Apple Inc. v. Samsung Electronics Co. Ltd. et al Doc. 559 Att. 1

EXHIBIT 1.01

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/5:2011cv01846/239768/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2011cv01846/239768/559/1.html
http://dockets.justia.com/

Iw 7293892

TG ALY, TEO) WHOMTHESE; PRESENTS| SHAYN, COME:S;
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

May 17, 2011

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE
RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS
OF:

APPLICATION NUMBER: 08/821,004
FILING DATE: March 20, 1997
PATENT NUMBER: 6,493,002
ISSUE DATE: December 10, 2002

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

Certifying Officer

APLNDC00028287

v
now
mem L”@

EI yes B no
&es E no

Exam

STATE OR | SHEETS

COUNTRY | DRWGS.

RECEIVED

FILING FEE

iner's initials

APLNDC00028288

- ey

%35 2113

. m (_é g

ed |5

3 g

3

% [&]

o oy

= S1C018)
TR G
NUMBER - NUMBER
sERIAL NUMBER FILING DATE | CLASS SUBCLASS GROUP ARTUNIT . | EXAMINER

I :

iy,

RSN E:

R NG

IR F L L0

ign priority olaimed O yes G no STATE OR| SHEETS | TOTAL | INDEP. | FILING FEE ATTORNEY'S
SC 115 conditions met L] yes no AS COUNTRY| DRWGS. | CLAIMS | CLAIMS | RECEIVED DOCKET NO.
v

led and Acknowledged

17 1 e

ARy

AY TREE AR &

PIR

U.S. DEPT. of COMM.-Pat. & TM Office-PTO-436L (rev. 10-78)

PARTS OF APPLICATION
FILED SEPARATELY

Applications Examiner

NOTICE OF ALLOWANCE MAILED CLAIMS ALLOWED

Total Claims Print Claim
Assistant Examiner
ISSUE FEE DRAWING

Amount Due Date Paid Sheets Drwg. | Figs. Drwg. | Print Fig.
ISSUE
BATCH

Primary Examiner | NUMBER
~ Label PREPARED FOR ISSUE
Area

WARNING: The information disclosed herein may be restricted. Unauthorized disclosure may be prohibited
by the United States Code Title 35, Sections 122, 181 and 368. Possession outside the U.S.
Patent & Trademark Office is restricted to authorized employees and contractors only.

Form PTO-436A
(Rev. 8/92)

(FACE)

APLNDC00028289

F

**CONTINUING DATA*k*kkkhkkhhkhkhhhdkhkhkhoksk
VERIFIED

FOREIGN/PCT APPLICATIONS %% %% %%%kk%
VERIFIED

FOREIGN FILING LICENSE GRANTED 01/14/95

BAR CODE LABEL e . y
AWM U.S. PATENT APPLICATION

SERIAL NUMBER FILING DATE CLASS GROUP ART UNIT
08/316,237 09/30/94 364 2306

'3_ STEVEN W. CHRISTENSEN, MILPITAS, CA.

g o

&

<

STATE OR SHEETS TOTAL INDEPENDENT FILING FEE ATTORNEY DOCKET NO.
COUNTRY DRAWING CLAIMS CLAIMS RECEIVED
CA 17 18 3 $840.00 04860.P1365

BLAKELY SOKOLOFF TAYLOR AND ZAFMAN

n)

@ 12400 WILSHIRE BOULEVARD

s 7TH FLOOR

2 LOS ANGELES CA 90025

“ METHOD AND APPARATUS FOR DISPLAYING AND ACCESSING CONTROL AND STATUS
2 INFORMATION IN A COMPUTER SYSTEM

=

This is to certify that annexed hereto is a true copy from the records of the United States
Patent and Trademark Office of the application which is identified above.

By authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

Date Certifying Officer

APLNDC00028290

BAR CODE LABEL
RN U.S. PATENT APPLICATION
SERIAL NUMBER FILING DATE Tciass GROUP ART UNIT
08/821,004 | 03/20/97 395 2415

STEVEN W. CHRISTENSEN, MILPITAS, CA.

APPLICANT

*%*CONTINUING DATA***kkkkhhkhhahhhhhhhhs®
VERIFIED THIS APPLN IS A CON OF 08/316,237 09/30/94

FOREIGN/PCT APPLICATIONS#**%%kkkkdh
VERIFIED

FOREIGN FILING LICENSE GRANTED 05/01/97

STATE OR SHEETS TOTAL INDEPENDENT FILING FEE ATTORNEY DOCKET NO.
COUNTRY DRAWING CLAIMS CLAIMS RECEVED
CA 17 24 3 $858.00 04860.P1365C

BLAKELY SOKOLOFF TAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD

SEVENTH FLOOR

LOS ANGELES CA 90025

ADDRESS

METHOD AND APPARATUS FOR DISPLAYING AND ACCESSING CONTROL AND STATUS
INFORMATION IN A COMPUTER SYSTEM

TITLE

This is to certify that annexed hereto is a true co%y from the records of the United States
Patent and Trademark Office of the application which is identified above.

By authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

Date ’ Certifying Officer

APLNDC00028291

 11/821004

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE
FEE RECORD SHEET

300 g s ;

UV S8 0425797 asavinng
£y DE821804

1101 - b4

838,900 K o

PTO-1556
(5/87)

APLNDC00028292

R

PTO-1556
(5/87)

PATENT APPLICATION SERIAL NO. I /31 5237

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE
FEE RECORD SHEET

APLNDC00028293

— : +
- .. \ece

13/ 316237

icket No. __04860.P1365 Patent

MISSIONER OF PATENTS AND TRADEMARKS
, D.C. 20231

Transmitted herewith for filing is the patent application of

Odwentor(s _Steven W, Civitensen

or: METHOD AND APPARATUS FOR DISPLAYING AND ACCESSING CONTROL
AND STATUS INFORMATION IN A COMPUTER SYSTEM
(Title)
Enclosed are:
X 17 (seventeen) sheei(s) of Drawings.
An Assignment of the invertion to

Assignment Cover Sheet Form PTO-1595.
X A Declaration and Power of Attorney (signed/ _XX___ unsigned).
A Verified Statement to establish Small Entity Status under 37 C.F.R. §§ 1.9 and 1.27.

The Filing Fee has been calculated as shown below:
OTHER THAN A

(Col. 1) (Col. 2) SMALL ENTITY SMALL ENTITY
Rate Fee Rate Fee
Basic Fee: § 355 s 710
Total Claims: 18 - 20} % 0 x11 $ X 22 $ 0
Indep. Claims| 3 -3 * 0 x37 |$ xX74 $ 0
D Multiple Dependent Claim(s) Presented +115 | § +230 |$ O
* If the difference in Col. 1 is less than zero, TOTAL | ¢ ToTaL | ¢ 710
enter "0" in Col. 2.
X A checkfor $710.00 for the filing fee is enclosed.
Acheckfor$ for recordation of the Assignment is enclosed.
X The Commissioner is hereby authorized to charge payment of the following fees

associated with this communication, or credit any overpayment, to our Deposit
Account No. 02-2666. A duplicate copy of this sheet is enclosed.
X Any additional filing fees required under 37 C.F.R. § 1.16.
X Any patent application processing fees under 37 C.F.R. § 1.17.
X The Commissioner is hereby authorized to charge payment of the following fees
during the pendency of this application, or credit any overpayment, to our
Deposit Account No. 02-2666. A duplicate copy of this sheet is enclosed.
Any processing fees under 37 C.F.R. § 1.17, including any extension
fees.
Any filing fees under 37 C.F.R. § 1.16 for presentation of extra claims.
X Send all correspondence to the undersigned at BLAKELY, SOKOLOFF, TAYLOR &

ZAFMAN, 12400 Wilshire Bouleyard enth Floor, Los Angeles Callforna 90025
and dire&t all fele;fh*ne calls to the undersigned at (4

Respectfully submitted,
BLAKELY SOKOLOFF TAYLOR & ZAFMAN

et 7/ 5 °/ﬁ 4 /}V/)?/\%

Michael J /Maliie

12400 Wilshire Boulevard Reg.No.: 36,
Seventh Floor

Los Angeles, California 90025

(408) 720-8598 (LJV/cak 11/23/92)

"Express Mail" mailing label number __TB 377895617US

Datg of Deposit Septernber 30, 1994

| hereby certify that this paper or fee is bemg deposned with the United States Postal Service "Express Mail Post
Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Commissioner of
Patents and Trademarks, Washington, D.C. 20231,

Trivalewis

(Typed o%arm%fperson mailing paper or fee)
A ’\/\ Adngt<d

(Signature of person mailing paper or fee)

APLNDC00028294

i | e o=l

04860.P1365 Patent

UNITED STATES PATENT APPLICATION

for

JMETHOD AND APPARATUS FOR DISPLAYING AND ACCESSING
IN A COMPU

Inventor:

Steven W. Christensen

prepared by:

BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN
12400 Wilshire Blvd., 7th Floor
Los Angeles, California 90025-1026
(408)720-8598

"Express Mail" mailing label number TB377895617

Date of Deposit 9-30-94

| hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post
Office to Addressee" service under CFR 1.10 on the date indicated above and is addressed to the Commissioner of
Patents and Trademarks, Washington, D.C. 20231. .

Triva Lowis
(Typed or printed name of person mailing paper or fee)

N Q.
(Signature of person mailing paper or fee)

APLNDC00028295

10

15

20

25

U — O A

| <1064
1 na/fs@e]ﬁﬁ |

METHOD AND APPARATUS FOR DISPLAYING AND ACCESSING
CONTROL AND STATUS INFORMATION IN A COMPUTER SYSTEM
\
Flgé OF THE INVENTION
The present invention relates to the field of computer systems;
particularly, the present invention relates to displaying a status and control
function bar or window to enable access of user selected indicia to a

computer system user.

BACKGROUND OF THE INVENTION

Typically, a computer system contains a processor, a bus, and other
peripheral devices. The processor is responsible for executing instructions
using the data in the computer system. The bus is used by the processor and
the peripheral devices for transferring information between one another. The
information on the bus usually includes data, address and control signals.
The peripheral devices comprise storage devices, input/output (1/0) devices,
etc.

Computer systems also include information management systems that
coordinate the display of information to the user. Currently, the art in
computer display management provides the capability of displaying data in
rectangular portions (commonly referred to as windows) of a display screen.
Such information management systems include the Finder™ interface of the
computer systems manufactured by Apple Computer, inc. of Cupertino,
California. Controls are typically provided to resize and move windows within

the confines of the physical display boundaries.

APLNDC00028296

10

15

20

Windows may be used to display information regarding application
programs, as well as information produced by system programs, that are run
on the computer system. Many of these system and control programs provide
status and control information and functionality. Some of the system control
programs also provide options with respect to the information they provide
and the functions they perform. These options can be accessed and/or
selected by moving a cursor at a predetermined point in the window and
"clicking" @ mouse or performing requisite key strokes. Access to these
programs may require locating the program (e.g., locating and entering a
folder) before execution. The time necessary to access such programs may
be unduly Iong.%-fis desirable to provide a less obtrusive manner of
accessing such system and control programs.

The computer system is often capable of displaying multiple windows
or data areas on the display screen at the same time. Windows may overlap
each other. The information contained in the portion of the window that is
overlapped is not visible. The window that is entirely visible to the computer
user is typically the active window. Therefore, a program, such as a system
or control program may be running, while another program displaying
information in another window is selected as active and thereatfter covers,
partially or completely, the windows or data areas displayed by the
system/control program. Sometimes the user may wish to have an
unobstructed view of the system/control data area, regardless of the window
selected as active (even when the windows overlap each other). Thus, itis

desirable at times to have windows that are always visible to the user.

APLNDC00028297

However, it is also desirable to be able to eliminate that window at times
based on the user's requirements. |

The present invention overcomes these problems by providing a status
and control information display. The display of the present invention is in an
easily accessible format. Also, the display may be configured to permanently

display in a visible manner control and status indicia.

APLNDC00028298

SUMMARY OF THE INVENTION

An interactive computer-controlled display system is described. In the
present invention, the display system includes a processor, a data display
screen, and a cursor control device for interactively positioning a cursor on
the data display screen. The present invention also includes a window
generator that generates and displays a window (e.g., a control strip) on a
data display screen. In one embodiment, the window comprises a control
and/or status window for display on the desktop of the computer system The
window displays graphics depicting at least one display area of indicia. The
mdma areas may be controlled through the use of controls and

indicators in the window itself using cursor control keys.

APLNDC00028299

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way
of limitation, in the figures of the accompanying drawings and in which like

reference numerals refer to similar elements and in which:

Figure 1¢is a block diagram of one embodiment of the computer

system of the present invention.

Figure Kdisplays a computer desktop illustrating the control strip of

the present invention as well as opened windows.

Figure 2B illustrates one embodiment of the control strip of the present

invention.

Figure 2C illustrates a pop-up menu displayed from the control strip of

the present invention.

Figureﬁxstrates a help balloon displayed from the control strip of

the present invention.

-

Figure zéuustrates the process of moving a display area from one

position to another in the control strip.

APLNDC00028300

10

15

20

25

Figure ZF/shows the control strip window graphics generated by
processing logic being combined with graphics generated by a module to

illustrate the creation of the resulting control strip.

Figure Ajstrates one embodiment of the control panel of the present

invention.

Figure 4 i§ a flow chart of one embodiment of the process for the

control strip of the present invention.

Figure 4 a flow chart of one embodiment of the secondary

initialization process of the present invention.

/

Figure G{a flow chart of one embodiment of the open and

initialization process for the external modules of the present invention.

Figure 7< a flow chart of one embodiment of the process for drawing

the contents of the control strip of the present invention.

Figure 8 is a flow chart of one embodiment of the process for running

idle tasks in the pr gent invention.

Figurée 9 is a flow chart of one embodiment of the process for
responding to a mouse click occurring in the control strip of the present

invention.

APLNDC00028301

Figure 10is a flow chart of one embodiment of the process for post

processing a mouse click in the present invention.

Figure Austrates a bar graph for display in a data display area in

the control strip of the present invention.

Figure ‘I/Zi(lustrates a bar graph that results after using arrow

direction icons.

APLND&00028302

10

15

20

25

DETAILED DESCRIPTION OF THE INVENTION

A method and apparatus for providing status and control indicia. In the
following detailed description of the present invention numerous specific
details are set forth, such as types of status ‘indicia, instruction names, etc., in
order to provide a thorough understanding:of the present invention. However,
it will be apparent to one skilled in the a'rt‘_ﬁhat the present invention may be
practiced without these specific details. - ln other instances, well-known
structures and devices are shown in bliock diagram form, rather than in detail,
in order to avoid obscuring the presenit invention.

The present description inclucies material protected by copyrights, such
as illustrations of graphical user initerface images which the assignee of the
present invention owns. The asslignee hereby reserves its rights, including
copyright, in these materiale},_fahd each such material should be regarded as
bearing the following nqt?;‘ée: Copyright Apple Computer, Inc., 1993. The

copyright owner, ’nas no objection to the facsimile reproduction by anyone of

thee pa'tent document or the patent disclosure, as it appears in the Patent and

Trademark Office file or records, but otherwise reserves all copyrights
whatsoever.

Some portions of the detailed descriptions which follow are presented
in terms of algorithms and symbolic representations of operations on data bits
within a computer memory. These algorithmic descriptions and
representations are the means used by those skilled in the data processing
arts to most effectively convey the substance of their work to others skilled in
the art. An algorithm is here, and generally, conceived to be a self-consistent

sequence of steps leading to a desired result. The steps are those requiring

APLNDC00028303

10

15

20

25

physical manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or magnetic signals
capabile of beihg stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, elements, symbols,
characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and similar terms
are to be associated with the appropriate physical quantities and are merely
convenient labels applied to these quantities. Unless specifically stated
otherwise as apparent from the following discussions, it is appreciated that
throughout the present invention, discussions utilizing terms such as
"processing" or "computing” or "calculating” or "determining” or "displaying" or
the like, refer to the action and processes of a computer system, or similar
electronic computing device, that manipulates and transforms data
represented as physical (electronic) quantities within the computer system's
registers and memories into other data similarly représented as physical
quantities within the computer system memories or registers or other such
information storage, transmission or display devices.

The present invention also relates to apparatus for performing the
operations herein. This apparatus may be specially constructed for the
required purposes, or it may comprise a general purpose computer selectively
activated or reconfigured by a computer program stored in the computer. The
algorithms and displays presented herein are not inherently related to any
particular computer or other apparatus. Various general purpose machines

may be used with programs in accordance with the teachings herein, or it may

APLNDC00028304

10

15

20

25

10

prove convenient to construct more specialized apparatus to perform the
required method steps. The required structure for a variety of these machines
will appear from the description below. In addition, the present invention is
not described with reference to any particular programming language. It will
be appreciated that a variety of programming languages may be used to

implement the teachings of the invention as described herein.

OVERVIEW OF THE COMPUTER SYSTEM OF THE PRESENT INVENTION

Referring to Figure 1, an overview of a computer system of the present
invention is shown in block diagram form. The present invention may be
implemented on a general purpose microcomputer, such as one of the
members of the Apple family of personal computers, one of the members of
the IBM personal computer family, or one of several other computing and
assistant devices which are presently commercially available. Of course, the
present invention may also be implemented on a multi-user system while
encountering all of the costs, speed, and function advantages and
disadvantages available with these machines. The preferred embodiment of
the present invention is implemented on an Apple PowerBook™ computer
system developed by the assignee of the present invention.

As illustrated in Figure 1, the computer system of the present invention
generally comprises a local bus or other communication means 100 for
communicating information, a processor 103 coupled with local bus 100 for
processing information, a random access memory (RAM) or other dynamic
storage device 104 (commonly referred to as a main memory) coupled with

local bus 100 for storing information and instructions for processor 103, and a

APLNDC00028305

10

15

20

25

11

read-only memory (ROM) or other non-volatile storage device 106 coupled
with local bus 100 for storing non-volatile information and instructions for
processor 103.

The computer system of the present invention also includes an
input/output (I/O) bus or other comrﬁunication means 101 for communication
information in the computer system. A data storage device 107, such as a
magnetic tape and disk drive, including its associated controller circuitry, is
coupled to /O bus 101 for storing information and instructions. A display
device 121, such as a cathode ray tube, liquid crystal display, etc., including
its associated controller circuitry, is also coupled to I/O bus 101 for displaying
information to the computer user, as well as a hard copy device 124, such as
a plotter or printer, including its associated controller circuitry for providing a
visual representation of the computer images. Hard copy device 124 is
coupled with processor 103, main memory 104, non-volatile memory 106 and
mass storage device 107 through I/O bus 101 and bus translator/interface unit
140. A modem 108 and an ethernet local area network 109 are also coupled
to I/O bus 101.

Bus interface unit 140 is coupled to local bus 100 and I/O bus 101 and
acts as a gateway between processor 103 and the I/O subsystem. Bus
interface unit 140 may also provide translation between signals being sent
from units on one of the buses to units on the other bus to allow local bus 100
and I/0 bus 101 to co-operate as a single bus.

An 1/O controller 130 is coupled to /O bus 101 and controls access to
certain /O peripherals in the computer system. For instance, I/O controller

130 is coupled to controller device 127 that controls access to an

APLNDC00028306

10

15

20

25

12

alpha-numeric input device 122 including alpha-numeric and other keys, etc.,
for communicating information and command selections to processor 103, a
cursor control 123, such as a trackball, stylus, mouse, or trackpad, etc., for
controlling cursor movement, and a temperature sensor 127A for measuring
the internal system temperature. The system also includes a sound chip 125
coupled to 1/O controller 130 for providing audio recording and play back.
Sound chip 125 may include a sound circuit and its driver which are used to
generate various audio signals from the computer system. 1/O controller 130
may also provide access to a-floppy disk and driver 126. The processor 103
controls 1/O controller 130 with its peripherals by sending commands to I/O
controller 130 via local bus 100, interface unit 140 and 1/O bus 101.

Batteries or other power supply 152 may also be included to provide
power necessary to run the various peripherals and integrated circuits in the
computer system. Power supply 152 is typically a DC power source that
provides a constant DC power to various units, particularly processor 103.
Various units such as processor 103, display 121, etc., also receive clocking
signals to synchronize operations within the computer systems. These
clocking signals may be provided by a global clock generator or multiple clock
generators, each dedicated to a portion of the computer system. Such a
clock generator is shown as clock generator 160. In one embodiment, clock
generator 160 comprise a phase-locked loop (PLL) that provides clocking
signals to processor 103.

In one embodiment, processor 103 is a member of the 68000 family of
processors, such as the 68040 processor manufactured by Motorola

Corporation of Schaumberg, lilinois. The memory in the computer system is

APLNDC00028307

b

10

15

20

25

13

initialized to store the operating system as well as other programs, such as
file directory routines, control programs, system programs and application
programs, and data inputted from 1/O controller 130. The operating system
running on processor 103 takes care of basic tasks such as starting the '
system, handling interrupts, moving data to and from memory 104 and
peripheral devices via input/output interface unit 140, and managing the
memory space in memory 104. In one embodiment, the operating system is
stored in ROM 106, while RAM 104 is utilized as the internal memory for the
computer system for accessing data and application programs.

Processor 103 accesses memory in the computer system via an
address bus within bus 100. Commands in connection with the operation of
memory in the computer system are also sent from the processor to the
memory using bus 100. Bus 100 also includes a bi-directional data bus to
communicate data in response to the commands provided by processor 103
under the control of the operating system running on it.

Of course, certain implementations and uses of the present invention
may neither require nor include all of the above components. For example, in
certain implementations a keyboard or cursor control device for inputting
information to the system may not be required. Furthermore, the computer

system may include additional processing units.

OVERVIEW OF THE PRESENT INVENTION

~ The present invention provides a control and/or status window for
display on the desktop of the computer system. The control and status

window will be referred to herein as the control strip. The control strip of the

APLNDC00028308

10

15

20

25

14

present invention is a window of graphics depicting one or more display areas
for control and/or status indicia. In one embodiment, each of the display
areas is individually and variably sized. The size of the control strip itself may
also be variably sized. In one embodiment, the size may be adjusted such
that none, all, or only a portion of the display areas within its boundaries are
visible. The size of the control strip may also be varied such that only a
portion of one display area is visible in the control strip. Figure 2A displays a
computer desktop illustrating the control strip of the present invention as well
as opened windows. Figure 2B illustrates one embodiment of the control strip
of the present invention.

Each of the variably sized data areas may be sensitive to user input for
control. That is, a user may interact with the individually display data areas.
Different parts of the control strip either display information or act as buttons,
or.both. Note that buttons may display information on their surface. When
the user clicks a button, it is highlighted. In one embodiment, buttons may
also display additional elements such as pop-up menus (shown in Figure 2C)
or help messages (e.g., balloons shown in Figure 2D). Thus, in one
embodiment, control of the individual data areas is accomplished, in part,
through the use of small button controls and indicators in the form of various
icons.

Each of the display areas is associated with a programming module.
Each of the modules provides a specific status or control function. In one
embodiment, the module is represented by a disk file containing the code
necessary for the module to interact with the control strip as well as other

elements such as text, icons, pictures, etc. Modules may be designed to be

//
’\O

APLNDC00028309

15

responsive to selection from cursors via a mouse, trackpad, or cursor control
keys, such as on a keyboard. Many of the modules are able to provide
control to various system functionality, and may provide menus to do the
same.

5 The control strip is a control panel that provides the operating
environment for control strip modules. In one embodiment, the control strip
runs on any Macintosh™ computer using a System 7.0 or later operating
system. The control strip of the present invention may be designed to run on
computer systems using other operating systems.

10 In one embodiment, the control strip is implemented in a private
window layer that appears in front of the windows of all the application layers.
That is, the control strip window appears on top of all application
programming windows that may be generated as part of the execution of an
application program. This prevents other windows from obscuring it. In one

15 embodiment, processing logic in the computer system may maintain a list of
windows ordered from the frontmost window on the screen being at the top of
the list and the bottommost window being at the bottom of the list. Processing
logic can maintain the control strip window at the top of the list.

The control strip of the present invention may include windowing

20 configurations that are shown as being horizontal or vertical on the screen.
Furthermore, the present invention is not limited to a single row or column of
status and control data areas. In other words, multiple rows and columns of

module data areas may be included in the window of the control strip.

APLNDC00028310

10

15

20

16

CONTROL STRIP MANIPULATION

The control strip, such as shown in Figure 2B, may also be moved to
different portions of the display screen. However, in one embodiment, the
window for the control strip may be moved to any location on the display as
long as the right and/or left edge of the strip is attached to the right or left
edge, respectively, of the display. The user may also hold down the option
key and drag the tab 203 of the control strip 200 with the use of a cursor
control device (e.g., trackpad, trackball, mouse) to move the control strip to a
new position on the display.

In one embodiment, the user may adjust the size of the control strip
window. Adjustments to the size of the window may comprise either an
increase in the height of the window, the width of the window, or both. In one
embodiment, only the width of the control strip window may altered. The
definition and use of windows is well-known in the art. In one embodiment,
the control strip 200 has a tab 203 on its unattached end. The user can drag
tab 203 to adjust the length of the strip. By "clicking” on tab 203, i.e. selection
through the use of the trackpad, mouse, cursor control keys, etc. , the user is
able to shift from a minimal control strip size to a maximum control strip size,
and vice versa. In its minimal size, the graphics of the modules in the control
strip are not visible and only the tab is showing. In its maximum size, all of
the modules in the control strip are showing. Recognizing cursor controlled
selections through the use of trackpad, trackball, mouse, cursor control keys,
etc., as well as the tracking of movements of the cursor made by the same

are well-known in the art.

APLNDC00028311

10

15

20

25

17

Scroll arrows, such as left scroll arrow 204 and right scroll arrow 205,
are provided on the control strip that enable the window of the control strip to
be scrolled to the left or right, respectively. Use of scroll arrows with windows
is well-known in the art.

The user may also hide the control strip. In one embodiment, to make
the control strip disappear completely, the user can click the Hide button in
the control strip control panel, as described later in conjunction with Figure 3.
A close box 201 is also included in control strip 200

In one embodiment, by holding the option key and clicking a display
area, the user can drag the display area to another position in the control
strip. An example of the process of moving one display area to another
position on the control strip is shown in Figure 2E. Referring to Figure 2E, the
user selects one of the display areas by, for instance, positioning the cursor
over the display area. When the user "clicks” the display area, its border
becomes highlighted. While clicking, the display area is dragged to another
location in the control strip module display area. When the user has moved
the display area to the location of his choice, the user stops "clicking” The
control strip display areas are then rearranged.

After the user rearranges the parts of the control strip, the new
arrangement is saved. The saving operation may be deferred until resources,
such as the hard disk is ready (e.g., spinning) or until just before the computer
system is shut down or restarted. In other words, in computer systems in
which the hard disk is not turned on all the time in order to save power, the
saving operation may be deferred until the hard disk has been turned on by

another.

APLNDC00028312

10

15

20

18

EXEMPLARY CONTROL/STATUS INFORMATION

The control strip of the present invention provides a standard screen
location for a collection of individual modules that provide status and control
functions. In one embodiment, the control strip functions include a network
switch that shows whether a network connection for the computer system,
such as an AppleTalk™ network connection, is on or off and lets the user turn
the network connection on or off without having to locate and execute other
neiwork connection software on the computer system (e.g., without having to
open the Chooser™).

The control strip may also include a battery monitor that displays the
status of the battery or batteries. In one embodiment, the battery monitor
displays the current power drain in a manner similar to a car's miles per gallon
(MPG) indicator. The needle for the power drain indicator indicates the drain
relative to the maximum possible. The control strip of the present invention
allows this display to be updated frequently so if the user increased the LCD
display screen's brightness level, the needie would animate to denote the
consequence of the action.

Another control strip module displays the state of File Sharing (e.g., on,
off, or users connected) that may be currently employed on the computer
system. The file sharing module also lets the user turn file sharing on or off
and lets the user open a control panel to control processing to setup file

sharing on the computer system.

APLNDC00028313

10

15

20

19

The control strip of the present invention may also provide a module to
allow the internal hard disk power to be turned off (to save power), and to
indicate whether is currently on or off.

The control strip may also provide power settings that allow the user to
select between maximum battery conservation or maximum computer
performance without opening a control panel. In one embodiment, the power
settings portion of the control strip also allow the user to open up the power
savings control panel. The control strip of the present invention may aiso
include a function that places the computer in sleep mode or allows the user
to select the sound volume.

Other modules, for example, may provide time and/or date information,
may list currently running programming applications, may indicate the amount
of available memory, may control a CD drive, may provide access to audio
controls and status information. Therefore, the control strip acts as a status
and control function bar, or windowing area, that provides running modules to
be displayed in an arrangement that is to be displayed, such an arrangement
being modifiable such that the size of the window or bar may be changed.

In one embodiment, the control strip is controllable through a control
panel. An exemplary display of such control panel is shown in Figure 3. Use
of control panels is well-known in the art. Using the control panel in Figure 3,
the user is able to hide or show the control strip by clicking the corresponding
button in the control panel. Note that in one embodiment, the control panel
may also be used to change the font and size of the text in the control strip

window.

APLNDC00028314

10

15

20

20

PROCESSING LOGIC FOR THE PRESENT INVENTION

The present invention includes computer processing logic for
generating the control strip of the present invention. This processing logic is
described, in part, in the flow charts shown in Figures 4-10. In addition to the
computer resources described earlier, the present invention relies upon the
availability of an operating system and system functions capable of displaying
windows, information in windows, characters, and cursor symbols on the
display devices. System functions for interfacing with the cursor control
devices and cursor function keys, including the tracking-of cursor location
within a window, are also required. These resources are standard processing
components known in the art.

When the processor of the present invention is first powered up, the
operating system logic obtains control and initializes the system components
such as read/write memory, the display device, the cursor control device, the
cursor function keys, and keyboard. During this initialization process or in
response to a user command, the operating system displays the control strip
of the present invention.

In one embodiment, the control strip initialization is performed in two
stages. The first stage begins by initially loading at least one routine at start
up. Upon loading necessary routines, the operating system allocates storage
for global variables use. Next, resources are loaded for use by the control
strip processing logic. These resources include the visual components or
indicia that is to appear in the control strip, such as pictures, icons, text, etc.

The processing logic for the control strip is patched into the operating system.

APLNDC00028315

s

10

15

20

25

21

Later, as a second stage of the initialization during the set up process,
the control strip processing logic causes each of the module files to be
opened one at a time. The code for the module is loaded. An initialization
routine is run in response to a call, during which time, the module itself
determines if it can run. This information is conveyed to the control strip. The
processing logic then causes the window to be displayed and calls the
modules to run themselves and appear in the control strip. Figure 2F shows
the control strip window graphics generated by processing logic being
combined with graphics generated by a module to illustrate the creation of the
resulting control strip.

Figure 4 is a flowchart of the processing logic responsible for
generating the control strip of the present invention and processing events
that occur involving the control strip. In one embodiment, the control strip
main processing is called by the operating system. Referring to Figure 4, the
processing begins by saving the previous context and sets up the context of
the control strip (processing block 401). The previous context refers to the
state of the computer system prior to performing control strip processing. The
previous context may correspond to an application program running
immediately prior to the control strip processing being called. The context
may include settings up its memory space, providing access to its global
variables, etc.

Next, a test determines if the secondary initialization has been done
(processing block 402). If the secondary initialization hasveeen done,
processing continues at processing block 403 where a secondary initialization

process is run, and processing thereafter continues at processing block 409.

\D -

APLNDC00028316

10

15

20

The secondary initialization process causes the procéssing logic to initialize
the control strip. One embodiment of the secondary initialization process is
described in Figure 5. On the other hand, if the window of the control strip is
allocated, processing continues at processing block 404 where the processing
logic awalits a user event and determines the type of such an event.

Then a test determines if the user event type is a null event
(processing block 405). That is, a test determines whether the user event
type is idle or not. If the user event type is a null event, processing continues
at processing block 406 where idle tasks are run, and processing thereafter
continues at processing block 409. Thus, during idle periods, tasks involved
with the control strip window may be run as well as tasks of the modules.
Examples of module tasks may include updating help messages (e.g., due to
a help feature being enabled on the computer system) and saving updated
state information (e.g., display area on screen moved to new location, display
area resized, module made invisible; module indicates state is changed and
that it must be saved). On the other hand, if the event type is not a null event,
processing continues at processing block 407.

At processing block 407, a test determines if there has been a "click” of
the mouse within the area defined by the control strip. If there has been a
click of the mouse within the control strip, the mouse click is processed
(processing block 408), and processing continues at processing block 409.
The mouse click processing determines the location of the mouse click, which
module in the controls strip was selected, or "clicked-on", if any, and any

action to be taken based on that location. One embodiment of the mouse

\\L)

APLNDC00028317

10

15

20

25

23

click processing is described in Figure 9. If a mouse click has not occurred
within the control strip, processing continues directly to processing block 409.

At processing block 409, the previous context is restored and the
processing logic exits to return control to the operating system.

One embodiment of the secondary initialization process called by the
control strip main processing logic is described in a flowchart in Figure 5.
Referring to Figure 5, the secondary initialization process begins by testing
whether the Finder™ has started up (processing block 501). If the Finder™
has not started up, the secondary initialization process ends. However, if the
Finder™ has started up, the window of the control strip is created (processing
block 502).

Then a test determines whether the creation of the window of the
control strip was successful (processing block 503). If the creation of the
window of the control strip was nat successful, the process ends. The
creation of the window may not be successful because, for instance, there is
not enough memory, missing system resources, etc. On the other hand, if the
creation of the window of the control strip was successful, the font and color
of the control strip are initialized (processing block 504). Then external
modules are opened and initialized (processing block 505), the default screen
location and size of the control strip are set (processing block 506), the user
configuration is loaded (processing block 507), and the contents of the control
strip are drawn (processing block 508). The user configuration may include
screen location for the control strip, the saved display order of the modules,
the window size of the control strip, etc. Then the secondary initialization

process ends.

~ul
o

- APLNDC00028318

24

The default screen location and size of the control strip are stored in
memory and accessed. In one embodiment, these values may be changed
by the computer user, such as by interacting with the control strip itself. In
another embodiment, the default values are determined and permanently set

5 by a system designer. Note that specification of the font, color, default screen
location and size may not be required in lieu of the user configuration.
Likewise, by using solely the default settings, the user configuration is not
required.

One embodiment of the process for opening and initializing external

10 modules such as may be invoked by the secondary initialization process is
shown in Figure 6. Referring to Figure 6, the processing logic begins by
testing whether there are more module files to be opened (processing block
601). If there are no more module files (e.g., all the modules have been

opened and loaded), then the process ends. The modules are opened and

15 initialized one at a time. If there are more module files, the processing logic
opens the module file (processing block 602) and loads the module code into
memory (processing block 603). The ptocessing logic calls the module to
initialize itself (processing 604). The module is then also called by the
processing logic to obtain the features of the module (processing block 605)

20 and to obtain the width of the module's area, as well as features of the module
(processihg block 606). The features of the module include help messages to
be displayed when the module is "clicked on" with the cursor. Then the

module file is closed (processing block 607) and the processing loops back to

processing block 601. By looping back to processing block 601, the

25 processing logic is able to provide the initialization procedures to all the

Gl

7

P

i
APLNDC00028319

o

10

15

20

25

moduies, such that when all the modules have been processed the process
ends. When the process ends, it returns in a manner well-known in the art to
the processing logic that called (e.qg., initiated) it.

One embodiment of a process for drawing the contents of the control
strip (processing block 508), such as used at processing block 508 of Figure
5, is described in Figure 7. Referring to Figure 7, the processing logic initially
determines if the control strip is visible (processing block 701). If the control
strip is not visible, processing ends. That is, if the user has hidden the control
strip, the present invention will not draw its contents.

On the other hand, if the control strip is visible, processing continues at
processing block 702 enters a looping structure where the processing logic
tests whether there are more modules to draw. If there are no more modules
to draw, processing ends and control returns to the process that called it. If
there are more modules to draw, processing continues at processing block
703 where the processing logic tests whether the particular module needs to
be redrawn. A module may need to be drawn when the information being
displayed needs to be updated. For example, as the amount of energy in the
battery is changing due to energy consumption from the computer system, an
update to the battery indicia in the control strip must be made. If the module
‘does not need to be redrawn, processing loops back to processing block 702
where the more modules test is repeated. On the other hand, if the module
needs to be redrawn processing continues at processing block 704 where the
processing logic determines whether the module is a button. If the module is a
button, processing continues at processing block 705 where the background

graphics of the button are drawn, and processing continues to processing

{;\Lj’

APLNDC00028320

26

block 707. If the module is not a button, the status-only background graphics
are drawn (processing block 706) and processing continues at processing

block 707. Note that in one embodiment, the type of background graphics

may be obtained using a message sent to the module requesting its features.
5 At processing block 707, the processing logic makes a call to the
module to draw itself. That is, it is the responsibility of the module itself to
draw its status for control indicia. Thereafter processing loops back to
processing block 702.
One embodiment of the processing for running idle tasks in Figure 4 is
10 described in a flowchart in Figure 8. Referring to Figure 8, the processing
logic begins by determining whether a window update is pending (processing
block 801). If a window update is pending, the processing continues at
processing block 802 when the contents of the control strip are drawn.
Window updates may be required due to a change in status in one of the
15 modules. Changes may also be due to a reordering of the control strip
entries. Note that one embodiment of the process to draw the control strip is
shown in Figure 7. Thereafter processing continues at processing block 803.
If a window update is not pending processing continues directly to processing
block 803.
20 At processing 803, processing logic tests whether the configuration of
the control strip has changed. If the configuration of the control strip has not

changed, processing continues at processing block 806. If the configuration

of the control strip has changed, processing continues at processing block
804 where a test determines whether it is safe to perform a save operation.

25 This determination is based on whether the resources are available (i.e., H.D.

APLNDC00028321

10

15

20

25

27

is turned on) to perform the save operation. If it is not safe to perform a save
operation, processing continues at processing block 806. However, if it is
safe to save control strip, processing continues at processing block 805
where the configuration of the control strip is saved to disk. Thereafter
processing continues to processing block 806.

At processing block 806, the current idle module is called to run its idle
task. In one embodiment, the processing logic of the present invention allows
only one module to run its idle tasks during each a call to the processing of
Figure 8 (e.g., the currently designated module) to reduce overhead time.
Identification of the current module is based on an ID associated with each of
the modules.

Then the idle task undergoes post processing (processing block 807),
and the ID of the next module is updated to idle (processing block 808). That
is, the module designated as the current module for the next call to the
processing of Figure 8 will be the next module in the list of modules. An
example of the post processing is shown in Figure 10.

Then, the processing logic determines whether the module needs to
save settings for use later (processing block 809). If the module does not
need to save its settings, processing continues to processing block 812. On
the other hand, if the settings of the module are to be saved, the processing
logic tests whether the settings may be saved at this time (processing block
810). One reason the settings may not be saved is that the hard disk may be
powered down or turned off. If the settings cannot be saved at this time,
processing continues at processing block 812. If the settings of the module

may be saved at this time, the processing logic causes the module settings to

APLNDC00028322

10

15

20

28

be saved to disk (processing block 811). Thereatfter, processing continues at
processing block 812.

At processing block 812, the help messages for the control strip are
updated, and processing ends and returns to the control of the main
processing logic.

One embodiment of the mouse click processing of the present
invention, such as used in Figure 4, is shown in a flowchart in Figure 9.
Referring to Figure 9, the processing logic determines whether a mouse click
has occurred inside the control strip (processing block 901). In one
embodiment, this determination may be made by comparing the current
location of the cursor with the location of the control strip (e.g., status bar). #—
the-cursor locatierrisdeterminedto-be-within-threcontrot-stripy. |f a mouse
click has not occurred inside the control strip, then processing loops back
upon itself, retesting repeatedly until a mouse click does occur. When a
mouse click occurlgl(' é?&%gén%ﬁtpléﬁég 5 processing block 902 where a
determination is made as to upon which module the cursor was during the
click.

The processing logic then determines whether a move operation is
being selected by the mouse (processing block 903). If a move operation has
been chosen, the display of the module is moved or the entire control strip is
moved (processing block 904) and the processing logic ends the mouse click
process and exits to control of the processing logic that called this procedure.
The determination of whether to move a module or the entire strip is based on
the user's keystrokes or mouse movements. On the other hand, if a move

operation is not to occur, processing continues at processing block 905.

APLNDC00028323

i

10

15

20

29

At processing block 905 the processing logic determines whether the
module on which the click occurred is a "clickable" module, as opposed to a
status only module, (processing block 905). That is, the processing logic
tests whether the module provides any additional functionality when a mouse
moves the cursor to select an element in the control strip. If the module is not
"clickable," processing ends. If the module is clickable, processing continues
to process processing block.906 where the mouse click is tracked, i.e., the
location of the cursor.

Next, a test determines if the mouse is still within the bounds of the
module (processing block 907). If the mouse is not within the bounds of the
module, processing ends. However, if the mouse is within the boundaries of
the module, the module is called to process the click (processing block 908)
and the click undergoes post processing (processing block 909). Thereafter,
the process ends.

One embodiment of the process for post processing the mouse click is
shown in Figure 10. Referring to Figure 10, the processing logic begins by
determining whether the module desires to update its settings (processing
block 1001). If the settings for the module are to be updated, processing
continues at processing block 1002 where a flag is set to indicate that the
module has a save pending, and processing continues to processing block
1003. The settings for a module may have to be updated due to user
interaction, such as in the case of an option for a module being turned off or a
module acquiring data as part of its functionality. If the settings of a module

do not have to be updated, processing continues directly to processing block

APLNDC00028324

10

15

20

25

1003. Setting may need to be updated when the module is displaying
information that is changing frequently.

At processing block 1003, a test determines whether the module needs
to resize the display. If the display of the module must be resized, processing
continues at processing block 1004 where the module is called to update its
width. Then processing continues at processing biock 1005. On the other
hand, if the display of the module does not need to be resized, processing
continues directly to processing block 1005.

At processing block 1005, the processing logic determines whether the
module desires to be closed. If the module desires to be closed, processing
continues at processing block 1006 where the module is closed immediately.
Then processing continues at processing block 1007. If the module does not
desire to be closed, processing continues to processing block 1007.

At processing block 1007, a test determines whether the control strip is
to be resized or closed. If the control strip needs to be resized or closed,
processing continues at processing block 1008 where the module displays
are repositioned and redrawn, and then processing continues at processing
block 1009. If the control strip is not to be resized or closed, processing
continues directly to processing block 1009.

At processing block 1009, a test determines whether the help state of
the module is to be changed. The help state refers to help messages that the
modules provide to users generally. If the help state of the module is to be
changed, processing continues at processing block 1010 where the old help
state of the module is invalidated and the process ends. If the module help

state does not need to be changed, processing ends. Changes to the help

APLNDC00028325

10

15

20

25

e

31

state may occur due to a global change in the computer system, such as

when a particular help feature (e.g., help balloons) is enabled.

ADDING CONTROL STRIP MODULES

In one embodiment, the control strip of the present invention operates
as a shell with individual control and status modules added. Each module
and its icons, pictures, etc., are contained in a file on a disk. The control strip
processing logic draws the strip which acts as the background for the
individual modules. Each module is responsible for drawing the icons and

other objects that make up its user interface.

Contents of Module Files

In one embodiment, the module file includes only a single resource
containing the code necessary for the module to interact with the control strip.
A module file may contain more than one code resource if it is to provide
multifunctional support. In that case, each module in the file is loaded and

initialized separately and treated as an independent entity.

Module Interface

The interface of the module to the control strip comprises a code
resource. In one embodiment, using the Macintosh™ computer, the type of
the code resource is 'sdev'. This code is responsible for performing all of the
functions required by the control strip as well as any functions that are custom
to the module itself. The module's entry point is at the beginning of the

resource and is defined as

g

APLNDC00028326

10

15

20

32

pascal long ControlStripModule (long message,
long params,
Rect *statusRect,
GraftPtr statusPort);

Interactions between a module and the control strip are managed by
passing messages to the module to tell it what to do or to obtain information
about the module and its capabilities. In one embodiment, each module is
required to observe Macintosh™ Pascal register saving conventions; that is, it
may trash 680x0 processor registers DO, D1, D2, A0, and A1, but must
preserve all other registers across its call. Note that other operating systems
and implementations of the present invention may have different restrictions.

The message field comprises a message number from the list in the
section "Control Strip Module Messages" that indicates to the module the
action to perform.

The params field signifies the result returned by the initialize call to the
module. This would typically be a pointer to a pointer (e.g., the handie) to the
private variables to be used by the module since modules cannot have global
variables. This result is passed to the module on ali subsequent calls. Note
that in embodiments where modules can have global variables, such a field
may be eliminated.

The statusRect field comprises a pointer to a rectangle within the
control strip defining the area that a module may draw within.

The statusPort field specifies a pointer to the graphics port of the
control strip. The graphics port may be either a color or black-and-white
graphics port, and depends on the computer system on which the control strip

is running.

APLNDC00028327

5

10

15

25

30

B T B ey

The result value returned by the module varies depending on the
message sent to it. Results for each message are described below in the

sections on the individual messages.

CONTROL STRIP MODULE REFERENCE

In one embodiment, control strip modules interact with the control strip
processing logic in three ways: by accepting messages, by calling utility
routines, and by calling the operating system manager (e.g., a call to Gestalt

selectors). The next three sections describe each of those interactions.

Control Strip Module Messages

In one embodiment, all control strip modules respond to messages
from the control strip processing logic, which is responsive to user interaction
with the control strip displayed on the screen. The following messages have

been defined:

Message name Message No. Description

sdevinitModule 0] Initialize the module

sdevCloseModule 1 Clean up before being closed

sdevFeatures 2 Return the feature bits

sdevGetDisplayWidth 3 Return the current width of the
module's display

sdevPeriodicTickle 4 Periodic tickle when nothing else is
happening

sdevDrawStatus 5 Update the interface in the control
strip

sdevMouseClick 6 User has clicked on the module's
display area

sdevSavSettings 7 Save any changed settings in the

module's preferences file

- APLNDC00028328

10

15

20

25

sdevShowBalloonHelp 8 Display a help balloon, if the
module has one

sdevinitModule

The sdevinitModule message is the first message sent to a module
after the module has been loaded from its file. Initialization allows the module
to initialize its variables and to determine whether it can run on a particular
machine. For example, if the function of the module is to display battery
information, it may be only able to run on a portable computer, such as the
Powerbook manufactured by Apple Computer.

In response to receiving the sdevinitModule message, the module
loads and detaches any resources (e.g., text, code, icons, etc.) in its resource
file that will be used. Also, space is allocated in the global variables for
handles to those detached resources.

The sdevinitModule message retums a result depending on its success
at installing itself. In one erhbodiment, a positive result (>0) indicates
successful installation. The processing logic passes this result value to the
module on all subsequent calls. A negative result indicates an error condition,
and installation of the module is aborted by the control strip processing logic.
Also if a negative result occurs and installation has been aborted, the module

does not receive a close message.

sdevCloseModule

The sDevCloseModule message is sent to a module when it should be
closed. In one embodiment, the module itself decides when to be closed. A

module may be closed when it no longer is required to be running, such as

APLNDC00028329

10

15

20

%
|

when a battery level indicator no longer needs to be running when the
computer system is receiving its power from an outlet. When the module
receives this message, it disposes of all the detached resources it loaded as

well as its global storage. No result is expected.

sdevFeatures

The sdevFeatures message queries the module for the features it
supports. This message returns as its result a bitmap consisting of 1 bits for
supported features and 0 bits for unsupported features. In one embodiment,
there are 32 bits returned. All undefined bits are reserved for future features,
and, in one embodiment, are set to 0. The bits are defined as:

a) sdevWantMouseClicks (0) -- If this bit is set, the control strip
notifies the module of mouse down events. If this bit is not set, the control
strip assumes that the module only displays status information with no user
interaction.

b) sdevDontAutoTrack (1) -- If this bit is set, the control strip highlights
the display of the module and then calls the module to perform mouse
tracking. In one embodiment, this bit is set when, for example, a module has
a pop-up menu associated with it. If this bit is cleared, the control strip tracks
the cursor until the mouse button is released, then sends an sdevMouseClick
message, described below, to the module to notify it that there was a mouse-
down event.

¢) sdevHasCustomHelp (2) -- If this bit is set, the module is
responsible for displaying its own help messages. These help messages may

be customized depending on its current state. If the bit is cleared, the control

APLNDC00028330

10

15

20

36

strip displays a generic help message when the cursor passes over the its
display area and Balloon Help, or other help-based information provider, is
on.

d) sdevKeepModuleLocked (3) -- If this bit is set, the code of the
module is kept locked and protected. In one embodiment, this bit is set only if
the module is passing the address of one of its routines to a routine external

to the module (e.g., installing itself in a queue).

sdevGetDisplayWidth

The sdevGetDisplayWidth message is sent to a module to determine
how much horizontal space (in pixels) its display currently requires on the
control strip. In response to the message, the module return the number of
pixels as its result. In one embodiment, the returned width does not comprise
the maximum width required for any configuration, but instead, reflects how
much space it currently requires. Note that this useful because, in one

embodiment, its possible for a module to request that its display be resized.

sdevPeriodicTickle

The sdevPeriodicTickle message is passed to the module periodically
to allow the module to update its display due to changes in its state. In one
embodiment, this message occurs at regular intervals, while in other
embodiments, there is no minimum or maximum interval between "tickles.” in
response to the sdevPeriodicTickle message, the module returns, as its
result, some bits that signal requests for actions from the control strip

processing logic. In one embodiment, there are 32 bits returned. All

APLNDC00028331

§

10

15

20

37

undefined bits in the result are reserved for future use and, in one
embodiment, are set to 0. The bits are defined as:

a) sdevResizeDisplay (0) -- If this bit is set, the module resizes its
display. The control strip processing logic sends a sdevGetDisplayWidth
message to the module and then updates the control strip on the display.

b) sdevNeedToSave (1) -- If this bit is set, the module needs to save
changed settings to disk. The control strip processing logic marks the request
but may defer the actual save operation to a better time (e.g., when the hard
disk is spinning).

¢) sdevHelpStateChange (2) -- If this bit is set, the help message of
the module needs to be updated due to a change in state. If a help balloon is
being displayed for the module, the control strip processing logic removes the
previous help balloon with a new help balloon for the current state.

d) sdevCloseNow (3) -- If this bit is set, the module is requesting to be
closed. The control strip processing logic calls the module to save its
settings, then calls the module again to close itself by, for example, disposing

of any loaded resources, disposing of private storage, etc.

sdevDrawStatus
The sdevDrawStatus message indicates that the module has to redraw

its display to reflect the most recent state. In one embodiment, this message
is sent when the user clicks on the display area of the module, when any of
the display of the module is resized, or when the control strip itself needs to

be updated, perhaps in response to a screen saver deactivation.

APLNDC00028332

10

15

20

25

The statusRect parameter points to a rectangle bounding the display
area of the module, in local coordinates. All drawing done by a module within
the bounds of the control strip is limited to the module's display rectangle. In
other embodiment, drawing may extend outside the display rectange of the
module. The clipping region of the control strip's window is set to the visible
portion of the display rectangle of the module so that all the elements in the
display may be drawn. If the clipping region is to be changed, the initial
clipping region should be observed to avoid drawing over other items in the

control strip.

sdevMouseClick

When the user clicks in a display area of the module, the control strip
prdcessing logic calls the module with the sdevMouseClick message if the
sdevWantMouseClicks bit is set in the features of the module.

If the sdevDontAutoTrack bit is also set, the control strip processing
logic draws the display of the module in its highlighted state and then sends
the sdevMouseClick message to the module. If the sdevDontAutoTrack bit is
not set, the control strip processing logic tracks the cursor until the mouse
button is released. If the cursor is still within the display area of the module,
the control strip processing logic sends the sdevMouseClick message to
notify the module that a click occurred. In either case, the module can then
perform the appropriate function in response to a mouse-down event.

This message returns the same result as the sdevPeriodicTickle

message.

APLNDC00028333

=
|
.

10

15

20

39

sdevSaveSettings

The sdevSaveSettings message is passed to the module when the
control strip processing logic has determined that the configuration
information may be saved to the disk (e.g., HD turned on, etc.). In one
embodiment, the sdevSaveSettings message is sent only if the module had
previously set the sdevNeedToSave bit in the result of a sdevPeriodicTickle or
sdevMouseClick message. The call returns an error code (File Manager,
Resource Manager, or the like) indicating the success of the save operation.
The control strip processing logic continues to send this message to the

module until the module returns a result of 0, indicating a successful save.

sdevShowBalloonHelp

The control strip processing logic calls the module with the
sdevShowBalloonHelp message if Balloon Help is turned on, the module has
previously set the sdevHasCustomHelp bit in its features, and the cursor is
over the module's display area. In such a case, the module calls the Help
Manager to display a help balloon describing the current state of the module.
The module returns a value of O if successful or an appropriate error result if

not.

UTILITY ROUTINES

In one embodiment, the control strip processing logic provides a set of
utility routines that are available to control strip modules. They are provided
to promote a consistent user interface within the control strip and to reduce

the amount of duplicated code that each module would have to include to

1
AL

APLNDC00028334

%

10

15

20

25

40

support common functions. Therefore, in an embodiment that does not
include these utility routines, a portion or all of the modules may include

duplicated code supporting common functions.

SBlsControlStripVisible

The SBlsControlStripVisible routine determines whether the control
strip is visible. An exemplary call follows:

pascal Boolean SBlsControlStripVisible ();

The SBIsControlStripVisible routine returns a Boolean value indicating
whether or not the control strip is currently visible. It returns a value of "true”
if the control strip is visible, or a value of "false" if it's hidden.

In one embodiment, the SBIsControlStripVisible call returns a value of
"true" even when the control strip is not visible. That happens whenever the
control strip is not accessible in the current environment. As soon as that
condition changes, the control strip becomes visible again and the returned

value correctly reflects the actual state.

SBShowHideControlStrip

The SBShowHideControlStrip routine shows or hides the control strip.
An exemplary call follows:

pascal void SBShowHideControlStrip (Boolean showilt);

The SBShowHideControlStrip routine determines the visibility state for
the control strip based on the value of the "showlt" parameter. Passing a
value of "true" makes the control strip visible, and passing a value of "false"

hides it. Modules may not need to call this routine. However, the

APLNDC00028335

10

15

20

41

SBShowHideControlStrip routine provides a means for other software to hide
the control strip when it is in the way.

Calling the SBShowHideControlStrip routine with a "showit" value of
"true" may or may not show the control strip, depending on the current
environment. If the control strip is not accessible, it does not become visible.
If a "showlt" value of "true” is passed to this routine, then the control strip

becomes visible when the environment changes.

SBSafeToAccessStartupDisk

The SBSafeToAccessStartupDisk routine determines whether the
internal hard disk is turned on so that processing logic of the present invention
can determine whether to make a disk access or postpone it until a time when
the disk is already spinning. An exemplary call follows:

pascal Boolean SBSafeToAccesStartupDisk ();

The SBSafeToAccessStartDisk routine returns a Boolean value of

"true" if the disk is turned on and "false" if it is not.

SBOpenModuleResourceFile

The SBOpenModuleResourceFile routine opens a module resource
file. An examplary call follows:

pascal short SBOpenModuleResourcFile (OSType fileCreator);

The SBOpenModuleResourceFile routine opens the resource fork of
the module file whose creator is "fileCreator”, and return the file's reference
number as its result. If the file cannot be found or opened, the

SBOpenMduleResourceFile routine returns a result of -1.

W

APLNDC00028336

10

15

20

25

42

The SBOpenModuleResourceFile routine also provides a means for a
module to load in large or infrequently used resources that it doesn't usually

need, but that it requires for a particular operation.

SBLoadPreferen
The SBLoadPreferences routine loads a resource from a preferences

file. An examplary call follows:

pascal OSErr SBLoadPreferences (ConstStr255Param prefsResourceName,
Handle *preferences);

The SBLoadPreferences routine loads a resource containing a
module's configuration information from the preferences file of the control
strip. The PrefsResourceName parameter points to a Pascal string
containing the name of the resource. The "Preferences" parameter points to
a variable that holds a handle to the resource read from the file. The handle
does not need to be preallocated.

If either prefsResourceName or preferences contains a nil pointer, the
SBLoadPreferences routine does nothing and returns a result of paramErr. If
the resource is successfully loaded, the SBLoadPreferences routine returns a
result of 0. The SBLoadPreferences routine also returns other Memory
Manager and Resource Manager errors if it fails during some art of the

process.

SBSavePreferences
The SBSavePreferences routine saves a resource to a preferences

file. An exemplary call follows:

APLNDC00028337

e

10

15

20

pascal OSErr SBSavePreferences (ConstStr255Param prefsResourceName,
Handle preferences);

The SBSavePreferences routine saves a resource containing a
module's configuration information to the preferences file of the control strip.
The PrefsResourceName parameter points to a Pascal string containing the
name of the resource. The "preferences" parameter contains a handle to a
block of data which will be written to the file.

If either prefsResourceName or preferences has a nil value, the
SBSavePreferences routine does nothing and returns a result of paramkrr. if
the resource is successfully'saved, the SBSavePreferences routine returns a
result of 0. The SBSavePreferences routine can also return other Memory
Manager and Resource Manager errors if it fails during some part of the

process.

SBGetDetachedString

The SBGetDetachedindString routine obtains a string from a detached
resource. An exemplary call follows:

pascal void SBGetDetachedindString (StringPtr the String,

Handle stringList,
short whichString);

The SBGetDetachedindString routine is the detached resource version
of GetindString. The parameter theString points to a Pascal string; the
stringList is a handle to a detached 'STR#' resource; and whichString is the
index (1-n) into the array of Pascal strings contained in the detached
resource. The SBGetDetachedIndString routine copies the string whose

index is whichString into the space pointed to by theString. If whichString is

APLNDC00028338

10

15

out of range, the SBGetDetachedindString routine retumns a zero-length

string.

SBGetDetachlconSuite
The SBGetDetachlconSuite routine sets up a detached icon suite. An
exemplary call follows:

pascal OSErr SBGetDetachiconSuite (Handle *thelconSuite,
short theResID,
unsigned long selector);

The SBGetDetachlconSuite routine creates a new icon suite, loads all
of the requested icons, and then detaches the icons. The parameter
thelconSuite points to the location where the handle to the icon suite is
stored; the parameter theResID is the resource ID of the icons that make up
the icon suite; and the parameter "selector" indicates which icons are to be
loaded into the suite. In one embodiment, the "selector” parameter contains

one (or a combination of) the following values:

svAllLargeData 0x000000FF load large 32-by-32-pixel icons
('ICN#, 'ic14', 'ic18)

svAliSmallData x0000FF00 load small 16-by-16-pixel icons
(‘ics#', 'ics4', 'ics8')

svAllMiniData Ox00FF0000 “load mini 12-by-12-pixel icons

(‘icmi#', icm4', 'icm8")

These values may be ORed together to load combinations of icon
sizes. The SBGetDetachlconSuite routine returns an appropriate error code if
it's unsuccessful, or 0 if it was able to load the icon suite. Note that if none of
the icons comprising the icon suite could be found, the call retumns the error

"resNotFound. In one embodiment, the SBGetDetachlconSuite routine is

~ APLNDC00028339

e

10

15

20

called only when the resource file of the module is open. This is typically the

case during a module's initialization call.

SBTrackpopupMenu

The SBTrackpopupMenu routine manages a pop-up menu. An
exemplary call follows:

pascal short SBTrackpopupMenu (const Rect *moduleRect,
MenuHandle theMenu);

The ‘SBTrackpopupMenu routine handles setting up and displaying a
pop-up menu associated with a module. The module passes a pointer to its
display rectangle and a handle to the menu to use. In one embodiment the
menu is displayed immediately above and adjacent to the display rectangle of
the module, yet this is not required. By doing so, the user is allowed to view
the current configuration or to change the settings. The SBTrackpopupMeénu
routine returns an indication as to which menu item was selected, or 0 if no
item was selected (e.g., because the user moved the cursor outside the

menu's bounds).

SBTrackSlider

The SBTrackSlider routine displays and sets an arbitrary parameter.

An exemplary call follows:

pascal short SBTrackSlider (const Rect *moduleRect,
short ticksOnSlider,
short initialValue);

The SBTrackSlider routine displays an unlabeled slider above the

module's display rectangle. The slider may be used for displaying and setting

APLNDC00028340

e L

10

15

20

46

the state of an arbitrary parameter. The parameter "ModuleRect" contains a
pointer to the module's display rectangle; "ticksOnSlider' is the upper bounds
of the value returmed by the slider; and "initialValue" is the starting position (0
to ticksOnSlider-1). When the user releases the mouse button, the

SBTrackSlider routine returns the final position.

SBShowHelpStrin
The SBShowHelpString routine displays a help balloon. An exemplary
call follows:

pascal OSErr SBShowHelpString (const Rect *moduleRect,
StringPtr helpString);

The SBShowHelpString routine displays a module's help balloon. The
module passes a pointer to its display rectangle and a pointer to a Pascal
string, and the routine displays the balloon if possible. If the help dstring has
a length of O or fhé Help Manager is unable to display a balloon, an error
result is returned. If the SBShowHelpString routine successfully displays the

help balloon, it returns a result of O.

SBGetBarGraphWidth

The SBGetBarGraphWidth routine determines how wide a bar graph
drawn by the SBDrawBarGraph routine (described below) will be so that a
module can calculate its display width. An exemplary call follows:

pascal short SBGetBarGraphWidth (short barCount);

1
UL

APLNDC00028341

S et

\33«;

10

15

20

47

The SBGetBarGraphWidth routine returns the width of a bar graph
containing barCount segments. If barCount has a value less than 0, the

SBGetBarGraphWidth routine returns a width of O.

SBDrawBarGraph
The SBDrawBarGraph routine draw as bar graph. An exemplary call

follows below:

pascal void SBDrawBarGraph (short level, short barCount,
short direction,
Point barGraphTopLeft);

The SBDrawBarGraph routine draws a bar graph containing the
number of segments specified by the barCount parameter in a module's
display area. If the value of barCount is less than or equal to 0, the
SBDrawBarGraph routine does nothing.

The bar graph is drawn relative to the location specified by
barGraphTopLeft. Figure 11 illustrates the manner in which the point
barGraphTopLeft determines the position of the bar graph.

The "level" parameter determines how many segments are highlighted.
The value of "level" should be in the range of 0 to barCount-1. If the value of
"level" is less than 0, no segments in the bar graph are highlighted; if "level" is
greater than or equal to barCount, all segments in the bar graph are
highlighted.

The direction parameter specifies which way the bar graph will be
drawn to show a larger level. In one embodiment, the direction parameter

specifies one of the following values:

#define BarGraphSlopeleft -1 // max end of sloping graph is on the left

N
P,

APLNDC00028342

10

15

#define BarGraphFlatRight 0 // max end of flat graph is on the right
#define BarGraphSlopeRight 1 // max end of sloping graph is on the right

Figure 12 illustrates the resulting bar graph for each direction value.
The arrows indicate which way an increasing level value is displayed. In one
embodiment, for sloped versions of the bar graph, the number of segments
specified by the barCount value may not be larger than 8. If a larger

barCount value is passed, the SBDrawBarGraph routine draws nothing.

SBModalDialoginCntext
The SBModalDialoginContext routine may be used in place of the

ModaDialog routine to prevent background applications from being run while
the modal dialog window is visible. An exemplary call is as follows:

pascal void SBModalDialoginContext (ModalFilterProcPtr filterProc,
short *itemHit);

The SBModalDialogInContext routine is a special version of
ModalDialog that doesn't allow background applications to be run while a
modal dialog window is visible. The SBModalDialogInContext routine is used

when the occurence of context switching is not desired.

GESTALT SELECTOR

The control strip processing logic installs two "Gestalt" selectors to
return information to locations external to the computer system. One selector
returns software attributes, and the other returns the current version of the

processing logic (e.g., software).

gestaltControlStripAttr

APLNDC00028343

The selector "gestaltControlStripAttr (‘'sdev’) return 32 bits describing
the attributes of the current version of the control strip processing logic. In
one embodiment, only the following bit is defined:

gestaltControlStripExists 0 1=control strip is instalied

[tControlStripVersion
The selector gestaltControlStripVersion (‘csvr') returns the version of
control strip processing logic that is installed. The format of the returned
version is the same as that of the numeric part of a Macintosh™ computer

10 system resource, that is:

Bits 31-24 Major part of the version, in BCD

’ Bits 23-20 Minor part of the version, in BCD
% Bits 19-16 Bug release version, in BCD

15 . Bits 15-8 Release stage:

,Q)’ $80=final

O $60=beta
A\'J $40=alpha
$20=development
20 Bits 7-0 Revision level of nonreleased version, in binary

Whereas many alterations and modifications of the present invention
will no doubt become apparent to a person of ordinary skill in the art after

having read the foregoing description, it is to be understood that the particular

embodiment shown and described by way of illustration is in no way intended
to be considered limiting. Therefore, references to details of the preferred
embodiment are not intended to limit the scope of the claims which in

themselves recite only those features regarded as essential to the invention.

APLNDC00028344

50

Thus, a method and apparatus for generating a window displaying

control and status indicia has been described.

APLNDC00028345

S R

15

20

25

51

CLAIMS

| claim:

1. An interactive computer-controlled display system gomprising:

a processor;
a data display screen coupled to the processor;

a cursor control device coupled to said processgr for positioning a

cursor on said data display screen;

a window generation logic coupled to the processor and data display
screen to generate and display a first windoy region on said data display

screen;

indicia generation logic couplgd to the data display to generate data for

display in at least one display arga in the first window, wherein a display area
is sensitive to user input, angfurther wherein the window generation logic and

the indicia generation logiC use message-based communication to exchange

information to coordiffate activities of the indicia generation logic to enable

interactive display activity.

2. The display system defined in Claim 1 wherein the first window

region comprises a control strip.

3. The display system defined in Claim 1 wherein said at least one

display area is variably sized.

o~
s
i J

APLNDC00028346

10

15

20

52

4. The display system defined in Claim 1 wherein size of the first

window region is variable.

5. The display system defined in Claim 4 whep€in the first window

regions is sized such that none of the display areas arefvisible.

6. The display system defined in Claim # wherein the first window

regions is sized such that all of the display areag/are visible.

7. The display system defined ir/Claim 4 wherein the first window

regions is sized such that a portion of the¢/display areas are visible.

8. The display system dgfined in Claim 1 wherein at least one of
the data areas only displays infoymation.

9. The display system defined in Claim 1 wherein at least one of
the data areas act to prgfide access to control information when selected.

10. The gisplay system defined in Claim 9 wherein said at least one
of the data areag/display an additional display element.

11. / An interactive computer-controlled display system comprising:
a frocessor;

a data display screen coupled to the processor;

SJ

APLNDC00028347

10

15

20

53

a cursor control device coupled to said processor for pgsitioning a
cursor on said data display screen;

window generation and control logic coupled to thg/ processor and data
display screen to generate and display a first window pégion on said data
display screen, wherein the first window region comyprises at least one data
display area;

at least one indicia graphics generationAogic coupled to the processor
and the window generation logic, wherein sgid at least one indicia graphics
generation logic generates user sensitive/graphics for display in said at least
one data display area;

wherein the window generatjon logic determines when said at least
one data display area has been gelected by the user and signals said at least
one indicia graphics generatiof logic in response to user selection, and
further wherein said at least one indicia graphics generation logic initiates a .

response.

12. The display system defined in Claim 11 wherein the first window

is always visible fo the user.

b /
/ /13' The display system defined in Claim 1¥wherein the first window

region comprises a control strip.

)7

7
\l y(The display system defined in Claim)/1/ wherein said at least

one display area is variably sized.

<. \J\

APLNDC00028348

54

i ' 15. A method for generating control informati
? S O,b steps of:

' (XIS generating a first window sized to accommddate at least one display

comprising the

area for indicia, wherein the step of generating/the first window comprises
5 executing a first programming moduie;
displaying an indicia in each of sgi at least one display area by
executing one of a plurality of prograpfming modules corresponding to each
indicia;
selecting one of the indigia, wherein the step of selecting comprises the
10 first programming module determining which of said at least one display area
is selected and sending afnessage to the programming module of said
plurality of programming modules responsible for generating the display of the
selected indicia;
said progr@mming module performing a function in response to the
15 selection.

7 Dl

/K The method defined in Claim /15' wherein one of said plurality of

indicia comprises status information.

3% 2l

20)1 The method defined in Claim /g wherein one of said plurality of

| |

indicia comprises control information.

gh Lf 18. The metth defined in Claim 15 further comprising the steps of:

APLNDC00028349

55

the figst programming module requesting a set of features supported by
said programming module, wherein said step of requesting comprises
sending a message to said programming module; and

ming module returning a message indicative of features

5 supported by said programming module, such that said first programming
module interacts with aid programming module in response to user
interaction with the first jrogramming module based on indicated features as

set forth by said programrging module.

APLNDC00028350

g)?%?/er

56

ABSTRACT
An interactive computer-controlled display system having a processor,
a data display screen, a cursor control device for interactively positioning a
cursor on the data display screen, and a window generator that generates
5 and displays a window on a data display screen. The window region provides
status and control information in one or more data display areas. The
individiual data display areas may be controlled through the use of controls

and indicators on the control strip itself using cursor control keys.

APLNDC00028351

Attorney's Docket No.: _04860.P1365 Patent
DRECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, | hereby declare that:
My residence, post office address and citizenship are as stated below, next to my name.

| believe | am the original, first, and sole inventor (if only one name is listed below) or an
original, first, and joint inventor (if plural names are listed below) of the subject matter
which is claimed and for which a patent is sought on the invention entitled

AMETHOD AND APPARATUS FOR THERMAL MANAGEMENT IN A COMPUTER SYSTEM

the specification of which

XX is attached hereto.

—_— was filed on as
Application Serial No.
and was amended on

(if applicable)

I hereby state that | have reviewed and understand the contents of the above-identified
specification, including the claim(s), as amended by any amendment referred to above. | do not
know and do not believe that the claimed invention was ever known or used in the United States
of America before my invention thereof, or patented or described in any printed publication in
any country before my invention thereof or more than one year prior to this application, that
the same was not in public use or on sale in the United States of America more than one year
prior to this application, and that the invention has not been patented or made the subject of an
inventor's certificate issued before the date of this application in any country foreign to the
United States of America on an application filed by me or my legal representatives or assigns
more than twelve months (for a utility patent application) or six months (for a design patent
application) prior to this application.

| acknowledge the duty to disclose all information known to me to be material to patentability as
defined in Title 37, Code of Federal Regulations, Section 1.586.

| hereby claim foreign priority benefits under Title 35, United States Code, Section 119, of any
foreign application(s) for patent or inventor's certificate listed below and have also identified
below any foreign application for patent or inventor's certificate having a filing date before that
of the application on which priority is claimed:

Priority
Prior Foreign Application ;
(Number) (Country) (Day/Month/Year Filed) Yes No
(Number) (Country) (Day/Month/Year Filed) Yes No
{Number) (Country) (Day/Month/Year Filed) Yes No

| hereby claim the benefit under Title 35, United States Code, Section 120 of any United States
application(s) listed below and, insofar as the subject matter of each of the claims of this
application is not disclosed in the prior United States application in the manner provided by the
first paragraph of Title 35, United States Code, Section 112, | acknowledge the duty to disclose
all information known to me to be material to patentability as defined in Title 37, Code of
Federal Regulations, Section 1.56 which became available between the filing date of the prior
application and the national or PCT international filing date of this application:

(Application Serial No.) Filing Date (Status -- patented,
pending, abandoned)

(Application Serial No.) Filing Date (Status -- patented,
pending, abandoned)

Rev. 12/15/93 (D1) cak 1

APLNDC00028352

| hereby appoint Keith G. Askoff, Reg. No. 33,828; Aloysius T. C. AuYeung, Reg. No. 35,432;
Bradley J. Bereznak, Reg. No. 33,474; Michael A. Bernadicou, Reg. No. 35,934; Roger W.
Blakely, Jr., Reg. No. 25,831; Timothy R. Croli, Reg. No. 36,771; Daniel M. De Vos, Reg.
P37,813; Stephen D. Gross, Reg. No. 31,020; David R. Halvorson, Reg. No. 33,395; James P.
Hao, Reg. No. 36,398; Michael D. Hartogs, Reg. No. 36,547; Brian Don Hickman, Reg. No.
35,894; George W Hoover 1I, Reg. No. 32,992; Paul H. Horstmann, Reg. No. 36,167; Tracy L.
Hurt, Reg. No. 34,188; Eric S. Hyman, Reg. No. 30,139; Dag H. Johansen, Reg No. 36,172;
Stephen L. King, Reg. No. 19,180; Daniel C. Mallery, Reg. No. 33,532; Michael J. Mallie, Reg.
No. 36,591; James D. McFarland, Reg. No. 32,544: Anthony C. Murabito, Reg. No. 35,295;

Ronald W. Reagin, Reg. No. 20,340; James H. Satter, Reg. No. 35,668; Robert A. Saltzberg, Reg.

No. 36,910; James C. Scheller, Reg. No. 31,195; Edward W. Scott, IV, Reg. No. 36,000;
Nicholas Joseph Skarlatos, Reg. P37,941; Maria McCormack Sobrino, Reg. No. 31,639;
Stanley W. Sokoloff, Reg. No. 25,128; John C. Stattler, Reg. No. 36,285; Edwin H. Taylor,
Reg. No. 25,129; Lester J. Vincent, Reg. No. 31,460; Ben J. Yorks, Reg. No. 33,609; Norman
Zafman, Reg. No. 26,250; Mark Aaker, Reg. No. 32,667; Jeffrey J. Brooks, Reg. No. 35,834;
Paul D. Carmichael, Reg. No. 18,679; Vernon Randall Gard, Reg. No. 33,886; Richard C. Liu,
Reg. No. 34,377; Robert T. Martin, Reg. No. 32,426; Helene S. Plotka, Reg. No. 35,981; and
Nancy R. Simon, Reg. No. 36,930; my attorneys; and Thomas X. Li, Reg. No. 37,079; and Edwin
A. Sloane, Reg. No. 34,728; my patent agents, of BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN, with
offices located at 12400 Wilshire Bosulevard, 7th Floor, Los Angeles, California 90025,
telephone (310) 207-3800, with full power of substitution and revocation, to prosecute this
application and to transact all business in the Patent and Trademark Office connected herewith.

| hereby declare that all statements made herein of my own knowledge are true and that all
statements made on information and belief are believed to be true; and further that these
statements were made with the knowledge that willful false statements and the like so made are
punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United
States Code and that such willful false statements may jeopardize the validity of the application
or any patent issued thereon. .

Full Name of Sole/First Inventor _Steven W. Christensen

Inventor's Signature Date

Residence _Milpitas, California Citizenship _U.S.A,
(City, State) (Country)

Post Office Address _1514 Mount Diablo Avenue
—Milpitas, California 95035

Full Name of Second/Joint Inventor

Inventor's Signature Date
Residence Citizenship

(City, State) (Country)
Post Office Address

Full Name of Third/Joint Inventor

inventor's Signature Date
Residence Citizenship
(City, State) (Country)
Post Office Address
Rev. 12/15/93 (D1) cak 2

APLNDC00028353

Y b T° OTone
”0‘" &R COrPOrE AT

Sverey is3

] sodd Detorer
cLe | TMER .
_' 150 | 153 1sf
”WS(ZB:\?TI:;’ \ Pocessor
MAss _ | /o3
SHRALE)43 <: ~18\ P [
1f Vho b
MDEM { -
o L
- Bvr Y N] M
LAN ZJo__Bvs /o1 > 7'2"”5‘"""%/< LocAr Bvs /BO Iguory
B INTERFACE |/
109 /°7l
VNI T (IB
L !
HARD o e /170 fLoek
bevics iy N CENERATIR,
leo
‘ NoN—
SLA '
Disaay 2t <:_—_ , "——"‘—Jl/\ VoLATILE
' Sounb 4:3 o Miro— ’"E’:""'Y
ChIP N5 Oonteoure, K D ConTrowEn *6
2% TEmR 1IN
Florry Disic <:|/'\ [3°) SENSOR lmm T/o InREAFALE
, U l Cuock /60
ke‘(Bona.o Curssrr. Geneenton.

(2| [Lmmee n3

FIGURE |

APLNDC00028354

Sheet No.:
Express Mail:
Inventor(s):

04860.P1365

Lof17
TB377895617US
Steven W,. Christensen

METHOD AND APPARATUS FOR DISPLAYING
AND ACCESSING CONTROL AND STATUS
INFORMATION IN A COMPUTER SYSTEM

APLNDC00028355

% File Edit Diew Label Special

Edtensions

Applications

12.6 MB in disk

313.6 MB available

e

I AppleLink PowerBook Edition Express Modem

SimpleText

a

L

el

K

PrintMonitor

QuickTime™

12.6 MB in disk

313.6 MB avai

Serial Tool
Text Tool
TTY Tool

HGUKE ZA

200

W abbit]

APLNDC00028356

““"Docket No: 04860.P1365

Serial No.:

Filed:

Art Unit:

Sheet No.: x of 17

Express Mail: TB377895617US
Inventor(s): Steven W,. Christensen

METHOD AND APPARATUS FOR DISPLAYING
AND ACCESSING CONTROL AND STATUS
INFORMATION IN A COMPUTER SYSTEM

o0
2097

close box module dis area drag/ size tab
201 ZO';EIAY I agiZo}

|——1e:[1: scxoll axrowr right scroll a.uaw————l

204 205

F/G—URE ZB

|

L

/n

APLNDC00028358

'} " Docket No.: 04860.P1365
Serial No.:

Filed:

Art Unit:

Sheet No.: 3 of17

Express Mail: TB377895617US
Inventor(s): Steven W,. Christensen

METHOD AND APPARATUS FOR DISPLAYING
AND ACCESSING CONTROL AND STATUS
INFORMATION IN A COMPUTER SYSTEM

/P9
[3/ 336237

Hide Battery Lewvel
Hide Battery Consum;gion
Hide Time Rmainin

Fleure 2C

APLNDC00028360

P Docket No: 04860.P1365

Serial No.:

Filed:

Art Unit:

Sheet No.: 4 of 17

Express Mail: TB377895617US
Inventor(s): Steven W,. Christensen

METHOD AND APPARATUS FOR DISPLAYING
AND ACCESSING CONTROL AND STATUS
INFORMATION IN A COMPUTER SYSTEM

