
US 7,812,828 B2
35

through each once 434. Since band contacts tend to lie in a
ring this shortest graph cycle will tend to connect adjacent
contacts, thus establishing a sensible ordering for them.

The next step 438 is to pick a contact at an extremeposition
in the ring such as the innermost or outermost and test *
whether it is a thumb (decision diamond 440) or palm (deci-
sion diamond 442). This can be done using contact features
and fuzzy logic expressions analogous to those utilized in the
thumb verification process and the, attractor weightings. If 10
the st path is a thumb, step 444 concludes that con-
tacts above are most likely fingertips, and contacts in the ring
below the thumb are most likely palms. If(442) the innermost
path is a palm heel, step 446 concludes the paths significantly
above the innermost must be fingers while paths at the same 15
vertical level should be palms. The thumb and palm tests are
then repeated for the contacts adjacent in the ring to the
i......_st until any other thumb or palm contacts are found.
Once any thumb and palm contacts are identified, step 448
identifies remaining fingertip contacts by their respective 20
ordering in the ring and their relatively high vertical position.

Since this alternative algorithm does not include an attrac-
tor template to impose constraints on relative positions, the
fuzzy verification functions for each contact may need to
include measurements of the vertical position of the contact
relative to other contacts in the ring and relative to the esti-
mated hand offset. The attractor template embodiment is
preferred over this alternative embodiment because the
attractor embodiment more elegantly incorporates expected
anglesbetweencontacts andtheestimatedhandoffset into the
fmger identification process.

Hand identification is needed for multi-touch surfaces
which are large enough to accomodate both hands simulta-
neously and whichhave the left and right halves ofthe surface 3s
joined such that a hand can roam freely across the middle to
either halfof the surface. The simplest method ofhand iden-
tification would be to assign band identity to each contact
accordingto whetherthe contact initially toucheddownin the
left or right half of the surface. However, if a hand touched 40
down in the middle, straddling the left and righthalves, some
ofthe hand's contacts would end up assigned to the left hand
and others to the right hand. Therefore more sophisticated
methods which take into account the clustering properties of
hand contacts must be appliedto ensure all contacts from the 4,
same handget the same identity. Onceall surface contacts are
initially identified, the path tracking module can reliably
retainexisting identificationsas a handslides fromone sideof
the surface to the other.

The thumb and inner palm contact orientations and the 50
relative thumb placement are the only contact features inde-
pendent ofcluster positionwhich distinguish a lone clusterof
right hand contacts from a cluster of left hand contacts. Ifthe
thumb is lifted off the surface, a right hand contact cluster
appears nearly indistinguishable from a left hand cluster. In ss
this case cluster identification must still depend heavily on
which side ofthe board the cluster starts on, but the identityof
contacts which recently lifted offnearby also proves helpful.
Forexample, ifthe right handmoves from theright side to the
middle of the surface and lifts off, the next contacts which 60
appear in the middle will most likely be from the right hand
touching back down, not from the left hand moving to the
middle and displacing the right hand. The division between
left and right halves of the surface should therefore be
dynamic, shifting toward the right or left according to which 65
handwas most recentlynear the middle. Sincethe handoffset
estimates temporarily retain the last known hand positions

36
after liftoff, such a dynamic division is implemented by tying
the positions ofleft hand andright hand attractor templates to
the estimated hard positions.

Though cases su in which the user can fool the hand
identification system with sudden placements of a hand in
unexpected locations, the user may actually wish to fool the
system in these cases. For example, users with only one hand
free to use the surface may intentionally place the hand for
onto the oppositehalfofthe surface to access the chord input
operations of the opposite hand. Therefore, when a hand
cluster suddenly touches down well into the opposite half of
the surface, it can safely be given the opposite halfs identity,
regardless of its true identity. Amhing the surface across the
middle can also discourage users from sliding a hand to the
opposite side by causing awkward forearm pronation should
users do so.

FIG. 29 shows process details within the hand identifica-
tion module 247. Decision diamond 450 first determines
whetherthehandidentificationalgorithmactuallyneeds to be
executed by checking whether all path proximities have sta-
bilized. To stability ofthe identifications, hand and
finger identities need only be reevaluated when a new hand
part touches down or disambiguating features of existing
contacts become stronger. The contact size and orientation
features areunreliableuntil the flesh fully compresses against
the surface a few dozen milliseconds after initial surface
contact. Therefore decision diamond 450 executes the hand
identification algorithm for each proximity image in which a
new contact appears and for subsequentproximity images in
which the total proximity of any new contacts continues to
increase. Forimages inwhichproximities ofexisting contacts
have stabilizedandno new contacts appear,pathcontinuation
as performed by the path tracking process 245 is sufficient to
retain and extend (step 452) the contact identifications com-
puted from previous images.

Should thehand identification algorithm be invoked for the
current image, the first step 453 is to define and position left
and right hand attractor templates. These should be basically
the same as the attractor templates (FIG. 24, step 352) used in
within-hand identification, except that both left and right
rings must now be utilized at once. The default placement of
the rings relative to one another should correspond to the
default left and right hand contact positions shown in FIG.
20A. Each ring translates to follow the estimated position of
its hand, just like the sloppy segmentationregions follow the
hands in FIG. 20B. Individual attractor points can safely be
translated by their corresponding estimated finger offsets.
Therefore the final attractor positions (Aj,[n],Aj,[n]) for the
left hand L and right hand H attractor rings are:

Lagnf=4,g+LFj,M+L¾g (62)

Laj,[n]=¾,,[n]+LFjgn]+L&g (63)

RaMn]=RLM+RFj. +R&g (64)

Raj, =4,,þJ+RFj,,,[n]+R&g (65)

Basically the hand identification algorithm will compare
the cost ofassigning contacts to attractors in one ring versus
the other, the cost depending on the sum of weighted dis-
tances between each contact and its assigned attractor.
Adjusting the attractorringwith the estimated hand and fin-
ger offsets lowers the relative costs for assignment hypoth-
eses which resemble recent hand assignments, helping to
stabilize identifications across successive proximity images
even when hands temporarily lift off.

Nexta set ofassignmenthypothesesmust be generatedand
compared. The most efficient way to generate sensible

Copy provided by USPTO from the PIRS Image Database on 04/25/2011
APLNDC00030395

A
pple Inc. v. S

am
sung E

lectronics C
o. Ltd. et al

D
oc. 462 A

tt. 9

D
ockets.Justia.com

http://dockets.justia.com/docket/california/candce/5:2011cv01846/239768/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2011cv01846/239768/462/9.html
http://dockets.justia.com/

US 7,812,828 B2
37 38

hypotheses is to define a set ofroughlyvertical contour lines,
one between each horimntally adjacent contact. Step 454
does this by ordering all surface contacts by their horizontal
coordinates and establishing a vertical contour halfway
between each pair of adjacent horizontal coordinates. FIGS.
30A-C show examples of three different contours 475 and
their associated assignment hypotheses for a fixed set of
contacts. Each contour corresponds to a separate hypothesis,
known also as a partition, in which all contacts to the left 476
of the contour are from the left hand, and all contacts to the
right 477 ofthe contour are from the right hand. Contours are
also necessary at the left and right ends of the surface to
handle the hypotheses that all contacts on the surface are from
the same hand. Contours whichhypothesizemore contacts on
a given hand than can be caused by a single hand are imme-
diately eliminated.

Generating partitions via vertical contours avoids all
hypotheses in which contacts ofone hand horizontally over-
lap or cross over contacts of the opposite hand. Considering
that each hand can cause seven or more distinct contacts, this
reduces the numberofhand identity permutations to examine
from thousands to at most a dozen. With fewerhypotheses to
examine, the evaluation of each partition can be much more
sophisticated, and if necessary, computationally costly.

The optimization search loop follows. Its goal is to deter-
mine which of the contours divides the contacts into a parti-
tionof two contact clusters such that the cluster positionsand
arrangement of contacts within each cluster best satisfy
known anatomical and biomechanical constraints. The opti-
mization begins by picking (step 456) a first contour divider
such as the lefbnost and tentatively assigning (step 458) any
contacts to the left of the contour to the left band and the rest
to the right hand. Step 460 invokes the finger identification
algorithm of FIG. 23, which attempts to assign finger and
palm identities to contacts within each hand. Decision dia-
mond 360 avoids the computational expense of thumb veri-
fication 368 and statistics gathering 364 for this tentative
assignment hypothesis.

Returning to FIG. 29, step 462 computes a cost for the
partition. This cost is meant to evaluate how well the tenta-
tively identified contacts fit their assigned attractor ring and
how well the partition meets between-hand separation con-
straints. This is done by computing for each hand the sum of
weighteddistances from each tentatively identifiedcontactto
its assigned attractorpoint as in Equation 54 of fmger identi-
fication, including size and orientation feature factors for
thumb and palm attractors. This sum represents the basic
template fitting cost for a hand. Each hand cost is then
weighted as a whole with the reciprocals of its clutching
velocity, handedness, and palm cohesion factors. These fac-
tors, to be described below, represent additional constraints
which are underemphasized by the weighted attractor dis-
tances. Finally, the weighted left and right hand costs are
added together and scaled by the reciprocal of a hand sepa-
ration factor to obtain a total cost for the partition.

Ifdecision diamond 464 determines this total cost is lower

Users often perform clutching motions in which the right
hand, forexample, lifis offfrom a slide at the right side ofthe
surface, touches backdown in the middle of the surface, and
resumes sliding toward the right. Therefore when a hand is

5 detected touching down in the middle of the surface and
sliding toward one side, it probably came from the at side. A
handvelocity factor, plottedapproximately in FIG. 31A, cap-
tures this phenomenon by slightly increasing in value when a
hand cluster's contacts are moving toward the cluster's

10 assigned side of the board, thus decreasing the basic cost of
the hand. The factor is a function of the average of the con-
tacts' horizontal velocities the side of the surface the given
cluster is assigned. Since high speeds do not necessarily give
a stronger indication of user intent the factor saturates at

15 moderate speeds.
Though the thumb orientation factors help identify which

hand a thumb is from when the thumb lies in the ambiguous
middle region of the surface, the vertical position of the
thumb relative to other fingers in the same hand also gives a

20 strong indication ofhandedness. The thumb tends to be posi-
tioned much lower than the fmgertips, but the pinky tends to
be only slightly lower than the other fmgertips. The handed-
ness factor plotted appmximately in FIG. 31B, takes advan-
tage of this constraint by boosting the hand cost when the

2s contact identified as the outermost fmgertip is more than a
couple centimeters lower than the next outermost fingertip
contact. In such cases the tentative hand assignment for all
contacts intheclusterisprobablywrong. Since this causes the
within-hand identification algorithm to fit the contacts to the

30 wrong attractor ring, fmger identities become reversed such
that the supposedly loweredpinky is truly a loweredthumb of
the opposite hand. Unfortunately, limited confidence can be
placed in the handedness factor. Though the pinky should not
appear loweredas much as the thumbthe outerpalm heel can,

35 creating an ambiguity in which the thumb and fingertips of
one handhave the same contact arrangement as the fingertips
and outerpalm heel ofthe opposite hand. This ambiguity can
cause the handedness factor to be usly low for an
accurately identified hand cluster, so the handedness factor is

40 only used on clusters in the middle ofthe surface where hand
position is ambiguous.

Distinguishing contact clusters is challenging because a
cluster can become quite sparse and large when the fingers
outstretched, with the pinky and thumb of the same hand

45 spanning up to 20 cm. However, the palm can stretch very
little in comparison, placing useful constraints on how far
apart palm heel contacts and forepalms from the same hand
can be. The entire palm region of an outstretched adult hand
is about 10 cm square, so palm contact centroids shouldnotbe

so scattered over a region larger than about 8 cm. When a parti-
tion wrongly includes fingers from the opposite hand in a
cluster, the within-cluster identification algorithm tends to
assign the extra fmgers from the opposite hand to palm heel
and forepalm attractors. This usually causes the contacts

ss assigned to the cluster's palm attractors to be scattered across
the surfacewiderthan is plausible for truepalm contacts from

than the total costs of the partitions evaluated so far 464, step
466 records the partition cost as the lowest and records the
dividing contour. Decision diamond 472 repeats this process
for each contour 470 until the costs ofall partitions have been 60
evaluated. Step 473 chooses the partition which has the low-
est cost overall as the actual hand partitioning 473, and the
hand identities of all contact paths are updated accordingly.
Then step 474 reinvokes the within-hand finger contact iden-
tification process so that the thumb verification and statistics 65
gathering processes are performed using the actual hand
assignments.

a single hand. To punish such partitions, the palm cohesion
factor quickly drops below one for a tentative hand cluster in
which the supposedpalm contacts are scattered over a region
largerthan8 cm. Therefore its reciprocal will greatly 1..
the hand's basic cost. FIG. 31C shows the value of the palm
cohesion factor versus horizontal separation between palm
contacts. The horizontal spread can be efficiently measured
by finding the maximum and minimum horizontal coordi-
nates ofall contacts identified as palm heels or forepalms and
taking the difference between the ° and
Themeasurementand factorvalue lookup are repeated for the

(knu nrnuidad hu IIRPTO from the PIRS Immaa Datahnen on 04/95/2011
APLNDC00030396

US 7,812
39

vertical separation, and the horizontal and vertical factors are
multiplicatively combined to obtain the final palm cohesion
factor.

FIG. 33 is an app- -teplotofthe inter-handseparation
factor. This factor increases the total costs of partitions in s
which the estimated or actual horizontal positions of the
thumbsfromeachhandapproachoroverlap.Itismeasuredby
finding the minimum of the horizontal offsets of right hand
contacts with respect to their corresponding default finger
positions. Similarly the ^ ofthe horizontal ofTsets of 10
the left hand contacts with respect to their corresponding
default finger positions is found. If the difference between
these hand offset extremes is small enough to suggest the
thumbs are overlapping the same columnar region of the
surface while either touching the surface or floating above it, 15
the separation factor becomes very small. Such overlap cor-
responds to a negative thumb separation in the plot. To
encourage assignment of contacts which are within a couple
centimeters ofone another to the same cluster, the separation
factor gradually begins to drop starting with positive separa- 2o
tions of a few centimeters or less. The inter-hand separation
factor is not applicable to partitions in which all surface
contacts are assigned to the same hand, and takes on the
default value ofone in this case.

Alternative embodiments of this hand identification pro- 25
cess can include additional constraint factors and remainwell
within the scope of this invention. For example, a velocity
coherence factor could be computed to favor partitions in
which all fmgers within a cluster slide at approximately the
same speed and direction, though each cluster as a wholehas 30
a different average speed and direction.

Sometimes 1..... ble decisions made by the chord
motion recognizer or typing recognized on the basis ofexist-
ing hand identifications prevent late changes in the identifi-
cations of hand contacts even when new proximity image 35
information suggests existing identifications are wrong. This
might be the case for a chord slide which generates input
events that can not be undone, yet well into the slide new
image information indicates some fmgers in thechord should
have been attributedto the opposite hand. In this case theuser 40
can be warned to stop the slide and check for possible input
errors but in the meantime it is best to retain the existing
identifications even if wrong, rather than switch to correct
assignments which could have further unpredictable effects
when added to the input events. Therefore once a 45
chord slide has generated input events, the identifications of
their existing paths may be locked so the hand identification
algorithm can only swap identifications of subsequent new
contacts.

This hand identification process can be modified for dif- so
ferently configured multi-touch surfaces and remain well
within the scope of this invention. For surfaces which are so
-- that thumbs invade one another's space or so tall that
one hand can lie above another, the contours need not be
straight vertical lines. Additional contours could weave ss
around candidate overlapping thumbs, or they could be per-
pendicular to the vector between the estimated hand posi-
tions. Ifthe surface was large enough for more than one user,
additional attractor rings would have to be provided for each
additional hand, and multiple partitioning contours would be 60
necessary per hypothesis to partition the surface into more
than two portions. On a surface large enough for only one
hand it might still be necessary to determine which handwas
touching the surface. Then instead ofhypothesizingdifferent
contours, the hand identification module would evaluate the 65
hypotheses that either the left hand attractor ring or the right
hand attractor ring was centered on the surface. Ifthe surface

,828 B2
40

was mounted on a pedestal to allow access from all sides, the
hand identification module would also hypothesize -L.
Totations of each attractor ring.

The attractor-based fmger identification system 248 will
successfully identify the individual hand contacts which
comprise the pen grip hand configuration (FIG. 15). How-
ever, additional steps are needed to distinguish the unique
finger arrangement within the pen grip from the normal
arrangement within the closed band configuration (FIG. 14).
In this pen grip arrangement the outer fingers curl under
toward the palms so their knuckles touch the surface and the
index, finger juts out ahead of them. The pen grip detection
module 17 employs a fuzzy pattern recognition process simi-
lar to the thumb verification pmcess to detect this unique
arrangement

An additional problem with handwriting recognition via
the pen grip hand configuration is that the inner gripping
fingers and sometimes the whole hand will be picked up
between strokes, causing the distinguishing finger arrange-
ment to temporarily disappear. Therefore the pen grip recog-
nition process must have hysteresis to stay in handwriting
mode between gripping finger lifts. In the preferred embodi-
ment, hysteresis is obtained by temporal filtering ofthe com-
bined fuzzydecision factors andby using the estimated finger
positions in measurements of finger arrangement while the
actual fmgers are lifted off the surface. The estimated finger
positions provide JILai.. hysteresis because they tempo-
rarily retain the unique jutting arrangement before decaying
back toward the normal arched fingertip positions a few sec-
onds after liflofE

FIG. 28 shows the steps within the pen grip detection
module 17. Decision diamond 485 determines whether all
pen grip hand parts are touching the surface. If not decision
diamond 486 causes the estimated finger and palm positions
to be retrieved for any lifted parts in step 487 only ifpen grip
orhandwritingmode is already active. Otherwise the process
exits for lack ofenough surface contacts. Thus the estimated
fingerpositions cannotbeusedto starthandwritingmode, but
they can continue it. Step 488 retrieves the measured posi-
tions and sizes of fingers and palm heels which are touching
the surface.

Step 489 computes a knuckle factor from the outer finger
sizes and their vertical distance from the palm heels which
peaks as the outer fmger contacts become larger than normal
fmgertips and close to the palm heels. Step 490 computes a
jutting factor from the difference between the vertical coor-
dinates ofthe innerandouter fingers which peaks as the index
fingertip juts further out in front of the knuckles. Step 491
combines the knuckle and jutting factors in a fuzzy logic
expressionandaverages theresultwithprevious resultsvia an
autoregressive or moving average filter. Decision diamond
492continuesorstartspengripmodeifthefilteredexpression
result is above a threshold which may itself be variable to
provide additional hysteresis. While in pengrip mode, typing
12 and chord motion recognition 18 are disabled for the pen
gripping hand.

In pen grip mode, decision diamond 493 determines
whether the inner gripping fmgers are actually touching the
surface. Ifso, step 495 generates inking events from the path
parameters of the inner fingers and appends them to the out-
going event queue of the host communication interface.
These inking events can eithercause "digital ink" to be laved
on the display 24 for drawing or signature capture purposes,
or they can be intercepted by a handwriting recognition sys-
tem and interpreted as gestures or language symbols. Hand-
writing recognition systems are well known in the art.

Copy provided by USPTO from the PIRS Image Database on 04/25/2011
APLNDC00030397

US 7,812,828 B2
41

If the inner fingers are lifted, step 494 sends stylus raised
events to the host communication interface to instruct the
handwriting recognition system ofa break between symbols.
In some applications the user may need to indicate where the
"digital ink" or interpreted symbols are to be inserted on the 5
display by positioning a cursor. Though on a multi-touch
surface a user could move the cursor by leaving the pen grip
configuration and sliding a finger chord, it is preferable to
allow cursor positioning without leaving the pen grip con-
figuration. This can be supported by generating cursor posi- 10
tioning events from slides ofthe palm heels and outerknuck-
les. Since normal writing motions will also include slides of
the palm heels and outer knuckles, palm motions should be
ignored until the inner fingers have been lifted for a few
hundred milliseconds. 15

Should the user actually pick up a conductive stylus and
attempt to write with it, the hand configuration will change
slightly because the inner gripping fingers will be directing
the stylus from above the surface rather than touching the
surface during strokes. Since the forearm tends to supinate 20
more when actuallyholding a stylus, the innerpalm heel may
also stayoffthe surfacewhile thehandrests onthe sides ofthe
pinky, ring fmger and the outer palm heel. Though the outer
palm heel may lie furtheroutward thannormal withæspect to
the pinky, the ring and pinky fmgers will still appear as large 25
knuckle contacts curled close to the outerpalm. The tip ofthe
stylus essentially takes the place of the index fingertip for
identification purposes, remaining at or above the vertical
level ofthe knuckles. Thus the pen grip detectorcan function
inessentially the samewaywhenthe userwriteswitha stylus, 30
except that the index fingertip path sent to the host -
nication interface will in actuality be caused by the stylus.

Technically, eachhandhas 24 degrees offreedomofmove-
ment in all fmger joints combined, but as a practical matter,
tendon linkage limitations make it difficult to move all ofthe 3s
joints independently. Measurements of finger contacts on a
surface yield ten degrees of freedom in motion lateral to the
surface, five degrees of freedom in individual fmgertip pres-
sure orproximity to the surface, and one degreeoffreedomof
thumb orientation. H......., many of these degrees of free- 40
dom have limited ranges and would require unreasonable
twisting and dexterity from the average user to access inde-
pendently.

The purpose of the motion component extraction module
16 is to extract from the 16 observable degrees of freedom 45
enough degrees of freedom for common graphical manipula-
tion tasks in two andthree dimensions. In two dimensions the
most w...uutasks arehorizontal andvertical panning,rotat-
ing, and zooming or resizing. In three dimensions, two addi-
tional rotational degrees of freedom are available around the so
horizontalandvertical axes. Themotioncomponentextractor
attempts to extract these 4-6 degrees of freedom from those
basic hand motions which can be performed easily and at the
same time without interfering with one another. When mul-
tipledegreesoffreedomcanbeaccessedatthesametimethey 55
are said to be integral rather than separable, and integral input
devices are usually faster because they allow diagonal
motions rather than restricting motions to be along a single
axis or degree of freedom at one time.

When only four degrees of freedom are needed, the basic 60
motions can be whole hand translation, hand scalingby uni-
formly flexing or extending the fmgers, and hand rotation
eitherabout the wrist as whenunserewingajar lid orbetween
the fingers as when unscrewing a nut. Not only are thesehand
motions easy to perform because they utilize motions which as
intuitively include the opposable thumb, they correspond
cognitively to the graphical manipulation tasks ofobject rota-

42
tion and sizing. Their only drawback is that the translational
motions of all the fingers during these hand rotations and
scalingsdonoteancelperfectlyandcaninsteadadduptoanet
translation in some direction in addition to the desired mta-
tion or scaling. To allow all motions to be performed simul-
taneously so that the degrees of freedom are integral yet to
prevent unintended translations from imperfectly performed
scalings and rotations, the motion extractor preferentially
weights the fingers whose translations cancel best and non-
linearly scales velocity components depending on their
speeds relative to one another

The processes within the motion component extractor 16
are shown in FIG. 34. Step 500 first fetches the identified
contact paths 250 for the givenhand. These paths contain the
lateral velocities and proximities to be used in the motion
calculations, and the identifications are needed so that motion
ofcertain fingers orpalm beels whichwould degrade particu-
lar motion component calculations can be deemphasized.

The next step 502 applies additional filtering to the lateral
contact velocities when fingerproximity is changing rapidly.
This isnecessarybecause during fingerliftoffandtouch down
on the surface, the front part of the fingertip often touches
down before and lifts off after the back of the fingertip,
causing a net downward or upward lateral translation in the
finger centroid. Such proximity-dependent translations can
be put to good use when slowly rolling the fingertip for fine
positioning control, but they can also annoy the user if they
cause the cursortojump away from a selected position during
fmger liftoff. This is preventedby temporarily downscaling a
finger's lateral velocity in proportion to large changes in the
fmger's proximity. Since other fingers within a hand tend to
shift slightly as one finger lifts off, additional downscaling of
each finger velocity is done in response to the
percent change inproximity among contacting fingers. Alter-
natively, more precise suppression can be obtained by sub-
tracting from the lateral finger speed an amount proportional
to the instantaneous change in finger contact height. This

that theperturbation in lateral fingervelocity caused
by finger liftoffis proportional to the change incontact height
due to the back of the fingertip lifting off first or touching
down last.

Process 504, whose detailed steps are shown in FIG. 36,
thepolarvelocity components from radial (scaling)

and rotational motion. Unless rotation is extracted from
thumb orientationchanges, at least two contacting fingers are
necessaryto compute a radial or angular velocity ofthe hand.
Since thumb motion is much more independent of the other
fingers thantheyare ofone another, scalings androtations are
easier for the user to perform if one of these fingers is the
opposable thumb, but the measurement method will work
without the thumb. If decision diamond 522 determines that
less thantwofingers aretouching the surface, step 524 sets the
radial and rotational velocities of the hand to zero. FIG. 35
shows trajectories of each fmger during a contractive hand
scaling. The thumb 201 andpinky 205 travel in nearly oppo-
site directions at roughly the same speed, so that the sum of
their motions cancels for zero net translation, but the differ-
ence intheirmotions is maximized for a largenet scaling. The
central fingers 202-204 also move toward a central point but
the palm heels --i stationary, failing to complement the
flexing of the central fmgers. *-fore the difference
between motion of a central fmger and any other finger is
usually less than the difference between the pinky and thumb
motions, and the sum of central finger velocities during a
hand scaling adds up to a net vertical translation. Similar
phenomena occur during hand rotations, except that if the
totation is centered at the wristwith forearm fixed rather than

anv nrnuidad hv ilADTi") fram tha DIRA Imana On - -- Bai9HIonid
APLNDC00030398

US 7,812,828 B2
43 44

centered at the forepalms, a net horizontal translation will
appear in the sum of motions from any combination of fin-

gers.
Since the differences in finger motion are usually greatest

between thumb and pinky, step 526 only retrieves the current
and previous positions ofthe - and outermost touch-
ing fmgers for the hand scaling and rotation measurements.

Step 528 then computes the hand scalingvelocityH, from
the change in distance between the innermost fmger FI and
outermost fmger FO with approximately the following equa-
tion:

d(F1[n], FO[n]) - d(fi[n - 1], FO[n - 1]) (66)
Hys[n]=

where d(FI[n],FO[n]) is the squared Euclidean distance
between the fmgers:

d(FI[n],FO[n]= (FI,[n]-FO,[n])2+(FI,[n]-FOy[n])2 (67)

Ifone ofthe :--- ---- -st or outermost fingers was not touch-
ing during the previous proximity image, the change in sepa-
ration is assumed to be zero. Similarly, step 530 computes the
handrotational velocityH, from the change inangle between
the 1-.-st and outermost fmger with approximately the
following equation:

(L(FI[n], FO[n])-L(FI[n-1], FO[n-1] d(FI[n], FOjn] (68)
H,[n]

simplestwayto compute a handtranslation velocity would be
to simply average the lateral velocities of each finger. How-
ever, the user expects the motion or control to display gain to
be constant regardlessofhow many fingers are beingmoved,

5 evenifsome are resting stationary. Furthermore, if the user is
simultaneously scaling or rotating the hand, a simple average
is sensitive to spurious net translations caused: by uncanceled
central fmger motions.

10 Therefore, in a preferred embodiment the translational
component extractor carefully assigns weightings for each
finger before computing the average translation. Step 540
initializes the translation weighting Fi, of each finger to its
total contact proximity, i.e., Fi,[n]=Fi2[n]. This - that

15 fingersnot touching the surface do not dilute the average with
their zero velocities and that fmgers which only touch lightly
have less influence since theirposition and velocity ... ,--
ments may be less reliable. The next step 544 decreases the
weightings of fingers which are relatively stationary so that

20 the control to display gain of intentionally moving fingers is
not diluted. This can be done by finding the fastest moving
finger, recording its speed as a fmger speed and
scaling each finger's translationweighting inproportionto its
speed dividedby themaximum ofthe finger speeds, as shown

25 approximately in the formula below:

(Figg(n] = (69)
FL[n]: = FL(n]×

maj Figg[n]

30

The change in angle is multiplied by thecurrent separation
to convert it to the same units as the translation and scaling
components. These equations capture any rotation and scal- 35
ing components of hand motion even if the hand is also
translating as a whole, thus making the rotation and scaling
degrees of freedom integral with translation.

Anotherreasonthecomputations above arerestrictedto the
thumb and pinky or - and outermost fingers is that 40
users may want to make fine translating manipulations with
the central fingers, i.e., index, middle, and ring, while the
thumb and pinky remain stationary. Ifchanges in distances or
angles between the central fingers and the thumb were aver-
aged with Equations 66-68, this would not be possible 45
because central finger translations would cause the appear-
ance of rotation or scaling with respect to the stationary
thumb or pinky. However, Equations 56-60 applied in the
thumb verification process are only sensitive to symmetric
rotation and scaling about a fixed point between the fingers. 50
They approach zero if any significant whole hand translation
is occurring or the finger motions are not complementary. In
case the user fails to properly move the outermost finger
during a rotationor scaling gesture, step 531 uses equationsof
the approximate form ofEquations 56-60 to compute rotation 55
and scaling velocities between the thumb and any touching
fingers other than the outermost. The resulting velocities are
preferably combined with the results ofEquations 66-68 via
a operation rather than an average in case transla-
tional motion causes the fixed point rotations orscalings tobe 60
zero. Finally, decision diamond 532 orders a check for radial
or rotational deceleration 534 during motions prior to finger
liftoff. The method fordetecting radial orrotational decelera-
tion is the same as that detailed in the description of transla-
tion extraction. 65

FIG. 37 shows the details of hand translational velocity
meas"•--ts referred to in process 506 of FIG. 34. The

where the powerptw adjusts the strength ofthe speed depen-
dence. Notethat step 544 canbe skipped forapplications such
as computer-aided-designinwhichusers desireboth a normal
cursormotiongain mode anda low gain mode. Lower cursor
motion gain is useful for fine, short range positioning, and
would be accessed by moving only one or two fingers while
keeping the rest stationary

Step 546 decreases the translation weightings for the cen-
tral fingers during hand scalings and rotations, though it does
not prevent the central fingers from making fine translational
manipulations while the thumb andpinky are stationary. The
formulas below accomplish this seamlessly by downscaling
the central translation weightings as the magnitudes of the
rotation and scaling velocities become significant compared

ÍO olarthmshi

Fi,,,[n]x Kpolo (70)
Fi.[n] e

Kposa,g,,a+\Hur[n]\

Fiw[n]×Kposa,g,,g (71)

Fi,[n] x Kyota,y,,g+]H,,(n]\+\H,[n]\

where these equations are applied only to the central fingers
whose identities i are between the i-.-st and outermost.
Note that since hand scaling does not cause much horizontal
translation bias, the horizontal translation weighting Fim,[n]
need not be affected by hand scaling velocity H ,[n], as indi-
cated by the lack ofa hand scaling term in Equation 70. The
translationweightings ofthe-st andoutermost fingers
are unchangedby thepolarcomponent speeds, i.e., FI.,[n]=
FI [n]=FI,[n] and FO [n]=FO,[n]=FO,[n]. Step
548 finally computes the hand translation velocity vector
(H,,,[n],H,[n]) from the weighted average of the finger
velocities:

Panar nenarisiasi har li DTl3 fram the DINA immena ¯ nn A&IORIondi

APLNDC00030399

US 7,812,828 B2
45

H,, [n] = 1 10

The last part ofthe translationcalculations is to test for the
lateral decelerationofthe fingers before liftoff, whichreliably 15
indicates whether the user wishes cursor motion to stop at
liftoff. If deceleration is not detected prior to liftoff, the user
may intend cursor motion to continue añer liftoff, or the user
may intend a special "one-shot" command to be invoked. 20
Decision diamond 550 only invokes the deceleration tests
while finger proximities are not dropping too quickly, to
prevent the perturbations in finger centroids which can
accompany finger liftoff from interfering with the decelera-
tion measurements. Step 551 computes thepercentageaccel- 25
erationor ratio ofcurrent translationspeed lH,[n],H,[n])I to
a past average translation speed preferably computed by a
moving window average or autoregressive filter. Decision
diamond 552 causes the translation deceleration flag to be set
556 if the acceleration ratio is less than a threshold. If this 3e
threshold is set greater than one, the user will have to be
accelerating the fingers just prior to liftoff for cursor motion
to continue. If the threshold is set just below one, cursor
motion will reliably be continued as long as the user main-
tains a constant lateral speed prior to liftoff, but if the user 3s
begins to slow the cursor on approach to a target area of the
display the deceleration flag will be set. Decision diamond
554 can also cause the deceleration flag to be set ifthe current
translationdirectionissubstantiallydifferentfromanaverage
ofpast directions. Such change in direction indicates thehand 4e
motion trajectory is curving, in which case cursor motion
should not be continued after liftoffbecauseaccurately deter-
mining the direction to the user's intended target becomes
very difficult. If neither deceleration nor curved trajectories
are detected, step 558 clears the translation deceleration flag· 45
This will enable cursor motion continuation should the fin-
gers subsequently begin liftoff. Note that decision diamond
550 prevents the state of the translation deceleration flags
from changing during liftoffso that thedecision after liftoffto
continue cursor motion depends on the state ofthe decelera- so
tion flag before liftoff began. The final step 560 updates the
autoregressive or moving window average of the hand trans-
lation velocity vector, which can become the velocity ofcon-
tinued cursor motion after liftoff. Actual generation of the
continued cursor motion signals occurs in the chord motion ss
recognizer 18 as will be discussed with FIG. 40.

Note that this cursor motion continuation method has sev-
eral advantages over motion continuation methods in related
art. Since the decision to continue motion depends on a per-
centage acceleration which inherently normalizes to any 60
speed range, the user can intentionally invoke motion con-
tinuation from a wide range of speeds including very low
speeds. Thus the user can directly invoke slow motion con-
tinuation to auto scroll a document at readable speeds. This is
not true of Watanabe's method in U.S. Pat. No. 4,734,685, 65
whichonly continuesmotionwhenthe user's motionexceeds
a high speed threshold, nor of Logan et al.'s method in U.S.

46
Pat. No. 5,327,161, which if enabled for low finger speeds
will undesirably continue motion when a user decelerates on
approach to a large target but fails to stop completely before
lifting off. Percentage acceleration also captures user intent
moreclearlythanpositionofafmgerinaborderarea.Position
ofa fmger in a borderarea as used in U.S. Pat. No. 5,543,591
to Gillespie et al. is ambiguous because the cursor can reach
its desired target on the display just as the fmger enters the
border, yet the touchpad device will continue cursor motion
past the targetbecause it thinks the fingerhas run out ofspace
to move. In the present invention, on the other hand, the
accelerationratiowill --Lnear one ifthe fingers can slide
off the edge of the sensing array without hitting a physical
barrier, sensibly invoking motion continuation. But if the
fingers decelerate before crossing or stop on the edge of the
sensing array, the cursorwill stop as desired.

The details of the differential hand pressure extraction
process 508 are shown in FIG. 38. Fingertip proximity,
quickly saturates when pressure is applied through the bony
tip normal to a hard surface. Unless the surface itselfis highly
compliant, the best dynamic lange of fingertip pressure is
obtained with the fmgers outstretched and hand nearly flat-
tened so that the compressible soft pulp underneath the fin-
gertips rests on the surface. Decision diamond 562 therefore
causes the tilt and roll hand pressure components to be set to
zero in step 564 and pressure extraction to abort unless the
handis nearly flattened. Inherent inthe test forhand flattening
562 is a fingercount to ensurethatmost ofthe five fingers and
both palm heels are touching the surface to the
precision ofthe handpressure measurements, though techni-
cally only three non-collinear hand contacts arranged like a
tripod are necessary to establish tilt and roll pressures. Deci-
sion diamond 562 can also require the user to explicitly
enable three-dimensional manipulationwith an intuitive ges-
ture such as placing all five fingers on the surface briefly
tapping the palm heels on the surface, and finally resting the
palm heels onthe surface. Decision diamond 566 causes step
568 to capture and store reference proximities for each con-
tactpath when the pmximity ofall contacts have stabilized at
the end of this initiation sequence. The tilt and roll pressure
components are again zeroed 564 for the sensor array scan
cycle during which this calibration is performed.

However, during subsequent scan cycles the user can tilt
the hand forward applying more pressure to the fingertips or
backward applying more pressure to the palm heels or the
usercan roll the hand outward onto the pinky and outer palm
heel or inward applying more pressure to the thumb, index
finger and inner palm heel. Step 5170 will poceed to calcu-
late an unweighted average ofthe current contact positions.
Step 572 computes for each hand part still touching the sur-
face the ratio ofcurrent proximity to the reference proximity
previously stored. To make these ratios less sensitive to acci-
dental lifting ofhand parts, step 574 clips them to be greater
or equal to one so only increases in proximity and pressure
register in, the tilt and roll measurements. Another average
contact path position is computed in step 576, but this one is
weighted by the above computed proximity ratios for each
path. Thedifference betweenthese weighted and unweighted
contactpositionaverages taken in step 578 produces a vector
whose direction can indicate the direction of roll or tilt and
whosemagnitudecancontrol the rate ofroll ortilt aboutx and
y axes.

Since the weighted and unweighted position averages are
only influenced by positions of currently contacting fingers
and i,... -. in contact pressure or proximity, the method is
insensitive to finger liftoffs. Computation of ref. __. nor-
malized pmximity ratios in step 572 rather than absolute

copy provided by USPTO from the PIRS Image Database on 04/25/2011
APLNDC00030400

US 7,812,828 B2
47

changes in proximity prevents the large palm heel contacts
from having undue influence on the weighted average posi-
tion.

Since only the current contact positions are used in the
average position computations, the roll and tilt vector is inde- 5
pendent oflateral motions such as hand translationorrotation
as long as the lateral motions do not disturb fmger pressure,
thus once again achieving integrality. H-,--.. , hand scaling
and differential hand pressure are difficult to use at the same
time because flexing the fmgers generally causes significant 10
decreases in fingertip contact area and thus interferes with
inference offmgertip pressure changes. When this becomes a
serious problem, a total handpressure componentcan be used
as a sixth degree of freedom in place of the hand scaling
component. This total pressure component causes cursor 15
velocity along a z-axis in poportion to deviations of the
average of the contact proximity ratios from one. Alternative
embodiments may include further enhancements such as
adapting the reference proximities to slow variations in rest-
ing hand pressure and applying a dead zone filter to ignore 20
pressure difference vectors with small magnitudes

Despite the care taken to---the polar velocity, trans-
lation velocity, and hand pressure components in such a way
that the resultant vectors are independent of one another,

finger motion during hand scaling, rotation, or trans- 25
lation can still cause minor perturbations in measurements of
one degree offreedom while primarily attempting to move in
another. Non-linear filtering applied in steps 510 and 512 of
FIG. 34 removes the remaining motion leakage between
dominant components and nearly stationary components. In 3
steps 510 each component velocity is downscaledby the ratio
of its average speed to the ,m of all the component
speeds, the dominant component speed:

35

(Hy[n] (74)
H.[ni: = H,[n] x

dominantspeed

(Hg[n] (75)
Heln]: = H,[n] x

dominantspeed 40

H.[n): = H,[n] x Hya[n] (76)
tdominantspeed)

(Hm.«[n] (77)
H,[n]: = H,[n] x 45

dominantspeed

where Hxyspeed[n], H,,,,,,[n], and Hrspeed(B) STO RUÍOTOgfêS-

sive averages over time of the translation speed, scaling se
speed, and rotational speed, where:

dominanLspeed-max(H,,,,[n],H,,,¿[n],
Hygn]) (7g)

where pds controls the strengthofthe filter. As pdy is adjusted ss
towards infmity the dominantcomponent is picked out andall
components less than the dominant tend toward zero poduc-
ing the orthogonal cursoreffect well-knownin drawingappli-
cations. As pds is adjusted towards zero the filters have no
effect. ILfe-bly, pds is set in between so that components 60
significantly slower than the dominant are slowed further, but
components close to the dominant in speed are barely
affected, preserving the possibility of diagonal motion in
multiple degrees offreedom at once. The autoregressiveaver-
aging helps to pick out the component or components which 65
are dominant over the long term and suppress the others even
while the dominant components are slowing to a stop.

48
Step 512 takes a second pass with a related filter known as

a dead-zone filter. A dead-zone filter produces zero output
velocity for input velocities less than a speed threshold but
produces output speeds in proportion to the difference
betweenthe input speed and the threshold for input velocities
that exceed the threshold. Preferably the speed threshold or
width ofthe dead zone is set to a fraction ofthe maximum of
current component speeds. All velocity components are fil-
tered using this same dead zone width. The final extracted
component velocities are forwardedto the chord motion rec-
ognizer module 18 which will determine what if any input
events should be generated from the motions.

FIG. 39A shows the details of the finger synchronization
detector module 14. The synchronization detection process
described below is repeated for each hand independently.
Step 600 fetchesproximitymarkersandidentifications forthe
hand's current paths. The identifications will be necessary to
ignorepalm paths and identify combinations ofsynchronized
fmgers, while theproximity markers record the time at which
each contact path first exceeds a press proximity threshold
and the time at which each contact path drops below a release
proximity threshold prior to total liftoff. Setting these prox-
imity thresholds somewhat higher than the minimum prox-
imity considered significant by the segmentation search pro-
cess 264, produces more precise finger press and release
times.

Step 603 searches for subsets of fingers which touch down
at about the same time andfor subsets offingers which lift off
at about the same time. This can be done by recording each
finger path along with its press time in a temporally ordered
list as it crosses the press proximity threshold. Since the
primaryfunctionofthepalms is to support the forearms while
thehands are resting, palmactivity is ignoredby the typing 12
and chord motion recognizers 18 except during differential
hand pressure extraction and palm heel presses can be
excluded from this list and most other synchronization tests.
To check for synchronization between the two most recent
finger presses, the press times of the two most recent entries
in the list are compared. Ifthe difference between theirpress
times is less thana temporal threshold, the two finger presses
are considered synchronized. If not, the most recent finger
press is considered asynchronous. Synchronization among
three or moæ fingers up to five is found by comparing press
times ofthe three, four, or five most recent list entries. If the
press time of the most recent entry is within a temporal
thresholdofthenthmost recententry, synchronizationamong
thenmost recent fingerpresses is indicated. To accommodate
imprecision in touchdown across the hand, the magnitude of
the temporal threshold should increase slightly in proportion
to thenumberoffmgers beingtested for synchronization. The
largest setofrecent fingerpresses found to be synchronized is
recorded as the synchronized subset, and the combination of
fmger identities comprising this subset is stored conveniently
as a fmger identity bitfield. The term subset is used because
the synchronized press subset may not include all fingers
currently touching the surface, as happens when a finger
touches downmuch earlier thanthe other fmgers yet remains
touching as they simultaneously touch down. An ordered list
of finger release times is similarly maintained and searched
separately.Alternative embodimentsmay require that a finger
still be touching the surface to be included in the synchro-
nized press subset.

Decision diamond 602 checks whether a synchronization
marker is pending from a previous image scan cycle. If not,
decision diamond 604 checkswhether the search 603 found a
newly synchronized press subset in the current proximity
image. If so, step 606 sets the temporal synchronization

Copy provided by USPTO from the PIRS Imaae Database on 04/25/2011
APLNDC00030401

US 7,812,828 B2
49 50

marker to the oldest press within the new synchronized sub-
set. Additional finger presses may be added to the subset
during future scan cycles without affecting the value of this
temporal synchronization marker. If there is currently no
finger press synchronization, decision diamond 605 deter-
mines whether three or more fingers have just been released
simultaneously. Simultaneous release ofthree ormore fingers
should not occur while typing with a set of fingers but does
occurwhen lifting fingers off the surface from rest. Therefore
simultaneous release of three or more fingers reliably indi-
cates that the released fingers are not intended as keypresses
and should be deleted from the keypress queue 605, regard-
less of whether these same fmgers touched down synchro-
nously. Release synchronizationoftwo fingers is not by itself
a reliable indicator of typing intent and has no effect on the
keypress queue. The keypress queue is described later with
FIGS. 42-43B.

Once a press synchronization marker for the hand is pend-
ing, further processing checks the number of fmger presses
which are synchronized and waits for release ofthe synchro-
nized fingers. If decision diamond 608 fmds three or more
fmgers in the synchronizedpress subset the user cannot pos-
sibly be typing with these fmgers. Therefore step 612 imme-
diately deletes the three or more synchronized presses from
the keypress queue. This way they cannot cause key symbol
transmission to the host, and transmission of key symbols
from subsequent asynchronous presses is notblockedwaiting
for the synchronized fingers to be released.

However, when the synchronizationonly involves two fin-
ger presses 608, it is difficult to know whether the user
intended to tap a finger pair chord or intended to type two
adjacent keys and accidentally let the key presses occur
simultaneously. Since such accidental simultaneous presses
are usually followed by asynchronous releases of the two
fmgers, but finger pair chords are usually released synchro-
nously, the decision whether the presses are asynchronous
key taps or chord taps must be delayeduntil fingerreleasecan
be checked for synchronization. In the meantime, step 610
places a holdon thekeypress queue toprevent transmissionof
key symbols from the possible finger chord orany subsequent
finger presses. To prevent long backups in key transmission,
decision diamond 614 will eventually release the queue hold
by having step 615 delete the synchronized presses from the
keypress queue if both fingers remain touching a long time.
Though this aborts the hypothesis that the presses were
intended as key taps, the presses are also less likely to be key
taps if the fingers are not lifted soon after touchdown.

If the synchronized fingers are not lifting, decision dia-
mond 616 leaves the synchronizationmarkerpending so syn-
chronization checks can be continued with updated path
parameters 600 after the next scan cycle. Ifthe synchronized
fingers are lifting, but decision diamond 618 finds with the
help of the synchronization release search 603 that they are
doing so asynchronously 618, step 622 releases any holds on
the keypress queue assuming any synchronized finger pair
was intended to be two keypresses. Though the synchronized
finger presses are not deleted from the keypress queue at this
point, they may have already been deleted in step 612 if the
pressed subset containedmore thantwo.Also, step 624 clears
the temporal synchronization marker, indicating that no fur-
ther synchronization tests need be done for this subset.

Continuing to FIG. 39B, ifthe fingers synchronizedduring
touchdown also lift simultaneously, step 618-- them
and any holds from the keypress queue in case they were a
pair awaiting a positive release synchronization test. Further
tests ensue to determine whether the synchronized fmgers
meet additional chord tap conditions. As with single fmger

taps, the synchronized fmgers cannot be held on the surface
more than about halfa second ifthey are to qualify, as a chord
tap. Decisiondiamond 626 tests this by thresholding the time
between the releaseofthe last remaining synchronized finger

5 and the temporal press synchronization marker. A chord tap
should also exhibit a limitedamount of lateral finger motion,
measured either as an average ofpeak finger speeds or dis-
tance traveled since touchdown in decision diamond 628. If
the quick releaseand limited lateral motionconditions are not

10 met, step 624 clears the synchronization marker with the
conclusionthat the synchronizedfmgers were eitherjust rest-
ing fingers or part ofa chord slide.

Ifthe chordtap conditionsaremet, step 630 looks up, using
15 the synchronized subset bitfield, any input events such as

mouse clicks or keyboard commands assigned to the combi-
nation of fingers in the chord tap. Some chords such as those
including all four fingertipsmaybe reserved as resting chords
634, in which case decision diamond 632 will find they have

20 no associated input events. If the chord does have tap input
events, step 636 appends these to the main outgoing event
queue of the host -on interface 20. Finally step
624 clears the synchronizationmarker in readiness for future
finger synchronizations on the given hand.

25 As a further precaution against accidental generation of
chord taps while typing, it is also useful for decisiondiamond
632toignorethroughstep634thef1rstchordtapwhichcomes
soon after a valid keypress without a chord slide in between.
Usuallyaitertypingtheuserwill needto reposition themouse
cursorbefore clicking, requiring an intervening chord slide. If
the mouse cursor happens to already be in place after typing,
theusermayhave to tap the finger chord a second time for the
click to be sent, but this is less risky thanhaving an accidental

35 chord tap cause an unintended mouse button click in the
middle ofa typing

FIG. 40A shows the detailed steps of the chord motion
recognizermodule18. The chordmotion recognition process
described below is repeated for each hand independently.

40 Step 650 retrieves the parameters of the hand's identified
paths 250 and the hand's extracted motion components from
the motion extraction module 16. Ifa slide of a finger chord
has not already started, decision diamond 652 orders slide
initiation tests 654 and 656. To distinguish slides from glanc-

45 ing finger taps during typing, decision diamond 654 requires
at least two fingers from a hand to be touching the surface for
slide mode to start. Theremaybe some exceptions to this rule,
such as allowing a single fmger to ...-- a previous slide
withinasecondorsoafterthepreviousslidechordliftsoffthe

so surface.
In a preferred embodiment, the user can start a slide and

specify its chord in either of two ways. In the first way, the
user starts with the hand floating above the surface, places
some fingers on the surface possibly asynchronously, and

55 beginsmovingall ofthese fingers laterally. Decisiondiamond
656 initiates the slide mode only when significant motion is
detected inall thetouching fingers. Step 658 selects the chord
from the combination of fmgers touching when significant
motionis detected, regardlessoftouchdownsynchronization.

60 In this case coherent initiation ofmotion in all the touching
fmgers is sufficient to distinguish the slide from resting fin-
gers, so synchronizationoftouchdownis not necessary.Also,
-, - users may erroneously try to start a slide by placing
and sliding only one finger on the surface, forgetting that

65 multiple fingers are necessary. Tolerance of asynchronous
touchdownallows them to seamlessly correct this by subse-
quently placing and sliding the rest of the fingers desired for

Copy provided by USPTO from the PIRS Image Database on 04/25/2011
APLNDC00030402

US 7,812,828 B2
51 52

the chord. The slide chord will then initiate without forcing

the userto pick up all fingers and start overwith synchronized
fmger touchdowns.

In the second way, the user starts with multiple fingers
resting onthe surface, lifts a subset ofthese fmgers, touches a
subset back down on the surface synchronously to select the
chord, and begins moving the subset laterally to initiate the

i slide. Decision diamond 656 actually initiates the slide mode
when it detects significant motion in all the fingers of the
synchronized subset. Whether the fingers which remained
resting on the surface during this sequence begin to move
does not matter since in this case the selected chord is deter-
mined in step 658 by the combination of fingers in the syn-
chronized press subset, not from the set of all touching fin-
gers. This second wayhas the advantage that theuserdoesnot
have to lift the whole hand from the surfacebeforestarting the

cursor acceleration parameters for each degree of freedom.
These will be used to discretize motion into the units such as
arrow key clicks or mouse clicks expected by existing host
computer systems.

5 Step 675 ofchordmotion---simply picks the first
slice in the given chord activity structure for processing. Step
676 scales the current values of the extracted velocity com-
ponents by the slice's motion sensitivity and acceleration
parameters. Step 677 geometrically projects or clips the

lo scaledvelocity components into the slice's defined speed and
direction range. For the example mouse cursor slice, this
might only involve clipping the rotation and scaling compo-
nents to zero. But for an arrow key slice, the translation
velocityvector is projectedonto theunit vectorpointing in the

15 same direction as the arrow. Step 678 integrates each scaled
and projected component velocity over time in the slice's

slide, but can instead leave most of the weight of the hands
resting on the surface and only lift and press the two or three
fingers necessary to identify the most -,,-,,.fingerchords.

To provide greater tolerance for accidental shifts in testing
fmger positions, decision diamond 656 requires both that all
relevant fingers are moving at significant speed and that they
are moving about the same speed. This is checked either by
thresholding the geometric mean of the finger speeds or by
thresholding the fastest finger's speed and verifying that the
slowest finger's speed is at least a minimum fraction of the
fastest finger's speed. Once a chord slide is initiated, step 660
disables recognition ofkey or chord taps by the hand at least
until either the touching fingers or the synced subset lifts off.

Once the slide initiates, the chord motion recognizercould
simply begin sending raw component velocities paired with
the selectedcombinationof finger identities to thehost. How-
ever, in the interest ofbackwardcompatibilitywith themouse
and key event formats of conventional input devices, the
motion event generation steps in FIG. 40B convert motion in
any of the extracted degrees of freedom into standard mouse
and key command events which depend on the identity ofthe
selected chord. To support such motion conversion, step 658
finds a chord activity structure in a lookup table using a
bitfield of the identities of either the touching fingers or the
fingers in the synchronized, subset. Different finger identity
combinations can referto the same chordactivity structure. In

accumulators until decision diamond 680 determines at least
one unit ofmotion has been accumulated. Step 682 looks up
the slice's preferred mouse, key, or three-dimensional input

20 event format, attaches the number of accumulated motion
units to the event; and step 684 dispatches the event to the
outgoingqueueofthe host communication interface 20. Step
686 subtracts the sent motion events from the .. ' tors,
and step 688 optionally clears the ... -. ors of other

25 slices. If the slice is intended to generate a single key com-
mand perhandmotion, decision diamond 689 will determine
that it is a one-shot slice so that step 690 can disable further
event generationfrom ituntil a slicewith a liflL t direction
intervenes. Ifthe givenslice is the last slice, decisiondiamond

30 692 returns to step 650 to await the next scan of the sensor
array. Otherwise step 694 continues to integrate and convert
the current motion for other slices.

Returning to FIG. 40A, for some applications it may be
desirable to change the selectedchordwheneveran additional

35 fmger touches downoroneofthe fingers in the chord lifts off.
However, in the preferred embodiment, the selected chord
cannot be changed after slide initiation by asynchronous fin-
ger touch activity. This gives the user freedom to rest or lift
addition fingers as may be necessary to get the best precision

40 in a desireddegreeoffreedom. Forexample, even though the
finger pair chord does not include the thumb, the thumb can
be set down shortly after slide initiation to access the full

the preferred embodiment, all finger combinations with the
same number ofnon-thumb fingertips referto the same chord
activity structure, so slide chord activities are distinguished 45
by whether the thumb is touching and how many non-thumb
fmgers are touching. Basing chord action on the number of
fingertips rather than their combination still provides up to
seven chords per handyet makes chords easier for the user to

and perform. The user has the freedom to choose so
and vary which fingertips are used in chords requiring only
one; two or three fingertips. Given this freedom, users natu-
rally tend to pick combinations in which all touching finger-
tips are adjacent rather than combinations in which a finger
such as the ring finger is lifted but the surrounding fingers ss
such as the middle and pinky must touch. One chord typing
study found that users can tap these fingerchords inwhichall
pressed fingertips are adjacent twice as fast as other chords.

The events in each chord activity structure are organized
into slices. Each slice contains events to be generated in 60
response to motion in a particular range of speeds and direc-
tions within the extracted degrees of freedom. Forexample, a
mouse cursor slice could be allocated any translational speed
and direction. However, text cursor manipulation requires
four slices, one for each arrow key, and each arrow's slice 65
integrates motion in a narrow direction range of translation.
Each slice can also include motion sensitivity and so-called

dynamicrangeofthe rotationandscaling degrees offreedom.
In fact, all remaining lifted fmgers can always be set down
after initiation of any chord to allow manipulation by the
whole hand. Likewise, all fmgers but one can be lifted, yet
translation will continue.

Thoughasynchronous fingertouchactivity is ignored, syn-
chronized lifting and pressing ofmultiple fingers subsequent
to slide initiation can create a new synchronized subset and
change the selected chord. Preferably this is only allowed
while thehandhaspausedbutitsfingers are still resting onthe
surface. Decisiondiamond 670 will detect the new subset and

motion testing in decision diamond 673 which is
analogous to decision diamond 656. If significant motion is
foundinallfingersofthenewlysynchronizedsubset,step674
will select thenew subset as the slide chord and lookup a new
chord activity structure in analogy to step 658. Thus finger
synchronizationagain allows the user to switch to a different
activity without forcing the user to lift the whole hand from
the surface. Integration ofvelocity components . but
the events generated from the new chord activity structure
will presumably be different.

It is advantageous to providevisual or auditory feedback to
the user about which chord activity structure has been
selected. This can be accomplishedvisually by placing a row
offive light emitting diodes across the top of the multi-touch

Copy provided by USPTO from the PIRS Image Database on 04/25/2011

APLNDC00030403

US 7,812,828 B2
53 54

surface, with one row per hand to be used on the surface.
When entering slide mode, step 658 would turn on a combi-
nation of these lights corresponding to the combination of
fingers in the selected chord. Step 674 would change the
combination of active lights to match the new chord activity 5
structure should the user select a new, chord, and step 668
would turn them off. Similar lights could be emulated on the
host computer display 24. The lights could also be flashed to
indicate the finger combination detectedduring chord taps in
step 636. The implementationforauditory feedbackwouldbe 10
similar, except light combinations would be replaced with
tone or tone burst combinations.

The accumulationand event generationprocess repeats for
all array scancycles until decisiondiamond664 detects liftoff
by all the fingers from the initiating combination. Decision 15
diamond 666 then checks the pre-liftoff deceleration flag of
the dominant motion, component. The state of this flag is
determinedby step 556 or 558 oftranslation extraction (FIG.
37) if translation is dominant, or by corresponding flags in
step 534 of polar extraction. If there has been significant 20
deceleration, step 668 simply exits the chord slide mode,
setting the selected chord to null. If the flag indicates no
significant finger deceleration prior to liftoff, decision dia-
mond 666 enables motioncontinuationmode for the selected
chord. While in this mode, step 667 applies the pre-liftoff 25
weighted average (560) of dominant component velocity to
the motion accumulators (678) inplace ofthe current veloci-
ties, which are presumably zero since no fingers touch the
surface. Motion continuationmode does not stop until any of
the remaining fingers not in the synchronizedsubset are lifted 30
or more fmgers newly touch down. This causes decision dia-
mond 664 to become false and normal slide activity with the
currently selected chord to Though the cursor or
scrolling velocity does not decay during motioncontinuation
mode, thehost computercan send a signal instructing motion 35
continuation mode to be canceled if the cursor reaches the
edge of the screen or end of a document. Similarly, if any
fingers 2-.- on the surface during motion continuation,
their translations can adjust the cursor or scrolling velocity.

In thepreferredembodiment, the chordmotionrecognizers 40
for each hand function independentlyand the input events for
each chord can be configured independently. This allows the
system to allocate tasks between hands in many different
ways and to support a variety ofbimanual manipulations. For
example, mouse cursor motion can be allocated to the fmger- 45
tip pairchord on both hands and mouse buttondrag to a triple
fingertipchordonbothhands.Thiswaythemousepointercan
be moved and drug with either hand on either half of the
surface. Primary mouse clicks would be generatedby a tap of
a fmgertip pair on eitherhalfofthe surface, and double-clicks so
could be ergonomically generated by a single tap of three
fingertips on the surface. Window scrolling couldbeallocated
to slides of four fingers on either hand.

Alternatively, mouse cursor manipulations could be allo-
cated as discussedabove to the right handandrighthalfofthe 55
surface, while corresponding text cursor manipulations are
allocatedto chords on the left hand. For instance, left fingertip
pair movement would generate arrow key commands corre-
sponding to the direction of motion, and three fingertips
would generate shift armw combinations forselectionoftext. So

For host computer systems supporting manipulations in
three or more degrees of freedom, a left hand chord could be
selected to pan, zoom, and rotate the display background
while a correspondingchord in the right handcould translate,
resizeand rotate a foregroundobject. Thesechordswouldnot 65
have to include the thumb since the thumb can touch down
anytime after initiating chord motion without changing the

selected chord. The user then need add the thumb to the
surface when attempting rotation or scaling.

Finger chords which initially include the thumb can be
reserved for one-shot command gestures, which only gener-
ate input events once for each slide of a chord rather than
repeating transmission each time an additional unit ofmotion
is detected. Forexample, the editing commands cut,
copy and paste can be intuitively allocated to a pinch hand
scaling, chord tap, and anti-pinch hand scaling of the thumb
and an opposing fingertip.

FIG. 41 shows the steps within the key layout definition
andmorphing process, which is part ofthe typing recognition
module 12. Step 700 retrieves at system startup a key layout
whichhasbeenpre-specifiedbytheuserormanufacturer.The
key layout consists ofa set ofkey region data structures. Each
region has associated with it the symbol or commands which
shouldbesenttothehostcomputerwhentheregionispressed
and coordinates representing the location of the center of the
region on the surface. In the preferred embodiment, arrange-
ment ofthosekey regions containingalphanumeric andpunc-
tuation symbols roughlycorresponds to either the Qwcui x
orthe Dvorakkey layouts ^---onmechanical keyboards.

Insome embodimentsofthemulti-touch sudaceapparatus
it is advantageous to be able to snap or morph the key layout
to the resting positions ofthe hands. This is especially helpful
for multi-touch surfaces which are several times larger than
the standard keyboard orkey layout, such as one covering an
entire desk. Fixing the key layout in one small fixed area of
such a surface wouldbe inconvenient and discourage use of
the whole available surface area. To provide feedback to the
user about changes in the position of the key layout, the
position of the key symbols in these embodiments of the
multi-touch surface wouldnot be printed permanently on the
surface. Instead, the position of the key symbols would be
repmgrammably displayed on the surface by light emitting
polymers, liquid crystal, or other dynamic visual display
means embedded in the multi-touch surface apparatus along
with the proximity sensor arrays.

Given such an apparatus, step 702 retrieves the current
paths from both hands and awaits what will be known as a
layouthoming gesture. Ifdecisiondiamond 704 decides with
the help of, a band's synchronization detector that all five of
the hand's fingers have just been placed on the surface syn-
chronously, step 706 will attempt to snap the key layout to the
hand such that the hand's home row keys lie under the syn-
chronizedfingertips,whereverthehandisonthesurface.Step
706 retrieves the measured hand ofsets from the hand posi-
tion estimator and translates all key regions which are nor-
mally typed by the given hand in proportion to the measured
hand offsets. Note the currently measured rather than filtered
estimates ofofsets can be used because when all five fingers
are down there is no danger of fmger misidentification cor-
rupting themeasuredoffsets. This procedure assumes that the
untranslated locations of the home row keys are the same as
the default finger locations for the hand.

Decision diamond 708 checks whether the fingers appear
to be in a neutral, partially closed posture, rather closed than
outstretched or pinched together. If the posture is close to
neutral, step 710 may further offset the keys normally typed
byeachfinger,whichforthemostpartarethekeysinthesame
columnofthe fmgerbythemeasuredfmger offsets. Temporal
filtering of these fmger ofsets over several layout homing
gestures will tend to scale the spacing between columns of
keys to the user's hand size. Spacing between rows is scaled
down in proportion to the scaling between columns.

With the key layout for the hand's keys morphed to fit the
sizeand current position ofthe restinghand, step 712 updates

Copy provided by USPTO from the PlHS Image Database on 04/25/2011
APLNDC00030404

US 7,812,828 B2
55

the displayed position of the symbols on the surface, so that
the userwill see that thekey layouthas snappedto theposition
ofhis hand. From this stage the user can begin to typeand the
typing recognizer 718 will use the morphed key region loca-
tions to decide whatkey regions are beingpressed. The layout 5
will .-..... morphed this way until either the user performs
another homing gesture to move it somewhere else on the
surface, or until the user takes bothhands offthe surface for a
while. Decision diamond 714 will eventually time out so that
step 716 can reset the layout to its default position inreadiness 10
for another user or usage session.

For smallermulti-touch surfaces in whichthekey layout is
permanentlyprintedon the surface, it is advantageousto give
the user tactile feedback about the positions of key regions.
However, any tactile indicators placed on the surface must be 15
carefully designed so as not to impede smooth sliding across
the surface. For example, shallow depressions made in the
surface near the center of each key mimicking the shallow
depressions - --nonmechanical keyboardkeycapswould
cause a vibratory washboard effect as the hand slides across 20
the surface. To such washboard effects, in the pre-
ferred embodiment the multi-touch surface provides for the
fingertips of each hand a single, continuous depression run-
ning from the default index fingertip location to the default
pinky fingertip location. This corresponds on the QWERTY 25
key layout to shallow, slightly arched channels along home
row from the "J" key to the";"keyfor the righthand, and from
the "A" key to the "F" key for the left hand. Similarly, the

thumbs can each be provided with a single oval-shaped
depression at their default locations, slanted slightly from 30
vertical to match the default thumb orientation. These would
preferably correspond to "Space" and "BackSpace" key
regions for the right and left thumbs, respectively. Suchmini-
mal depressionscantactilely guideusers' handsbacktohome
row ofthe key layout without requiring users to look downat 35
the surface and without seriously disrupting finger chord
slides and manipulations on the surface.

The positions ofkey regions offhome row can be marked
by other types of tactile indicators. Simply roughening the
surface at key regions does not work well. Though humans 40
easily differentiate textures when sliding fingers over them,
most textures cannot be noticed during quick taps on a tex-
tured region. Only relatively abrupt edges or protrusions can
be sensed by the users' fingertips under typing conditions.
Therefore, a small raised dot like a Braille dot is formed on 45
top of the surface at the center of each key region. The user
-J.- feedback onthe accuracyoftheir typingstrokes from

where on the fingertip a dot is felt. This feedback can be used
to correct finger aim during future keypresses. Since single
finger slides are ignored by the chord motion recognizer, the so
user can also slide a finger aroundthe surface in tactile search
of a particular key region's dot and then tap the key region
when the dot is found, all without lookingat the surface. Each
dot should bejust: large enough to be felt during tapping but
not so large as to impede chord slides across the surface. Even 55
if the dots are not large enough to impede sliding, they can
still corrupt proximity and fingertip eentroid measurements
by raising the fingertip flesh near the dot off the surface thus
locally separating the flesh from the underlying proximity
sensing electrode. Therefore, in the preferred embodiment, so
the portionofeach dot above the surface dielectric is madeof
a conductive material. This improves capacitive coupling
between the raised fmgertip flesh and the underlying elec-
trodes.

FIG. 42 shows the steps within the keypress detectionloop. 65
Step 750 retrieves from the current identified path data 250
any paths whichwere recently createddue to handpart touch-

56
down or the surface. Decision diamond 752 checks whether
the path proximity reached a keypress proximity thresh for
the first time during the current sensor array scan. If the
proximity has not reached the threshold yet or has already
exceeded it previously, control returns to step 750 to try
keypress detection on the next recent path. If the path just
crossed the keypress proximity threshold decision diamond
754 checks whether the contact path has been identified as a
finger rather than a palm. To give the users the freedom rest
the palms anywhere on the surface, palm presses should not
normally cause keypresses, and are therefore ignored.
Assuming the path is a finger, decision diamond 756 checks
whetherthehand the identified finger comes from is currently
performing a chord slide gesture or writing via the pen grip
hand configuration. Asynchronous finger presses are ignored
once theseactivities have started, as also indicated in step 660
ofFIG. 40A. Assuming such hand activities are not ongoing,
decision diamond 757 proceeds with debounce tests which
check that the finger has touched the surface for at least two
sensorarmyscancyclesandthatithadbeen offthe surface for
seveml scan cycles before touching down. The path tracking
module (FIG. 22) facilitates such liitoff debouncing by reac-
tivatinginstep334afinger'soldpathifthefingerliftsoffand
quickly touches back down over the same spot. Upon reacti-
vationthe time stamp ofthe last liftoffby the old path must be
preserved for comparison with the time stamp of the new
touchdown.

Ifall ofthese tests arepassed, step 758 looks up the current
path position (P,[n],P,[n]), and step 760 finds the key region
whose reference position is closest to the fingertip centroid.
Decisiondiamond762 checks that thenearest region is within
a reasonabledistanceofthe finger, and ifnot causes the finger
press to be ignored. Assuming a key region is close to the
finger, step 764 creates a keypress element data structure
containing the path, index identifier and finger identity, the
closest key region, and a time stamp indicating when the
fmger crossed the keypress proximity threshold. Step 766
then appends this element data structure to the tail ofa FIFO
keypress queue. This accomplished, processing returns to
step 750 to process or wait for touchdowns by other fingers.

The keypress queue effëetively orders finger touchdowns
bywhen they pass the keypress transmitted to the host. How-
ever, an element's key symbol is not assured transmission of
the host once in the keypress queue. Any of a number of
conditions such as being part of a synchronized subset of
pressing fingers can cause it to be deleted from the queue
beforebeingtransmittedto the host. In this sense the keypress
queue should be considered a keypress candidate queue.
Unlike the ordered lists of finger touchdowns and releases
maintained for each hand separately in the synchronization
detector, the keypress queue includes and orders the finger
touchdowns from both hands.

FIG. 43A shows the steps within the keypress acceptance
andtransmission loop. Step 770 picks the element at the head
of the keypress queue, which represents the oldest finger
touchdownwhich has neither been deleted from the queue as
an invalid keypress candidate nor transmitted its associated
key symbol. Decision diamond 772 checks whether the path
is still identified as a finger. While waiting in the queue path
proximity could have increased so much that the identifica-
tion system decides the path is actually from a palm heel, in
which case step 778 deletes the keypress element without
transmitting to the host and step 770 advances processing to
the next element. Decision diamond 774 also invalidates the
element if its press happened synchronously with other fin-
gers of the same hand. Tims decision diamond 774 follows
through on deletion command steps 601, 612, 615, 620 ofthe

Copy provided by USPTO from the PIRS Image Database on 04/25/2011
APLNDC00030405

US 7,812,
57

synchronization detection process (FIG. 39). Decision dia-
mond 776 invalidates the keypress if too much lateral finger
motion has occurred since touchdown, even if that lateral
finger motion has not yet caused a chord slide to start.
Because users may be touch typing on the surface, several 5
millimeters of lateral motion are allowed to accommodate
glancing fingertip motions which often occur when quickly
reaching for keys. This is much more glancing tap motion
than is tolerated by touchpads which employ a single finger
slide formouse cursormanipulationand a single fingertap for 10
key or mouse button click emulation.

Decision diamond 780 checks whether the finger whose
touchdown created the keypress element has since lifted off
the surface. If so, decision diamond 782 checks whether it
was liftedoffsoonenoughto qualify as a normal keytap. Ifso, 15
step 784 transmits the associated key symbol to the host and
step 778 deletes it from the head of the queue. Note that a
keypress is always deleted from the queue upon liftoff, but
even though it may have stayed on the surface for a time
exceeding the tap timeout, it may have still caused transmis- 20
sion as a modifier key, as an impulsive press with hand rest-
ing, or as a typematic press, as described below.

When a keypress is transmitted to the host it is advanta-
geous for a sound generation device on the multi-touch sur-
face apparatus or host computer to emit an audible click or 25
beep as feedback to the user. Generationofaudible click and
beep feedback in response to keypresses is well known in
commercial touchscreens, kiosks, appliance control panels
and mechanical keyboards in which the keyswitch action is
nearly silent and does not have a make force thresholdwhich 30
feels distinctive to the user. Feedback can also be providedas
a light on the multi-touch surface apparatus which flashes
each time a keypress is sent. Keypresses accompanied by
modifier keypresses should cause longer flashes or tones to
acknowledge that the key symbol includes modifiers. 35

Ifthe fmgerhas notyet lifted, decision diamond786checks
whether its associated key region is a modifier such as
<shift>, <ctrl>, or <alt>. If so, step 788 advances to the next
element in the queue without deleting the head. Processing
will continue at step 772 to see if the next element is a valid 40
key tap. If the next element successfully reaches the trans-
mission stage, step 784 will scan back toward the head ofthe
queue for any modifier regions which are still pressed. Then
step 784 can send the next element's key symbol along with
the modifying symbols of any preceding modifier regions. 45

Decision diamond 782 requires that users touch the finger
on the surface and lift back offwithin a few hundred milli-
seconds for a key to be sent. This liftoff timing requirement
substitutes for the force activation threshold of mechanical
keyswitches. Like the force threshold of mechanical key- 50
switches, the timing constraint provides a way for the user to
rest the finger on the key surfacewithout invoking a keypress.
The synchronization detector 14 provides another way fore-
fingers to rest on the surface withoutgeneratingkey symbols:
they must touch down at the same time as at least one other 55
finger. However, sometimes users will start resting by simul-
taneously placing the central fingertips on the surface, but
then they follow asynchronouslywith the pinky a second later
and the thumb a second after that. These latter presses are
essentially asynchronous and will not be invalidated by the 60
synchronization detector, but as long as they are not lifted
within a couple hundredmilliseconds, decision diamond 782
will delete them without transmission. But, while decision
diamond 782 provides tolerance ofasynchronous fmger rest-
ing, its requirement that fingers quickly lift off, i.e., crisply 65
tap, the surface to causekey generation makes it verydifficult
tokeepmostofthefingersrestingonthesurfacetosupportthe

828 B2
58

hands while tapping long sequences of symbols. This causes
users to raise theirhands offthe surface and float them above
the surface during fast typing sequences. This is acceptable
typing posture except that the users arms will eventually tire
if the user fails to rest the hands back on the surface between
sequences.

To provide an alternative typing posture which does not
encourage suspension of the hands above the surface, deci-
sion diamond 790 enables a second key acceptance mode
which does not require quick finger liftoff after each press.
Instead, the user must start with all live fingers of a hand
resting on the surface. Then each time a finger is asynchro-
nously raisedoffthe surface andpressed on a key region, that
keyregionwillbetransmittedregardlessofsubsequentliftoff
timing. If the surface is hard such that fmgertip proximity
quickly saturates as force is applied, decision diamond 792
checks the impulsivity of the proximity profile for how
quickly the fmger proximity peaks. If the proximity profile
-.-- to its peak very slowly over time, no key will be
generated. This allows the user to gently set down a raised
fingerwithoutgenerating a key in case the user lifts the finger
with the intention of generating a key but then changes his
mind. Ifthe touch surface is compressible, decision diamond
792 can more directly infer finger force from the ratio of
measured fmgertip proximity to ellipse axis lengths. Then it
can threshold the inferred force to distinguish deliberate key
presses from gentle finger rests. Since when intending to
generate a key the user will normally press down on the new
key region quickly after lifting off the old key region, the
impulsivity and force thresholds should increase with the
time since the fmger lifted offthe surface.

Emulating typematic on a multi-touch surface presents
special problems if finger resting force cannot be distin-
guishedreliablyfromsustainedholding force ona key region.
Inthis case, the special touchtiming sequence detectedby the
steps of FIG. 43B supports reliable typematic emulation.
Assuming decision diamond 798 finds that typematic has not
started yet, decision diamond 794 checks whether the key-
press queue element being processed represents the most
recent finger touchdown on the surface. If any finger touch-
downs have followed the touchdownrepresented by this ele-
ment, typematic can never start from this queue element.
Instead, decision diamond 796 checks whether the element's
finger has been touching longer than the normal tap timeout.
If the finger has been touching too long, step 778 should
deleteits keypæss elementbecause decisiondiamond 786 has
determined it is not a modifier and decision diamond 794 has
determined it can never start typematic. If decision diamond
794 determines that the keypress element does not represent
the most recent touchdown, yet decision diamond 796 indi-
cates the element has not exceeded the tap timeout, process-
ing retums to step 770 to await either liftoff or timeout in a
future sensorarray scan. This allows finger taps to overlap in
the sense that a new key region can be pressed by a finger
before another fmger lifts off the previous key region. How-
ever, either the press times or release times of such a pair of
overlapping fmger taps must be asynchronous to prevent the
pair from being considered a chord tap.

Assuming the finger touchdown is the most recent, deci-
sion diamond 800 checks whetherthe finger has been touch-
ing for a typematic hold setup interval ofbetween about half
a second and a second. If not, processing retums to 770 to
awaiteither fmger liftofforthe hold setup conditionto be met
during future scans of the sensor array. When the hold setup
condition is met, decision diamond 802 checks whether all
other fmgers onthehandofthegivenfingerkeypressliftedoff
the surface more than a halfsecond ago. If they did, step 804

Conv nrovidad hv USPTO from the PIRR Imann Ontahman an na/9EI9n11
APLNDC00030406

US 7,812,828 B2
59

will initialize typematic for the given keypress element. The
combinationofdecisiondiamonds800and802allowtheuser
to have other fmgers of the hand to be resting on the surface
when a finger intended for typematic touches down. But
typematic will not start unless the other fingers lift off the
surface within halfa second of the desired typematic finger's
touchdown, and typematic will also not start until the type-
matic fmger has a continued to touch the surface for at least
half a second after the others lifted off the surface. If these
stringent conditions arenot met, thekeypress element will not
start typematic and will eventually be deleted through either
tap timeout 782 when the fmger lifts offor through tap tim-
eout 796) if another touches down after it.

Step 804 simply sets a flag which will indicate to decision
diamond 798 during future scan cycles that typematic has
already started for theelement. Upontypematic initialization,
step 810 sends out the key symbol for the first time to thehost
interface - cation queue, along with any modifier
symbols being held down by the opposite hand. Step 812
records the time the key symbol is sent for future referenceby
decision diamond 808. Pocessing then retums to step 770 to
await the next poximity image scan.

Until the finger lifts off or another taps asynchronously,
processing will pass through decision diamond 798 to check
whether the key symbol should be sent again. Step 806 com-
putes the symbol repeat interval dynamically to be inversely
poportional to fmger proximity. Thus the key will repeat
faster as the finger is pressed on the surface harderor a larger
part ofthe fingertip touches the surface. This also reduces the
chance that the user will cause more repeats than intended
since as finger proximity begins to drop during liftoff the
repeat interval becomes much longer. Decision diamond 808
checks whether the dynamic repeat interval since the last
typematic symbol send has elapsed, and if necessary sends
the symbol again in 810 and updates the typematic send time
stamp 812.

It is desirable to let theusers rest the other fingers back onto
the surface after typematic has initiated 804 and while type-
matic continues, but the user must do so without tapping.
Decision diamond 805 causes typematic to be canceled and
the typematic element deleted 778 ifthe userasynchronously
taps another finger on the surface as if trying to hit another
key. If this does not occur, decision diamond 182 will even-
tually cause deletion ofthe typematic element when its finger
lifts off.

The typing recognition process described above thus
allows the multi-touch surface to ergonomicallyemulate both
the typing and hand resting capabilities of a standard
mechanical keyboard. Crisp taps or impulsive presses on the
surface generatekey symbols as soon as the finger is released
or decision diamond 792 verifies the impulse has peaked,
ensuringprompt feedback to the user. Fingers intendedto rest
on the surface generate no keys as long as they are members
ofa synchronizedfmger press or release subset or are placed
on the surface gently and remain there along with other fm-
gers for a second or two. Once resting, fingers can be lifted
and tapped or impulsively pressed on the surface to generate
key symbolswithouthaving to lift other resting fingers. Type-
matic is initiated ether by impulsively pressing andmaintain-
ing distinguishable force on a key, or by holding a finger on a
key while other fingers on the hand are lifted. Glancing
motions of single fingers as they tap key regions are easily
tolerated since most cursormanipulationmustbe initiatedby
synchronized slides of two or more fingers.

Other embodiments of the invention will be apparent to
those skilled in the art from consideration ofthe specification
and practice of the invention disclosed herein. It is intended

60
that the specification and examples be considered as exem-
plary only, with a true scope and spirit of the invention being
indicated by the following claims.

What is claimed is:
5 1. A method of pocessing input fwm a touch-sensitive

surface, the method comprising:
receiving at least one proximity image representing a scan

ofapluralityofelectrodesofthetouch-sensitivesurface;
segmenting each proximity image into one or more pixel

10 groups that indicate significant proximity, each pixel
group representing proximity of a distinguishable hand
part or other touch object on or near the touch-sensitive

surface; and
mathematically fitting an ellipse to at least one ofthe pixel

15 groups.
2. The method of claim 1 further comprising transmitting

one or more ellipse parameters as a control signal to an
electronic or electromechanical device.

3. The method ofclaim 2 wherein the one or more ellipse
20 parameters is selected from the group consisting ofposition,

shape, size, orientation, eccentricity, major radius, minor
radius, and any combination thereof.

4. The method ofclaim 3 wherein the one or more ellipse
parameters are used to distinguish a pixel group associated

25 with a fingertip from a pixel group associated with a thumb.
5. The method of claim 1 wherein fitting an ellipse to a

group ofpixels comprises computing one or more eigenval-
ues and one or more eigenvectors of a - ..,,,, matrix
associated with the pixel group.

30 6. The method of claim 1 further comprising: tracking a
pathofat least one ofthe one or more pixel groups through a
time-sequenced series ofproximity images;

fitting an ellipse to the at least one ofthe one or more pixel
groups ineachofthetime-sequencedseries ofproximity

35 images; and
tracking a change in one or more ellipse parameters

through the time-sequencedseries ofproximity images.
7. The method of claim 6 further comprising transmitting

the change in the one or more ellipse parameters as a control
signal to an electronic or electromechanical device.

8. The method ofclaim 7 wherein the change in the one or
more ellipse parameters is selected from the group consisting
of position, shape, size, orientation, eccentricity, major
radius, minor radius, and any combination thereof.

45 9. The method of claim 6 wherein fitting an ellipse to the
one pixel group comprises computing one or more eigenval-
ues and one or more eigenvectors of a - matrix
associated with the pixel group.

50 10. A touch-sensing device comprising:
a substrate;
a plurality of touch-sensing electrodes arranged on the

substrate;
electronic scanning hardware adapted to read the plurality

ss of touch-sensing electrodes;
a calibration module operatively coupled to the electronic

scanning hardwareand adaptedto construct a proximity
image having a plurality ofpixels corresponding to the
touch-sensing electrodes; and

<>o a contact tracking and identification module adapted to:
segment the proximity image into one or more pixel

groups, each pixel group representing proximity of a
distinguishable hand part or other touch object on or
near the touch-sensitive surface;

65 and

mathematically fit an ellipse to at least one of the one or

more pixel groups.

nnu nrnvidati hu IIRDTf3 from the PIRA imana Datshana on ...,=2011

APLNDC00030407

US 7,812,828 B2
61 62

11. The touch-sensing device ofclaim 10 further compris-
ing a host communicationinterface adaptedto transmit oneor
more ellipse parameters as a control signal to an electronic or
electromechanical device.

12. The touch-sensing device of claim 11 wherein the 5
touch-sensing device is integral with the electronic or elec-
tromechanical device.

13. The touch-sensing device ofclaim 11 wherein the one
or more ellipse parameters comprise one or more parameters
selected from the group consisting of position, shape, size, 10
orientation, eccentricity, major radius, minor radius, and any
combination thereof.

14. The method ofclaim 13 wherein theoneormore ellipse
parameters are used to distinguish a pixel group associated
with a fingertip from a pixel group associated with a thumb. 15

15. The touch-sensing device of claim 10 wherein the
contact tracking and identificationmodule is adaptedto com-
pute one ormore eigenvalues and one ormore eigenvectors to
fit the ellipse.

16. The touch-sensing device of claim 10 wherein the 20
contact tracking and identificationmodule is further adapted
to:

track a path ofone ormore pixel groups through a plurality
of time-sequenced proximity images;

fit an ellipse to at least one of the one ormore pixel groups 25
in a first proximity image of the plurality of time-se-
quenced proximity images; and

track a change in one ormore ellipse parameters associated
with the fitted ellipse through two or more of the time-
sequenced proximity images. 3o

17. The touch-sensing device ofclaim 16 further compris-
ing a host co---------- cation interface adapted to transmit the
change in at least one ofthe oneormore ellipseparameters as
a control signal to an electronic or electromechanical device.

18. The touch-sensing device of claim 17 wherein the 35
touch-sensing device is integral with the electronic or elec-
tromechanical device.

19. The touch-sensing device of claim 17 wherein the
change in one or more ellipse parameters used as a control
input to an electronic or electromechanical device comprises 40
one ormore parameters selected from the group consistingof
position, shape, size, orientation, eccentricity, major radius,
minor radius, and any combination thereof.

20. The touch-sensing device of claim 16 wherein the
contact tracking and identificationmodule is adaptedto com- 45
pute one ormore eigenvalues and one ormore eigenvectors to
fit the ellipse.

21. The touch-sensing device of any one of claims 10-12
and 16-18 wherein the touch-sensing device is fabricated on
or integrated with a display device. so

22. The touch-sensing device of claim 21, wherein the
display device comprises a liquid crystal display (LCD) or a
light-emitting polymer display (LPD).

23. A computer-readable medium having embodied
thereon instructions executable by a machine to perform a
method according to any ofclaims 1-9.

24. A touch-sensing device comprising:
means forproducingaproximityimage representinga scan

ofa plurality of electrodes of a touch-sensitive surface,
the proximity image having a plurality of pixels corre-
sponding to the touch-sensing electrodes; and

means for segmenting the pmximity image into one or
morepixel groups, eachpixel group representing a touch
object on or near the touch-sensitive surface; and

means for fitting an ellipse to at least one of the pixel
groups.

25. The touch-sensingdeviceofelaim 24 wherein the touch
object comprises at least a portion of a hand.

26. Thetouch-sensingdeviceofclaim 24 wherein the touch
object comprises at least a portion of one or more fingers.

27.Thetouch-sensingdeviceofclaim 24 wherein the touch
object comprises at least a portion of a body part.

28. The touch-sensingdevice ofclaim 27 wherein the body
part comprises one or more of a hand, a finger, an ear, or a
cheek.

29. The touch-sensing device ofclaim 24 further compris-
ing means for transmitting one or more ellipse parameters as
a control signal to an electronic or electromechanical device.

30. The touch-sensing device of claim 27 wherein the
touch-sensing device is integral with the electronic or elec-
tromechanical device.

31. The touch-sensing device ofclaim 24 further compris-
mg:

means for tracking a path of one or more pixel groups
through a plurality of time-sequenced proximity
images;

meansforfittinganellipsetoatleastoneofthepixelgroups
in a plurality i proximity images; and

means for tracking a change in one ormore ellipse param-
eters through a plurality of time-sequenced proximity
images.

32. The touch-sensing device ofclaim 29 further compris-
ing means for transmitting the change in the one or more
ellipse parameters as a control signal to an electronic or
electromechanical device.

33. The touch-sensing device of claim 32 wherein the
touch-sensing device is integral with the electronic or elec-
tromechanical device.

34. The touch-sensing device of any one ofclaims 24 and
29-33 wherein the touch-sensing device is fabricated on or
integrated with a display device.

35. The touch-sensing device of claim 34, wherein the
display device comprises a liquid crystal display (LCD) or a
light-emitting polymer display (LPD).

sanar nesauriAaA km. I SODTra Swa... ok. BIDO L.

APLNDC00030408

