tiles, the user pans the zoomspace to neighboring 4-tile 
clusters, called zones. The zones are arranged as a 3x3 grid, 
each associated with a numerical designator from 1 to 9 as on 
a conventional telephone keypad. Zone 5 is the center zone, 
which defines the Home screen, and shows the 4 highest 
priority notification tiles, as configured by the user.  

Panning Techniques 
To support various input hardware and styles of interaction, 
there are several ways to pan the zoomspace within Zone 
view. If the device has a multidirectional control joystick, the 
user can push it in the direction of the targeted zone. From 
the Home screen, the 16 tiles in zones 2, 4, 6, and 8 are only 
a single tap away. As many directional pads do not support 
diagonal action, the 16 additional tiles in the corner zones 1, 
3, 7, and 9 are two taps away. Alternatively, if the device has 
a touch-sensitive display, the user can use his or her thumb 
directly to drag the zoomspace. Dragging is performed “on
rails” , permitting the user to drag vertically and horizontally,
but not diagonally. Although the zoomspace moves with the 
thumb during dragging, Blue remains centered and 
stationary. Because only one instance of Blue exists within 
Zone view, each zone is depicted with an empty center hub 
during dragging. Upon thumb release, the zoomspace 
animates to align Blue with the closest zone’s empty hub.
The visual and automated guidance ensures the user is never 
caught between zones. 

Within each 4-tile zone, indicator widgets communicate the 
user’s relative location within the zoomspace. The indicator
has two components. First, directional arrows show where 
other zones are. If users only see indicators pointing up and 
right, they know they are in zone 7. Small blue dots featured 
with the arrows represent the location of all zones not 
currently in view. The blue dots could also be used to 
indicate an alert or status change in a neighboring zone, 
though this feature was not implemented in our prototype. 
The final way to pan the zoomspace is to tap the directional 
indicator itself. An oversized hit target ensures that the user 
can easily hit the indicator without using a stylus. 

Zooming Out to the World View 
From any one of the nine 4-tile Zone view zones, the user 
may tap Blue (or press the 5 key) to zoom out to view the 
entire 36-tile zoomspace (Figure 4c). Since all 36 tiles are 
visible at once, this view reduces each tile to a small icon. 
From this World view, the user can easily see the absolute 
location of each tile, as well as monitor all applications at 
once. In the World view, the display is divided into a grid of 
9 hit targets, each mapping to a 4-tile zone. Single-tapping a 
zone animates to Zone view, displaying the zone’s 4
notification tiles. 

Zooming In to an Application 
The user taps any of the 4 notification tiles within Zone view 
to launch the corresponding application. An animated zoom 
draws the zoomspace toward the user until the target 
application fills the entire display (Figure 4d). If the device 
has only a numeric keypad (no touchscreen), the user presses 
the numeric key in the corner that corresponds to the zone. 
Pressing 1 launches the upper left tile, 3 launches the upper 
right, 7 launches the lower left, and 9 launches the lower 
right. This technique provides quick, single-tap access to 
each visible tile, and was inspired by ZoneZoom of Robbins 
et al. [22]. 

As the system zooms, Blue stays in view and retains its 
function as a central point of reference (Figure 4d). 
Application menu commands are represented as on-screen 
buttons clustered around Blue, now positioned at the bottom 
of the display. Each menu button displays a numeric label, so 
that mobile phone users may activate each menu by pressing 
the corresponding number on the keypad. A visual indicator 
to the left of the zoomspace animates during interaction to 
reflect the user’s current absolute zoom level within the
LaunchTile environment. 

Zoom Control 
Pressing Blue typically moves the user deeper into the object 
hierarchy, while a dedicated Back button moves the user up 
the hierarchy. In the Zone view however, Blue toggles 
between Zone view (4 tiles) and World view (36 tiles). Once 
an application is launched, three dedicated software buttons 
along the top edge of the screen support inter- and intra-
application navigation (Figure 4d). A green Home button 
immediately zooms the view out to the Home screen. There 
is also a Back button on the upper right edge of the screen, 
and another global command key. The placeholder for this 
function in our prototype is an icon for voice command and 
control. On a non-touchscreen device, Back and Home 
commands are executed with dedicated physical buttons, 
such as those provided on a smartphone. 

Application-Level Interaction 
Although the original focus of our designs was on the 
application “shell” , we extended the LaunchTile interaction
philosophy to the application level, where we sought to make 
interaction consistent with navigation among the application 
tiles. Several gestures have been designed to specifically 
support one-handed navigation and item selection within 
applications. Previously, others have demonstrated that for 
direct-manipulation interfaces, a grounded tap-drag-select-
release technique is more accurate than a tap-to-select [19]. 
We therefore made all LaunchTile tap-to-select targets large 
enough for thumb activation. In cases when limited display 
real estate necessitates smaller targets, the central Blue 
widget serves as a moveable tool glass which can be 
positioned over the target object (e.g., email header, message 
text). The large thumb-friendly drag target is offset below the 
selection area to prevent the user’s thumb from occluding the
target. Alternatively, the user can drag the application 

205



contents, such as to pan a map, scroll a list of email, or 
navigate to text outside the view area. Together, these two 
interaction techniques permit the user to address a large 
application content space, yet bring focus to a target much 
smaller than a finger. Alternatively, a non-touchscreen user 
uses the multidirectional joystick to position the selection 
area on the screen. Keys 2 and 8 are used for page control up 
and down, and 4 and 6 can be either menu items or horizontal 
page control, as appropriate. 

Once the targeted item is in the tool glass selection area, a tap 
on Blue (or pressing the 5 key) activates the item, which may 
either draw the user further into the application (e.g., open an 
email), or may replace the application menus with a context-
sensitive menu clustered immediately around Blue. As with 
the application menus, keys on a numeric keypad execute 
context menus according to their positions relative to Blue. 
At this point a second tap on Blue sends the user to the 
deepest level of the zoomspace, text input. At this level, a 
modular text input object called an InputTile appears around 
the selection area for alphanumeric input. Alternatively a 
mini qwerty keyboard may be used for directly entering text. 
With this design, a double tap on Blue while text is selected 
will bypass the context menu and take the user directly into 
text edit mode. 

IMPLEMENTATION 
The AppLens and LaunchTile prototypes have been built 
using the University of Maryland’s PocketPiccolo.NET
development toolkit for Zoomable User Interfaces (ZUIs) 
[5,18]. Although the primary development and test platform 
has been the HP iPAQ PocketPC running Microsoft 
Windows Mobile 2003, both run unmodified on the iMate 
Smartphone II running Windows Mobile Smartphone 2003 
(Figures 1d and 4b respectively). 

Although the core architecture and gesture recognition for 
each shell has been implemented, applications have been 
simulated with images. This has allowed us to put designs 
that are faithful to the look and feel of each shell in the hands 
of users for early feedback, but falls short of full interactivity. 
However, because LaunchTile design principles extend to the 
applications themselves, we have prototyped email and 
mapping as two interactive examples within LaunchTile. 

STUDIES 
We conducted two studies to inform future research 
directions. The first study explored whether users could learn 
and perform the AppLens gesture set with only minimal 
training. The second was a formative evaluation which 
gathered user reactions to each shell design, as well as users’
comparative preferences. 

APPLENS GESTURE STUDY 
A significant difference between the gesture designs of each 
shell is that all gestures in LaunchTile are direct 
manipulation, while all gestures in AppLens are remote-
control commands. In LaunchTile, users physically drag 
objects with their thumbs, be it the zoomspace, a tool glass, a 

map, or a list of email headers. In AppLens, gestures only 
affect the cursor target, rather than the objects over which the 
gesture is performed. The success of AppLens therefore 
depends as much on the utility of the tabular design as the 
ability for users to execute the gesture command set. 
Participants were tested on gesture execution performance 
and efficiency in navigating an information space. 

PARTICIPANTS: 20 participants (12 male, 8 female) were 
recruited from the general population with the only selection 
criteria being that participants were right-handed. The 
median participant age was 30, and although 12 of the 
participants considered themselves advanced computer users, 
only 6 regularly used a PDA. 

   

                (a)                               (b)                              (c) 

Figure 5. Example gesture study environment states: (a) the top 
level, (b) the third level after ACTIVATE is performed on 6.5, 

(c) highlighting within a cell. 

MATERIALS: The study was run on an HP iPAQ measuring 
4.5x2.8x0.5 inches with a 3.5 inch screen. We constructed a 
software test environment modeled after AppLens: a 
hierarchical tabular information space, with each level in the 
hierarchy represented by a 3x3 grid of equal-sized cells, 
numbered 1-9 like a phone keypad. For the experiment, the 
hierarchy was limited to 5 levels and Context zoom was 
eliminated so that activating a cell animated the display to the 
next level. Cell contents served as navigational landmarks, 
each labeled with a hierarchical address constructed by 
prepending the cell’s local logical number (1-9) with its
parent’s label, separated by a dot (Figure 5b and 5c). We
reserved an area at the top of the screen for task instructions, 
and disabled tapping to restrict input to gestures alone. 
Gestures retained their meaning from AppLens: Navigational 
gestures LEFT, RIGHT, UP and DOWN controlled the movement 
of an orange rectangular cursor within a level; ACTIVATE 
zoomed in to the next level and CANCEL zoomed out to the 
previous level. Within the context of the test environment, 
FORWARD and BACKWARD were used for intra-cell selection, 
allowing participants to cycle a highlight either forward or 
backward through cell label digits (Figure 5c). Highlighted 
digits could then be bolded or “activated” using the
ACTIVATE gesture or un-bolded or “deactivated” using the
CANCEL gesture. Participants were provided with a reference 
sheet that described the hierarchical information space and 
labeling scheme, as well as the eight gestures to be used for 
navigation and interaction. 

206



TASKS: Participants performed two types of tasks. Gesture 
tasks required users to perform a gesture when presented 
with the associated command name. Navigation tasks 
required participants to navigate to a particular cell in the 
hierarchy, and/or to activate or deactivate a cell label digit. 

MEASURES: Application logs recorded task time, the 
gestures performed for each task, and whether the task was 
completed successfully. Participants were instructed to press 
a hardware button between tasks, which served to record task 
time and advance to the next task. Due to a bug in our 
logging software, task time was recorded at second rather 
than millisecond resolution. However, since our goal was to 
identify performance trends rather than comparison to 
another input method, one second resolution was sufficient. 
Participants rated their experience using five nine-point 
Likert scales: frustrating satisfying, hard to learn – easy to
learn, hard to use– easy to use, slow – fast, and boring – fun.

PROCEDURE: After reading a description of the test 
environment and gestures, participants performed 16 practice 
tasks similar in nature to those in the navigation task phase. 
Participants practiced for 5-10 minutes. 

After the practice phase, participants performed gesture 
tasks: presented with a command name, participants 
performed the associated gesture and pressed a hardware 
button to advance to the next task. Command names were 
presented to participants in random order, four times for each 
of the eight commands. The gesture reference sheet was 
placed face down so that the administrator could record the 
number of times it was referred to. 

The second test phase required participants to perform goal-
directed tasks within the information space. These included 
(N)avigation (“Navigate to 6.5.4”), (A)ctivation (“Activate
the 5 in 6.5.4”), (NA)vigation+activation (“Activate the 2 in
4.3.2”), and (C)ancellation (“De-activate all digits in 4.3.2” )
tasks. Participants then recorded their subjective ratings of 
the interaction experience. Some participants completed the 
study in as little as 15 minutes, most within 30 minutes, and 
none required more than 40 minutes. 

Results 
In the gesture phase of the study, participants correctly 
performed gestures an average of 87% of the time. By 
gesture type, participants correctly performed directional 
gestures 93% of the time, but had more difficulty with 
diagonal gestures ACTIVATE and CANCEL at 88% and 85% 
respectively. BACKWARD and FORWARD had the worst 
success rate, at 70% and 64% of the time respectively. Time 
to perform gestures followed a similar trend. On average, 
participants required 2.4 seconds to perform each gesture: 1.5 
– 1.7 seconds for directional gestures, 2.6 – 2.8 seconds for
ACTIVATE and CANCEL gestures, and 3.6 – 3.7 seconds for
BACKWARD and FORWARD gestures respectively. Neither 
measure correlated with computer or PDA experience. 
Although we tallied the number of times that participants 
looked at a reference sheet, we assumed that the acts of page-

flipping and answer-searching have been reflected in the task 
time, and thus did not analyze this data further.  

Gesture Efficiency

0

5

10

15

20

25

30

35

Task Name

Bottom Third

Middle Third

Top Third

Optimal

 

Figure 6. Average number of gestures per task, by performance 
tier, compared with the optimal.  

The second test phase evaluated accuracy and efficiency for 
goal-directed navigation tasks. The average task success rate 
was 95%. While both navigation and navigation+activation 
tasks were performed with 98% accuracy, activation was 
close behind at 96%. Cancellation tasks, however, were only 
completed correctly 83% of the time. On average, 
participants performed 2.4 additional steps than the optimal 
number to complete a task. Breaking participants into three 
performance groups for each task, it is clear that one third of 
participants performed nearly optimally on all but a few tasks 
(Figure 6). The Middle third of participants performed 
comparably to the Top  third, but the gaps were wider on the 
tasks the Top third had trouble with. That is, the tasks for 
which the Middle third deviated farthest from Optimal, were 
those for which the Top-tier also deviated. Thus, the most 
significant difficulties in performing the navigation phase 
tasks were experienced by only a third of the participants.  

The average subjective rating for each of our 5 satisfaction 
measures, on a scale of 1-9 where 9 was positive, fell within 
a 1 point span of one another, between 5.9 (satisfying) and 
6.75 (fun). 

Analysis 
Because the gesture phase of the study did not distinguish 
between errors of recall and execution, we could not classify 
the reasons for error. Analyzing the log files, it is safe to say 
that errors of both types occurred. The low error and speed 
measures for directional navigation support our hypothesis 
that the directional gestures have an intrinsic spatial mapping. 
Presumably, this mapping contributes to better learnability, 
more reliable execution, and lower cognitive demand. The 
positive jump in execution speed for the other four gestures is 
unsurprising when we consider that the mappings between 
gesture and command are more abstract than the directional 
mappings, and likely require more cognitive effort to perform 
the mental transformation. This alone does not explain the 
associated increase in error rate, but insights from Long’s
work on gesture similarity [15] suggest that users may 
perceive the diagonal gestures as similar and therefore more 
difficult to learn. 

207



The difference in performance data between ACTIVATE and 
CANCEL vs. BACKWARD and FORWARD may be attributed to 
the more physically challenging nature of the latter two, but 
may also be due to disproportionate practice time received, 
considering a single navigation task provided more 
opportunities to issue ACTIVATE and CANCEL gestures than 
intra-cell activation tasks provided for FORWARD and 
BACKWARD. These intuitions also help explain the efficiency 
results – users were more successful and efficient in pure
navigation tasks which contained a proportionally large 
number of directional gestures compared with intra-cell 
activation/cancellation tasks. The relative complexity of the 
gesture navigation environment may have confounded the 
results by inflating the efficiency measures, but we feel that it 
also made the results more relevant to the AppLens design. 

APPLENS AND LAUNCHTILE FORMATIVE STUDY 
Due to the early nature of our interfaces, their shared design 
principles, and our goal of distilling a unified design, we 
conducted a formative study to understand usability issues 
for new users of each shell design and to elicit general 
reactions and comparative preferences. 

PARTICIPANTS: We recruited ten participants (8 male, 2 
female) from a local private scientific research center. Three 
participants were in their 20s, five in their 30s, and two were 
40 or older. While all participants considered themselves 
advanced computer users, four used PDAs regularly, and 
four had never used a PDA. 

MEASURES: Participants provided subjective design-
specific and comparative reactions to AppLens and 
LaunchTile through think aloud and verbal questionnaires. 

MATERIALS: The shell prototypes were run on the same 
hardware used in the first study. A one-page document 
described the AppLens design and gestures set, followed by a 
list of eight associated tasks. A two-page document described 
the LaunchTile design and methods for navigation and 
interaction, followed by a list of 11 tasks. 

TASKS: For each interface, participants performed tasks 
which were designed to exercise the full range of navigation 
and interaction features. For example, LaunchTile tasks 
included navigating to specific zones, finding specific 
applications, and opening and editing an email message. 
AppLens tasks included navigating to specific application 
tiles, and answering questions about application content. 

PROCEDURE: Study participants were introduced to each 
design by reading its design document and performing each 
of the related tasks. During the tasks, the test administrator 
recorded think aloud reactions and usability observations. 
After task completion, the administrator recorded answers to 
open-ended questions related to the interaction, such as likes 
and dislikes, features that were easy or hard to use or learn, 
and comfort level. The same procedure was repeated for the 
second interface. The administrator balanced the order of the 
interfaces among participants. After interacting with both 
interfaces, participants were asked comparative preference 

questions. We limited each user session to 45 minutes, 
allotting roughly fifteen minutes to each interface, and the 
final fifteen for comparative feedback. 

Results 
Reactions to AppLens were quite consistent across 
participants. Because only one question in the study focused 
on a specific interface design feature (Context view), we 
regard commonality in participant responses indicative of the 
highest-impact interface characteristics. We report here on 
the strongest trends in opinion. Half the participants 
commented that they liked the Notification view and the 
ability to access all nine application tiles within both 
Notification and Context views. Even though two participants 
found nothing redeeming about Context view, all others 
found it useful at least some of the time. Seven participants 
found application navigation easy and enjoyable, but 
performed the majority of navigation using tapping rather 
than gestures. Even so, participants were required to use 
gestures to zoom out from Full zoom, and two participants 
particularly liked the gestures. Five participants agreed that 
the gestures were the most difficult aspect of the interface, 
but disagreed on why, citing confusion over the gestures for 
zoom-in vs. zoom-out, difficulty performing the ACTIVATE 
gesture, difficulty with directional navigation, and frustration 
due to misrecognition. All participants found AppLens both 
easy to learn and effective for navigating among applications, 
all but one found one-handed use comfortable, and six out of 
seven participants stated they would prefer AppLens over 
their most familiar PDA operating system. 

Perhaps due to the richness of the LaunchTile environment, 
reactions were mixed and more complex. Nearly half the 
participants reacted positively to the aesthetics of 
LaunchTile, and specifically to Blue. Seven participants 
appreciated the volume of information available through the 
two zoom perspectives World and Zone, while six thought 
that zooming between those perspectives was one of the 
easiest aspects of the interface. The majority (7) of 
participants felt comfortable using one hand to perform the 
tasks, and eight felt they were able to effectively navigate 
among applications, primarily by tapping via World view. 

Surprisingly, a majority (7) of participants had difficulty 
panning by dragging within LaunchTile, commenting most 
often that it was unintuitive, but also that it was slow. This 
subset of participants was slightly skewed toward 
participants who used the LaunchTile interface first, and thus 
would not have been biased by experience with the AppLens 
directional gestures. Six participants struggled with the multi-
modal nature of Blue, unsure about its role in different 
contexts, especially within applications. A related problem 
was that of differentiating between the roles of the Home, 
Back, and Blue buttons from within an application. Most of 
the participants were tentative and had difficulty performing 
tasks within the email application. Ultimately, participants 
were evenly divided (3 vs. 3) about whether they would 

208



choose to use LaunchTile for their own application 
management - half as many as chose AppLens. 

Comparing the two interfaces, most participants recognized 
the trade off between the number of applications that could 
be viewed at once and the amount of information conveyed 
for each, yet seven out of nine participants thought AppLens 
provided better at-a-glance value. Although nearly half the 
participants were reluctant to compare the speed of 
information access between the two interfaces due to the 
differing amounts of information available, seven out of nine 
participants thought AppLens supported faster data access, 
presumably due to a better balance between the number of 
applications and the presentation space available for each. 
Additionally, AppLens was considered easier to use (7 out of 
9), and 8 out of 9 would prefer AppLens for use on their own 
device. In response to our general question about the utility 
of one-handed use, 7 participants thought one-handed 
interaction would be useful at least some of the time, with 3 
of those stating an a priori preference for one-handed use in 
all situations. However 2 participants expressed that they 
would never want to use a PDA with one hand, regardless of 
the interface design. 

DISCUSSION 
Two notable themes emerged from the comparative study. 
The first was the participants’ reluctance to use gestures.
Results from the first study suggested that directional 
gestures can be learned quickly, yet for both interfaces, users 
favored tapping targets over issuing gestures. While this 
trend may simply be a training issue, it may also be an early 
warning sign for the adoptability of overlay gesture systems - 
those that share the same real estate as the interface objects 
themselves. Second, a large number of users commented on 
the perceived utility of the simultaneous display of high-
value content from multiple applications, bolstering our 
intuition that flexible notification-based designs may provide 
an effective balance between functionality and content within 
the real estate constraints of handheld computing. 

While AppLens appeared to be the preferred design, we must 
take care in assigning reasons for the preference. First, 
AppLens is a simpler design and a shallower prototype than 
LaunchTile. Its appeal may have been that users felt 
proficient and better able to manage 9 applications (versus 
36) with minimal use. Its simplicity also made AppLens less 
prone to the performance limitations of the target hardware, 
which noticeably impacted LaunchTile zooming quality. 
However, more experience with the two designs might have 
tipped the scales the other way, as Bederson has pointed out 
in [4] that even complex interfaces have the potential to be 
highly satisfying after users have expended the effort to 
become experts. A vocal minority of expert PDA users who 
much preferred LaunchTile supported this possibility, citing 
the large number of applications and configurable layout as 
very attractive features. Thus a different participant 
population may have offered different opinions. While we do 
not consider LaunchTile in this class of expert interface, 

clearly 15 minutes is not sufficient for users to become 
proficient with the variety of interaction techniques supported 
by the interface.  

In [4] Bederson hypothesizes that user satisfaction is related 
to how well an interface supports “flow”, which correlates
inversely to the degree to which an interface gets in the way 
of, or interrupts, user tasks. Blue is an example of a 
LaunchTile feature that interrupts flow: it performs different 
functions in different contexts, requiring users to keep track 
of the system state to predict the outcome of tapping Blue. 
This type of functional overloading is a well-known design 
issue, but is commonly used nonetheless. For example, both 
the Microsoft and Apple desktop media players use a single 
button for both Play and Pause. Just as with LaunchTile, 
these designs compromise simpler mappings in favor of a 
visually simpler design. The difference, however, is that both 
media players change the button icon to reflect the current 
state (i.e., the function the button will perform when pressed) 
so that users don’t have to remember the state or deduce the
state from less obvious cues. A similar adaptation for Blue 
may reduce or even eliminate user confusion in the 
LaunchTile design. 

CONCLUSION 
Based on our participants’ strong interest in one-handed PDA
use, and generally positive reactions to their interaction 
experiences, we are convinced of the value of research in 
one-handed designs, and believe notification plays an 
important role in effective utilization of limited real estate. 
We have less evidence of the utility of design scalability 
beyond being an engineering convenience. Although we have 
demonstrated the feasibility of transferring both interfaces to 
smartphones, we do not know whether the designs support 
smartphone usage scenarios. With respect to command 
gestures, we are encouraged by the modest yet positively 
skewed satisfaction ratings for gesture interaction as well as 
what we consider very reasonable performance for both 
directional gesture execution and navigation tasks. It’s clear,
however, that the introduction of two additional diagonal 
gestures degrades performance and confuses users. We will 
need to explore whether AppLens can be an effective 
interface without these additional commands, or whether a 
different mapping of commands to gestures or on-screen cues 
can make the full set of gestures as reliable and learnable as 
directional gestures seem to be. Finally, we anticipate that 
extended usage studies with wider populations will unearth 
more subtle usability issues. With refinement, we hope a 
single design will emerge to provide a consistent, flexible 
environment designed for single-handed use. 

ACKNOWLEDGMENTS 
We appreciate François Guimbretière’s early suggestion of
considering the ergonomics of human thumbs, and thank 
Aaron Clamage for his rapid efforts in porting Piccolo.NET 
to small devices so we could build these prototypes. 

209



REFERENCES 
1. Bederson, B. B., Meyer, J. and Good, L. Jazz: An 

Extensible Zoomable User Interface Graphics Toolkit in 
Java. Proc. UIST (2000), 171-180. 

2. Bederson, B. B. PhotoMesa: A Zoomable Image Browser 
using Quatnum Treemaps and Bubblemaps. Proc. UIST, 
ACM Press (2001), 71-80. 

3. Bederson, B. B., Clamage, A., Czerwinski, M. and 
Robertson, G. DateLens: A Fisheye Calendar Interface 
for PDAs. ACM Trans. Comput.-Hum. Interact. 10, 4 
(2003). 

4. Bederson, B. B. Interfaces for staying in the flow. 
Ubiquity 5, 7 (2004). 

5. Bederson, B. B., Grosjean, J. and Meyer, J. Toolkit 
Design for Interactive Structured Graphics. IEEE Trans. 
Soft-Eng. 30, 8 (2004), 535-546. 

6. Blickenstorfer, C. H. Graffiti: Wow! Pen Computing 
Magazine (1995), 30-31. 

7. Buyukkokten, O., Garcia-Molina, H., Paepcke, A. and 
Winograd, T. Power browser: efficient Web browsing for 
PDAs. Proc. CHI, ACM Press (2000), 430-437. 

8. Furnas, G. W. Generalized fisheye views. Proc. CHI, 
ACM Press (1986), 16-23. 

9. Guimbretiere, F., Stone, M. and Winograd, T. Fluid 
interaction with high-resolution wall-size displays. Proc. 
UIST, ACM Press (2001), 21-30. 

10. Hinckley, K., Pierce, J., Sinclair, M. and Horvitz, E. 
Sensing techniques for mobile interaction. Proc. UIST, 
ACM Press (2000), 91-100. 

11. Hirotaka, N. Reassessing current cell phone designs: 
using thumb input effectively. Extended Abstracts CHI, 
ACM Press (2003), 938-939. 

12. Hornbæk, K. and Frøkjær, E. Reading of electronic 
documents: the usability of linear, fisheye, and 
overview+detail interfaces. Proc. CHI, ACM Press 
(2001), 293-300. 

13. iPod. www.apple.com/ipod/, Apple Computer. 

14. Jackito PDA. http://www.jackito-pda.com/. 

15. Long, A. C., Landay, J. A., Lawrence, R. A. and 
Michiels, J. Visual similarity of pen gestures. Proc. CHI, 
ACM Press (2000), 360-367. 

16. Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons, A., 
Drew, A. and Looney, E. W. Twiddler typing: one-
handed chording text entry for mobile phones. Proc. CHI, 
ACM Press (2004), 671-678. 

17. Perlin, K. Quikwriting: continuous stylus-based text 
entry. Proc. UIST, ACM Press (1998), 215-216. 

18. Piccolo.Net. http://www.cs.umd.edu/hcil/piccolo/, Univ. 
of Maryland Human-Computer Interaction Lab. 

19. Potter, R. L., Weldon, L. J. and Shneiderman, B. 
Improving the accuracy of touch screens: an experimental 
evaluation of three strategies. Proc. CHI (1988), 27-32. 

20. Rao, R. and Card, S. K. The table lens: merging graphical 
and symbolic representations in an interactive focus + 
context visualization for tabular information. Proc. CHI, 
ACM Press (1994), 318-322. 

21. Rekimoto, J. Tilting operations for small screen 
interfaces. Proc. UIST, ACM Press (1996), 167-168. 

22. Robbins, D. C., Cutrell, E., Sarin, R. and Horvitz, E. Zone 
Zoom: Map Navigation for Smartphones with Recursive 
View Segmentation. Proc. AVI, ACM Press (2004), 231-
234. 

23. Robertson, G. G. and Mackinlay, J. D. The Document 
Lens. Proc. UIST, ACM Press (1993), 101-108. 

24. Sarkar, M. and Brown, M. H. Graphical Fisheye Views of 
Graphs. Proc. CHI, ACM Press (1992), 83-91. 

25. Sazawal, V., Want, R. and Borriello, G. The unigesture 
approach. Proceedings of the 4th International 
Symposium on Mobile Human-Computer Interaction, 
Springer-Verlag (2002), 256-270. 

26. Schaffer, D., Zuo, Z., Greenberg, S., Bartram, L., Dill, J., 
Dubs, S. and Roseman, M. Navigating hierarchically 
clustered networks through fisheye and full-zoom 
methods. ACM Trans. Comput.-Hum. Interact. 3, 2 
(1996), 162-188. 

27. Spence, R. and Apperley, M. D. An Office Environment 
for the Professional. Behaviour & Information 
Technology 1, 1 (1982), 43-54. 

28. Strachan, S., Murray-Smith, R., Oakley, I. and 
Angesleva, J. Dynamic Primitives for Gestural 
Interaction. Proc. Mobile HCI, Springer Verlag (2004). 

29. Weberg, L., Torbjorn, B. and Hansson, A. W. A piece of 
butter on the PDA display. Extended Abstracts CHI 
(2001), 435-436. 

30. Wigdor, D. and Balakrishnan, R. TiltText: using tilt for 
text input to mobile phones. Proc. UIST, ACM Press 
(2003), 81-90. 

31. Wobbrock, J. O., Forlizzi, J., Hudson, S. E. and Myers, B. 
A. WebThumb: interaction techniques for small-screen 
browsers. Proc. UIST, ACM Press (2002) 

32.Wobbrock, J. O., Myers, B. A. and Kembell, J. A. 
EdgeWrite: a stylus-based text entry method designed for 
high accuracy and stability of motion. Proc. UIST, ACM 
Press (2003), 61-70.

210




