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return self;

- activeHandler:e {

int x, y;

if(relative) {

x = [93 loc] x], y = [93 loc] y];

[view perform:whenmoved

with:(x - savedx) with:(y - savedy)];

savedx = x, savedy = y;

else {

x = [WS loc] x] + savedx, y = [93 loc] y] + savedy;
[view perform:whenmoved with:x with:y];

if(genevents)

[wall raise:[B2 class] tool:view loc:newloc
wall:wall instigator:self time:Ma time]]];

return self;

- activeTerminator:e {

if(genevents)
[wall raise:[B2 class] tool:view loc:Ma loc]

wall:wall instigator:self time:Ma time]]];

if(whendone) [view perform:whendone];

return self;

The passive factory method creates a DragHandler with instance variables set to the
default parameters. Those parameters can be changed with the startp:, handlep, stopp:,
copyviewON,genEventsOFF,relativeON,whendone:,andwhenmoved: messages.
(Please refer to the comments in the above code for a description ofthe function ofthese parameters.)

For example, a DragHandler might be associated with class LabelView as follows:

= LabelView ...
+ initialize {

[self sethandler:

[[[DragHandler passive]

startp:[[[EventExpr new]
eventkind:PickEvent] toolkind:MouseTool]]

genEventsOFF]];

Any LabelView can thus be dragged around with the mouse by clicking directly on it (since
the start predicate was changed to PickEvent). A LabelView will not generate events as it is
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dragged since genEventsOFF was sent to the handler; thus LabelViews in general would not
be used as tools or items that can be deposited in buckets. Of course, subclasses and instances of
LabelView may have their own passive event handlers to override this behavior.

When a passive DragHandler gets an event that satisfies its start predicate, the
passiveHandler: method is invoked. For a DragHandler, some location information is
saved, the view is copied ifneed be, and the view is flashed (rapidly highlighted and unhighlighted)
as user feedback.

Any subsequent event that satisfies the stop predicate will cause the activeTerminator:
method to be invoked. Other events that satisfy the handle predicate will cause act iveHandler :
to be invoked. In DragHandler, activeHandler: first moves the view (typically by sending
it the at : : message with the new coordinates as arguments) then possibly raises a new event with
the view playing the role of tool in the event. If the view is indeed a tool, raising this event might
result in the GenericToolonview handler being activated, as previously discussed.

Note that the event to be raised is created by first determining the class object (factory) of the
passed event (given the default predicates, in this case the class will either be MoveEvent or
DropEvent), and then asking the class to create a new event, which will thus be the same class
as the passed event. Most of the new event attributes are copied verbatim from the old attributes;
only the tool and instigator are changed. A more sophisticated DragHandler might also
change the event location to be at some designated hot spot of the view being moved, rather than
simply use the location of the passed event. For simplicity, this was not shown here.

The activeTerminator: method also possibly raises a new event, and possibly sends the
view the message stored in the whendone variable. As an example, whendone might be set to
@selector (delete) when copyview is set. When the mouse button is pressed over a view, a

copy of the view is created. Moving the mouse drags the copy, and when the mouse button is finally
released, the copy is deleted.

Creating a new drag handler and associating it with a view or view class is all that is required to
make that view "draggable" (since every view inherits the at : : message). As shown in the next
chapter, GRANDMA has a facility for creating handlers and making the association at runtime.

6.8 Summary of GRANDMA

This concludes the detailed discussion of GRANDMA. As the discussion has concentrated on the
features which distinguish GRANDMA from other MVC-like systems, much of the system has not
been discussed. It should be mentioned that the facilities described are sufficiently powerful to build
a number of useful view and controller classes. In particular, standard items such as popup views,
menus, sliders, buttons, switches, text fields, and list views have all been implemented. Chapter 8
shows how some of these are used in applications.

GRANDMA's innovations come from its input model. Here is a summary of the main points of
the input architecture:

1. Input events are full-blown objects. The Event hierarchy imposes structure on events without

imposing device dependencies.
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2. Raised events are propagated down an active event list.

3. Otherwise unhandled events with screen locations are automatically routed to views at those
locations.

4. A view object may have any number ofpassive event handlers associated with itself, its class,
or its superclass, etc. Events are automatically routed to the appropriate handler.

5. A passive event handler may be shared by many views, and can activate a copy of itself to

deal with events aimed at any particular view.

6. Event handlers have predicates that describe the events to which they respond.

7. The generic event handler simplifies the creation of dynamically parameterizable event han-
dlers.

Because of the input architecture, GRANDMA has a number of novel features. They are listed
here, and compared to other systems when appropriate.

GRANDMA can support many different input devices simultaneously. Due to item 1 above,
GRANDMA can support many different input devices in addition to just a single keyboard
and mouse. Each device needs to integrate the set of event classes which it raises into
GRANDMA's Event hierarchy. Much flexibility is possible; for example, a Sensor Frame
device might raise a single SensorFrameEvent describing the current set of fingers in the
plane of the frame, or separate DragEvents for each finger, the tool in this case being a
SensorFrameFingerTool. Because of item 6, it is possible to write event handlers for

any new device which comes along.

By contrast, most ofthe existing user interface toolkits have hard-wired limitations in the kinds
of devices they support. For example, most systems (the NeXT AppKit [102], the Macintosh

Toolbox [1], the X library [41]) have a fixed structure which describes input events, and
cannot be easily altered. Some systems go so far as to advocate building device dependencies
into the views themselves; for example, Hypertalk event handlers [45] are labeled with event
descriptors such as mouseUp and Cox's system [28] has views that respond to messages like
rightButtonDown. Similarly, systems with a single controller per view [70] cannot deal
with input events from different devices. On the other hand, GWUIMS [118] seems to have
a general object classification scheme for describing input events.

GRANDMA supports the emulation of one device with another. In GRANDMA, to get the most
out of each device it is necessary to have event handlers which can respond to events from that
device associated with every view that needs them. If those event handlers are not available, it
is still possible to write an event handler that emulates one device by another. For example, an
active handler might catch all SensorFrameEvents and raise DragEvents whose tool
is a Mousetool in response. The rest of the program cannot tell that it is not getting real
mouse data; it responds as if it is getting actual mouse input.
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GRANDMA can handle multiple input threads simultaneously. Because passive handlers acti-
vate copies of themselves, even views that refer to the same handler can get input simul-
taneously. The input events are simply propagated down the active event handler list, and
each active handler only handles the events it expects. In GRANDMA, a system that had
two mice [19] would simply have two MouseTool objects, which could easily interleave
events. Normally, a passive handler would only activate itself to receive input from a single
tool (mouse, in this case), allowing input from the two mice to be handled independently
(even when directed at the same view). It would also be possible to write an event handler
that explicitly dealt with events from both mice, if that was desired.

Event-based systems, such as Sassafras [54] and Squeak [23], are also able to deal with multi-
threaded dialogues. Indeed, it is GRANDMA's similarity to those systems which gives it a
similar power. This is in contrast to systems such as Smalltalk [70] where, once a controller
is activated it loops polling for events, and thus does not allow other controllers to receive
events until it is deactivated.

GRANDMA provides virtual tools. Given the general structure ofinput events, there is no require-

ment for them only to be generated by the window manager. Event handlers can themselves
raise other events. Many events have tools associated with them; for example, mouse events
are associated with MouseTools. The tools may themselves be views or other objects. By
responding to messages such as action, a tool makes known its effect on objects which it
is dragged over. The GenericToolonview handler, which is associated with the view
class (and thus every view in the system) will handle the interaction when a tool which has a
certain action is dragged over an object which accepts that action. The tools are virtual, in the
sense that they do not correspond directly to any input hardware, and they may send arbitrary
messages to views with which they interact.

GRANDMA supports semantic feedback. HandlerslikeGenericToolonview cantestatrun-
time if an arbitrary tool is able to operate upon an arbitrary view which it is dragged over, and
if so highlight the view and/or tool. No special code is required in either the tool or the view
to make this work. A tool and the views upon which it operates often make no reference to
each other. The sole connection between the two is that one is able to send a message that the
other is able to receive.

Of course, the default behavior may be easily overridden. A tool can make arbitrary enquiries
into the view and its model in order to decide if it does indeed wish to operate upon the view.

Event handling in GRANDMA is both general and efficient. The generality comes fromthe event
dispatch, where, if no other active handler handles an event, the XYEventHandler can
query the views at the location of the event. The views consult their own list of passive
event handlers, which potentially may handle many different kinds of events. There is space
efficiency in that a single passive event handler may be shared by many views, eliminating
the overhead of a controller object per view. There is time efficiency, in that once a passive
handler handles an event, it may activate itself, after which it receives events immediately,
without going through the elaborate dispatch of the XYEventHandler.
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Artkit [52] has a priority list of dispatch agents that is similar to GRANDMA's active event
handler list. Such agents receive low-level events (e.g. from the window manager), and
attempt to translate them into higher level events to be received by interactor objects (which
seem to be views). Interactor agents register the high-level events in which they are interested.

Artkit's architecture is so similar to GRANDMA's that it is difficult to precisely characterize
the difference. The high-level events in Artkit play a role similar to both that ofmessages that
a view may receive and events that a view's passive event handlers expect. In GRANDMA,
the registering is implicit; because of the Objective-C runtime implementation, the messages
understood by a given object need not be specified explicitly or limited to a small set. Instead,
one object may ask another if it recognizes a given message before sending it.

Because of the translation from low-level to high-level events, it does not seem that Artkit

can, for example, emulate one device with another. In particular, it does not seem possible to
translate low-level events from one device into those of another. GRANDMA does not make
a distinction between low-level and high-level events. Instead, GRANDMA distinguishes
between events and messages; events are propagated down the active event handler list; when
accepted by an event handler, the handler may raise new events and/or send messages to views
or their models.

GRANDMA supports gestures. GRANDMA's general input mechanism had the major design goal
of being able to support gestural input. As will be seen in the next chapter, the gestures are
recognized by GestureEventHandlers; these collect mouse (or other) events, determine
a set ofgestures which they recognize depending on the views at the initial point ofthe gesture,
and once recognized, can translate the gesture into messages to models or views, or into new
events.

Artkit also handles gesturalinput, and, somewhat like GRANDMA, has gesture event handlers
which capture low-level events and produce high-level events. The designers claim that Artkit,
because of its object-oriented structure, can use a number of different gesture recognition

algorithms, and thus tailor the recognizer to the application, or even bits of the application.
The same is true for GRANDMA, of course, though the intention was that the algorithms
described in the first half of the thesis are of sufficient generality and accuracy that other
recognition algorithms are not typically required. Artkit's claim that many recognizers can be
used seems like an excuse not to provide any. One of the driving forces behind the present
work is the belief that gesture recognizers are sufficiently difficult to build that requiring
application programmers to hand code such recognizers for each gesture set is a major reason
that hardly any applications use gestures. Thus, it is necessary to provide a general, trainable
recognizer in order for gesture-based interfaces to be explored. How such a recognizer is
integrated into an object-oriented toolkit is the subject of the next chapter.

Of course, GRANDMA does have its disadvantages. Like other MVC systems, GRANDMA
provides a multitude of classes, and the programmer needs to be familiar with most ofthem before he
can decide how to best implement his particular task. The elaborate input architecture exacerbates
the problem: a large number of possible combinations of views, event handlers, and tools must be
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considered by the programmer of a new interaction technique. Also, GRANDMA does nothing
toward solving a common problem faced when using any MVC system: deciding what functionality
goes into a view and what goes into a model. Another problem is that even though the protocol
between event handlers and views is meant to be very general (the event handlers are initialized
with arbitrary message selectors to use when communicating with the view), in practice the views
are written with the intention that they will communicate with particular event handlers, so that it is
not really right to claim that specifics of input have truly been factored out of views.

APLNDC00022091



Chapter 7

Gesture Recognizers in GRANDMA

This chapter discusses how gesture recognition may be incorporated into systems for building
direct manipulation interfaces. In particular, the design and implementation of gesture handlers in
GRANDMA is shown. Even though the emphasis is on the GRANDMA system, the methods are
intended to be generally applicable to any object-oriented user interface construction tool.

7.1 A Note on Terms

Before beginning the discussion, some explanation is needed to help avoid confusion between
terms. As discussed in Section 6.4, it is important not to confuse the view hierarchy, which is
the tree determined by the subview relationship, and the view class hierarchy, which is the tree
determined by the subclass relationship. In GRANDMA, the view hierarchy has a wallview
object (corresponding to an X window) at its root, while the view class hierarchy has the class view
at its root.

Another potentially ambiguous term is "class." Usually, the term is used in the object-oriented
sense, and refers to the type (loosely speaking) ofthe object. However, the term "gesture class"refers

to the result of the gesture recognition process. In other words, a gesture recognizer (also known
as a gesture classifier) discriminates between gesture classes. For example, consider a handwriting
recognizer able to discriminate between the written digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. In this
example, each digit represents a class; presumably, the recognizer was trained using a number of
examples of each class.

To make matters more confusing, in GRANDMA there is a class (in the object-oriented sense)
named Gesture; an object of this class represents a particular gesture instance, i.e. the list of
points which make up a single gesture. There is also a class named Gestureclass; objects of
this class refer to individual gesture classes; for example, a digit recognizer would reference 10

different Gestureclass objects.
Sometimes the term "gesture" is used to refer to an entire gesture class; other times it refers

to a single instance of gesture. For example, when it is said a recognizer discriminates between a
set of gestures, what is meant is that the recognizer discriminates between a set of gesture classes.
Conversely, "the user enters a gesture" refers to a particular instance. In all cases which follow, the

125
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intent should be obvious from the context.

7.2 Gestures in MVC systems

As discussed in Chapters 2 and 6, object-oriented user interface systems typically consist of models
(application objects), views (responsible for displaying the state of models on the screen), and
controllers (responsible for responding to input by sending messages to views and models). Typical
Model/View/Controller systems, such as that in Smalltalk[70], have a view object and controller
object for each model object to displayed on the screen.

This section describes how gestures are integrated into GRANDMA, providing an example of
how gestures might be integrated into other MVC-based systems.

7.2.1 Gestures and the View Class Hierarchy

Central to all the variations of object-oriented user interface tools is the view class. In all such
systems, view objects handle the display of models. Since the notion of views is central to all
object-oriented user interface tools, views provide a focal point for adding gestures to such tools.

Simply stated, the idea for integrating gestures into direct manipulation interfaces is this: each
view responds to a particular set of gestures. Intuitively, it seems obvious that, for example, a

switch should be controlled by a different set ofgestures than a dial. The ability to simply and easily
specify a set of gestures and their associated semantics, and to easily associate the set of gestures
with particular views, was the primary design goal in adding gestures to GRANDMA.

Of course, it is unlikely that every view will respond to a distinct set of gestures. In general, the
user will expect similar views to respond to similar sets ofgestures. Fortunately, object-oriented user
interfaces already have the concept of similarity built into the view class hierarchy. In particular,
it usually makes the most sense for all view objects of the same class to respond to the same set of
gestures. Similarly, it is intuitively appealing for a view subclass to respond to all the gestures ofits
parent class, while possibly responding to some new gestures specific to the subclass.

The above intuitions essentially apply the notions of class identity and inheritance[121] (in the
object-oriented sense) to gestures. It is seen that gestures are analogous to messages. All objects of

a given class respond to the same set of messages, just as they respond to the same set of gestures.
An object in a subclass inherits methods from its superclass; similarly such an object should respond
to all gestures to which its superclass responds. Continuing the analogy, a subclass may override
existing methods or add new methods not understood by its superclass; similarly, a subclass may
override (the interpretation of) existing gestures, or recognize additional gestures. Some object-
oriented languages allow a subclass to disable certain messages understood by its superclass (though
it is not common), and analogously, it is possible that a subclass may wish to disable a gesture class
recognized by its superclass.

Given the close parallel between gesture classes and messages, one possible way to implement
gesture semantics would be for each kind of view to implement a method for each gesture class it
expects. Classifying an input gesture would result in its class's particular message to be sent to the
view, which implements it as it sees fit. A subclass inherits the methods of its superclass, and may
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override some of these methods. Thus, in this scheme a subclass understands all the gestures that
its superclass understands, but may change the interpretation of some of these gestures.

This close association of gestures and messages was not done in GRANDMA since it was felt to
be too constricting. Since in Objective C all methods have to be specified at compile time, adding
new gesture classes would require program recompilations. Since it is quite easy to add new gesture
classes at runtime, it would be unfortunate if such additions required recompilations. One of the
goals ofGRANDMA is to permit the rapid exploration ofdifferent gestures sets and their semantics;
forcing recompilations would make the whole system much more tedious to use for experimentation.

Instead, the solution adopted was to have a small interpreter built into GRANDMA. A piece
of interpreted code is associated with each gesture class; this code is executed when the gesture is
recognized. Since the code is interpreted, it is straightforward to add new code at the time a new
class is specified, as well as to modify existing code, all at runtime. While at first glance building
an interpreter into GRANDMA seems quite difficult and expensive, Objective C makes the task
simple, as explained in Section 7.7.3.

7.2.2 Gestures and the View Tree

Consider a number ofviews being displayed in a window. In GRANDMA, as in many other systems,
pressing a mouse button while pointing at a particular view (usually) directs input at that view. In
other words, the view that gets input is usually determined at the time of the initial button press.
Due to the view tree, views may overlap on the screen, and thus the initial mouse location may point
at a number of views simultaneously. Typically the views are queried in order, from foremost to
background, to determine which one gets to handle the input.

A similar approach may be taken for gestures. The first point ofthe gesture determines the views
at which the gesture might be directed. However, determining which ofthe overlapping views is the
target of the gesture is usually impossible when just the first point has been seen. What is usually
desirable is that the entire gesture be collected before the determination is made.

Consider a simplification of GDP. The wall view, behind all other views, has a set of gestures
for creating graphic objects. A straight stroke "-" gesture creates a line, and an "I" gesture creates a
rectangle. The graphic object views respond to a different set of gestures; an "X" deletes a graphic
object, while a "C" copies a graphic object. When a gesture is made over, say, an existing rectangle,
it is not immediately clear whether it is directed at the rectangle itself or at the background. It
depends on the gesture: an "X" is directed at the existing rectangle, an "L" at the wall view. Clearly
the determination cannot be made when just the first point of the gesture has been seen.

Actually, this is not quite true. It is conceivable that the graphic object views could handle
gestures themselves that normally would be directed at the wall view. There is some practical value
in this. For example, creating a new graphic object over an existing one might include lining up
the vertices of the two objects. However, while it is nice to have the option, in general it seems a
bad idea to force each view to explicitly handle any gestures that might be directed at any views it
covers.

Chapter 3 addressed the problem of classifying a gesture as one of a given set of gesture classes.
It is seen here that this set of gestures is not necessarily the set associated with a single view, but
instead is the union of gesture sets recognized by all views under the initial point. There are some
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technical difficulties involved in doing this. It would in general be quite inefficient to have to
construct a classifier for every possible union of view gestures sets. However, it is necessary that
classifiers be constructed for the unions which do occur. The current implementation dynamically
constructs a classifier for a given set of gesture classes the first time the set appears; this classifier is
then cached for future use.

It is possible that more than one view under the initial point responds to a given gesture class.
In these cases, preference is given to the topmost view. The result is a kind of dynamic scoping.
Similarly, the way a subclass can override a gesture class recognized by its superclass may be
considered a kind of static scoping.

7.3 The GR ANDMA Gesture Subsystem

In GRANDMA, gestural input is handled by objects of class GestureEventHandler. Class
GestureEventHandler, a subclass ofGenericEventHandler, is easily the most complex
event handler in the GRANDMA system. In addition to the five hundred lines of code which
directly implement its various methods, GestureEventHandler is the sole user of many other
GRANDMA subsystems. These include the gesture classification subsystem, the interface which
allows the user to modify gesture handlers (by, for example, adding new gesture classes) at runtime,
the Objective C interpreter used for gesture semantics and its user interface, as well as some classes
(e.g. GestureEvent, TimeoutEvent) used solely by the gesture handler.

Before getting into details, an overview of GRANDMA's various gesture-related components is

presented. Figure 7.1 shows the relations between objects and classes associated with gestures in
GRANDMA. The main focus is the GestureEventHandler. Like all event handlers, when acti-
vated it has a view object, which itselfhas a model and a wall view.1 A Ge stureEventHandler

uses the wall view to activate itself, raise GestureEvents, set up timeouts and their handlers, and
draw the gesture as it is being made.

Associated with a gesture event handler is a set of semclass objects. A SemClass object
groups together a gesture class object (class Gestureclass) with three expressions (subclasses
ofExpr). The Gestureclass objects represent the particular gesture classes recognized directly
by this event handler. The three expressions comprise the semantics associated with the gesture class
by this event handler. The first expression is evaluated when the gesture is recognized, the second
on each subsequent input event handled by the gesture handler after recognition (the manipulation
phase, see Section 1.1), and the third when the manipulation phase ends.

Associated with each Gestureclass object is a set of Gesture objects. These are the
examples of gestures in the class and are used in the training of classifiers that recognize the
class. A Gestureclass object contains aggregate information about its examples, such as the
estimated mean vector and covariance matrix of the examples' features, both of which are used in
the construction of classifiers.

When a GestureEventHandler determines which gesture classes it must discriminate
among (according to the rules described in the previous section), it asks the classifier class

Recall that a wall view is the root of the view tree and represents a window on the screen.
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Figure 7.1: GRANDMA's gesture subsystem
A passive GestureEventHandler is associated with a view or view class that expects gestural input.

Once gestural input begins, the handler is activated and refers directly to the view at which the gesture was

directed, as shown in thefigure. The ImmediatePicture object is usedfor the inking ofthe gesture. The

handler uses a timeout mechanism to indicate when to changefrom the collection to manipulation state. A

semc1as s object existsfor each gesture expected by the handler with each semcl as s object associatinga

gesture class with its semantics. Each GestureClass object is described by a set ofexample Gestures,

and there are view objects for each of the examples (SmallGestureView) as well as for the class as

a whole (GestureClassView, SmallGestureClassView) which allow these to be displayed and

edited. The gesture semantics are represented by Expr objects, and may be edited in the InterpView

window.
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for a classifier object capable of doing this discrimination. Normally such a classifier will already
exist; in this case, the existing classifier is simply returned. It is possible that one of the gesture
classes in the set has changed; in this case the existing classifier has to be retrained (i.e. recalculated).
Occasionally, this set of gesture classes has never been seen before; in this case a new classifier is
created for this set, returned, and cached for future use.

The components related to the gesture event handler through GestureHandlerView are all
concerned with enabling the user to see and alter various facets of the event handler. The predicates
for starting, handling, and stopping the collection of gesture input may be altered by the user. In
addition, gesture classes may be created, deleted, or copied from other gesture event handlers. The
examples of a given class may be examined, and individual examples may be added or deleted.
Finally, the semantics associated with a given gesture class may be altered through the interface to
the Objective C interpreter.

7.4 Gesture Event Handlers

The details of the class GestureEventHandler are now described, beginning with its instance
variables.

static BOOL masterSwitch = YES;
= GestureEventHandler : GenericEventHandler {

STR name;

id gesture;
id picture;
id classes;
id env;

int timeval;

id timeouteh;

short lastx, lasty;
id sclass;
struct gassoc { id sclass, view; } *gassoc;
int ngassocs;
id class set;

BOOL manip_phase;
BOOL classify;

BOOL ignoring;

id mousetool;

Themasterswitch, settableviathemasterswitch: factory method, enables and disables
all gesture handlers in an application. This provides a simple method for an application to provide
two interfaces, one gesture-based, the other not. Every gesture handler will ignore all events when
masterswitch is NO. It will be as if the application had no gesture event handlers. Typically, the
remaining event handlers wouldprovide a more traditional click and drag interface to the application.
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A particular handler can be turned off by setting its ignoring instance variable via the
ignore : message. GRANDMA can thus be used to compare, say, two completely different ges-
tural interfaces to a given application, switching between them at runtime by turning the appropriate
handlers on and off.

The instance variable name is the name ofthe gesture handler. A handler is named so that it can
be saved, along with its gesture classes, their semantics and examples, in a file. This is obviously
necessary to avoid having the user enter examples of each gesture class each time an application is
started. The name is passed to the passive : method which creates a passive gesture handler:

= GestureEventHandler . . .
+ passive: (STR) _name {

FILE *f;

self = [super passive];

classes = [OrdCltn new];
[self instantiateON] ;

[self startp:[[[EventExpr new] eventkind:PickEvent]

toolkind:MouseTool] ] ;

[self handlep:[[EventExpr new] eventkind:DragEvent]];

[self stopp:[[EventExpr new] eventkind:DropEvent]];

[self name: name] ;

timeval = DefaultTimeval;

classify = YES;

if((f = [self openfile:"r"]) != NULL) [self read:f];

return self;

The typical gesture handler activates itself in response to mouse PickEvents, handles all
subsequent mouse events, and deactivates itselfwhen the mouse button is released. Of course, being
a kind of generic event handler, this default behavior can be easily overridden, as was done to the
DragEventHandler discussed in Section 6.7.9.

By default, the gesture event handler plans to classify any gestures directed at it (classify =
YES). This is changed in those gesture event handlers that collect gestures for training other gesture
event handlers.

The default timeval is 200, meaning 200 milliseconds, or two tenths of a second. This is

the duration that mouse input must cease (the mouse must remain still) for the end of a gesture to
be recognized. The user may change the default, thus affecting every gesture event handler. The
timeout interval may also be changed on a per handler basis, a feature useful mainly for comparing
the feel of different intervals.

When an event satisfies the handler's start predicate, the handler activates itself, and its
passiveHandler is called.

= GestureEventHandler . . .
- passiveHandler:e {

gesture = [[Gesture new] newevent:e];
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picture = [ImmediatePicture create];

[view _hang:picture at:0:0];
lastx = [WS loc] x]; lasty = [WS loc] y];

env = [Env new];
[env str:"gesture" value:gesture];

[env str:"startEvent" value:Be copy]];

[env str:"currentEvent" value:Be copy]];

[env str:"handler" value:self];

manip_phase = NO;
timeouteh = [[TimeoutEventHandler active]

rec:self sel:@selector(timedout:)];

[wall activate:timeouteh];

[wall timeout:timeval];

if(classify) {

class set = [Set new];

gassoc = (struct gassoc *)
malloc(MAXCLASSES * sizeof(struct gassoc));

ngassocs = 0;
[[wall handlers]

raise:[GestureEvent instigator:self event:e

env:[[Env new] str:"event" value:e]]];

return self;

The passive handler allocates a new Gesture object which will be sent the input events as they
arrive. The initial event is sent immediately.

The picture allows the gesture handler to ink the gesture on the display as it is being made.
Class ImmediatePicture is used for pictures which are displayed as they are drawn, rather than
the normal HangingPicture class which requires pictures to be completed before they can be
drawn.

The env variable holds the environment in which the gesture semantics will be executed.
Within this environment, the interpreter variables gesture, startEvent, currentEvent,
and handler are bound appropriately (see Section 7.7.1).

The boolean manip_phase is true if and only if the entire gesture has been collected and the
handler is now in the manipulation phase (see Section 1.1).

A TimeoutEventHandler is created and activated. When a TimeoutEvent is received
by the handler, the handler will send an arbitrary message (with the timeout event as a param-
eter) to an arbitrary object. In the current case, the t imedout : message is sent to the active
GestureEventHandler. In retrospect, the general functionality of the
TimeoutEventHandler is not needed here; the GestureEventHandler could itself easily
receiveandprocessTimeoutEventsdirectly,withouttheoverheadofaTimeoutEventHandler.
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The code [wall timeout : t imeval] causes the wall to raise a TimeoutEvent if there

has been no input to the wall in t imevai milliseconds. A t imeval of zero disables the raising of
TimeoutEvents. As previously mentioned, a gesture is considered complete even if the mouse
button is held down, as long as the mouse has not been moved in timeval milliseconds. The
TimeoutEvent is used to implement this behavior.

If the gesture being collected is intended to be classified, the set ofpossible gesture classes must
be constructed, and a set object is allocated for this purpose. Recall from Section 7.2.2 that there
may be multiple views at the location of the start gesture each ofwhich accepts certain gestures. An
array of gassoc structures is allocated to associate each of the possible gesture classes expected
with its corresponding view. A GestureEvent is then raised, with the instigator being the current
gesture handler, and having the current event as an additional field.

Raising the GestureEvent initiates the search for the possible gesture classes given the initial
event. Recall from Sections 7.2.1 and 7.2.2 that each view under the initial point is considered from
top to bottom, and for each view, the gestures associated directly with the view itself, and with
its class and superclasses, are added in order. Note that this is exactly the same search sequence
as that used to find passive event handlers for events that no active handler wants (see Section
6.7). The GestureEvent, handled by the same passive event handler mechanism, will thus be
propagated to other GestureEventHandlers in the correct order. Each passive gesture handler
that would have handled the initial event sends a message to the gesture handler which raised the
GestureEvent indicating the set of gesture classes it recognizes and the view with which it is
associated.

Note that only views under the first point of the gesture are queried. The case where a gesture
is more naturally expressed by not beginning on the view at which it is targeted is not handled by
GRANDMA. For example, it would be desirable for a knob turning gesture to go around the knob,
rather than directly over it. In GRANMDA either the knob view area would have to be larger than
the actual knob graphic to insure that the starting point of the gesture is over the knob view, or a
background view that includes the knob as a subview must handle the knob-turning gesture. In the

latter case, the gesture semantics are complicated because the background view needs to explicitly
determine at which knob, if any, the gesture is directed. Henry et. al. [52] also notes the problem,

and suggests that one gesture handler might hand off a gesture in progress to another handler if it
determines that the initial point ofthe gesture was misleading, but exactly how such a determination
would be made is unclear.

= GestureEventHandler . . .

- (BOOL)event:e view:v {

if ( (classify && masterSwitch==NO) || ignoring==YES)

return NO;

if ( [e isKindOf : GestureEvent] ) {

if (classify

&& [self evalstart:[[e env] str:"view" value:v] )

[ [e instigator] classes:classes view:v ] ;

return NO;
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return [super event:e view:v];

The GestureEventHandler overrides GenericEventHandler's event:view:
method to check directly for GestureEvents. (A check for GestureEvents could have
been included in the default start predicate, but this would require programs which modify the
start predicate to always include such a check, an unnecessary complication.) First the state of
the masterswitch and ignoring switches is checked, so that this handler will not operate if
explicitly turned off. (The reason classify is checked is to allow gesture handlers which do not
classify gestures, i.e. those used to collect gesture examples for training purposes, to operate even
though gestures are disabled throughout the system.)

When a GestureEvent is seen, the handler checks that it indeed classifies gestures and that it
would itself have handled the start event (see Section 6.7.8). The environment used for evaluating
the start predicate is constructed so that " event " and "view" are bound to what they would have
been had the handler actually been asked to handle the initial event. If the handler would have
handled the event, the set of gesture classes associated with the handler, as well as the view, are
passed to the handler which instigated the GestureEvent.

Note that no special case is needed for the handler which actually raised the GestureEvent.
This handler will be the first to receive and respond to the GestureEvent, which it will then
propagate to any other handlers. The propagation occurs simply because the event:view:
method returns No, as if it did not handle the event at all.

= GestureEventHandler . . .

- classes:gesture_classes view:v {

id c, seq = [gesture_classes eachElement];
while ( c = [seq next] ) {

if ( [class_set addNTest:c] ) { /* addednewelement? */

gassoc[ngassocs].sclass = c;

gassoc[ngassocs].view = v;

ngassocs++;

return self;

Each gesture handler that could have handled the initial event sends the gesture handler that did
handle the initial event the classes:view: message. The latter handler then adds each gesture
class to its class_set. If the gesture class was not previously there, it is associated with the
passed view via the gassoc array. This membership test assures that when a given gesture class is
expected by more than one view (at the initial point), the topmost view will be associated with the
gesture class.

By the time the GestureEvent has finished propagating, the class_set variable of the
instigator will have as elements the gesture classes (semClass objects, actually) that are valid
given the initial event. The gassoc variable ofthe instigator will associate each such gesture class
with the view that will be affected if the gesture being entered turns out to be that class.
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The search for the set ofvalid gesture classes may be relatively expensive, especially if there are
a significant number of views under the initial event and each view has a number of event handlers
associated with it. The substantial fraction of a second consumed by the search had an unfortunate
interaction with the lower level window manager interface that resulted in an increase in recognition
errors. When queried, the low-level window manager software returns only the latest mouse event,
discarding any intermediate mouse events that occurred since it was last queried. The time interval
between the first and second point of the gesture was often many times larger than the interval
between subsequent pairs of points. More importantly, it was much larger than that of the first and
second points ofthe gesture examples used to train the classifier. Details at the beginning ofgestures
would be lost, and some features, such as the initial angle, would be significantly different. The
substantial delay in sampling the second point of the gesture thus caused the classifier performance
to degrade.

There are a number ofpossible solutionsto this problem. The windowmanager software could be
set to not discard intermediate mouse events, thus resulting in similar data in the actual and training
gestures. This would result in a large additional number of mouse events, and a corresponding
increase in processing costs, making the system appear sluggish to the user if events could not be
processed as fast as they arrived. Or, the search for gesture classes could be postponed until after
the gesture was collected. This would result in a substantial delay after the gesture was collected,
again making the system appear sluggish to the user. The solution finally adopted was to poll the
window manager during the raising of GestureEvents. (In the interest of clarity, the code in
XyEventHandler and EventHandlerList which did the polling was not shown.) After this
modification, running GestureEventHandlers received input events at the same rate as the
GestureEventHandlers used for training, improving recognition performance considerably.

The polling resulted in new mouse events being raised before the GestureEvent was finished
being propagated. The result was a kind of pseudo-multi-threaded operation, with many of the
typical problems which arise when concurrency is a possibility. GestureEventHandlers were
complicated somewhat, since, for example, they had to explicitly deal with the possibility that
the end of the gesture might be seen before the set of possible gesture classes was calculated.
Also, the event handling methods for GestureEventHandlers had to be made reentrant. The
complications have been omitted from the code shown here, since they tend to make the program
much more difficult to understand.

The end of a gesture is indicated either by a timeout event (resulting in a t imedout : message
being sent to the GestureEventHandler), or by the stop predicate being satisfied (resulting
in the activeTerminator: message being sent to the handler). The third alternative, eager
recognition (Chapter 4), has not yet been integrated into the GRANDMA gesture handler, though it
has been tested in non-GRANDMA applications (see Section 9.2).

= GestureEventHandler . . .

- timedout:e { if ( ! [self gesture:gesture] )

[self deactivate] ; return nil; }

- activeTerminator:e {

[env str: "currentEvent " value: [e copy] ] ;
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if(I manip_phase) [self gesture:gesture];

return self;

Both methods result in the gesture : message being sent when the gesture has been completely
collected. The gesture: message returns nil if the gesture has no semantics to be evaluated
during the manipulation phase. This is checked by the t imedout : method, and in this case
the handler simply deactivates itself immediately. This is typically used by gesture classes whose
recognition semantics change the mouse tool (e.g. a delete gesture that changes the mouse cursor to
a delete tool); a timeout deactivates the gesture handler immediately, allowing the mouse to function
as a tool as long as the mouse button is held.

The GenericEventHandler code arranges for the deact ivate message to be sent imme-

diately after the activeTerminator: message, so there is no need for the
activeTerminator: method to explicitly send deactivate. The environment is changed
so that the semantic expression evaluated in the deactivate method executes in the correct
environment. The gesture : method is called if the handler is still in the gesture collection phase,
e.g. if the gesture end was indicated by releasing the mouse button rather than a timeout.

= GestureEventHandler . . .
- deactivate {

id r;

if(manip_phase && sclass)

eval([sclass done_expr], env, TypeId, &r);

return [super deactivate];

The gesture: method sets the sclass field to the SemClass object of the recognized
gesture. The done expression, the last of three semantic expressions, is evaluated immediately
before the gesture handler is deactivated.

= GestureEventHandler . . .
- (BOOL)event:e { return ignoring ? NO : [super event:e]; }

- activeHandler:e { /*newmousepoint*/

[env str: "currentEvent " value: [e copy] ] ;

i f ( manip_phase ) { id r ; /* in manipulationphase * /

if(sclass) eval([sclass manip_expr], env, TypeId, &r);

el se { /* still in collectionphase * /

int x = [e [loc x] ] , y = [e [loc y] ] ;

[gesture newevent : e ] ; /* updatefeature vector * /

[view updatePicture:

[picture line:lastx :lasty :x :y]]; />ink*/
lastx = x; lasty = y;

return self;
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Once activated, the GestureEventHandler functions just like any other
GenericEventHandler except that it will not handle any events if its ignoring flag is
set. The active event handler does different things depending on whether the gesture handler is in
the collection phase or the manipulation phase. In the former case, the current event location is
added to the gesture, and a line connecting the previous location to the current one is drawn on the
display. In the latter case, the manipulation expression associated with the gesture (the second of
the three semantic expressions) is evaluated.

= GestureEventHandler ...

- gesture : g { /* called when gesture collectionphase in complete * /

double a, d;
id r;

id classifier;

register struct gassoc *ga;
id c, class;

id curevent;

manip_phase = YES;
[wall timeout:0]; [wall deactivate:timeouteh];

[view _unhang:picture]; />eraseinking*/
[picture discard]; picture = nil;

/* inform interested views (only used in a training session) * /

if([view respondsTo:@selector(gesture:)])

[view gesture:g];

if(classify) {

/* find a classifierfor the set; create it ifnecessary * /

classifier = [Classifier lookupOrCreate:class_set];
/* run the classifier on thefeature vector ofthe collectedgesture * /

class = [classifier classify:[g fv]
ambigprob:&a distance:&d];

sclass = nil;

if(class == nil ||a < AmbigProb || d > MaxDist)

return [self reject]; Arejected*/

/* find the class ofthe gesture in the gassoc array * /

for(ga = gassoc; ga < &gassoc[ngassocs]; ga++)
if([ga->sclass gclass] == class)

break;
if(ga == &gassoc[ngassocs])

return [self error:"gassocs?"];
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/* the gassoc entry gives the both the view at which the gesture * /

/* is directed and the semantic expressions ofthe gesture * /

sclass = ga->sclass;

[env str: "view" value:ga->view] ;

[env str:"endEvent"

value: curevent= [env atStr: "currentEvent "] ] ;

eval([sclass recog_expr], env, TypeId, &r);

if((c = [sclass manip_expr]) != nil &&

[c val] != nil)

eval(c, env, TypeId, &r);

else { /* raise event* /

if (curevent) {

ignoring = YES;

if(mousetool) [curevent tool:mousetool];

[wall raise:curevent] ;

if( (c = [sclass done_expr]) == nil

[c val] == nil)

return nil;

return self;

The gesture : method is called when the entire gesture has been collected. It sets the variable

manip_phase to indicate the handler is now in the manipulation phase ofthe gestural input cycle,
deactivates the timeout event handler, and erases the gesture from the display. If the view associated
with the handler responds to gesture: it is sent that message, with the collected gesture as
argument. This is the mechanism by which example gestures are collected during training: one
handler collects the gesture, sends its view (typically a kind of wallview devoted to training) the
example gesture, which adds it to the Gestureclass being trained.

In the typical case, the gesture is to be classified. The classifier factory method named
lookupOrCreate: is called to find a gesture classifier which discriminated between elements
of the class set. If no such classifier is found, this method calculates one and caches it for
future use. (This lookup and creation could possibly have been done in the pseudo-thread that was
spawned during the first point of the gesture, but was not, since most of the time the lookup finds the
classifier in the cache, and it was not worth the additional complication and loss ofmodularity to add
polling to the classifier creation code.) The returned classifier is then used to classify the gesture.
In addition to the class, the probability that the classification was ambiguous and the distance of
the example gesture to the mean of the calculated class are returned. These are compared against
thresholds to check for possible rejection of the gesture (see Section 3.6).
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The elements ofthe gassoc array are searched to find the one whose gesture class is the class
returned by the classifier. This determines both the semantics ofthe recognized gesture and the view
at which the gesture was directed. The sclass field is set to the SemClass object associated
with the recognized gesture, and then the recognition expression, the first of the three semantic
expressions, is evaluated in an environment in which " startEvent " , " currentEvent " ,
"endEvent " and "view" are all appropriately bound.

Ifit exists, the manipulation expression is evaluated immediately after evaluating the recognition
expression. If there is no manipulation expression, the current event is reraised on the assumption
that its tool may wish to operate on a view. The ignoring flag is set so that the active handler does
not attempt to handle the event it is about to raise. Furthermore, the semantics of the gesture may
have changed the current mouse tool. If so, the tool field ofthe current event would be incorrect, and
is changed to the new tool before the event is raised. In order for this to work, any gesture semantics
that wish to change the current mouse tool must do so by sending the mousetool: message to
the gesture handler instead of directly to the wallview.

= GestureEventHandler . . .

- mousetool:_mousetool {

mousetool = mousetool;

return [super mousetool:_mousetool];

The gesture: method returns nii ifthere are no manipulation or done semantics associated
with the recognized gesture class. As seen, this is a signal for the handler to be deactivated
immediately after the gesture is recognized.

7.5 Gesture Classification and Training

In this section the implementation of classes which support the gesture classification and training
algorithms of Chapter 3 is discussed.

At the lowest level is the class Gesture. A Gesture object represents a single example
of a gesture. These objects are created and manipulated by GestureEventHandlers, both
during the normal gesture recognition that occurs when an application is being used, and during the
specification of gesture classes when training classifiers.

7.5.1 Class Gesture

Internally, a gesture object is an array of points, each consisting of an x, y, and time coordinate.
Another instance variable is the Gestureclass object ofthis example gesture, which is non-nii
if this example was specified during training. Intermediate values used in the calculation of the
example's feature vector, as well as the feature vector itself, are also stored. Also, an arbitrary string
of text may be associated with a Gesture object.

For brevity, detailed listing of the code for the Gesture class is avoided. The interesting part,
namely the feature vector calculation, has already been specified in detail in Chapter 3 and C code is
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shown in Appendix A. Instead of listing more code here, an explanation of each message Gesture
objects respond to is given.

A new gesture is allocated and initialized via g = [Gesture new]. Adding a point to a
Gesture objects is done by sending it the newevent message: [g newevent:e], which
simply results in the call: [g x: [ [e loc] x] y: [ [e loc] y] t: [e time]]. The
x:y:t: method adds the new point to the list of points, and incrementally calculates the var-
ious components of the feature vector (see Section 3.3). The call [g fv] returns the calculated
feature vector. The methods class :, class, text :, and text respectively set and get the class
and text instance variables.

A Gesture object can dump itselfto a file via [g save : f ] (given a file stream pointer FILE

*f) and can also initialize itself from a file dump using [g read: f ] . Using save :, a number
of gesture objects may dump themselves sequentially into a single file, and could then be read back
one at a time using read:. All examples of a given gesture class are stored in a single file via these
methods.

The call [g conta ins : x : y] returns a boolean value indicating ifthe gesture g, when closed
by connecting its last point to its first point, contains the point (x, y) . This is useful for testing,

for example, if a given view has been encircled by the gesture, enabling the gesture to indicate the
scope of a command. (The algorithm for testing if a point is within a given gesture is described at
the end of section 7.7.3.)

7.5.2 Class Gestureclass

The class Gestureclass represents a gesture class. A gesture class is simply a set of example
gestures, presumably alike, that are to be considered the same for the purposes of classification.
The input to the gesture classifier training method is a set ofGestureclass objects; the result of
classifying a gesture is a GestureClass object.

= GestureClass: NamedModel {

id examples;

Vector sum, average;

Matrix sumcov;

int state;

STR text;

GestureClass is a subclass ofNamedModel, itself a subclass ofModel. GestureClass
is a model so that it can have views, enabling new gesture classes to be created and manipulated
at runtime. Please do not confuse Gestureclass with GestureEventHandler objects;
a GestureClass serves only to represent a class of gestures, and itself handles no input. A
NamedModel augments the capabilities of a Model by adding functions that facilitate reading and
writing the model to a file. Also, models read this way are cached, so that a model asked to be
input more than once is only read once. This is important for gesture class objects, since a single
GestureClass object may be a constituent of many different classifiers, and it is necessary that
every classifier recognizing a particular class refer to the same Gestureclass object.
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The Gestureclass instance variable examples is a Set of examples which make up the
class. The field sum is the vector that the sum of all feature vectors of every example in the class;
average is sum divided by the number of examples. The covariance matrix for this class may be
found by dividing the matrix sumcov by one less than the number of examples. The calculation
of classifiers is slightly more efficient given sumcov matrices, rather than covariance matrices, as
input (see Chapter 3). C code to calculate the sumcov matrices incrementally is shown in Appendix

A.

The state instance variable is a set ofbit fields indicating whether the average and sumcov
variables are up to date. The text field allows an arbitrary text string to be associated with a gesture
class.

The addExample : method adds a Gesture to the set of examples in the gesture class, incre-

mentally updating the sum field. The removeExample: method deletes the passed Gesture
from the class, updating sum accordingly. The examples method retums the set of examples
of this class, average retums the estimated mean of the feature vector of all the examples in
this class, nexamples retums the number of examples, and sumcov retums the unnormalized
estimated covariance matrix.

7.5.3 Class Gesturesemclass

= GestureSemClass: NamedModel {

id gclass;

id recog, manip, done;

GestureSemClass objects are named models, enabling them to be referred to by name
for reading or writing to disk, and for being automatically cached when read. The purpose of
GestureSemClass objects is to associate a given gesture class with a set of semantics. It is
necessary to have a separate class for this because a given Gestureclass may have more than
one set of semantics associated with it.

In addition to methods for setting and getting each field, there are methods for reading and
writing GesturesemClass objects to disk. GesturesemClass uses Objective C's Filer
class to read and write each of the three semantic expressions (recog, manip, and done). The
availability of the Filer is another advantage of using Objective C [28]. In a typical interpreter,
a substantial amount of coding would be required to read and write the intermediate tree form of
the program to and from disk files. The Filer, which allows the writing to and from disk of any
object (at least those having no C pointers besides strings and ids as instance variables), made it
trivial to save interpreter expressions to disk.

Along with the semantics, the disk file of a GesturesemClass contains only the name
of gestureClass object referred to by gclass. When reading in a Gesturesemclass,
the name is used to read in the associated Gestureclass. Since Gestureclass is a
NamedModel, there will be only one GestureClass object for each distinct gesture class.
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7.5.4 Class Classifier

The classifier class encapsulates the basic gesture recognition capabilities in GRANDMA.
Each classifier object has a set (actually an OrdCltn) of gesture classes between which it
discriminates. Each classif ier object contains the linear evaluation function for each class (as
described in Chapter 3), and the inverse of the average covariance matrix, which is used to calculate

the discrimination functions, as well as to calculate the Mahalanobis distance between two of the
component gesture classes, or a given gesture example and one of the gesture classes.

= Classifier : Object {
id gestureclasses;
int nclasses, nfeatures;
Vector cnst , *w ; /* discriminationfunctions * /

Matrix invavgcov;
int hashvalue;

[Classif ier lookupOrCreate : classes] returns a classifier which discriminates be-

tween the gesture classes in the passed collection classes. The method for lookupOrCreate :
caches all classifier objects which it creates; thus, if it is subsequently passed a set of gesture classes
which it has seen before, it returns the classifier for that set without having to recompute it. The
search for an existing classifier for a given set of gestures is facilitated by the hashvalue instance
variable, which is calculated by "XORing"together the object ids ofthe particular GestureClass
objects in the set.

When necessary, the lookupOrCreate: method creates a new classifier object, initializes
its gestureclasses instance variable and then sends itself the train message. The train
method implements the training algorithm of chapter 3.

- train {

register int i, j;
int denom = 0 ;
id c, seq;
register Matrix s, avgcov;
Vector avg;
double det;

/* eliminate any gesture classes with no examples * /

[self eliminateEmptyClasses];

/* calculate the average covariance matrixfrom the (unnormalized)

covariance matrices ofthe gesture classes. * /

avgcov = NewMatrix(nfeatures, nfeatures);
ZeroMatrix (avgcov) ;

for(seq = [gestureclasses eachElement];
c = [ [seq next] gclass] ; ) {

denom += [c nexamples] - 1;

APLNDC00022109



7.5. GESTURE CLASSIFICATIONAND TRAINING l 43

s = [c sumcov] ;

for(i = 0; i < nfeatures; i++)

for(j = i; j < nfeatures; j++)

avgcov[i] [j] += s[i] [j];

if (denom == 0) [self error: "no examples"] ;

for(i = 0; i < nfeatures; i++)

for(j = i; j < nfeatures; j++)

avgcov [j] [i] = (avgcov [i] [j] /= denom) ;

/* invert the average covariance matrix * /

invavgcov = NewMatrix(nfeatures, nfeatures);

det = InvertMatrix(avgcov, invavgcov);

if (det == 0.0)

[self fixClassifier:avgcov];

/* calculate the discriminationfunctions:

w[i][j] is the weight on thejthfeature ofthe ith class.

cnst[i] is the constant termfor the ith class. * /

w = allocate(nclasses, Vector);

cnst = NewVector (nclasses) ;

for (i = 0; i < nclasses; i++) {
avg = [[[gestureclasses at:i] gclass] average];

/* w[i] = avg*invavgcov + /

w [i] = NewVector (nfeatures) ;
VectorTimesMatrix(avg, invavgcov, w[i]);

cnst[i] = -0.5 * InnerProduct(w[i], avg);

The eliminateEmptyClasses method removes any gesture classes from the set which
have no examples. The (estimated) average covariance matrix is then computed, and an attempt is
made to invert it. If it is singular, the f ixclassif ier : method is called, which creates a usable
inverse covariance matrix as described in Section 3.5.2. (C code for fixing the classifier is shown in
Appendix A.)

Given the inverse covariance matrix, the discrimination functions for each class are calculated as
specified in Section 3.5.2. The weights on the features for a given class are computed by multiplying
the inverse average covariance matrix by the average feature vector of the class, while the constant
term is computed as negative one-half of the weights applied to the class average. This constant
computation gives optimal classifiers under the assumptions of that all classes are equally likely and
the misclassifications between classes have equal cost (also assumed is multivariate normality and a
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common covariance matrix). The classifier class provides a class: incrconst : method
which allows the constant terms for a given class to be adjusted if the application so desires.

The call [Classifier trainall:classes] causes all classifier objects whose

set of gestures includes all the gestures in the set classes to be retrained (by sending them the
train: message). This is useful whenever training examples are added or deleted, since all the
classifiers depending on this class can then be recalculated at once. Generally a classifier may be
retrained in less than a quarter second; Section 9.1.7 presents training times in detail.

Classifying a given example gesture is done by the classify:ambigprob:distance:
method. This method is passed the feature vector of the example gesture, and evaluates the
discrimination function for each class, choosing the maximum. If desired, the probability that the
gesture is unambiguous, as well as the Mahalanobis distance of the example gesture from the its
calculated class are also computed; this allow the callers of the classification method to implement
rejection options if they so choose.

- classify: (Vector) fv

ambigprob:(double *)ap distance:(double *)dp

{
double maxdisc, disc [MAXCLASSES] ;

register int i, maxclass;
double denom, exp () ;

id class;

for(i = 0; i < nclasses; i++)

disc[i] = InnerProduct(w[i], fv) + cnst[i];

maxclass = 0;

for(i = 1; i < nclasses; i++)

if(disc[i] > disc[maxclass])

maxclass = i;

class = [[gestureclasses at:maxclass] gclass];

i f ( ap ) { /* calculateprobabilityofnon-ambiguity * /

for(denom = 0, i = 0; i < nclasses; i++)

denom += exp(disc[i] - disc[maxclass]);

*ap = 1.0 / denom;

i f ( dp ) /* calculate distance to mean ofchosen class * /

«dp = [class d2fv:fv sigmainv:invavgcov];

return class;
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Classifier objects respond to numerous messages not yet mentioned. The evaluate
message causes the example gestures of each class to be classified, so that the recognition rate ofthe
classifier may be estimated. Of course, the procedure oftesting the classifier on the very examples it
was trained upon results in an overoptimistic evaluation, but it nonetheless is useful. By sending the
particular gesture classes and examples text : messages, the result of the evaluation is fed back
to the user, who can then see which examples of each class were classified incorrectly. A high rate
of misclassification usually points to an ambiguity, indicating a poor design of the set of gestures to
be recognized. The ambiguity is typically fixed by modifying the gesture examples of one or more
of the gesture classes. The incorrectly classified examples indicate to the gesture designer which
gesture classes need to be revised.

Classifier objects also respond to messages which save and restore classifiers to files, as
well as messages which cause the internal state of a classifier to be printed on the terminal for
debugging purposes, and a matrix of the Mahalanobis distances between class pairs to be printed
(so that the gesture designer can get a measure ofhow confusable the set of gestures is).

7.6 Manipulating Gesture Event Handlers at Runtime

One goal of this work was to provide a platform that allows experimentation with different gestural
interfaces to a given application. To this end, GRANDMA was designedto allow gesture recognizers
to be manipulated at runtime. Gesture classes may be added or deleted, training examples for each
class may also be added or deleted, and the semantics of a gesture class (with respect to a particular
handler) may all be specified at runtime. In addition, gestures as a whole, or particular gesture event
handlers, may be turned on and off at runtime, allowing, for example, easy comparison between
gesture-based and click-drag interfaces to the same application program. This section discusses the

interface GRANDMA presents to the user that facilitates the manipulation of gesture handlers at
runtime.

The view class implements the editHandlers method. When sent editHandlers, a
view creates a new window (if one does not already exist) as shown in figure 7.2. The top row is a
set ofpull down menus. Each subsequent row lists the passive event handlers for the view, its class,
its superclass, and so on up the class hierarchy until the view class. The event handlers are listed
in the order that they are queried for events, from top to bottom, and within a row, from left to right.

The "Mouse mode" menu item controls which mouse cursor is currently active in the window.

With the normal mouse (indicated by an arrow), the user is able to drag the individual event handler
boxes so as to rearrange the order. (The other mode, "edit handler," will be discussed shortly.) A

handler may also be dragged into the trash box, in which case it is removed from the list of handler
associated with a view or view class. A handler may be dragged into the dock; anything in the dock
will remain visible when the handler lists for a different view are accessed. A handler dragged into
the dock reappears on its original list as well; thus the dock allows the same event handlers to be
shared between different objects and between different classes.

The "create handler" menu item results in a pull-down menu of all classes which respond to the
passive message. Thus, at runtime new handlers may be created and associated with any view
object or class. For example, a drag handler may be created and attached to an object, which can
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Mouse mode create handler

GdpTopView GestureHandler_106500 TwoPointEventHandler_lad580 GenGenEventHandler_lab300

GdpTopView

Gobj SetView

GobjView GestureHandler_83b00 DragHandler_100b00

View _GenericToolOnViewEventHandler

DOCK TRASH

Figure 7.2: Passive Event Handler Lists

then be dragged around with the mouse. New gesture handlers may also be created this way.
The other mouse cursor, "edit handler", may be clicked upon any passive event handler. It

results in a new window being created which shows the details of a particular edit handler. Figure
7.3 shows the window for a typical gesture handler.

At the top left of the window is the "Mouse mode" pull down menu, used in the unlikely event

that one wishes to examine the handlers of any of the views in this window. To the right is the name
of this event handler, constructed by concatenating the class of the handler with its internal address.

The next three rows show three EventExpr objects; these are the starting predicate, handling
predicate and stopping predicate of the gesture handler. Each item in the predicate display is a
button that shows a pop-up menu; it is thus a simple matter to change the predicates at runtime.
For example, the start predicate may be changed from matching only PickEvents to matching all
DragEvents. The kind of tool expected may also be changed at runtime, as well as attributes of
the tool (e.g. a particular mouse button may be specified). If desired, the entire predicate expression
may be replaced by a completely new expression. In all cases, the changes take effect immediately.

The window contents thus far discussed are common to all GenericEventHandlers. The
following ones are particular to GestureEventHandlers. First there are a set ofbuttons ("new
class", "train", "evaluate", "save"). Below this are some squares, each representing a gesture class
recognized by this handler. In each square is a miniaturized example gesture, some text associated
with the class, and a small rectangle which names the class. The text typically shows the result of
the evaluation of the particular gesture recognizer for this set of classes when run on the examples
used to train it. The small rectangles may be dragged (copied) into the dock. Each such rectangle
represents a particular gesture class. Any rectangles in the dock will remain there when another
gesture handler is edited. Each then may be dragged into any gesture class square, where it replaces
the existing class. Typically, a rectangle from the dock is dragged into empty class square (created
by the "new class" button); this is the way multiple gesture handlers can recognize the same class.

Clicking on one of the gesture class squares (but not in the class name rectangle) brings up the
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Mouse mode GestureHandler_106500 DOCK TRASH

start: EventKind: PickEvent ToolKind: MouseTool

handle: EventKind: _DragEvent ToolKind: nil

stop: EventKind: _DropEvent ToolKind: nil

new class train evaluate save

gc1 gc2 gc3 gc5 gc8 gc9

2 wrong All OK All OK All OK All OK All OK

gc10 gc11 gc6 gc12

All OK All OK All OK All OK

Figure 7.3: A Gesture Event Handler

Normal

Delete

Semantics

Delete ALL

Figure 7.4: Window of examples of a gesture class
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window of example gestures, as shown in Figure 7.4. Each square in this window contains a single,
miniaturized example of a gesture in this class. These examples are used for training the classifier.
A new example may be added simply by gesturing in this window. An example may be deleted by
clicking the delete button on the left (which changes the mouse cursor to a delete cursor) and then
clicking on the example. A user wishing to change a gesture to something more to his liking simply
has to delete all the examples ofthe class (easily done using the "Delete ALL" button) and then enter
new example gestures. The "train" button will cause a new classifier to be built, and the "evaluate"
button will cause the examples to be run through the newly built classifier. Any incorrectly classified
examples will be indicated by displaying the mistaken class name in the example square; the user
can then examine the example to see if it was malformed or otherwise ambiguous.

The "semantics" button in the window of examples causes the semantics of the gesture class to

be displayed. This is the subject of the next section.

7.7 Gesture Semantics

GRANDMA contains a simple Objective-C interpreter that allows the semantics of gestures to be

specified at runtime. In GRANDMA, the semantics of a gesture are determined by three program
fragments per gesture class (per handler). The first program fragment, labeled recog, is executed
when the gesture is first recognized to be in a particular class. The second fragment, manip, is
executed on every input event handled by the activated gesture handler after the gesture has been
recognized. The third fragment, done, is executed just before the handler deactivates itself. The
exact sequence of executions was described in detail in section 7.4; this section is concerned with
the contents and specification of the program fragments themselves.

7.7.1 Gesture Semantics Code

As mentioned, the semantics of a gesture are defined by three expressions, recog, manip, and
done. The kinds of expressions found in practice may be loosely grouped according to the level of
the GRANDMA system that they access.

Some semantic expressions deal directly with models, i.e. directly with application objects.
These are typically the easiest to code and understand. An example from the GSCORE application
discussedin section 8.2 is the sharp gesture. GSCORE is an editor for musical scores. In GSCORE,
making an "S" gesture over a note in the score causes the note to be "sharped", which is indicated
in musical notation by placing the sharp sign "#" before the note. The class Note is a model in the

GSCORE application, and one of its methods is acc : which sets the accidental of a note to one of
DOUBLEFLAT, FLAT, NATURAL, SHARP, DOUBLESHARP, or NOACCIDENTAL.

The sharp gesture, performed by making an "S" over a Noteview, has the semantics:

recog = [ [view model] acc:SHARP ];

manip = nil;

done = nil;

In these semantics, the Note object (the model of the Noteview object) is directly sent the
acc: message when the sharp gesture is recognized. The model then changes its internal state to
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reflect the new accidental, and then calls [self modif ied] which will eventually result in the

display updated to add a sharp on the note.

Note that the semantic expressions are evaluated in a context in which certain names are assumed
to be bound. In the above example, obviously view and SHARP must be bound to their correct
values for the code to work. Section 7.4 described how the GestureEventHandler creates an
environment where view is bound to the view at which the gesture is directed, startEvent is
bound to the initial event of the gesture, endEvent is bound to the last event of the gesture (i.e. the
event just before the gesture was classified), and currentEvent is bound to the most recent event,
typically a MoveEvent during the manipulation phase. A particular application may globally bind
application-specific symbols (such as SHARP in the above example) in order to facilitate the writing
of semantic expressions.

Instead ofdealing directly with the model, the semantics ofa gesture may send messages directly
to the view object. In the score editor, for example, the delete gesture (in the handler associated

with a ScoreEvent) might have the semantics

recog = [view delete] ;

manip = nil;

done = nil;

(The actual semantics are slightly more complicated since they also change the mouse cursor;
see Section 8.2 for details.) The delete method for the typical view just sends delete to its
model, perhaps after doing some housekeeping.

The semantic expressions of a gesture are invoked from a GestureEventHandler, and the
sending of messages to models and views seen so far is typical of many different kinds of event
handlers. Another thing that event handlers often do (see in particular section 6.7.9 for a discussion

of the DragHandler) is raise events of their own. There are many reasons a handler might wish
to do this. A DragHandler raises events in order to make the view being dragged be considered a
virtual tool. As mentioned previously, a handler might also raise events in order to simulate one input
device with another. (For example, imagine a SensorFrameMouseEmulator which responds
to SensorFrameEvents, raising DragEvents whosetoolis the current GenericMouseTool
so as to simulate a mouse with a Sensor Frame.) One of the main purposes of having an active
event handler list and a list ofpassive events handlers associated with each view is to allow this kind
of flexibility. In the Smalltalk MVC system, the pairing of a single controller with a view really
constrains the view to deal only with a single kind of input, namely mouse input. In GRANDMA,
a view can have a number of different event handlers, and thus may be able to deal with many
different input devices and methods.

In GRANDMA, gesture-based applications are typically first written and debugged with a more
traditional menu driven, click-and-drag, direct manipulation interface. Given that gestures are added

on top of this existing structure, there is another level at which gesture semantics may be written.
At this level, the gesture semantics emulate, for example, the mouse input that would give the
appropriate behavior. In other words, the gesture is translated into a click-and-drag interaction
which gives the desired result.

An example of this from the score editor is the placement of a note into a score. In the click-
and-drag interface, adding a note to the score involves dragging a note of appropriate duration from
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a palette of notes to its desired location in a musical staff. This is implemented by having the
NoteView be a virtual tool which sends a message to which Staf fview objects respond. While
the note is being dragged, a DragHandler raises an event whose tool is a Noteview which will
be processed by the GenericToolonview handler when the note is over the staf fview.

In the gesture-based interface, there is a gesture class for each possible note duration recognized
by handler associated with the staf fview class. The semantics for the gesture which gives rise
to an eighth note are

recog = [[[noteview8up viewcopy] at:startLoc]
reraise:currentEvent] ;

manip = nil;
done = nil;

The symbol noteview8up is bound to the view of one of the notes in the palette; it is copied
and moved to the starting location of the gesture. The currentEvent (either a MoveEvent or
DropEvent which ended the gesture) is copied, its tool field is set to the copy ofthe note view, and
the resulting event is raised. The moving of the note and the raising of a new event is exactly what a
DragHandler does; the effect is to simulate the dragging of a note to a particular location. Note
that the note is moved to startLoc, the starting point of the gesture, which necessarily is over a
Staf fView (otherwise this gesture handler would never have been invoked). Thus, the handlers
for staf fview will handle the event, and use the location of the note view to determine the new
note's pitch and location in the score.

It would have been possible in the semantics to simulate the mouse being clicked on the
appropriate note in the palette and then being dragged onto the appropriate place in the staff. In this
case, that was not done as it would be needlessly complex. The point is that, due to the flexibility
of GRANDMA's input architecture, the writer of gesture semantics can address the system at many
levels of abstraction, from simulated input to directly dealing with application objects.

The example semantics seen thus far have only had recog expressions, which are evaluated
at recognition time. The following example, which implements the semantics of a gesture which
creates a line and then allows the line to be rubberbanded, illustrates the use of manip:

recog = [[view createLine] endpoint0at:startLoc];
manip = [recog endpointlat:currentLoc];

done = nil;
In this example, view is assumed to be a background view, typically a WallView of a

drawing editor program (Section 8.1 discusses GDP, a gesture-based drawing editor). Sending it the
createLine message results in a new line being created in the window, whose first endpoint is
the start of the gesture. The other endpoint of the line moves with the mouse after the gesture has
been recognized; this is the effect of the manip expression. Note the use of recog as a variable
to hold the newly created line object. If desired, the semantics programmer may create other local
variables to communicate between different (or even the same) semantic expressions.

7.7.2 The User Interface

GRANDMA allows the specification of gesture semantics to be done at runtime. In the current
implementation, the semantics must be specified at runtime; there is no facility for hardwiring the
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semantic expressions of a given gesture into an application. Currently, the semantics of a gesture
class are read in from a file (as are examples of the gesture class) each time an application is started.
The semantics of a gesture may only be created or modified using the user interface facilities
discussed in this section.

Gesture semantics are currently specified using a limited set of expressions. An expression may
be a constant expression (integer or string), a variable reference, an assignment, or a message send.
Each expression has its obvious effect: a constant evaluates to itself, a variable evaluates to its
value in the current environment, an assignment evaluates to the evaluation of its right hand side
(with the side effect of setting the variable on the left hand side), and a message send first evaluates
the receiver expression and each argument expression, and then sends the specified message and
resulting arguments to the receiver. The value ofa message expression is the value that the receiver's
method returns. For programming convenience, integer, string, and objects are converted as needed
so that the types of the arguments and receiver of a message send match what is expected by the
message selector.

Figure 7.5 shows the window activated when the "Semantics" button ofa gesture class is pressed.
At the top of the window are a row of buttons used in the creation of various kinds of expressions.
They work as follows:

new message The new message button creates a template of a message send, with a slot for the
receiver and the message selector. Any expression may then be dragged into the receiver
("REC?") slot. Clicking on the "SELECTOR?" box causes a dialogue box to be displayed
(figure 7.6). Users can then browse through the class hierarchy until they find the message
selector they desire, which can then be selected. The "+" and "-" buttons may be used to
switch between factory and instance methods. The starting point in the browsing is set to the
class ofthe receiver, when it can be determined. Once the selector has be okayed, the template
changes to have a slot for each argument expected by the selector, as shown into figure 7.7.
Any expression may then be dragged into the argument slots. In particular, gesture attributes
(see below) are often used.

new int This button creates a box into which an integer may be typed.

new string This button creates a box into which a string may be typed.

new variable This button creates a template ( = VALUE? ) for assigning a variable into which
the name of a variable may be typed. Any expression may then be dragged into the "VALUE?"
slot. The entire assignment expression may be dragged around by the "=" sign. Attempting to

drag the variable name on the left hand side actually copies the variable name before allowing
it to be dragged; this resulting expression (simply the name of the variable) may be used
anywhere the value of the variable is needed.

factory This button generates a constant expression which is the object identifier of an Objective
C class (also known as a "factory"). Pressing the button pops up a browser which allows the

user to walk through the class hierarchy to select the desired class.
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new message new int new string new variable factory attribute cursor Trace On

recog = [_Seq :[handler mousetool: createRect/rect.bm/MouseTool> ]

:[[topview createRect ] translateEndpoint: 0

x: <startX>

y: <startY>

manip = [recog scaleXYEndpoint: 1

x: currentX>

y: currentY>

cx: startX>

cy: startY>

done = VALUE?

DOCK DOCK DOCK TRASH

Figure 7.5: The interpreter window for editing gesture semantics
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[ REC? SELECTOR?

[view SELECTOR? Choose Selector

Type Selector

Superclass Subclass - + OK CANCEL

EventExprView

ExprView -move

GestureClassView delete

GobjView edit

InterpView edit point moved:

LabelView getEndpoint:fx:fy:

MenuView getEndpoint:x:y:

NotifyView iscontainedIn:

PopView isover:
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|move::
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Figure 7.6: An empty message and a selector browser
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attribute

CANCEL --BACK-- CANCEL

view bboxDiagLength

wall bboxDiagAngle

handler StartEndLength

[view move: ARG 0? startEvent cosStartEndAngle

: ARG 1? ] startLoc sinStartEndAngle

startX pathLength

startY totalAngle

endEvent totalAbsAngle

endLoc sharpness

endX InitialAngle

endY maxvelocity

currentEvent height

currentLoc width

currentX StartEndAngle

currentY topview

enclosed

gesture

duration

cosInitialAngle

sinInitialAngle

--MORE--

Figure 7.7: Attributes to use in gesture semantics
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attribute Clicking this button generates a menu of useful subexpressions that are often used in
gesture semantics. (Figure 7.7 shows both pages of attributes). The expressions are either
variable names, or named messages. As expressions, named messages are distinguishable
from variable names by the angle brackets and the small box before the name. Clicking in the
box reveals the underlying expression to which the name refers. (Note the angle brackets and
box are not shown in the list of attributes but appear once an attribute is selected. Figure 7.5

contains some examples of such attributes.)

Most attributes in the list refer to characteristics of the current gesture (i.e. the gesture which
causes the semantics to be evaluated). Other attributes refer to the current view, wall, event
handler, events, and set of objects enclosed by the gesture. Many examples ofusing attributes
in gesture semantics are covered in the next chapter.

Having the attributes of a gesture available when writing the semantics of the gesture is the
embodiment of one central idea of idea of this thesis. The idea is that the meaning of a gesture
may depend not only upon its classification, but also on the features of the particular instance
of the gesture. For example, in the drawing program it is a simple matter to tie the length of
the line gesture to the thickness of the resulting line. This is in addition to using the starting
point of the gesture as one endpoint of the line, another example ofhow gesture attributes are
useful in gesture semantics.

cursor This button displays a menu of the available cursors. The cursors are almost always a kind
of GenericMouseTool, and consists of an icon that has been read in from a file, and the
message that the tool sends. The cursors are useful, for example, in semantic expressions that
wish to provide some feedback to the user by changing the cursor after the gesture has been
recognized.

Trace On This button turns on tracing of the interpreter evaluation loop, which prints the values
of all expressions and subexpressions as they are evaluated. This helps the writer of gesture
semantics to debug his code.

The middle mouse button brings up a menu of useful operations. "Normal" restores the cursor
to the default cursor which drags expressions. "Copy" changes the cursor to the copy cursor, which
when used to drag expressions causes them to be copied first. "Hide" hides the semantics window,
which is so large that it typically obscures the application window. The various remaining editing

co······-···ds are useful for examining the event handlers associated with various objects in the user
interface, and are not really of general interest to the writer of gesture semantics. They would be of
interest if one attempted to add a gestural interface to the interpreter itself.

An expression dragged into a "DOCK" slot remains there even when the gesture class is changed.

The dock provides a useful mechanism for sharing code between different gesture classes, or between
the same gesture class in different handlers. Any expression dragged into the trash is, of course,
deleted.

The above-described interface to the semantics is usually slower to use than a more straight-
forward textual interface. A straightforward textual interface would require a parser but would
still be simpler and better that the current click-and-drag interface. On the other hand, with the
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click-and-drag interface it is not possible to make a syntax error. The main reason such an interface

was built was to exercise the facilities of the GRANDMA system. Before the project began the
author suspected that a click-and-drag interface to a programming language would be awkward, and
he was not surprised. He did, however, consider the possibility ofbuilding a gesture-based interface

to the interpreter, one which might have been significantly more efficient to use than the current
click-and drag interface. It should be possible at the present time to add a gesture-based interface to

the interpreter without even recompiling, though to date the author has not made the attempt.

7.7.3 Interpreter Implementation

The interpreter internals are implemented in a most straightforward manner. The class Express ion
is a subclass of Model and has a subclass for each type of expression: VarExpr, AssignExpr,
MessageExpr, and constantExpr (andsomenotdiscussed: CharEventExpr, EventExpr,
and FunctionExpr). AssignExpr and MessageExpr objects have fields which hold their
respective subexpressions, while ConstantExpr and VarExpr objects have fields which hold
the constant object and name of the variable, respectively.

Expression Evaluation

All expressions are evaluated in an environment, which is simply an association of names with
values (which are objects). Evaluating VarExpr objects is done by looking up the variable in an
environment and returning its value; AssignExpr objects are evaluated by adding or modifying
an environment so as to associate the named variable with its value. In addition to the environment
that is passed whenever an expression is evaluated, there is a global environment. If a name is not
found in the passed environment, it is then looked up in the global environment.

The interpreter has a number of types with which it can deal. Each type is represented by
a subclass of class Type. An instance of one of these subclasses is a value of that type. The
commonly used type classes are TypeChar, TypeId, TypeInt, TypeShort, TypeSTR,
TypeUnsigned, and TypeVoid. The TypeId represents an arbitrary Objective-C object;
the others represent their corresponding C type.

Consider the implementation of Type Int:

= TypeInt : Type { int _int; }
+ initialize { [super register:"int"];

[super register: "long"] ; }

+ set_int: (int)v { return [[super new] set_int:v]; }
+ (void *)fromObject:o result:(void *)r

{ * (int *) r = [o asInt] ; return r; }
+ toObject: (void *) r { return [self set_int:* (int *) r] ; }
- set_int:(int)v { _int = v; return self; }
- (int) asInt { return _int; }
- (short) asShort { return (short) _int; }
- (char) asChar { return (char) _int; }
- (unsigned) asUnsigned { return (unsigned) _int; }
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- (STR) asString: (STR) s { sprintf (s, "%d", _int) ; return s; }

- (int)Plus: (int)b { return _int + b; }
- (int)Minus: (int)b { return _int - b; }

- (int) Times: (int) b { return _int * b; }

- (int) DividedBy: (int) b { return b == 0 ?

[self error: "division by zero"] , O : _int / b; }
- (int) Mod: (int) b { return b == 0 ?

[self error: "mod by zero"] , O : _int % b; }
- (int)Clip:(int)b :(int)c

{ return _int < b ? b : int > c ? c : int; }
- (int)Times:(int)b Plus:(int)c { return _int * b + c; }

The initialize method declares that this type represents the C types "int" and "long." This
information is used when reading in the files that the Objective-C compiler writes to describe the
arguments and return types of message selectors. A sample line from one of these files is:

(id)at::,int,int;

This line says that the at : : method (as implemented by View, for example) takes two integers
as arguments, and returns an id, i.e. an object. (In Objective C, the type or signature of a selector
such as at : : must be the same in all classes that provide corresponding methods.) The interpreter
reads this line and creates a selector object which records the fact that at : : expects its first
argument to be TypeInt, its second argument to be TypeInt, and returns a TypeId. This
selector object is used when a MessageExpr whose selector is at : : is evaluated; it assures
that the arguments are converted to machine integers before the at : : method is invoked.

The knowledge of how to do conversions is embodied in the fromobj ect : result : and
toobj ect : methods. The intent is to freely convert between the values represented as machine
integers, or characters, etc., and the values represented as objects. Given int r; id anInt =

TypeInt set_int:3];, the call [TypeInt fromObject:anInt result:&r] sets r
to 3. Conversely, r = 4; anInt = [TypeInt toObject:&r] ; sets anInt to a newly

created object of class Type Int whose _int field is 4.

Note that the ability to do arithmetic is embodied in TypeInt, as is the ability to convert
between TypeInts and the other integer types (and string type).

Evaluating an expression node in a given environment is done by calling eval:

eval(expr, env, type, resultp)

id expr, env, type; void *resultp;

The eval function takes as argument an expression object, an environment object, a type
object, and a pointer to a place to put the result. The eval function takes care of printing out
tracinginformation,ifnecessary, andthensimplysends expr the eval:resultType: result :
message. Each expression class is responsible for knowing how to evaluate itself, and is able to
convert its return value into the appropriate type.

The most interesting case is the evaluation of a MessageExpr:

= MessageExpr: Expression {

id sel ; /* Selector object * /

id rec ; /* (unevaluated) receiver object * /
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id arg [ v GS ] ; /* unevaluatedarguments * /

- (void*) eval:env resultType:rt result: (void *) r {

id v;

id rec, arg [5] ;

int i;
int nargs = [sel nargs];

SEL sel = [sel sel] ;

id rettype = [sel rettype];

eval(rec, env, TypeId, &_rec);

for(i = 0; i < nargs; i++)
eval(arg[i], env, [sel argtype:i], &_arg[i]);

v = msg( rec, sel, arg[0], arg[1],
arg[2], arg[3], arg[4]);

if (rt == rettype) { /* noneedtoconvert*/

* ( id * ) r = v ; /* hack, assumes id or equal size * /

return r;

return [rt fromObject: [rettype toObject:&v] result:r];

There is some pointer cheating going on here, as the arguments which are to be sentto the receiver
object are stored in an array of ids, even though they are not necessarily objects. This relies on the
fact that, at least on the hardware this code runs upon (a MicroVax II), pointers, long integers, short
integers, and characters are all represented as four-byte values when passed to functions.

The sel variable is the selector object, and is used to get the number and types of the
arguments and the return value of this selector. First eval is called recursively to evaluate the
receiver of the message; the result type is necessarily TypeId since a receiver of a message must
be an Objective C object. Each of the argument expressions is evaluated, the result being stored in

the _arg array. The type of the retumed result is that which is expected for this argument in the
message about to be sent. The function _msg is the low-level message sending function that lies at
the heart of Objective C; it is passed a receiver, a selector, and any arguments, and retums the result
of sending the message specified by the selector and the arguments to the specified receiver. This
result is then converted to the correct type. If this message selector is already known to retum the
same type as desired, then no conversion is necessary, and the value is simply copied into the correct
place. Otherwise, the retumed value is first converted to an object (by invoking the toobj ect :
method of the known retum type) and then converted from an object to the desired retum type (via
the fromobj ect : result : method). In the typical case, either rt or ret type is TypeId, so
one of the conversions to or from an object does no significant work.

The reason for passing the retum type to eval, rather than having eval always retum an object,
and then converting retumed objects to machine integers, characters, and strings when needed, is
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efficiency. In the current scheme, nested message expressions, where the inner expression returns,
say, an integer which is the expected argument type of the outer expression, there is no overhead
converting the intermediate result to an object and then immediately back to an integer.

Note that the automatic conversion to objects allows arithmetic to be done relatively painlessly.
For example, to add 10 to the x coordinate of a view, use:

[ [view xloc] Plus:10]

The [view xloc] returns a machine integer; since this is the intended receiver of the Plus :

message it must be converted to a TypeId, i.e. an object, which in this case will be an instance of
Type Int. The Pius: method expects its argument to be a machine integer; since the interpreter
will represent the constant 10 by a Type Int object, it is converted to a machine integer (by calling
eval with a result type argument of TypeInt). The Pius: method is then invoked, and it
returns a machine integer, which may or may not be converted to a TypeInt object depending on
the context in which the above program fragment is used.

The above example could be specified more efficiently in the gesture semantics as [10
Plus : [view xloc] ] . In this case, all the conversions are avoided, since 10 is already rep-

resented as an object of TypeInt, and Plus: expects a machine integer as argument, which is
exactly what is returned by [view xloc] .

One thing not shown in the above implementation is garbage collection. During expression
evaluation, objects are freely being created and discarded, and it is important that the memory
associated with them be released when they are discarded. The current implementation of the
interpreter does not do this very well, since there is not much point given the lax attitude toward
memory management throughout GRANDMA.

Interface Implementation

All the expression nodes are subclasses of Model, and each one has a corresponding subclass of
view to display it on the screen. The expression views act as virtual tools; these tools act on
empty argument and receiver slots, as well as the docks and the trash. Implementing the interpreter
interface in GRANDMA was a good exercise of the GRANDMA facilities, but is not especially
interesting so will not be covered in detail here.

Control Constructs

The only control construct currently implemented is seq, which allows a list of expressions to
be evaluated in order. Seq, it turns out, was implemented without any extra mechanism in the
interpreter; all that was required was the creation of a seq class, whose class methods simply
returned their last argument:

= Seq: Object (GRANDMA, Primitive) { }

+ :al { return al; }
+ :al:a2 { return a2; }
+ :al:a2:a3 { return a3; }
+ :al:a2:a3:a4 { return a4; }
+ :al:a2:a3:a4:a5 { return a5; }
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Since arguments are evaluated in order, this has the desired effect.

Other control constructs, such as while and If, have not been implemented, but could easily be
implemented if the need arose. One simple implementation technique would to make WhileExpr
and IfExpr both subclasses ofMessageExpr, and then make while and If classes which have
methods that have the right number of arguments. For simplicity, the normal message expression
display code could be used to display If and while expressions; the only new code to be added
would be new eval:resultType:result: methods in WhileExpr and IfExpr which
have the desired effect.

Attributes and Cursors

An important consideration in allowing gesture semantics to be specified at runtime is exactly what
the application programmer makes visible to the gesture semantics programmer. There are a number
of means by which the application programmer can make a feature available to the semantics
programmer; all of these hinge on making visible objects which can be the receivers of relevant
messages.

The "Attributes" lists provides a way of giving the semantics writer easy access to application

objects and features. This is done by creating expressions for each attribute. GRANDMA already
supplies entries for all accessible gesture attributes and features.

As an illustrative example of how attributes are specified and implemented, consider the two
attributes handler and enclosed. The handler attribute simply refers to the gesture handler
that is currently executing. The enclosed attribute refers to the list of view objects enclosed
by the current gesture. Selecting enclosed from the attribute list results in a named message;
clicking on its box reveals that the message is [handler enclosed] .

Internally,

handlerVar = [ [VarExpr str: "handler"]

vclass:GestureEventHandler];

/* The above statement adds " handler" to the list ofattributes to be displayed

in the interpreter window, and declared that its value is oftvpe GestureEventHandler

Its value is actuallv set bv the GestureEventHandler before any gesture

semantics are evaluated. * /

enclosedExpr = [[[[MessageExpr sel:@selector(enclosed)]

rec : handlerVar]

str: "enclosed"]

vclass:OrdCltn] ;

/* The above statement adds " enclosed" to the attribute list. When evaluated

in gesture semantics, the "enclosed" attribute will result in

[handler enclosed] being executed. * /

Both handlerVar and enclosedExpr are added to the list of interpreter attributes, and
show up in the list as "handler" and "enclosed" respectively. Each of these expressions evaluates

to an Objective C object; the vclass: message records the expected class of the object. The
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recorded class is used by the selector browser as a starting point when choosing a message to send
to an attribute.

The "handler" attribute, being a VarExpr, is evaluated by looking up the string "handler" in the
current environment. Section 7.4 described how the environment in which semantic expressions are
evaluated is initialized so as the bind handler to the current event handler. Evaluating enclosed
thus results in the enclosed message being sent to the current handler:

= GestureEventHandler . . .
- enclosed { id o, e, seq; int xmin, ymin, xmax, ymax;

[gesture xmin:&xmin ymin:&ymin xmax:&xmax ymax:&ymax];

o = [[wall viewdatabase]
partiallyInRect:xmin:ymin:xmax:ymax];

for (seq = [o eachElement] ; e = [seq next] ; )
if ( I [e isContainedIn:gesture] ) [o remove:e] ;

return o;

The interpreter's evaluation ofthe enclosed attribute thus results in a callto the above method.
This method determines the bounding box of the current gesture, and consults the view database
for a list of views contained within this bound. Each object is polled to see if it is enclosed by the
gesture, and is removed from the list if it is not. The list is then returned.

The default implementation of isContainedIn:, in the view class, simply tests if each
corner of the bounding box is enclosed within the gesture. This test may be overridden by non-
rectangular views, or rectangular views that wish to ensure its each edge is entirely contained within
the gesture.

= View . . .
- (BOOL) iscontainedIn:g {

int x1, yl, x2, y2; [self calc new box];

x1 = [box left]; yl = [box top];

x2 = [box right]; y2 = [box bottom];

return [g contains:x1:yl] && [g contains:x1:y2] &&

[g contains:x2:yl] && [g contains:x2:y2] ;

The Gesture class implements the contains: : message, which tests if a point is enclosed
within the gesture. The current implementation first closes the gesture by conceptually connecting
the ending point to the starting point, and then counts the number of times a line from the point to a
known point outside the gesture crosses the gesture. An odd number of crossings indicates that the
point is indeed enclosed by the gesture.

Other attributes work similarly, although their code tends to be much simpler than that of
enclosed. In particular, there are attributes for each feature discussed in Section 3.3; the at-
tributes are named messages implemented as [ [handler gesture] ifvi : N], where N is the

corresponding index into the feature vector.

Cursors are added to the list of cursors available for use in semantic expressions simply by
sending them the public message. The application programmer should create and make available
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any cursor that might prove useful to the semantics writer.

7.8 Conclusion

The gesture subsystem of GRANDMA consists of the gesture event handler, the low level gesture
recognition modules, the user interface which allows the modification of gesture handlers, gesture
examples, and gesture classes, and the interpreter for evaluating the semantics of gestures. Each of
these parts has been discussed in detail. The next chapter demonstrates how GRANDMA is used to
build gesture-based applications.
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Chapter 8

Applications

This chapter discusses three gesture-based applications built by the author. The first, GDP, is a

simple drawing editor based on the drawing program DP [42]. The second, GSCORE, is an editor
for musical scores. The third, MDP, is an implementation of the GDP drawing editor that uses
multi-finger gestures.

GDP and GSCORE are both written in Objective C, and run on a DEC MicroVAX II. They are
both gesture-based applications built using the GRANDMA system, discussed in Chapters 6 and 7.
As such, the gestures used are all single-path gestures drawn with a mouse. GRANDMA interfaces
to the X10 window system [113] through the GDEV interface written by the author. GDEV runs
on several different processors (MicroVAX II, SUN-2, IBM PC-RT), and several different window
managers (X10, X11, Andrew). GRANDMA, however, only runs on the MicroVax, which for
years was the only system available to the author that ran Objective C. It should be relatively
straightforward to port GRANDMA to any UlmA-based environment that ran Objective-C, though

to date this has not been done.
MDP is written in C (not Objective C), and runs on a Silicon Graphics IRIS 4D Personal

Workstation. MDP responds to multiple-finger gestures input via the Sensor Frame. Unlike GDP
and GSCORE, MDP is notbuilt on top ofGRANDMA. The reason for this is that the only functioning
Sensor Frame is attached to the above-mentioned IRIS, for which no Objective C compiler exists. It
wouldbe desirable and interesting to integrate Sensor Frame input and multi-path gesture recognition
into GRANDMA (see Section 10.2).

8.1 GDP

GDP, a gesture-based drawing program, is based on DP [42]. In DP there is always a current mode,
which determines the meaning of mouse clicks in the drawing window. Single letter keyboard
commands or a popup menu may be used to change the current mode. The current mode is
displayed at the bottom of the drawing window, as are the actions of the three mouse buttons. For
example, when the current mode is "line", the left mouse button is used for drawing horizontal
and vertical lines, the middle button for arbitrary lines, and the right button for lines which have
no gravity. Some DP commands cause dialogue boxes to be displayed; this is useful for changing
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parameters such as the current thickness to use for lines, the current font to use for text, and so on.

With the gesture handlers turned off, GDP (loosely) emulates DP. The current mode is indicated
by the cursor. For example, when the "line" cursor is displayed, clicking a mouse button in the
drawing window causes a new line to be created and one endpoint to be fixed at the position of the
mouse. As long as the mouse button is held down, the other end of the line follows any subsequent
motion of the mouse, in a "rubberband" fashion. The user releases the mouse button when the
second endpoint of the line is at the desired location.

Both DP and GDP support sets, whereby multiple graphic objects may be grouped together
and subsequently function as a single object. Once created, a set is translated, rotated, copied, and
deleted as a unit. A set may include one or more sets as components, allowing the hierarchical

construction of drawings. In DP, there is the "pack" co······-···d, which creates a new set from a
group of objects selected by the user, and the "unpack" command, whereby a selected set object is

transformed back into its components. GDP functions similarly, though the selection method differs
from DP.

GDP makes no attempt to emulate every aspect of DP. In particular, the various treatments of
the different mouse buttons are not supported. These and other features were not implemented since
doing so would be tangential to the purpose of the author, which was to demonstrate the use of
gestures. As the unimplemented features present no conceptual problems for implementation in
GRANDMA, the author chose not to expend the effort.

8.1.1 GDP's gestural interface

GDP's gesture-based operation has already been briefly described in Section 1.1. That description
will be expanded upon, but not repeated, here.

Figures 1.2a, b, c, and d show the rectangle, ellipse, line, and pack gestures, all of which are
directed at the GDP window, rather than at graphic objects. Also in this class is the text gesture, a
cursive "t", and the dot gesture, entered by pressing the mouse button with no subsequent mouse
motion. The text gesture causes a text cursor to be displayed at the initial point of the gesture. The
user may then enter text via the keyboard. The dot gesture causes the last command (as indicated by
the current mode) to be repeated. For example, after a delete gesture, a dot gesture over an existing

object will cause that object to be deleted.

Figures 1.2e, f, and g show the copy, rotate, and delete gestures, all of which act directly on
graphic objects. The move gesture, a simple arrow (figure 8.1), is similar. All of these gestures act

upon the graphic object at the initial point of the gesture. These gestures are also recognized by the
GDP window when not begun over a graphic object. In this case, the cursor is changed to indicate
the corresponding mode, and the underlying DP interface takes over. In particular, dragging one of
these cursors over a graphic object causes the corresponding operation to occur.

8.1.2 GDP Implementation

Since GDP was built on top of GRANDMA, the implementation followed the MVC paradigm.
Figure 8.2 shows the position in the class hierarchy for the new classes defined in GDP.
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Figure 8.1: GDP gestures

As always, theperiod indicates the start ofthe gesture.
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Figure 8.2: GDP's class hierarchy
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8.1.3 Models

The implementation of GDP centers on the class GraphicObject, a subclass of Model. Each
component of the drawing is a GraphicObj ect. The entire drawing is also implemented as
a graphic object. GraphicObjects are either Text objects, LineDrawing objects (lines,
rectangles, and ellipses), or Gobj Set objects, which implement the set concept.

A GraphicObj ect has two instance variables: parent, the Gobj Set object ofwhich this
object is a member, and trans, a transformation matrix [101] for mapping the object into the

drawing. Every GraphicObj ect is a member ofexactly one set, be it the set which represents the
entire drawing (these are top level objects), or a member of a set which is itselfpart of the drawing.

LineDrawing objects have a single instance variable, thickness, that controls the thick-

ness of the lines used in the line drawing. The three subclasses of LineDrawing, namely
Line, Rectangle, and Ellipse, represent all graphics in the drawing. Associated with each
LineDrawing subclass is a list of points which specify a sequence of line segments for drawing
the object. The points in the list are normalized so that one significant point of the object lies on the
origin and another significant point is at point (1,1). For Lines, one endpoint is at (0,0) and the other
at (1,1). The point list for Rectangles specifies a square with corners at (0,0), (0,1), (1,1), and
(1,0). The Ellipse is represented by 16 line segments that approximate a circle with center (0,0)

and that passes through the point (1,1). The transformation matrix in each LineDrawing object
is used to map the list of points in each LineDrawing object into drawing (window) coordinates.

A Gobj Set object contains a set of objects that make up the set. In order to display a set,
the transformation matrix of the set is composed with (multiplied by) that of each of the constituent
objects. This composition happens recursively, so that deeply nested objects are displayed correctly.

Text objects contain a font reference and text string to be displayed.

8.1.4 views

Each ofthe immediate subclasses ofGraphicObj ect has a corresponding subclass ofGobj View
associated with it. Each LineDrawingView object is responsible for displaying the
LineDrawing object which is its model on the screen. Similarly, Gobj TextViews display
Text objects, and Gobj SetViews display Gobj Sets.

All GobjViews respond to the updatePicture message in order to redraw their picture
appropriately. A LineDrawingView Simply asks its model for the lists of points (suitably
transformed) which it proceeds to connect via lines. The model also provides the appropriate
thickness of the lines as well. (Note that it is not necessary to provide view classes for the three
subclasses of LineDrawing since all three classes are taken care of by LineDrawingView.)

Gobj TextViews draw their models one character at a time in order to accommodate the
transformation of the model. Transformations which have a unit scale factor (no shrinking or
dilation) and no rotation component cause the text to be drawn horizontally, with the characters
spacing determined by their widths in the current font. In the current implementation, scaling or
rotation does not effect the character size or orientations (as X10 will not rotate or scale characters),
but does effect the character positions.

Gobj SetViews have the views of their model's component objects as subviews. Since
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the update method for view will automatically propagate update messages to subviews, no
updatePicture method is required for Gobj SetView.

The GobjView class overrides the move : : method (of view). Recall from Section 6.6 that

this method simply changes the location of the view, thus translating the view in two dimensions.
This method is used, for example, by the drag handler (section 6.7.9) to cause views to move with

the mouse cursor. The purpose of overriding the default method is so that dragging any GobjView
causes its model to be changed so as to reflect the new coordinates of the object in the drawing.
The model is changed by first sending it the message getLocalTrans, which returns the model's
transformation matrix, then calling a function which modifies the matrix to reflect the additional
translation, and then sending the model a setLocalTrans : message, which causes the new
transformation matrix to be recorded in the model. Of course the model then sends itself the
modif ied message which causes the model's view to redraw the model at its new location.

GobjView also implements the delete message, by first sending itself the free mes-
sage (which, among other things, removes it from its parent's subview list), and then send-

ing its model the delete message. GobjView also overrides the default isover: and
iscontainedIn: methods (Sections 6.7.5 and 7.7.3) so that they always return No for objects
not at the top-level of the drawing. Each subclass of GobjView implements isReallyOver:
and isReallyContainedIn:, which are invoked when the object is indeed top-level.

The outermost window is itself a view. It is an instance of GdpTopView, which is a subclass
of GdpSetview. The GdpTopView representing the entire drawing.

8.1.5 Event Handlers

GDP required the addition of one new event handler, TwoPointEventHandler, which is of
sufficient utilityand generality to be incorporated into the standard set ofGRANDMA event handlers.
The purpose of the TwoPointEventHandler is to implement the typical "rubberbanding"
interaction. For example, clicking the "line" cursor in the drawing window causes a new line to be

created, one endpoint ofwhich is constrained to be at the location of the click, the other endpoint of
whichstaysattachedtothecursoruntilthemousebuttonisreleased. ATwoPointEventHandler
can be used to produce this behavior.

As a GenericEventHandler, a TwoPointEventHandler has a parameterizable start-
ing predicate, handling predicate, and stopping predicate (Section 6.7.8). In order for a passive
TwoPointEventHandler to be activated, the tool of the activating event must operate on the
view to which the handler is attached (like a GenericToolOnViewHandler, section 6.7.7). If

the tool operates on the view and the event satisfies the starting predicate, the handler is activated.
When activated, the tool is allowed to operate on the view, and the operation is expected to return
an object which is to be the receiver of subsequent messages. In the above example, the "line" tool
operates upon the drawing window view (a GdpTopView) the result of which is a newly created
Line object. The handler then sends the new object a message whose parameters are the starting
event location coordinates. The actual message sent is a parameter to the passive event handler; in
the example the message is setEndpoint 0 : :. Each subsequent event handled results in the new
object being sent another message containing the coordinates of the event (setEndpoint1: : in
the example).
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8.1.6 Gestures in GDP

This section describes the addition of gestures to the implementation described above. The gesture
handlers, gesture classes, example gestures, and gesture semantics were all added at runtime,
allowing them to be tested immediately. I should admit that in several cases it was necessary to
add some features directly to the existing C code and recompile. This was partly due to the fact
that GRANDMA's gesture subsystem was being developed at the same time as this application, and
partly due to the gesture semantics wanting to access models and views through methods other than
ones already provided, for reasons such as readability and efficiency.

Figure 8.1 shows the gesture classes recognized by each of the two GDP gesture handlers.

Note that the gestures expected by a GobjView are a subset of those expected by a GdpTopView.
Allowing one gesture class to be recognized by multiple handlers allows the semantics ofthe gesture
to depend upon the view at which it is directed.

Several gestures (line, rect, ellipse, and text) cause graphic objectsto be created. These gestures
are only recognized by the top level view, which covers the entire window, a GdpTopView. When,
for example, a line gesture (a straight stroke) is made, a line is created, the first endpoint of which
is at the gesture start, while the second endpoint tracks the mouse in a rubberband fashion.

The semantics for the line gesture are:

recog = [Seq :[handler mousetool:createLine_MouseTool]
:[[topview createLine] translateEndpoint:0

x:<startX> y:<startY>] ];

manip = [recog scaleXYEndpoint:1 x:<currentX> y:<currentY>

cx:<startX> cy:<startY>];

(The done expression is assumed to be nil.) When the line gesture is recognized, the

gesture handler is sent the mousetool: message, passing the createLine_MouseTool as a
parameter. The handler sends a message to its view's wall, and the cursor shape changes. (Internally,
the handler changes its tool instance variable to the new tool, as well.) Then, a line is created (via
the createLine message sent to the top view), and the new line is sent a message which translates
one endpoint to the starting point of the gesture. (The identifiers enclosed in angle brackets are
gestural attributes, as discussed in Section 7.7.3.) The : : message to Seq, which is used evaluate
two expressions sequentially, returns its last parameter, in this case the newly created line, which is
assigned to recog.

Upon each subsequent mouse input the manip expression is evaluated. It sends the new
line (referred to through recog) a message to scale itself, keeping the "center" point (startX,
startY) in the same location, mapping the other endpoint to (currentX, currentY).

The semantics for the rect and ellipse gestures are similar to those of line, the only difference

being the resultant cursor shape and the creation message sent to topview. The start of the
rectangle gesture controls one corner of the rectangle and subsequent mouse events control the
other corner. The start of the ellipse gesture determines the center of the ellipse, and the scaling
guarantees that the mouse manipulates a point on the ellipse. The rectangle is created so that its
sides are parallel to the window. Similarly, the ellipse is created so that its axes are horizontal and
vertical. Manipulations after any of the creation gestures is recognized never effect the orientation
of the created object. With only a single mouse position for continuous control (two degrees of
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freedom) it is impossible to independently alter the orientation angle, size, and aspect ratio of the
graphic object. The design choice was made to modify only the size and aspect ratio in the creation
gesture; a rotate gesture may subsequently be used to modify the orientation angle.

It is still possible, however, to use other features of the gesture to control additional attributes of
the graphic object. Changing the recog semantics of a line gesture to

recog = [Seq :[handler mousetool:<createLine>]
:[[[topview createLine] translateEndpoint:0

x:<startX> y:<startY>]

thickness:[[pathLength DividedBy:40]

Clip:1 :9] ] ];

causes the thickness of the line to be the length of the gesture divided by 40 and constrained
to be between 1 and 9 (pixels) inclusive. The length of the gesture determines the thickness of the
newly created line, which can subsequently be continuously manipulated into any length.

The dot gesture (where the user simply presses the mouse without moving it) has the null
semantics. When it is recognized, the gesture handler turns itself off immediately, enabling events
to propagate past it, and thus allowing whatever cursor is being displayed to be used as a tool. Thus
GDP, like DP, has the notion of a current mode, accessible via the dot gesture.

The pack gesture has semantics:

recog = [Seq :[handler mousetool:pack_MouseTool]

:[topview pack_list:<enclosed>]];
The attribute <enclosed> is an alias for [handler enclosed] . Recall from Section

7.7.3 that this message returns a list of objects enclosed by the gesture. This list is passed to the

topview, which creates the set. As long as the mouse button is held down, the pack tool will
cause the pack message to be sent to any object it touches; those objects will execute [parent

pack: self] (the implementation of the pack method) to add themselves to the current set.

The copy, move, rotate, edit, and delete gestures simply bring up their corresponding cursors
when aimed at the background (GdpTopView) view. They have more interesting semantics when
associated with a GobjView. The copy gesture, for example, causes:

recog = [Seq : [handler mousetool:viewcopy_MouseTool]
:copy = [[view viewcopy]

move:<endX> :<endY>]

:lastX = <endX>

:lastY = <endY>]

manip = [Seq :[copy move:[<currentX> Minus:lastX]

:[<currentY> Minus:lastY]]

:lastX = <endX>

:lastY = <endY>]

This illustrates thatthe gesture semantics can mimic the essential features ofthe DragHandler
(Section 6.7.9). The semantics of the move gesture are almost identical, except that no copy is
made. A simpler way to do this kind of thing (by reraising events) is shown when the semantics of
the GSCORE program are discussed.

The delete gesture has semantics
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Figure 8.3: GSCORE's cursor menu

recog = [Seq :[handler mousetool:delete_Mousetool]
: [view delete] ] ;

The edit gesture semantics are similar.

The rotate gesture has semantics:

recog = nil;

manip = [Seq :[handler mousetool:rotate_MouseTool]
: [view rotateAndScaleEndpoint : 0

x: <currentX>

y: <currentY>

cx: <startX>

cy:<startY>] ] ;

The rotateAndScaleEndpoint : message causes one point of the view to be mapped
to the coordinate indicated by x: and y: which keeping the point indicated by cx: and cy:
constant. This gesture always drags endpoint 0 of a graphic object. It would be better to be able to

drag an arbitrary point, as is done by MDP, discussed later.

8.2 GSCORE

GSCORE is a gesture-based musical score editor. Its design is not based on any particular program,
but its gesture set was influenced by the SSSP score-editing tools [18] and the Notewriter II score
editor.

8.2.1 A brief description of the interface

GSCORE has two interfaces, one gesture-based, the other not. Figure 8.3 shows the non-gesture-

based interface in action. Initially, a staff (the five lines) is presented to the user. The user may call
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Figure 8.4: GSCORE's palette menu

up additional staves by accessing the staff tool in the "Cursors" menu (which is shown in the figure).
In figure 8.4, the user has displayed a number of palettes from which he can drag musical symbols
onto the staff. As can be seen, the user has already placed a number of symbols on the staff. The
user has also used the down-tie tool to indicate two phrases and the beam tool to add beams so as to
connect some notes.i Both tools work by clicking the mouse on a starting note, then touching other

notes. The tie tool adds a tie between the initial note and the last one touched, while the beam tool
beams together all the notes touched during the interaction.

Dragging a note onto the staff determines its starting time as follows: If a note is dragged to
approximately the same x location as another note, the two are made to start at the same time (and
are made into a chord). Otherwise, the note begins at the ending time of the note (or rest or barline)
just before it. Other score objects are positioned like notes.

The palettes are accessed via the palette menu, shown in figure 8.4. The palettes themselves
may be dragged around so as to be convenient for the user. The "H" button hides the palette; once
hidden it must be retrieved from the menu.

The delete cursor deletes score events. When the mouse button is pressed, dragging the delete
button over objects which may be deleted causes them to be highlighted. Releasing the button over
such a highlighted object causes it to be deleted. Individual chord notes may be deleted by clicking
on their note heads; an entire chord by clicking on its stem. When a beam is deleted, the notes revert
to their unbeamed state.

The gestural interface provides an alternative to the palette interface. Figure 8.5 shows the three
sets of gestures recognized by GSCORE objects. The largest set, associated with the staff, all result

Note to readers unfamiliar with common music notation: A tie is a curved line connecting two adjacent notes of the

same pitch. A tie indicates that the two connected notes are to be performed as a single note whose duration equals the
sum of those of the connected notes. A curved line between adjacent differently pitched notes is a slur, performed by

connecting the second note to the first with no intermediate breath or break. Between nonadjacent notes, the curved line

is a phrase mark, which indicates a group of notes that makes up a musical phrase, as shown in figure 8.4. In GSCORE,
the tie tool can be used to enter ties, slurs, and phrase marks. A beam is a thick line that connects the stems of adjacent

notes (again see figure 8.4). By grouping multiple short notes together, beams serve to emphasize the metrical (rhythmic)

structure of the music.
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Figure 8.5: GSCORE gestures
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in staff events being created. There are two gestures, move and delete, that operate upon existing

score events. Seven additional gestures are for manipulating notes.

A gesture at a staff creates either a note, rest, clef, bar line, time signature, or key signature
object. The object created will be placed on the staff at (or near) the initial point of the gesture.
For notes, the x coordinate determines the starting time while the y coordinate determines the pitch
class. The gesture class determines the actual note duration (whole note, half note, quarter note,
eight note, sixteenth note, or thirtysecond note) and the direction of the stem.

Like note gestures, the remaining staff gestures use the initialx coordinate to determine the staff
position of the created object. The five rest gestures generate rests of various durations. The two
clef gestures generate the F and G clefs (C clefs may only be dragged from the palette). The timesig

gesture generates a time signature. After the gesture is recognized, the user controls the numerator
of the time signature by changes in the x coordinate of the mouse, and the denominator by changes
iny. Similarly, after the key gesture is recognized, the user controls the number of sharps or flats by
moving the mouse up or down. When a bar gesture is recognized, a bar line is placed in the staff,

and the cursor changes to the bar cursor. While the mouse button is held, the newly created bar line
extends to any staff touched by the mouse cursor.

The note-specific gestures all manipulate notes. Accidentals are placed on the note using the
sharp, flat, and natural gestures. The beam gesture causes the notes to be beamed together. The
note on which the beam gesture begins is one of the beamed notes; the beam is extended to other
notes as they are touched after the gesture is recognized. The uptie and downtie gestures operate

similarly. The dot gesture causes the duration of the note to be multipled by ), typically resulting
in a dot being added to a note.

Since a note is a score event, and always exists on a staff, a gesture which begins on a note may
either be note specific (e.g. sharp), score-event specific (e.g. delete), or directed at the staff (e.g.
one ofthe note gestures). The first time a gesture is made at a note, the three gesture sets are unioned
and a classifier created that can discriminate between each of them, as described in Section 7.2.

Figure 8.6 shows an example session with GSCORE.

8.2.2 Design and implementation

Figure 8.7 shows where the classes defined by GSCORE fit into GRANDMA's class hierarchy. In

general, each model class created has a corresponding view class for displaying it. No new event
handlers needed to be created for GSCORE; GRANDMA's existing ones proved adequate.

Generally useful views

Two new views of general utility, PullDownRowView and Paletteview, were implemented
during the development ofGSCORE. A Pul1DownRowView is a row ofbuttons, each ofwhich acti-
vates a popup menu. It provides functionality similar to the Macintosh menu bar. A Palet t eView
implements a palette of objects, each ofwhich is copied when dragged. Paletteview instantiates
a single DragHandler (Section 6.7.9) that it associates with every object on a palette. The drag

handler has been sent the message copyviewON, which gives the palette its functionality.
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Figure 8.6: A GSCORE session
Panel (a) shows a blankstaffupon which the Gclefgesture has been entered. Panel (b) show the created treble

clef anda key (key signature) gesture. After recognition, the number offlats or sharps can be manipulatedby

the distance the mouse moves above the staffor below the staff respectively. Panel (c) shows the created key

signature (oneflat), and a timesig (time signature) gesture. After recognition, the horizontal distancefrom

the recognitionpoint determines the numerator of the time signature, and the vertical distance determines

the denominator Panel (d) shows the resulting time signature, and the 4u (quarter note) gesture, a single

vertical stroke. Since this is an upstroke, the note will have an upward stem. The initialpoint ofthe gesture

determines both thepitch of the note (via verticalposition) and the starting time of the note (via horizontal

position). Panel (e) shows the created note, and the 8u (eighth note) gesture. Like the quarter note gesture,

the gesture class determines the note's duration, andgestural attributes determines the note's stem direction,

start time andpitch. Panel (f) shows two 16u (sixteenth note) gestures (combining two steps into one). Panel

(g) shows a beam gesture. This gesture begins on a note, rather than the gestures mentioned thusfar which

begin on a staff After the gesture is recognized, the user touches other notes in order to beam them together

Panel (h) shows the beamed notes, and a flat gesture drawn on a note. Panel (i) shows the resultingflat

sign added before the note, and an 8r (eighth rest) gesture drawn on the staff Panel (j) shows the resulting

rest, and a delete gesture beginning on the rest. Panel (k) shows a 4u (quarter note) gesture drawn over an

existing quarter note (all symbols in GSCORE have rectangular input regions), the result being a chord, as

shown in panel (l).
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Figure 8.7: GSCORE's class hierarchy

Each palette can implement an arbitrary action when one of the dragged objects is dropped. For
most palettes of score events (notes, rests, clefs, and so on), no special action is taken. The copied
view becomes a subview of a staf fview when dragged onto a staff. However, accidentals and
duration modifiers (dots and triplets) are tools which send messages to Noteview objects when
dragged over them; the Noteview takes care of updating its state and creating any accidentals or
duration modifiers it needs. The copies that are dragged from the palette thus never become part of
the score, and so are automatically deleted when dropped.

GSCORE Models

With the exception of PullDownRowView and Paletteview, the new classes created during
the implementation of GSCORE are specific to score editing. A Score object represents a musical
score. It contains a list of Staff objects and a doubly-linked list (class Dll) of ScoreEvent
objects. Each ScoreEvent has a time field indicating where in the score it begins; the doubly-
linked list is maintained in time order.

The subclass StaffEvent includes all classes that can only be associated with a single staff.
A BarLine is not a Staf fEvent since it may connect more than one staff, and thus maintains a
set of staves in an instance variable. Similarly, a Chord may contain notes from different staves,
as may a Tie and Beam. A Durat ionModif ier is not attached directly to a Staf f, but instead
with a Note or Beam, so it is not a Staf fEvent either.

The responsibility ofmapping time to x coordinate in a staff rests mainly with the score object.
It has two methods timeof : and xposOf : which map x coordinates to times, and times to x
coordinates, respectively. Score has the method addEvent : for adding events to the list and
delete : and erase : for deleting and erasing events. Erase is a kind of "soft" delete; the object

is removed from the list of score events, but it is not deallocated or in any other way disturbed. A
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typical use would be to erase an object, change its t ime field, and then add it to the score, thus
moving it in time.

Each ScoreEvent subclass implements the tiebreaker message; this orders score events
that occur simultaneously. This is important for determining the position of score events; bar lines
must come before clefs, which must come before key signatures, and so on. Besides determining
the order events will appear on the staff, tiebreakers are important because they maintain a canonical
ordering of score events which can be relied upon throughout the code.

Particular ScoreEvent classes have straightforward implementations. Note has instance
variables that contain its pitch, raw duration (excluding duration modifiers), actual duration, stem
direction, back pointers to any Chord or Beam that contain it, and pointers to Accidental and
DurationModifier objects that apply to it. It has messages for setting most of those, and
maintains consistency between dependent variables. Notes are able to delete themselves gracefully,
first by removing themselves from any beams or chords in which they participate, and deleting any
accidentals or duration modifiers attached to them, then finally deleting themselves from the score.
Other score events behave similarly.

Sending a scoreEvent the t ime : message, which changes its start time, results in its score
being informed. The score takes care to move the ScoreEvent to the correct place in its list of
events. This is accomplished by first erasing the event from the score, and then adding it again.

While the internal representation of scores for use in editing is quite an interesting topic in its
own right [20, 83, 88, 29] it is tangentialto the main topic, gesture-based systems. The representation
has now been described in enough detail so that the implementation of the user interface, as well as
the gesture semantics, can be appreciated. These are now described.

GSCORE Views

As expected from the MVC paradigm, there is a view subclass corresponding to each ofthe Models
discussed above. Scoreview provides a backdrop. Not surprisingly, instances of StaffView
are subviews of Scoreview. Perhaps more surprisingly, all ScoreEventView objects are
also subviews of Scoreview. For simplicity, the various StaffEventView claSSes are not
subviews of the staf fview upon which they are drawn. This simplifies screen update, since the
Scoreview need not traverse a nested structure to search for objects that need updating.

It is often necessary for a view to access related views; for example a BeamView needs to
communicate with the Noteview or ChordView objects being beamed together. One alternative
is for the views to keeps pointers to the related views in instance variables. This is very common in
MVC-based systems: pointers between views explicitly mimic relations between the corresponding
models. It is the task of the programmer to keep these pointers consistent as the model objects are
added, deleted, or modified.

In one sense, this is one of the costs associated with the MVC paradigm. For reasons of
modularity, MVC dictates that views and models be separate, and that models make no reference
to their views (except indirectly, through a model's list of dependents). The benefit is that models
may be written cleanly, and each may have multiple views. Unfortunately, the separation results in
redundancy at best (since the structure is maintained as both pointers between models and pointers
between views), and inconsistency at worse (since the two structures can get "out of sync"). Also,
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any changes to a model's relationship to other models requires parallel changes in the corresponding
views. This duplication, noticed during the initial construction of GSCORE, seemed to be contrary
to the ideals of object-oriented programming, where techniques such as inheritance are utilized to
avoid duplication of effort.

GRANDMA attempts to address this problem ofMVC in a general way. The problem is caused
by the taboo which prevents a model from explicitly referencing its view(s). GRANDMA maintains
this taboo, but provides a mechanism for inquiring as to the view of a given model. In order to
retain the possibility ofmultiple views of a single model, the query is sent to a context object; within

the context, a model has at most one view. The implementation requires that a context be a kind of
View object:

View . . .

- setModelOfView:v { />associatesvwith[vmodel]*/ }

- getViewOfModel : m { /* returns view associatedwith m * / }

The implementation is done using an association list per context: given a context, the message
setModelOfView: associates a view with its model in the context. Objective C's association
list object uses hashing internally, so getviewOfModel: typically operates in constant time
independent of the number of associations. The result is a kind of inverted index, mapping models
to views.

In GSCORE, only a single context is used (since there is only one view per model), which,
for convenience, is the parent of all ScoreEventView objects, a scoreview. The various
subclasses of ScoreEventView no longer have to keep consistent a set of pointers to related ob-
jects. For example, a BeamView needs only to query its model for the list of Note and/or chord
models that it is to beam together; it can then ask each of those models m for its view via [parent
getViewOfModel:m] . The instance variable parent here refers to the scoreview ofwhich
the Beamview is a subview. Thus, the problem of keeping parallel structures consistent is elimi-

nated. One drawback, however, is that it is now necessary to maintain the inverted index as views
are created and deleted.

Now that the problem of how views access their related views has been solved, redisplay-
ing a view is straightforward. Recall (Section 6.5) that when a model is modified, it sends
itself the modified message, which results in all its dependents (in particular its view) get-

ting the message modelModified. The default implementation of modelModified results
in updatePicture being sent to the view and all of its subviews (Section 6.6). Normally,

updatePicture is the method that is directly responsible for querying the model and updating
the graphics. ScoreEventView overrides updatePicture, and the task ofactually producing
the graphics for a score event is relegated to a new method, createPicture, implemented by
each of ScoreEventView's subclasses. ScoreEventView's updatePicture sends itself
createPicture, but also does some additional work to be discussed shortly.

As an example, consider what happens when the pitch of a note is changed. When a Note
is sent the abspitch: message, which changes its pitch, it updates its internal state and sends
itself the modified message. (Changing the pitch might result in Accidental objects being
added or deleted from the score, a possibility ignored for now.) This Note's Noteview will get
sent createPicture, and query its model (and the score and staf f objects ofthe model) to
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determine the kind and position ofthe note head, as well as the stem direction, ifneeded. The proper
note head is selected from the music font, and drawn on the staff (with ledger lines if necessary) at
the determined location.

One reason for ScoreEvent's updatePicture sending createPicture is to test in
a single place the possibility that the view may have moved since the last time it was drawn. In
particular, if the x coordinate of the right edge of the view's bounding box has changed, this is an
indication that the score events after the this might have to be repositioned. If so, the score object
is sent a message to this effect, and takes care of changing the x position of any affected models.
Another reason for the extra step in creating pictures is to stop a recursive message that attempts to
create a picture currently being created, a possibility in certain cases.

Adding or deleting a scoreEvent causes the score object to send itself the modified
message. Before doing so, it creates a record indicating exactly what was changed. When notified, its
ScoreView object will request that record, creating or deleting scoreEventViews as required.
Scoreview uses an association list to associate view classes with model classes; it can thus send
the createviewof : message to the appropriate factory.

ScoreEventViews function as virtual tools, performing the action scoreeventview:.
(This defaultis overriddenby AccView, DurModView, BarLineView, and Tieview, as these
do not operate on Staffviews.) The only class that handles scoreeventview: messages
is StaffView. A version of GenericToolOnViewEventHandler different than the one
discussed in Section 6.7.7 is associated with class ScoreEventView. This version is a kind of
GenericEventHandler, and thus more parameterizable than the one discussed earlier. The
instance associated with Staf fviews has its parameters set so that it performs its operation
immediately (as soon as a tool is dragged over a view which accepts its action), rather than the
normal behavior of providing immediate semantic feedback and performing the action when the
tool is dropped on the view.

Thus, when a ScoreEventView whose action is scoreeventview: is dragged over a
StaffView, the staffview immediately gets sent the message scoreeventview:, with
the tool (i.e. the ScoreEventView) as a parameter. The first step is to erase : the model
of the ScoreEventView from the score, if possible. The staf fview then sends its model's
Score the timeof : message, with parameter thex coordinate ofthe StaffEventView being
dragged. The time returned is made the time of the ScoreEventView's model, which is then
added to the score. When a subsequent drag event of the ScoreEventView results in the
scoreeventview: message to be sent to the staf fview, the process is repeated again. Thus
as the user drags around the ScoreEventView, the score is continuously updated, and the effect
of the drag immediately reflected on the display.

Though they have different actions, AccView, TieView, DurModView, and BarLineView
tools operate similarly to the other ScoreEventViews. Rather than explain their functionality in
the non-gesture-based interface, the next section discusses the semantics of the gestural interface to

GSCORE.
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GSCORE's gesture semantics

The gesture semantics rely heavily on the palette interface described above. When the palettes are
first created, every view placed in the palette is named and made accessible via the "Attributes"
button in the gesture semantics window (see Sections 7.7.2 and 7.7.3). It is then a simple matter in
the gesture semantics to simulate dragging a copy of the view onto the staff (see Section 7.7.1). For
example, consider the semantics of the 8u gesture, which creates an eighth note with an up stem:

recog = [[[noteview8up viewcopy] at:<startLoc>]

reRaise:<currentEvent>];

The name noteview8up refers to the view of the eighth note with the up stem placed in the
palette during program initialization. That view is copied (which results in the model being copied as
well), moved to the starting location of the gesture (another "Attribute"), and the currentEvent
(another "Attribute") is reraised using this view as the tool and its location as the event location.

This simulates the actions of the DragHandler, and since startLoc is guaranteed to be over
the staff (otherwise these semantics would never have been executed) the effect is to place an eighth
note into the score. Similar semantics (the only difference is the view being copied) are used for all
other note gestures, as well as all rest gestures and clef gestures.

The semantics of the bar gesture is similar to that of the note gestures, the difference being that

a mouse tool is used rather than a virtual (view) tool.

recog = [handler mousetool:

[barlineEvent MouseTool

reRaise:<currentEvent>

at:<startLoc>]];

The timesig gesture for creating time signatures is more interesting. After it is recognized, x

and y of the mouse control the numerator and the denominator of the time signature, respectively:

recog = [Seq :sx = <currentX>

: sy = <currentY>

:[[[timesigview4_4 viewcopy] at:<startLoc>]

reRaise:<currentEvent>]]

manip = [ [recog model]

timesig:[[[<currentX> Minus:sx]
DividedBy:10] Clip :1 :100]

:[[[<currentY> Minus:sy]
DividedBy:10] Clip :1 :100]]

Note that the recog expression is similar to the others; a view from the palette is copied, moved
to the staff, and used as a tool in the reraising of an event. The manip expression, in contrast,
does not operate on the level of simulated drags. Instead, it accesses the model of the newly
created TimeSigView directly, sending it the t imesig: : message which sets its numerator and
denominator. The division by 10 means that the mouse has to move 10 pixels in order to change one
unit. The clip: : message ensures the result will be between 1 and 100, inclusive. For musical
purposes, it is probably better to only use powers of two for the denominator, but unfortunately no
toThe: message has been implemented in Type Int (though it would be simple to do).
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The key signature gesture (key) works similarly, except that only the y coordinate of the mouse

is used (to control the number of accidentals in the key signature):

recog = [Seq :sy = <currentY>
:[[[keysigviewlsharps viewcopy]

at :<startLoc>]

reRaise:<currentEvent>]]
manip = [ [recog model]

keysig: [ [ [sy Minus:<currentY>]
DividedBy:10] Clip:[0 Minus:6] :6]]

A positive value for key signature indicates the number of sharps, a negative one the (negation
of the) number of flats. The awkward [ 0 Minus : 6 ] is used because the author failed to allow the
creation ofnegative numbers with the "new int" button.

The above gestures are recognized when made on the staff. The delete and move gestures are
only recognized when they begin on scoreEventViews. The semantics of the delete gesture
are:

recog = [Seq :[handler mousetool:delete_MouseTool]
: [view delete] ] ;

This changes the cursor, and deletes the view that the gesture began on. The latter effect could
also have been achieved using reRaise :, but the above code is simpler.

The move gesture simply restores the normal cursor and reraises it at the starting location of
the gesture, relying on the fact that in the non-gesture-based interface, score events may be dragged

with the mouse:

recog = [[handler mousetool:normal_MouseTool]
reRaise: startEvent] ;

In addition to the gestures that apply to any ScoreEventView, NoteView recognizes a few
of its own. The three gestures for adding accidentals to notes (sharp, flat, and natural) access the
Note object directly. For example, the semantics of the sharp gesture are:

recog = [[view model] acc:SHARP];

The beam gesture changes the cursor to the beam cursor and simulates clicking the beam cursor
on the Noteview at the initial point:

recog = [[handler mousetool:beamtool_MouseTool]
reRaise: startEvent] ;

The tie gestures (uptie and downtie) couldhave been implemented similarly. Instead, a variation
ofthe above semantics causes the mouse cursor to revert to the normal cursor when the mouse button
is released after the gesture is over:

recog = [Seq :[handler mousetool:tieUpEvent_MouseTool]

:[tieUpEvent_MouseTool reRaise:startEvent]]];

manip = :[tieUpEvent_MouseTool reRaise:currentEvent]]];

done = [Seq :[tieUpEvent_MouseTool reRaise:currentEvent]
:[handler mousetool:normal MouseTool]];
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The dot gesture accesses the Note's raw duration, multiplies it by ( and changes the duration

to the result. The note will add the appropriate dot in the score when it receives its new duration

recog = [Seq :m = [view model]
: [m dur: [ [ [m rawdur] Times:3] DividedBy:2]]];

manip = recog;
The manip = recog statement itself does nothing of itself, but by virtue ofit being non-nil,

the gesture handler does not relinquish control until the mouse button is released. Without this
statement, the mouse cursor tool (whatever it happens to be) would operate on any view it was
dragged across after the dot gesture was recognized.

8.3 MDP

MDP is gesture-based drawing program that takes multi-finger Sensor Frame gestures as input.
Though primarily a demonstration ofmulti-path gesture recognition, MDP also shows how gestures
can be incorporated cheaply and quickly into a non-object-oriented system. This is in contrast to
GRANDMA, which, whatever its merits, requires a great deal of mechanism (an object=oriented

user interface toolkit with appropriate hooks) before gestures can be incorporated.

The user interface to MDP is similar to that of GDP. The user makes gestures, which results
in various geometric objects being created and manipulated. The main differences are due to the
different input devices. In additionto classifying multiple finger gestures, MDP uses multiple fingers
in the manipulation phase. This allows, for example, a graphic object to be rotated, translated, and
scaled simultaneously.

Figure 8.8 shows an example MDP session. Note that how, once a gesture has been recognized,
additional fingers may be brought in and out of the picture to manipulate various parameters.
Multiple finger tracking imbues the two-phase interaction with even more power than the single-
path two-phase interaction.

8.3.1 Internals

Figure 8.9 shows the internal architecture of MDP. The lines indicate the main data flow paths

through the various modules.
Like the gesture-based systems built using GRANDMA, when MDP is first started, a set of

gesture training examples is read from a file. These are used to train the multi-path classifier as
described in Chapter 5. MDP itself provides no facility for creating or modifying the training

examples. Instead, a separate program is used for this purpose.

The Sensor Frame is not integrated with the window manager on the IRIS, making the handling
of its input more difficult than the handling of mouse input. In particular, coordinates returned by
the Sensor Frame are absolute screen coordinates in an arbitrary scale, while the window manager
generally expects window-relative coordinates to be used. Fortunately, the IRIS windowing system
supports general coordinate transformations on a per-window basis, which MDP uses as follows.

When started, MDP creates a window on the screen, and reads an alignmentfile to determine
the coordinate transformation for mapping window coordinates to screen coordinates that makes the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.8: An example MDP session

This figure consists ofsnapshots ofa video ofan MDP session. Some panels have been retouched to make

the inking more apparent. Panel (a) shows the single finger line gesture, which is essentially the same

as GDP's line gesture. As in GDR the start of the gesture gives one endpoint of the line, while the other

endpoint is dragged by the gesturingfinger after the gesture is recognized. Additionalfingers may be used

to control the line's color and thickness. Panel (b) shows the created line, and the rectangle gesture, again

the same as GDP's. After the gesture is recognized, additionalfingers may be brought into the sensingplane

to control the rectangle's color thickness, andfilledproperty, as shown in panel (c). Panel (d) shows the

circle gesture, which works analogously. Panel (e) shows the twofinger parallelogram gesture. After the

gesture is recognized, the two gesturingfingers control two corners oftheparallegram. An additionalfinger
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(j) (k) (1)

(m) (n) (o)

Fig 8.8 (continued)

in the sensing plane will then control a third corner, allowing an arbitrary parallelogram to be entered.

Panel (f) shows the edit color gesture being made at the newly createdparallelogram. After this gesture is

recognized, theparallelogrami color andfilledproperty may be dynamically manipulated. Panel (g) shows

the threefinger pack (group) gesture. During the pack interaction, all object touched by any of thefingers

are grouped into a single set. Here, the line, rectangle, andcircle are grouped together to make a cart. Panel

(h) shows the copy gesture. After the gesture is recognized, the object indicated by the first point of the

gesture (in this case, the cart) is dragged by the gesturingfingen as shown in panel (i). Additionalfingers

allow the colon edge thicknesses, andfilledproperty of the copy to be manipulated, as shown in panel (j).

Circle and rectangle gestures (both not shown) were then used to create some additionalshapes. Panel (k)

shows the twofinger rotate gesture. After it is recognized, each of the twofingers become attached to their

respective points where they first touched the designated object. By moving the fingers apart or togethen

rotating the hand, and moving the hand, the object may be simultaneouslyscaled, rotated, and translatedas

shown in panel (l). (Thefingers are not touching the object due to the delay in getting the input data and

refreshing the screen.) Panel (m) shows the delete gesture being used to delete a rectangle. Not shown are

more deletion and creation gestures, leaving the drawing in the state shown in panel (n). Panel (n) showns

the three finger undo gesture. Upon recognition, the most recent creation or deletion is undone. Moving

thefingers up causes more and more operations to be undone, while moving thefingers down allows undone

operations to be redone, interactively. Panel (o) shows a state during the interaction where many operations

have been undone. In this implementation, creations and deletions are undoable, but position changes are

not. This explains why, in panel (o), only the cart items remain (undo back to panel (e)), but those items are

in theposition they assumed in panel (m).
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window coordinate system identical with the Sensor Frame coordinate system. If the given window
size and position has not been seen before (as indicated by the alignment file) the user is forced
to go through an alignment dialogue before proceeding (this also occurs when the window occurs
moved or resized). Two dots are displayed, one in each corner of the window, and the user is asked
to touch each dot. The data read are used to make window coordinates exactly match Sensor Frame
coordinates. The transformation for window coordinates to screen coordinates is done by the IRIS
software, and does not have to be considered by the rest of the program. The parameters are saved
in the alignment file to avoid having to repeat the procedure each time MDP is started.2

Once initialized, the MDP begins to read data from the Sensor Frame. The current Sensor Frame
software works by polling, and typically returns data at the rate of approximately 30 snapshots
per second. The "Receive Data" module performs the path tracking (see section 5.1) and returns

snapshot records consisting of the current time, number of fingers seen by the frame, and tuples
(x, y, i) for each finger, (x, y) being the finger's location in the frame. The i is the path identifier, as
determined by the path tracker. The intent is that a given value of i represents the same finger in
successive snapshots.

Normally, MDP is in its WAIT state, where the polling indicates that there are no fingers in the
plane of the frame. Once one or more fingers enter the field of view of the frame, the COLLECT State
is entered. Each successive snapshot is passed to the "calculate features" module, which performs

the incremental feature calculation. The COLLECT state ends when the user removes all fingers from
the frame viewfield or stops moving for 150 milliseconds. (The timeout interval is settable by the
user, but 150 milliseconds has been found to work well.) Unlike a mouse user, it is difficult for

Sensor Frame users to hold their fingers perfectly still, so a threshold is used to decide when the
user has not moved. In other words, the threshold determines the amount of movement allowable
between successive snapshots that is to count as "not moving." This is done by comparing the
threshold to the error metric calculated during the path tracking (sum of squared distances between
corresponding points in successive snapshots).

Once the gesture has been collected, its feature vectors are passed to the multi-path classifier,
which returns the gesture's class. Then the recognition action associated with the class is looked
up in the action table and executed. As long as at least one finger remains in the field of view, the
manipulation action of the class is executed.

Many of GRANDMA's ideas for specifying gesture semantics are used in MDP. Although
MDP does not have a full-blown interpreter, there is a table specifying the recognition action and
manipulation action for each class. While it would be possible for the tables to be constructed at
runtime, currently the table is compiled into MDP. Each row in the entry for a class consists of a
finger specification, the name of a C function to call to execute the row, and a constant argument
to pass to the function. The finger specification determines which finger coordinates to pass as
additional arguments to the function.

Consider the table entries for the MDP line gesture, similar to the GDP line gesture:

ACTION (_LINErecog)

{ ALWAYS, BltnCreate, (int) Line, },

2Moving or resizing the window often requires the alignment procedure to be repeated, a problem that would ofcourse

have to be fixed in a production version of the program.
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{ START (0) , BltnSetPoint, 0, },

END ACTION

ACTION (_LINEmanip)

{ CURRENT (0) , BltnSetPoint, 1, },

{ CURRENT (1) , BltnThickness, 0, },

{ CURRENT (2) , BltnColorFill, 0, },

END ACTION

When a line gesture is recognized, the _LINErecog action is executed. Its first line results in
the call BltnCreate (Line) being executed. The ALWAYS means that this row is not associated

with any particular finger, thus no finger coordinates are passed to Bitncreate. The next line
results in BltnSetPoint (0 , xos, yos) being called, where (xos, yes) is the initial point ofthe first
finger (finger 0) in the gesture.

For each snapshot after the line gesture has been recognized, the _LINEmanip action is
executed. The first line causes BitnsetPoint (1, xoc,yoc) to be called, where (xoc,yoc) is the
current location of the first finger (finger 0). The next line causes BitnThickness (0 , xic,yic)
to be called, (xic,yic) being the current location of the second finger. Similarly, the third line causes
BltnColorFill (0, x2cof2c) to be called.

If any of the fingers named in a line of the action are not actually in the field of view of the
frame, that line is ignored. For example, the line gesture in MDP, as in GDP, is a single straight

stroke. Immediately after recognition there will only be one finger seen by the frame, namely finger
zero, so the lines beginning CURRENT (1) and CURRENT (2) will not be executed. If a second
finger is now inserted into the viewfield, both the CURRENT (0) and CURRENT (1) lines will be
executed every snapshot. If the initial finger is now removed, the CURRENT (0 ) line will no longer

be executed, until another finger is placed in the viewfield.

The assignment of finger numbers is done as follows: when the gesture is first recognized, each
finger is assigned its index in the path sorting (see Section 5.2). During the manipulation phase,
when a finger is removed, its number is freed, but the numbers of the remaining fingers stay the
same. When a finger enters, it is assigned the smallest free number.

The semantic routines (e.g. BltnColorFill) communicate with each other (and successive
calls to themselves) via shared variables. All these functions are defined in a single file with the shared
variables declared at the top. When there are no fingers in the viewfield, the call BltnReset () is

made; its function is to initialize the shared variables. In MDP, all shared variables are initialized
by BltnReset () ; from this it follows that the interface is modeless. Another system might have
some state retained across calls to BltnReset (); for example, the current selection might be

maintained this way.

The Bitn . . . functions manipulate the drawing elements through a package of routines. The
actual implementation of those routines is similar to the implementation of the GDP objects. Rather
than go into detail, the underlying routines are summarized. MDP declares the following types:

typedef enum { Nothing, Line, Rect,

Circle, SetOfObjects } Type;
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typedef struct { /*... */ } *Element;
typedef struct { /*... */ } «Trans;

Assume the following declarations for expositional purposes:

Element e ; /* a graphic object * /

Type type ; /* the type ofa graphic object * /

int x , y ; /* coordinates * /

int p ; /* a point number: 0, 1, or 2, 3 * /

int thickness, color;
BOOL b;

Trans tr ; /* a transformation matrix * /

The Element is a pointer to a structure representing an element of a drawing, which is either a
Line, Rect, Circle or SetOfObjects. The Element structure includes an array of points
for those element types which need them. A Line has two points (the endpoints), a Rect has three
points (representing three corners, thus a Rect is actually a parallelogram), and a circle has
two points (the center and a point on the circle). A Set0fobjects contains a list of component
elements which make up a single composite element.

Element StNewObj (type) adds a new element of the passed type to the drawing, and

returns a handle. Initially, all the points in the element are marked uninitialized. Any element
with uninitialized points will not be drawn, with the exception of Rect objects, which will
be drawn parallel to the axes ifpoint 1 is uninitialized.

StUpdatePoint (e, p, x, y) changes point p of element e to be (x, y) . Returns FALSE

iff e has no point p.

StGetPoint (e, p, &x, &y) sets x and y to point p of element e. Returns FALSE iff e has

no point p or point p is uninitialized.

StDelete (e) deletes object e from the drawing.

StFill (e, b) makes object e filled ifb is TRUE, otherwise makes e unfilled. This only applies

to circles and rectangles, which will be only have their borders drawn if unfilled, otherwise
will be "colored in."

StThickness (e, t ) sets the thickness of e's borders to t. Only applies to circles, rectangles,
and lines.

StColor (e, color) changes the color of e to color, which is an index into a standard color

map. If e is a set, all members of e are changed.

StTransform (e, tr) applies the transformation tr to e. In general, tr can cause transla-

tions, rotations, and scalings in any combination.

void StMove (e, x, y) is a special case of StTransform which translates e by the vector
(x, y) .
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StCopyElement (e) adds an identical copy of e to the drawing, which is also retumed. If e is

a set, its elements will be recursively copied.

StPick (x, y) retumstheelementinthedrawingatpoint (x,y), orNULLifthereisnoelement
there. The topmost element at (x, y) is retumed, where elements created later are considered
to be on top of elements created earlier. The thickness and "filled-ness" of an element are
considered when determining if an element is at (x, y) .

StHighlight (e, b) tums on highlighting of e if b is TRUE, off otherwise. Highlighting is

currently implemented by blinking the object.

StUnHighlightAll () tums off highlighting on all objects in the drawing.

void StRedraw () draws the entire picture on the display. Double buffering is used to ensure

smooth changes.

StCheckpoint () saves the current state of the drawing, which can be later restored via

StUndoMore.

StUndoMore (b) changes the drawing to its previously checkpointed state (if b is TRUE). Each
successive call to StUndoMore (TRUE) returns to a previous state of the picture until the
state of the picture when the program was started in reached. StundoMore (FALSE)
performs a redo, undoing the effect of the last stundoMore (TRUE) . Successive calls to
StUndoMore (FALSE) will eventually restore a drawing to its latest checkpointed state.

Trans AllocTran () allocates a transformation, which is initialized to the identity transforma-

tion.

SegmentTran (tr, x0,y0, x1,yl, XO, YO, X1, Yl) Sets tr to a transformation con-

sisting of a rotation, followed by a scaling, followed by translation, the net effect of which
would be to map a line segment with endpoints (x0 , y0 ) and (x1, y1) to one with end-
points (XO , YO) and (X1, Yl) . Other transformation creation functions exist, but this is the

only one used directly by the gesture semantics.

JotC (color, x, y, text) draws the passed text string on the screen in the passed color, at
the point (x, y) . The text will be erased at the next call to StRedraw.

8.3.2 MDP gestures and their semantics

Now that the basic primitives used by MDP have been described, the actual gestures used, and their
effect and implementation are discussed. Figure 8.10 shows typical examples of the MDP gestures
used. Each is described in turn.

Line The line gesture creates a line with one endpoint being the start of the gesture, the other
tracking finger 0 after the gesture has been recognized. Finger 1 (which must be brought in

after the gesture has been recognized) controls the thickness of the line as follows: the point
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Figure 8.10: MDP gestures

where finger 1 first enters is displayed on the screen; the thickness of the line is proportional
to the difference in y coordinate of finger l's current point and initial point. Finger 2 controls
the color of the line in a similar manner. (Here a color is represented simply by an index into
a color map.)

The action table entry for line has already been listed in the previous section. The C routines
called are listed here:

BltnCreate (arg) {

E = StNewObj (arg) ;

shouldCheckpoint = TRUE;

BltnSetPoint (arg, gx, gy) {
if(E) StUpdatePoint(E, arg, gx, gy);

BltnThickness (arg, gx, gy) { int x, t;

if(tx == -1) tx = gx, ty = gy;

if (!E) return;

x = arg==0 ? abs(tx-gx) : abs(ty-gy);

t = Scale(x, 1, 2, 1, 100);

StThickness (E, t) ;

JotC(RED, tx, ty, arg==0 ? "TX%d" : "TY%d", t);
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JotC(RED, gx, gy+10, "t");

BltnColorFill(arg, gx, gy) { int color, fill;
if(!E) return;

if(cfx == -1) cfx = gx, cfy = gy;

fill = Scale(cfx - gx, 1, 10, -1, 1);

StFill(E, fill >= 0);

color = Scale(cfy - gy, 1, 25, -15, 15);

if(color < 0) color = -color;
else if(color == 0) color = 1;
StColor(E, color);

JotC(GREEN, cfx, cfy, "CF%d/%d", color, fill);

JotC(GREEN, gx, gy+10, "cf");

Scale(i, num, den, low, high) {

int j = i * num;
int k = j >= 0 ? j/den : -((-j)/den);

return k < low ? low : k > high ? high : k;

The BltnReset () function Sets E to NULL, and sets tx, ty, cfx, and cfy all to -1.
BltnReset() callsStCheckpoint() ifshouldCheckpoint isTRUEandthensets

shouldCheckpointtoFALSE.

The functions BitnThickness and BltnColorFill provide feedback to the user by
jotting some text ("TX" and "CF", respectively) that indicates the location that the finger first
entered the viewfield. Lower case text ("t" and "cf") is drawn at the appropriate fingers,
indicating to the user which finger is controlling which parameter.

Rectangle The rectangle gesture works similarly to the line gesture. After the gesture is recog-

nized, a rectangle is created, one corner at the starting point ofthe gesture, the opposite corner
tracking finger 0. Fingers 1 and 2 control the thickness and color as with the line gesture.

Finger 2 also controls whether or not the rectangle is filled; if it is to the left of where it
initially entered, the rectangle is filled, otherwise not.

ACTION(_RECTrecog)

{ ALWAYS, BltnCreate, (int)Rect, },

{ START(0), BltnSetPoint, 0, },

END ACTION

ACTION(_RECTmanip)

{ CURRENT(0), BltnSetPoint, 2, },

{ CURRENT(1), BltnThickness, 0, },

{ CURRENT(2), BltnColorFill, 0, },

END ACTION

APLNDC00022157



8.3. MDP 191

Circle The circle gesture causes a circle to be created, the starting point of the gesture being the
center, and a point on the circle controlled by finger 0. Fingers 1 and 2 operate as they do in
the rectangle gesture. Its semantics of the circle gesture are almost identical that of the line
gesture, and are thus not shown here.

Edit color This gesture lets the user edit the color and "filled-ness" of an existing object. Beginning
the gesture on an object edits that object. Otherwise, the user moves finger 0 until he touches
an object to edit. Once selected, finger 0 determines the color and fill properties of the object
as finger 2 did in the previous gestures.

ACTION (_COLORrecog)

{ START (0) , BltnPick, 0, },

END ACTION

ACTION (_COLORmanip)

{ CURRENT (0) , BltnPickIfNull, 0, },

{ CURRENT (0) , BltnColorFill, 0, },

END ACTION

BltnPick (arg, gx, gy) {

E = St Pick (gx, gy) ;

if(E) px = gx, py = gy;

BltnPickIfNull (arg, gx, gy) {

if(!E) BltnPick(arg, gx, gy);

Copy The copy gesture picks an element to be copied in the same manner as the edit-color gesture
above. Once copied, finger 0 drags the new copy around, while finger 1 can be used to adjust
the color and thickness of the copy.

ACTION (_COPYrecog)

{ START (0) , BltnPick, 0, },

END ACTION

ACTION (_COPYmanip)

{ CURRENT (0) , BltnPickIfNull, 0, },

{ CURRENT (0) , Bltncopy, 0, },

{ CURRENT (0) , BltnMove, 0 , },

{ CURRENT (1) , BltnColorFill, 0, },

END ACTION

In the interest ofbrevity the C routines will no longer be listed, since they are very similar to
those already seen.
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Move Move is a two-finger "pinching" gesture. An object is picked as in the previous gestures,
and then tracks finger 0.

ACTION(_MOVErecog)

{ START(0), BltnPick, 0, },

END ACTION

ACTION(_MOVEmanip)

{ CURRENT(0), BltnPickIfNull, 0, },

{ CURRENT(0), BltnMove, 0, },

END ACTION

Delete The delete gesture picks an object just like the previous gestures, and then deletes it.
ACTION(_DELETErecog)

{ START(0), BltnPick, 0, },

END ACTION

ACTION(_DELETEmanip)

{ CURRENT(0), BltnPickIfNull, 0, },

{ CURRENT(0), BltnDelete, 0, },

END ACTION

Parallelogram The parallelogram gesture is a two-finger gesture. One corner ofthe parallelogram
is determined by the initial location of fingers 0; an adjacent corner tracks finger 0, and the

opposite corner tracks finger 1. Adding a third finger (finger 2) moves the initial point of the
parallelogram.

ACTION(_PERavecog)

{ ALWAYS, BltnCreate, (int)Rect, },

{ START(0), BltnSetPoint, 0, },

END ACTION

ACTION(_PARAmanip)

{ CURRENT(0), BltnSetPoint, 1, },

{ CURRENT(1), BltnSetPoint, 2, },

{ CURRENT(2), BltnSetPoint, 0, },

END ACTION

Rotate Rotate is a two-finger gesture. An object is picked with either finger. At the time of the

pick, each finger becomes attached to a point on the picked object. Each finger then drags its
respective point; the object can thus be rotated by rotating the fingers, scaled by moving the
fingers apart or together, or translated by moving the fingers in parallel.

ACTION(_ROTATErecog)

{ START(0), BltnPick, 0, },

{ START(1), BltnPickIfNull, 0, },

END ACTION
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ACTION (_ROTATEmanip)

{ CURRENT (0) , BltnPickIfNull, 0, },

{ CURRENT (1) , BltnPickIfNull, 0, },

{ CURRENT (0) , BltnRotate, 0 , },

{ CURRENT (1) , BltnRotate, 1, },

END ACTION

Pack The pack gesture is a three-finger gesture. Any objects touched by the any of the fingers are

added to a newly created setofobj ects.
ACTION (_PACKrecog)

END ACTION

ACTION (_PACKmanip)

{ CURRENT (0) , BltnPick, 0, },

{ ALWAYS, BltnAddToSet, 0, },

{ CURRENT (1) , BltnPick, 0, },

{ ALWAYS, BltnAddToSet, 0, },

{ CURRENT (2) , BltnPick, 0, },

{ ALWAYS, BltnAddToSet, 0, },

END ACTION

Undo The undo gesture is also a three-finger gesture, basically a "Z" made with three fingers
moving in parallel. After it is recognized, moving finger 0 up causes more and more of the
edits to be undone, and moving finger 0 down causes those edits to be redone.

ACTION (_UNDOrecog)

{ CURRENT (0) , BltnUndo, 0 , },

END ACTION

ACTION (_UNDOmanip)

{ CURRENT (0) , BltnUndo, 0 , },

END ACTION

8.3.3 Discussion

MDP is the only system known to the author which uses non-DataGlove multiple finger gestures.
Thus, a brief discussion of the gestures themselves is warranted.

MDP's single finger gestures are taken directly from GDP. After recognition, additional fingers
may be brought into the sensing plane to control additional parameters. Wherever an additional
finger is first brought into the sensing plane becomes the position that gives the current value of
the parameter which that finger controls; the position of the finger relative to this initial position
determines the new value of the parameter. This relative control was felt by the author to be less
awkward than other possible schemes, though this of course needs to be studied more thoroughly.
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The multiple finger gestures are designed to be intuitive. The parallelogram gesture is, for
example, two fingers making the rectangle gesture in parallel. The move gesture is meant to be
a pinch, whereby the object touched is grabbed and then dragged around. The two finger rotate
gesture allows two distinct points on an object to be selected carefully. During the manipulation
phase, each of these points tracks a finger, allowing for very intuitive translation, rotation, and
scaling of the object. The three finger undo gesture is intended to simulate the use of an eraser on a

blackboard.
The Sensor Frame is not a perfect device for gestural input. One problem with the Sensor Frame

is that the sensing plane is slightly above the surface of the screen. It is difficult to precisely pull a
finger out without changing its position. This often results in parameters that were carefully adjusted
during the manipulation phase of the interaction being changed accidentally as the interaction ends.
This problem happens more often in multiple finger gestures, where, due to problems with the Sensor
Frame, removing one finger may change the reported position of other fingers even though those
fingers have not moved. Also, it is more difficult to pull out one finger carefully when other fingers
must be kept still in the sensing plane. Finally, it does not take very long for a gesturer's arm to get
tired when using a Sensor Frame attached to a vertically mounted display.

In MDP, the two-phase interaction technique is applied in the context of multiple fingers. As
each finger's position represents two degrees of freedom, multi-path interactions allow many more
parameters to be manipulated than do single-path interactions. Also, since people are used to

gesturing with more than one finger, multiple fingers potentially allows for more natural gestures.
Even though sometimes only one or two fingers are used to enter the recognized part of the gesture,
additional fingers can then be utilized in the manipulation phase. The result is a new interaction
technique that needs to be studied further.

8.4 Conclusion

This chapter described the major applications which were built to demonstrate the ideas of this
thesis. Two, GDP and GSCORE, were built on top of GRANDMA, and show how single-path
gestures may be integrated into MVC-based applications. The third, MDP, demonstrates the use of
multi-path gestures, and shows how gestures may be integrated in a quick and dirty fashion in a
non-objected-oriented context.
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Chapter 9

Evaluation

The previous chapters report on some algorithms and systems used in the construction of gesture-
based applications. This chapter attempts to evaluate how well those algorithms and systems work.
When possible, quantitative evaluations are made. When not, subjective or anecdotal evidence is
presented.

9.1 Basic single-path recognition

Chapter 3 presents an algorithm for classifying single-path gestures. In this section the performance

of the algorithm is measured in a variety of ways. First, the recognition rate of the classifier
is measured, as a function of the number of classes and the number of training examples. By
examining the gestures that were misclassified, various sources of errors are uncovered. Next, the
effect of the rejection parameters on classifier performance is studied. Then, the classifier is tested
on a number of different gesture sets. Finally, tests are made to determine how well a classifier
trained by one person recognizes the gestures of another.

9.1.1 Recognition Rate

The recognition rate of a classifier is the fraction ofexample inputs that it correctly classifies. In this
section, the recognition rates of a number of classifiers trained using the algorithm of Chapter 3 are
measured. The gesture classes used are drawn from those used in GSCORE (Section 8.2). There are

two reasons for testing on this set of gestures rather than others discussed in this dissertation. First,
it consists of a fairly large set of gestures (30) used in a real application. Second, the GSCORE set
was not used in the development or the debugging of the classification software, and so is unbiased
in this respect.

GRANDMA provides a facility throughwhich the examples used to train a classifier are classified
by the classifier. While running the training examples through the classifier is useful for discovering
ambiguous gestures and determining approximately how well the classifier can be expected to
perform, it is not a good way to measure recognition rates. Any trainable classifier will be biased
toward recognizing its training examples correctly. Thus in all the tests described below, one set of
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Figure 9.1: GSCORE gesture classes used for evaluation

example gestures is used to train the classifier, while another, entirely distinct, set of examples is
used to evaluate its performance.

Figure 9.1 shows examples of the gesture classes used in the first test. All were entered by the
author, using the mouse and computer system described in Chapter 3. First, 100 examples of each
class were entered; these formed the training set. Then, the author entered 100 more examples of
each class; these formed the testing set. For both sets, no special attempt to was made to gesture
carefully, and obviously poor examples were not eliminated.

There was no classification ofthe test examples as they were entered; in other words, no feedback
was provided as to the correctness of each example immediately after it was entered. Given such
feedback, a user would tend to adapt to the system and improve the recognition of future input. The
test was designed to eliminate the effect of this adaptation on the recognition rate.

The performance of the statistical gesture recognizer depends on a number of factors. Chief
among these are the number of classes to be discriminated between, and the number of training
examples per class. The effect of the number of classes is studied by building recognizers that use
only a subset of classes. In the experiment, a class size of C refers to a classifier that attempts to
discriminate between the first C classes in figure 9.1. Similarly, the effect of the training set size is
studied by varying E, the number of examples per class. A given value of E means the classifier
was trained on examples 1 through E of the training data for each of C classes.

Figure 9.2 plots the recognition rate against the number of classes C for various training set sizes
E. Each point is the result of classifying 100 examples of each of the first C classes in the testing

set. The number of correct classifications is divided by the total number of classifications attempted
(100C) to give the recognition rate. (Rejection has been turned off for this experiment.) Figure 9.3

shows the results of the same experiment plotted as recognition rate versus E for various values of
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C.
In general, the data are not too surprising. As expected, recognition rate increases as the training

set size increases, and decreases as the number of classes increases. For C = 30 classes, and E = 40
examples per class, the recognition rate is 96.9%. For C = 30 and E = 10 the rate is 95.6%. C = 10
and E = 40 gives a rate of 99.3%, while for C = 10 and E = 10 the rate is 97.8%.

Of practical significance for GRANDMA users is the number of training examples needed to
give good results. Using E = 15 examples per class gives good results, even for a large number of
classes. Recognition rate can be marginally improved by using E = 40 examples per class, above
which no significant improvement occurs. E = 10 results in poor performance for more than C = 10

classes. It is comforting to know that GRANDMA, a system designed to allow experimentation
with gesture-based interfaces, performs well given only 15 examples per class. This is in marked

contrast to many trainable classifiers, which often require hundreds or thousands of examples per
class, precluding their use for casual experimentation [125, 47].

Analysis of errors

It is enlightening to examine the test examples that were misclassified in the above experiments.
Figure 9.4 shows examples of all the kinds of misclassifications by the C = 30, E = 40 classifier.

Not every misclassification is shown in the figure, but there is a representative of every A classified
as B, for all A †B. The label "A as B (x n)" indicates that the example was labeled as class A in the

test set, but classified as B by the classifier. The n indicates the number of times an A was classified
as a B, when it is more than once.

The following types of errors can be observed in the figure. Many of the misclassifications are
the result of a combination of two of the types.

Poorly drawn gestures. Some of the mistakes are simply the result of bad drawing on the part of
the user. This may be due to carelessness, or to the awkwardness of using a mouse to draw.
Examples include "8u as uptie," "2r as sharp," "8r as 2r," and "delete as 16d." "Felef as dot"
was due to an accidental mouse click, and in "delete as 8d" the mouse button was released
prematurely. The example "key as delete" was likely an error caused by the mouse ball not
rolling properly on the table. "4u as 8u" and "16d as delete" each have extraneous points at

the end of the gesture that are outside the range normally eliminated by the preprocessing.
"4r as 16r" is drawn so that the first corner in the stroke is looped (figure 9.5); this causes the
accumulated-angle features f9,fl0, andfii to be far from their expected value (see Section
3.3).

Poor mouse tracking. Many of the errors are due to poor tracking of the mouse. Typically, the
problem is a long time between the first mouse point of a gesture and the second. This occurs
when the first mouse point causes the system to page in the process collecting the gesture; this
may take a substantial amount of time. The underlying window manager interface queues up
every mouse event involving the press or release of a button, but does not queue successive
mouse-movement events, choosing instead to keep only the most recent. Because of this,

mouse movements are missed while the process is paged in.

APLNDC00022165


	APLNDC00022086 - 22106
	APLNDC00022107 - APLNDC00022165



