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computing a scaling velocity from a change in a distance between the innermost

and outermost fingers (Fig. 4c and Col. 5, 41-58 and Col. 6, lines 6-19);

supplementing the computed scaling velocity with a measure of scaling velocity

selective for symmetric scaling about a fixed point between a thumb and other fingers of

the given hand (Col. 8, line 65-Col. 9, line 36); and

transmitting the computed, supplemented scaling velocity as a control signal to

an electronic or electromechanical device (Col. 6, lines 6-19).

As to Claim 21, Yasutake teaches computing a rotational velocity from a change

in angle between the innermost and outermost fingers (Fig. 4b and Col. 4, line 4-23,

Col. 5, lines 5-23 and Col. 5, line 59-Col. 6, line 5);

supplementing the computed rotational velocity with a measure of rotational

velocity selective for symmetric rotation about a fixed point between the thumb and

other fingers of the given hand (Col. 8, line 65-Col. 9, line 36); and

transmitting the computed rotational velocity as a control signal to an electronic

or electromechanical device (Fig. 4b and Col. 4, line 4-23, Col. 5, lines 5-23 and Col.

5, line 59-Col. 6, line 5).

As to Claims 22, Yasutake teaches computing a translation weighting for each

finger (Fig. 4a, note that the translation weighting is the same for each contact);

computing a translational velocity for each finger (Fig. 4a and Col. 4, lines 4-23

and Col. 5, lines 5-25 and 41-58);
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computing a translational velocity average from the computed translational

velocity components and the computed translation weightings (Fig. 4a and Col. 4, lines

4-23 and Col. 5, lines 5-25 and 41-58); and

transmitting the computed, supplemented translational velocity average as a

control signal to an electronic or electromechanical device (Fig. 4a and Col. 4, lines 4-

23 and Col. 5, lines 5-25 and 41-58).

As to Claims 26, Yasutake teaches computing a translation weighting for each

finger (Fig. 4a, note that the translation weighting is the same for each contact);

computing a translational velocity for each finger (Fig. 4a and Col. 4, lines 4-23

and Col. 5, lines 5-25 and 41-58);

computing a translational velocity average from the computed translational

velocities and the computed translation weightings (Fig. 4a and Col. 4, lines 4-23 and

Col. 5, lines 5-25 and 41-58); and

transmitting the computed, supplemented translational velocity average as a

control signal to an electronic or electromechanical device (Fig. 4a and Col. 4, lines 4-

23 and Col. 5, lines 5-25 and 41-58).

As to Claim 30, Yasutake teaches method for extracting multiple degrees of

freedom of hand motion from successive proximity images representing successive

scans of a plurality of proximity sensors of a multi-touch surface, the method

comprising:
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tracking, through successive proximity images, a plurality of contacts associated

with a plurality of fingers (Col. 2, lines 15-45, Col. 3, lines 40-53 and Col. 4, lines 4-

23);

finding an innermost finger and an outermost finger for a given hand (See Figs.

1, 2 and 4a-4c);

computing a rotational velocity from a change in angle between the innermost

and outermost fingers (Fig. 4b and Col. 4, line 4-23, Col. 5, lines 5-23 and Col. 5, line

59-Col. 6, line 5);

supplementing the computed rotational velocity with a measure of rotational

velocity selective for symmetric rotation about a fixed point between a thumb and other

fingers of the given hand (Col. 8, line 65-Col. 9, line 36);

transmitting the computed, supplemented rotational velocity as a control signal to

an electronic or electromechanical device (Fig. 4b and Col. 4, line 4-23, Col. 5, lines

5-23 and Col. 5, line 59-Col. 6, line 5).

As to Claim 31, Yasutake teaches computing a translation weighting for each

finger (Fig. 4a, note that the translation weighting is the same for each contact);

computing a translational velocity for each finger (Fig. 4a and Col. 4, lines 4-23

and Col. 5, lines 5-25 and 41-58);

computing a translational velocity average from the computed translational

velocities and the computed translation weightings (Fig. 4a and Col. 4, lines 4-23 and

Col. 5, lines 5-25 and 41-58); and
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transmitting the computed, supplemental translational velocity average as a

control signal to an electronic or electromechanical device (Fig. 4a and Col. 4, lines 4-

23 and Col. 5, lines 5-25 and 41-58).

As to Claim 35, Yasutake teaches a method for extracting multiple degrees of

freedom of hand motion from successive proximity images representing successive

scans of a plurality of proximity sensors of a multi-touch surface, the method

comprising:

tracking, through successive proximity images, a plurality of contacts associated

with a plurality of fingers (Col. 2, lines 15-45, Col. 3, lines 40-53 and Col. 4, lines 4-

23);

computing a translation weighting for each finger (Fig. 4a, note that the

translation weighting is the same for each contact);

computing a translational velocity for each finger (Fig. 4a and Col. 4, lines 4-23

and Col. 5, lines 5-25 and 41-58);

computing a translational velocity average from the computed translational

velocities and the computed translation weightings (Fig. 4a and Col. 4, lines 4-23 and

Col. 5, lines 5-25 and 41-58); and

transmitting the computed, supplemented translational velocity average as a

control signal to an electronic or electromechanical device (Fig. 4a and Col. 4, lines 4-

23 and Col. 5, lines 5-25 and 41-58).
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Allowable Subject Matter

3. Claims 4-6, 8-10, 13-15, 17-19, 23-25, 27-29, 32-34 and 36-38 would be

allowable if rewritten to overcome the rejection(s) under 35 U.S.C. 112, 2nd paragraph,

set forth in this Office action and to include all of the limitations of the base claim and

any intervening claims.

4. The following is a statement of reasons for the indication of allowable subject

matter: As to Claims 4, 8, 13, 17, 23, 27, 32 and 36, the prior art fails to teach or

suggest, either alone or in combination that "the computed translation weightings of

innermost and outermost fingers are constant and computed translation weightings of

central fingers are inversely related to polar component speeds so as to prevent vertical

translation bias while performing hand scaling and rotation but otherwise include all

available fingers in the computed translational velocity average."
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Inquiries

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to RODNEY AMADIZ whose telephone number is

(571)272-7762. The examiner can normally be reached on M-F 8:30-5:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Sumati Lefkowitz can be reached on (571) 272-3638. The fax phone

number for the organization where this application or proceeding is assigned is 571-

273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on access to the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automated information

system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Sumati Lefkowitz/
Supervisory Patent Examiner, Art Unit 2629

IR. A./
Examiner, Art Unit 2629
9/28/09
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DETAILED ACTION

Specification

1. The title of the invention is not descriptive. A new title is required that is clearly

indicative of the invention to which the claims are directed.

Claim Objections

2. The numbering of claims is not in accordance with 37 CFR 1.126.

Misnumbered claims 20-24 have been renumbered 19-23.

Claim Rejections - 35 USC § 101

3. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of
matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the
conditions and requirements of this title.

Claims 1-17 are rejected under 35 U.S.C. 101 as not falling within one

of the four statutory categories of invention. Based on Supreme Court

precedent and recent Federal Circuit decisions, a statutory "process" under 35

U.S.C. 101 must (1) be tied to another statutory category (such as a particular

apparatus), or (2) transform underlying subject matter (such as an article or

material) to a different state or thing. While the instant claim recites a series

of steps or acts to be performed, the claim neither transforms underlying

subject matter nor is positively tied to another statutory category that

accomplishes the claimed method steps, and therefore does not qualify as a

APLNDC00021919



Application/Control Number: 11/559,736 Page 3

Art Unit: 2629

statutory process.

Claims 1 and 2 do not explicitly recite a structural tie to perform the

steps claimed. The Applicant has provided no explicit and deliberate

definitions of "generating", "finding", "paring" and "predicting" to limit the steps

to the electronic form and the claim

language itself is sufficiently broad to read on a user simply mentally

generating one or more predicted paths, mentally finding the closest predicted

path, mentally finding the closest surface contact having a centroid closest to

the predicted path and mentally pairing each surface contact with its closest

predicted path if the surface contact is also the closest surface contact to the

predicted path. Claim 2 follows the same logic.

Claim 18 is not rejected under 35 U.S.C. 101 because the claim requires that

w the paths be used to generate user interface interactions thereby tying the

method step to a machine of some sort.

Claim Rejections - 35 USC § 102

4. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(b) the invention was patented or described in a printed publication in this or a foreign country or in public
use or on sale in this country, more than one year prior to the date of application for patent in the United
States.
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5. Claims 1-9 and 18-23 are rejected under 35 U.S.C. 102(b) as being anticipated

by Yasutake (U.S. Patent 5,483,261-hereinafter "Yasutake").

As to Claim 1, Yasutake teaches a method for associating into paths one or

more surface contacts from successive proximity images, the successive proximity

images including a current proximity image and one or more prior proximity images

(Figs. 5 and 7a-d), the method comprising:

generating one or more predicted paths by predicting from the one or more prior

proximity images current positions of the one or more surface contacts (Figs. 5 and 7a-

7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-64);

finding for each surface contact in the current proximity image a closest predicted

path (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col.

8, lines 48-64);

finding for each predicted path a closest surface contact, the closest surface

contact having a centroid closest to the predicted path (Figs. 5 and 7a-7d, Col. 6, line

20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-64); and

pairing each surface contact with its closest predicted path if the surface contact

is also the closest surface contact to the predicted path (Figs. 5 and 7a-7d, Col. 6, line

20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-64).

As to Claim 2, Yasutake teaches a method for associating into paths one or

more surface contacts from successive proximity images, the successive proximity

images including a current proximity image and one or more prior proximity images

(Figs. 5 and 7a-d), the method comprising:

APLNDC00021921



Application/Control Number: 11/559,736 Page 5

Art Unit: 2629

generating one or more predicted paths by predicting from the one or more prior

proximity images current positions of the one or more surface contacts(Figs. 5 and 7a-

7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-64);

finding for each surface contact in the current proximity image a closest predicted

path (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col.

8, lines 48-64);

finding for each predicted path a closest surface contact, the closest surface

contact having a centroid closest to the predicted path and within a path-dependent

tracking radius of the predicted path (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line

18, Col. 7, lines 60-67 and Col. 8, lines 48-64); and

pairing each surface contact with its closest predicted path if the surface contact

is also the closest surface contact to the predicted path and if the centroid of the closest

surface contact is within the path-dependent tracking radius of the predicted path (Figs.

5 and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-

64).

As to Claims 3/1 and 3/2, Yasutake teaches starting new paths for unpaired

surface contacts (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-

67 and Col. 8, lines 48-64).

As to Claim 4, Yasutake teaches deactivating unpaired predicted paths (Figs. 5

and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-

64).
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Application/Control Number: 11/559,736 Page 6

Art Unit: 2629

As to Claims 5/1 and 5/2, Yasutake teaches deactivating unpaired predicted

paths (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col.

8, lines 48-64).

As to Claims 6/1 and 6/2, Yasutake teaches updating path parameters for each

of the one or more predicted paths from one or more measured parameters of the

surface contact paired with each predicted path (Figs. 5 and 7a-7d, Col. 6, line 20-

Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-64).

As to Claims 7, Yasutake teaches starting new paths for unpaired surface

contacts (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and

Col. 8, lines 48-64).

As to Claims 8, Yasutake teaches deactivating unpaired predicted paths (Figs. 5

and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-

64).

As to Claims 9, Yasutake teaches deactivating unpaired predicted paths (Figs. 5

and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-

64).

As to Claim 18, Yasutake teaches a method for associating into paths one or

more groups of pixels from successive proximity images, each group of pixels

corresponding to a distinguishable hand part or other touch object on or near the

surface of a multi-touch apparatus and each proximity image representing a scan of a

plurality of proximity sensors of the multi-touch apparatus, the successive proximity
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images including a current proximity image and one or more prior proximity images, the

method comprising (Figs. 5 and 7a-d):

predicting paths for each of the one or more groups of pixels from the one or

more prior proximity images (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col.

7, lines 60-67 and Col. 8, lines 48-64);

pairing each group of pixels with its predicted path (Figs. 5 and 7a-7d, Col. 6,

line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-64);

whereby the paths may be used to generate user interface interactions in

response to motion of the distinguishable hand parts or other touch objects through the

successive proximity images (Figs. 5 and 7a-7d, Col. 6, line 20 Col. 7, line 18, Col.

7, lines 60-67 and Col. 8, lines 48-64).

As to Claim 19 (submitted as claim 20 on 11/14/06), Yasutake teaches starting

new paths for unpaired groups of pixels (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7,

line 18, Col. 7, lines 60-67 and Col. 8, lines 48-64).

As to Claim 20 (submitted as claim 21 on 11/14/06), Yasutake teaches

deactivating unpaired predicted paths (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line

18, Col. 7, lines 60-67 and Col. 8, lines 48-64).

As to Claim 21 (submitted as claim 22 on 11/14/06), Yasutake teaches

deactivating unpaired predicted paths (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line

18, Col. 7, lines 60-67 and Col. 8, lines 48-64).

As to Claim 22 (submitted as claim 23 on 11/14/06), Yasutake teaches that at

least one of the groups of pixels corresponds to a hand part near but not on the multi-
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touch surface (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67

and Col. 8, lines 48-64).

As to Claim 23 (submitted as claim 24 on 11/14/06), Yasutake teaches starting

new paths for unpaired groups of pixels, wherein at least one unpaired group of pixels

corresponds to a hand part near but not on the multi-touch surface (Figs. 5 and 7a-7d,

Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-64).

Claim Rejections - 35 USC § 103

6. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set
forth in section 102 of this title, if the differences between the subject matter sought to be patented and
the prior art are such that the subject matter as a whole would have been obvious at the time the
invention was made to a person having ordinary skill in the art to which said subject matter pertains.
Patentability shall not be negatived by the manner in which the invention was made.

7. Claims 10-17 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Yasutake in view of McAvinney (U.S. Patent 4,746,770-hereinafter "McAvinney").

8. As to Claim 10, Yasutake fails to teach determining a velocity of the one or more

surface contacts along one or more corresponding existing paths. Examiner cites

McAvinney to teach determining a velocity of the one or more surface contacts along

one or more corresponding existing paths (See Figs. 19, 22, 39 and 40 and Col. 1, line

40-46, Col. 6, lines 49-54, Col. 9, lines 55-63, Col. 11, line 46-Col. 12, line 14 and

Col. 15, line 40-Col. 17, line 33). At the time the invention was made, it would have

been obvious to a person of ordinary skill in the art to determine the velocity of the one

or more surface contacts along one or more corresponding existing paths as taught by

APLNDC00021925



Application/Control Number: 11/559,736 Page 9

Art Unit: 2629

McAvinney in the method taught by Yasutake in order to permit the identification and

the alteration of graphical objects (McAvinney- Abstract).

As to Claim 11, Yasutake teaches starting new paths for unpaired surface

contacts (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and

Col. 8, lines 48-64).

As to Claim 12, Yasutake teaches deactivating unpaired predicted paths (Figs. 5

and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-

64).

As to Claim 13, Yasutake teaches deactivating unpaired predicted paths (Figs. 5

and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-

64).

As to Claim 14, Yasutake teaches updating path parameters for each of the one

or more predicted paths from one or more measured parameters of the surface contact

paired with each predicted path (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line 18,

Col. 7, lines 60-67 and Col. 8, lines 48-64).

As to Claim 15, Yasutake teaches starting new paths for unpaired surface

contacts (Figs. 5 and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and

Col. 8, lines 48-64).

As to Claim 16, Yasutake teaches deactivating unpaired predicted paths (Figs. 5

and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-

64).
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As to Claim 17, Yasutake teaches deactivating unpaired predicted paths (Figs. 5

and 7a-7d, Col. 6, line 20-Col. 7, line 18, Col. 7, lines 60-67 and Col. 8, lines 48-

64).

Inquiries

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to RODNEY AMADIZ whose telephone number is

(571)272-7762. The examiner can normally be reached on M-F 8:30-5:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Sumati Lefkowitz can be reached on (571) 272-3638. The fax phone

number for the organization where this application or proceeding is assigned is 571-

273-8300.
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Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on access to the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automated information

system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Sumati Lefkowitz/
Supervisory Patent Examiner, Art Unit 2629

IR. A./
Examiner, Art Unit 2629
8/27/09
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Application No. Applicant(s)

11/428,522 WESTERMAN ET AL.

Office Action Summary Examiner Art Unit

Leonid Shapiro 2629

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE _3 MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 11 June 2009.

2a) This action is FINAL. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 2-10 and 18-99 islare pending in the application.

4a) Of the above claim(s) islare withdrawn from consideration.

5) Claim(s) islare allowed.

6) Claim(s) 2-10 and 18-99 islare rejected.

7) Claim(s) islare objected to.

8) Claim(s) are subject to restriction and/or election requirement.

Application Papers

9)O The specification is objected to by the Examiner.

10)O The drawing(s) filed on islare: a)O accepted or b) objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11)O The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)O Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) All b) Some * c) None of:

1. Certified copies of the priority documents have been received.

2. Certified copies of the priority documents have been received in Application No.

3. Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) O Notice of References Cited (PTO-892) 4) O Interview Summary (PTO-413)
2) O Notice of Draftsperson's Patent Drawing Review (PTO-948) Paper No(s)/Mail Date.

3) Information Disclosure Statement(s) (PTO/SBIO8) 5) O Notice of Informal Patent Application
Paper No(s)/Mail Date 6) O Other:

U.s. Patent and Trademark Office

PTOL-326 (Rev. 08-06) Office Action Summary Part of Paper No.lMail Date 20090826
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1. The drawings are objected to under 37 CFR 1.83(a). The drawings must show

every feature of the invention specifics disclosed in the claims. Therefore, the newly

introduced limitations of independent claims 1,16-17,20: ": form a proximity image of

multiple touch contacts on the touch surface; segmenting the proximity image into a

plurality of groups of electrodes, eachgroun renresentina a distinguishable

contact..." must be shown or the feature(s) canceled from the claim(s). No new matter

should be entered.

Corrected drawing sheets in compliance with 37 CFR 1.121(d) are required in

reply to the Office action to avoid abandonment of the application. Any amended

replacement drawing sheet should include all of the figures appearing on the immediate

prior version of the sheet, even if only one figure is being amended. The figure or figure

number of an amended drawing should not be labeled as "amended." If a drawing figure

is to be canceled, the appropriate figure must be removed from the replacement sheet,

and where necessary, the remaining figures must be renumbered and appropriate

changes made to the brief description of the several views of the drawings for

consistency. Additional replacement sheets may be necessary to show the renumbering

of the remaining figures. Each drawing sheet submitted after the filing date of an

application must be labeled in the top margin as either "Replacement Sheet" or "New

Sheet" pursuant to 37 CFR 1.121(d). If the changes are not accepted by the examiner,

the applicant will be notified and informed of any required corrective action in the next

Office action. The objection to the drawings will not be held in abeyance.

APLNDC00021931



Application/Control Number: 11/428,522 Page 3

Art Unit: 2629

Specification

2. The specification is objected to as failing to provide proper antecedent basis for

the claimed subject matter. See 37 CFR 1.75(d)(1) and MPEP § 608.01(o). Correction

of the following is required:

The newly introduced limitations of independent claims 1,16-17,20: ": form a

proximity image of multiple touch contacts on the touch surface; segmenting the

proximity image into a plurality of groups of electrodes, each group representina a

distinguishable contact..." are not described in the Specification.

Notice that proximity images are scanned, segmented in order to find a (single)

distinguishable contact, and only after that multiple touch contacts could be found.

Claim Rejections - 35 USC § 112

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of
making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the
art to which it pertains, or with which it is most nearly connected, to make and use the same and shall
set forth the best mode contemplated by the inventor of carrying out his invention.

3. Claims 1,3-10, 16-22 are rejected under 35 U.S.C. 112, first paragraph, as failing

to comply with the enablement requirement. The claim(s) contains subject matter which

was not described in the specification in such a way as to enable one skilled in the art to

which it pertains, or with which it is most nearly connected, to make and/or use the

invention.

The newly introduced limitations of independent claims 1,16-17,20: ": form a

proximity image of multiple touch contacts on the touch surface; segmenting the
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proximity image into a plurality of groups of electrodes, each group representina a

distinguishable contact..." are not described in the Specification or shown in Figures.

Notice that proximity images are scanned, segmented in order to find a (single)

distinguishable contact, and only after that multiple touch contacts could be found.

Claims 3-10,18-19,21-22 depend on claims 1,17,20.

4. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly
claiming the subject matter which the applicant regards as his invention.

Claim 1-10,16-22 are rejected under 35 U.S.C. 112, second paragraph, as being

indefinite for failing to particularly point out and distinctly claim the subject matter which

applicant regards as the invention.

It not clear how to form a proximity image of multiple touch contacts on the touch

surface before segmenting the proximity image into a plurality of groups of electrodes,

each group representing a distinguishable contact, as recited in independent claims

1,16-17,20?

Notice, that proximity images are images of shadow of the object near to contact

surface (hovering) and single or multiple contacts could be define only after analyzing

proximity images.

Claims 2-10,18-19,21-22 depend on claims 1,17,20.

Rejection on merits could be only done after resolving enablement and

indefinites problems.
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Telephone inquire

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Leonid Shapiro whose telephone number is 571-272-

7683. The examiner can normally be reached on 8 a.m. to 5 p.m..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Richard Hjerpe can be reached on 571-272-7691. The fax phone number

for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on access to the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automated information

system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

08/16/09
IL. S./
Examiner, Art Unit 2629

/Richard Hjerpel
Supervisory Patent Examiner, Art Unit 2629
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Application No. Applicant(s)

11/428,515 WESTERMAN ET AL.

Office Action Summary Examiner Art Unit

Michael Pervan 2629

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE _3 MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 14 Aucust 2009.

2a) This action is FINAL. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) B islare pending in the application.

4a) Of the above claim(s) islare withdrawn from consideration.

5) Claim(s) islare allowed.

6) Claim(s) B islare rejected.

7) Claim(s) islare objected to.

8) Claim(s) are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on 03 Julv 2006 islare: a) accepted or b) objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)O Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) All b) Some * c) None of:

1. Certified copies of the priority documents have been received.

2. Certified copies of the priority documents have been received in Application No.

3. Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) O Notice of References Cited (PTO-892) 4) O Interview Summary (PTO-413)
2) O Notice of Draftsperson's Patent Drawing Review (PTO-948) Paper No(s)/Mail Date.

3) Information Disclosure Statement(s) (PTO/SBIO8) 5) O Notice of Informal Patent Application
Paper No(s)/Mail Date 3/20/09 6/18/09 8/4/09 8/19/09 9/23/09 10/27/09. 6) O Other:

u.s. Patent and Trademark Office

PTOL-326 (Rev. 08-06) Office Action Summary Part of Paper No.lMail Date 20091103
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9DETAILED ACTION

Response to Arguments

1. Applicant's arguments with respect to claims 1-24 have been considered but are

moot in view of the new ground(s) of rejection.

Claim Rejections - 35 USC § 103

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set
forth in section 102 of this title, if the differences between the subject matter sought to be patented and
the prior art are such that the subject matter as a whole would have been obvious at the time the
invention was made to a person having ordinary skill in the art to which said subject matter pertains.
Patentability shall not be negatived by the manner in which the invention was made.

3. Claims 1, 5, 15, 17, 19, 21 and 23 are rejected under 35 U.S.C. 103(a) as being

unpatentable over Yasutake in view of Shieh (US 5,748,184; previously presented) in

further view of Siddiqui et al.

In regards to claims 1, 17 and 21, Yasutake discloses a method for mapping

gestures performed on a multi- touch surface to graphical user interface commands, the

method comprising:

detecting a plurality of contacts on the multi-touch surface (col. 3, lines 49-61);

and

determining a whole hand translation across the multi-touch surface from

movement of the whole hand contacts (col. 4, lines 4-23).
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Yasutake does not disclose matching the detected plurality of contacts to distinct

parts of a hand and generating a pan command in response to the whole hand

translation on the multi-touch surface.

Shieh discloses matching the detected plurality of contacts to distinct parts of a

hand (Fig. 2 and col. 3, lines 46-61).

It would have been obvious at the time of invention to modify Yasutake with the

teachings of Shieh, detecting a handprint, because it would allow the system to

distinguish between users, allowing the user to have their own custom commands.

Yasutake and Shieh do generating a pan command in response to the whole

hand translation on the multi-touch surface.

Siddiqui discloses generating a pan command in response to the whole hand

translation (col. 21, lines 25-44). By incorporating the motion of moving a mouse to

generate a pan command as shown in Siddiqui into the device of Yasutake, one would

achieve the ability to generate a pan command by mimicking the motion of moving a

mouse.

It would have been obvious at the time of invention to modify Yasutake and

Shieh with the teachings of Siddiqui, generating pan command by moving mouse,

because it allows the user to freely move what is being displayed on the display without

having to use scroll bars.
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In regards to claim 5, Yasutake does not disclose the method of claim 1 further

comprising generating a zoom command in response to detecting hand scaling by

uniformly flexing or extending fingers on the multi-touch surface.

Siddiqui discloses generating a zoom command in response to detecting hand

scaling by uniformly flexing or extending fingers (col. 18, lines 20-35). By incorporating

the motion of moving a scroll wheel to generate a zoom command as shown in Siddiqui

into the device of Yasutake, one would achieve the ability to generate a zoom command

by mimicking the motion of moving a scroll wheel.

It would have been obvious at the time of invention to modify Yasutake with the

teachings of Siddiqui, generating zoom command by moving scroll wheel, because it

allows the user to freely zoom what is being displayed on the display without having to

continuously touch a zoom in or zoom out button.

In regards to claims 15, 19 and 23, Yasutake discloses a method for mapping

gestures performed on a multi- touch surface to graphical user interface commands, the

method comprising:

detecting a plurality of contacts on the multi-touch surface (col. 3, lines 49-61).

Yasutake does not disclose matching the detected plurality of contacts to distinct

parts of a hand and detecting hand scaling resulting from uniformly flexing or extending

the fingers on the multi-touch surface and generating a zoom command in response to

the detected hand scaling.
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Shieh discloses matching the detected plurality of contacts to distinct parts of a

hand (Fig. 2 and col. 3, lines 46-61).

It would have been obvious at the time of invention to modify Yasutake with the

teachings of Shieh, detecting a handprint, because it would allow the system to

distinguish between users, allowing the user to have their own custom commands.

Yasutake and Shieh do not disclose detecting hand scaling resulting from

uniformly flexing or extending the fingers on the multi-touch surface and generating a

zoom command in response to the detected hand scaling.

Siddiqui discloses detecting hand scaling resulting from uniformly flexing or

extending the fingers on the multi-touch surface and generating a zoom command in

response to the detected hand scaling (col. 18, lines 20-35). By incorporating the

motion of moving a scroll wheel to generate a zoom command as shown in Siddiqui into

the device of Yasutake, one would achieve the ability to generate a zoom command by

mimicking the motion of moving a scroll wheel.

It would have been obvious at the time of invention to modify Yasutake and

Shieh with the teachings of Siddiqui, generating zoom command by moving scroll

wheel, because it allows the user to freely zoom what is being displayed on the display

without having to continuously touch a zoom in or zoom out button.

4. Claims 2-4 and 6-8 are rejected under 35 U.S.C. 103(a) as being unpatentable

over Yasutake in view of Shieh in view of Siddiqui et al in further view of Redlich.
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In regards to claim 2, Yasutake, Shieh and Siddiqui do not disclose the method

of claim 1 further comprising generating a rotate command in response to detecting a

hand rotation on the multi-touch surface.

Redlich discloses generating a rotate command in response to detecting a hand

rotation (col. 10, lines 29-58). By incorporating the motion of rotating a mouse to

generate a rotate command as shown in Redlich into the device of Yasutake, one would

achieve the ability to generate a rotate command by mimicking the motion of rotating a

mouse.

It would have been obvious at the time of invention to modify Yasutake, Shieh

and Siddiqui with the teachings of Redlich, generating rotate command by rotating a

mouse, because it would allow the user to rotate what is being displayed on the display

without having to touch a rotate left or rotate right button.

In regards to claim 3, Yasutake, Shieh and Siddiqui do not disclose the method

of claim 2 wherein the hand rotation is rotation about a wrist.

Redlich discloses wherein the hand rotation is rotation about a wrist (col. 10,

lines 29-58).

It would have been obvious at the time of invention to modify Yasutake, Shieh

and Siddiqui with the teachings of Redlich, generating rotate command by rotating a

mouse, because it would allow the user to rotate what is being displayed on the display

without having to touch a rotate left or rotate right button.

APLNDC00021941



Application/Control Number: 11/428,515 Page 7

Art Unit: 2629

In regards to claim 4, Yasutake, Shieh, Siddiqui and Redlich do not disclose the

method of claim 2 wherein the hand rotation is rotation between fingers.

Redlich discloses wherein the hand rotation is rotation about a wrist (col. 10,

lines 29-58).

Since there is no benefit or advantage described in the specification for choosing

hand rotation about a wrist or between fingers, it would have been obvious to one of

ordinary skill in the art at the time of invention to choose either having hand rotation

between fingers or about a wrist based on a design choice.

In regards to claims 6-8, Yasutake and Shieh do not disclose the method of claim

2 further comprising generating a zoom command in response to detecting hand scaling

by uniformly flexing or extending fingers on the multi-touch surface.

Siddiqui discloses generating a zoom command in response to detecting hand

scaling by uniformly flexing or extending fingers (col. 18, lines 20-35). By incorporating

the motion of moving a scroll wheel to generate a zoom command as shown in Siddiqui

into the device of Yasutake, one would achieve the ability to generate a zoom command

by mimicking the motion of moving a scroll wheel.

It would have been obvious at the time of invention to modify Yasutake and

Shieh with the teachings of Siddiqui, generating zoom command by moving scroll

wheel, because it allows the user to freely zoom what is being displayed on the display

without having to continuously touch a zoom in or zoom out button.
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5. Claims 9-11, 18 and 22 are rejected under 35 U.S.C. 103(a) as being

unpatentable over Yasutake in view of Shieh in further view of Redlich.

In regards to claims 9, 18 and 22, Yasutake discloses a method for mapping

gestures performed on a multi- touch surface to graphical user interface commands, the

method comprising:

detecting a plurality of contacts on the multi-touch surface (col. 3, lines 49-61).

Yasutake does not disclose matching the detected plurality of contacts to distinct

parts of a hand and determining a hand rotation from movement of the hand contacts

and generating a rotate command in response to detecting a hand rotation on the multi-

touch surface.

Shieh discloses matching the detected plurality of contacts to distinct parts of a

hand (Fig. 2 and col. 3, lines 46-61).

It would have been obvious at the time of invention to modify Yasutake with the

teachings of Shieh, detecting a handprint, because it would allow the system to

distinguish between users, allowing the user to have their own custom commands.

Yasutake and Shieh do not disclose determining a hand rotation from movement

of the hand contacts and generating a rotate command in response to detecting a hand

rotation on the multi-touch surface.

Redlich discloses determining a hand rotation from movement of the hand and

generating a rotate command in response to detecting a hand rotation (col. 10, lines 29-

58). By incorporating the motion of rotating a mouse to generate a rotate command as

APLNDC00021943



Application/Control Number: 11/428,515 Page 9

Art Unit: 2629

shown in Redlich into the device of Yasutake, one would achieve the ability to generate

a rotate command by mimicking the motion of rotating a mouse.

It would have been obvious at the time of invention to modify Yasutake and

Shieh with the teachings of Redlich, generating rotate command by rotating a mouse,

because it would allow the user to rotate what is being displayed on the display without

having to touch a rotate left or rotate right button.

In regards to claim 10, Yasutake and Shieh do not disclose the method of claim 2

wherein the hand rotation is rotation about a wrist.

Redlich discloses wherein the hand rotation is rotation about a wrist (col. 10,

lines 29-58).

It would have been obvious at the time of invention to modify Yasutake and

Shieh with the teachings of Redlich, generating rotate command by rotating a mouse,

because it would allow the user to rotate what is being displayed on the display without

having to touch a rotate left or rotate right button.

In regards to claim 11, Yasutake, Shieh and Redlich do not disclose the method

of claim 2 wherein the hand rotation is rotation between fingers.

Redlich discloses wherein the hand rotation is rotation about a wrist (col. 10,

lines 29-58).

Since there is no benefit or advantage described in the specification for choosing

hand rotation about a wrist or between fingers, it would have been obvious to one of
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ordinary skill in the art at the time of invention to choose either having hand rotation

between fingers or about a wrist based on a design choice.

6. Claims 12-14 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Yasutake in view of Shieh in view of Redlich in further view of Siddiqui et al.

In regards to claims 12-14, Yasutake, Shieh and Redlich do not disclose the

method of claim 2 further comprising generating a zoom command in response to

detecting hand scaling by uniformly flexing or extending fingers on the multi-touch

surface.

Siddiqui discloses generating a zoom command in response to detecting hand

scaling by uniformly flexing or extending fingers (col. 18, lines 20-35). By incorporating

the motion of moving a scroll wheel to generate a zoom command as shown in Siddiqui

into the device of Yasutake, one would achieve the ability to generate a zoom command

by mimicking the motion of moving a scroll wheel.

It would have been obvious at the time of invention to modify Yasutake, Shieh

and Redlich with the teachings of Siddiqui, generating zoom command by moving scroll

wheel, because it allows the user to freely zoom what is being displayed on the display

without having to continuously touch a zoom in or zoom out button.

7. Claims 16, 20 and 24 are rejected under 35 U.S.C. 103(a) as being unpatentable

over Yasutake in view of Shieh in further view of Cutler et al.
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In regards to claims 16, 20 and 24, Yasutake discloses a method for mapping

gestures performed on a multi- touch surface to graphical user interface commands, the

method comprising:

detecting a plurality of contacts on the multi-touch surface (col. 3, lines 49-61).

Yasutake does not disclose matching the detected plurality of contacts to distinct

parts of a hand and detecting a first gesture being performed by the first hand and a

second gesture being performed by the second hand and manipulating a foreground

object in accordance with the first gesture and manipulating a background object with

the second gesture.

Shieh discloses matching the detected plurality of contacts to distinct parts of a

hand (Fig. 2 and col. 3, lines 46-61).

It would have been obvious at the time of invention to modify Yasutake with the

teachings of Shieh, detecting a handprint, because it would allow the system to

distinguish between users, allowing the user to have their own custom commands.

Yasutake does not disclose detecting a first gesture being performed by the first

hand and a second gesture being performed by the second hand and manipulating a

foreground object in accordance with the first gesture and manipulating a background

object with the second gesture.

Cutler discloses detecting a first gesture (moving hand to position model) being

performed by the first hand and a second gesture (moving hand to zoom) being

performed by the second hand and manipulating (position model) a foreground object in

accordance with the first gesture and manipulating a background object (zooming) with
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the second gesture (Table 1 and page 5, Coordinated Asymmetric Interaction,

paragraph 2; two-handed zooming).

It would have been obvious at the time of invention to modify Yasutake and

Shieh with the teachings of Cutler, manipulating objects and backgrounds, because it

gives the user better control over because they are using their arms and hands to

manipulate an object or background rather using another object.

Conclusion

8. Applicant's amendment necessitated the new ground(s) of rejection presented in

this Office action. Accordingly, THIS ACTION IS MADE FINAL. See MPEP

§ 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37

CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE

MONTHS from the mailing date of this action. In the event a first reply is filed within

TWO MONTHS of the mailing date of this final action and the advisory action is not

mailed until after the end of the THREE-MONTH shortened statutory period, then the

shortened statutory period will expire on the date the advisory action is mailed, and any

extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of

the advisory action. In no event, however, will the statutory period for reply expire later

than SIX MONTHS from the date of this final action.
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Abstract

Gesture-based interfaces, in which the user specifies commands by simple freehand drawings,
offer an alternative to traditional keyboard, menu, and direct manipulation interfaces. The ability
to specify objects, an operation, and additional parameters with a single intuitive gesture makes
gesture-based systems appealing to both novice and experienced users.

Unfortunately, the difficulty in building gesture-based systems has prevented such systems from
being adequately explored. This dissertation presents work that attempts to alleviate two of the
major difficulties: the construction of gesture classifiers and the integration of gestures into direct-
manipulation interfaces. Three example gesture-based applications were built to demonstrate this
work.

Gesture-based systems require classifiers to distinguish between the possible gestures a user
may enter. In the past, classifiers have often been hand-coded for each new application, making

them difficult to build, change, and maintain. This dissertation applies elementary statistical pattern
recognition techniques to produce gesture classifiers that are trained by example, greatly simplifying
their creation and maintenance. Both single-path gestures (drawn with a mouse or stylus) and
multiple-path gestures (consisting of the simultaneous paths of multiple fingers) may be classified.
On a 1 MIPS workstation, a 30-class single-path recognizer takes 175 milliseconds to train (once
the examples have been entered), and classification takes 9 milliseconds, typically achieving 97%
accuracy. A method for classifying a gesture as soon as it is unambiguous is also presented.

This dissertation also describes GRANDMA, a toolkit for building gesture-based applications
based on Smalltalk's Model/View/Controller paradigm. Using GRANDMA, one associates sets of

gesture classes with individual views or entire view classes. A gesture class can be specified at
runtime by entering a few examples ofthe class, typically 15. The semantics ofa gesture class can be

specified at runtime via a simple programming interface. Besides allowing for easy experimentation
with gesture-based interfaces, GRANDMA sports a novel input architecture, capable of supporting
multiple input devices and multi-threaded dialogues. The notion of virtual tools and semantic
feedback are shown to arise naturally from GRANDMA's approach.

1
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Chapter 1

Introduction

People naturally use hand motions to communicate with other people. This dissertation explores the
use ofhuman gestures to communicate with computers.

Random House [122] defines "gesture" as "the movement of the body, head, arms, hands, or
face that is expressive of an idea, opinion, emotion, etc." This is a rather general definition, which
characterizes well what is generally thought of as gesture. It might eventually be possible through
computer vision for machines to interpret gestures, as defined above, in real time. Currently such
an approach is well beyond the state of the art in computer science.

Because of this, the term "gesture" usually has a restricted connotation when used in the context
of human-computer interaction. There, gesture refers to hand markings, entered with a stylus or
mouse, which function to indicate scope and commands [109]. Buxton [14] gives a fine example,

reproduced here as figure 1.1. In this dissertation, such gestures are referred to as single-path
gestures.

Recently, input devices able to track the paths of multiple fingers have come into use. The
Sensor Frame [84] and the DataGlove [32, 130] are two examples. The human-computer interaction
community has naturally extended the use of the term "gesture" to refer to hand motions used to

indicate commands and scope, entered via such multiple finger input devices. These are referred to
here as multi-path gestures.

Rather than defining gesture more precisely at this point, the following section describes an

deally, we want a one-to-one mapping betweþ

concepts and gestug User interfaces should be

designed with a clear o ¡e of the mental

model we are trying to establish. Phrasing can

reinforce the chunks or structure of the modet

Figure 1.1: Proofreader's Gesture (from Buxton [15])
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.2: GDP, a gesture-based drawing program

example application with a gestural interface. A more technical definition of gesture will be
presented in section 1.6.

1.1 An Example Gesture-based Application

GRANDMA is a toolkit used to create gesture-based systems. It was built by the author and is
described in detail in the pages that follow. GRANDMA was used to create GDP, a gesture-based
drawing editor loosely based on DP [42]. GDP provides for the creation and manipulation of lines,
rectangles, ellipses, and text. In this section, GDP is used as an example gesture-based system.
GDP's operation is presented first, followed by a description ofhow GRANDMA was used to create
GDP's gestural interface.

1.1.1 GDP from the user's perspective

GDP's operation from a user's point of view will now be described. (GDP's design and implemen-
tation is presented in detail in Section 8.1.) The intent is to give the reader a concrete example of
a gesture-based system before embarking on a general discussion of such systems. Furthermore,

the description of GDP serves to illustrates many of GRANDMA's capabilities. A new interaction
technique, which combines gesture and direct manipulation in a single interaction, is also introduced
in the description.
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l.l. ANEXAMPLE GESTURE-BASED APPLICATION 3

Figure 1.2 shows some snapshots of GDP in action. When first started, GDP presents the user
with a blank window. Panel (a) shows the rectangle gesture being entered. This gesture is drawn
like an "L."i The user begins the gesture by positioning the mouse cursor and pressing a mouse
button. The user then draws the gesture by moving the mouse.

The gesture is shown on the screen as is being entered. This technique is called inking [109],
and provides valuable feedback to the user. In the figure, inking is shown with dotted lines so that
the gesture may be distinguished from the objects in the drawing. In GDP, the inking is done with
solid lines, and disappears as soon as the gesture has been recognized.

The end of the rectangle gesture is indicated in one of two ways. If the user simply releases
the mouse button immediately after drawing "L" a rectangle is created, one comer of which is at
the start of the gesture (where the button was first pressed), with the opposite comer at the end of
the gesture (where the button was released). Another way to end the gesture is to stop moving the
mouse for a given amount of time (0.2 seconds works well), while still pressing the mouse button.

In this case, a rectangle is created with one comer at the start of the gesture, and the opposite comer
at the current mouse location. As long as the button is held, that comer is dragged by the mouse,
enabling the size and shape of the rectangle to be determined interactively.

Panel (b) of figure 1.2 shows the rectangle that has been created and the ellipse gesture. This
gesture creates an ellipse with its center at the start of the gesture. A point on the ellipse tracks the
mouse after the gesture has been recognized; this gives the user interactive control over the size and
eccentricity of the ellipse.

Panel (c) shows the created ellipse, and a line gesture. Similar to the rectangle and the ellipse, the

start of the gesture determines one endpoint of the newly created line, and the mouse position after
the gesture has been recognized determines the other endpoint, allowing the line to be rubberbanded.

Panel (d) shows all three shapes being encircled by a pack gesture. This gesture packs (groups)
all the objects which it encloses into a single composite object, which can then be manipulated as
a unit. Panel (e) shows a copy gesture being made; the composite object is copied and the copy is

dragged by the mouse.

Panel (f) shows the rotate-and-scale gesture. The object is made to rotate around the starting

point of the gesture; a point on the object is dragged by the mouse, allowing the user to interactively
determine the size and orientation of the object.

Panel (g) shows the delete gesture, essentially an "X" drawn with a single stroke. The object at

the gesture start is deleted, as shown in panel (h).

This brief description ofGDP illustrates a number of features ofgesture-based systems. Perhaps
the most striking feature is that each gesture corresponds to a high-level operation. The class of the

gesture determines the operation; attributes of the gesture determine its scope (the operands) and
any additional parameters. For example, the delete gesture specifies the object to be deleted, the
pack gesture specifies the objects to be combined, and the line gesture specifies the endpoints of
the line.

It is often convenient to describe single-path gestures as if they were handwritten letters. This is not meant to imply
that gesture-basedsystems can only recognize alphabetic symbols, or even that they usually recognizealphabetic symbols.

The many ways in which gesture-based systems are distinct from handwriting-recognition systems will be enumerated in

section 1.8.
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View

GdpTopView GraphicobjectView ¯

line rect ellipse pack text dot

GobjTextView LineDrawingView GobjSetView

delete edit move rotate copy
LineView RectangleView EllipseView

(a) (b)

Figure 1.3: GDP's View class hierarchy and associated gestures

A period indicates thefirstpoint ofeach gesture.

It is possible to control more than positional parameters with gestural attributes. For example,
one version of GDP uses the length (in pixels) of the line gesture to control the thickness of the new
line.

Note how gesturing and direct manipulation are combined in a new two-phase interaction
technique. The first phase, the collection of the gesture, ends when the user stops moving the mouse
while holding the button. At that time, the gesture is recognized and a number of parameters to
the application command are determined. After recognition, a manipulation phase is entered during
which the user can control additional parameters interactively.

In addition to its gestural interface, GDP provides a more traditional click-and-drag interface.
This is mainly used to compare the two styles of interface, and is further discussed in Section 8.1.
The gestural interface is grafted on top of the click-and-drag interface, as will be explained next.

1.1.2 Using GRANDMA to Design GDP's Gestures

In the current work, the gesture designer creates a gestural interface to an application out of an
existing click-and-drag interface to the application. Both the click-and-drag interface and the
application are built using the object-oriented toolkit GRANDMA. The gesture designer only
modifies the way input is handled, leaving the output mechanisms untouched.

A system built using GRANDMA utilizes the object-oriented programming paradigm to rep-
resent windows and the graphics objects displayed in windows. For example, figure 1.3a shows
GDP's View class hierarchy.2 This hierarchy shows the relationship of the classes concerned with
output. The task ofthe gesture designer is to determine which of these classes are to have associated
gestures, and for each such view class, to design a set of gestures that intuitively expresses the
allowable operations on the view. Figure 1.2b shows the sets of gestures associated with GDP's
GraphicObj ectView and GdpTopView classes. The GraphicObj ectView collectively

2For expositional purposes, the hierarchy shown is a simplified version of the actual hierarchy. Some of the details

that follow have also been simplified. Section 8.1 tells the truth in gory detail.
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Normal
Mouse mode GestureHandler_83f00 DOCK TRASH

Delete

Semantics
start: EventKind: PickEvent ToolKind: MouseToo)

aandle:'EventKind: DragEvent ToolKind: nil Dump
Delete ALL

done: EventKind: DropEvent ToolKind: nil

new class train evaluate

gc6 gc7

Figure 1.4: Manipulating gesture han- .
Figure 1.5: Adding examples of the

dlers at runtime
delete gesture

refers to the line, rectangle, and ellipse shapes, while GdpTopView represents the window in
which GDP runs.

GRANDMA is a Model/View/Controller-like system [70]. In GRANDMA, an input event
handler (a "controller" in MVC terms) may be associated with a view class, and thus shared between

all instances of the class (including instances of subclasses). This adds flexibility while eliminating
a major overhead of Smalltalk MVC, where one or more controller objects are associated with each
view object that expects input.

The gesture designer adds gestures to GDP's initial click-and-drag interface at runtime. The
first step is to create a new gesture handler and associate it the GraphicObj ectView class,
easily done using GRANDMA. Figure 1.4 shows the gesture handler window after a number of
gestures have been created (using the "new class" button), and figure 1.5 shows the window in which
examples of the delete gesture have been entered. Fifteen examples of each gesture class typically
suffice. If a gesture is to vary in size and/or orientation, the examples should reflect that.

Clicking on the "Semantics" button brings up a window that the designer uses to specify the

semantics of each gesture in the handler's set. The window is a structured editing and browsing
interface to a simple Objective-C [28] interpreter, and the designer enters three expressions: recog,

evaluated when the gesture is first recognized; manip, evaluated on subsequent mouse points; and
done, evaluated when the mouse button is released. In this case, the delete semantics simply

change the mouse cursor to a delete cursor, providing feedback to the user, and then delete the view
at which the gesture was aimed. The expressions entered are3

3Objective C syntax is used throughout. [view delete] sends the delete message to the object referred to
by the variable view. [handler mousetool:DeleteCursor] sends the mousetool: message to the object

referred to by the variable handler passing the value of the variable DeleteCursor as an argument. See Section 6.3

for more information on Objective C notation.
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recog = [_Seq :[handler mousetool:DeleteCursor]
: [view delete] ] ;

manip = nil;

done = nil;

The designer may now immediately try out the delete gesture, as in figure 1.2g.

The designer repeats the process to create a gesture handler for the set of gestures associated
with class GdpTopView, the view that refers to the window in which GDP runs. This handler
deals with the gestures that create graphic objects, the pack gesture (which creates a set out of
the enclosed graphic objects), the dot gesture (which repeats the last command), and the gestures

also handled by GraphicObj ectView's gesture handler (which when made at a GdpTopView
change the cursor without operating directly on a graphic object).

The attributes ofthe gesture are directly available for use in the gesture semantics. For example,
the semantics of the line gesture are:

recog = [Seq :[handler mousetool:LineCursor]

: [ [view createLine]

setEndpoint:0 x:<startX> y:<startY>]];

manip = [recog setEndpoint:1 x:<currentX> y:<currentY>];

done = nil;

The semantic expressions execute in a rich environment in which, for example, view is bound
to the view at which the gesture was directed (in this case a GdpTopView) and handler is bound
to the current gesture handler. Note that Seq executes its arguments sequentially, returning the
value of the last, in this case the newly created line. This is bound to recog for later use in the
manip expression.

The example shows how the gesture attributes, shown in angle brackets, are usefulin the semantic
expressions. The attributes <startx> and <startY>, the coordinates of the first point in the
gesture, are used to determine one endpoint of the line, while <currentx> and <currentY>,
the mouse coordinates, determine the other endpoint.

Many other gesture attributes are useful in semantics. The line semantics could be augmented

to control the thickness of the line from the maximum speed or total path length of the gesture.
The rectangle semantics could use the initial angle of the rectangle gesture to determine the

orientation of the rectangle. The attribute <enclosed> is especially noteworthy: it contains a
list of views enclosed by the gesture and is used, for example, by the pack gesture (figure 1.2d).
When convenient, the semantics can simulate input to the click-and-drag interface, rather than
communicating directly with application objects or their views, as shown above.

When the first point of a gesture is over more than one gesture-handling view, the union

of the set of gestures recognized by each handler is used, with priority given to the foremost
views. For example, any gesture made at a GDP GraphicObj ectView is necessarily made
over the GdpTopView. A delete gesture made at a graphic object would be handled by
the GraphicObj ectView while a line gesture at the same place would be handled by the

GdpTopView. Set union also occurs when gestures are (conceptually) inherited via the view
class hierarchy. For example, the gesture designer might create a new gesture handler for the
Gobj SetView class containing an unpack gesture. The set of gestures recognized by
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Gobj SetViews would then consist of the unpack gesture as well as the five gestures handled by

GraphicObj ectView.

1.2 Glossary

This section defines and clarifies some terms that will be used throughout the dissertation. It may
safely be skipped and referred back to as needed. Some ofthe terms (click, drag) have their common
usage in the human-computer interaction community, while others (pick, move, drop) are given
technical definitions solely for use here.

class In this dissertation, "class" is used in two ways. "Gesture class" refers to a set of gestures all
ofwhich are intended to be treated the same, for example, the class ofdelete gestures. (In this
dissertation, the names of gesture classes will be shown in sans serif typeface.) The job of
a gesture recognizer is, given an example gesture, to determine its class (see also "gesture").
"Class" is also used in the object-oriented sense, referring to the type (loosely speaking) of a

software object. It should be clear from context which of these meanings is intended.

click A click consists of positioning the mouse cursor and then pressing and releasing a mouse
button, with no intervening mouse motion. In the Macintosh, a click is generally used to
select an object on the screen.

click-and-drag A click-and-drag interface is a direct-manipulation interface in which objects on
the screen are operated upon using mouse clicks, drags, and sometimes double-clicks.

direct manipulation A direct-manipulation interface is one in which the user manipulates a graphic
representation of the underlying data by pointing at and/or moving them with an appropriate
device, such as a mouse with buttons.

double-click A double-click is two clicks in rapid succession.

drag A drag consists of locating the mouse cursor and pressing the mouse button, moving the
mouse cursor while holding the mouse button, and then releasing the mouse button. Drag
interactions are used in click-and-drag interfaces to, for example, move objects around on the
screen.

drop The final part of a drag (or click) interaction in which the mouse button is released.

eager recognition A kind ofgesture recognition in which gestures are often recognized without the
end of the gesture having to be explicitly signaled. Ideally, an eager recognizer will recognize
a gesture as soon as enough of it has been seen to determine its class unambiguously.

gesture Essentially a freehand drawing used to indicate a command and all its parameters. De-

pending on context, the term maybe used to refer to an example gesture or a class of gestures,
e.g. "a delete gesture" means an example gesture belonging to the class of delete gestures.
Usually "gesture" refers to the part of the interaction up until the input is recognized as one
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of a number of possible gesture classes, but sometimes the entire interaction (which includes
a manipulation phase after recognition) is referred to as a gesture.

move The component of drag interaction during which the mouse is moved while a mouse button
is held down. It is the presence of a move that distinguishes a click from a drag.

multi-path A multi-path gesture is one made with an input device that allows more than one position
to be indicated simultaneously (multiple pointers). One may make multi-path gestures with a
Sensor Frame, a multiple-finger touch pad, or a DataGlove, to name a few such devices.

off-line Considering an algorithm to be a sequence ofoperations, an off-line algorithmis one which
examines subsequent operations before producing output for the current operation.

on-line An on-line algorithm is one in which the output of an operation is produced before any
subsequent operations are read.

pick The initial part of a drag (or click) interaction consisting of positioning the mouse cursor at
the desired location and pressing a mouse button.

press refers to the pressing of a mouse button.

real-time A real-time algorithm is an on-line algorithm in which each operation is processed in
time bounded by a constant.

release refers to the releasing of a mouse button.

segment A segment is an approximately linear portion of a stroke. For example, the letter "L" is

two segments, one vertical and one horizontal.

single-path A single-path gesture is one drawn by an input device, such as a mouse or stylus,
capable of specifying only a single point over time. A single-path gesture may consist of
multiple strokes (like the character "X").

single-stroke A single-stroke gesture is a single-path gesture that is one stroke. Thus drawing "L"
is a single-stroke gesture, while "X" is not. In this dissertation the only single-path gestures
considered are single-stroke gestures.

stroke A stroke is an unbroken curve made by a single movement of a pen, stylus, mouse, or other
instrument. Generally, strokes begin and end with explicit user actions (e.g. , pen down/pen
up, mouse button down/mouse button up).

1.3 Summary of Contributions

This dissertation makes contributions in four areas: new interaction techniques, new algorithms for
gesture recognition, a new way of integrating gestures into user interfaces, and a new architecture
for input in object-oriented toolkits.

APLNDC00021975



1.4. MOTIVATION FOR GESTURES 9

The first new interaction technique is the two-phase combination of single-stroke gesture collec-

tion followed by direct manipulation, mentioned previously. In the GDP example discussed above,
the boundary between the two phases is an interval of motionlessness. Eager recognition, the sec-
ond new interaction technique, eliminates this interval by recognizing the single-stroke gesture and
entering the manipulation phase as soon as enough of the gesture has been seen to do so unambigu-
ously, making the entire interaction very smooth. A third new interaction technique is the two-phase
interaction applied to multi-path gestures: after a multi-path gesture has been recognized, individ-
ual paths (i.e. fingers, possibly including additional fingers not involved in making the recognized
gesture) may be assigned to manipulate independent application parameters simultaneously.

The second contribution is a new trainable, single-stroke recognition algorithm tailored for
recognizing gestures. The classification is based on meaningful features, which in addition to
being useful for recognition are also suitable for passing to application routines. The particular
set of features used has been shown to be suitable for many different gesture sets, and is easily
extensible. When restricted to features that can be updated incrementally in constant time per
input point, arbitrarily large gestures may be handled. The single-stroke recognition algorithm has

been extended to do eager recognition (eager recognizers are automatically generated from example
gestures), and also to multi-path gesture recognition.

Third, a new paradigm for creating gestural interfaces is also propounded. As seen in the
example, starting from a click-and-drag implementation of an interface, gestures are associated
with classes of views (display objects), with the set of gestures recognized at a particular screen
location dynamically determined by the set of overlapping views at the location, and by inheritance
up the class hierarchy of each such view. The classification and attributes of gestures map directly to
application operations and parameters. The creation, deletion, and manipulation ofgesture handlers,
gesture classes, gesture examples, and gesture semantics all occur at runtime, enabling quick and
easy experimentation with gestural interfaces.

Fourth, GRANDMA, as an object-oriented user interface toolkit, makes some contributions to
the area of input handling. Event handler objects are associated with particular views or entire view
classes. A single event handler may be shared between many different objects, eliminating a major
overhead ofMVC systems. Multiple event handlers may be associated with a single object, enabling
the object to support multiple interaction techniques simultaneously, including the use of multiple
input devices. Furthermore, a single mechanism handles both mouse tools (e.g. a delete cursor that
deletes clicked-upon objects) and virtual tools (e.g. a delete icon that is dragged around and dropped

upon objects to delete them). Additionally, GRANDMA provides support for semantic feedback,
and enables the runtime creation and manipulation of event handlers.

1.4 Motivation for Gestures

At this point, the reader should have a good idea of the scope of the work to be presented in this
dissertation. Stepping back, this section begins a general discussion of gestures by examining the
motivation for using and studying gesture-based interfaces. Much of the discussion is based on that
of Buxton [14].

Computers get faster, bitmapped displays produce ever increasing information rates, speech and
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Figure 1.6: Macintosh Finder, MacDraw, and MacWrite (from Apple [2])

music can be generated in real-time, yet input just seems to plod along with little or no improvement.
This is regrettable because, in Paul McAvinney's words [84], most of the useful information in the

world resides in humans, not computers. Most people who interact with computers spend most
of their time entering information [22]. Due to this input bottleneck, the total time to do many
tasks would hardly improve even if computers became infinitely fast. Thus, improvements in input
technology are a major factor in improving the productivity of computer users in general.

Of course, progress has been made. Input has progressed from batch data entry, to interactive
line editors, to two-dimensional screen editors, to mouse-based systems with bitmapped displays.
Pointing with a mouse has proved a useful interaction technique in many applications. "Click
and drag" interfaces, where the user directly manipulates graphic objects on the screen with a
mouse, are often very intuitive to use. Because of this, direct manipulation interfaces have become
commonplace, despite being rather difficult to build.

Consider the Macintosh [2], generally regarded as having a good direct-manipulation interface.
As shown in figure 1.6, the screen has on it a number ofgraphic objects, including file icons, folder
icons, sliders, buttons, and pull-down menu names. Each one is generally a rectangular region,
which may be clicked, sometimes double-clicked, and sometimes dragged. The Macintosh Finder,

which may be used to access all Macintosh applications and documents, is almost entirely controlled
via these three interaction techniques.4

The click and double-click interactions have a single object (or location) as parameter. The drag

4Obviously this discussion ignores keyboard entry of text and commands.
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1.4. MOTIVATION FOR GESTURES 11

interaction has two parameters: an object or location where the mouse button is first pressed, and
another object or location at the release point. Having only these three interaction techniques is one
reason the Macintosh is simple to operate. There is, however, a cost: both the application and the
user must express all operations in terms of these three interaction techniques.

An application that provides more than three operations on any given object (as many do) has
several design alternatives. The first, exemplified by the Finder, relies heavily on selection. In
the Finder, a click interaction selects an object, a double-click opens an object (the meaning of
which depends upon the object's type), and a drag moves an object (the meaning of which is also
object-type specific). Opening an object by a double-click is a means for invoking the most common
operation on the object, e.g. opening a MacWrite document starts the MacWrite application on the
document. Dragging is used for adjusting sliders (such as those which scroll windows), changing
window size or position, moving files between folders, and selecting menu items.

All other operations are done in at least two steps: first the object to be operated upon is selected,
and then the desired operation is chosen from a menu. For example, to print an object, one selects
it (click) then chooses "Print" from the appropriate menu (drag); to move some text, one selects it
(drag), chooses "Cut" (drag), selects an insertion point (click), and chooses "Paste" (drag). The cost

of only having three interaction techniques is that some operations are necessarily performed via a
sequence of interactions. The user must adjust her mental model so that she thinks in terms of the
component operations.

An alternative to the selection-based click-and-drag approach is one based on modes. Consider

MacDraw [2], a drawing program. The user is presented with a palette offering choices such as line,
text, rectangles, circles, and so on. Clicking on the "line" icon puts the program into line-drawing
mode. The next drag operation in the drawing window cause lines to be drawn. In MacDraw, after
the drag operation the program reverts back to selection mode. DP, the program upon which GDP
is based, is similar except that it remains in its current mode until it is explicitly changed. Mistakes
occur when the user believes he is in one mode but is actually in another. The claim that direct
manipulation interfaces derive their power from being modeless is not really true. Good direct
manipulation interfaces simply make the modes very visible, which helps to alleviate the problems
of modal interfaces.

By mandating the sole use of click, double-click, and drag interactions, the Macintosh interface

paradigm necessarily causes conceptually primitive tasks to be divided into a sequence ofprimitive
interactions. The intent ofgestural interfaces is to avoid this division, by packing the basic interaction
with all the parameters necessary to complete the entire transaction. Ideally, each primitive task in
the user's model of the application is executed with a single gesture. Such interfaces would have
less modeness than the current so-called modeless interfaces.

The Macintosh discussion in the previous section is somewhat oversimplified. Many applications
allow variations on the basic interaction techniques; for example "shift-click" (holding the shift key

while clicking the mouse) adds an object to the current set of selected objects. Other computer
systems allow different mouse buttons to indicated different operations. There is a tradeoff between
having a small number and a large number of (consistently applied) interaction techniques. The
former results in a system whose primitive operations are easy to learn, perform, and recall, but a
single natural chunk may be divided into a sequence of operations. In the latter case, the primitive
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operations are harder to learn (because there are more of them), but each one can potentially
implement an entire natural chunk.

The motivation for gestural interfaces may also apply to interfaces which combine modalities
(e.g. speech and pointing). As with gestures, one potential benefit of multi-modal interfaces is that
different modalities allow many parameters to be specified simultaneously, thus eliminating the need
for modes. The "Put-That-There" system is one example [12].

1.5 Primitive Interactions

The discussionthus far has been vague as to what exactly may be considered a "primitive"interaction
technique. The Macintosh has three: click, double-click, and drag. It is interesting to ask what
criteria can be used for judging the "primitiveness" of proposed interaction techniques.

Buxton [14] suggests physical tension as a criterion. The user, starting from a relaxed state,
begins a primitive interaction by tensing some muscles. The interaction is over when the user again
relaxes those muscles. Buxton cites evidence that "such periods of tension are accompanied by
a heightened state of attentiveness and improved performance." The three Macintosh interaction

techniques all satisfy this concept of primitive interaction. (Presumably the user remains tense
during a double-click because the time between clicks is short.)

Buxton likens the primitive interaction to a musical phrase. Each consists of a period of
tension followed by a return to a state where a new phrase may be introduced. In human-computer
interaction, such a phrase is used to accomplish a chunk of a task. The goal is to make each of these
chunks a primitive task in the user's model of the application domain. This is what a gesture-based
interface attempts to do.

1.6 The Anatomy of a Gesture

In this section a technical definition ofgesture is developed, and the syntactic and semantic properties
ofgestures are then discussed. The dictionary definition ofgesture, "expressive motion," has already

been seen. How can the notion of gesture in a form suitable for sensing and processing by machine
be captured?

1.6.1 Gestural motion

The motion aspect of gesture is formalized as follows: a gesture consists of the paths of multiple
points over time. The points in question are (conceptually) affixed to the parts of the body which
perform the gesture. For hand gestures, the points tracked might include the fingertips, knuckles,
palm, and wrist of each hand. Over the course of a gesture, each point traces a path in space.
Assuming enough points (attached to the body in appropriate places), these paths contain the
essence of the gestural motion. A computer with appropriate hardware can rapidly sample positions
along the paths, thus conveniently capturing the gesture.

The idea of gesture as the motion of multiple points over time is a generalization of pointing.
Pointing may be considered the simplest gesture: it specifies a single position at an instance of
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time. This is generalized to allow for the movement of the point over time, i.e. a path. A further
generalization admits multiple paths, i.e. the movement of multiple points over time.5

Current gesture-sensing hardware limits both the number of points which may be tracked

simultaneously and the dimensionality of the space in which the points travel. Gestures limited to
the motion of a single point are referred to here as single-path gestures. Most previous gestural
research has focused upon gestures made with a stylus and tablet, mouse, or single-finger touch pad.
The gestures which may be made with such devices are two-dimensional, single-path gestures.

An additional feature of existing hardware is that the points are not tracked at all times. For
example, a touch pad can only determine finger position when the finger is touching the pad. Thus,
the path of the point will have a beginning (when the finger first makes contact) and an end (when
the finger is lifted). This apparent limitation of certain gesture-sensing hardware may be used
to delineate the start and possibly the end of each gesture, a necessary function in gesture-based
systems. Mouse buttons may be used to similar effect.6

In all the work reported here, a gesture (including the manipulation phase after recognition) is
always a primitive interaction. A gesture begins with the user going from a relaxed state to one
of muscular tension, and ends when the user again relaxes. It is further assumed that the tension
or relaxation of the user is directly indicated by some aspect of the sensing hardware. For mouse
gestures, the user is considered in a state of tension if and only if a mouse button is pressed. Thus,
in the current work a double-click is not considered a gesture. This is certainly a limitation, but one

that could be removed, for example by having a minimum time that the button needs to be released
before the user is considered to have relaxed. This added complication has not been explored here.

The space in which the points of the gesture move is typically physical space, and thus a path
is represented by a set of points (x, y, z, t) consisting of three spatial Cartesian coordinates and
time. However, there are devices which measure non-spatial gestural parameters; hence, gestures
consisting of paths through a space where at least some of the coordinates are not lengths are
possible. For example, some touch pads can sense force, and for this hardware a gesture path might
consist of a set of points (x, y, f, t), f being the force measurement at time t.

The formalization of gesture as multiple paths is just one among many possible representations.
It is a good representation because it coincides nicely with most of the existing gesture-sensing
hardware, and it is a useful form for efficient processing. The multiple-snapshot representation, in
which each snapshot gives the position of multiple points at a single instant, is another possibility,
and in some sense may be considered the dual of multiple paths. Such a representation might
be more suitable for gestural data derived from hardware (such as video cameras) which are not
considered in this dissertation.

1.6.2 Gestural meaning

In addition to the physical aspect of a gesture, there is the content or meaning of the gesture
to consider. Generally speaking, a gesture contains two kinds of information: categorical and

SA configuration of multiple points at a single instance of time may be termed posture. Posture recognition is

commonly used with the DataGlove.
6Buxton [17] presents a model of the discrete signaling capabilities of various pointing devices and a list of the

signaling requirements for common interaction techniques.
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parametric. Consider the different motions between people meaning "come here" (beckoning
gestures), "stop" (prohibiting gestures), and "keep going" (encouragement gestures). These are
different categories, or classes, ofgestures. Within each class, a gesture also can indicate parametric
data. For example, a parameter ofthe beckoning gesture is the urgency of the request: "hurry up" or
"take your time." In general, the category of the gesture must be determined before the parameters
can be interpreted.

Parametric information itself comes in two forms. The first is the kind of information that can
be culled at the time the gesture is classified. For example, the position, size and orientation of the
gesture fall into this category. The second kind of parametric gestural information is manipulation
information. After the gesture is recognized, the user can use this kind ofparametric information to
continuously communicate information. An example would be the directional information commu-
nicated by the gestures of a person helping a driver to back up a truck. An example from GDP (see
Section 1.1) is the rubberbanding ofa line after it is created, where the user continuouslymanipulates
one endpoint.

The term "gesture" as used here does not exactly correspond to what is normally thought

of as gesture. Many gestures cannot currently be processed by machine due to limitations of
existing gesture-sensing hardware. Also, consider what might be referred to as "direct-manipulation
gestures." A person turning a knob would not normally be considered to be gesturing. However,
a similar motion used to manipulate the graphic image of a knob drawn on a computer display is
considered to be a gesture. Actually, the difference here is more illusory than real: a person might
make the knob-turning gesture at another person, in effect asking the latter to turn the knob. The
intent here is simply to point out the very broad class of motions considered herein to be gesture.

While the notion ofgesture developed here is very general (multiple paths), in practice, machine
gestures have hitherto almost always been limited to finger and/or hand motions. Furthermore, the
paths have largely been restricted to two dimensions. The concentration on two-dimensional hand
gesturing is a result of the available gesture-sensing hardware. Of course, such hardware was built

because it was believed that hand and fingers are capable of accurate and diverse gesturing, yet more
amenable to practical detection than facial or other body motions. With the appearance ofnew input
devices, three (or more) dimensional gesturing, as well as the use ofparts of the body other than the
hand, are becoming possible. Nonetheless, this dissertation concentrates largely on two-dimensional
hand gestures, assuming that by viewing gesture simply as multiple paths, the work described may
be applied to non-hand gestures, or generalized to apply to gestures in three or more dimensions.

1.7 Gesture-based systems

A gesture-based interface, as the term is used here, is one in which the user specifies commands
by gesturing. Typically, gesturing consists of drawing or other freehand motions. Excluded from
the class of gesture-based interfaces are those in which input is done solely via keyboard, menu,
or click-and-drag interactions. In other words, while pointing is in some sense the most basic

gesture, those interfaces in which pointing is the only form of gesture are not considered here to be
gesture-based interfaces. A gesture-based system is a program (or set of programs) with which the
user interacts via a gesture-based interface.
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In all but the simplest gesture-based systems, the user may enter a gesture belonging to one of

several different gesture categories or classes; the different classes refer to different coss aands to the
system. An important component of gesture-based systems is the gesture recognizer or classifier,
the module whose job is to classify the user's gesture as the first step toward inferring its meaning.
This dissertation addresses the implementation of gesture recognizers, and their incorporation into
gesture-based systems.

1.7.1 The four states of interaction

User interaction with the gesture-based systems considered in this dissertation may be described
using the following four state model. The states-WAIT, COLLECT, M^¾œULATE, EXECUTE-usually

occur in sequence for each interaction.

• The WAIT state is the quiescent state of the system. The system is waiting for the user to

initiate a gesture.

• The COLLECT state is entered when the user begins to gesture. While in this state, the system

collects gestural data from the input hardware in anticipation of classifying the gesture. For
most gesturing hardware, an explicit start action (such as pressing a mouse button) indicates
the beginning of each gesture, and thus causes the system to enter this state.

• The MANIPULATE state is entered once the gesture is classified. This occurs in one of three

ways:

1. The end of the gesture is indicated explicitly, e.g. by releasing the mouse button;

2. the end of the gesture is indicated implicitly, e.g. by a timeout which indicates the user
has not moved the mouse for, say, 200 milliseconds; or

3. the system initiates classification because it believes it has now seen enough of the
gesture to classify it unambiguously (eager recognition).

When the M ULATE state is entered, the system should provide feedback to the user as to

the classification ofthe gesture and update any screen objects accordingly. While in this state,
the user can further manipulate the screen objects with his motions.

• The EXECUTE state is entered when the user has completed his role in the interaction, and has

indicated such (e.g. by releasing the mouse button). At this point the system performs any
final actions as implied by the user's gesture. Ideally, this state lasts only a very short time,
after which the display is updated to reflect the current state of the system, and the system
reverts back to the WAIT State.

This model is sufficient to describe most current systems which use pointing devices. (For
simplicity, keyboard input is ignored.) Depending on the system, the COLLECT or M^¾ ULATE
state may be omitted from the cycle. A handwriting interface will usually omit the M^¾ ULATE

state, classifying the collected characters and executing the resulting command. Conversely, a
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direct-manipulation system will omit the COLLECT State (and the attendant classification). The

GDP example described above has both COLLECT and MANIPULATE phases. The result is the new
two-phase interaction technique mentioned earlier.

1.8 A Comparison with Handwriting Systems

In this section, the frequently asked question, "how do gesture-based systems differ from handwriting
systems?" is addressed.

Handwriting systems may broadly be grouped into two classes: on-line and off-line. On-line
handwriting recognition simply means characters are recognized as they are drawn. Usually, the
characters are drawn with a stylus on a tablet, thus the recognition process takes as input a list
of successive points or line segments. The problem is thus considerably different than off-line
handwriting recognition, in which the characters are first drawn on paper, and then optically scanned
and represented as two-dimensional rasters. Suen, Berthod, and Mori review the literature of both
on-line and off-line handwriting systems [125], while Tappert, Suen, and Wakaha [129] give a recent
review of on-line handwriting systems. The intention here is to contrast gesture-based systems with
on-line handwriting recognition systems, as these are the most closely related.

Gesture-based systems have much in common with systems which employ on-line handwriting
recognition for input. Both use freehand drawing as the primary means ofuser input, and both depend
on recognizers to interpret that input. However, there are some important differences between the
two classes of systems, differences that illustrate the merits of gesture-based systems:

• Gestures may be motions in two, three, or more dimensions, whereas handwriting systems

are necessarily two-dimensional. Similarly, single-path and multiple-path gestures are both
possible, whereas handwriting is always a single path.

• The alphabet used in a handwriting system is generally well-known and fixed, and users will

generally have lifelong experience writing that alphabet. With gestures, it is less likely that
users will have preconceptions or extensive experience.

• In addition to the command itself, a single gesture can specify parameters to the command.

The proofreader's gesture (figure 1.1) discussed above, is an excellent example. Another
example, also due to Buxton [21], and used in GSCORE (Section 8.2), is a musical score

editor, in which a single stroke indicates the location, pitch, and duration of a note to be added
to the score.

• As stated, a command and all its parameters may be specified with a single gesture. The phys-

ical relaxation of the user when she completes a gesture reinforces the conceptual completion
of a command [14].

• Gestures of a given class may vary in both size and orientation. Typical handwriting recog-

nizers expect the characters to be of a particular size and oriented in the usual manner (though
successful systems will necessarily be able to cope with at least small variations in size and
orientation). However, some gesture commands may use the size and orientation to specify
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parameters; gesture recognizers must be able to recognize such gestures in whatever size and
orientation they occur. Kim [67] discusses augmenting a handwriting recognition system so
as to allow it to recognize some gestures independently of their size and orientation. Chapter
3 discusses the approach taken here toward the same end.

• Gestures can have a dynamic component. Handwriting systems usually view the input
character as a static picture. In a gesture-based system, the same stroke may have different
meanings if drawn left-to-right, right-to-left, quickly, or slowly. Gesture recognizers may use
such directional and temporal information in the recognition process.

In summary, gestures may potentially deal in dimensions other than the two commonly used in

handwriting, be drawn from unusual alphabets, specify entire co······-···ds, vary in size and orientation,
and have a dynamic component. Thus, while ideas from on-line handwriting recognition algorithms
may be used for gesture recognition, handwriting recognizers generally rely on assumptions that
make them inadequate for gesture recognition. The ideal gesture recognition algorithm should be
adaptable to new gestures, dimensions, additional features, and variations in size and orientation,
and should produce parametric information in addition to a classification. Unfortunately, the price
for this generality is the likelyhood that a gesture recognizer, when used for handwriting recognition,
will be less accurate than a recognizer built and tuned specifically for handwriting recognition.

1.9 Motivation for this Research

In spite of the potential advantages of gesture-based systems, only a handful have been built.
Examples include Button Box [86], editing using proofreader's symbols [25], the Char-rec note-
input tool [21], and a spreadsheet application built at IBM [109]. These and other gesture-based

systems are discussed in section 2.2. Gesture recognition in most existing systems has been done
by writing code to recognize the particular set of gestures used by the system. This code is usually
complicated, making the systems (and the set of gestures accepted) difficult to create, maintain, and
modify. These difficulties are the reasons more gesture-based systems have not been built.

One goal ofthe present work is to eliminate hand-coding as the way to create gesture recognizers.

Instead, gesture classes are specified by giving examples of gestures in the class. From these
examples, recognizers are automatically constructed. If a particular gesture class is to be recognized
in any size or orientation, its examples of the class should reflect that. Similarly, by making all of
the examples of a given class the same size or orientation, the system learns that gestures in this
class must appear in the same size or orientation as the examples. The first half of this dissertation
is concerned with the automatic construction of gesture recognizers.

Even given gesture recognition, it is still difficult to build direct-manipulation systems which
incorporate gestures. This is the motivation for the second half of this dissertation, which describes
GRANDMA-Gesture Recognizers Automated in a Novel Direct Manipulation Architecture.
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1.10 Criteria for Gesture-based Systems

The goal ofthis research was to produce tools which aid in the construction ofgesture-based systems.
The efficacy of the tools may be judged by how well the tools and resulting gesture-based systems

satisfy the following criteria.

1.10.1 Meaningful gestures must be specifiable

A meaningful gesture may be rather complex, involving simultaneous motions of a number of
points. These complex gestures must be easily specifiable. Two methods of specification are
possible: specification by example, and specification by description. In the former, each application
has a training session in which examples of the different gestures are submitted to the system. The
result of the training is a representation for all gestures that the system must recognize, and this
representation is used to drive the actual gesture recognizer that will run as part of the application.
In the latter method of specification, a description of each gesture is written in a gesture description
language, which is a formal language in which the "syntax" of each gesture is specified. For
example, a set of gestures may be specified by a context-free grammar, in which the terminals
represent primitive motions (e.g. "straight line segment") and gestures are non-terminals composed
of terminals and other non-terminals.

All else being equal, the author considers specification by example to be superior to specification
by description. In order to specify gestures by description, it will be necessary for the specifier to
learn a description language. Conversely, in order to specify by example, the specifier need only be
able to gesture. Given a system in which gestures are specified by example, the possibility arises
for end users to train the system directly, either to replace the existing gestures with ones more to
their liking, or to have the system improve its recognition accuracy by adapting to the particular
idiosyncrasies of a given user's gestures.

One potential drawback of specification by example is the difficulty in specifying the allowable
variations between gestures ofa given class. In a description language, it can be made straightforward
to declare that gestures ofa given class may be ofany size or ofany orientation. The same information
might be conveyed to a specify-by-example system by having multiple examples of a single class
vary in size or orientation. The system would then have to infer that the size or orientation of a
given gesture class was irrelevant to the classification of the gesture. Also, training classifiers may
take longer, and recognition may be less accurate, when using examples as specifications, though
this is by no means necessarily so. Similar issues arise in demonstrational interfaces [97].

1.10.2 Accurate recognition

An important characterization of a gesture recognition system will be the frequency with which
gestures fail to be recognized or are recognized incorrectly. Obviously it is desirable that these
numbers be made as small as possible. Questions pertaining to the amount of inaccuracy acceptable
to people are difficult to answer objectively. There will likely be tradeoffs between the complexity
of gestures, the number of different gestures to be disambiguated, the time needed for recognition,
and the accuracy of recognition.
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In speech recognition there is the problem that the accuracy of recognition decreases as the
user population grows. However the analogous problem in gesture recognition is not as easy to
gauge. Different people speak the same words differently due to inevitable differences in anatomy
and upbringing. The way a person says a word is largely determined before she encounters a
speech recognition system. By contrast, most people have few preconceptions of the way to
gesture at a machine. People will most likely be able to adapt themselves to gesturing in ways
the machine understands. The recognition system may similarly adapt to each user's gestures. It
would be interesting, though outside the scope ofthis dissertation, to study the fraction of incorrectly
recognized gestures as a function of a person's experience with the system.

1.10.3 Evaluation of accuracy

It should be possible for a gesture-based system to monitor its own performance with respect to

accuracy of recognition. This is not necessarily easy, since in general it is impossible to know
which gesture the user had intended to make. A good gesture-based system should incorporate

some method by which the user can easily inform the system when a gesture has been classified
incorrectly. Ideally, this method should be integrated with the undo or abort features of the systems.
(Lerner [78] gives an alternative in which subsequent user actions are monitored to determine when
the user is satisfied with the results of system heuristics.)

1.10.4 Efficient recognition

The goal of this work is to enable the construction of applications that use gestures as input, the
idea being that gesture input will enhance human/computer interaction. Speed of recognition is very
important-a slow system would be frustrating to use and hinder rather than enhance interaction

Speed is a very important factor in the success or failure of user interfaces in general. Baecker
and Buxton [5] state that one of the chief determinants of user satisfaction with interactive computer
systems is response time. Poor performance in a direct-manipulation system is particularly bad, as
any noticeable delay destroys the feeling of directness. Rapid recognition is essential to the success
of gesture as a medium for human-computer interaction, even if achieving it means sacrificing
certain features or, perhaps, a limited amount of recognition accuracy.

1.10.5 On-line/real-time recognition

When possible, the recognition system should attempt to match partial inputs with possible gestures.
It may also be desirable to inform the user as soon as possible when the input does not seem to match
any possible gesture. An on-line/real-time matching algorithm has these desirable properties. The
gesture recognition algorithms discussed in Chapters 3, 4, and 5 all do a small, bounded amount of
work given each new input point, and are thus all on-line/real-time algorithms.

1.10.6 General quantitative application interface

An application must specify what happens when a gesture is recognized. This will often take the
form of a callback to an application-specific routine. There is an opportunity here to relay the
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parametric data contained in the gesture to the application. This includes the parametric data which
can be derived when the gesture is first recognized, as well as any manipulation data which follows.

1.10.7 Immediate feedback

In certain applications, it is desirable that the application be informed immediately once a gesture
is recognized but before it is completed. An example is the turning of a knob: once the system
recognizes that the user is gesturing to turn a knob it can monitor the exact details of a gesture,
relaying quantitative data to the application. The application can respond by immediately and
continuously varying the parameter which the knob controls (for example the volume of a musical
instrument).

1.10.8 Context restrictions

A gesture sensing system should be able, within a single application, to sense different sets ofgestures
in different contexts. An example of a context is a particular area of the display screen. Different
areas could respond to different sets of gestures. The set of gestures to which the application
responds should also be variable over time-the application program entering a new mode could

potentially cause a different set of gestures to be sensed.
The idea of contexts is closely related to the idea ofusing gestures to manipulate graphic objects.

Associated with each picture of an object on the screen will be an area of the screen within which
gestures refer to the object. A good gesture recognition system should allow the application program
to make this association explicit.

1.10.9 Efficient training

An ideal system would allow the user to experiment with different gesture classes, and also adapt to
the user's gestures to improve recognition accuracy. It would be desirable if the system responded
immediately to any changes in the gesture specifications; a system that took several hours to retrain
itselfwould not be a good platform for experimentation.

1.10.10 Good handling of misclassifications

Misclassifications ofgestures are a fact of life in gesture-based systems. A typical system might have
a recognition rate of 95% or 99%. This means one out of twenty or one out of one hundred gestures
will be misunderstood. A gesture-based system should be prepared to deal with the possibility of
misclassification, typically by providing easy access to abort and undo facilities.

1.10.11 Device independence

Certain assumptions about the form ofthe input data are necessary if gesture systems are to be built.
As previously stated, the assumption made here is that the input device will supply position as a
function of time for each input "path" (or supply data from which it is convenient to calculate such

positions). (A path may be thought of as a continuous curve drawn by a single finger.) This form of
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data is supplied by the Sensor Frame, and (at least for the single finger case) a mouse and a clock
can be made to supply similar data. The recognition systems should do their recognition based on
the position versus time data; in this way other input devices may also benefit from this research.

1.10.12 Device utilization

Each particular brand of input hardware used for gesture sensing will have characteristics that
other brands of hardware will not have. It would be unfortunate not to take advantage of all the
special features of the hardware. For example, the Sensor Frame can compute finger angle and
finger velocity.' While for device independence it may be desirable that the gesture matching not
depend on the value of these inputs, there should be some facility for passing these parameters to
the application specific code, if the application so desires. Baecker [4] states the case strongly:
"Although portability is facilitated by device-independence, interactivity and usability are enhanced
by device dependence."

1.11 Outline

The following chapter describes previous related work in gesture-based systems. This is divided into
four sections: Section 2.1 discusses various hardware devices suitable for gestural input. Section
2.2 discusses existing gesture-based systems. Section 2.3 reviews the various approaches to pattern
recognition in order to determine their potential for gesture recognition. Section 2.4 examines
existing software systems and toolkits that are used to build direct-manipulation interfaces. Ideas

from such systems will be generalized in order to incorporate gesture recognition into such systems.
Everything after Chapter 2 focuses on various aspects of the gesture-based interface creation

tool built by the author. Such a tool makes it easy to 1) specify and create classifiers, and 2) associate
gestures classes and their meanings with graphic objects. The former goal is addressed in Chapters
3, 4, and 5, the latter in 6 and 7.

The discussion of the implementation of gesture recognition begins in Chapter 3. Here the
problem of classifying single-path, two-dimensional gestures is tackled. This chapter assumes that

the start and end of the gesture are known, and uses statistical pattern recognition to derive efficient
gesture classifiers. The training of such classifiers from example gestures is also covered.

Chapter 3 shows how to classify single-path gestures; Chapter 4 shows when. This chapter

addresses the problem of recognizing gestures while they are being made, without any explicit
indication of the end of the gesture. The approach taken is to define and construct another classifier.
This classifier is intended solely to discriminate between ambiguous and unambiguous subgestures.

Chapter 5 extends the statistical approach to the recognition of multiple-path gestures. This
is useful for utilizing devices that can sense the positions of multiple fingers simultaneously, in
particular the Sensor Frame.

Chapter 6 presents the architecture of an object-oriented toolkit for the construction of direct-
manipulation systems. Like many other systems, this architecture is based on the Model-View-

7This describes the Sensor Frame as originally envisioned. The hardware is capable of producing a few bits of finger

velocity and angle information, although to date this has not been attempted.
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Controller paradigm. Compared to previous toolkits, the input model is considerably generalized
in preparation for the incorporation of gesture recognition into a direct-manipulation system. The
notion ofvirtual tools, through which input may be generated by software objects in the same manner
as by hardware input devices, is introduced. Semantic feedback will be shown to arise naturally
from this approach.

Chapter 7 shows how gesture recognizers are incorporated into the direct-manipulation archi-
tecture presented in Chapter 6. A gesture handler may be associated with a particular view of an

object on the screen, or at any level in the view hierarchy. In this manner, different objects will
respond to different sets of gestures. The communication of parametric data from gesture handler
to application is also examined.

Chapter 8 discusses three gesture-based systems built using these techniques: GDP, GSCORE,
and MDP. The first two, GDP and GSCORE, use mouse gestures. GDP, as already mentioned,
is the drawing editor based on DP. GSCORE is a musical score editor, based on Buxton's SSSP
work [21]. MDP is also a drawing editor, but it operates using multi-path gestures made with a
Sensor Frame. The design and implementation of each system is discussed, and the gestures for
each shown.

Chapter 9 evaluates a number of aspects of this work. The particular recognition algorithms are
tested for recognition accuracy. Measurements of the performance of the gesture classifiers used
in the applications is presented. Then, an informal user study assessing the utility of gesture-based
systems is discussed.

Finally, Chapter 10 concludes this dissertation. The contributions of this dissertation are dis-

cussed, as are the directions for future work.

1.12 What Is Not Covered

This dissertation attempts to cover many topics relevant to gesture-based systems, though by no
means all of them. In particular, the issues involved in the ergonomics and suitability of gesture-
based systems applied to various task domains have not been studied. It is the opinion of the author
that such issues can only be studied after the tools have been made available which allow easy
creation of and experimentation with such systems. The intent of the current work is to provide
such tools. Future research is needed to determine how to use the tools to create the most usable
gesture-based systems possible.

Of course, choices have had to be made in the implementation of such tools. By avoiding
the problem of determining which kind of gesture-based systems are best, the work opens itself to
charges ofpossibly "throwing the baby out with the bath-water." The claim is that the general system
produced is capable of implementing systems comparable to many existing gesture-based systems;
the example applications implemented (see Chapter 8) support this claim. Furthermore, the places
where restrictive choices have been made (e.g. two-dimensional gestures) have been indicated, and

extensible and scalable methods (e.g. linear discrimination) have been used wherever possible.
There are two major limitations of the current work. The first is that single-path multi-stroke

gestures (e.g. handwritten characters) are not handled. Most existing gesture-based systems use
single-path multi-stroke gestures. The second limitation is that the start of a gesture must be
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explicitly indicated. This rules out (at least at first glance) using devices such as the DataGlove
which lack buttons or other explicit signaling hardware. However, one result of the current work is
that these apparent limitations give rise to certain advantages in gestural interfaces. For example,
the limitations enforce Buxton's notion of tension and release mentioned above.

Gestural output, i.e. generating a gesture in response to a query, is also not covered. For an
example of gestural output, ask the author why he has taken so long to complete this dissertation.
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Chapter 2

Related Work

This chapter discusses previous work relevant to gesture recognition. This includes hardware
devices suitable for gestural input, existing gesture-based systems, pattern recognition techniques,
and software systems for building user interfaces.

Before delving into details, it is worth mentioning some general work that attempts to define
gesture as a technique for interacting with computers. Morrel-Samuels [87] examines the distinction
between gestural and lexical commands, and then further discusses problems and advantages of
gestural commands. Wolf and Rhyne [140] integrate gesture into a general taxonomy of direct
manipulation interactions. Rhyne and Wolf [109] discuss in general terms human-factors concerns

of gestural interfaces, as well as hardware and software issues.
The use ofgesture as an interaction technique is justified in a number of studies. Wolf [139] per-

formed two experiments that showed gestural interfaces compare favorably to keyboard interfaces.
Wolf [141] showed that many different people naturally use the same gestures in a text-editing

context. Hauptmann [49] demonstrated a similar result for an image manipulation task, further
showing that people prefer to combine gesture and speech rather than use either modality alone.

2.1 Input Devices

A number of input devices are suitable for providing input to a gesture recognizer. This section
concentrates on those devices which provide the position of one or more points over time, or whose
data is easily converted into that representation. The intention is to list the types of devices which
can potentially be used for gesturing. The techniques developed in this dissertation can be applied,
directly or with some generalization, to the devices mentioned.

A large variety of devices may be used as two-dimensional, single-path gesturing devices. Some
graphical input devices, such as mice [33], tablets and styli, light pens, joysticks, trackballs, touch
tablets, thumb-wheels, and single-finger touch screens [107, 124], have been in common use for
years. Less common are foot controllers, knee controllers, eye trackers [12], and tongue-activated

joysticks. Each may potentially be used for gestural input, though ergonomically some are better
suited for gesturing than others. Baecker and Buxton [5], Buxton [14], and Buxton, Hill and Rowley
[18] discuss the suitability ofmany of the above devices for various tasks. Buxton further points out

25
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that two different joysticks, for example, may have very different properties that must be considered
with respect to the task.

For gesturing, as with pointing, it is useful for a device to have some signaling capability in
addition to the pointer. For example, a mouse usually has one or more buttons, the pressing of
which can be used to indicate the start of a gesture. Similarly, tablets usually indicate when the
stylus makes or breaks contact with the tablet (though with a tablet it is not possible to carefully
position the screen cursor before contact). If a device does not have this signaling capacity, it will
be necessary to simulate it somehow. Exactly how this is done can have a large impact on whether
or not the device will be suitable for gesturing.

The 3SPACE Isotrack system, developed by Polhemus Navigation Sciences Division of Mc-
Donnel Douglas Electronics Company [32], is a device which measures the position and orientation
of a stylus or a one-inch cube using magnetic fields. The Polhemus sensor, as it is often called, is a
full six-degree-of-freedom sensor, returning x, y, and z rectangular coordinates, as well as azimuth,
altitude, and roll angles. It is potentially useful for single path gesturing in three positional dimen-
sions. By considering the angular dimensions, 4, 5, or 6 dimensional gestures may be entered. It is

also possible to use one of the angular dimensions for signaling purposes.

Bell Laboratories has produced prototypes of a clear plate capable of detecting the position and
pressure of many fingers [10, 99]. The position information is two-dimensional, and there is a
third dimension as well: finger pressure. The author has seen the device reliably track 10 fingers

simultaneously. The pressure detection may be used for signaling purposes, or as a third dimension
for gesturing. The inventor of the multi-finger touch plate has invented another device, the Radio

Drum [11], which can sense the position of multiple antennae in three dimensions. To date, the
antennae have been embedded in the tips ofdrum sticks (thus the name), but it would also be possible
to make a glove containing the antenna which would make the device more suitable for detecting
hand gestures.

The Sensor Frame [84] is a frame mounted on a workstation screen (figure 2.1). It consists of
a light source (which frames the screen) and four optical sensors (one in each corner). The Sensor
Frame computes the two-dimensional positions of up to three fingertips in a plane parallel to, and
slightly above the screen. The net result is similar to a multi-finger touch screen. The author has
used the Sensor Frame to verify the multi-finger recognition algorithm described in Chapter 5. The
Sensor Cube [85] is a device similar to the Sensor Frame but capable of sensing finger positions
in three dimensions. It is currently under construction. The VideoHarp [112, 111] is a musical
instrument based on the same sensing technology, and is designed to capture parametric gestural
data.

The DataGlove [32, 130] is a glove worn on the hand able to produce the positions of multiple

fingers as well as other points on the hand in three dimensions. By itself it can only output relative
positions. However, in combination with the Polhemus sensor, absolute finger positions can be
computed. Such a device can translate gestures as complex as American Sign Language [123] into
a multi-path form suitable for processing. The DataGlove, the similar Dexterous Hand Master from
Exos, and the Power Glove from Mattel, are shown in figure 2.2.

The DataGlove comes with hardware which may be trained to recognize certain static config-

urations of the glove. For example, the DataGlove hardware might be trained to recognize a fist,

APLNDC00021993



2.1. INPUT DEVICES 27

Ligne source(uirruser

Figure 2.1: The Sensor Frame
The Sensor Frame is a frame mounted on a computer display consisting of a rectangular light source and

four sensors, one in each corner. It is capable ofdetecting up to threefingers itsfield ofview. (Drawing by

Paul McAvinney.)

Figure 2.2: The DataGlove, Dexterous Hand Master, and PowerGlove (from Eglowstein [32])
The DataGlove, Dexterous Hand Master and PowerGlove are three glove-like input devices capable of

measuring the angles ofvarious handandfingerjoints.
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Figure 2.3: Proofreading symbols (from Coleman [25])

The operations intended by each are asfollows: a) delete text (from a single line), b) insert text, c) swap text,

d) move text, e) join (delete space), f) insert space, g) scroll up, h) scroll down, and i) delete multiple lines of

text. Many ofthe marks convey additionalparameters to the operation, e.g. the text to be moved or deleted.

signaling the host computer whenever a fist is made. These static hand positions are not considered
to be gestures, since they do not involve motion. The glove hardware recognizes "posture" rather
than gesture, the distinction being that posture is a static snapshot (a pose), while gesture involves
motion over time. Nonetheless, it is a rather elegant way to add signaling capability to a device
without buttons or switches.

The Videodesk [71, 72] is an input device based on a constrained form of video input. The
Videodesk consists of a translucent tablecloth over a glass top. Under the desk is a light source,
over the desk a video camera. The user's hands are placed over the desk. The tablecloth diffuses the
light, the net effect being that the camera receives an image ofthe silhouette ofthe hands. Additional
hardware is used to detect and track the user's fingertips.

Some researchers have investigated the attachment of point light sources to various points on
the body or hand to get position information as a function of time. The output of a camera (or pair
of cameras for three dimensional input) can be used as input to a gesture sensor.

2.2 Example Gesture-based Systems

This section describes a number of existing gesture-based systems that have been described in the
literature. A system must both classify its gestural input and use information other than the class
(i.e. parametric information) to be included in this survey. The order is roughly chronological.
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Figure 2.4: Note gestures (from Buxton [21])
A single gesture indicates note duration (from the shape ofthe stroke as shown) as well as pitch and starting

time, both ofwhich are determinedfrom theposition ofthe start ofthe gesture.

Coleman [25] has created a text editor which used hand-drawn proofreader's symbols to specify
editing commands (figure 2.3). For example, a sideways "S" indicated that two sets of characters
should be interchanged, the characters themselves being delimited by the two halves of the "S."
The input device was a touch tablet, and the gesture classification was done by a hand-coded
discrimination net (i.e. a loop-free flowchart).I

Buxton [21] has built a musical score editor with a small amount of gesture input using a mouse
(figure 2.4). His system used simple gestures to indicate note durations and scoping operations.
Buxton considered this systemto be more a character recognition system than a gesture-based system,

the characters being taken from an alphabet ofmusical symbols. Since information was derived not
only from the classification ofthe characters, but their positions as well, the author considers this to be
a gesture-based system in the true sense. Buxton's technique was later incorporated into Notewriter
II, a commercial music scoring program. Lamb and Buckley [76] describe a gesture-based music
editor usable by children.

Margaret Minsky [86] implemented a system called Button Box, which uses gestures for se-

lection, movement, and path specification to provide a complete Logo programming environment
(figure 2.5). Her input device was a clear plate mounted in front of a display. The device sensed the

position and shear forces of a single finger touching the plate. Minksy proposed the use of multiple
fingers for gesture input, but never experimented with an actual multiple-finger input device.

In Minsky's system, buttons for each Logo operation were displayed on the screen. Tapping
a button caused it to execute; touching a button and dragging it caused it to be moved. The
classification needed to distinguish between a touch and a tap was programmed by hand. There
were buttons used for copying other buttons and for grouping sets ofbuttons together. A path could
be drawn through a series of buttons-touching the end of a path caused its constituent buttons to

execute sequentially.
VIDEOPLACE [72] is a system based on the Videodesk. As stated above, the silhouette of the

user's hands are monitored. When a hand is placed in a pointing posture, the tip of the index finger

'Curiously, this research was done while Coleman was a graduate student at Carnegie Mellon. Coleman apparently

never received a Ph.D. from CMU, and it would be twenty years before another CMU graduate student (me) would go

near the topic of gesture recognition.
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Figure 2.5: Button Box (from Minksy [86])
Tapping a displayedbutton causes it to execute its assignedfunction while touching a button and dragging it

causes itto be n2oved.

A B C D E

1 1088 1056
2 Pro) Actual

5 Normast $1,200 $1,152 796.002\
4 MidWest $600 $541 90.171\
7 South $650 $325 108.625 \
R SouthWest $800 $761 37.831 ,

West $1,000 $$78 67.802
0 Americas $300 $221 73.671

Figure 2.6: A gesture-based spreadsheet (from Rhyne and Wolf [109])
The Paper-Like Interfaceprojectproduces systems which combinegesture andhandwriting. The input shown

here selects a group ofcells and requests they be moved to the cell beginning at location "G5."
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Figure 2.7: Recognizing flowchart symbols
Recognizingflowchart symbols (from Murase and Wakahara [89]). The system takes an entire freehand

drawing ofaflowchart (left) and recognizes the individualflowchart symbols (right), producing an internal

representation oftheflowchart (as nodes and edges) and aflowchartpicture in which thefreehand symbols

are replaced by machine generated line-drawings drawnfrom the alphabet ofsymbols. This system shows a

style of interface in which pattern recognition is usedfor something other than the detection ofgestures or

characters.

may be used for menu selection. After selection, the fingertips may be used to manipulated graphic
objects, such as the controlling points of a spline curve.

A group at IBM doing research into gestural human-computer systems has produced a gesture-
based spreadsheet application [109]. Somewhat similar to Coleman's editor, the user manipulates
the spreadsheet by gesturing with a stylus on a tablet (figure 2.6). For example, deletion is done by
drawing an "X" over a cell, selection by an "0", and moving selected cells by an arrow, the tip ofwhich
indicates the destination of the move. The application is interesting in that it combines handwriting
recognition (isolated letters and numbers) with gesturing. For example, by using handwriting the
user can enter numbers or text into a cell without using a keyboard. The portion of the recognizer
which classifies letters, numbers, and gestures of a fixed size and orientation has (presumably) been
trained by example using standard handwriting recognition techniques. However, the recognition
of gestures which vary in size or orientation requires hand coding [67].

Murase and Wakahara [89] describe a system in which freehand-drawn flowcharts symbols are
recognized by machine (figure 2.7). Tamura and Kawasaki [128] have a system which recognizes
sign-language gestures from video input (figure 2.8).

HITS from MCC [55] and Artkit from the University ofArizona [52] are both systems that may
be used to construct gesture-based interfaces. The author has seen a system built with HITS similar
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Figure 2.8: Sign language recognition (from Tamura [128])
This system processes an imagefrom a video camera in order to recognize aform ofJapanese sign language.

to that of Murase; in it an entire control panel is drawn freehand, and then the freehand symbols are
segmented, classified and replaced by icons. (Similar work is discussed by Martin, et. al [82], also
from MCC.) Artkit has much in common with the GRANDMA system described in this dissertation,
and will be mentioned again later (Sections 4.1 and 6.8). Artkit systems tend to be similar to those
created using GRANDMA, in that gesture commands are executed as soon as they are entered.

Kurtenbach and Buxton [75] have implemented a drawing program based on single-stroke
gestures (figure 2.9). They have used the program to study, among other things, issues of scope in
gestural systems. To the present author, GEdit's most interesting attribute is the use of compound
gestures, as shown in the figure. GEdit's gesture recognizer is hand-coded.

The Glove-talk system [34] uses a DataGlove to control a speech synthesizer (figure 2.10). Like
Artkit and the work described in Chapter 4, Glove-talk performs eager recognition: a gesture is
recognized and acted upon without its end being indicated explicitly. Weimer and Ganapathy [136]
describe a system combining DataGlove gesture and speech recognition.

The use of the circling gesture as an alternative means of selection is considered in Jackson and
Roske-Hofstrand [61]. In their system, the start of the circling gesture is detected automatically, i.e.
the mouse buttons are not used. Circling is also used for selection in the JUNO system from Xerox
Corporation [142].

A number of computer products offer a stylus and tablet as their sole or primary input device.
These systems include GRID Systems Corp.'s GRIDPad [50], Active Book Company's new portable
[43], Pencept Inc.'s computer [59], Scenario's DynaWriter, Toshiba's PenPC, Sony's Palmtop,
Mometa's laptop, MicroSlate's Datalite, DFM System's TraveLite, Agilis Corp.'s system, and Go
Corp.'s PenPoint system [8 1, 24]. While details of the interface ofmany of these systems are hard to
find (many of these systems have not yet been released), the author suspects that many use gestures.
For further reading, please see [16, 106, 31].
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O

Figure 2.9: Copying a group of objects in GEdit (from Kurtenbach and Buxton [75])
Note the compound gesture: the initial closed curve does selection, and the final "C" indicates the data

should be copied rather than moved.

Figure 2.10: GloveTalk (from Fels and Hinton [34])

GloveTalk connects a DataGlove to a speech synthesizer through several neural networks. Gestures indicate

root words (shown) and modifiers. Reversing the direction of the hand motion causes a word to be emitted

from the synthesizer as well as indicating the start ofthe next gesture.
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Tap • Select/Invoke

Press-hold g Initiate drag (rnove, wipe-through) y

Tap-hold 2 - O Initiate drag (copy)

Flick (four directions) Scroll/Browse

Cross out Delete

Scratch out Delete

Circle Edit

Check Options

Caret Insert

Brackets Select object, adjust selection

Pigtail (vertical) Delete character

Down-right L insert space

Figure 2.11: Basic PenPoint gestures (from Carr [24])

Recently, prototypes of Go Corporation's PenPoint system have been demonstrated. Each
consists of a notebook-sized computer with a flat display. The sole input device is a stylus, which

is used for gestures and handwriting on the display itself. Figure 2.11 shows the basic gestures
recognized; depending on the context, additional gestures and handwriting can also be recognized.
As can be seen, PenPoint gestures may consist ofmultiple strokes. Although it seems that trainable
recognition algorithms are used internally, at the present time the user cannot add any new gestures
to the existing set. The hardware is able to sense pen proximity (how near the stylus is to the tablet),
which is used to help detect the end of multi-stroke gestures and characters. PenPoint applications
include a drawing program, a word processor, and a form-based data entry system.

Many ofthe above systems combine gesture and direct manipulation in the same interface. GEdit,
for example, appears to treat mouse input as gestural when begun on the background window, but
drags objects when mouse input begins on the object. Almost none combine gesture and direct
manipulation in the same interaction. One exception, PenPoint, uses the dot gesture (touching the
stylus to the tablet and then not moving until recognition has been indicated) to drag graphic objects.
Button Box does something similar for dragging objects. Artkit [52] uses eager recognition, more
or less crediting the idea to me.

2.3 Approaches for Gesture Classification

Fu [40] states that "the problem ofpattern recognition usually denotes a discrimination or classifica-
tion of a set ofprocesses or events." Clearly gesture recognition, in which the input is considered to

be an event to be classified as one of a particular set of gestures, is a problem ofpattern recognition.
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In this dissertation, known techniques of pattem recognition are applied to the problem of sensing
gestures.

The general pattem recognition problem consists of two subproblems: pattem representation
and decision making [40]. This implies that the architecture of the general pattem recognition

consists of two main parts. First, the representer takes the raw pattem as input and outputs the
intemal representation of the pattem. Then, the decider takes as input the output of the representer,
and outputs a classification (and/or a description) of the pattem.

This section reviews the pattem recognition work relevant to gesture recognition. In particular,
the on-line recognition of handwritten characters is discussed whenever possible, since that is the

closest solved problem to gesture recognition. For a good overview of handwriting systems in
general, see Suen et. al. [125] or Tappert et. al. [129].

The review is divided into two parts: altematives for representers and altematives for deciders.
Each altemative is briefly explained, usually by reference to an existing system which uses the
approach. The advantages and disadvantages of the altemative are then discussed, particularly as
they apply to single-path gesture recognition.

2.3.1 Alternatives for Representers

The representer module takes the raw data from the input device and transforms it into a form suitable
for classification by the decider. In the case of single-path gestures, as with on-line handprint, the

raw data consists of a sequence ofpoints. The representer outputsfeatures of the input pattem.

Representers may be grouped in terms of the kinds of features which they output. The major
kinds of features are: templates, global transformations, zones, and geometric features. While a
single representer may combine different kinds of features, representers are discussed here as if
each only outputs one kind of feature. This will make clearer the differences between the kinds of
features. Also, in practice most representers do depend largely on a single kind of feature.

Templates.

Templates are the simplest features to compute: they are simply the input data in its raw form.
For a path, a template would simply consist of the sequence of points which make up the path.
Recognition systems based on templates require the decider to do the difficult work; namely,
matching the template of the input pattern to stored example templates for each class.

Templates have the obvious advantage that the features are simple to compute. One disadvantage
is that the size of the feature data grows with the size of the input, making the features unsuitable as
input to certain kinds of deciders. Also, template features are very sensitive to changes in the size,
location, or orientation of the input, complicating classifiers which attempt to allow for variations
of these within a given class. Examples of template systems are mentioned in the discussion of
template matching below.
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Global Transformations.

Some of the problems of template features are addressed by global transformations of the input
data. The transformations are often mathematically defined so as to be invariant under e.g. rotation,
translation, or scaling of the input data. For example, the Fourier transform will result in features
invariant with respect to rotation of the input pattern [46]. Global transformations generally output
a fixed number of features, often smaller than the input data.

A set of fixed features allows for a greater variety in the choice of deciders, and obviously the
invariance properties allow for variations within a class. Unfortunately, there is no way to "turn
off" these invariances in order to disallow intra-class variation. Also, the global transformations
generally take as input a two-dimensional raster, making the technique awkward to use for path
data (it would have to first be transformed into raster data). Furthermore, the computation of the
transformation may be expensive, and the resulting features do not usually have a useful parametric
interpretations (in the sense of Section 1.6.2), requiring a separate pass over the data to gather

parametric information.

Zones.

Zoning is a simple way of deriving features from a path. Space is divided into a number of zones,
and an input path is transformed into the sequence of zones which the path traverses [57]. One
variation on this scheme incorporates the direction each zone is entered into the encoding [101]. As
with templates, the number of features are not fixed; thus only certain deciders may be used. The
major advantage of zoning schemes are their simplicity and efficiency.

If the recognition is to be size invariant, zoning schemes generally require the input to be
normalized ahead of time. Making a zoning scheme rotationally invariant is more difficult. Such
normalizations make it impossible to compute zones incrementally as the input data is received. Also,
small changes to a pattern might cause zones to be missed entirely, resulting in misclassification.
And again, the features do not usually hold any useful parametric information.

Geometric Features.

Geometric features are the most commonly used in handwriting recognition [125]. Some geometric

features ofa path (such as its total length, total angle, number oftimes it crosses itself, etc.) represent
global properties of the path. Local properties, such as the sequence of basic strokes, may also be
represented.

It is possible to use combinations of geometric features, each invariant under some transforma-

tions ofthe input pattern but not others. For example, the initial angle of a path may be a feature, and
all other features might be invariant with respect to rotation of the input. In this fashion, classifiers
may potentially be created which allow different variations on a per-class basis.

Geometric features often carry useful parametric information, e.g. the total path length, a
geometric feature, is potentially a useful parameter. Also, geometric features can be fed to deciders
which expect a fixed number of features (if only global geometric features are used), or to deciders
which expect a sequence of features (if local features are used).
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Geometric features tend to be more complex to compute than the other types of features listed.
With care, however, the computation can be made efficient and incremental. For all these reasons,
the current work concentrates on the use of global geometric features for the single-path gesture
recognition in this dissertation (see Chapter 3).

2.3.2 Alternatives for Deciders

Given a vector or sequence of features output by a representer, it is the job of the decider to
determine the class ofthe input pattern with those features. Seven general methods for deciders may
be enumerated: template-matching, dictionary lookup, a discrimination net, statistical matching,
linguistic matching, connectionism, and ad hoc. Some of the methods are suitable to only one kind

of representer, while others are more generally applicable.

Template-matching.

A template-matching decider compares a given input template to one or more prototypical templates

of each expected class. Typically, the decider is based on a function which measures the similarity
(or dissimilarity) between pairs of templates. The input is classified as being a member of the same
class as the prototype to which it is most similar. Usually there is a similarity threshold, below
which the input will be rejected as belonging to none of the possible classes.

The similarity metric may be computed as a correlation function between the input and the
prototype [69]. Dynamic programming techniques may be used to efficiently warp the input in order
to better match up points in the input template to those in the prototype [133, 60, 9].

Template systems have the advantage that the prototypes are simply example templates, making
the system easy to train. In order to accommodate large variations, for example in the orientation
of a given gesture, a number of different prototypes of various orientation must be specified.
Unfortunately, a large number of prototypes can make the use of template matching prohibitively
expensive, since the input pattern must be compared to every template.

Lipscomb [80] presents a variation on template matching used for recognizing gestures. In his

scheme, each training example is considered at different resolutions, giving rise to multiple templates
per example. (The algorithm is thus similar to multiscale algorithms used m image processing
[138].) Lipscomb has applied the multiscale technique to stroke data by using an angle filter, in
which different resolutions correspond to different thresholds applied to the angles in the gestures.
To represent a gesture at a given resolution, points are discarded so that the remaining angles are
all below the threshold. To classify an input gesture, first its highest resolution representation is
(conceptually) compared to each template (at every resolution). Successively lower resolutions of
the input are tried in turn, until an exact match is found. Multiple matches are decided in favor of
the template whose resolution is closest to the current resolution of the input.

Dictionary lookup.

When the input features are a sequence of tokens taken from a small alphabet, lookup techniques
may be used. This is often how zoning features are classified [101]. The advantage is efficient
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recognition, since binary search (or similar algorithms) may be used to lookup patterns in the
dictionary. Often some allowance is made for non-exact matches, since otherwise classification is
sensitive to small changes in the input. Even with such allowances, dictionary systems are often
brittle, due to the features employed (e.g. sequences of zones). Of course, a dictionary is initially
created from example training input. It is also a simple matter to add new entries for rejected
patterns; thus the dictionary system can adapt to a given user.

Discrimination nets.

A discrimination net (also called a decision tree) is basically a flowchart without loops. Each
interior node contains a boolean condition on the features, and is connected to two other nodes (a
"true" branch and a "false" branch). Each leaf node is labeled with a class name. A given feature
set is classified by starting at the root note, evaluating each condition encountered and taking the
appropriate branch, stopping and outputting the classification when a leaf node is reached.

Discrimination nets may be created by hand [25], or derived from example inputs [8]. They
are more appropriate to classifying fixed-length feature vectors, rather than sequences of arbitrary

length, and often result in accurate and efficient classifiers. However, discrimination nets trained by
example tend to become unwieldy as the number of examples grows.

Statistical matching.

In statistical matching, the statistics of example feature vectors are used to derive classifiers. Typi-
cally, statisticalmatchers operate only on feature vectors, not sequences. Some typical statistics used
are: average feature vector per class, per-class variances of the individual features, and per-class
correlations within features. One method of statistical matching is to compute the distance of the
input feature vector to the average feature vector of each class, choosing the class which is the clos-
est. Another method uses the statistics to derive per-class discrimination functions over the features.
Discrimination functions are like evaluation functions: each discrimination function is applied to
the input feature vector, the class being determined by the largest result. Fisher [35] showed how to
create discrimination functions which are simply linear combinations of the input features, and thus
particularly efficient. Arakawa et. al.[3] used statistical classification ofFourier features for on-line
handwriting recognition; Chapter 3 of the present work uses statistical classification of geometric

features.

Some statisticalclassifiers, such as the Fisher classifier, make assumptions aboutthe distributions
of features within a class (such as multivariate normality); those tend to perform poorly when the
assumptions are violated. Other classifiers [48] make no such assumptions, but instead attempt to
estimate the form ofthe distribution from the training examples. Such classifiers tend to require many
training examples before they function adequately. The former approach is adopted in the current
work, with the feature set carefully chosen so as to not violate assumptions about the underlying
distribution too drastically.
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Figure 2.12: Shaw's Picture Description Language
PDL enables line drawings to be coded in stringform, making itpossible to apply textualparsing algorithms

to the recognition of line drawings. The component line segments and combining operations are shown on

the left; the right shows how the letter "A" can be described using theseprimitives.

Linguistic matching.

The linguistic approach attempts to apply automata and formal language theory to the problem of
pattem recognition [37]. The representer outputs a sequence oftokens which is composed of a set of
pattem primitives and composition operators representing the relation between the primitives. The
decider has a grammar for each possible pattem class. It takes as input the sentence and attempts to
parse it with respect to each pattem class grammar. Ideally, exactly one of the parses is successful
and the pattem is classified thus. A useful side effect of the syntax analysis is the parse tree (or other
parse trace) which reveals the intemal structure of the pattem.

Linguistic recognizers may be classified based on the form of the representer output. If the
output is a string then standard language recognition technology, such as regular expressions and

context-free gr-·······-·· s, may be used to parse the input. An error-correcting parser may be used in
order to robustly deal with errors in the input. Altematively, the output of the representer may be a
tree or graph, in which case the decider could use graph matching algorithms to do the parse.

The token sequence could come from a zoning representer, a representer based on local geometric
properties, or from the output of a lower-level classifier. The latter is a hybrid approach-where, for

example, statistical recognition is used to classify paths (or path segments), and linguistic recognition
is used to classify based on the relationships between paths. This approach is similar to that taken
by Fu in a number of applications [40, 39, 38].

Shaw's picture description language (PDL, see figure 2.12) has been used successfully to describe
and classify line drawings [116, 40]. In another system, Stallings [120, 37] uses the composition
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