

EXHIBIT 1.01

Apple Inc. v. Samsung Electronics Co. Ltd. et al Doc. 559 Att. 1

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/5:2011cv01846/239768/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2011cv01846/239768/559/1.html
http://dockets.justia.com/

IW 7293892 -

no ED STATES DEPAR· v-NT OF COMMERCE

United States Patent and Trademark Office

May 17, 2011

THIS IS TO CERTIFY TH A T A NNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

APPLICATION NUMBER: 08/821,004

FILING DATE: March 20, 1997

PATENT is i ava HER: 6,493,002

ISSUE DATE: December 10, 2002

By Authority of the

Under Secretary of Commerce for Intellectual Property
and D rector of the United States Patent and Trademark Office

Certifying Officer

APLNDC00028287

SERIAL NUMBER F LING DAT CLASS SUBCLASS GROUP ART UNIT E

FOR NG i...ICENSE I:iiiRAF TE) 05/01/97

Foreign priority cialmed O yes O no AS STATE OR SHEETS TOTAL INDEP. FILING FEE AFTORNEY'S
31RISG119conditionsmet O es El no FILED COUNTRY DRWGS. CLAIMS CLAIMS R.-.us.v. DOCKETNO.

andAcknowledged Examiner'sinitials C:(iÑ59 IE ii ' ' H

FF TAyi....OR AFTieN
B .EVARD

ME ND APPARAT IS FOR Ï PLAYlNG AN ACCESSING CONTROL AND STAHH
IN MA I N IN A C IMPl.TTER STEM

U.S. DEPT. OF COMMáF¾r & TM PTO-4366 (Rev.12 94)

APLNDC00028288

:ERIAL NUMBER FILING DATE CLASS SUBCLASS GROUP ART UNIT EXAMINER

TEVEN W., CHRISTENSEN. MILPITAS A.,

s/ERIFIED

4:F:1REIGiN/PCT APPLICATIONS***** ****
JERIFIEI:=

3REÏI:iiN FILING LICENSE GiRANTED 01/14/95

Rgn priority claimed yes no STATE OR SHEETS TOTAL INDEP. FILING FEE ATTORNEY'S
C119conditionsmet yes no AS COUNTRY DRWGS. CLAIMS CLAIMS RECEIVED DOCKETNO.

FILED
edandAcknowkedged t:xammersmulais .CÑ 1 18 $84Ü s ÜO Ü486Ü., P136'S

ELM ELY SOKOLOFF TAYLOR AND ZAFMAN
240i:I W1LSilIRE BOI...lLEVARIr
TH FLOOR
.08 ANGELE CA 90025

| 11ETHOD AbŒ: APFMRATUS FOR DISPLAYING AND ACCESSING Cl:.lNTROL AND 6 EATUS
INFi::lRMATION IN A I IIMPUTER SYSTEM

U.S. DEPT. of COMM.-Pat. & TM Office-PTO-436L (rev. 10-78)

PARTS OF APPLICATION
FILED SEPARATELY Applications Examiner

NOTICE OF ALLOWANCE MAILED y CLAIMS ALLOWED

Total Claims Print Claim

Assistant Examiner

ISSUE FEE y DRAWING

Amount Due Date Paid Sheets Drwg. Figs. Drwg. Print Fig.

ISSUE
BATCH

Primary Examiner NUMBER

Label PREPARED FOR ISSUE \

Area
WARNING: The information disclosed herein may be restricted. Unauthorized disclosure may be prohibited

by the United States Code Title 35, Sections 122, 181 and 368. Possession outside the U.S.
Patent & Trademark Office is restricted to authorized employees and contractors only.

Form PTO-436A
(Rev. 8/92)

(FACE)

APLNDC00028289

BARCODELABEL

U.S. PATENT APPLICATION

SERIAL NUMBER FILING DATE CLASS GROUP ART UNIT

08/316,237 09/30/94 364 2306

STEVEN W. CHRISTENSEN, MILPITAS, CA.

CONTINUING DATA*******************
VERIFIED

FOREIGN PCT APPLICATIONS**********
VERIFIED

FOREIGN FILING LICENSE.GRANTED 01/14/95

STATEOR SHEETS TOTAL INDEPENDENT FILING FEE ATTORNEYDOCKETNO.
COUNTRY DRAWING CLAIMS CLAIMS RECElVED

CA 17 18 3 $840.00 04860.P1365

BLAKELY SOKOLOFF TAYLOR AND ZAFMAN
12400 WILSHIRE BOULEVARD
7TH FLOOR

LOS ANGELES CA 90025

w METHOD AND APPARATUS FOR DISPLAYING AND ACCESSING CONTROL AND STATUS
INFORMATION IN A COMPUTER SYSTEM

This is to certifv that annexed hereto is a true copy from the records of the United States
Patent and Trademark Office of the application which is identified above.
By authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

. Date Certifying Officer

APLNDC00028290

Illllllll Illl Illii lilll U.S. PATENT APPLICATION

SERIAL NUMBER FIUNG DATE CLASS GROUP ART UNIT

08/821,004 03/20/97 395 2415

STEVEN W. CHRISTENSEN, MILPITAS, CA.

CONTINUING DATA*******************
VERIFIED THIS APPLN IS A CON OF 08/316,237 09/30/94

FOREIGN/PCT APPLICATIONS**********
VERIFIED

FOREIGN FILING LICENSE Genn,.=D 05/01/97

STATE OR SHEETS TOTAL INDEPENDENT RUNG FEE ATTORNEY DOCKET NO.
COUNTRY ORAWING CLAIMS CLAIMS RECEIVED

CA 17 24 3 $858.00 04860.P1365C

nonarrY S- -- - - -FF TAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD

SEVENTH FLOOR
LOS ANGELES CA 90025

METHOD AND APPARATUS FOR DISPLAYING AND ACCESSING COn> run AND STATUS
INFORMATION IN A tomrvTER SYSTEM

This is to certify that annexed hereto is a true copy from the records of the United States
Patent and Trademark Office of the application which is identified above.
By authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

Date Certifying Officer

APLNDC00028291

PAom APPLICATION Seseo, NO.

U.S. DEPARTMENT OF COmmraCE
pa . - . Ann EMARK OFFICE

FEE RECORD SHEET

301094 04/25/97 08821004

858.00 UK 04860 8650

PTO-1556
(5/87)

APLNDC00028292

PATENT APPLICATION SERIAL .NO.

U. S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

PTO-1556
(5/87)

APLNDC00028293

ney's ket No. namen Pisas Patant

O ISSIONER OF PATENTS AND TRADEMARKS
Was , D.C. 20231

. Transmitted herewith for filing is the patent application of

ventor(s): _SLeenE Christensg

For: lui TI-inn skin spos a·rum enn nimpi sviAin AAin annemmiAin cruiTuni
AND STATI JR INF-ORMATION IN A COMPLJTER SYSTEM

(Title)
Enclosed are:

17 (anventmani sheet(s) of Drawings.
AnAssignmentofthe inventionto
Assignment Cover Sheet Form PTO-1595.

X A Declaration and PowerofAttorney (signed/,XX unsigned).
A Verified Statement to establish Small Entity Status under 37 C.F.R. §§ 1.9 and 1.27.

The Filing Fee has been calculated as shown below:
OTHER THAN A

(Col. 1) (Col. 2) SMALL ENTITY SMALL ENTITY

For : No. Filed No. Extra Rate Fee Rate Fee

Basic Fee: $ 355 $ 710

Total claims: 18 - 20 0 x11 $ x22 $ 0

Indep. claims: 3 - 3 0 x37 $ x74 $ 0

, Multiple Dependent Claim(s) Presented + 115 $ + 230 $ 0

If the difference in Col. 1 is less than zero, TOTAL $ TOTAL $ 710
enter "0" in Col. 2.

Y Acheckfor $710 on for the filing fee is enclosed.
Acheckfor$ for recordation of the Assignment is enclosed.

X The Commissioner is hereby authorized to charge payment of the following fees
associated with this communication, or credit any overpayment, to our Deposit
Account No. 02_-2§6§. A duplicate copy of this sheet is enclosed.

X Any additional filing fees required under 37 C.F.R. § 1.16.
X Any patent application processing fees under 37 C.F.R. § 1.17.

X The Commissioner is hereby authorized to charge payment of the following fees
during the pendency of this application, or credit any overpayment, to our
Deposit Account No. 02-2666. A duplicate copy of this sheet is enclosed.

Any processing fees under 37 C.F.R. § 1.17, including any extension
fees.
Any filing fees under 37 C.F.R. § 1.16 for presentation of extra claims.

X Send all correspondence to the undersigned at BLAKELY SOKOLOFF, TAYLOR &
ZAFMAN 12400 Vilshire Bouleyard.,Spyepth Floor,, Los Ange es, a i ornia 90025,
ano alreet all tele none calls to Ine unaersignea at (406) 120-6086.

Respectfully submitted,

Dale: BLAK KOLOFF TAYLOR & ZAFMAN

Michael J allie

12400 Wilshire Boulevard Reg Ab: 365
Seventh Floor
Los Angeles, California 90025
(408) 720-8598 (LJV/cak 11/23/92)

"Express Mail" mailing label number TR 377ARRA17119

Date of Deposit . Sentember 30. 1.994

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Expiëss Mail Post
Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Commissioner of
Patents and Trademarks, Washington, D.C. 20231.

Triva i awis

(Typed or rinted name of person mailing paper or fee)

(Signature of person mailing paper or fee)

APLNDC00028294

04860.P1365 * nt

ROO4

SEP
30

UNITED STATES PATENT APPLICATION

for

- METHOD AND APPARATUS FOR DISPJYlNG AND ACCESSING

Inventor:

Steven W. Christensen

prepared by:

BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN
12400 Wilshire Blvd., 7th Floor

Los Angeles, California 90025-1026
(408)720-8598

"Express Mail" mailing label number T 277R BR 7

Date of Deposit o.an.na

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post
Office to Addressee" service under CFR 1.10 on the date indicated above and is addressed to the Commissioner of
Patents and Trademarks, Washington, D.C. 20231.

Triva i awin
(Typed or printed name of person mailing paper or fee)

(Signature of person mailing paper or fee)

APLNDC00028295

METHOD AND APPARATUS FOR DISPLAYING AND ACCESSING
CONTROL AND STATUS INFORMATION IN A COMPUTER SYSTEM

FIELD OF THE INVENTION

5 The present invention relates to the field of computer systems;

particularly, the present invention relates to displaying a status and control

function bar or window to enable access of user selected indicia to a

computer system user.

10 BACKGROUND OF THE INVENTION

Typically, a computer system contains a processor, a bus, and other

peripheral devices. The processor is responsible for executing instructions

using the data in the computer system. The bus is used by the processor and

the peripheral devices for transferring information between one another. The

15 information on the bus usually includes data, address and control signals.

The peripheral devices comprise storage devices, input/output (I/O) devices,

etc.

Computer systems also include information management systems that

coordinate the display of information to the user. Currently, the art in

20 computer display management provides the capability of displaying data in

rectangular portions (commonly referred to as windows) of a display screen.

Such information management systems include the FinderTM interface of the

computer systems manufactured by Apple Computer, Inc. of Cupertino,

California. Controls are typically provided to resize and move windows within

25 the confines of the physical display boundaries.

APLNDC00028296

2

Windows may be used to display information regarding application

programs, as well as information produced by system programs, that are run

on the computer system. Many of these system and control programs provide

status and control information and functionality. Some of the system control

5 programs also provide options with respect to the information they provide

and the functions they perform. These options can be accessed and/or

selected by moving a cursor at a predetermined point in the window and

"clicking" a mouse or performing requisite key strokes. Access to these

programs may require locating the program (e.g., locating and entering a

10 folder) before execution. The time necessary to access such programs may

be unduly long. s desirable to provide a less obtrusive manner of

accessing such system and control programs.

The computer system is often capable of displaying multiple windows

or data areas on the display screen at the same time. Windows may overlap

15 each other. The information contained in the portion of the window that is

overlapped is not visible. The window that is entirely visible to the computer

user is typically the active window. Therefore, a program, such as a system

or control program may be running, while another program displaying

information in another window is selected as active and thereafter covers,

20 partially or completely, the windows or data areas displayed by the

system/control program. Sometimes the user may wish to have an

unobstructed view of the system/control data area, regardless of the window

selected as active (even when the windows overlap each other). Thus, it is

desirable at times to have windows that are always visible to the user.

APLNDC00028297

3

However, it is also desirable to be able to eliminate that window at times

based on the user's requirements.

The present invention overcomes these problems by providing a status

and control information display. The display of the present invention is in an

5 easily accessible format. Also, the display may be configured to permanently

display in a visible manner control and status indicia.

APLNDC00028298

4

SUMMARY OF THE INVENTION

An interactive computer-controlled display system is described. In the

present invention, the display system includes a processor, a data display

screen, and a cursor control device for interactively positioning a cursor on

5 the data display screen. The present invention also includes a window

generator that generates and displays a window (e.g., a control strip) on a

data display screen. In one embodiment, the window comprises a control

and/or status window for display on the desktop of the computer system The

window displays graphics depicting at least one display area of indicia. The

10 data areas may be controlled through the use of controls and

indicators in the window itself using cursor control keys.

APLNDC00028299

5

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way

of limitation, in the figures of the accompanying drawings and in which like

reference numerals refer to similar elements and in which:

5

Figure 1 block diagram of one embodiment of the computer

system of the present invention.

Figure A displays a computer desktop illustrating the control strip of

10 the present invention as well as opened windows.

Figure B illustrates one embodiment of the control strip of the present

invention.

15 Figure C illustrates a pop-up menu displayed from the control strip of

the present invention.

Figure D illustrates a help balloon displayed from the control strip of

the present invention.

20

Figure illustrates the process of moving a display area from one

position to another in the control strip.

APLNDC00028300

6

Figure 2 hows the control strip window graphics generated by

processing logic being combined with graphics generated by a module to

illustrate the creation of the resulting control strip.

5 Figure strates one embodiment of the control panel of the present

invention.

Figure 4 a flow chart of one embodiment of the process for the

control strip the present invention.

10 Figure a flow chart of one embodiment of the secondary

initialization process of the present invention.

Figure flow chart of one embodiment of the open and

15 initialization process for the external modules of the present invention.

Figure a flow chart of one embodiment of the process for drawing

the contents of the control strip of the present invention.

20 Figure 8 is a flow chart of one embodiment of the process for running

idle tasks in the pr sent invention.

Figur 9 is a flow chart of one embodiment of the process for

responding to a mouse click occurring in the control strip of the present

25 invention.

APLNDC00028301

7

Figure 1 a flow chart of one embodiment of the process for post

processing a mouse click in the present invention.

5 Figure ustrates a bar graph for display in a data display area in

the control strip of the present invention.

Figure 1 strates a bar graph that results after using arrow

direction icons.

APLNDC00028302

8

DETAILED DESCRIPTION OF THE INVENTION

A method and apparatus for providing status and control indicia. In the

following detailed description of the present invention numerous specific

details are set forth, such as types of status indicia, instruction names, etc., in

5 order to provide a thorough understanding of the present invention. However,

it will be apparent to one skilled in the art Abat the present invention may be

practiced without these specific details. &n other instances, well-known

structures and devices are shown in black diagram form, rather than in detail,

in order to avoid obscuring the presenit invention.

10 The present description inclukles material protected by copyrights, such

as illustrations of graphical user initerface images which the assignee of the

present invention owns. The assîignee hereby reserves its rights, including

copyright, in these materialspend each such material should be regarded as

bearing the following nothee: Copyright Apple Computer, Inc., 1993. The

15 copyright ovyombas no objection to the facsimile reproduction by anyone of

the patent document or the patent disclosure, as it appears in the Patent and

Trademark Office file or records, but otherwise reserves all copyrights

whatsoever.

Some portions of the detailed descriptions which follow are presented

20 in terms of algorithms and symbolic representations of operations on data bits

within a computer memory. These algorithmic descriptions and

representations are the means used by those skilled in the data processing

arts to most effectively convey the substance of their work to others skilled in

the art. An algorithm is here, and generally, conceived to be a self-consistent

25 sequence of steps leading to a desired result. The steps are those requiring

APLNDC00028303

9

physical manipulations of physical quantities. Usually, though not

necessarily, these quantities take the form of electrical or magnetic signals

capable of being stored, transferred, combined, compared, and otherwise

manipulated. It has proven convenient at times, principally for reasons of

5 common usage, to refer to these signals as bits, values, elements, symbols,

characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and similar terms

are to be associated with the appropriate physical quantities and are merely

convenient labels applied to these quantities. Unless specifically stated

10 otherwise as apparent from the following discussions, it is appreciated that

throughout the present invention, discussions utilizing terms such as

"processing" or "computing" or "calculating" or "determining" or "displaying" or

the like, refer to the action and processes of a computer system, or similar

electronic computing device, that manipulates and transforms data

15 represented as physical (electronic) quantities within the computer system's

registers and memories into other data similarly represented as physical

quantities within the computer system memories or registers or other such

information storage, transmission or display devices.

The present invention also relates to apparatus for performing the

20 operations herein. This apparatus may be specially constructed for the

required purposes, or it may comprise a general purpose computer selectively

activated or reconfigured by a computer program stored in the computer. The

algorithms and displays presented herein are not inherently related to any

particular computer or other apparatus. Various general purpose machines

25 may be used with programs in accordance with the teachings herein, or it may

APLNDC00028304

10

prove convenient to construct more specialized apparatus to perform the

required method steps. The required structure for a variety of these machines

will appear from the description below. In addition, the present invention is

not described with reference to any particular programming language. It will

5 be appreciated that a variety of programming languages may be used to

implement the teachings of the invention as described herein.

OVERVIEW OF THE COMPUTER SYSTEM OF THE PRFSFNT INVFNTION

Referring to Figure 1, an overview of a computer system of the present

10 invention is shown in block diagram form. The present invention may be

implemented on a general purpose microcomputer, such as one of the

members of the Apple family of personal computers, one of the members of

the IBM personal computer family, or one of several other computing and

assistant devices which are presently commercially available. Of course, the

15 present invention may also be implemented on a multi-user system while

encountering all of the costs, speed, and function advantages and

disadvantages available with these machines. The preferred embodiment of

the present invention is implemented on an Apple PowerBookTM COmpUter

system developed by the assignee of the present invention.

20 As illustrated in Figure 1, the computer system of the present invention

generally comprises a local bus or other communication means 100 for

communicating information, a processor 103 coupled with local bus 100 for

processing information, a random access memory (RAM) or other dynamic

storage device 104 (commonly referred to as a main memory) coupled with

25 local bus 100 for storing information and instructions for processor 103, and a

APLNDC00028305

11

read-only memory (ROM) or other non-volatile storage device 106 coupled

with local bus 100 for storing non-volatile information and instructions for

processor 103.

The computer system of the present invention also includes an

5 input/output (I/O) bus or other communication means 101 for communication

information in the computer system. A data storage device 107, such as a

magnetic tape and disk drive, including its associated controller circuitry, is

coupled to I/O bus 101 for storing information and instructions. A display

device 121, such as a cathode ray tube, liquid crystal display, etc., including

10 its associated controller circuitry, is also coupled to l/O bus 101 for displaying

information to the computer user, as well as a hard copy device 124, such as

a plotter or printer, including its associated controller circuitry for providing a

visual representation of the computer images. Hard copy device 124 is

coupled with processor 103, main memory 104, non-volatile memory 106 and

15 mass storage device 107 through I/O bus 101 and bus translator/interface unit

140. A modem 108 and an ethernet local area network 109 are also coupled

to \/O bus 101.

Bus interface unit 140 is coupled to local bus 100 and l/O bus 101 and

acts as a gateway between processor 103 and the I/O subsystem. Bus

20 interface unit 140 may also provide translation between signals being sent

from units on one of the buses to units on the other bus to allow local bus 100

and I/O bus 101 to co-operate as a single bus.

An \/O controller 130 is coupled to I/O bus 101 and controls access to

certain I/O peripherals in the computer system. For instance, I/O controller

25 130 is coupled to controller device 127 that controls access to an

APLNDC00028306

12

alpha-numeric input device 122 including alpha-numeric and other keys, etc.,

for communicating information and command selections to processor 103, a

cursor control 123, such as a trackball, stylus, mouse, or trackpad, etc., for

controlling cursor movement, and a temperature sensor 127A for measuring

5 the internal system temperature. The system also includes a sound chip 125

coupled to I/O controller 130 for providing audio recording and play back.

Sound chip 125 may include a sound circuit and its driver which are used to

generate various audio signals froni the computer system. I/O controller 130

may also provide access to a floppy disk and driver 126. The processor 103

10 controls I/O controller 130 with its peripherals by sending commands to I/O

controller 130 via local bus 100, interface unit 140 and I/O bus 101.

Batteries or other power supply 152 may also be included to provide

power necessary to run the various peripherals and integrated circuits in the

computer system. Power supply 152 is typically a DC power source that

15 provides a constant DC power to various units, particularly processor 103.

Various units such as processor 103, display 121, etc., also receive clocking

signals to synchronize operations within the computer systems. These

clocking signals may be provided by a global clock generator or multiple clock

generators, each dedicated to a portion of the computer system. Such a

20 clock generator is shown as clock generator 160. In one embodiment, clock

generator 160 comprise a phase-locked loop (PLL) that provides clocking

signals to processor 103.

In one embodiment, processor 103 is a member of the 68000 family of

processors, such as the 68040 processor manufactured by Motorola

25 Corporation of Schaumberg, Illinois. The memory in the computer system is

APLNDC00028307

13

initialized to store the operating system as well as other programs, such as

file directory routines, control programs, system programs and application

programs, and data inputted from I/O controller 130. The operating system

running on processor 103 takes care of basic tasks such as starting the

5 system, handling interrupts, moving data to and from memory 104 and

peripheral devices via input/output interface unit 140, and managing the

memory space in memory 104. In one embodiment, the operating system is

stored in ROM 106, while RAM 104 is utilized as the internal memory for the

computer system for accessing data and application programs.

10 Processor 103 accesses memory in the computer system via an

address bus within bus 100. Commands in connection with the operation of

memory in the computer system are also sent from the processor to the

memory using bus 100. Bus 100 also includes a bi-directional data bus to

communicate data in response to the commands provided by processor 103

15 under the control of the operating system running on it.

Of course, certain implementations and uses of the present invention

may neither require nor include all of the above components. For example, in

certain implementations a keyboard or cursor control device for inputting

information to the system may not be required. Furthermore, the computer

20 system may include additional processing units.

OVERVIEW OF THE PRESENT INVENTION

The present invention provides a control and/or status window for

display on the desktop of the computer system. The control and status

25 window will be referred to herein as the control strip. The control strip of the

APLNDC00028308

14

present invention is a window of graphics depicting one or more display areas

for control and/or status indicia. In one embodiment, each of the display

areas is individually and variably sized. The size of the control strip itself may

also be variably sized. In one embodiment, the size may be adjusted such

5 that none, all, or only a portion of the display areas within its boundaries are

visible. The size of the control strip may also be varied such that only a

portion of one display area is visible in the control strip. Figure 2A displays a

computer desktop illustrating the control strip of the present invention as well

as opened windows. Figure 2B illustrates one embodiment of the control strip

10 of the present invention.

Each of the variably sized data areas may be sensitive to user input for

control. That is, a user may interact with the individually display data areas.

Different parts of the control strip either display information or act as buttons,

or.both. Note that buttons may display information on their surface. When

15 the user clicks a button, it is highlighted. In one embodiment, buttons may

also display additional elements such as pop-up menus (shown in Figure 2C)

or help messages (e.g., balloons shown in Figure 2D). Thus, in one

embodiment, control of the individual data areas is accomplished, in part,

through the use of small button controls and indicators in the form of various

20 icons.

Each of the display areas is associated with a programming module.

Each of the modules provides a specific status or control function. In one

embodiment, the module is represented by a disk file containing the code

necessary for the module to interact with the control strip as well as other

25 elements such as text, icons, pictures, etc. Modules may be designed to be

APLNDC00028309

15

responsive to selection from cursors via a mouse, trackpad, or cursor control

keys, such as on a keyboard. Many of the modules are able to provide

control to various system functionality, and may provide menus to do the

same.

5 The control strip is a control panel that provides the operating

environment for control strip modules. In one embodiment, the control strip

runs on any Macintoshm computer using a System 7.0 or later operating

system. The control strip of the present invention may be designed to run on

computer systems using other operating systems.

10 In one embodiment, the control strip is implemented in a private

window layer that appears in front of the windows of all the application layers.

That is, the control strip window appears on top of all application

programming windows that may be generated as part of the execution of an

application program. This prevents other windows from obscuring it. In one

15 embodiment, processing logic in the computer system may maintain a list of

windows ordered from the frontmost window on the screen being at the top of

the list and the bottommost window being at the bottom of the list. Processing

logic can maintain the control strip window at the top of the list.

The control strip of the present invention may include windowing

20 configurations that are shown as being horizontal or vertical on the screen.

Furthermore, the present invention is not limited to a single row or column of

status and control data areas. In other words, multiple rows and columns of

module data areas may be included in the window of the control strip.

APLNDC00028310

16

NTROI RTRIP MANIPt II ATION

The control strip, such as shown in Figure 2B, may also be moved to

different portions of the display screen. However, in one embodiment, the

window for the control strip may be moved to any location on the display as

5 long as the right and/or left edge of the strip is attached to the right or left

edge, respectively, of the display. The user may also hold down the option

key and drag the tab 203 of the control strip 200 with the use of a cursor

control device (e.g., trackpad, trackball, mouse) to move the control strip to a

new position on the display.

10 In one embodiment, the user may adjust the size of the control strip

window. Adjustments to the size of the window may comprise either an

increase in the height of the window, the width of the window, or both. In one

embodiment, only the width of the control strip window may altered. The

definition and use of windows is well-known in the art. In one embodiment,

15 the control strip 200 has a tab 203 on its unattached end. The user can drag

tab 203 to adjust the length of the strip. By "clicking" on tab 203, i.e. selection

through the use of the trackpad, mouse, cursor control keys, etc. , the user is

able to shift from a minimal control strip size to a maximum control strip size,

and vice versa. In its minimal size, the graphics of the modules in the control

20 strip are not visible and only the tab is showing. In its maximum size, all of

the modules in the control strip are showing. Recognizing cursor controlled

selections through the use of trackpad, trackball, mouse, cursor control keys,

etc., as well as the tracking of movements of the cursor made by the same

are well-known in the art.

APLNDC00028311

17

Scroll arrows, such as left scroll arrow 204 and right scroll arrow 205,

are provided on the control strip that enable the window of the control strip to

be scrolled to the left or right, respectively. Use of scroll arrows with windows

is well-known in the art.

5 The user may also hide the control strip. In one embodiment, to make

the control strip disappear completely, the user can click the Hide button in

the control strip control panel, as described later in conjunction with Figure 3.

A close box 201 is also included in control strip 200

In one embodiment, by holding the option key and clicking a display

10 area, the user can drag the display area to another position in the control

strip. An example of the process of moving one display area to another

position on the control strip is shown in Figure 2E. Referring to Figure 2E, the

user selects one of the display areas by, for instance, positioning the cursor

over the display area. When the user "clicks" the display area, its border

15 becomes highlighted. While clicking, the display area is dragged to another

location in the control strip module display area. When the user has moved

the display area to the location of his choice, the user stops "clicking" The

control strip display areas are then rearranged.

After the user rearranges the parts of the control strip, the new

20 arrangement is saved. The saving operation may be deferred until resources,

such as the hard disk is ready (e.g., spinning) or until just before the computer

system is shut down or restarted. In other words, in computer systems in

which the hard disk is not turned on all the time in order to save power, the

saving operation may be deferred until the hard disk has been turned on by

25 another.

APLNDC00028312

18

EXEMPLARY CONTROL/STATUS INFORMATION

The control strip of the present invention provides a standard screen

location for a collection of individual modules that provide status and control

5 functions. In one embodiment, the control strip functions include a network

switch that shows whether a network connection for the computer system,

such as an AppleTalkTM OGlWork connection, is on or off and lets the user turn

the network connection on or off without having to locate and execute other

network connection software on the computer system (e.g., without having to

10 open the ChooserTML

The control strip may also include a battery monitor that displays the

status of the battery or batteries. In one embodiment, the battery monitor

displays the current power drain in a manner similar to a car's miles per gallon

(MPG) indicator. The needle for the power drain indicator indicates the drain

15 relative to the maximum possible. The control strip of the present invention

allows this display to be updated frequently so if the user increased the LCD

display screen's brightness level, the needle would animate to denote the

consequence of the action.

Another control strip module displays the state of File Sharing (e.g., on,

20 off, or users connected) that may be currently employed on the computer

system. The file sharing module also lets the user turn file sharing on or off

and lets the user open a control panel to control processing to setup file

sharing on the computer system.

APLNDC00028313

19

The control strip of the present invention may also provide a module to

allow the internal hard disk power to be turned off (to save power), and to

indicate whether is currently on or off.

The control strip may also provide power settings that allow the user to

5 select between maximum battery conservation or maximum computer

performance without opening a control panel. In one embodiment, the power

settings portion of the control strip also allow the user to open up the power

savings control panel. The control strip of the present invention may also

include a function that places the computer in sleep mode or allows the user

10 to select the sound volume.

Other modules, for example, may provide time and/or date information,

may list currently running programming applications, may indicate the amount

of available memory, may control a CD drive, may provide access to audio

controls and status information. Therefore, the control strip acts as a status

15 and control function bar, or windowing area, that provides running modules to

be displayed in an arrangement that is to be displayed, such an arrangement

being modifiable such that the size of the window or bar may be changed.

In one embodiment, the control strip is controllable through a control

panel. An exemplary display of such control panel is shown in Figure 3. Use

20 of control panels is well-known in the art. Using the control panel in Figure 3,

the user is able to hide or show the control strip by clicking the corresponding

button in the control panel. Note that in one embodiment, the control panel

may also be used to change the font and size of the text in the control strip

window.

25

APLNDC00028314

20

PROCESSING LOGIC FOR THE PRESENT INVENTION

The present invention includes computer processing logic for

generating the control strip of the present invention. This processing logic is

described, in part, in the flow charts shown in Figures 4-10. In addition to the

5 computer resources described earlier, the present invention relies upon the

availability of an operating system and system functions capable of displaying

windows, information in windows, characters, and cursor symbols on the

display devices. System functions for interfacing with the cursor control

devices and cursor function keys, including the tracking of cursor location

10 within a window, are also required. These resources are standard processing

components known in the art.

When the processor of the present invention is first powered up, the

operating system logic obtains control and initializes the system components

such as read/write memory, the display device, the cursor control device, the

15 cursor function keys, and keyboard. During this initialization process or in

response to a user command, the operating system displays the control strip

of the present invention.

In one embodiment, the control strip initialization is performed in two

stages. The first stage begins by initially loading at least one routine at start

20 up. Upon loading necessary routines, the operating system allocates storage

for global variables use. Next, resources are loaded for use by the control

strip processing logic. These resources include the visual components or

indicia that is to appear in the control strip, such as pictures, icons, text, etc.

The processing logic for the control strip is patched into the operating system.

APLNDC00028315

21

Later, as a second stage of the initialization during the set up process,

the control strip processing logic causes each of the module files to be

opened one at a time. The code for the module is loaded. An initialization

routine is run in response to a call, during which time, the module itself

5 determines if it can run. This information is conveyed to the control strip. The

processing logic then causes the window to be displayed and calls the

modules to run themselves and appear in the control strip. Figure 2F shows

the control strip window graphics generated by processing logic being

combined with graphics generated by a module to illustrate the creation of the

10 resulting control strip.

Figure 4 is a flowchart of the processing logic responsible for

generating the control strip of the present invention and processing events

that occur involving the control strip. In one embodiment, the control strip

main processing is called by the operating system. Referring to.Figure 4, the

15 processing begins by saving the previous context and sets up the context of

the control strip (processing block 401). The previous context refers to the

state of the computer system prior to performing control strip processing. The

previous context may correspond to an application program running

immediately prior to the control strip processing being called. The context

20 may include settings up its memory space, providing access to its global

variables, etc.

Next, a test determines if the secondary initialization has been done

(processing block 402). If the secondary initialization hasAbeen done,

processing continues at processing block 403 where a secondary initialization

25 process is run, and processing thereafter continues at processing block 409.

APLNDC00028316

22

The secondary initialization process causes the processing logic to initialize

the control strip. One embodiment of the secondary initialization process is

described in Figure 5. On the other hand, if the window of the control strip is

allocated, processing continues at processing block 404 where the processing

5 logic awaits a user event and determines the type of such an event.

Then a test determines if the user event type is a null event

(processing block 405). That is, a test determines whether the user event

type is idle or not. If the user event type is a null event, processing continues

at processing block 406 where idle tasks are run, and processing thereafter

10 continues at processing block 409. Thus, during idle periods, tasks involved

with the control strip window may be run as well as tasks of the modules.

Examples of module tasks may include updating help messages (e.g., due to

a help feature being enabled on the computer system) and saving updated

state information (e.g., display area on screen moved to new location, display

15 area resized, module made invisible; module indicates state is changed and

that it must be saved). On the other hand, if the event type is not a null event,

processing continues at processing block 407.

At processing block 407, a test determines if there has been a "click" of

the mouse within the area defined by the control strip. If there has been a

20 click of the mouse within the control strip, the mouse click is processed

(processing block 408), and processing continues at processing block 409.

The mouse click processing determines the location of the mouse click, which

module in the controls strip was selected, or "clicked-on", if any, and any

action to be taken based on that location. One embodiment of the mouse

APLNDC00028317

23

click processing is described in Figure 9. If a mouse click has not occurred

within the control strip, processing continues directly to processing block 409.

At processing block 409, the previous context is restored and the

processing logic exits to return control to the operating system.

5 One embodiment of the secondary initialization process called by the

control strip main processing logic is described in a flowchart in Figure 5.

Referring to Figure 5, the secondary initialization process begins by testing

whether the FinderTM has started up (processing block 501). If the FinderTM

has not started up, the secondary initialization process ends. However, if the

10 FinderTM has started up, the window of the control strip is created (processing

block 502).

Then a test determines whether the creation of the window of the

control strip was successful (processing block 503). If the creation of the

window of the control strip was not successful, the process ends. The

15 creation of the window may not be successful because, for instance, there is

not enough memory, missing system resources, etc. On the other hand, if the

creation of the window of the control strip was successful, the font and color

of the control strip are initialized (processing block 504). Then external

modules are opened and initialized (processing block 505), the default screen

20 location and size of the control strip are set (processing block 506), the user

configuration is loaded (processing block 507), and the contents of the control

strip are drawn (processing block 508). The user configuration may include

screen location for the control strip, the saved display order of the modules,

the window size of the control strip, etc. Then the secondary initialization

25 process ends.

APLNDC00028318

24

The default screen location and size of the control strip are stored in

memory and accessed. In one embodiment, these values may be changed

by the computer user, such as by interacting with the control strip itself. In

another embodiment, the default values are determined and permanently set

5 by a system designer. Note that specification of the font, color, default screen

location and size may not be required in lieu of the user configuration.

Likewise, by using solely the default settings, the user configuration is not

required.

One embodiment of the process for opening and initializing external

10 modules such as may be invoked by the secondary initialization process is

shown in Figure 6. Referring to Figure 6, the processing logic begins by

testing whether there are more module files to be opened (processing block

601). If there are no more module files (e.g., all the modules have been

opened and loaded), then the process ends. The modules are opened and

15 initialized one at a time. If there are more module files, the processing logic

opens the module file (processing block 602) and loads the module code into

memory (processing block 603). The processing logic calls the module to

initialize itself (processing 604). The module is then also called by the

processing logic to obtain the features of the module (processing block 605)

20 and to obtain the width of the module's area, as well as features of the module

(processing block 606). The features of the module include help messages to

be displayed when the module is "clicked on" with the cursor. Then the

module file is closed (processing block 607) and the processing loops back to

processing block 601. By looping back to processing block 601, the

25 processing logic is able to provide the initialization procedures to all the

APLNDC00028319

25

modules, such that when all the modules have been processed the process

ends. When the process ends, it returns in a manner well-known in the art to

the processing logic that called (e.g., initiated) it.

One embodiment of a process for drawing the contents of the control

5 strip (processing block 508), such as used at processing block 508 of Figure

5, is described in Figure 7. Referring to Figure 7, the processing logic initially

determines if the control strip is visible (processing block 701). If the control

strip is not visible, processing ends. That is, if the user has hidden the control

strip, the present invention will not draw its contents.

10 On the other hand, if the control strip is visible, processing continues at

processing block 702 enters a looping structure where the processing logic

tests whether there are more modules to draw. If there are no more modules

to draw, processing ends and control returns to the process that called it. If

there are more modules to draw, processing continues at processing block

15 703 where the processing logic tests whether the particular module needs to

be redrawn. A module may need to be drawn when the information being

displayed needs to be updated. For example, as the amount of energy in the

battery is changing due to energy consumption from the computer system, an

update to the battery indicia in the control strip must be made. If the module

20 does not need to be redrawn, processing loops back to processing block 702

where the more modules test is repeated. On the other hand, if the module

needs to be redrawn processing continues at processing block 704 where the

processing logic determines whether the module is a button. If the module is a

button, processing continues at processing block 705 where the background

25 graphics of the button are drawn, and processing continues to processing

APLNDC00028320

26

block 707. If the module is not a button, the status-only background graphics

are drawn (processing block 706) and processing continues at processing

block 707. Note that in one embodiment, the type of background graphics

may be obtained using a message sent to the module requesting its features.

5 At processing block 707, the processing logic makes a call to the

module to draw itself. That is, it is the responsibility of the module itself to

draw its status for control indicia. Thereafter processing loops back to

processing block 702.

One embodiment of the processing for running idle tasks in Figure 4 is

10 described in a flowchart in Figure 8. Referring to Figure 8, the processing

logic begins by determining whether a window update is pending (processing

block 801). If a window update is pending, the processing continues at

processing block 802 when the contents of the control strip are drawn.

Window updates may be required due to a change in status in one of the

15 modules. Changes may also be due to a reordering of the control strip

entries. Note that one embodiment of the process to draw the control strip is

shown in Figure 7. Thereafter processing continues at processing block 803.

If a window update is not pending processing continues directly to processing

block 803.

20 At processing 803, processing logic tests whether the configuration of

the control strip has changed. If the configuration of the control strip has not

changed, processing continues at processing block 806. If the configuration

of the control strip has changed, processing continues at processing block

804 where a test determines whether it is safe to perform a save operation.

25 This determination is based on whether the resources are available (i.e., H.D.

APLNDC00028321

27

is turned on) to perform the save operation. If it is not safe to perform a save

operation, processing continues at processing block 806. However, if it is

safe to save control strip, processing continues at processing block 805

where the configuration of the control strip is saved to disk. Thereafter

5 processing continues to processing block 806.

At processing block 806, the current idle module is called to run its idle

task. In one embodiment, the processing logic of the present invention allows

only one module to run its idle tasks during each a call to the processing of

Figure 8 (e.g., the currently designated module) to reduce overhead time.

10 Identification of the current module is based on an ID associated with each of

the modules.

Then the idle task undergoes post processing (processing block 807),

and the ID of the next module is updated to idle (processing block 808). That

is, the module designated as the current module for the next call to the

15 processing of Figure 8 will be the next module in the list of modules. An

example of the post processing is shown in Figure 10.

Then, the processing logic determines whether the module needs to

save settings for use later (processing block 809). If the module does not

need to save its settings, processing continues to processing block 812. On

20 the other hand, if the settings of the module are to be saved, the processing

logic tests whether the settings may be saved at this time (processing block

810). One reason the settings may not be saved is that the hard disk may be

powered down or turned off. If the settings cannot be saved at this time,

processing continues at processing block 812. If the settings of the module

25 may be saved at this time, the processing logic causes the module settings to

APLNDC00028322

28

be saved to disk (processing block 811). Thereafter, processing continues at

processing block 812.

At processing block 812, the help messages for the control strip are

updated, and processing ends and returns to the control of the main

5 processing logic.

One embodiment of the mouse click processing of the present

invention, such as used in Figure 4, is shown in a flowchart in Figure 9.

Referring to Figure 9, the processing logic determines whether a mouse click

has occurred inside the control strip (processing block 901). In one

10 embodiment, this determination may be made by comparing the current

location of the cursor with the location of the control strip (e.g., status bar). if-

If a mouse

click has not occurred inside the control strip, then processing loops back

upon itself, retesting repeatedly until a mouse click does occur. When a

15 mouse click occurs4 processing continues at processing block 902 where a

determination is made as to upon which module the cursor was during the

click.

The processing logic then determines whether a move operation is

being selected by the mouse (processing block 903). If a move operation has

20 been chosen, the display of the module is moved or the entire control strip is

moved (processing block 904) and the processing logic ends the mouse click

process and exits to control of the processing logic that called this procedure.

The determination of whether to move a module or the entire strip is based on

the user's keystrokes or mouse movements. On the other hand, if a move

25 operation is not to occur, processing continues at processing block 905.

APLNDC00028323

29

At processing block 905 the processing logic determines whether the

module on which the click occurred is a "clickable" module, as opposed to a

status only module, (processing block 905). That is, the processing logic

tests whether the module provides any additional functionality when a mouse

5 moves the cursor to select an element in the control strip. If the module is not

"clickable," processing ends. If the module is clickable, processing continues

to process processing block 906 where the mouse click is tracked, i.e., the

location of the cursor.

Next, a test determines if the mouse is still within the bounds of the

10 module (processing block 907). If the mouse is not within the bounds of the

module, processing ends. However, if the mouse is within the boundaries of

the module, the module is called to process the click (processing block 908)

and the click undergoes post processing (processing block 909). Thereafter,

the process ends.

15 One embodiment of the process for post processing the mouse click is

shown in Figure 10. Referring to Figure 10, the processing logic begins by

determining whether the module desires to update its settings (processing

block 1001). If the settings for the module are to be updated, processing

continues at processing block 1002 where a flag is set to indicate that the

20 module has a save pending, and processing continues to processing block

1003. The settings for a module may have to be updated due to user

interaction, such as in the case of an option for a module being turned off or a

module acquiring data as part of its functionality. If the settings of a module

do not have to be updated, processing continues directly to processing block

APLNDC00028324

30

1003. Setting may need to be updated when the module is displaying

information that is changing frequently.

At processing block 1003, a test determines whether the module needs

to resize the display. If the display of the module must be resized, processing

5 continues at processing block 1004 where the module is called to update its

width. Then processing continues at processing block 1005. On the other

hand, if the display of the module does not need to be resized, processing

continues directly to processing block 1005.

At processing block 1005, the processing logic determines whether the

10 module desires to be closed. If the module desires to be closed, processing

continues at processing block 1006 where the module is closed immediately.

Then processing continues at processing block 1007. If the module does not

desire to be closed, processing continues to processing block 1007.

At processing block 1007, a test determines whether the control strip is

15 to be resized or closed. If the control strip needs to be resized or closed,

processing continues at processing block 1008 where the module displays

are repositioned and redrawn, and then processing continues at processing

block 1009. If the control strip is not to be resized or closed, processing

continues directly to processing block 1009.

20 At processing block 1009, a test determines whether the help state of

the module is to be changed. The help state refers to help messages that the

modules provide to users generally. If the help state of the module is to be

changed, processing continues at processing block 1010 where the old help

state of the module is invalidated and the process ends. If the module help

25 state does not need to be changed, processing ends. Changes to the help

APLNDC00028325

31

state may occur due to a global change in the computer system, such as

when a particular help feature (e.g., help balloons) is enabled.

ADDING CONTROL STRIP MODlJLES

5 In one embodiment, the control strip of the present invention operates

as a shell with individual control and status modules added. Each module

and its icons, pictures, etc., are contained in a file on a disk. The control strip

processing logic draws the strip which acts as the background for the

individual modules. Each module is responsible for drawing the icons and

10 other objects that make up its user interface.

Contents of Module Files

In one embodiment, the module file includes only a single resource

containing the code necessary for the module to interact with the control strip.

15 A module file may contain more than one code resource if it is to provide

multifunctional support. In that case, each module in the file is loaded and

initialized separately and treated as an independent entity.

Module Interfnen

20 The interface of the module to the control strip comprises a code

resource. In one embodiment, using the MacintoshTM COmpUter, the type of

the code resource is 'sdev'. This code is responsible for performing all of the

functions required by the control strip as well as any functions that are custom

to the module itself. The module's entry point is at the beginning of the

25 resource and is defined as

APLNDC00028326

32

pascal long ControlStripModule (long message,
long params,
Rect *statusRect,
GraftPtr statusPort);

5 Interactions between a module and the control strip are managed by

passing messages to the module to tell it what to do or to obtain information

about the module and its capabilities. In one embodiment, each module is

required to observe MacintoshTM PBScal register saving conventions; that is, it

may trash 680x0 processor registers DO, D1, D2, AO, and A1, but must

10 preserve all other registers across its call. Note that other operating systems

and implementations of the present invention may have different restrictions.

The message field comprises a message number from the list in the

section "Control Strip Module Messages" that indicates to the module the

action to perform.

15 The params field signifies the result returned by the initialize call to the

module. This would typically be a pointer to a pointer (e.g., the handle) to the

private variables to be used by the module since modules cannot have global

variables. This result is passed to the module on all subsequent calls. Note

that in embodiments where modules can have global variables, such a field

20 may be eliminated.

The statusRect field comprises a pointer to a rectangle within the

control strip defining the area that a module may draw within.

The statusPort field specifies a pointer to the graphics port of the

control strip. The graphics port may be either a color or black-and-white

25 graphics port, and depends on the computer system on which the control strip

is running.

APLNDC00028327

T

33

The result value returned by the module varies depending on the

message sent to it. Results for each message are described below in the

sections on the individual messages.

5 CONTROL STRIP MODULE REFERENCE

In one embodiment, control strip modules interact with the control strip

processing logic in three ways: by accepting messages, by calling utility

routines, and by calling the operating system manager (e.g., a call to Gestalt

selectors). The next three sections describe each of those interactions.

10

Control Strip Module Messages

In one embodiment, all control strip modules respond to messages

from the control strip processing logic, which is responsive to user interaction

with the control strip displayed on the screen. The following messages have

15 been defined:

Message name Message No.

sdevinitModule 0
20 sdevCloseModule 1

sdevFeatures 2
sdevGetDisplayWidth 3

sdevPeriodicTickle 4
25

sdevDrawStatus 5

sdevMouseClick 6

30 sdevSavSettings 7

Description

Initialize the module
Clean up before being closed
Return the feature bits
Return the current width of the
module's display
Periodic tickle when nothing else is
happening
Update the interface in the control
strip
User has clicked on the module's
display area
Save any changed settings in the
module's preferences file

APLNDC00028328

34

sdevShowBalloonHelp 8 Display a help balloon, if the
module has one

sdevinitModule

The sdevinitModule message is the first message sent to a module

5 after the module has been loaded from its file. Initialization allows the module

to initialize its variables and to determine whether it can run on a particular

machine. For example, if the function of the module is to display battery

information, it may be only able to run on a portable computer, such as the

Powerbook manufactured by Apple Computer.

10 In response to receiving the sdevinitModule message, the module

loads and detaches any resources (e.g., text, code, icons, etc.) in its resource

file that will be used. Also, space is allocated in the global variables for

handles to those detached resources.

The sdevinitModule message returns a result depending on its success

15 at installing itself. In one embodiment, a positive result (>0) indicates

successful installation. The processing logic passes this result value to the

module on all subsequent calls. A negative result indicates an error condition,

and installation of the module is aborted by the control strip processing logic.

Also if a negative result occurs and installation has been aborted, the module

20 does not receive a close message.

sdevCloseModule

The sDevCloseModule message is sent to a module when it should be

closed. In one embodiment, the module itself decides when to be closed. A

25 module may be closed when it no longer is required to be running, such as

APLNDC00028329

35

when a battery level indicator no longer needs to be running when the

computer system is receiving its power from an outlet. When the module

receives this message, it disposes of all the detached resources it loaded as

well as its global storage. No result is expected.

5

sdevFeatures

The sdevFeatures message queries the module for the features it

supports. This message returns as its result a bitmap consisting of 1 bits for

supported features and 0 bits for unsupported features. In one embodiment,

10 there are 32 bits returned. All undefined bits are reserved for future features,

and, in one embodiment, are set to 0. The bits are defined as:

a) sdevWantMouseClicks (0) -- If this bit is set, the control strip

notifies the module of mouse down events. If this bit is not set, the control

strip assumes that the module only displays status information with no user

15 interaction.

b) sdevDontAutoTrack (1) -- If this bit is set, the control strip highlights

the display of the module and then calls the module to perform mouse

tracking. In one embodiment, this bit is set when, for example, a module has

a pop-up menu associated with it. If this bit is cleared, the control strip tracks

20 the cursor until the mouse button is released, then sends an sdevMouseClick

message, described below, to the module to notify it that there was a mouse-

down event.

c) sdevHasCustomHelp (2) -- If this bit is set, the module is

responsible for displaying its own help messages. These help messages may

25 be customized depending on its current state. If the bit is cleared, the control

APLNDC00028330

36

strip displays a generic help message when the cursor passes over the its

display area and Balloon Help, or other help-based information provider, is

on.

d) sdevKeepModuleLocked (3) -- If this bit is set, the code of the

5 module is kept locked and protected. In one embodiment, this bit is set only if

the module is passing the address of one of its routines to a routine external

to the module (e.g., installing itself in a queue).

sdevGetDisplayWidth

10 The sdevGetDisplayWidth message is sent to a module to determine

how much horizontal space (in pixels) its display currently requires on the

control strip. In response to the message, the module return the number of

pixels as its result. In one embodiment, the returned width does not comprise

the maximum width required for any configuration, but instead, reflects how

15 much space it currently requires. Note that this useful because, in one

embodiment, its possible for a module to request that its display be resized.

sdevPeriodicTickle

The sdevPeriodicTickle message is passed to the module periodically

20 to allow the module to update its display due to changes in its state. In one

embodiment, this message occurs at regular intervals, while in other

embodiments, there is no mimmum or maximum interval between "tickles." In

response to the sdevPeriodicTickle message, the module returns, as its

result, some bits that signal requests for actions from the control strip

25 processing logic. In one embodiment, there are 32 bits returned. All

APLNDC00028331

37

undefined bits in the result are reserved for future use and, in one

embodiment, are set to 0. The bits are defined as:

a) sdevResizeDisplay (0) -- If this bit is set, the module resizes its

display. The control strip processing logic sends a sdevGetDisplayWidth

5 message to the module and then updates the control strip on the display.

b) sdevNeedToSave (1) - If this bit is set, the module needs to save

changed settings to disk. The control strip processing logic marks the request

but may defer the actual save operation to a better time (e.g., when the hard

disk is spinning).

10 c) sdevHelpStateChange (2) -- If this bit is set, the help message of

the module needs to be updated due to a change in state. If a help balloon is

being displayed for the module, the control strip processing logic removes the

previous help balloon with a new help balloon for the current state.

d) sdevCloseNow (3) -- If this bit is set, the module is requesting to be

15 closed. The control strip processing logic calls the module to save its

settings, then calls the module again to close itself by, for example, disposing

of any loaded resources, disposing of private storage, etc.

sdevDrawStatus

20 The sdevDrawStatus message indicates that the module has to redraw

its display to reflect the most recent state. In one embodiment, this message

is sent when the user clicks on the display area of the module, when any of

the display of the module is resized, or when the control strip itself needs to

be updated, perhaps in response to a screen saver deactivation.

APLNDC00028332

38

The statusRect parameter points to a rectangle bounding the display

area of the module, in local coordinates. All drawing done by a module within

the bounds of the control strip is limited to the module's display rectangle. In

other embodiment, drawing may extend outside the display rectange of the

5 module. The clipping region of the control strip's window is set to the visible

portion of the display rectangle of the module so that all the elements in the

display may be drawn. If the clipping region is to be changed, the initial

clipping region should be observed to avoid drawing over other items in the

control strip.

10

sdevMouseClick

When the user clicks in a display area of the module, the control strip

processing logic calls the module with the sdevMouseClick message if the

sdevWantMouseClicks bit is set in the features of the module.

15 If the sdevDontAutoTrack bit is also set, the control strip processing

logic draws the display of the module in its highlighted state and then sends

the sdevMouseClick message to the module. If the sdevDontAutoTrack bit is

not set, the control strip processing logic tracks the cursor until the mouse

button is released. If the cursor is still within the display area of the module,

20 the control strip processing logic sends the sdevMouseClick message to

notify the module that a click occurred. In either case, the module can then

perform the appropriate function in response to a mouse-down event.

This message returns the same result as the sdevPeriodicTickle

message.

25

APLNDC00028333

39

sdevSaveSettings

The sdevSaveSettings message is passed to the module when the

control strip processing logic has determined that the configuration

information may be saved to the disk (e.g., HD turned on, etc.). In one

5 embodiment, the sdevSaveSettings message is sent only if the module had

previously set the sdevNeedToSave bit in the result of a sdevPeriodicTickle or

sdevMouseClick message. The call returns an error code (File Manager,

Resource Manager, or the like) indicating the success of the save operation.

The control strip processing logic continues to send this message to the

10 module until the module returns a result of 0, indicating a successful save.

sdevShowBalloonHelp

The control strip processing logic calls the module with the

sdevShowBalloonHelp message if Balloon Help is turned on, the module has

15 previously set the sdevHasCustomHelp bit in its features, and the cursor is

over the module's display area. In such a case, the module calls the Help

Manager to display a help balloon describing the current state of the module.

The module returns a value of 0 if successful or an appropriate error result if

not.

20

iITII ITY ROUTINES

In one embodiment, the control strip processing logic provides a set of

utility routines that are available to control strip modules. They are provided

to promote a consistent user interface within the control strip and to reduce

25 the amount of duplicated code that each module would have to include to

APLNDC00028334

T

40

support common functions. Therefore, in an embodiment that does not

include these utility routines, a portion or all of the modules may include

duplicated code supporting common functions.

5 SBisControlStrioVisible

The SBisControlStripVisible routine determines whether the control

strip is visible. An exemplary call follows:

pascal Boolean SBlsControlStripVisible ();

The SBisControlStripVisible routine returns a Boolean value indicating

10 whether or not the control strip is currently visible. It returns a value of "true"

if the control strip is visible, or a value of "false" if it's hidden.

In one embodiment, the SBisControlStripVisible call returns a value of

"true" even when the control strip is not visible. That happens whenever the

control strip is not accessible in the current environment. As soon as that

15 condition changes, the control strip becomes visible again and the returned

value correctly reflects the actual state.

SRShowHideControlStrio

The SBShowHideControlStrip routine shows or hides the control strip.

20 An exemplary call follows:

pascal void SBShowHideControlStrip (Boolean showlt);

The SBShowHideControlStrip routine determines the visibility state for

the control strip based on the value of the "showlt" parameter. Passing a

value of "true" makes the control strip visible, and passing a value of "false"

25 hides it. Modules may not need to call this routine. However, the

APLNDC00028335

41

SBShowHideControlStrip routine provides a means for other software to hide

the control strip when it is in the way.

Calling the SBShowHideControlStrip routine with a "showit" value of

"true" may or may not show the control strip, depending on the current

5 environment. If the control strip is not accessible, it does not become visible.

If a "showit" value of "true" is passed to this routine, then the control strip

becomes visible when the environment changes.

SBSafeToAccessStartupDisk

10 The SBSafeToAccessStartupDisk routine determines whether the

internal hard disk is turned on so that processing logic of the present invention

can determine whether to make a disk access or postpone it until a time when

the disk is already spinning. An exemplary call follows:

pascal Boolean SBSafeToAccesStartupDisk ();

15 The SBSafeToAccessStartDisk routine returns a Boolean value of

"true" if the disk is turned on and "false" if it is not.

SBOpenModuleResourceFile

The SBOpenModuleResourceFile routine opens a module resource

20 file. An examplary call follows:

pascal short SBOpenModuleResourcFile (OSType fileCreator);

The SBOpenModuleResourceFile routine opens the resource fork of

the module file whose creator is "fileCreator", and return the file's reference

number as its result. If the file cannot be found or opened, the

25 SBOpenMduleResourceFile routine returns a result of -1.

APLNDC00028336

The SBOpenModuleResourceFile routine also provides a means for a

module to load in large or infrequently used resources that it doesn't usually

need, but that it requires for a particular operation.

5 SBLoadPreferences

The SBLoadPreferences routine loads a resource from a preferences

file. An examplary call follows:

pascal OSErr SBLoadPreferences (ConstStr255Param prefsResourceName,
Handle *preferences);

10 The SBLoadPreferences routine loads a resource containing a

module's configuration information from the preferences file of the control

strip. The PrefsResourceName parameter points to a Pascal string

containing the name of the resource. The "Preferences" parameter points to

a variable that holds a handle to the resource read from the file. The handle

15 does not need to be preallocated.

If either prefsResourceName or preferences contains a nil pointer, the

SBLoadPreferences routine does nothing and returns a result of paramErr. If

the resource is successfully loaded, the SBLoadPreferences routine returns a

result of 0. The SBLoadPreferences routine also returns other Memory

20 Manager and Resource Manager errors if it fails during some art of the

process.

SBSavePreferences

The SBSavePreferences routine saves a resource to a preferences

25 file. An exemplary call follows:

APLNDC00028337

43

pascal OSErr SBSavePreferences (ConstStr255Param prefsResourceName,
Handle preferences);

The SBSavePreferences routine saves a resource containing a

module's configuration information to the preferences file of the control strip.

5 The PrefsResourceName parameter points to a Pascal string containing the

name of the resource. The "preferences" parameter contains a handle to a

block of data which will be written to the file.

If either prefsResourceName or preferences has a nil value, the

SBSavePreferences routine does nothing and returns a result of paramErr. if

10 the resource is successfully saved, the SBSavePreferences routine returns a

result of 0. The SBSavePreferences routine can also return other Memory

Manager and Resource Manager errors if it fails during some part of the

process.

15 SBGetDetachedString

The SBGetDetachedindString routine obtains a string from a detached

resource. An exemplary call follows:

pascal void SBGetDetachedindString (StringPtr the String,
Handle stringList,

20 short whichString);

The SBGetDetachedindString routine is the detached resource version

of GetindString. The parameter theString points to a Pascal string; the

stringList is a handle to a detached 'STR#' resource; and whichString is the

index (1-n) into the array of Pascal strings contained in the detached

25 resource. The SBGetDetachedindString routine copies the string whose

index is whichString into the space pointed to by theString. If whichString is

APLNDC00028338

44

out of range, the SBGetDetachedindString routine returns a zero-length

string.

SBGetDetachiconSuite

5 The SBGetDetachiconSuite routine sets up a detached icon suite. An

exemplary call follows:

pascal OSErr SBGetDetachiconSuite (Handle *thelconSuite,
short theReslD,
unsigned long selector);

10 The SBGetDetachiconSuite routine creates a new icon suite, loads all

of the requested icons, and then detaches the icons. The parameter

thelconSuite points to the location where the handle to the icon suite is

stored; the parameter theReslD is the resource ID of the icons that make up

the icon suite; and the parameter "selector" indicates which icons are to be

15 loaded into the suite. In one embodiment, the "selector". parameter contains

one (or a combination of) the following values:

svAllLargeData Ox000000FF

20 svAllSmallData x0000FFOO

svAIIMiniData Ox00FFOOOO

load large 32-by-32-pixel icons
('ICN#', 'ic14', 'ic18')
load small 16-by-16-pixel icons
('ics#', 'ics4', 'ics8')
'load mini 12-by-12-pixel icons
('icm#', icm4', 'icm8')

These values may be ORed together to load combinations of icon

25 sizes. The SBGetDetachiconSuite routine returns an appropriate error code if

it's unsuccessful, or 0 if it was able to load the icon suite. Note that if none of

the icons comprising the icon suite could be found, the call returns the error

"resNotFound. In one embodiment, the SBGetDetachiconSuite routine is

APLNDC00028339

45

called only when the resource file of the module is open. This is typically the

case during a module's initialization call.

SBTrackpopupMenu

5 The SBTrackpopupMenu routine manages a pop-up menu. An

exemplary call follows:

pascal short SBTrackpopupMenu (const Rect *moduleRect,
MenuHandle theMenu);

The SBTrackpopupMenu routine handles setting up and displaying a

10 pop-up menu associated with a module. The module passes a pointer to its

display rectangle and a handle to the menu to use. In one embodiment the

menu is displayed immediately above and adjacent to the display rectangle of

the module, yet this is not required. By doing so, the user is allowed to view

the current configuration or to change the settings. The SBTrackpopupMenu

15 routine returns an indication as to which menu item was selected, or 0 if no

item was selected (e.g., because the user moved the cursor outside the

menu's bounds).

SBTrackSlider

20 The SBTrackSlider routine displays and sets an arbitrary parameter.

An exemplary call follows:

pascal short SBTrackSlider (const Rect *moduleRect,
short ticksOnSlider,
short initialValue);

25 The SBTrackSlider routine displays an unlabeled slider above the

module's display rectangle. The slider may be used for displaying and setting

APLNDC00028340

46

the state of an arbitrary parameter. The parameter "ModuleRect" contains a

pointer to the module's display rectangle; "ticksOnSlider' is the upper bounds

of the value returned by the slider; and "initialValue" is the starting position (0

to ticksOnSlider-1). When the user releases the mouse button, the

5 SBTrackSlider routine returns the final position.

SBShowHelpString

The SBShowHelpString routine displays a help balloon. An exemplary

call follows:

10 pascal OSErr SBShowHelpString (const Rect *moduleRect,
StringPtr helpString);

The SBShowHelpString routine displays a module's help balloon. The

module passes a pointer to its display rectangle and a pointer to a Pascal

string, and the routine displays the balloon if possible. If the help dstring has

15 a length of 0 or the Help Manager is unable to display a balloon, an error

result is returned. If the SBShowHelpString routine successfully displays the

help balloon, it returns a result of 0.

SBGetBarGraphWidth

20 The SBGetBarGraphWidth routine determines how wide a bar graph

drawn by the SBDrawBarGraph routine (described below) will be so that a

module can calculate its display width. An exemplary call follows:

pascal short SBGetBarGraphWidth (short barCount);

APLNDC00028341

47

The SBGetBarGraphWidth routine returns the width of a bar graph

containing barCount segments. If barCount has a value less than 0, the

SBGetBarGraphWidth routine returns a width of 0.

5 SBDrawBarGraoh

The SBDrawBarGraph routine draw as bar graph. An exemplary call

follows below:

pascal void SBDrawBarGraph (short level, short barCount,
short direction,

10 Point barGraphTopLeft);

The SBDrawBarGraph routine draws a bar graph containing the

number of segments specified by the barCount parameter in a module's

display area. If the value of barCount is less than or equal to 0, the

SBDrawBarGraph routine does nothing.

15 The bar graph is drawn relative to the location specified by

barGraphTopLeft. Figure 11 illustrates the manner in which the point

barGraphTopLeft determines the position of the bar graph.

The "level" parameter determines how many segments are highlighted.

The value of "level" should be in the range of 0 to barCount-1. If the value of

20 "level" is less than 0, no segments in the bar graph are highlighted; if "level" is

greater than or equal to barCount, all segments in the bar graph are

highlighted.

The direction parameter specifies which way the bar graph will be

drawn to show a larger level. In one embodiment, the direction parameter

25 specifies one of the following values:

#define BarGraphSlopeLeft -1 // max end of sloping graph is on the left

APLNDC00028342

48

#define BarGraphFlatRight 0 H max end of flat graph is on the right
#define BarGraphSlopeRight 1 H max end of sloping graph is on the right

Figure 12 illustrates the resulting bar graph for each direction value.

The arrows indicate which way an increasing level value is displayed. In one

5 embodiment, for sloped versions of the bar graph, the number of segments

specified by the barCount value may not be larger than 8. If a larger

barCount value is passed, the SBDrawBarGraph routine draws nothing.

SBModalDialoqinCntext

10 The SBModalDialoginContext routine may be used in place of the

ModaDialog routine to prevent background applications from being run while

the modal dialog window is visible. An exemplary call is as follows:

pascal void SBModalDialoginContext (ModalFilterProcPtr filterProc,
short *itemHit);

15 The SBModalDialoginContext routine is a special version of

ModalDialog that doesn't allow background applications to be run while a

modal dialog window is visible. The SBModalDialog\nContext routine is used

when the occurence of context switching is not desired.

20 PrRTAI T RFI FOTOR

The control strip processing logic installs two "Gestalt" selectors to

return information to locations external to the computer system. One selector

returns software attributes, and the other returns the current version of the

processing logic (e.g., software).

25

gestaltControlStripAttr

APLNDC00028343

49

The selector "gestaltControlStripAttr ('sdev') return 32 bits describing

the attributes of the current version of the control strip processing logic. In

one embodiment, only the following bit is defined:

gestaltControlStripExists 0 1=control strip is installed

5

qestaltControlStripVersion

The selector gestaltControlStripVersion ('csvr') returns the version of

control strip processing logic that is installed. The format of the returned

version is the same as that of the numeric part of a MacintoshTM gggpyggy

10 system resource, that is:

Bits 31-24
Bits 23-20
Bits 19-16

15 Bits 15-8

20 Bits 7-0

Major part of the version, in BCD
Minor part of the version, in BCD
Bug release version, in BCD
Release stage:
$80=final
$60=beta
$40=alpha
$20=development
Revision level of nonreleased version, in binary

Whereas many alterations and modifications of the present invention

will no doubt become apparent to a person of ordinary skill in the art after

having read the foregoing description, it is to be understood that the particular

25 embodiment shown and described by way of illustration is in no way intended

to be considered limiting. Therefore, references to details of the preferred

embodiment are not intended to limit the scope of the claims which in

themselves recite only those features regarded as essential to the invention.

APLNDC00028344

50

Thus, a method and apparatus for generating a window displaying

control and status indicia has been described.

APLNDC00028345

51

CLAIMS

I claim:

5

1. An interactive computer-controlled display system omprising:

a processor;

a data display screen coupled to the processor;

a cursor control device coupled to said process r for positioning a

10 cursor on said data display screen;

a window generation logic coupled to the rocessor and data display

screen to generate and display a first windo region on said data display

screen;

indicia generation logic coupl to the data display to generate data for

15 display in at least one display ar in the first window, wherein a display area

is sensitive to user input, an urther wherein the window generation logic and

the indicia generation lo ° use message-based communication to exchange

information to coordi ate activities of the indicia generation logic to enable

interactive displ activity.

20

2. The display system defined in Claim 1 wherein the first window

region comprises a control strip.

3. The display system defined in Claim 1 wherein said at least one

25 display area is variably sized.

APLNDC00028346

52

4. The display system defined in Claim 1 wherein size of the first

window region is variable.

5 5. The display system defined in Claim 4 whe in the first window

regions is sized such that none of the display areas ar visible.

6. The display system defined in Claim wherein the first window

regions is sized such that all of the display area are visible.

10

7. The display system defined i Claim 4 wherein the first window

regions is sized such that a portion of th display areas are visible.

8. The display system d fined in Claim 1 wherein at least one of

15 the data areas only displays info ation.

9. The display stem defined in Claim 1 wherein at least one of

the data areas act to pr ide access to control information when selected.

20 10. The splay system defined in Claim 9 wherein said at least one

of the data area display an additional display element.

11. An interactive computer-controlled display system comprising:

a rocessor;

25 a data display screen coupled to the processor;

APLNDC00028347

T

53

a cursor control device coupled to said processor for p sitioning a

cursor on said data display screen;

window generation and control logic coupled to th processor and data

display screen to generate and display a first window gion on said data

5 display screen, wherein the first window region co rises at least one data

display area;

at least one indicia graphics generation ogic coupled to the processor

and the window generation logic, wherein s id at least one indicia graphics

generation logic generates user sensitiv graphics for display in said at least

10 one data display area;

wherein the window generat n logic determines when said at least

one data display area has been elected by the user and signals said at least

one indicia graphics generati logic in response to user selection, and

further wherein said at lea one indicia graphics generation logic initiates a .

15 response.

12. The splay system defined in Claim 11 wherein the first window

is always visible the user.

20 The display system defined in Claim 1 wherein the first window

region comprises a control strip.

The display system defined in Claim wherein said at least

one display area is variably sized.

25

APLNDC00028348

54

15. A method for generating control informati comprising the

steps of:

generating a first window sized to accom date at least one display

area for indicia, wherein the step of generatin he first window comprises

5 executing a first programming module;

displaying an indicia in each of s at least one display area by

executing one of a plurality of progra ming modules corresponding to each

indicia;

selecting one of the indi 'a, wherein the step of selecting comprises the

10 first programming module d ermining which of said at least one display area

is selected and sending a essage to the programming module of said

plurality of programmi modules responsible for generating the display of the

selected indicia;

said progr mming module performing a function in response to the

15 selection.

The method defined in Claim wherein one of said plurality of

indicia comprises status information.

20 The method defined in Claim wherein one of said plurality of

indicia comprises control information.

18. The metho½ defined in Claim 15 further comprising the steps of:

APLNDC00028349

55

the ° st programming module requesting a set of features supported by

said program ing module, wherein said step of requesting comprises

sending a mess ge to said programming module; and

said progr ming module returning a message indicative of features

5 supported by said p gramming module, such that said first programming

module interacts with aid programming module in response to user

interaction with the first rogramming module based on indicated features as

set forth by said program ing module.

APLNDC00028350

56

Atsb i MAU l

An interactive computer-controlled display system having a processor,

a data display screen, a cursor control device for interactively positioning a

cursor on the data display screen, and a window generator that generates

5 and displays a window on a data display screen. The window region provides

status and control information in one or more data display areas. The

individiual data display areas may be controlled through the use of controls

and indicators on the control strip itself using cursor control keys.

APLNDC00028351

Attorney's Docket No.: .û4MO E13¾ Patent

DECLARATION AND POWER OF ATTORNFY FOR PATFNT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below, next to my name.

I believe 1 am the original, first, and sole inventor (if only one name is listed below) or an
original, first, and joint inventor (if plural names are listed below) of the subject matter
which is claimed and for which a patent is sought on the invention entitled

A METHOD AND APPARATUS FOR THERMAL MANAGEMENT IN A COMru i cm SYSTEM

the specification of which

¥X is attached hereto.
was filed on as
Application Serial No.
and was amended on

(if applicable)

I hereby state that I have reviewed and understand the contents of the above-identified
specification, including the claim(s), as amended by any amendment referred to above. I do not
know and do not believe that the claimed invention was ever known or used in the United States
of America before my invention thereof, or patented or described in any printed publication in
any country before my invention thereof or more than one year prior to this application, that
the same was not in public use or on sale in the United States of America more than one year
prior to this application, and that the invention has not been patented or made the subject of an
inventor's certificate issued before the date of this application in any country foreign to the
United States of America on an application filed by me or my legal representatives or assigns
more than twelve months (for a utility patent application) or six months (for a design patent
application) prior to this application.

I acknowledge the duty to disclose all information known to me to be material to patentability as
defined in Title 37, Code of Federal Regulations, Section 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, Section 119, of any
foreign application(s) for patent or inventor's certificate listed below and have also identified
below any foreign application for patent or inventor's certificate having a filing date before that
of the application on which priority is claimed:

Priority
Prior Forelan Application(s) Claimed

(Number) (Country) (Day/Month/Year Filed) Yes No

(Number) (Country) (Day/Month/Year Filed) Yes No

(Number) (Country) (Day/Month/Year Filed) Yes No

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States
application(s) listed below and, insofar as the subject matter of each of the claims of this
application is not disclosed in the prior United States application in the manner provided by the
first paragraph of Title 35, United States Code, Section 112, I acknowledge the duty to disclose
all information known to me to be material to patentability as defined in Title 37, Code of
Federal Regulations, Section 1.56 which became available between the filing date of the prior
application and the national or PCT international filing date of this application:

(Application Serial No.) Filing Date (Status -- patented,
pending, abandoned)

(Application Serial No.) Filing Date (Status -- patented,
pending, abandoned)

Rev. 12/15/93 (Di) cak 1

APLNDC00028352

l hereby appoint Keith G. Askoff, Reg. No. 33,828; Aloysius T. C. AuYeung, Reg. No. 35,432;
Bradley J. Bereznak, Reg. No. 33,474; Michael A. Bernadicou, Reg. No. 35,934; Roger W.
Blakely, Jr., Reg. No. 25,831; Timothy R. Croll, Reg. No. 36,771; Daniel M. De Vos, Reg.
P37,813; Stephen D. Gross, Reg. No. 31,020; David R. Halvorson, Reg. No. 33,395; James P.
Hao, Reg. No. 36,398; Michael D. Hartogs, Reg. No. 36,547; Brian Don Hickman, Reg. No.
35,894; George W Hoover II, Reg. No. 32,992; Paul H. Horstmann, Reg. No. 36,167; Tracy L.
Hurt, Reg. No. 34,188; Eric S. Hyman, Reg. No. 30,139; Dag H. Johansen, Reg No. 36,172;
Stephen L. King, Reg. No. 19,180; Daniel C. Mallery, Reg. No. 33,532; Michael J. Mallie, Reg.
No. 36,591; James D. McFarland, Reg. No. 32,544; Anthony C. Murabito, Reg. No. 35,295;
Ronald W. Reagin, Reg. No. 20,340; James H. Salter, Reg. No. 35,668; Robert A. Saltzberg, Reg.
No. 36,910; James C. Scheller, Reg. No. 31,195; Edward W. Scott, IV, Reg. No. 36,000;
Nicholas Joseph Skarlatos, Reg. P37,941; Maria McCormack Sobrino, Reg. No. 31,639;
Stanley W. Sokoloff, Reg. No. 25,128; John C. Stattler, Reg. No. 36,285; Edwin H. Taylor,
Reg. No. 25,129; Lester J. Vincent, Reg. No. 31,460; Ben J. Yorks, Reg. No. 33,609; Norman
Zafman, Reg. No. 26,250; Mark Aaker, Reg. No. 32,667; Jeffrey J. Brooks, Reg. No. 35,834;
Paul D. Carmichael, Reg. No. 18,679; Vernon Randall Gard, Reg. No. 33,886; Richard C. Liu,
Reg. No. 34,377; Robert T. Martin, Reg. No. 32,426; Helene S. Plotka, Reg. No. 35,981; and
Nancy R. Simon, Reg. No. 36,930; my attorneys; and Thomas X. Li, Reg. No. 37,079; and Edwin
A. Sloane, Reg. No. 34,728; my patent agents, of BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN, with
offices located at 12400 Wilshire Bosulevard, 7th Floor, Los Angeles, California 90025,
telephone (310) 207-3800, with full power of substitution and revocation, to prosecute this
application and to transact all business in the Patent and Trademark Office connected herewith.

I hereby declare that all statements made herein of my own knowledge are true and that all
statements made on information and belief are believed to be true; and further that these
statements were made with the knowledge that willful false statements and the like so made are
punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United
States Code and that such willful false statements may jeopardize the validity of the application
or any patent issued thereon.

Full Name of Sole/First inventor Steven W christensen

inventor's Signature Date

Residence MilnitBS Califomin Citizenship 11AA
(City, State) (Country)

Post Office Address 1514 Mollnt Diablo Avenile
Milpitas california 95035

Full Name of Second/Joint inventor

Inventor's Signature Date

Residence Citizenship
(City, State) (Country)

Post Office Address

Full Name of Third/Joint Inventor

inventor's Signature Date

Residence Citizenship
(City, State) (Country)

Post Office Address

Rev. 12/15/93 (D1) cak 2

APLNDC00028353

g n err,u-
owaA·· o,-.e.

CLK AG -
IFo 153 iff

(#rT lAIDICATI•¤
sa<,war. 183 Soc.G.ssom.

ss i st v.---
sfoMW; y,m L.

ift

P½DE.M e

o Sv.r 10I SLATo t.oegg, Jr.r/Do fu F.

log ¡Al RFacE

t/Ni

AIAjLþ CLbt,iC.

DE,isc.g et•(C,£9Egrayet
jfw0

Ñool-
þi.tFtAy

I2f Vot.ATI..E

CH& I15 O (byypou e. Co Kaou.E.it.

Il TEvt P. A
R»fry Dicl<- / 3 SEtJsom.

DR-VE /2(.
cá ro

syg>g Compa. \ ¼«Mon.

F/GUÑE /

APLNDC00028354

t:

No.: .iof 17

Express Mail: TB377895617US

Inventor(s): Steven W,. Christensen

M- · OD AND APPARATUS FOR DISPLAYING
AND AC· ---ING CONTROL AND STATUS
INFORMATION IN A COMPUTER SYa > rvi

O a- O

APLNDC00028355

File Edit Uiew Label Special

EHtensions
Name Size

Applications Vabbit

10 items 12.6 MB in disk 313.6 MB available

AppleLink PowerBook Edition Express Modem

MacTerminal Remote Access Client Folder SimpleText

A 1 as g
MoviePlayer* ResEdit Tools

P t onitare 66K

QuickTime" 831K
2 items 12.6 MB in disk 313.6 MB avai

Serial Tool 33K

Tr h

APLNDC00028356

Docket No.: 04860.P1365

Serial No.:

Filed:

Art Unit:

Sheet No.: A of 17

Express Mail: TB377895617US

Inventor(s): Steven W,. Christensen

TitlE METHOD AND APPARATUS FOR DISPLAYING
AND ACLUUUlraG COmaOL AND STATUS
INFORMATION IN A COMPUTER SYSTEM

APLNDC00028357

waM

200

- close bon module display area drag/size inb
zo: Los zo3

left scroll arrow zight scroll azzow
zc>4 2.oi

FICruRE

APLNDC00028358

Do'cket No.: 04860.P1365

Serial No.:

Filed:

Art Unit:

Sheet No.: 3 of 17

Express Mail: TB377895617US

Inventor(s): Steven W,. Christensen

Title: METHOD AND APP AR ATUS FOR DISPLAYING
AND ACCESSING COIN 1xOL AND STATUS
INFORMATION IN A COmrv wR SYSTEM

APLNDC00028359

&&V
8 8/318287

Hide Battery Level
Hide Battery Consum ion
Hide Time Remainin

Fiem 2C

APLNDC00028360

Do ket No.: 04860.P1365

Serial No.:

Filed:

Art Unit:

Sheet No.: 4 of 17

Express Mail: TB377895617US

Inventor(s): Steven W,. Christensen

iilä: - - · OD AND APPARATUS FOR DISPLAYING
AND AC- =»ING COIN 1xOL AND STATUS

a.. e INFORMATION IN A COMPUTER S - - - -M

APLNDC00028361

