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SETS OF POSTERIOR MEANS WITH BOUNDED VARIANCE
PRIORS

BY EDWARD E. LEAMER'

The matrix weighted average (H + ¥V ~')™ 'Hb, where H and V¥ are symmetric positive
definite matrices and & is a vector, is shown to lic in one ellipsoid if ¥ is bounded from
below, ¥, < V, another ellipsoid if V is bounded from above, ¥ < V*, and another
ellipsoid if ¥ is bounded from above and below, V', < ¥ < V*. These results are applied to
bound the posterior mean vector of the normal linear regression model.

i. INTRODUCTION

A BOUND FOR THE POSTERIOR MEAN VECTOR in a normal linear regression model
with the prior location given but the prior variance matrix free has been provided
by Chamberlain and Leamer [1}. In this paper, I generalize this bound by
assuming that the prior variance matrix is constrained to lie between a minimum
variance matrix and a maximum variance matrix.

The construction of a multivariate prior distribution taxes the ability and
patience of many who might otherwise use the Bayesian tools. The choice of an
exact prior covariance matrix V is ordinarily very costly, and the methods by
which V is elicited make many people uncomfortable.? The results in this paper
are intended to reduce the cost and to increase the comfort in applying Bayesian
methods.

2. RESULTS

A posterior mean for the k-variable linear regression model takes the form

(1) B(V)=E(B| Y, X,eLV)=(H+ V™" 'Hb
where_

H=0"2X"X,

Hb=0"2X"Y.

X is a (T X k) matrix, Y is a (7 X 1) vector, V is a (k X k) symmetric positive
definite matrix, and ¢2 is a positive scalar. This equation results from the as-
sumption that Y is normally distributed with mean vector X8 and covariance
matrix 6%/, and 8 is normally distributed with mean vector zero and covariance
matrix V.

As a practical matter, there are some settings in which the prior can be taken
to be normal with a known location, but there are very few (if any) settings in
which the covariance matrix V can sensibly be taken as given. A statistician may
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2As an example see Kadane et al. (2].
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ance a2 is concentrated on its estimator s%, formula (6) defines the posterior mean
with H = s~2X’X. This formula implies the following estimated equation:

M= —45-58PC —.10PX = 12T —-.03W
+.57TPOOR + .1ANW — 02URB + .18 YOUTH.

This set of estimated coefficients falls on the 89 per cent classical confidence
ellipsoid and therefore is within the traditionally accepted 95 per cent region. The
estimated effect of executions is —.10 with a standard error of .10; or, each
execution deters 7.4 murders with a standard error of 7.7.

Various bounds are reported on Table II. The extreme bounds are found in the
upper right-hand corner of this matrix. The estimate of the execution effect can
range from —54.9 to 44.2 depending on the prior which is used. The diagonal
elements of this matrix contain estimates of the execution effect as the prior
covariance matrix is scaled up and down. The upper left-hand corner contains
the prior estimate, zero. The lower right-hand corner contains the least-squares
estimate, — 10.7, the negative sign indicating that executions deter murders. The
center of the matrix (in a box) contains the estimate, —7.36, based on the prior
covariance matrix described in Table I. Moving from this box toward the
upper-right we find estimates with the lower variance matrix less than, and the
upper variance matrix greater than, the representative variance matrix. The
figures which are in a box are based on priors with covariance matrices between
(%)2 and 2? times the input matrix. Because this interval from —28.0 to 14.1
contains the origin, and because I am unable to define more precisely my prior, 1
am forced to conclude that these data are not useful for estimating the effects of
executions. Of course, other analysts with more sharply defined priors possibly
based on other data sets could find these data useful. In particular, as can be
seen in Table II, if you are sure that your prior is more diffuse than mine, in the
sense that your covariance matrix is certainly greater than 2% times the matrix
defined in Table I, then you can only obtain a negative estimate, and can
conclude that executions deter murders.
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