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238 22 Issues in Hypothesis Testing

—which is the only region where power is wanted in the present situa-
tion: see Exercise 22.4.

We have learned, as an equivalent to the i-test, the F-test that uses
the statistic v; = (b; — B;)gfﬁ‘fj, rejecting the null if vf > d where G,(d) =
0.95, with G,(-) being the cdf of the F(1, n — k) distribution. The two
approaches are equivalent because v¢ = («)° and d = ¢°. But the F-
statistic vj = (u}')ﬂ disregards the sign of b, — B7, so it is not attractive
for use when the alternative is one-sided.

For a joint hypothesis with one-sided alternatives, no t-test is available.
The F-statistic

7° = (t — 6°)'D(t — 0°)/(p6?),

treats positive and negative misses symmetrically, so it is not attractive
for tests against one-sided alternatives. For a discussion of appropriate
procedures, see Gouriéroux et al. (1982) and Wolak (1987).

22.4. Choice of Significance Level

Suppose that you are asked to test the null hypothesis B; = 0 against
the alternative B; # 0, in a sample with » — £ = 120. You obtain the
test statistic ] = 1.82. Critical values from the N(0, 1) table are ¢ = 1.96
at the 5% level and ¢ = 1.64 at the 10% level. With 1.64 < 1.82 < 1.96,
the null would be accepted at the 5% level, but rejected at the 10%
level. The same piece of evidence that will accept B; = 0 at the 5% level
will reject it at the 10% level. The interval between 1.64 and 1.96 is a
“zone of opportunity.” Indeed, whatever numerical value the sample
delivers, a diligent researcher can force acceptance by setting the sig-
nificance level low enough (e.g., 1% or 0.5%) or can force rejection by
setting the significance level high enough (e.g., 10% or 20%).

How should a researcher choose the significance level? Econometrics
texts offer little, if any, guidance. In statistics texts, the discussion focuses
on the power of the test—the probability of rejecting the null hypothesis
as a function of the true parameter value.

Generally power declines as the significance level declines: see Exer-
cise 22.4. Moving from the 5% to the 1% significance level not only
reduces the probability of rejecting a true null, but also reduces the
probability of rejecting a false null. The first reduction is desirable, the
second is undesirable.
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There is a trade-off. To resolve the trade-off, statistics texts recom-
mend a cost-benefit calculation: if the net cost of accepting a false null
is less than the net cost of rejecting a true null, then choose a low
significance level. Although this cost-benefit approach should be con-
genial to economists, the 5% level is almost always used in the empirical
economics literature. It is hardly plausible that distinct cost-benefit cal-
culations underlie that ubiquitous level. Occasionally, the 10% and 1%
levels are used. Reading closely, you may well be able to spot the occa-
sions on which those levels replace 5%. If an author really wants to
accept the null, she may switch to the 1% level; if an author really wants
to reject the null, he may switch to the 10% level. When such switches
do not suffice, you may see such language as “barely significant at the
1% level” (a hint that the author really wants to accept) or “almost
significant at the 10% level” (a hint that the author really wants to
reject).

This state of affairs may seem very unsatisfactory, but the textbook
recommendation of a cost-benefit calculation is not appealing either.
For academic research reports, neither the costs nor the benefits of the
test decision are clear. It is rare for an economic agent to undertake
real-world action upon reading a test outcome reported in a journal
article. At most what may happen is that readers’ beliefs shift in the
light of the evidence. So, in almost all applied economic contexts, the
significance level is necessarily a matter of convention rather than of
calculation.

It follows that readers should not take an author’s announcement of
significance or nonsignificance as authoritative. Regardless of the
author’s choice of significance level and announcement of a decision,
sensible readers will have to decide for themselves whether the evidence
is weighty or fragile. Regardless of how the author phrases the test
decision, the burden remains on readers to assess whether the sample
evidence against the null (the magnitude of the test statistic) is strong
enough to induce a change in their beliefs.

A couple of lessons for writers emerge:

* It is usually bad practice to say “significant [or nonsignificant] at the
5% level,” without reporting the magnitude of the test statistic. (It is
even worse practice to announce “significance” or “nonsignificance”
without specifying a null hypothesis. In particular, the zero null may
not be the interesting null.)

* A useful alternative to the test statistic is a report of its “P-value,”
or “marginal significance level,” which is the level at which the observed
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test statistic would be just significant. For example, suppose that a x*(p)
test is conducted, the cdf being G,(-). If w° is the observed test statistic,
then its P-value is a®° = 1 — G,(«°). The null would be rejected at all
significance levels higher than «°, and accepted at all significance levels
lower than o°. So the P-value gives readers more information than is
contained in the binary report “accept” or “reject.”

22.5. Statistical versus Economic Significance

A strong case can be made that hypothesis testing is widely abused in
empirical economics: see McCloskey (1985). In many research reports,
the author’s conclusions emphasize the statistical significance, rather
than the economic significance, of the coefficient estimates. Yet, a coef-
ficient estimate may be “very significantly different from unity” (by the
t-test), while that difference is economically trivial. Or the difference
may be “not significantly different from unity” but have an economically
substantial magnitude.

It is certainly desirable to know how reliable a coefficient estimate is,
that is, to know its standard error. But that desirability does not suffice
to justify a hypothesis test, which involves measuring the estimate rela-
tive to its standard error. Rather, the confidence interval for §;, con-
structed from the point estimate b; and its standard error 6, will be the
proper target in most research.

When a null, say, B; = 1, is specified, the likely intent is that B; is close
to 1, so close that for practical purposes it may be treated as if it were 1.
But whether 1.1 is “practically the same as” 1.0 is a matter of economics,
not of statistics. One cannot resolve the matter by relying on a hypothesis
test, because the test statistic (b; — 1)/6,, measures the estimated coeffi-
cient in standard error units, which are not the meaningful units in
which to measure the economic parameter B; — 1. It may be a good
idea to reserve the term “significance” for the statistical concept,
adopting “substantial” for the economic concept.

There is a further objection to the common practice of indiscrimi-
nately reporting all the “#-statistics” for a regression: it encourages rank-
ordering of the explanatory variables with respect to their “importance.”
What does it mean to say that in a multiple regression one explanatory
variable is “more important” than another? '
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A simpie example may help to address this question. Suppose that
this estimated regression is reported:

§ =50 + 2, — lx,.

A naive reader might conclude that x, is “more important” than x,
because its coefficient is larger in magnitude. A more sophisticated
reader would recognize that the magnitude of the coefficients can be
changed arbitrarily by changing the units in which the variables are
measured. So he might ask for the standard errors. Being told that the
standard errors for b, and b; are both 0.5, so their “t-statistics” are 4
and —2, he might conclude that x, is “more important” than x; because
its “t-statistic” is larger in magnitude. But that conclusion is not sensible
if in fact the variables are y = weight (in pounds), x, = height (in inches),
xg = exercise (in hours per week), and the regression is to be used by a
physician to advise an overweight patient. Would either the physician
or the patient be edified to learn that height is “more important” than
exercise in explaining variation in weight?

The moral of this example is that statistical measures of “importance”
are a diversion from the proper target of the research—estimation of
relevant parameters—to the task of “explaining variation” in the depen-
dent variable.

| 22.6. Using Asymptotics

In the CNR model, provided that n — k is large, there is no need to
refer to the ¢- and F-tables when o is unknown. Recall the two asymp-
totic results shown in Section 18.3:

(1) If u ~ t(n), then u = N(0, 1).
(2) If v ~ F(m, n), then mv 2 x*(m).

Applied to the CNR model, (1) implies that there is no objection, when
n — kis large, to treating

as if it were

.z = (b; — B)loy:



