EXHIBIT 3.19

Fig. 3 is a side view of the overlay 20 and the stylus 60 for stylus detection;

Fig. 4 is a schematic view of the overlay for stylus detection;

Fig. 5 illustrates the radiative signal amplitude for measuring pair PO in stylus detection;

Fig. 6 shows the measurement for the pair P1 for stylus detection;

Fig. 7 shows the measurement for the pair P2 for stylus detection;

Fig. 8 is a cross-sectional view of the overlay 20 and the finger 70 for finger touch detection;

Fig. 9 is an architectural diagram of the detection system;

Fig. 10 is a flow diagram of the operation of the first embodiment of the invention for detecting either finger touch or stylus position;

Fig. 11 is a rear view of the general layout of the overiay 20 ;

Fig. 12 is a side cross-sectional view of the overlay 20 along the section line 12-12' of

Fig. 11 showing the detail of the display input area;

Fig. 13 is a front breakaway view of the overlay 20 in the bus region;

Fig. 14 is a side cross-sectional view along the section line 14-14' of Fig. 13;

Fig. 15 is a front view of the layout of the X bus for the overlay 20 ;

Fig. 16 is a flow diagram of a second embodiment of the invention, when both finger touch and stylus detection can be simultaneously carried out;

Fig. 17 is a timing diagram for the second embodiment of the invention, for the simultaneous detection of both finger touch and stylus location;

Fig. 18 is a diagram of the memory organization for the RAM 102 in the second embodiment of the invention, and

Fig. 19 is a front view of the display as seen through the overiay 20 , showing the simultaneous finger touch and stylus detection, in accordance with the second embodiment of the invention.

Description of the Best Mode for Carrying Out the Invention

The combined finger touch and stylus detection system is shown in a front view in Fig. 1 and in a side cross-sectional view in Fig. 2, in association with a cathode ray tube display. The overlay 20 consists of two sheets of durable, transparent plastic, with an array of horizontal transparent conductors embedded in the first sheet and an array of vertical transparent conductors embedded in the second sheet. The overlay 20 can be mounted by means of the frame 22 onto the display surface 32
of the cathode ray tube 24 . The mounting frame 22 consists of a base portion 28 which attaches to the sidewall 26 of the cathode ray tube (CRT) 24 . The front facing surface 30 of the base portion 28 can have a curvature substantially the same as the curvature of the display surface 32 . The overlay 20 is mechanically flexible and can be laid directly upon the surface 32 of the CRT so that its edges overiap the surface 30 of the base portion 28 for the mounting frame 22. The clamping member 34 can then be placed over the edges of the overlay 20 so that the mating surface 38 , which has a curvature similar to that of the surface 30 , clamps the edges of the overlay 20 . The mounting bolts 36 secure the member 34 to the base portion 28.

Fig. 2 shows a cross-sectional view of the overlay 20 positioned on the display surface 32 of the CRT. The overlay is stretched slightly by the mounting frame, to provide a smooth, tight and well supported surface for finger touch and stylus detection. The overlay shown in Fig. 3 consists of the inner substrate 50 which is a sheet of polyethylene terephthalate which is transparent, electrically insulative, and has a thickness of approximately 950 $\mu \mathrm{m}(0.002)$ inches. An array of horizontal transparent conductors is deposited on the surface of the inner substrate 50 and are designated as $\mathrm{Y} 1, \mathrm{Y} 2$, Y3, etc., with the Y3 wire being shown in Fig. 3. The transparent conductors can be composed of indium tin oxide, for example, which is a wellknown transparent conductor material. The thickness of the transparent conductor can be approximately 100 nm . The conductors are approximately $635 \mu \mathrm{~m}$ (0.025 inches) wide and are spaced approximately $3,175 \mathrm{~mm}$ (0.125 inches) on a center-to-center spacing. An insulation layer 52 covers the horizontal Y wires and can be composed of a transparent adhesive such as ultraviolet initiated vinyl acrylic polymer having a thickness of approximately $50 \mu \mathrm{~m}$ (0.002 inches). The upper portion of the overlay 20 shown in Fig. 3 consists of the outer substrate 54 which is a sheet of polyethylene terephthalate which is optically transparent, electrically insulative and has a thickness of approximately $50 \mu \mathrm{~m}$ (0.002 inches). Deposited on the surface of the outer substrate 54 is a vertical array of transparent conductors designated $\mathrm{X} 1, \mathrm{X} 2$, X3...X6.... The conductors X 1 , etc. are also composed of indium tin oxide and have a thickness of approximately 100 nm , a width of approximately $635 \mu \mathrm{~m}$ (0.025 inches) and a spacing of approximately $3,175 \mathrm{~mm}$ (0.125 inches), center-to-center. The outer substrate 54 and the vertical conductors X are joined by the adhesive insulation layer 52 to the inner substrate 50 and the horizontal wires Y. The X and the Y transparent conductors can also be composed of gold and silver or other suitable
materials. The thickness of the conductors is adjusted to provide resistance below 50 ohms per square and an optical transmission which is greater than 80 percent.

Fig. 3 depicts the arrangement for detection of the stylus 60 when it is closer than the locate threshold distance 62. The principle of operation in the stylus detection mode is that the X and/or Y conductors are driven by a 40 kilohertz oscillator driver so that the X and/or Y conductors act as a transmitter of electromagnetic radiation and the stylus 60 acts as a receiver of that radiation. To transmit a signal, the oscillator selectively drives either the X conductors or the Y conductors. The stylus 60 detects the signal and electronics connected to the stylus digitizes the magnitude of the signal. The magnitude of the signal detected by the stylus is a function of the height of the stylus above the overlay 20. By comparing this magnitude to known thresholds, the height of the stylus above the overlay can be determined. When the stylus signal has reached the contact threshold corresponding to the locate threshold distance 62, the operation of stylus detection can shift from proximity detection to a location and tracking mode. The object of tracking the stylus is to have the X conductors and the Y conductors in the overlay driven in such a manner that the radiation picked up by the stylus 60 can enable the attribution of an instantaneous position for the stylus.

The basic drive pattern for determining the stylus position is schematically shown in Fig. 4. A wire pair is defined as two adjacent X conductors, for example, with the left-hand conductor and several conductors to the left thereof being either grounded or connected to a first reference potential and the right-hand conductor and several conductors to the right thereof being driven by the oscillator driver. Fig. 4 shows the wire pair P0 located beneath the stylus 60 , with the conductor $X 3$ being the left-handed conductor and the conductor X4 being the right-handed conductor. The conductors X1, X2 and X3 are connected to ground potential whereas the conductors $X 4, X 5$ and $X 6$ are connected to the oscillator driver. Fig. 5 shows the amplitude of the signal received by the stylus 60 as it would pass from left to right from above the conductor X1 to a position above the conductor $X 6$. Note that within and around the wire pair X3 and X4, the stylus signal varies linearly with position. This linearity is the basis for an accurate interpolation technique for providing a precise measure of the position of the stylus 60 based upon the measurement of radiation from three wire pairs. The first stage in the measurement is measuring the amplitude for the wire pair PO. Fig. 6 shows the second stage in the measurement where the wire pair P1 is formed with the conductors X 4 and X 5 .

The plot of the magnitude of the signal received by the stylus 60 which remains fixed at its location shown in Figs. 4 and 5, would indicate a lower relative measured amplitude for the wire pair P1 measurement. The final data in the three stage operation of locating the position of the stylus 60 is shown in Fig. 7, where the wire pair P2 is the inverse of the wire pair PO. That is, the conductors $X 1, X 2$ and $X 3$ are driven with the oscillator driver, whereas the conductors $\mathrm{X} 4, \mathrm{X} 5$ and X 6 are connected to ground or reference potential. The signal amplitude is shown for the wire pair P2 in Fig. 7. Once again, with the stylus 60 remaining in the same position that it had for Figs. 4, 5 and 6, the 5 magnitude of this signal for the wire pair P2 will be measured.

The calculation of the horizontal position of the stylus 60 with respect to the vertical X conductors X1, X2, X3, etc. is done in two stages. First, the base coordinate is calculated and then second an offset coordinate is calculated which is added to the base coordinate to form the resultant measured position. To calculate the base coordinate, the system calculates the number of wires between the origin of coordinates at the left-hand edge of the overlay and the first wire adjacent to the axis of the stylus 60 . This number of wires is multiplied times the pitch of the X conductor separation, in this case $3,175 \mathrm{~mm}$ (0.125 inches), to obtain the base coordinate value. The base coordinate produced is the midpoint between the wire pair X3 and X4 in this example.

The offset coordinate is the coordinate of the stylus relative to the midpoint of the wire pair X3 and $X 4$. The offset coordinate is equal to the wire separation pitch in the horizontal direction times (P0-P2) divided by 2^{\times}(P0-P1). The numerator of this expression is a linear expression within a wire pair whereas the denominator is a constant. Both of these terms depend upon the angle of the stylus with respect to the tablet which can vary during normal operation. The division operation cancels this dependence, allowing the expression to be invariant as to the angle at which the stylus is held. The resulting ratio varies linearly between approximately -1 and +1 and, when multiplied times the pitch, gives an additive factor which, when added to the base coordinate, results in the interpolated value for the horizontal position of the stylus with respect to the vertical X conductors. The resolution for this measurement is typically $0,254 \mu \mathrm{~m}$ (0.01 inches). A similar operation is conducted for the horizontal conductors $\mathrm{Y} 1, \mathrm{Y} 2$, etc. to establish the vertical position of the stylus with respect to the horizontal conductors.

It is seen that in order to locate position of the stylus with respect to the vertical conductors, the vertical conductors must be arranged with each conductor in any group of at least six adjacent conductors, uniquely connected to the oscillator driver. A similar condition must also prevail for the horizontal Y conductors. As was previously mentioned, in order to obtain an approximately 0,254 mm (0.01 inch) resolution, a grid pitch of approximately $3,175 \mathrm{~mm}$ (0.125 inches) must be maintained for the conductors in both the horizontal direction and in the vertical direction. If a display area of $30-33 \mathrm{~cm}$ (12-13 inches) in the horizontal and the vertical direction is to be covered by the overiay, then approximately 100 vertical X4 conductors and 100 horizontal Y conductors will be required in the overlay 20 . If 200 different drivers were required to drive all 200 conductors, the mechanical and electrical complexity necessary to make that connection would be prohibitive. It is clearly advantageous to provide some means for reducing the number of driver wires which interconnect the conductor wires in the array to the oscillator driver. Dym, et al. have provided in their above cited patents, a busing technique which employs a horizontal bus having 24 separate driver wires each of which are respectively connected to several vertical conductors in the opaque graphics tablet disclosed therein. The horizontal conductors are similarly arranged and are connected through a vertical bus also having 24 wires. Taking the vertical array conductors for example, the 24 wires in the horizontal bus feeding the vertical array conductors were classified into three sets of eight wires each. The vertical array conductors were divided into groups. To make the individual groups of array conductors unique for the purposes of detection by the stylus, the order of the array conductors is changed for every group. This reduced the number of drive wires in the bus since each wire in the bus was connected to and drove multiple array conductors. The separation between array conductors connected to the same bus wire has to be large enough so that signals sensed in one region of the array are not influenced by the other conductors in the array connected to the same bus wire.

The problem with the arrangement of the array conductors as described by Dym, et al. for their opaque graphics tablet, is that it cannot be used for the capacitive detection of a finger touch such as is illustrated in Fig. 8. The finger 70, when touching the surface of the outer substrate 54 in Fig. 8, will, at best, approximately cover only two adjacent array conductors, in the case illustrated, X3 and X 4 . If the location of the finger 70 is to be measured with the resolution equivalent to the pitch of the conductors, in this case $3,175 \mathrm{~mm}(0.125$ inches), then the capacitance change for a first
conductor and for an adjacent second conductor must be measured. In the case of Fig. 8, the capacitance CF3 between the finger 70 and the X3 conductor must be measured and the capacitance speed of the stylus movement which is desired to be accommodated. Using the wire pair concept shown in Figs. 4-7, let the number of wires to the
left of the wire pair (including the left-hand member of the pair) be the quantity M and let there also the same number M of wires to the right of the wire pair (including the right-hand member of the pair). The total quantity of 2 M adjacent wires represents a group, which must span a horizontal distance great enough to exceed the maximum allowable distance which will be displaced by the stylus during one interval between successive position determinations (the sampling interval). In each group of adjacent 2 M wires, each wire must be uniquely connected to one of the plurality of bus wires in the horizontal bus 80 . The same is equally true for the horizontal array conductors $Y 1, Y 2$,....

For example, if the maximum speed of the stylus is 48 inches per second, the sampling rate is 100 position determinations per second, the pitch of the wires is $3,175 \mathrm{~mm}$ (0.125 inches), then the quantity of M will be four wires on each side of the wire pair. In this example, the array must be organized so that each group of eight adjacent wires has each wire therein uniquely connected to the bus wires in its corresponding bus, in order to accurately track the position of the stylus moving at up to $122 \mathrm{~cm} / \mathrm{s}$ (48 inches per second). A wiring pattern which will accommodate this example is shown in Table I and in Fig. 15.

Drive No. $\begin{array}{lllllllllllllllll}16 & 1 & 14 & 2 & 13 & 3 & 12 & 4 & 11 & 5 & 10 & 6 & 9 & 7 & 8 & 15\end{array}$ Occurrence $11 \begin{array}{lllllllllllllllll} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ N to Self - - - - - - - - - - - - - N to Four - - - - - - - - - - - - - -

Drive No. $\quad \begin{array}{lllllllllllllllll}2 & 1 & 3 & 14 & 4 & 13 & 5 & 12 & 6 & 11 & 7 & 10 & 8 & 9 & 15 & 3\end{array}$ Occurrence $\begin{array}{lllllllllllllllll}2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3\end{array}$ $\begin{array}{llllllllllllllll}\mathrm{N} \\ \text { to Self } & 12 & 15 & 12 & 16 & 12 & 16 & 12 & 16 & 12 & 16 & 12 & 16 & 13 & 16 & 14\end{array} 12$ $\begin{array}{lllllllllllllllll}\mathrm{N} \\ \text { to Four } & 10 & 9 & 10 & 9 & 10 & 9 & 10 & 9 & 10 & 10 & 11 & 11 & 9 & 10 & 10 & 10\end{array}$

Drive No. $\begin{array}{lllllllllllllllll}16 & 2 & 4 & 1 & 5 & 14 & 6 & 13 & 7 & 12 & 8 & 11 & 9 & 16 & 10 & 15\end{array}$ Occurrence $\begin{array}{lllllllllllllllll}2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}$ $\begin{array}{llllllllllllllllll}\mathrm{N} \\ \text { to Self } & 31 & 16 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 16 & 12 & 18 & 16\end{array}$ $\begin{array}{lllllllllllllllll}\mathrm{N} \\ \text { to } & \text { Four } & 11 & 10 & 11 & 10 & 11 & 10 & 11 & 10 & 11 & 12 & 9 & 10 & 11 & 10 & 11\end{array} \quad 9$

Drive No. $\begin{array}{lllllllllllllllll}4 & 3 & 5 & 2 & 6 & 1 & 7 & 14 & 8 & 13 & 9 & 12 & 10 & 11 & 15 & 5\end{array}$ Occurrence $\begin{array}{lllllllllllllllll}4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 5\end{array}$ $\begin{array}{llllllllllllllllll}\mathrm{N} \text { to } \mathrm{self} & 13 & 17 & 12 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 14 & 12\end{array}$ N to Four $\quad 10 \quad 10 \quad 1110 \quad 1110 \quad 1110 \begin{array}{lllllllll}11 & 10 & 11 & 11 & 9 & 10 & 11 & 10\end{array}$

Drive No. $\begin{array}{lllllllllllllllll}16 & 4 & 6 & 3 & 7 & 2 & 8 & 1 & 9 & 14 & 10 & 13 & 11 & 16 & 12 & 15\end{array}$ Occurrence $\begin{array}{lllllllllllllllll}4 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5\end{array}$ $\begin{array}{llllllllllllllllll}\mathrm{N} \text { to Self } & 31 & 14 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 14 & 12 & 18 & 16\end{array}$ N
to

Drive No. $\begin{array}{lllllllllllllllll}6 & 5 & 7 & 4 & 8 & 3 & 9 & 2 & 10 & 1 & 11 & 14 & 12 & 13 & 15 & 7\end{array}$ Occurrence $\begin{array}{lllllllllllllllll}6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 0 & 6 & 7\end{array}$ $\begin{array}{llllllllllllllllll}\mathrm{N} \text { to Self } & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 12\end{array}$ N to Four $\begin{array}{lllllllllllllllll}11 & 10 & 11 & 10 & 11 & 10 & 11 & 10 & 11 & 10 & 11 & 10 & 9 & 10 & 11 & 10\end{array}$

Drive No. $\begin{array}{lllllllllllllllll}16 & 6 & 8 & 5 & 9 & 4 & 10 & 3 & 11 & 2 & 12 & 1 & 13 & 16 & 14 & 15\end{array}$ $\begin{array}{lllllllllllllllll}\text { Occurrence } & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7\end{array}$ $\begin{array}{llllllllllllllllll}\mathrm{N} \text { to Self } & 31 & 16 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 13 & 17 & 14 & 12 & 18 & 16\end{array}$ $\begin{array}{llllllllllllllll}\mathrm{N} \\ \text { to Four } & 11 & 10 & 11 & 10 & 11 & 10 & 11 & 10 & 11 & 11 & 9 & 10 & 11 & 12 & 15\end{array} 16$

To reduce the number of elements in the X bus 80, each bus wire 1-16 drives multiple X array conductors X1-X112. The separation between those X array conductors which are attached to the same bus wire, must be large enough so that signals sensed in one region of the overlay 20 are not affected by the other conductors connected to that same bus wire. The bus attachment pattern must isolate conductors attached to the same bus wire, by a sufficient distance to avoid confusion errors in the stylus locate mode and the stylus tracking mode. In the locate mode, the distance between any three adjacent vertical array conductors and the next occurrence of any of those conductors that is attached to the same bus wire, must be greater than the maximum height 62 at which a locate operation can begin, as is shown in Fig. 3. For the tracking mode, the distance between any group of adjacent wires that are driven simultaneously during the tracking operation, as shown in Figs. 4-7, with respect to the next occurrence of another conductor connected to the same bus wire, must be greater than the expected displacement of the stylus which may occur during one complete tracking position determination cycle. This is typically approximately $1,9 \mathrm{~cm}$ (0.75 inches). Added to this is the constraint necessary to accomplish capacitance finger touch sensing. Fingers are sensed by the change in capacitance when the fingers cover the transparent array conductors. Low force touches only change the capacitance of two adjacent conductors. The bus wire attachment sequence must be patterned so that the finger sensing portion of the system can identify capacitance changes in two adjacent conductors as a touch, which is unique and will not occur for any other combination of adjacent conductor pairs in the array. The essential finger sensing constraint is that only one pair of adjacent conductors in the array should be connected to the same pair of bus wires. In a 16 wire bus such as the X bus 80 , there are 120 unique combinations of adjacent pairs of wires which will satisfy this condition. If there were a quantity of N bus wires in the bus, then there would be $N(N-1)$ divided by 2 unique combinations of adjacent pairs of conductors which will satisfy this condition. The bus wire attachment pattern requirement is to select a sequence that meets these adjacent conductor constraints and which maintains an adequate grid distance between groups of wires which are attached to the same bus wire. The allowable bus wire attachment sequences will differ for different numbers of bus wire elements N and for different numbers of array conductors X for vertical conductors. The greater the number of bus wires, the easier it is to meet the physical constraints on tracking speed and the
threshold distance for stylus detection, for a given size overlay. All of the above considerations apply equally to the horizontal Y array conductors as they do for the vertical X array conductors. spect to the vertical X conductors deposited on the inner substrate 50 . During manufacture, the inner laminate 56 is built up as a composite and is coated with the insulation layer 52 which is a thin
layer of ultraviolet initiated vinyl acrylic polymer. Similarly, during manufacture, the outer laminate 58 is coated with the insulation layer $52^{\prime \prime}$ which is identical in composition with the insulation layer 52. After the inner laminate 56 and the outer laminate 58 have been respectively constructed as separate composites, they are joined with the adhesive layer 52^{\prime} which has the same composition as the insulation layer 52. The resulting overlay composite 20 has an overall thickness in the display input area 188 of approximately $127 \mu \mathrm{~m}$ (0.005 inches), has a high optical transparency, and has a durable mechanical quality. The overlay 20 can be stretched and bent within limits to conform to the curvature of the cathode ray tube display surface, without rupturing the electrical continuity of the transparent conductors in the array. In an alternate embodiment, the X and Y array conductors could be deposited on the outer laminate 54 and the inner laminate 56, respectively.

Fig. 13 shows a front view of the X bus 80 for the overiay 20 and Fig. 14 shows a side crosssectional view, illustrating how the bus wire 3 is electrically connected to the transparent array conductor X2. When the insulation layer 52 is applied to the surface of the inner laminate 56 , it is deposited in a printing operation such as silk screeening so that the array of apertures 180 and 180^{\prime} as shown in Figs. 13 and 15 are left open exposing selected transparent conductors. Thereafter, silver ink bus wires 1-16 are deposited on the outer surface of the insulation layer 52 so that they pass over selected ones of the apertures 180 and 180', thereby making electrical contact with the selected, exposed array conductors. For example, as is shown in Fig. 13 and Fig. 14, the bus wire 3 passes through the aperture 180 in the insulation layer 52 and makes electrical contact with the vertical transparent conductor X 2 . The resistance.of the silver ink bus wires $1-16^{\circ}$ does not exceed (50 Ohm $/ \mathrm{cm}$) 20 ohms per inch for a 380 um ($0.015^{\prime \prime}$) width line. The thickness of the bus wires does not exceed $25 \mu \mathrm{~m}$ (0.001 inches).

Fig. 9 shows an architectural diagram of the detection system. The vertical conductors X1-X112 are connected through the X bus 80 to the wire select multiplexer 112 and the horizontal Y conductors $\mathrm{Y} 1-\mathrm{Y} 112$ are connected through the Y bus 90 to the wire selection multiplexer 112. The radiative pickup stylus 60 is connected through the gate 120 to the radiative pickup measurement device 122. The wire selection multiplexer 112 is connected through the mode multiplexer 116 to the capacitance measurement device 128 which is used for capacitance finger touch detection. The wire selection multiplexer 112 is also connected through the mode multiplexer 116 to the 40 kilohertz oscillator driver 126 which is used to drive the X bus 80 and
the Y bus 90 for the stylus detection operation. The mode multiplexer 116 also has an enabling output to the gate 120 to selectively connect the output of the stylus 60 to the radiative pickup measurement device 122, for stylus detection operations. The output of the capacitance measurement device is connected through the analog-to-digital converter 130 to the processor address/data bus 110. The output of the radiative pickup measurement device 122 is connected through the analog-to-digital converter 124 to the bus 110. A control input 114 to the wire selection multiplexer 112 is connected to the bus 110 and the control input 118 to the mode multiplexer 116 is connected to the bus 110 . The processor address/data bus 110 interconnects the control processor 100 with the read only memory (ROM) 104, the random access memory (RAM) 102, and the $1 / O$ controller 106. The $1 / O$ controller 106 has an I/O bus 108 which connects to a host processing system such as the I/O bus of an IBM Personal Computer.

The wire selection multiplexer 112 and the mode multiplexer 116 connects selected patterns of a plurality of the horizontal and vertical conductors in the overlay 20 to either the capacitance measurement device 128 or the 40 kilohertz oscillator driver 126, in response to control signals applied over the control inputs 114 and 118 from the bus 110 by the control processor 100. During finger touch operations, the capacitance measuring device 128 has its input coupled through the mode multiplexer 116 and the wire selection multiplexer 112 to selected ones of the horizontal and vertical conductors in the overlay 20 in response to control signals from the control processor 100 . The output of the capacitance measurement device 128 is converted to digital values by the converter 130 and is applied over the bus 110 to the control processor 100, which executes a sequence of stored program instructions to detect the horizontal array conductor pair and the vertical array conductor pair in the overlay 20 which are being touched by the operator's finger. In the stylus detection mode, the 40 kilohertz output of the oscillator driver 126 is connected through the mode multiplexer 116 and the wire selection multiplexer 112 to selected ones of the conductors in the overlay 20, in response to control signals applied over the control inputs 114 and 118 from the control processor 100. The electromagnetic signals received from the overlay 20 by the stylus 60 are passed through the gate 120 to the radiative pickup measurement device 122, which measures those signals and provides an output which is digitized by the converter 124 and output to the control processor 100 . The control processor 100 executes a sequence of stored program instructions to detect the proximity of the stylus to the overlay 20 in the proximity
detection mode and then to locate and track the horizontal and vertical position of the stylus with respect to the overlay 20 in the location and tracking mode. The stored program instructions for carrying out these operations can be stored in the read only memory 104 and/or the RAM 102, for execution by the control processor 100. Positional values and other result information can be output through the $1 / O$ controller 106 on the $1 / 0$ bus 108 to the host processor for further analysis and use in applications software.

Fig. 10 is a flow diagram of a first embodiment of the invention where either finger touch operations or alternately stylus detection operations can be carried out, one to the exclusion of the other during a particular sensing interval. During the proximity search mode, the capacitance finger touch operations are interleaved with the radiative stylus pickup operations to determine whether either a finger touch has been initiated or a stylus has been brought into threshold proximity to the overlay 20. When either of these conditions are found, the stored program instructions represented by the flow diagram of Fig. 10, will lock out the opposite search sequence and will proceed to the locate sequence for the finger touch or for the stylus detection, whichever has been sensed.

This alternate scanning for either the initiation of a finger touch or the beginning of stylus detection is carried out by steps 140-148 and 154-160 of the flow diagram of Fig. 10. In step 140, the X-drive sequence is updated followed by step 142 where the touch sensing function of the capacitance measurement device 128 is turned on by appropriate control signals to the mode multiplexer 116 and the wire selection multiplexer 112. Then in step 144 the X axis conductors in the overlay 20 are sensed by the capacitance measurement device 128. In step 146 the signal strength for capacitive coupling by a finger touch is determined by the control processor 100. Control processor 100 then determines whether the touch threshold has been crossed in step 148. If the touch threshoid has been crossed, the program transfers to step 150 to the touch locate mode. If the touch threshold has not been crossed, the program transfers to step 154 to determine whether the stylus has come into close proximity to the overlay 20 . In step 154, the mode multiplexer 116 disconnects the capacitance measurement device 128 and connects the 40 kilohertz oscillator driver 126 to the overlay 20 through the wire selection multiplexer 112. The mode multiplexer 116 also enables the gate 120 so that the received signals by the stylus 60 can be passed to the radiative pickup measurement device 122. In step 156, proximity sensing operations are carried out by the oscillator driver 126 driving a plurality of either the X conductors or the Y con-
ductors or both X and Y conductors in the overlay 20 and by the radiative pickup measurement device 122 determining whether the stylus 60 has received a sufficiently large magnitude signal to 108. The operation of tracking the consecutive positions of the stylus 60 with respect to the overlay 20 then takes place by sequentially updating the position of the stylus 60. If the magnitude of the
signals received by the stylus 60 diminishes as determined in step 166, the program then passes back to step 140 where the finger touch initiation and stylus proximity detection operations are alternately carried out.

A second embodiment of the invention is shown in Figs. 16-19 where, instead of locking out either the finger touch operation or the stylus detection operation when the other is being conducted, in the second embodiment both finger touch and stylus detection operations can be carried out simultaneously. This is achieved by multiplexing stylus detection and finger touch sensing in the proximity loop 200, multiplexing stylus location and finger touch sensing in the locate cycle 220, and multiplexing track stylus location detection and finger touch sensing in the tracking loop 240, as shown in the flow diagram of Fig. 16.

Fig. 16 shows the proximity loop 200 including steps 202-210 and Fig. 17 shows the timing diagram which includes the stylus proximity loop 200. As was previously mentioned, stylus proximity is determined by radiating a uniform 40 kilohertz signal from the overlay 20 and determining whether the stylus 60 is picking up a sufficiently large amplitude representation of that signal to pass a threshold value. This is represented by step 202 of the proximity loop 200 . In step 204, the control processor 100 determines if the threshold has been passed and if so, the control processor 100 sets a flag S1. Whether the stylus proximity threshold has been exceeded or not, the program then passes to step 206 where the finger touch sensing operation takes place, during which the capacitance measurement device 128 is sequentially connected to each of the 16 bus wires in the X bus 80 and each of the 16 bus wires in the Y bus 90 . The control processor 100 determines in step $2 Q 8$ whether the capacitance for any of the vertical array conductors X1-X112 or any of the horizontal Y conductors Y 1 Y112 is greater than a threshold value and if it is, then the adjacent pair of vertical array conductors and the adjacent pair of horizontal array conductors which have the highest measured capacitance, are identified by the control processor 100 and attributed as the location of a finger touch which is output by the $1 / O$ controller 106, as previously described. The program then passes to step 210 to test whether the flag S1 is on or off indicating whether the proximity threshold for stylus detection was passed in step 202. If S 1 is still off, then the program returns to step 202 to once again test for the proximity of the stylus. This operation for the stylus proximity loop 200 is shown in the timing diagram of Fig. 17. The control processor 100 can access a table stored in the RAM 102 and perform a table lookup to determine the correlation between the 16 bus wires in the X bus 80 and the cor-
responding vertical conductor adjacent pairs and also the 16 bus wires in the Y bus 90 and the corresponding horizontal adjacent conductor pairs, thereby speeding up the operation of finger touch location.

If step 202 detected that the stylus had come within the threshold proximity distance to the overlay 20, then the flag S1 would have been turned on and step 210 would have passed program control to the locate cycle 220 . This would involve the passage of the program to step 222 where the stylus location procedure, as described above, would be carried out for the vertical array conductors X1-X112 and then the program wouid pass to step 224 to perform a similar stylus location operation for the horizontal array conductors Y1-Y112. Here again, tables can be stored in the RAM 102 which correlate detected amplitude maximum by the stylus 60 with the position attributable to the stylus in the horizontal and vertical directions. In step 222, the control processor 100 will output the X location attributed to the stylus 60 and in step 224 the control processor 100 will output the Y location attributed to the stylus 60, in the same manner as was described above. The locate cycle 220 then passes control to step 226 where, once again, the finger touch sensing operation takes place in a manner similar to that described for step 206. If an increased capacitance for the array conductors is detected in step 226, then the control processor 100 in step 228, will output the coordinates for the finger touch through the I/O controller 106 to the I/O bus 108, as previously described for step 208. Note that both the stylus location and the finger touch location can be separately and substantially simultaneously output by the control processor 100 over the I/O bus 108 during the locate cycle 220. This can be seen for the representation of the stylus locate cycle 220 in Fig. 17.

The program then passes to the tracking loop 240 as shown in Fig. 16 and for which a timing diagram is shown in Fig. 17. Step 242 tracks the stylus X location, computing the offset distance in the X direction, followed by step 244 which tracks the stylus in a similar manner for the Y direction. In steps 242 and 244, the control processor 100 outputs over the $1 / O$ bus 108, the periodically updated horizontal and vertical position attributed to the stylus 60 with respect to the overlay 20 . The program passes to step 246 which conducts another finger touch sensing operation in a manner similar to that described for step 206. In step 246, if a finger touch is sensed, step 248 has the control processor 100 outputting the coordinates of the finger touch on the l/O bus 108, in a manner similar to that described for step 208. Note that during each cycle of the tracking loop 240, horizontal and vertical coordinates representing the position attrib-
uted to the stylus 60 and horizontal and vertical coordinates attributed to the position of the finger touch can both be output, substantially simultaneously, by the control processor 100 to the $1 / 0$ bus 108. In step 250, the control processor 100 determines whether the amplitude of the signal received by the stylus 60 is less than the threshold value for proximity detection. If the magnitude is greater than the threshold value, then the program passes to step 242 , continuing the tracking loop cycle. If the magnitude of the signal detected by the stylus 60 is less than the threshold value, then the program passes back to the proximity loop 200 and restarts step 202 for the remote proximity stylus sensing operation. This is shown for the stylus tracking loop 240 as depicted in the timing diagram of Fig. 17.

Thus it is seen that in the second embodiment of the invention, the system can be operated so as to provide the simultaneous detection of both the pickup stylus 60 and a finger touch. This is depicted in Fig. 19, which is a view of the display as seen through the overlay 20 , showing the simultaneous display of the touch cursor 270 whose location is produced by the host computer based upon the coordinates for the finger touch output over the 1/O bus 108 by the control processor 100. Also depicted in Fig. 19 is the display of the stylus cursor 260, whose image is produced by the host processor, based upon coordinates for the stylus which are output over the $1 / O$ bus 108 by the control processor 100.

Fig. 18 depicts an example memory organization for the RAM 102 in the second embodiment of the invention, where the RAM 102 is connected by the processor bus 110 to the control processor 100, as is seen in Fig. 9. The RAM 102 can be partitioned into a sequence control routine which is a sequence of stored program instructions which carries out the operation depicted in the flow diagram of Fig. 16. The stylus proximity routine, the stylus locate routine and the stylus tracking routine are each a sequence of stored program instructions for carrying out the respective operations of proximity detection, location and tracking of the stylus, as previously described. A finger locate routine is a sequence of stored program instructions to carry out the operation of locating the coordinates of a finger touch, as previously described. Multiplex control registers and measurement control registers can be provided in the RAM 102. Optionally, a cursor shape table can be included in the RAM 102 to define the shape of the touch cursor 270 and the stylus cursor 260, or alternately the function of the cursor shape table can be carried out in the host processor. The X bus wire capacitance value file and the Y bus wire capacitance value file will provide temporary storage for the measured values
of each of the respective 16 bus wires in the X bus 80 and the Y bus 90 during the finger touch sensing operations of steps 206, 226 and/or 246 of Fig. 16. After those stored capacitance values are pro- cessed by the control processor 100, the identity of the two bus wires in the X bus 80 and the two bus wires in the Y bus 90 corresponding to the maximum measured capacitance can be stored in the bus files partitioned in RAM 102 of Fig. 18. The finger X location table and the finger Y location table are also shown partitioned in the RAM 102. After the operation of the control processor 100 in conducting the table lookup for the X location and the Y location of the finger touch, the X and Y coordinates for the finger touch can be temporarily stored in the RAM 102 before being output over the $1 / O$ bus 108. Similarly, an X bus wire radiation value file and a Y bus wire radiation value file is provided for the temporary storage of measured values of radiation received by the stylus 60 corresponding to three bus wire pairs, as previously described. Bus file partitions, stylus X location and stylus Y location lookup tables, and array files are provided in the RAM 102 to facilitate the control processor 100 carrying out the stylus location and tracking operations. The final computed value for the X and Y coordinates of the stylus can then be temporarily stored in the RAM 102 before being output over the $1 / O$ bus 108, as previously described.

A utilization routine can also be included in a partition in the RAM 102, which consists of a sequence of stored program instructions for carrying out cooperative operations between the finger touch detection and stylus detection operations described above. For example, a utilization routine can be provided to identify when finger touches occur in a region vertically below the coordinates for stylus detection, with the finger touch being in an otherwise prohibited area. This may indicate that the user has rested the palm of his hand on the surface of the overlay 20 while positioning the stylus 60 at the desired point. The utilization routine can be selectively controlled to mask outputting the finger touch coordinates in such a situation, if desired by the operator.

The resulting combined finger touch and stylus detection system provides an enhanced man-machine interface, enabling either the sequential or simultaneous detection of both stylus position and finger touch, thereby increasing the range of applications for interactive input devices. The resulting invention has a reduced bus size and is adaptable for use with a variety of display types having both flat and convex display surfaces. The structure of the overlay permits low cost manufacture and long-term reliability.

Although specific embodiments of the invention have been disclosed, it will be understood by those having skill in the art that minor changes can be made to the form and details of the specific embodiments disclosed herein, without departing from the spirit and the scope of the invention.

Claims

1. A combined finger touch and stylus detection system for use on the viewing surface of a visual device, comprising:
an array of horizontal and vertical conductors arranged on the viewing surface of the visual display device, having an $1 / O$ terminal coupled thereto, for conducting electrical signals between said terminal and the vicinity of said viewing surface; a radiative pickup stylus, having an output terminal, for receiving electromagnetic signals radiated from said array;
a selection means having a switchable path connected to said I/O terminal of said array and having a control input, for connecting selected patterns of a plurality of said horizontal and vertical conductors to said switchable path in response to control signals applied to said control input;
a capacitance measuring means having an input coupled to said switchable path of said selection means, for measuring the capacitance of selected ones of said conductors in said array, in response to said control signals applied to said control inputs;
a radiative signal source having an output coupled to said switchable path of said selection means, for driving selected ones of said conductors in said array, in response to said control signals applied to said control input;
a radiative signal measuring means coupled to said radiative pickup stylus, for measuring said electromagnetic signals received by said stylus;
a control processor connected to said control input of said selection means, for executing a sequence of stored program instructions to sequentially output said control signals to said selection means; said control processor connected to said capacitance measuring means, for receiving measured capacitance values of said conductors when said selection means, in response to said control signals, has connected a first pattern of a plurality of said conductors in said array to said capacitance measuring means, to detect the location of a finger touch with respect to said viewing surface of said display device;
said control processor connected to said radiative signal measuring means, for receiving measured radiative signal values when said selection means, in response to said control signals, has connected
a second pattern of a plurality of said conductors in said array to said radiative signal source, to detect the location of said stylus with respect to said viewing surface of said display device;
whereby, both finger touch location and stylus location with respect to said viewing surface of said display, can be detected.
2. The apparatus of claim 1, which further comprises:
an overlay membrane upon which is mounted said array of horizontal and vertical conductors;
a horizontal bus mounted on said overlay for interconnecting said vertical conductors to said l/O terminal of said array;
said horizontal bus having a plurality of N bus wires and said vertical conductors being a plurality of no more than $\mathrm{N}(\mathrm{N}-1) / 2$ vertical conductors;
said plurality of vertical conductors being arranged with each adjacent conductor pair thereof being connected to a unique combination of two of said plurality of horizontal bus wires, the distance separating adjacent ones of said vertical conductors being approximately the width of a human finger tip;
said control processor receiving from said capacitance measuring means, said measured capacitance values of two adjacent ones of said vertical conductors which are juxtaposed with said human finger tip, thereby detecting the horizontal location of said finger tip with respect to said viewing surface of said display.
3. The apparatus of claim 2, which further comprises:
said plurality of vertical conductors being further arranged with each conductor of any group of a subplurality of adjacent conductors thereof being connected to a unique one of said N horizontal bus wires;
said control processor controlling said selection means to connect selected ones of said vertical conductors in said group to said radiative signal source;
said radiative pickup stylus, when proximate to said group, receiving electromagnetic signals radiated from said selected ones of said vertical conductors in said group, said received signals being distinguishable by said radiative signal measuring means over signals radiating from more distant ones of said vertical conductors located outside of said group in said array, thereby detecting the horizontal location of said stylus with respect to said viewing surface of said display.
4. The apparatus of claim 2 or 3 , which further comprises:
a vertical bus mounted on said overlay for interconnecting said horizontal conductors to said I/O terminal of said array;
said vertical bus having a plurality of N bus wires
and said horizontal conductors being a plurality of no more than $\mathrm{N}(\mathrm{N}-1) / 2$ horizontal conductors;
said plurality of horizontal conductors being arranged with each adjacent conductor pair thereof being connected to a unique combination of two of said plurality of vertical bus wires, the distance separating adjacent ones of said horizontal conductors being approximately the width of a human finger tip;
said control processor receiving from said capacitance measuring means, said measured capacitance values of two adjacent ones of said horizontal conductors which are juxtaposed with said human finger tip, thereby detecting the vertical location of said finger tip with respect to said viewing surface of said display.
5. The apparatus of claim 4, which further comprises:
said plurality of horizontal conductors being further arranged with each conductor of any group of a subplurality of adjacent conductors thereof being connected to a unique one of said N vertical bus wires;
said control processor controlling said selection means to connect selected ones of said horizontal conductors in said group to said radiative signal source;
said radiative pickup stylus, when proximate to said group, receiving electromagnetic signals radiated from said selected ones of said horizontal conductors in said group, said received signals being distinguishable by said radiated signal measuring means over signals radiating from more distant ones of said horizontal conductors located outside of said group in said array, thereby detecting the vertical location of said stylus with respect to said viewing surface of said display.
6. The apparatus of claim 5 , wherein $N=16$ and said subplurality is 8 .
7. The apparatus of claim 5 or 6 , which comprises:
said overlay membrane including an inner laminate and an outer laminate;
said inner laminate including an inner substrate consisting of a sheet of polyethylene terephthalate upon which is deposited said plurality of vertical conductors;
said plurality of vertical conductors being composed of a group consisting of indium tin oxide, gold and silver;
said inner laminate further including an insulation layer composed of vinyl acrylic polymer deposited over the surface of said vertical conductors, with a plurality of apertures therein selectively positioned over each of said vertical conductors;
said horizontal bus having said N bus wires composed of silver deposited on the surface of said insulation layer and penetrating through selected
ones of said apertures in said insulation layer to make electrical contact with selected ones of said vertical conductors;
said outer laminate including an outer substrate
5 consisting of a sheet of polyethylene terephthalate upon which is deposited said horizontal conductors and over which is deposited a second insulation layer including apertures therein exposing selected ones of said horizontal conductors, and further in-
10 cluding said vertical bus having said N bus wires thereof formed by silver deposited on said second insulation layer and penetrating selected ones of said apertures therein to make electrical contact with selected ones of said horizontal conductors;
15 said inner laminate and said outer laminate being joined by an adhesive material, forming a unitary flexible transparent membrane.
8. The apparatus of claim 5 or 6 , which further comprises:
20 said overlay membrane including an inner laminate and an outer laminate;
said inner laminate including an inner substrate consisting of a sheet of polyethylene terephthalate upon which is deposited said plurality of horizontal 25 conductors;
said plurality of horizontal conductors being composed of a group consisting of indium tin oxide, gold and silver;
said inner laminate further including an insulation
30 layer composed of vinyl acrylic polymer deposited over the surface of said horizontal conductors, with a plurality of apertures therein selectively positioned over each of said horizontal conductors;
said vertical bus having said N bus wires com-
35 posed of silver deposited on the surface of said insulation layer and penetrating through selected ones of said apertures in said insulation layer to make electrical contact with selected ones of said horizontal conductors;
40 said outer laminate including an outer substrate consisting of a sheet of polyethylene terephthalate upon which is deposited said vertical conductors and over which is deposited a second insulation layer including apertures therein exposing selected
45 ones of said vertical conductors, and further including said horizontal bus having said N bus wires thereof formed by silver deposited on said second insulation layer and penetrating selected ones of said apertures therein to make electrical contact with selected ones of said vertical conductors; said inner laminate and said outer laminate being joined by an adhesive material, forming a unitary flexible transparent membrane.
9. A method for detecting either finger touch or stylus location in an overlay membrane having horizontal conductors and vertical conductors selectively connected to a capacitance measuring device, a radiative source, and further including a
stylus pickup connected to a radiative signal measurement device for measuring the strength of electromagnetic signals radiated from the conductors on the overlay as picked up by the stylus, the steps comprising:
determining whether a finger touch threshold has been exceeded;
locating the finger touch if said touch.threshold is exceeded;
determining whether a stylus threshold is exceeded, if said touch threshold was determined not to have been exceeded;
locating the position of the stylus if said stylus threshold has been exceeded;
repeating said step of determining whether said touch threshold has been exceeded, if said stylus threshold has not been exceeded;
whereby both finger touch and stylus detection can be alternately carried out for said overlay membrane.
10. A method for simultaneously detecting both finger touch location and stylus location on an overlay membrane including an array of horizontal conductors and vertical conductors which are selectively connected to a capacitance measuring means, a signal source, and which includes a stylus connected to a radiative pickup measurement means for measuring the electromagnetic radiation emitted by said conductors in said overlay and picked up by said stylus; the steps comprising: cyclically detecting the remote proximity of the stylus from the overlay and detecting the finger touch on said overlay in a proximity loop;
passing control to a stylus location step to identify the coordinates for the location of said stylus with respect to said overlay, followed by sensing any possible finger touch to said overlay;
starting a tracking loop to cyclically update the coordinates for the location of said stylus with respect to said overlay and detecting any possible finger touch to said overlay; repeating said tracking and said finger touch sensing steps in said tracking loop until the detected magnitude of said signals picked up by said stylus become less than a threshold value; passing control to said proximity loop; whereby coordinates for both stylus location and finger touch location on said overlay can be output during said locate cycle and said tracking loop.

FIG. 4.

USING THE WIRE PAIR CONGEPT, THERE ARE THREE MEASUREMENTS THAT ARE NEEDED TO DETERMNE THE PEN'S HEIGHT AND POSTITION. THESE MEASUREMENTS ARE CALLED PO, PI, AND P2.

TO MEASURE PO, CONSIDER THE DRIVE PATTERN FOR A WIRE PAIR:

FIG. 5.
IF THE PEN WERE MOVED ACROSS THE TABLET ALONG THIS AXIS WITH THIS DRIVE PATTERN CONSTANT, THE MEASURED SIGNAL WOULD BE:

NOTE THAT WITHIN AND AROUND THE WIRE PAIR, THE PEN SIGNAL VARIES LINEARLY WITH POSITION. THIS LINEARITY IS THE BASIS FOR ACCURATE INTERPOLATION CALCULATIONS.

FIG. 6.
THE NEXT DATA, PI, IS FORMED BY SHIFTING THE PREVIOUS PO PLOT TO THE RIGHT BY ONE WIRE:

FIG. 7.
THE FINAL DATA, P2, IS THE INVERSE OF PO. THAT IS, ALL OF THE WIRES BEING DRIVEN FOR PO ARE GROUNDED FOR P2. SIMILARLY, THE GROUNDED WIRES FOR PO ARE DRIVEN FOR P2. AS A RESULT, THE SIGNAL PATTERN FOR P2 IS THE MIRROR IMAGE OF PO ABOUT THE WIRE PAIR MIDPOINT:

F/G. 8.
FINGER TOUCH DETECTION

FIG. 9.

FIG. 10.
FLOW DIAGRAM
FIRST EMBODIMENT

FIG. 12.
OVERLAY 20
(DISPLAY AREA I88)
SEC. $12-12^{\prime}$

FIG. 15.

HORIZONTAL BUS 80

FIG. $15 B$.
BUS LAYOUT

FIG. $15 C$.
BUS LAYOUT

\sim HORIZONTAL BUS 80

FIG. 16A.
FIG. 16.

FIG. 16A.
FIG. 168.
FIG. 160.

FIG. 18.
MEMORY ORGANIZATION SECOND EMBODIMENT

F/G. 19.
DISPLAY AS SEEN
THROUGH OVERLAY
SHOWING SIMIULTANEOUS FINGER TOUCH AND STYLUS DETEGTION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 December 2005 (01.12 .2005)

PCT
(10) International Publication Number WO 2005/114369 A3
(51) International Patent Classification ${ }^{7}$:

G06F 3/033
(21) International Application Number:

PCT/US2005/014364
(22) International Filing Date: 26 April 2005 (26.04.2005)
(25) Filing Language:

English
(26) Publication Language:

English
(30) Priority Data: 10/840,862

6 May 2004 (06.05.2004)
US
(71) Applicant (for all designated States except US): APPLE COMPUTER, INC. [US/US]; 1 Infinite Loop, Cupertino, California 95014 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): HOTELLING, Steve [US/US]; 1351 Hidden Mine Road, San Jose, California 95120 (US). STRICKON, Joshua, A. [US/US]; 333 Santana Row \#212, San Jose, California 95128 (US).

HUPPI, Brian, Q. [US/US]; 101\#2 28th Street, San Francisco, California 94131 (US).
(74) Agent: HOELLWARTH, Quin, C.; Beye Weaver \& Thomas, LLP, P. O. BOX 70250, Oakland, California 94612-0250 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available : $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
(54) Title: MULTIPOINT TOUCHSCREEN

A

(57) Abstract: A touch panel having a transparent capacitive sensing medium configured to detect multiple touches or near touches that occur at the same time and at distinct locations in the plane of the touch panel and to produce distinct signals representative of the location of the touches on the plane of the touch panel for each of the multiple touches is disclosed.

FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
(88) Date of publication of the international search report:

26 January 2006
26 January 2006

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Form PCT/ISA210 (second sheet) (Wanuary 2004)

INTERNATIONAL SEARCH REPORT

Patent documen cited in search report		$\begin{aligned} & \text { Publication } \\ & \text { date } \end{aligned}$		Patent family member(s)	$\begin{aligned} & \text { Publication } \\ & \text { date } \end{aligned}$
US 5825352	A	20-10-1998	NONE		
EP 0156593	A	02-10-1985	$\begin{aligned} & \text { JP } \\ & \text { KR } \\ & \text { MX } \end{aligned}$	$\begin{gathered} 60211529 \mathrm{~A} \\ 9202755 \mathrm{~B} 1 \\ 160425 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 23-10-1985 \\ & 02-04-1992 \\ & 22-02-1990 \end{aligned}$
US 4914624	A	03-04-1990	NONE		
US 5589856	A	31-12-1996	AT BR CA $C N$ $D E$ $D E$ EP $E S$ $J P$ JP TW	$\begin{array}{r} 202423 \mathrm{~T} \\ 9401625 \mathrm{~A} \\ 2120061 \mathrm{Al} \\ 1100215 \mathrm{~A} \\ 69427503 \mathrm{D} 1 \\ 69427503 \mathrm{~T} 2 \\ 0622723 \mathrm{~A} 2 \\ 2158872 \mathrm{~T} 3 \\ 2986047 \mathrm{~B} 2 \\ 7110742 \mathrm{~A} \\ 395539 \mathrm{Y} \end{array}$	$\begin{aligned} & 15-07-2001 \\ & 22-11-1994 \\ & 30-10-1994 \\ & 15-03-1995 \\ & 26-07-2001 \\ & 28-03-2002 \\ & 02-11-1994 \\ & 1609-2001 \\ & 06-12-1999 \\ & 25-04-1995 \\ & 21-06-2000 \end{aligned}$
EP 0250931	A	07-01-1988	$\begin{aligned} & \text { HK } \\ & \mathrm{JP} \\ & \mathrm{JP} \\ & \mathrm{JP} \\ & \mathrm{SG} \\ & \text { US } \end{aligned}$	$\begin{array}{r} 139694 \mathrm{~A} \\ 1754522 \mathrm{C} \\ 4048244 \mathrm{~B} \\ 63008818 \mathrm{~A} \\ 148194 \mathrm{G} \\ 4686332 \mathrm{~A} \end{array}$	$\begin{aligned} & 16-12-1994 \\ & 23-04-1993 \\ & 06-08-1992 \\ & 14-01-1988 \\ & 17-03-1995 \\ & 11-08-1987 \end{aligned}$

PATENT ABSTRACTS OF JAPAN

(11)Publication number :
59-214941
(43)Date of publication of application : 04.12.1984
(51)Int.Cl

G06F 3/033
(21)Application number : 58-087468
(22)Date of filing : $\quad 20.05 .1983$
(71)Applicant : TOSHIBA CORP
(72)Inventor : SAITO MITSUO AIKAWA TAKESHI MORI AKIO
(54) INPUTTING DEVIGE OF POSITION
(57)Abstract:

PURPOSE: To provide functions easily with a simple constitution by providing a device generating the coordinate value of a point indicated on a tablet plate with a means detecting the simultaneous indication of two points or more.

CONSTITUTION: The device generating the coordinate value of a point indicated on the tablet is provided with the means detecting that two points or more are simultaneously indicated. For instance, two electrode parts of a tablet 31 are connected to driving circuits 32,33 and detecting circuits 34,35 respectively and the coordinates or function of a point indicated by a tablet control part 36 on the basis of a signal between detecting lines detected by the detecting circuits 34,35 is transferred to a CPU 37. Subsequently, the CPU 37 prepares output information by using information from the tablet control part 36 and transfers the information to a display part 38 to display characters, patterns, etc. When two points are
 simultaneously depressed, the distance, direction, etc. of the depressed two points are divided into several functions and transferred to the CPU 37.

（4）日本国特䋑庁（ P ）
 公開特許公報（A）
 （19特䒜出原公開
 昭59－214941
 －

63絃區入力漖置	
（2）特	㬵 昭58－87468
（2）	頃 昭58（1983） 5 月20日
（e）明	省 初藤光男

多㧳 明 者 楖川侹

$606 \mathrm{~F}_{3 / 033}$
bint． $\mathrm{Cl}{ }^{8}$
（全 5 畐）
涌真気株式会社総舍研究所内
（3）発 明 者 森形夫
川崎市報小向東之町 1 束京之

（1）出 䫒 人 㧣式会社東茫

电買加曹口圷。

〔案明 自自的〕

〔奨明 の対果〕

 $4 x+12 y+2,4 x+12 y+4(x, y=0,1,2)$ 意

 ととがて李面。

枕出 \boldsymbol{y} お メと

 そこと林多的です。

特朋挌59－214441（9）

 な雷

查ととが可能を各。

 ーソか，44•・ザメ゙レジト极

－244－

PATENT ABSTRACTS OF JAPAN

(11)Publication number:
08-016307
(43)Date of publication of application : 19.01.1996
(51)Int.Cl.

G06F 3/03
(21)Application number : 06-171941
(22)Date of filing :
30.06.1994
(71)Applicant : PENTEL KK
(72)Inventor : KATABAMI KOICHIRO
(54) MULTI-POINT SIMULTANEOUS INPUT FINGER TOUCH COORDINATE DETECTOR
(57)Abstract:

PURPOSE: To detect out all the coordinates touched or approached by fingers by attenuating an AC signal passing through the intersection coordinate of X and Y direction electrode lines near the finger that touches or approaches the panel surface of a tablet.
CONSTITUTION: When there is the human finger just above the intersection part, fingers 4 (4-1 and 4-2) are electrically connected with the coordinate detector through a certain impedance because of stray capacity at a gap to the device. When there are the fingers 4 (4-1 and 4-2) just near the intersection part of both the electrode lines, potential difference is generated and an electric power line is generated as well between X direction electrode lines 2 (2-1
 and 2-2) and the fingers 4 (4-1 and 4-2). At such a time, when there is no finger, the electric power line generated out of the upper part of the X direction electrode lines 2 (2 1 and 2-2) is connected with Y direction electrode lines 3-1 to $3-\mathrm{m}$ but because of the fingers, most of it is connected with the fingers 4 (4-1 and 4-2) so that the number of electric power lines can be decreased. Therefore, the cross capacity between both the electrodes is decreased because of the approaching fingers.

（57）［爱行］

 する。

（2）

1

［i） 011

 なる。
（0） 021

 れているものみら台った。
『0 0 3 〕

［0）（1）A］

 るものどある。
［0） 95 〕

 いベルが鳰少家る。
【0006】

楆踪2－1～2－1，3－1～3－m綇部してある。

 3－1 3 3 以 K 位わる

もはとんど第しいいがいでする。ところか，指が过接し
 いいべりになる。

出でるちととを喜晆ちる。
【0011】増帽巽8は密流入力型でありをの出力をか

入方もできる。
［0013］
 は，従点不可能て栭った多点同畤入方を可能とし，格円

䋵分简
［符号の説明］
タブレット
X为向向柾综
Y方向恶哥缐
皀
AC绶号票生侸
6 X方向アナログマルジブレクサ
Y方向プナロクマルデブレクか
境幅哭
9 墦梪蚣80入力インビーダンス
10）ハドバスフィル！
1 1 AM軲诐器
18A／Dシングータ
3013 制䋡識
14 要会力镍

【図1】

【図2】

［図3］

【手続絧正言】
［徥出日］平成7年6月12日
【手緛緺正】】

【烳正対象㖽目名】靖冰頂】
【博正方法】案更
【铺正内容】

【手䋻䘠正2】

【㑲正対敦㑯目名】0002
【烳正方法】寗要
【博正内容】
［0002］

 れているものがあった。
【手酝福正3】
【鬴正対事鲐類名】明絀劳
【補正対自項目名】0003
【博正方法】窐更
【荗正内容】
［0003］

【解正詨象鲁類名】明細素

【楠正方怯】㛊更
【哺正内客】
［0004】

 レクサと，該ソ方向アナログデマルチブルクサのせ力を印向する」Kの以下の入力インビーダンスの营流入力型
名を，䚺かンドバスフィルふの出力を印加するAM柍倳

 るもあて南る。
【手綘編正5】
【俌正対象言類名】明細書
【陠正対氮項目名10006
【陠正方法】寗更
【博正内容】
【0006】

［手䚡䄍正6】
【㭪正対象言類名】明細素
【键正对㴶愐目名】0008
【铺正方法】蜜更
［補正内容］

 のずく还くにあると，X方閊高楥線2と指4との間に，

 る．
【手街被正7】
【埔正対象言類名】舞細崽
【哺正对象項目各】0009
【铺正方法】客更
【烳正内容】

 く信号もほとんと等しんなぐルである。ところが，指か
 りも䑐」しべルだなる。
【手待㒀正8】

【解正対象項目名】0010

【解正内容】

子を検岗でるスととを意昧ずる。
【手続禞正 9 〕

［献正対察愐目名］0 0 I 1

〔補正内容】

 チロダマルチブレクサ7により，選定座椤をタブレット 10 全画にゆなりスキャンし，各選定点（各交差容围点）每の信号しベルからすへての指タッチ座柦老給岃し出方する。
［手酤䄍正19】

［㭪正对呄碩目名］0012
［俌正方法］霉更
［律正内容】


```
[铺正対象击顂名]朋細意
\䈬正対象愐目名】0013
\铺证方法】挛更
[鬴正内容]
[0013]
```



```
释を老検出てをきる。
〔手䜌信正\2〕
\铺正对象旁類名】明緦索
```



```
\䋠正方法】変更
\補正内宫】
```



```「手葸誩正】1】
［铺正対象言類名］明細荌
【喊正対象碩目各】0013
【喊正方法】筬更
【烳正内容】
［0013］
```



```
は，従家不可的であった多点同時入方を可鳪とし，梅円
形にタブレット政面にタッジいた場合てももの長手方向
```



```
【铺正对象言類名】朋綥穼
```



```
【䋠正方法】変更
【補正内容】
```


力得分央
［符号か詋洵】
1 タブレット
2 入方向管柾绿

喆
5 AC邑号発生異
6 X方向アナロクジマルジンークサ
7 Y男刎アナログマルチブレクザ
8 增饾睘
9 増澏害8か入力インビータンス
10 が荡バスフィリ女
1 1 AM模烄器
12 A／Dコングート
13 制御部
14 営気力綄

METHOD AND APPARATUS FOR INPUTTING CONTROL SIGNAL

Publication number:	JP60211529 (A)	Also published as:
Publication date:	1985-10-23	R EP0156593 (A2)
Inventor(s):	AASAA BII KIYARORU; JIYON KEI KAASUTETSUDO	\% EP0156593 (A)
Applicant(s):	AMP INC	, MX160425 (A)
Classification:		KR920002755 (B1)
- international:	G06F3/02; G06F3/033; G06F3/041; G06F3/042; G06F3/048; G06K11/06; G06F3/02; G06F3/033; G06F3/041; G06F3/048; G06K11/06; (IPC1-7): G06F3/023; G06F3/03; G06K11/06	
- European:	G06F3/048A3	
Application number:	JP19850057630 19850322	
Priority number(s):	US19840592191 19840322	

Abstract not available for JP 60211529 (A) Abstract of corresponding document: EP 0156593 (A2)
A method and device for instituting mode changes (78) or precise relative cursor (13) positioning is taught. Briefly stated, an operator who is interfacing with a CRT (10) or display area (12) which has a touch input device (51) on it, such as a switch matrix or infrared light beam matrix, may institute a number of changes simply by inserting two or more noncontiguous styli $(18,18)$, such as two fingers, into the touch input area. This would, therefore, change the mode of information which is presented by the display to the operator (16) or the information presented to a computer or interface via the display area by the operator.; In the preferred embodiment, the insertion of two noncontiguous fingers would allow the cursor (13) to be moved in a speed and
 direction which is directly related to the speed and direction of a finger with the result that the cursor need not be disposed directly under the finger which might otherwise block an operator's view and thereby allow more precise positioning of the cursor.

Data supplied from the esp@cenet database — Worldwide

（18）日本国特䄱庁（JP）
 （11）特許出願公開

 （3）公 開特許公報（A）昭60－211529

 （3）公 開特許公報（A）昭60－211529}

（949）発明の名称 操作信号人力方法および装置

（29）特 監 昭60－57630
（23）願 昭60（1985）3月22日
传先権主張 331984年3月22日63米国（US）（13592191

（23）発 明 者	$\begin{aligned} & \text { アーサー ビー キヤ } \\ & \text { ロル } \end{aligned}$	アメリカ合衆国 テキサス州 78626 ショージタウン リッジウツド ドライフ 207
（22）発明 者	ジョン ケイカース	アメリカ合衆国 テキサス州78664 ラウントロック
	テッド	キークリツジ トライブ 1300
	アンプ インコーポレ	アメリカ合衆国 ベソシルバニア州 17105 ハリスパー
	ーテッド	グアイゼンハワーブルパード（番地なし）
（2）代 理 人	升理土 楖田 征史	外1名

明 相 寈
1．発期の名新
操作侸号入力方法およす装四
2．持許鞘求の範囲
（1）少なくとも2本の互いに献れた觻鈷18をタッ チ入力滴に捅入する第1のステッフを実问し，

次に，前記タッチ入力部に捅入された剪紀糔 を娭出する第2のステッブ参実行し，

しかる後に，的記第2のステッフにより所定矿
先立つて中央処理蒋固44以䢻定されたブログラ ムおよひノまたはモードを剧のブロクラムおよひ ノまたはモードに変換する第3のステッフな実行 すむ己とを特做とすむ煤作傮号入力方法。
入すふ第†のステッフな実行し，
 の移期速度およひノまたは移䐜方肉およひノまた
 しがる棬に，前挋第2のステシフにより㯝られ

ドを変換すむモード変換乎段を崘えてなることを

（5）少なくとも1本以上の朖紏1日を弾入され，こ

このタッチ入力手段およぜどテオディスブレィ 12 に絠紶され，該タッチ入力手段のいずれかの
 たは移動方向およひノむたは移洏距崔た鴙づいて前記ビデオディスフレィ上依表示されたカーソル を移動せしかるカーソルコントロールチ段10を

（6）少なくとも1本以上の觔紏18を括入され，こ

このタッチ入力手段就よせビデオディスフレィ
12 に控統され，マウスモードに設定されたとき，駭タッチ久力手四のいずれがの部かに揮入された前記触針の移動運度およびノまたは移㔊方向およ
 プレイ上に゙表示されたカーソルを移動するカーソ ルコントロール手段10と，

－3－

（12）前町タッチ入カ手段がメンフレーンスイッ チマトリクスであることを特桃とする特許門求の

（13）前纪蜰紏がオベレーかの㴔であることを特
力輁直。
（14）前記螌針かオベレータの指であることを特
力装筒。
（15）前記乡ッチ入力手段が赤外裉マトリクスフ

（16）前記タッチ入力手段がメンプレーンスイッ

記㫌針を核出する手段で市ることを特敩とする特

（18）的記タッチ入力手段が，音波を使用して能

 いて前䜹カーソルコントロール手段 10 を酎記マ ウスモードに設定するタシチ入力コントロール手
置。
（7）市挋タッチ入力手段が荡紀ビデオディスフレレイ に近接して配されているにとを特制とする特許請求の笵囲第5項挋載の操作信号入力耧闣。

18）前呎夕ッチ入力手段が別記ビデオディスプレイ

（9）術配タッチ入力手段が苏外線マトリクスフレー

（11）前記タッチスカ手段がメンフレーンスみッ

－ 4 －

（19）前記タッチ入力手段が，音波を㤢困して敷

（産漛上の利用分野）
本発明は，コンピュータ等のフロクラムモード の酸㭥あるいはティスフレィ上に表示されたか一 ソル位道の移動を指示する操作娮興の入力方法お よび装置に閉し，とくたタッチ入力漓に抨入した
 て入カせしめる操作唐号入力方法および蔜固に関 するもでぁふ。
（㧿来技術）
コンビコータあるかはワードフロセッサ等の分鈝てはビデオディスブレイにより入カデータ等を表示をせるものが多く加られているが，このビデ オディスフレィの使用に際して，常にマン・マジ ーン インタフェースか向上が周覩とされている。
洋来から情報要示あるい納カーソルの梏作はキ ーボードがらめ入力信号により行なわれてい当。 このようなキーボードを使用する方法は，キーボ ードがその他の仕車，列えばデータ入カ等には必要不可欠であって，この綪か持国に必す付处して

$$
-7-
$$

本発明は，上記間㮌を解决するためになをれた ものであり，多くのファンクション入カをビデオ ティスプレイに結して直接行なうことができ，こ のファンクション入力に盘ついてモード安猴ある

 る。

（発明の槵成）

本発明のうち第1の発明に倔る操作后号入力方法林，少なくとも2本の互いに蜼れた䖵針をタッ チ入力郡に揮入せしあ，次に，軳タッチ入力部に

 ひノコントローラに欵定されたフロタラムおよび ノまたはモードを他のフロクラムおよびノまたは

志た，本究明のうち第2の発朋に桃る揘作信号入力方法は，タッチ入力部のいずれかの部分に社跍を捅入せしめ，次に，談タッチ入力部に抨入さ

設けられているため経緺的に有利であるものの以下に示すょうな欠点を有するため問題がある。

すなわち，守一ボードを㨝作するオベレータは このシーボードとディスフレィに対し交恶に神経 を使わなければならす，一通の思考が中断さ扎吉 という間顆がある。とくに熹していますいオベレ ータにとつて桃めて大きな間頵である。

このような問頃を解訣するためた，酎近こどデ オディスブレイに対してォベレータが直緟作用し将るいくつかの手段が利用されている。これ5の手段をしては，㑬えばラィトベン，卢上型ァウス コントローラさらにはスイッチマトリクスや軍気光学マトリクス等のタッチ入力手段等が如られて いる。

しかしながら，上述した手眠にしても，モード か画面等を変換する際にはオベレータがティスフ レイをキーボードの両方に対して神柽を使わなけ れはならず，㨁然として上記間敛を解決するまで には到っていない。
（発明の目的）

－8－

㛟出により梅られた情報に基ついてビデオディス フレァ上のカーソルを移勤せしめることを特微と するものである。
法は，少なくとも2本の互いに維れた能紏を夕

 により得られた情報に基ついて，ビデオディスブ レイ上のカーソルを移䡃させるセードからマウス モードぁ変狣せしめることを特槛とするものであ あ。
偭は，少なくともす本の触鄙を捅入されて出力信费を発生す吕タッチ入力手段と，このタッチ入力
觟針の数に鋕つきコンビコータノコントローラの モードを変喚するモード察揁手段を䀧えてなふこ と変特槽とするもので南る。

本発明のう古第5の発明に䋆る操作信导入力椱

䁲は，少なくとも1本以上の肚跍を括入された夕
 このタッチ入力手段およびビデオディスフレたに接珫をれたカーソルコントロール手段を用いて，
 よせノまたは移動方向およひノまたは移别距㟙に無すき，ディスフレレ上に表示されたカーソルを移動せしめることを特蕞とするものである。
置は，少なくとも1本以上の蜰跍を抦入されたタ
 スモードに゙設定さ桃た䕎に，このタッチ入力乎段 およひビテォティスプレィに接㧼されたカーソル コントロール手段を用いて，嵒タッチ入力乎段に

 ィ上に雾示されたカーソルを移切せしめ，上眍 \＆ サチ入力手段に掹続されたタッチコントロール入力手段により，少なくとも2本の上䟕䖵魨の該

－ 11 －

オベレータ16が指1日で触れているタッチ入 カ部にはカーソルて3（图示されていない）が表示されている。本实施聞においては，このかッチ入力部は，画面の上郎と一方の即部をエミッタと し，画面 か下部と他方か脯部をディテクタともて形成される东外楾マトリクス（図示をれていない） を使用している。なぁ，本発明の実勴䣔としては
 クスを使用する必要出なく，甽え持テスデレイ部12上に形成をれるスイッチマトリクス，メン フレーンマトリクス，あるいは容园测定幣のセン サ，スイッチ，さらには音紴を使用する丵段等に よこて古よい。

さらに，もしオベレータ16が計弹器报用呮矿

 して㤦用し，醐面中の缐の移動あるいは画面の変更を行なうようにしてもあい。そして，触时18 の動作をさらに適切なものとしたい均合には，2本の能れた蜰針18，刚えば2本の指を䛧用する。

ントロール手段を該マウスをードに設定すること を特敬とするもかである。
（実 虒 例）
以下，本発明の实施開について図面を用いて詳拥に説明する。
図である。

第1菌にば，ディスフレイ部12を有するカー ソルコントロール手段（CRT） 10 がキーボー ド 14 に敃続されている様子が示されている。ま たホベレータ16が指でディスブレィ部12に蛙 れている檪子が示されている。ここで，ディスブ
 ずしも指である必要はなく，刚えば結筩，指示漛 あるいはその他頪㣿の用目を用いてもよか。また上記キーボード14はバーソナルコンビュータ等 に要常使用されているものであるが，本実麻傠に
 に対して指示を与えることによりこのキーホード 14 以㹉作を可能な良り少なくしょうとしている。

上眍タッチ入力新は多くの独立部材から形成を
 ソフトウェアを内蔵され，CRTあるいは䛧のコ シビュータとの通僙を行なう丸めのデコーダ图路 を斎えている。このタッチ入力部は前速したよう に䯚部入力を行なうためのものて古り本実旅伶で は赤外楾マトリクスを使用している。事た，才ヘ レータ16か，ディスプレィ部12上のいすれか
 クス＂モードに変換され，この解理の動く方向お よび速度に応じてカーソルが維動するように砐定 される。

この後，もし前のモードへの変換が要求された毗台には，上述した2本の解针18をタッチ入力
 か実行されるようになっている。さらに，傕鏣し てこのような方法を实行することにより，2本の触針18を用いてブロクラムモードの変揁を自由 に行なうことができむ。したがってフロクラムモ ードの順次変撸や2つロフロクラムモードめ間を

往復させることができる。
第2園杜本実施間の一部の回路を示すブロック图である。なお，このよろな回路は米回特訐出関
事。

第2图に示される回路はタェチ入カコントロー ルデバィスを称されるものであり，以下の談明た

カウンタ24はクロックバルス碩26からのク ロックバルスを入力され，この名クロックバルス の入力に阱ないなンクリメントされ，その合計ハ ル入教をカウントする。カウンタ24のマルチビ ット出力部はセレクタ28の入力部に接続されて おり，このセレタタ280出力部はLED20を耻惧し得るようにこのLED20の入力部に接続 されている。これによりクロックハルスの一定出力周期勻にLED20が笄光するようになってい る。同ークループ3つのLED20は䦖時に点四されるが，これ53つのLED20の電閣の位

$$
-15-
$$

が出力されていなければ光線す䋦㝘があったこと になる。

さらた，この爵报をれたクループのフォトティ テクタ22からの倍号はNORゲート34をかし てANDゲート36に入力されている。ANDゲ ート36の抽の入力都にはクロックバルス熦26 からの同期バスが入力されており，この周開ハ ルスは是正图路38により運柾されていた。この遅越峙間は，迸択されたクルーフのフォトティテ クタ22からの出力のサンフリンクが適句に行な えるような時間に臤定されている。ケート36は
 ネーフル状愬とされ，これほよりゲート回路40 が1ネーブル状俍とされ，カウンタ24のマルチ ビット出力かROMA2に入力される。このRO M42はゲート40からの光搝中断判即信皀をデ コードするとともにCPU44ヘ出力するコント ロール信会ケルーフを笔生するものてある。なお，战コントロール信号グクーフがGPU44に入力 される踣には，ANDゲート36からのストロー

 ティテクタ22はクルーフ化されてゲート30に接桡されており，このゲート30はカランタ24 か出力に周期してイネーフル犹照に殸室をれる。 もして，LED20の閭教がグルーフ每に行な力 れ，フォトティテクタ22がクルーフ㐌にィネー アル状㫰に路定されることにより，いかなる時に も1つのLED20か1つのフォトティテクタ2
 この様な方法により，ヒのLED20からの光楾 であるかを険出して1ス半も前ンクサイクル，サ なわちカウンタ24の1サイクルの中ての撃々の タイムスロット中においてをのLED20からの光峨であるがを検出することができる。

そして，もし通杓畐れたグルーブかフォトティ テクタ22からバルスが出力されていればきのタ イムスロットの閉に光線の站害かなかったことに なり，反対にイタイムスロットの問，上䟕退状放 れたグルーフのフォトディテクタ22からバルス

$$
-16-
$$

フハルスが憘皃淿46を俩してこのCPU44の ロード端子に入力される。このようたして繦釬1 8によって能れられた位㯰のアドレスがCPU4 4た入力される。

なお，第2图には図示されてい告いか，敩蔡に はメモリ等のCPU44のィンタフェース回路や ビデオディスブレイ蛒子が配される。
 コンビュータシステムに和して供給する手段をし て，種々の一般に知られたロシック回哹を様々な形を細み台わ甘たもの，あるいはスイッチマトリ クス等を用いてもよい。さらに，第2图の事施抅 においては12本の光總を使用しているが，必要 に応じてこの光絸の数を增加あるい枯諴少をせて もあか。

克た，CPU44はROM42や他のメモリに よって能针の數と位置に関する情報を与えられ， CRTやカーソルコントローラ等がらなるシステ ム50に出力唐号を送出する。以上談明した方法 によりカーソルの别林コントロールされまた多

くのコマンドが㧹られる。
第3漛がら第7図は，GPU44にようてアド レ入可能なPROM（図示されてかない）等のメ モリにストテされ，使用されるブログラムのフロ ーチャートを示すものである。たたし，このよう なソフトウェアに代えて通切なハードウエア等を捙用してもがわない。

フロクジム枓第3図に示すように＂アフソリュ ート＂モードへの入カステッフであるスタートス テッフ52により開始される。この＂アフソリュ ードモードは移奻する能岷をカーソルが追従す るもードてあり，胞針が指示する倣定の䎦対位間 にカーソルが移動するモードである。そしてこの フロクラムは，キーボードからの入カや上还した ようにディスフレィ部に娟れる操作密により＂ス タート＂モードに絷鰂きれる。ステッフ52の
＂スタート＂モードが開始をれると以下に速べる ような多くの状硍設定がなされる。これらの状懇 には，ステッッ54におかてなされる＂アフソリ ュート＂モードへの效換，ステップ56における
$-79-$

かなされる（72）。もし＂EXIT＂マークヘ の接蜰がなされなければ，＂NO＂状㖪となり （70B），タッチエラー分析のたかのステップ 73 K 移行守る。ステッフ73はタッチエラーを判別するためのステッフであり，光総の到達犾沉
 するためのステッフである。このステッフ73が

 ステッチ74cに移行するが，そうでない婸合に
 いては2本の触純18を用いた場台に＂マウス＂ モードへす電换がなされるようにしているが，必要に店じて3本以上の蜰針18を詙用することに よりそのょうな嵏換をなすようにしてもよいし，隐籵の形状としても一定のものに限定されるもの

 さらにきの触釬18が2本であることが顶誠され れば＂YES＂状照をなり＂カーソル位䚑詎定＂

第1リ成一トフラクの0战定，ステッフ58にお ける，カーソルボジションの初胙須定，ステッフ 60 たおける，＂夕ッチパネル木ヘレーション＂ もードのストリーム䟝定（これによりかーソルが施針の示す位置に移動する。），ステッフ62
 チ入力部から多に出た程合，その位直情報が無視 される。〉，およぜステッブ64における，タッ チ入力を受け村けるための＂ウエイティングモ一ドの战定が总むれる。この授，ステッフ66に おいて，本ブログラムから別フログラムへの変喚 をオベレータが望んでいるか杏かの機出結果をデ ィスフレレイ酣に対して貿間する。本実施例におい ては，オベレータが面面あるかはスクリーン上に零示された＂EXJT＂あるい虾＂END＂マー クロ䂙分に解れることにより実行され，これたょ りCRTは他のフロクラシングモードに変揁され る。このようにして，露示された＂EX1T＂マ ークへの接加かなされると＂TRUE＂あるかは ＂YES＂状昆となり，㰠のブロクラムヘの移行

モードへの篮換 78 がなされる。これた対し，受
台には入力掅報は艧視される。

そして上速したように，2本の触㝄18が存在
 フログラム紂現在のシステム臤定モードを判別す るステッフ日ロに移行する。したがってオベレー タがモードの変換を希䙵する谒合には，オペレー夕は2本の能跑をタッチ入力部に位風せしめるよ
型の楊作をす石措台には，上記2本の制林のうち一本をタッチ入力部から毗すようにする。

スデッフ80は上述したように現在の恄定モー ドを判別するためのステッフであり，もしシステ ムが触針の移動に伴なって蜰跱の絶対位周にカー ソルが移助する＂アプリリュート＂モードに設足 されているならば＂YES＂状愳とされる。しか しなからシステムがこれまでた＂マウス＂モード
 これにより，すでに＂アフソリュート＂モードに

かっており，＂YES＂犹照とされた場合に姝， フロクラムがステップ84に移行してシステムが ＂マウス＂モードに設定される。これに対し，こ れまどツマワス＂モードあるがきの他のモー
 フ82において＂アプソリ亡ート＂モードに設定 される。このようにしてステップロロは，1つの キードと撕のモード間を切り珰えるトタルスィッ チの杸园を果たす。

次に，ステップ82において＂フフソリュート＂

 この推ブログラムはステップ68Aを介してタッ
㞍る。

これに対し，ステップ84において＂マウス＂ もードに䛊定された挶台，フロクラム如命合 88 に穏行し，これにより第1リボートフラグが0に設定されて啫照する情報か未た入力されていない ことを示す犾魔にされる。この後，プロゲラムは

$$
-23-
$$

ッフ94に栘仃し，その後ステップ68Aに移行 する。これによりカーソル枯服针 18 の紹対位置 を追蜑するように移䣦する。

しがしながら，設定モードがステッフ76にお いて＂アフソリュート＂モードでないならは， ＂NO＂犾热となり，システムはステップ96に移行し第1リ术ートフラグが○そあるが否かを判別する。そして，この第1リボートクラザか0で ある場合には，＂YES＂状照となり，システム はステップ 102 に程行し，このステッフ102 において第1リボートフラグイアが政定され，こ れにより朔針の位圈である参照点が枵定される。次にシステムはステップ106に移行し，上䟕番閣点が新たな能墇点に変更される。そしてシステ
 する。もし，ステップ96に打いて，第1リ井一 トフラクがつでないならばシステムはステッフ9 8 に移行し，タッチ入力がタッチ入力部の外倳に あるが否がが調べられる。ちしこか結果＂TRU E＂が＂YES＂の犹腎であれば虽针は動いてい

ステッフ90に杆し，出力情報の㕝付可能犹能 に帏定される。この後フロクラムはステッフ68 Aを介して，＂特拱＂モートであるステッフ64 に㞔る。

このようにしてルーブが形成され，再す2本の触䖞18がタッチ入力部に住固せしめられるまで ＂アブソリュート＂モードあるいは＂マウス＂モ ードのいずれかのモード占保持される。

なす，いがなる設定壬ードゼあるかにかかわら すこの後システムはステップ64，66からステ ッフ73に移行する。そして，もしタッチエラー かなければシステムはステッフ76に移行する。 もし，款定モードが＂アブソリュート＂モードで あるとをは＂YES＂状䍐上なりシステムはステ ッフ92に移行きる。そして，もし被針1日がタ ッチ入力部の外郡にあるならばYES＂状照を なりシステムはステッフ68 AK移打する。これ た的し，腑趴18がタッチ入力部内にあるな5ば ＂NO＂犾照となり，システムは，カーソル位㯰 な缕針指示㳍多（X，ソ）上合わせるためのステ

－ 24 －

ないことが分かり，この後システムはステッフ1 04 K䜌行し，尊1リボートフラサが0に部定さ れ，㰡にシステムは68Aを升してステップ64
跱が剖れれば範田外情報はステッフ104からス テッフ64に送出される。これに対し，タッチ入力部から触紏が監れなければ範囲外惜報は形成さ れず＂NO＂状伥とむれ，システムは99Dなか してステップ108に移行し，ステップ108に おいて，1つ前のタッチ位置×が䉼たなタッチ位四入に等しいか否がが鳪べられる。すなわた，解跱のX篻圆が留間される。もしこの入位置が変化 していなければ，＂YES＂状態とされ，システ ムはスデップ710に移行する。このステップ1

 ーソルのX座操を窐更せず前の状想に保持ずもも のて，この梅システムは丁口○EなかしてY座標 についての判断入テッブに移行する。
もし, ステッフ108において1つ解のタッチ

位膡Xが新たなタッチ位四入と等しくないならば，
 したことを示す。この後システムはステッフ11 2に移行し，このステッブ112にあいて上記䩤
位以下であると検出されれは，＂No＂状憩とな り，システムはステッフ116に穏析する。この ステッフ116は觔たなカーソル兩䫅入をカレン トカーソル座緦入として钤定サるものである。こ の涊システムは100Eを介してY唯搞の判断ス テッフに移行する。なお，上述する2単位は変更
 は指の若干のふれ等によってはカーソルか固定さ
 X座票の移㽞が2単位以上であれば，＂YES＂然照をされ，システムはステッブ114に梏行し， このステッフ114においてもの移䣱賭が2里位
 も大きいのかが判断される。もし入方向の㖟動単

$$
-27-
$$

ーソルX坐榞が䉼たなカーソルX坐厝に80を加

 いては，CRT上の網方向の単位数か80に設定
物を80以上市るいは以下とすることは一向にを し つかえない。
また，ステッフ122において斬たなカーソル X座想が○以下でないならは，＂NO＂状臨とさ

 に移行する。そして，もし80より大きはれは， ＂YES＂状照とをれ，システムはステッフ12 8に移し，このステッフ128において，新た
 0娍真した铺に変鮧される。このとを，前透した例と周㤨にしてカーソルがスクリーンの右䣘から スクリーンのを䖷までラッファラウンドされる。 ステッフ124およびステッフ128が絡了する とシスデムは100Eを介してステッフ130に

され，システムはステッブ120に移村する。こ かステッフ120は新たなカーソルメ坐標をカレ ントカーソル X 麻標と X 座槓の変化䫆を沺えた座煖にするステッフで，この慻システムは100E を分してY座规を判断をるステッフに新行する。 これた対し，もし×圧噯の移䣦単位臨が単位か 56单位の開にあるならは，＂YES＂犾菂をさ れ，システムはステッフ118に㱛行する。この ステッブ118は折たなカーソルX座妳を，カレ ントカーソルメ坐栱に，X座沝の変比直から1引 いた侑を加えた座想にするステッフで，この後シ ステムはステッフ122に移行する。このステッ フ122においては，新たなカーソル座㮁が 0 は下であるか杏かが判別され，ラッフアラクンド䧆能か開始をれる。すなわち，もしカーソルが例え はスクリーンの左䖷にあり，蜰紏をさらにな庄方向 に移䣦したいならは，カーソルは一自㫫するよう にしてスクリーンの右蝡に麦示される。さらに，新たな人㛗䝤が 0 以下である在5心，＂YES＂䟮態とされ，ステップ24において，影たな力

$$
\text { - } 28 \text { - }
$$

移行する。なお，ステップ 12 6においで断たな カーソルX座㟽か8O以下であれば，＂NO＂犾䑁とさの，システムは即ちに100Eを介してス テッフ 130 に稃行する。

ステップ30は，1つ前のタッチ位臨Yが䄬 たなタッチ住羂ソに等しいが否かを判別するステ ッフて苦も，このステッフ130以下第7図に示 す一連のステッフは第6図に示す入座栕锰作，す なわちカーソルラッフアラウンド，あるいは湈紏 の移動备の換出等と略同様の推作をY座温につい て行なうステッフてある。ただし，第7图に示す フローチャートにおいては100Eへの格行はな されす，その化わりステッフ152ヘの移行かな される。このステップ 152 はカーソル住比を新
定するステッフである。この棌システムはステッ フ154に移行し，このステッブ 154 においで，体紏が示を位留を変更あるため，1つ前のタッチ位固X，Yか新たなタッチ住四X，Yに裹悗され る。この細，システムは68Aを分してステッフ

64 に戻

この状照において，オベレータがよ述した指あ まいは触針を用いた方陆を使用せすにカーソルを
入力耶に2本の指を捅入し，これにより＂アフソ リュート＂モード南るいは＂ストリーム＂モード から＂マウス＂モードへ葆換せしめ，この後され の据を使用してカーソルを移動させふ。＂マゥス＂ モードに゙設定されるとオベレータがタッチ入力部 のどの部分に捅入されるかと朴閒惊なく，その移
 る。この後，オベレータか異なるモードへの変鮧 を実行したい楜台，あるいは＂アプソリュート＂ モードへ戻したい据台には，再度タッチ入力部に 2本の指を捅入し，＂マウス＂モードに敌定する め剪において行なった垛作と開模の操作を仃なえ ばよい。

な束，上臤実施厥に招いてはCRTを使用して いるか，これに代えてフラットバネルディスフレレ て，あるいは従来から絤用されているテレビスク

$$
-31-
$$

みッチマトリクス，容量や䊅䣦を模出する音波 センサ等を使用してもよく，ごらすが相を便用
 とができる。
（発明 Φ 効果）
以上蹭明したようた本発明の搌作信号入力方法 あよび结置によれは，卓上型マウスやキーボード等の本体から相れて能をれる手段を使用せすにモ ード发换あるいは正理な力ーソル程動を行なうこ とがきるから，夺ベレータはディステレ」に対 して烸䑾を策中することができ，一速の思考を中断されることなく作爰を行なうことがぜきる。

を5に，タッチ入力手段として高估なハードけ ェアを使用していないから蛙路的な而からも島れ ている。

4．図面の樽単盆駺明

第1図は本発明に保る権作㢄号入力装明をオベ レータが使用している愫子を示す図，第2図洔本
 ている回路を示すフロック図，第3図加ら第7図

リン等に使用してもよい。また，タッチ入力部は ディスフレイ加ら效れた俘直に西されてもよい。 さらた，絀針の本教に疬じて各モード変換を行な わしめるようにしてもよい。すなわち，搠え比， 2本の破針を使用した㚿合には第10モードから第2のモードへの変検をなをしあるようにし，3本の触㖕を使用した振台には第1のモードから第 3めモードへな殠換をなさしめるようにする。 さ らに，都鄙の動きに対してカーソルの動きが比朋 サるように，あるいは非線形性空有するように臤定さ扎てもよい。明えは胜时の䣦きか大てカーソ
跍よりも进くあるいは逪く勏くようにしてもよい。 むらに，このカーソルがその設定モード，あるい は使用されているブログラムを示す文李や敬字 （网えばMOUSEに対してM，Absolut eに対してA等）てあぁってもよい。
苳四のタッチスカ手段としては，上述した手段以外に棰々のものを使用することができ，例そはス

$$
-32-
$$

 チャードてある。

猜周暗60－211529（12）

	Application Number	10/840,862
TRANSMMTAL	Filing Date	May 6, 2004
FORM	First Named Inventor	Steve P. HOTELLING
	Art Unit	2629
(to be used for all correspondence after initial	Examiner Name	K. T. Nguyen
Toial Number of Pages in This Submission	Attomey Docket Number	106842009000

ENCLOSURES (Check all that apply)				
Fee Transmitial Form\square Fee AttachedAmendment/Reply\square After Final\square Affidavits/declaration(s)Extension of Time RequestExpress Abandonment RequestInformation Disclosure StatementCertified Copy of Priority Document(s)Reply to Missing Parts/ Incomplete Application\square Reply to Missing Parts under 37 CFR 1.52 or 1.53		\square Drawin \square Licens \square Peitition \square Peititio \square Provis \square Chang \square Termin \square Requ $\square \mathrm{CD}, \mathrm{N}$ \square	n Address CD	After Allowance Communication to TC Appeal Communication to Board of Appeals and Interferences Appeal Communication to TC (Appeal Notice, Brief, Reply Brief) Proprietary Information Status Letter Other Enclosure(s) (please identify below): copies of eight (8) foreign patent publications copy of one (1) non-patent literature document
		Remarks		
SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT				
Signature Printed name	$A-N$			
	Glenn M. Kubota			
Date	December 19, 2008		Reg. No.	44,197

Via EFS Web

Client Ref.: P3266US1

Electronic Acknowledgement Receipt	
EFS ID:	4497413
Application Number:	10840862
International Application Number:	
Confirmation Number:	8470
Title of Invention:	Multipoint touchscreen
First Named Inventor/Applicant Name:	Steve Hotelling
Customer Number:	69753
Filer:	Glen Masashi Kubota/Beverly Carter
Filer Authorized By:	Glen Masashi Kubota
Attorney Docket Number:	106842009000
Receipt Date:	19-DEC-2008
Filing Date:	06-MAY-2004
Time Stamp:	20:45:35
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 180$
RAM confirmation Number	6952
Deposit Account	031952
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)	

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		IDSdocuments.pdf	102359	yes	4
			0698feae 1684ef27e8ba7db92d7e4e809a7		
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Miscellaneous Incoming Letter		1	1	
	Information Disclosure Statement Letter		2	3	
	Information Disclosure Statement (IDS) Filed (SB/08)		4	4	
Warnings:					
Information:					
2	Foreign Reference	EP0156593A2.pdf	993669	no	24
Warnings:					
Information:					
3	Foreign Reference	EP0250931A2.pdf	1829088	no	33
			290c6a48cb4e0802f9ffe2e8bbba3a939551		
Warnings:					
Information:					
4	NPL Documents	InternationalSearchReportfor90 40.pdf	158111	no	5
			4baabf33 1eae97a9f0927fec5ec9a1bc94bb 89 e 0		
Warnings:					
Information:					
5	Foreign Reference	JP08016307.pdf	267860	no	7
			бf368945f0ббе57df252a1бее49ab8аа76ба $239 e$		
Warnings:					
Information:					
6	Foreign Reference	JP59214941.pdf	179641	no	6
			615245a58a7744076fa6afch5ead2119169d		
Warnings:					
Information:					
7	Foreign Reference	JP60211529.pdf	416481	no	14

Electronic Patent Application Fee Transmittal

Application Number:	10840862			
Filing Date:	06-May-2004			
Title of Invention:	Multipoint touchscreen			
First Named Inventor/Applicant Name:	Steve Hotelling			
Filer:	Glen Masashi Kubota/Beverly Carter			
Attorney Docket Number:	106842009000			
Filed as Large Entity				
Utility under 35 USC 111 (a) Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Extension-of-Time:				

| Description | Fee Code | Quantity | AmountSub-Total in
 USD(\$) | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Miscellaneous: | 1806 | 1 | 180 | 180 |
| Submission- Information Disclosure Stmt | Total in USD (\$) | $\mathbf{1 8 0}$ | | |

PATENT ABSTRACTS OF JAPAN

(11)Publication number :

2003-029899
(43)Date of publication of application : 31.01.2003

(51)Int.Cl.	G06F G06F H01H H03K H04M H04M G06F	$\begin{gathered} 3 / 02 \\ 3 / 033 \\ 36 / 00 \\ 17 / 955 \\ 1 / 02 \\ 1 / 23 \\ 3 / 03 \end{gathered}$

(21)Application number : 2001-217279
(22)Date of filing :
17.07.2001
(71)Applicant: SONY CORP
(72)Inventor: REKIMOTO JIYUNICHI
(54) USER INPUT DEVICE
(57)Abstract:

PROBLEM TO BE SOLVED: To provide a user input device suitable for a portable terminal such as a portable telephone set or a portable audio player.
SOLUTION: An AC signal which is about several 100 kHz is applied to a transmission electrode side, and the AC signal is transmitted through the body of a user wearing a user input device, and emitting from a tip of the finger pointed by the user to each reception electrode. Then, the reception signal is detected so that which reception electrode is close to the tip of the finger can be recognized. The space between the transmission electrode and the reception electrode is sealed by an insulating layer, and when a third person other than the user himself or herself operates this user input device, any signal is not detected, and any user input is not achieved. Thus, it is possible to prevent the occurrence of any misoperation or illegal operation by a third person other than the user.

（57）［要然］

韭若したコーサか氟体を経出しで，ニーザか指示した指

不正採作を排忶ずるととができる。

［特纾請永め菏囲］
力解寘で南って

 ξ
 をを俌え。

指先などのコーザの昜体か酮記家眼の上から接近したと

 カ紿余であって。

 ε.
 を睛え，

 るとともに，

 は並刑的となる果2のコンデンサ等何回皆加形成きれ T．

入力続䒼。

 されるをれたれのコンデンサの詒要签垩を続台ずること

入力詰䕎であって，

受柾層と，
替信する送信器を，
 とを情え，

3

［i） 9 1】
【芫明

［0003］

能化きれた訉用ふイプのユコピッー安・システムカ繝発

 いた。

 （Charactor User Interface）」から，クラフィック。 スースのスーザ入力在宗珸した「GU！（Graphcal Us

4
 こに用意きれる。
【0005］GUIが掁供きれたずス多トッブ上です。

 ューザば，ディスブいイ・スクリーシ上のデログラム。
対してマウスなどを周いさを四面上の責示オプラェシトに

 ニュー・ハーかツール・ボックスなざ，各楦の機能すな

しからしたから，トーホード务ーウスを其鳪

入れ゙話なに。

〔3 ！！1 ］

 あたを帖南る。

5

【0013］

入方絓皃で南る。

 ョン《利用するととがでる。

 ちたくらとにより，ヨーザと特定の部位を触れるなどの

 る。

－ 6

 どめ入力位道を絤出らるとをができる。

 る。
40 【0024】また，プロもっがは，こーお゙の指先などの

 の位富を楧出ずること加できる。

 いーションに到用なるとをが象る。

7
 ける画生，一硅信止，早运りなど）かテー多を割り当て

 \｛ずなわちこマンドかデーダ\}な剖り当てるこもができ る。

一ザ指先からも絙作可能で市る。じくがって，南る！

 る。

 ザ入力尘匱である。

 を夏信きること腺できる。

 ョンな利周することがどをる。

【0 3 38】

の実施阿を詳解する。

力掁怍を行ちとをあ可能に宣るもかてある。コーザ入力

気きれる。

 13B，13C，‥上を流れる交溹要流を時分㲅と交豆

 3A． $13 \mathrm{~B}, ~ 13 \mathrm{C}$ ，‥をの間には，コンデンサC2

 る。
指先くか間で形成きれた援想コンデンサー，を价して，

流を敳信をるとと为できる。

 0てデシタル形式に要緮する。

 らよ，れば，2次元的なコーザ入力を行ろことがとをる。

槁于を気している。

待開2003－29899

10

 A． $13 \mathrm{~B}, 13 \mathrm{C}$ ，…办ら得られる俉号栬度を模式的 に示している。ブロセッサ16は，同図に示ざちらな信

 コーザは，志盰に対して触れたり，幏ったりすることに

 くきる。

 ともかで怘る。
【0054】必た，図19に开すよちに，シャ夕ットの

