

EXHIBIT 12

Apple Inc. v. Samsung Electronics Co. Ltd. et al Doc. 589 Att. 16

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/5:2011cv01846/239768/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2011cv01846/239768/589/16.html
http://dockets.justia.com/

Signed Applet Tutorial
by Larry Siden

Introduction

While volunteering on a pro-bono project at Menlo Innovations my colleagues and I encountered a problem. A
team had developed a Java applet in which a user types in a URL and clicks a button. The applet then downloads
the web page specified by the URL and extracts any links (i.e.) and displays them. While we tested
this in our development environment's applet viewer everything seemed to work fine. But when we tried to use the
applet in a browser and connect to Google, it seemed to hang. Opening the Java console window revealed

java.security.AccessControlException: access denied (java.net.SocketPermission www.google.com
connect,resolve)

Background

Java virtual machines run applets under a different security regime than applications. By default, applications are
implicitly trusted. The designers of the JVM specification assumed that users start applications at their own
initiative and can therefore take responsibility for the application's behavior on their machine. Such code is
considered to be trusted. Applets, on the other hand, are started automatically by the browser after it downloads
and displays a page. Users cannot be expected to know what applets a page might contain before they download it,
and therefore cannot take responsibility for the applet's behavior on their machine. Applets, therefore, are
considered by default to be untrusted. Among other restrictions, an applet cannot, by default, open a socket
referred to by a URL who's domain different from the domain of the page that contains the applet. This is part of
the security architecture that browsers employ to protect users' computing resources from malicious or faulty
applets.

The JVM's security policy is set by a the file $JAVA_HOME/jre/lib/security/java.policy. Here is an excerpt
from the one found on my computer:

// Standard extensions get all permissions by default

grant codeBase "file:${java.home}/lib/ext/*" {
 permission java.security.AllPermission;
};

// default permissions granted to all domains

grant {
 // allows anyone to listen on un-privileged ports
 permission java.net.SocketPermission "localhost:1024-", "listen";

 ...
};

It's syntax is described by Default Policy Implementation and Policy File Syntax . The first grant construct
permits any code that lives in the directory $JAVA_HOME/lib/ext/* to do anything. Such code is considered to be
trusted. This makes sense only if this directory and its children are not writable to ordinary users.

When I create an applet and test it with Eclipse's VM, Eclipse creates a file named java.policy.applet in the
project root directory. Here are the contents:

/* AUTOMATICALLY GENERATED ON Tue Apr 16 17:20:59 EDT 2002*/
/* DO NOT EDIT */

Page 1 of 4Signed Applet Tutorial

11/28/2011http://www-personal.umich.edu/~lsiden/tutorials/signed-applet/signed-applet.html

grant {
 permission java.security.AllPermission;
};

As you can see, there is no codebase parameter here. This grant construct allows code from any codebase
permission to do anything. Eclipse's authors assume that Eclipse users can take responsibility for the behavior of
applets that they write and test on their own machines. So this explains why my team did not encounter any
security exception when we ran the applet from Eclipse. Eclipse ran the JVM in the same working directory where
it created the file java.policy.applet seen above. In this environment, the applet could do anything it asked to.

In order to recreate this scenario at home, I wrote a simple applet at home that produces the same behavior our
team encountered. To download the entire project, type:

cvs -d :pserver:guest@lsiden.homeip.net:/cvsroot login
cvs -d :pserver:guest@lsiden.homeip.net:/cvsroot checkout Signed-Applet

This will create a directory called Signed-Applet under the current working directory. The CVS archive is not
writable for user guest.

This small applet produces the same behavior by requesting SocketPermission as described above to connect to
any port in the domain www.google.com. Because of the security policy, the actual domain is irrelevant, since it is
different from localhost. This is exactly what our team's applet was doing under the hood when it called
URL.getContent() which is shorthand for URL.openConnection().getContent().
URLConnection.openConnection()makes exactly this call:

System.getSecurityManager().checkPermission(new SocketPermission("www.google.com",
"connect"));

which throws the SocketException that we were seeing in the Java Console window. SocketException is a
subclass of IOException.

Digital Certificates

The solution to this conundrum is to create obtain a digital certificate and use it to sign the applet. When a well-
behaved browser downloads a page that contains a signed applet, before running the applet it displays a certificate
in a message box.

 This certificate claims that the
applet comes from the party named within and contains the digital signature of a certificate authority. In the above

Page 2 of 4Signed Applet Tutorial

11/28/2011http://www-personal.umich.edu/~lsiden/tutorials/signed-applet/signed-applet.html

example, the certificate holder is a party named "Duke" and the issuer is Netscape. The certificate contains
identifying information about the certificate holder and the certificate issuer, or trusted authority. A certificate
authority is a third party that is trusted to verify a certificate applicant's credentials. When the authority is satisfied
with its applicant's credentials, it issues it a digitally signed certificate.

(In this instance the certificate makes no claims as to the trustworthiness of either the certificate holder or the
certificate issuer. It is for demonstration purposes only. If your computer contains sensitive data, you should not
trust this certificate.)

The certificate authority may also have its own certificate that was generated by an even more trusted authority
that verfied its credentials. Each certificate will refer to the certificate of its issuing authority. This may continue
for several levels and is called a chain of trust. The chain of trust ends with a top-level authority that issues its own
certificate based on its own reputation. The chain of trust in this example extend up only one level.

 The
image on the right is what appears on the user's screen when they click the button labelled 'More Details'. Every
certificate contains a numeric hash or digest of the certificate contents, which can be seen in the bottom right pane.
A user can use the digest if he/she choses to contact the authority to verbally confirm the validity of the certificate.
The user could ask the authority for the digest of the certificate it issued and compare the response with the digest
displayed on his/her screen.

Despite the robustness of public/private key encryption, and the thoroughness of the specification, digital
certificates have yet to be universally adopted as a means of establishing trust when conducting business
transactions. For a critique on digital certificates, see The Emperor's New Clothes: The Shocking Truth
About Digital Signatures and Internet Commerce by Jane K. Winn.

Certificate authorities typically charge a fee for the service of validating their clients' credentials. However, for
testing and demo purposes, we may create a self-signed certificate. The information given in a self-signed
certificate has not been validated by a trusted third party.

The following section will cover the basic steps to creating a signed applet.

How To Create a Signed Applet

Page 3 of 4Signed Applet Tutorial

11/28/2011http://www-personal.umich.edu/~lsiden/tutorials/signed-applet/signed-applet.html

1. Package the applet into a JAR file. The applet must be in a JAR file before a certificate can be attached to
it. Use the jar JDK utility. If the applet was previously referenced with the help of a codebase attribute in
<applet> tag, replace the codebase attribute with the archive attribute. The value of the archive attribute is
a URL of a JAR file.

2. Create a public/private key pair. The command for this is

keytool -genkey

keytool is another SDK utility. It will prompt you for a password to your keystore and for the remaining
parameters, one of which is alias, whose value is the name of the key. The keystore is a file that contains
your public/private key-pairs, and the public-keys of others with whom you exchange information. See the
documentation in the above link.

3. Create a certificate for the key you created in the previous step.

keytool -selfcert

Again, keytool will prompt you for a keystore password and remaining parameters. This certificate is now
self-signed by you, meaning that it has not been validated by any third party. This is suitable for demo
purposes, and may be acceptable to yourself and those who know you because if there is any doubt that the
certificate is really yours they can always call you up and ask you for the digest to verify that it is really you
and not some impostor that created the certificate. However, if this applet were to be widely distributed, and
you wanted it to be accepted by those who do not know you personally, you would certainly want to pay a
modest fee to obtain a certificate that is validated by a trusted certificate authority. The procedure for this is
straightforward, but beyond the scope of this simple tutorial.

4. Run jarsigner associate this certificate with the JAR file that contains your applet. You will need to give the
name of the public key of the certificate you just created. This creates a digest for each file in your JAR and
signs them with your private key. These digests or hashes, the public key, and the certificate will all be
included in the "WEB-INF" directory of the JAR.

Your applet is now signed. The next time you or someone else downloads it in it's page the browser will present a
dialog box displaying the credentials you just created for it and asking the user permission to run it. If he/she
chooses not to, the applet will throw the same AccessControlException that we saw in the Java Console window
the first time we tried to run it in our browser. The difference is that now the user gets to make an informed
decision as to whether or not they trust your applet to not harm his/her system.

You will only need to generate the public/private key-pair once, but you will definitely want to automate the steps
that create and sign the JAR file, because you will need to repeat those every time you modify anything in your
code. You will most likely do this in your ant build-file, which is beyond the scope of this tutorial.

Links

1. Security and the Java Platform
2. JDK(TM) 1.1.x - Signed Applet Example
3. Signed Applets, Browsers, and File Access
4. Digital Certificates Guide
5. RFC 2459 The Emperor�s New Clothes: The Shocking Truth About Digital Signatures and Internet

Commerce

Page 4 of 4Signed Applet Tutorial

11/28/2011http://www-personal.umich.edu/~lsiden/tutorials/signed-applet/signed-applet.html

