

1
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN JOSE DIVISION

DYNETIX DESIGN SOLUTIONS INC., a
California corporation,

 Plaintiff/Counter-defendant,

 v.

SYNOPSYS INC., a Delaware corporation,

 Defendants/Counter-claimant.

)
)
)
)
)
)
)
)
)
)
)
)
)
)

Case No.: C 11-5973 PSG

FINAL CLAIM CONSTRUCTION
ORDER

 In this patent infringement suit, Plaintiff and counter-defendant Dynetix Design Solutions,

Inc. (“Dynetix”) alleges that Defendant and counter-claimant Synopsys, Inc. (“Synopsys”)

infringes U.S. Patent No. 6,466,898 (“the ‘898 patent”). Synopsys counterclaims that Dynetix

infringes U.S. Patent No. 5,706,473 (“the ‘473 patent”) and U.S. Patent No. 5,784,593 (“the ‘593

patent”). The parties submitted eleven terms of the ‘898 patent for construction and stipulated to

construction of one term. Regarding the ‘473 patent, the parties only asked the court to construe

one term. In two separate claim construction hearings on October 10, 2012 and January 9, 2013,

Dynetix Design Solutions, Inc. v. Synopsys, Inc. Doc. 603

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/5:2011cv05973/248363/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2011cv05973/248363/603/
http://dockets.justia.com/

2
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

the court construed these terms from the bench and later summarized those rulings in an order.1

The court provides its full reasoning behind those rulings below.

I. BACKGROUND

The ‘898 patent, entitled “Multithreaded, Mixed Hardware Description Languages Logic

Simulation on Engineering Workstations,” was filed on October 15, 2002. The ‘898 patent

concerns the field of logic simulation of integrated circuits. Design of an integrated circuit begins

with designers drafting the layout of the circuit in hardware description language (“HDL”).

Designers can then use logic simulators, or electronic design automation (“EDA”) tools,
2 to “verify

the functional behavior and timing characteristics of their circuit designs on their engineering

workstations before committing such designs to fabrication.”
3

The ‘898 patent discloses and claims three features that are relevant to claim construction:

(1) mixed HDL simulation, (2) multithreaded logic simulation to achieve linear to super-linear

speedup in performance, and (3) remote logic simulation. The first feature, mixed HDL

simulation, is a method for simulating circuit designs written in multiple HDL languages (i.e.

Verilog and VHDL) in a single program.4 The second feature, multithreaded simulation, is a

method that “enables the logic simulator provided by the invention to achieve a scalable

performance (i.e., from linear to super-linear) according to the number of CPUs on the selected

platform.”
5 The third feature, remote logic simulation, “provides seamless access of network

resources for HDL compilation and simulation” by installing a “server program” on a remote

1 See Docket No. 559.

2 See ‘898 patent, col. 1, ll. 1-3.

3 Id. at col. 1, ll. 14-16.

4 See id. at col. 4, ll. 13-15.

5 Id. at col. 4, ll. 9-12.

3
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

workstation and a “graphical user interface (GUI) program” on a local workstation, which allows

the user at the local workstation to communicate to remote servers.6

The ‘473 patent, filed on January 6, 1998, is entitled “Computer Model of a Finite State

Machine Having Inputs, Outputs, Delayed Inputs, and Delayed Outputs.”
7 It also relates to the

field of circuit design and logic simulation and discloses and claims a “computer system having a

computer model of a Finite State Machine (FSM).”
8

II. LEGAL STANDARDS

Eight years after the Federal Circuit’s seminal Phillips decision,9 the canons of claim

construction are now well-known – if not perfectly understood – by parties and courts alike. “To

construe a claim term, the trial court must determine the meaning of any disputed words from the

perspective of one of ordinary skill in the pertinent art at the time of filing.”
10 This requires a

careful review of the intrinsic record, comprised of the claim terms, written description, and

prosecution history of the patent.11 While claim terms “are generally given their ordinary and

customary meaning,” the claims themselves and the context in which the terms appear “provide

substantial guidance as to the meaning of particular claim terms.”
12 Indeed, a patent’s specification

“is always highly relevant to the claim construction analysis.”
13 Claims “must be read in view of

6 Id. at col. 4, ll. 20-32.

7 ‘473 patent, col. 1, ll. 7-12.

8 Id. at 1.

9 Phillips v. AWH Corp., 415 F.3d 1303, 1312 (Fed. Cir. 2005) (en banc).

10 Chamberlain Group, Inc. v. Lear Corp., 516 F.3d 1331, 1335 (Fed. Cir. 2008).

11 Id.; Phillips, 415 F.3d at 1312 (internal citations omitted).

12 Phillips, 415 F.3d at 1312-15.

13 Id.

4
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

the specification, of which they are part.”
14 Although the patent’s prosecution history “lacks the

clarity of the specification and thus is less useful for claim construction purposes,” it “can often

inform the meaning of the claim language by demonstrating how the inventor understood the

invention and whether the inventor limited the invention in the course of prosecution, making the

claim scope narrower than it would otherwise be.”
15 The court also has the discretion to consider

extrinsic evidence, including dictionaries, learned treatises, and testimony from experts and

inventors.16 Such evidence, however, is “less significant than the intrinsic record in determining

the legally operative meaning of claim language.”
17

III. ANALYSIS

A. The ‘898 Patent

A. 1. TERM CONSTRUCTION
“Multithreaded simulation”

Claims 1, 2, 5-7, 19, 20-22, 23, 36,
39, 44, 45, 48, 53

A “thread” is a process flow in a
program that runs on a central
processing unit (“CPU”).

“Multithreaded simulation” means a
simulation of circuit functionalities by
executing multiple process flows
concurrently on multiple CPUs.

Regarding this claim term, the parties primarily disagree about the definition of the internal

term “thread.” Dynetix argues that “thread” should be understood as “a process flow in a program

that runs on a central processing unit.”
18 Dynetix argues this construction is correct because the

14 Markman v. Westview Instruments, Inc., 52 F.3d 967, 979 (Fed. Cir. 1995) (en banc), aff’d, 517
U.S. 370 (1996). See also Ultimax Cement Mfg. Corp v. CTS Cement Mfg. Corp., 587 F. 3d 1339,
1347 (Fed. Cir. 2009).

15 Phillips, 415 F.3d at 1317 (internal quotations omitted).

16 See id.

17 Id. (internal quotations omitted).

18 At first, Dynetix proposed the language “central processing unit” while Synopsys proposed
simply “processing unit.” Dynetix argued the addition of the word “central” was necessary

5
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

‘898 patent specification has specifically defined this term. As a general rule, a clear definition set

forth in the specification will prevail over extrinsic evidence.19 The specification of the ‘898

patent, which explicitly defines “thread” in the context of “multithreaded simulation”:

EDA tools that employ multiple CPUs on a single workstation to accelerate their
performance are said to be multithreaded. Specifically, a thread is a process flow in a
program that runs on a CPU. If a program can have multiple threads executing on multiple
CPUs concurrently, then it[] is a multithreaded application[].20
Synopsys proposes that the construction include the phrase “a thread is different from a

process.” Synopsys argues that a “thread” is part of a “process,” offering excerpts of the

specification as support. For example, the description of the invention states that “[i]n general, the

thread manipulation overheads increase exponentially as more threads are used in a process”
21 and

“[t]o reduce the number of threads employed in a process upon with n CPUs are available on a

platform, the simulator will allocate exactly n threads.”
22 Synopsys argues that these references to

both “thread” and “process” within the same sentence/idea demonstrates that the two are mutually

exclusive.

The court finds Dynetix’s arguments to be more persuasive. Dynetix’s proposed

construction is identical to the definition of “thread” specifically set forth in the ‘898 patent

specification. Synopsys has not persuaded the court that its proposed addition of the phrase “a

thread is different from a process” is necessary. Even if the ‘898 patent notes that a thread can be

because the specification uses the term “central processing unit,” see, e.g., ‘898 patent col. 2, ll.
41-42, and the embodied invention does not include simple data processors like those found in desk
calculators and tabulating machines. In its opposition, Synopsys noted that it did not object to
adding the word “central” to the construction. See Docket No. 98 at 8 n. 2. The court therefore
incorporates Dynetix’s definition of “central processing unit.”

19 See 3M Innovative Props. Co. v. Avery Dennison Corp., 350 F.3d 1365, 1371 (Fed. Cir. 2003)
(“a definition of a claim term in the specification will prevail over a term’s ordinary meaning if the
patentee has acted as his own lexicographer and clearly set forth a different definition”).

20 ‘898 patent, col. 2, ll. 39-44.

21 Id. at col. 17, ll. 39-40.

22 Id. at col. 17, ll. 51-54.

6
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

part of a larger process, the thread itself may still be a process flow. No intrinsic or extrinsic

evidence precludes this possibility. The IEEE Standard Dictionary of Electrical and Electronics

Terms (“IEEE Dictionary”), for example, defines “thread” as “a single sequential flow of control

within a process.”
23 This definition can be reconciled with the fact that a thread could be a process

flow within a larger multi-part process. Synopsys’ proposed construction therefore unduly limits

the term “thread” by mandating that it can never be a process.

A. 2. TERM CONSTRUCTION
“To achieve linear to super-linear
scalable performance
speedup/simulation”

Claims 1, 2, 5-7, 36, 39, 44, 45, 48,
53

The terms “linear” and “super-linear”
describe the speedup that a parallel
simulation will achieve when
performing hardware containing one
or more processing units.

A simulation is “linear” if the speedup
that is achieved is equal to the number
of available processing units. For
example, a simulation that runs two
times as fast on hardware containing
two processing units is “linear.”

Similarly, if the simulation runs four
times as fast on four processing units,
it is again “linear.”

A simulation that has a speedup
greater than the number of processing
units is “super-linear.” For example,
if a process executed on two
processing units runes three times as
fast as the same simulation on one
processing unit, it is “super-linear.”

“Scalable performance” means there
is a consistent increase in performance
for each added processing unit.

Claim 1 employs this term in the following context:
1. …(c) automatically detecting the number of microprocessors (CPUs) available on the

multiprocessor platform to create a master thread and a plurality of slave threads for
concurrent execution of the multithreaded event-driven simulation of the design to
achieve linear to super-linear scalable performance speedup as according to the
number of CPUs on the multiprocessor platform.

23 Docket No. 99, Ex. E at 11.

7
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

Dynetix urges the court to construe this term as “for the purpose of enhancing the

simulation speed in a rate proportional to, or even faster than, the increase in the number of

processors.”
24 Dynetix argues that this is merely a “desired effect” or “purpose” of the claimed

invention, but should not be read as a required element. This is proper because the specification

makes clear that a multithreaded tool need only “consistently demonstrate[] linear to super-linear

scalability on most test cases it processes” to be “classified as a linear/super-linear scalable tool.”
25

Synopsys disagrees, arguing that Dynetix ignores other portions of the specification

requiring the invention to achieve “linear to super-linear scalability.”
26 More fundamentally,

during prosecution the patentee disclaimed simulators that do not achieve “linear to super-linear…

speedup” by relying on that amendment to distinguish prior art. In response to an office action

rejecting all of the original claims as anticipated by the prior art, the patentee added claim 1 which

included the phrase “to achieve linear to super-linear scalable performance speedup” within the

claim limitations.27 In his response, the patentee argued that the various prior art references

(Dunenloup, Bahra, Rompaey, Liao, and Davis) did not teach this particular limitation:

Nor does [Dunenloup] make use of any multiprocessor platform to accelerate the
performance of its system…
Bahra does not teach concurrent use of any multiprocessor to speedup the performance of
their system…
There is no… teaching [in Rompaey] of making concurrent use of a multiprocessor
platform to speedup their system performance…
Davis system does not make use [of] any multiprocessor platform to speedup their system
performance…

24 Docket No. 83 at 8.

25 ‘898 patent, col. 16, ll. 57-60.

26 See, e.g., id. at 1 (“[t]his invention…uses special concurrent algorithms to accelerate the tool’s
performance on multiprocessor platforms to achieve linear to super-linear scalability on
multiprocessor systems”); col. 4 ll. 9-12 (“[t]he algorithm enables the logic simulator provided by
the invention to achieve a scalable performance (i.e. from linear to super-linear”); col. 17 ll. 17-19
(“[t]he simulator achieves linear and super-linear scalability by using special new concurrent
methods that are described in the following sections”).

27 Docket No. 99, Ex. B at 34 (original claim 1 with no limiting language), Ex. D at 2 (amended
claim 1 including the limiting language).

8
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

Liao does not make use of any multiprocessor platform to speedup the execution of their
system…

28

Later in the response, the patentee further distinguishes the five prior art references mentioned

above on the basis that they do not perform linear to super-linear scalable concurrent simulation:

Dunenloup does not specify any means to perform super-linear scalable concurrent
simulation of the system function.
However, Bahra et al. does not teach any means to perform super-linear scalable concurrent
simulation of the system function.
Rompary does not perform super-linear scalable concurrent simulation function.
Davis, however, does not perform any super-linear scalable concurrent simulation.
Liao does not perform any super-linear scalable concurrent simulation.29

 The court agrees with Synopsys that this term is a limitation, not merely a hoped-for result.

It is well-established that a patentee’s argument “that a prior art reference is distinguishable on a

particular ground can serve as a disclaimer of claim scope.”
30 Although clauses describing a

particular result are sometimes viewed as nonlimiting, where clauses are material to patentability,

courts have not hesitated to interpret them as required limitations. 31 Here, the patentee clearly

distinguished prior art references on the basis that they do not achieve a “speedup” of system

performance and do not “perform super-linear scalable concurrent simulation.” These disclaimers

show that the amendments to claim 1 were material to patentability, rendering the language at issue

a required limitation.

28 Docket No. 99, Ex. D at 18-19.

29 Id. at 36-37.

30 American Piledriving Equipment, Inc. v. Geoquip, Inc., 637 F.3d 1324, 1336 (Fed. Cir. 2011).

31 See Hoffer v. Microsoft Corp., 405 F.3d 1326, 1330 (Fed. Cir. 2005) (holding that where the
specification and prosecution history established that a “whereby” clause was “an integral part of
the invention,” the clause limited the invention); C&C Jewelry Mfg., Inc. v. Trent West, Case No.
09-1303 JF, 2010 WL 2681921 at *4-6 (N.D. Cal. July 6, 2010 (holding that the phrase “to provide

a pleasing appearance” was a necessary limitation of the invention); Fast Memory Erase, LLC v.
Spansion, Inc., Case No. 3:08-cv-977, 2010 WL 363498, at *4 (N.D. Tex. Feb. 2, 2010)
(construing the clause “whereby source leakage of the semiconductor device is reduced” to be a

limiting term rather than merely an intended result because “the reduction of source leakage was

material to patentability”).

9
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

 Having determined that the phrase limits claim 1, the court turns to the task of construing

that term. Synopsys asserts that the term has been defined by the ‘898 patent specification:

Specifically, when a user runs a multithreaded tool on a n CPU system (where n > 1), he
would expect that the performance of the tool should improve by C * n times, where C is an
empirical constant as follows:

0.5 > = C < = 1

For example, if C is 0.75, then the expected speedup of a multithreaded tool on different
configurations of a multiprocessor system are:

Number of CPUs Speedup
2 1.5 times
4 3.0 times
8 6.0 times

If the C factor of a multithreaded tool remains at 1.0 on different number of CPU
configurations, the tool is said to demonstrate a linear scalability. If the C factor of the tool
is less than 1.0, then it is said to demonstrate a sub-linear scalability. Finally, if the C factor
of the tool is above 1.0, then it is said to demonstrate a super-linear scalability.32

In other words, if the ratio of speedup to the number of CPUs is equal to one, the tool exhibits

linear scalability. If the ratio exceeds one, the tool demonstrates super-linear scalability. The

phrase “linear to super-linear” scalable performance therefore requires the tool to exhibit at least a

one-to-one ratio of speedup per added processing unit. Applying this concept to concrete

examples, if a simulation runs twice as fast on a multithread tool using two CPUs as a tool using

one CPU, the tool is linear. If that same tool instead employed four CPUs, it would run the

simulation four times as fast. By contrast, if a multithread tool employing two CPUs instead of one

ran a simulation three times as fast, the ratio of speedup to CPUs would be 1.5, which is greater

than one and thus super-linear.

32 ‘898 patent, col. 16, ll. 26-54.

10
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

 Dynetix admits that “[i]t is true that Synopsys’ definition uses the literal language[] found

in the specification,” but maintains that this “mathematical precision” is unnecessary.
33 Dynetix

instead urges the court to adopt the generally-understood meaning of the word “linear,” which

according to the Merriam-Webster Online Dictionary can mean “resembling a straight line” or

“having or being a response or output that is directly proportional to the input.”
34

 The court finds Synopsys’ proposed construction properly mirrors the specification. In

defining not only “linear” but “super-linear” scalable performance, the patentee has acted as his

own lexicographer, and that definition is far more precise than any outside information. Dynetix

ignores the clear definition provided by the specification, instead advocating for extrinsic evidence

to control the term’s construction. The dictionary definition of “linear” provided by Dynetix

conflicts with the specification’s definition – a line can be “proportional” or can “resemble a

straight line” but still have a slope of less than one, which under the specification’s definition

would be sub-linear. Further, although Dynetix complains that Synopsys’ proposed construction is

too complicated for a jury to understand,35 the opposite is true. Synopsys applies the abstract

concept to concrete examples in a way that the jury could comprehend.

 The court modifies Synopsys’ proposed construction of “scalable performance” to

emphasize that it means there is a “consistent increase in performance for each added processing

unit.” Consistent increase in performance is emphasized by the table of test results excerpted

above.36 As the number of CPUs increases from two to four to eight, the speedup also increases by

the same proportion each time. This demonstrates consistency in performance improvement.

33 Docket No. 83 at 11.

34 Docket No. 85, Ex. 6.

35 See O2 Micro Int’l Ltd. v. Beyond Innovation Tech. Co., 521 F.3d 1351, 1359 (Fed. Cir. 2008).

36 See ‘898 patent, col. 16, ll. 26-54.

11
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

A. 3. TERM CONSTRUCTION
“Achieving super-linear scalable
simulation”

This term in the preamble limits
claims 36 and 45.

 This term, similar to the last, appears in the preambles of claims 36 and 45:

36. A method of achieving super-linear scalable Hardware Description Language
simulation for a multithreaded event-driven simulation for a multithreaded event-driven
simulation of an integrated circuit design on a multiprocessor platform, comprising steps of:

45. A program product of achieving super-linear scalable Hardware Description
Language simulation for an event-driven logic simulation of a circuit design on a
multiprocessor platform, comprising:

As this term is almost identical to the last, one might reasonably assume that construction of

this term would closely track the previous construction. The main difference is that the previous

term appears in the body of the claim, while this one appears in the preamble. But before adopting

the same construction, the court must ask: does the preamble language limit the claim?

The law governing whether a preamble limits the claim is not always clear.37 “Whether to

treat a preamble term as a claim limitation is determined on the facts of each case in light of the

claim as a whole and the invention described in the patent.”
38 The general consensus is that the

preamble may be construed as limiting if it “recites essential structure or steps, or if it is necessary

to give life, meaning, and vitality to the claim.”
39 Conversely, if the preamble merely “extoll[s]

benefits or features of the claimed invention,” it will not limit the claim scope.
40 The preamble

37 See Am. Med. Sys., Inc. v. Biolitec, Inc., 618 F.3d 1354, 1363 (Fed. Cir. 2010) (Dyk, J.,
dissenting) (“As the majority itself appears to recognize, we have not succeeded in articulating a
clear and simple rule.”); Bell Commc'ns Research, Inc. v. Vitalink Commc'ns Corp., 55 F.3d 615,
620 (Fed. Cir. 1995) (“Much ink has, of course, been consumed in debates regarding when and to
what extent claim preambles limit the scope of the claims in which they appear.”).

38 Am. Med. Sys., Inc., 618 F.3d at 1358.

39 Id.

40 Catalina Mktg. Int'l, Inc. v. Coolsavings.com, Inc., 289 F.3d 801, 808 (Fed. Cir. 2002).

12
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

also is not limiting if it is “duplicative” and simply “gives a descriptive name to the set of

limitations in the body” such that deletion of the preamble would not affect the structure or steps of

the invention.41

 Dynetix claims that the phrase “to achieve” shows it is not essential to the invention but

merely describes desired results. This contention runs contrary to the numerous references in the

Abstract, Summary of the Invention, and other claims that make clear that the invention uses an

algorithm to achieve linear to super-linear scalability.42 Citing Am. Med. Sys. Inc., Dynetix

nevertheless persists that the preamble is not essential because removing the preamble language

would not alter the structure or steps of the invention.43 But unlike in Am. Med. Sys. Inc., in claims

36 and 45 the preamble and the set of the limitations in the body do not appear to overlap – the rest

of the claim does not address any kind of performance speedup. All this indicates that the

preamble language describes an essential aspect of the claim that is not present in the bodies of

claims 36 or 45.

Even if that were not enough, Synopsys presents evidence showing the preamble language

was essential in distinguishing the prior art. “Clear reliance on the preamble during prosecution to

distinguish the claimed invention from the prior art transforms the preamble into a claim limitation

41 Am. Med. Sys. Inc., 618 F.3d at 1358-59.

42 See ‘898 patent at 1 (“This invention describes a multithread HDL logic simulator… it uses
special concurrent algorithms to accelerate the tool’s performance on multiprocessor platforms to
achieve linear to super-linear scalability on multiprocessor systems”); see id. at col. 4 ll. 5-13
(“This invention describes a novel concurrent, multithreaded algorithm to accelerate the execution
of logic simulation… The algorithm enables the logic simulator provided by the invention to
achieve a scalable performance (i.e. from linear to super-linear) according to the number of CPUs
on the selected platform”).

43 See Am. Med. Sys., Inc., 618 F.3d at 1359 (holding that the preamble language “photoselective
vaporization” was merely a “descriptive name for the invention [] fully set forth in the bodies of
the claims”).

13
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

because such reliance indicates use of the preamble to define, in part, the claimed invention.”
44

Here, as noted previously, the examiner rejected all of the patentee’s original claims (including the

claims that eventually issued as claims 36 and 45) as anticipated by five prior art references.45 The

patentee then distinguished each of the prior art references on the grounds that the claimed

invention performed “super-linear scalable concurrent simulation.”
46 This means the preamble

language was crucial to the claims’ patentability and was “necessary to give life, meaning, and

vitality to the” claims.
47

In sum, despite the fact that the term appears in the claims’ preambles, the court finds that

the term “linear to super-linear scalability” limits claims 36 and 45.

A. 4. TERM CONSTRUCTION
“Event queue”

‘898 patent
Claims 5, 36, 39, 44, 45, 48, 53

An “event” in simulation is a task to
be processed at a specified time
resulting in a change of state.

“Event queue” is a sequence of events
held in temporary storage waiting to
be processed.

 The parties agree on the construction of the overarching term “event queue,” but disagree

about the internal definition of “event.” As an example, this term appears in claim 36 in the

following context:

36. …(b) minimizing thread interaction and synchronization by assigning a private heap

memory, event queue, and fanout queue region for each of the master thread and slave
threads at the beginning of the simulation to eliminate thread synchronization resulting
from subsequent addition or deletion of signals or logic gate events during the simulation;
and…

44 Catalina Mktg. Int'l, Inc., 289 F.3d at 808.

45 See Docket No. 99, Ex. C.

46 See id., Ex. D.

47 Am. Med. Sys. Inc., 618 F.3d at 1358.

14
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

 Dynetix asks the court to construe “event” broadly as “a task to be processed at a specified

time and may be either a signal or logic event.” To derive this interpretation, Dynetix points to

both intrinsic and extrinsic evidence. The specification discloses an embodiment that “schedules

events for these selected signals to change states according to the stimulus specification.”
48 This

demonstrates that an event is not coterminous with a change of state. Dynetix concludes an event

can take form as either a signal or logic gate event because the specification describes an event

queue as “[a] linked list [that] may contain both signal events and logic gate events.”
49 Figure 21

also depicts an event queue consisting of different signal and gate events. The specification,

however, never actually defines “event.” To that end, Dynetix turns to an extrinsic source: the

Merriam-Webster dictionary defines an event simply as an “occurrence.”
50 Even though the

Merriam-Webster dictionary definition makes no mention of “a task to be processed,” Dynetix

argues that the broad dictionary definition supports Dynetix’s equally broad construction.

 Synopsys complains that Dynetix’s definition is overbroad. While words in a claim “are

generally given their ordinary and customary meaning,” that meaning must be construed in terms

of what a person of ordinary skill in the art at the time of the invention would understand the term

to be.51 A technical term therefore must generally be construed “as having the meaning that it

would be given by persons experienced in the field of the invention,”
52 which in this case would be

the field of event-driven logic simulation. It is therefore inappropriate, says Synopsys, to adopt a

broad definition of “event” as commonly understood outside of this specific context.

48 ‘898 patent, col. 6, ll. 42-44.

49 Id. at col. 6, ll. 46-48.

50 Docket No. 86, Ex. 7.

51 Phillips, 415 F.3d at 1303, 1312.

52 Hoechst Celanese Corp. v. BP Chemicals Ltd., 78 F.3d 1575, 1578 (Fed. Cir. 1996).

15
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

 To be specific to the relevant field, Synopsys argues that the definition of “event” should

incorporate “a change in state.” The specification describes an event-driven simulation process:

FIG. 3 illustrates the event-driven simulation process in which the input stimulus consists of
new states to be assigned to the primary input and bi-directional signals (e.g. `11, 12, and
B1 of FIGS. 2) of the design being simulated at various simulation time points. The
simulator schedules events for these selected signals to change states according to the
stimulus specification.53

This indicates that in the context of event-driven simulation and the claimed invention, the events

cause signals to change states. The IEEE Dictionary definition further supports this claim. An

“event” is defined as “an occurrence that causes a change of state in a simulation.”

 The court finds that both proposed constructions suffer from the same problem – including

signal or logic events in the definition of “event” is redundant given the claims’ later references in

the same paragraph to signals or logic gate events.54 It is unnecessary to define an event as

including both signal and logic events because the claim itself later makes clear that both signals

and logic gates may be events. Stripping away the redundant construction language, Dynetix and

Synopsys’ proposed constructions are more similar than not. They both agree that the specification

is clear that the events are to be processed at a certain time.55 Otherwise, while Synopsys is correct

that an “event” results in a change of state, the event itself is not coterminous with a change in

state. As Dynetix proposes, the event is a task to be processed that prompts the change in state.

Accordingly, the court finds it appropriate to construe an “event” as “a task to be processed at a

specified time resulting in a change of state.”

53 ‘898 patent, col. 6, ll. 38-44.

54 See, e.g., id. at col. 28, ll. 42-43.

55 See id. at col. 6, ll. 38-44 (“[t]he simulator schedules events for these selected signals to change
states”).

16
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

A. 5. TERM CONSTRUCTION
“Common design database”

‘898 patent
Claims 1, 2, 5-7

A “design database” is a database in
which the simulation later compiles
design files and stimulus files
supplied by the user.

The phrase “common design
database” means a design database
which contains various compiled
design modules that may be coded in
different design languages that are
processed by the same multithreaded
simulation engine.

 Claim 1 requires “pre-examining each user-specified HDL source file and automatically

invoking an appropriate HDL compiler to compile a design source file into a common design

database.”56 The term also appears in a number of dependent claims.

 Dynetix contends that the specification describes a “design database” as the formation of a

design database: “The logic simulator compiles the design files and stimulus file supplied by the

user into a database.”
57 For the meaning of the modifier “common,” Dynetix looks to another part

of the specification:

To accomplish the aforementioned purposes the simulator compiles VHDL and/or Verilog
design files into a common database to which the event-driven and cycle-based logic
simulation will be performed.58

This description means that design files written in different languages are pooled into the same

database. Dynetix interprets “common” as this pooling of different design files in the same

database, and nothing more. Dynetix argues that even though the phrase “common design

database” is preceded by the article “a,” that does not mean that there is only one such database in

56 Id. at col. 23, ll. 13-16.

57 Id. at col. 1, ll. 32-33.

58 Id. at col. 10, ll. 22-25.

17
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

the claimed invention; in a “comprising” claim, courts have interpreted “a” or “an” to mean “one or

more” unless the patentee evinces a “clear intent” otherwise.
59

 Synopsys agrees that the “common design database” requires that the simulator compile

design files into the same database, whether they are coded in Verilog or VHDL languages, but

rejects Dynetix’s contention that the phrase refers to “one or more” such databases. Synopsys

argues not that the article “a” should be implied to mean one database only, which would be

contrary to Federal Circuit case law. Instead, Synopsys argues that the word “common” means that

there is only a single database that is simulated by the same simulation engine. In the specification,

the patentee noted and criticized known products that use two different, interconnected simulation

engines to simulate mixed language designs:

A few EDA vendors provide a simulation backplane to interconnect a VHDL and a Verilog
simulator, so that a user can simulate his VLSI design coded in both VHDL and Verilog.
These products are not very popular as they are expensive (i.e., users need to purchase two
separate simulators and the backplane) and inefficient in their performance.60

The specification goes on to tout the claimed invention’s distinctions from those products:

There is therefore an apparent need for a general-purpose, multithreaded logic simulator
that supports both the VHDL and Verilog languages in a single program to perform both
a[n] event-driven and a cycle-based logic simulation on a multiprocessor platform chosen
by a user.61

Crucially, the specification goes on to explain that in the claimed invention, “[o]nce users’ VHDL

and/or Verilog designs have been compiled into the simulation database, they are being processed

by the same multithreaded engine.”
62

59 See Baldwin Graphic Sys., Inc. v. Siebert, Inc., 512 F.3d 1338, 1342 (Fed. Cir. 2009) (“this court
has repeatedly emphasized that an indefinite article ‘a’ or ‘an’ in patent parlance carries the
meaning of ‘one or more’ in open-ended claims containing the transitional phrase ‘comprising’”).

60 ‘898 patent, col. 2, ll. 57-63.

61 Id. at col. 3, ll. 10-14.

62 Id. at col. 10, ll. 22-41.

18
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

The court finds Dynetix’s construction to be well-supported by the specification except for

its assumption that the claim encompasses more than one “common design database.” While

Dynetix is correct that the article “a” does not limit the claim to one such database, the

specification makes clear that “common” means one database that is processed by a single

multithreaded engine. This is the advantage that was touted by the specification – that the claimed

invention could process multiple languages with the same program. Even if that were not enough,

the description of the invention in the specification is unequivocal that simulations are processed

“on the same multithreaded engine.”
63 As a result, it is appropriate to limit this claim to a single

multithreaded engine.

A. 6. TERM CONSTRUCTION
“To create a master thread and a
plurality of slave threads”

Claims 1, 2, 5-7, 36, 39, 44, 45, 48,
53

Creating one thread for each processor
where the master thread is executed
on one processor and each of the slave
threads is executed on a separate
remaining processor.

 This term appears in the following contexts in claims 1, 36, and 45:

1. … (c) automatically detecting the number of microprocessors (CPUs) available on
the multiprocessor platform to create a master thread and a plurality of slave
threads for concurrent execution of the multithreaded event-driven simulation of the
design to achieve linear to super-linear scalable performance speedup as according to
the number of CPUs on the multiprocessor platform…
36. … (a) minimizing frequencies of thread creation and destruction by creating a
master thread and a plurality of slave threads, based on the number of available
CPUs on the multiprocessor platform, prior to the start of simulation…
45. … means to minimize frequencies of thread creation and destruction by creating a
master thread and a plurality of slave threads based on the number of available
CPUs on the multiprocessor platform, prior to the start of simulation …

63 Id.

19
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

The parties stipulated to a term contained within this phrase: “master/slave thread” means that “in a

multithreaded application, the thread that controls the execution of all other threads is the ‘master

thread;’ the other threads that are controlled by the master thread are called ‘slave threads.’”
64

 In light of the parties’ stipulation to construction of “master/slave thread,” Dynetix argues

that there is no need for further construction. Alternatively, Dynetix proposes that the term be

construed as “to create a master thread and two or more slave threads.”

 Synopsys disagrees, arguing for a more comprehensive construction reflecting the

necessary one-to-one ratio between threads and CPUs. The “context in which a term is used in the

asserted claim can be highly instructive.”
65 Claims 1, 36, and 45 all note that the master thread and

plurality of slave threads are created “as according to” or “based on” the “number of CPUs on the

multiprocessor platform.” This demonstrates that there is a required relationship between the

number of CPUs on the multiprocessor platform and the number of threads.

 The specification, Synopsys argues, further underscores the “one thread per CPU” principle

in the claimed invention. The patentee first described common practice in the prior art as when

there are n CPUs on a system, the simulator allocates n + 1 total threads:

Contrary to the invention, it is common practice for the prior art simulators to allocate n + 1
threads (one master and n slave threads) on an n-CPU system. The master thread’s main

function is to manage the execution of the slave threads to perform simulation.

The patentee went on to distinguish the claimed invention from the prior art:

In this invention, however, the master thread will spend only a minimum amount of time
managing the slave threads, and it shares an equal amount of workload with the n-1 slave
threads to carry out the simulation. The invention approach has the benefits for reducing
the idle time the master thread needed to spend in waiting for the slave-threads to complete
their tasks.

The Detailed Description of the Invention in the specification then states unequivocally that on an

n-CPU system, the simulator allocates “exactly n threads”:

64 Docket No. 59 at 1.

65 Phillips, 415 F.3d 1303, 1314.

20
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

To reduce the number of threads employed in a process upon which n CPUs are available
on a platform, the simulator will allocate exactly n threads (one master thread and n-1
slave-threads) at program start[] up. Each of these threads will be set as a real-time thread
and be scheduled by the operating system directly to bind to a hardware CPU throughout
the entire simulation run. No other threads will be created during the simulation run.66

 Dynetix responds that the excerpt discussing the claimed invention vs. the prior art actually

focuses on improvements of having the master thread spending only a minimum amount of time

managing slave threads, but then sharing an equal amount of workload with the slave threads.67

Dynetix also contends that “based on” does not necessarily mean there is a one-to-one ratio

between CPUs and threads, but merely means that the number of CPUs is taken into consideration.

 While Dynetix is correct that the claim language alone does not mandate a one-to-one ratio,

claims must be read in light of the specification. Here, the specification in the Detailed Description

of the Invention explains in no uncertain terms that on an n-CPU system, the simulator will allocate

exactly n threads (one master thread and n-1 slave threads).68 The specification also distinguished

prior art which used n + 1 threads. If the one-to-one ratio described was of no import, there would

be no reason for the specification to specifically draw this distinction.

A. 7. TERM CONSTRUCTION
“Pre-examining each user-specified
HDL source file”

Claims 1, 2, 5-7

The simulator examining the content
of each HDL source file to
automatically detect its coded file
language before compiling the source
files.

 The term can be found in claim 1:

1. … (a) pre-examining each user-specified HDL source file and automatically invoking an
appropriate HDL compiler to compile a design source file into a common design database;

66 ‘898 patent, col. 17, ll. 51-58.

67 Id. at cols. 17-18, ll. 67-2.

68 See id. at col. 17, ll. 51-56.

21
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

 Synopsys believes the specification and claim language requires that the simulator perform

the pre-examining feature described by the term. The specification states that “[w]hen the

simulator compiles a user-specified HDL source file, it will pre-examine the file content to detect

automatically the coded file language.”
69 Synopsys therefore seeks to make clear that it is the

simulator, not the user, which automatically examines the source file before it is compiled.

 Dynetix does not believe the term contains any confusing jargon and therefore does not

need to be construed. Even if it were to be construed, Dynetix argues that a simple construction of

“examining each source file before compiling the source files” would suffice, without specifying

who conducts the examination. Dynetix contends that because the claim language uses the word

“automatically” to modify the second feature described by claim 1, or “invoking an appropriate

HDL compiler to compile a design source file,” the patentee clearly knew how to draft a claim to

cover only an automatic process, but did not do so regarding the “pre-examining” feature. Dynetix

further takes issue with the fact that Synopsys’ definition limits examination to the “content” of the

source file. Without citation, Dynetix argues that pre-examination could be “looking at the file

extension to determine the type of HDL used, not necessarily reviewing the contents.”
70 Lastly,

Dynetix complains that Synopsys has unnecessarily “cherry-picked” the term – Synopsys asked to

construe the term “pre-examining each user-specified [] source file,” omitting the world “HDL,”

and has provided no legitimate reason for doing so.

 Contrary to Dynetix’s assertion, the term is less than clear and benefits from construction.

It is clear from the claim context and specification that the simulator examines the file content to

determine its coded file language, then uses a language-specific compiler to compile the design

source file. Synopsys’ proposed construction is appropriate to describe both the pre-examining

69 Id. at col. 9, ll. 43-46.

70 Docket No. 107 at 17.

22
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

process and when it takes place. As for Dynetix’s accusation of cherry-picking, this is easily

remedied by inserting “HDL” into Synopsys’ proposed construction, as seen above.

A. 8. TERM CONSTRUCTION
“Specify remote hosts”

Claims 19-23

The user identifying remote
computers by name.

This term appears in terms 19-23 (“the remote access claims”), of which claims 19 and 23

are independent, in the following contexts:

19. … installing and executing a graphical user interface program (“GUI”) on the user’s

local host to specify remote hosts on which the HDL design compilation and simulation is
to be performed …
23. … means to provide a graphical user interface program (“GUI”) on the user’s local host

to specify remote hosts on which the HDL design compilation and simulation is to be
performed …

 Dynetix contends that the term can be understood by its plain and ordinary meaning, but if

the court were to construe the term, it should be understood as “to specify the remote servers.”

There is no need for construction of the word “specify” because it simply means “to name or state

explicitly or in detail.”
71

 Synopsys on the other hand argues that it is necessary to note that the user identifies the

remote computers by name. The specification supports this notion, stating that “[t]his UI program

allows the users to specify a remote machine name, and a remote directory pathname, on which

they desire their HDL compilation and/or simulation to be performed.”
72 “Name” simply means

the unique identification information that the user invokes to contact the remote server.73

71 Docket No. 85, Ex. 6.

72 ‘898 patent, col. 13, ll. 12-15.

73 See id. at col. 13, ll. 61-66 (“When a user specifies a remote host name and a remote directory
pathname… for compilation or simulation… the UI [] will contact the remote host RMI naming
service to obtain a handle for the server by specifying the registered name of the server.”).

23
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

 The court agrees with Synopsys. Synopsys’ construction finds support in the intrinsic

evidence, and as Synopsys itself concedes “naming” can be the user inputting various identifying

data. Even under the extrinsic dictionary definition put forth by Dynetix, the definition of

“specify” includes “naming.” Synopsys’ proposed construction is consistent with that definition

and does not unduly narrow claim scope.

A. 9. TERM CONSTRUCTION
“Graphical user interface” or “GUI”

Claims 19, 23

A computer user interface that allows
interaction using graphical objects
such as icons, images, and windows
as opposed to merely a command line
interface.

The term “graphical user interface,” or “GUI,” also appears in the remote access claims.

The GUI is “on the user’s local host” and is used “to specify remote hosts on which the HDL

design compilation and simulation is to be performed.”
74 It also “automatically activat[es] network

connection… to send the user’s commands from the user’s local hosts to the remote hosts to be

executed thereof.”
75

 The parties agree that the graphical user interface allows the user to interact with the

computer through an interface that displays icons, images, and other graphical objects. Where they

differ is if a graphical user interface necessarily excludes a command line interface.

 Synopsys maintains that a graphical user interface can never be a command line interface,

and in fact, the two are opposites. The Dictionary of Computing defines the two interfaces as

follows:

Graphical user interface (GUI): An interface between a user and a computer system that
makes use of input devices other than the keyboard and presentation techniques other than

74 Id. at col. 26, ll. 8-11.

75 Id. at col. 26, ll. 12-15.

24
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

alphanumeric characters. Typical GUIS involve the use of *windows, *icons, *menus, and
*pointing devices.76
Command-line interface (CLI): An interactive system where user input is achieved
through lines of text. The user learns these commands by consulting an online *help
system or reference manual. Users familiar with the interface may use abbreviations or
mnemonic commands to speed access and reduce the number of keystrokes required for a
given command. 77

 Dynetix points out that the IEEE Dictionary of graphical user interface merely notes that it

is “graphical in nature,” and the “user can enter commands by using a mouse, icons and windows”

but that this is by no means necessary.78 Dynetix also argues that Figure 13 shows a text-based

input system as a preferred embodiment.79

 The court agrees with Synopsys that a graphical user interface cannot be a command-line

interface. What these extrinsic definitions make clear is that the two are diametrically opposed. A

graphical user interface allows the user to enter commands through graphical objects, whereas a

command-line interface is text-based commands only. The intrinsic evidence is consistent with

this finding. As Synopsys notes, Figure 13 in the specification shows a graphical user interface,

not a command-line, because it has icons for “Add,” “Delete,” “OK,” “Cancel,” or “Help” which

allow the user to execute commands. A command-line interface would not have those icons but

would merely have a text-based input system for those commands. Accordingly, Synopsys’

exclusion of command-line interface from the definition of graphical user interface is appropriate.

A. 10. TERM CONSTRUCTION
“By at the beginning”

Claim 39

The court finds this term may be
construed by correcting the
typographical error. The phrase shall
be corrected to “by the beginning.”

76 Oxford Dictionary of Computing 215 (4th ed. 1996).

77 Id. at 86.

78 IEEE Dictionary 458 (6th ed. 1997).

79 ‘898 patent, Fig. 13.

25
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

 Claim 39 states:

39. The method of achieving super-linear scalable Hardware Description Language
simulation according to claim 36 further comprises the step of scheduling the master thread
and slave threads to bind to CPUs of the microprocessor by at the beginning of simulation
to eliminate the time spent in scheduling threads for execution during subsequent
simulation.

Both parties recognize that claim 39 contains a typographical error, but they dispute whether the

court can correct that error. “It is well-settled law that [] a district court may correct an obvious

error in a patent claim.”
80 However, it is equally well-established that a district court may do so

only if “(1) the correction is not subject to reasonable debate based on consideration of the claim

language and the specification and (2) the prosecution history does not suggest a different

interpretation of the claims.”
81

 Synopsys asserts that the term cannot be corrected because it is subject to reasonable

debate, and as a result is indefinite. Specifically, Synopsys identifies a reasonable dispute as to

whether the step of scheduling the master and slave threads to bind to the CPUs should occur “by”

the beginning of simulation or “at” the beginning of simulation. Other claims are of no help

because some require binding “prior to the start of simulation” while others require this step “at the

beginning of the simulation.”
82 The specification, too, does not provide any direction as to whether

the binding “by” or “at the start of simulation. It states that “[e]ach of these threads will be set as a

real-time thread and be scheduled by the operating system directly to bind to a hardware CPU

throughout the entire simulation run.”
83

80 CBT Flint Partners, LLC v. Return Path, Inc., 654 F.3d 1353, 1358 (Fed. Cir. 2011).

81 Id.

82 ‘898 patent, col. 28, ll. 35-36, 40.

83 Id. at col. 17, 54-58.

26
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

 Dynetix in turn asserts that it does not matter whether “by” or “at” is used because it would

be obvious to a person skilled in the art that “the step of scheduling the master thread and the slave

threads to bind to CPUs” occurs before actual simulation.84 As the Federal Circuit noted, the

relevant question is what a person skilled in the art would understand the phrase and claim scope to

be.85 If the court corrected the construction to “at the beginning,” that would mean scheduling is a

part of simulation but occurs “before the core steps of simulation.”
86 If the court chose the phrase

“by the beginning,” that would mean that scheduling is not a part of simulation and occurs before

it.87 Dynetix calls for the court to adopt the former, citing the same specification as Synopsys at

the excerpt, “the simulator will allocate exactly n threads… at program start[] up.”
88

 After scrutinizing the claim language, the court agrees with Dynetix, but only in part.

Synopsys fails to appreciate that it is the timing of “the step of scheduling the… threads to bind to

CPUs,” not merely the binding of threads to CPUs, which is at issue here. The binding of threads

and CPUs plainly occurs “throughout the entire simulation run.”
89 The scheduling of that binding

process, however, occurs before simulation. The claim language unequivocally supports this – it

states that the purpose of scheduling first is “to eliminate the time spent in scheduling threads for

84 See id. at col. 17, ll. 51-57 (noting that n threads are allocated at program startup so that they will
each be bound to a CPU throughout the entire simulation run).

85 CBT Flint Partners, LLC, 654 F.3d at 1358 (“a person of skill in the art would find the claim to
have the same scope and meaning under each of the three possible meanings that the court found
reasonable”).

86 Docket No. 107 at 20.

87 See id.

88 See ‘898 patent, col. 17, ll. 52-54.

89 Id. at col. 17, ll. 57.

27
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

execution during subsequent simulation.”
90 The specification language quoted by both parties also

supports that understanding.

 While the court agrees that either interpretation would have the same claim scope as

understood by a person skilled in the art, the court does not believe that “at the beginning” would

be the more precise correction.91 A jury member or other lay person who is not well-versed in the

field might read “at the beginning” as possibly coinciding with the simulation, even though a

person skilled in the art would not. No similar issue occurs by correcting the phrase to “by the

beginning,” which even to a lay person signifies that scheduling is completed by the time the

simulator runs any simulation. Therefore, the court chooses to correct the claim to “by the

beginning” to alleviate any potential misunderstanding.

A. 11. TERM CONSTRUCTION
“Means to provide a graphical user
interface program (‘GUI’) on the
user’s local hosts”

Claim 23

No ruling or construction in light of
the court’s concern that this claim
may be indefinite.

 Claim 23 is a means-plus-function claim:

23. A program product of executing remote Hardware Description Language (“HDL”)

compilation and multi-threaded simulation of a circuit design employing a user’s local and

remote single-processor or multiprocessor hosts, comprising:
 […]

Means to provide a graphical user interface program (“GUI”) on the user’s local host

to specify remote hosts on which the HDL design compilation and simulation is to be
performed;
Means to automatically activate network connection by the GUI to the server program to
send the user’s commands from the user’s local host to the remote hosts to be executed

thereof…

90 Id.

91 The court originally agreed with Dynetix that the claim language should be corrected to “at the
beginning.” See Docket No. 559. The court has inherent authority to change its claim construction
rulings, and it finds upon further reflection that adopting slightly different language would be more
appropriate.

28
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

 A means-plus-function claim must be construed as follows. First, the court identifies the

function described by the claim.92 Second, the court looks to the specification and identifies “the

corresponding structure, material, or acts that perform that function.”
93 “A structure in the

specification qualifies as a corresponding structure if the specification or the prosecution history

clearly links or associates that structure to the function recited in the claim.”
94 “Even if the

specification discloses a corresponding structure, the disclosure must be adequate” in showing

what is meant by the claim language.95

 Dynetix identifies the claimed function of the term at issue as “to provide a GUI on the

user’s local hosts in a remote simulation method of claim 19.”
96 Dynetix argues that the structure

is a “local host” that can run the user interface,97 but does not identify a more specific structure that

is described in the specification but not in the claim language. In Dynetix’s view, however,

someone skilled in the art would understand that the “local host” would have to be a “computer or

equivalent machine.”
98 It argues that the corresponding structure is therefore a “combination of

computer monitors, graphic drivers, input devices such as keyboard, mouse, and the enabling

software, allowing the user to receive, display, manipulate, and output information, graphics, and

commands on the user’s local hosts.”

92 See HTC Corp. v. IPCom GmbH & Co., KG, 667 F.3d 127, 1278 (Fed. Cir. 2012).

93 Id.

94 Noah Sys., Inc. v. Intuit, Inc., 675 F.3d 1302, 1311 (Fed. Cir. 2012).

95 Id. at 1311-12.

96 Docket No. 83 at 24.

97 ‘898 patent, col. 13, ll. 7-12 (“…the users need to install a server or a server program 62
provided by the invention on the respective machines networked with the Internet or Intranets.
Once the server program 62 is installed, the users then run a UI (user interface) program 63 on their
local hosts.”).

98 Docket No. 83 at 24.

29
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

 Synopsys, finding this explanation insufficient, insists the claim is indefinite. Nothing in

the specification explains the function of “providing a graphical user interface” as Dynetix has

suggested. With no function adequately described, there is also no structure linked to that function.

The “combination of computer monitors, graphic drivers, input devices such as keyboard and

mouse and the enabling software, allowing the user to receive, display, manipulate, and output

information, graphics, and commands on the user’s local hosts” appears nowhere in the

specification. As a result, there is no proper function or structure description in the specification

and the claim is indefinite. Synopsys argues this was an attempt by the patentee to claim the

method of claim 19 as an apparatus, but in purely functional terms and without any associated

structure.99 This the patentee cannot do.100

The court has serious concerns that this claim is indefinite because the specification

contains no reference to the claimed function and any associated structure. Further, Dynetix has

not identified any legitimate support for its contention that a person skilled in the art would

necessarily interpret a “local host” to be a “computer or equivalent machine.” Dynetix only cites

the inventor, Terence Chan’s bare assertion that “a person of ordinary skill in the art would surely

understand [a ‘local host’] to mean a computer or equivalent machine with some kind of input

device such as a keyboard and/or mouse.”
101 This is plainly insufficient; “[b]road conclusory

statements offered by [one party’s] experts are not evidence.”
102 In ruling at the claim construction

hearing, the court expressed that concern and invited Synopsys to bring a motion for summary

judgment on indefiniteness of this claim. The parties did not do so, opting to take a different

99 See Med. Instrumentation & Diagnostics Corp. v. Elekta AB, 344 F.3d 1205, 1211 (Fed. Cir.
2003).

100 See id.

101 Docket No. 84 ¶ 14.

102 Telemac Cellular Corp. v. Topp Telecom, Inc., 247 F.3d 1316, 1329 (Fed. Cir. 2001).

30
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

litigation route. As the parties never provided further briefing on this issue, the court does not

decide this issue now.103

B. The ‘473 Patent

B. 1. TERM CONSTRUCTION
“Finite state machine”

Claim 7

A sequential circuit whose finite
number of output values at a given
instant depends on either the sequence
of previous inputs, the current input,
or both.

 The term “finite state machine” is central to the ‘473 patent and appears in multiple claims,

including independent claim 7:

7. A method of simulating a circuit on a computer system, said circuit including a computer
model of a Finite State Machine (FSM), said computer system including a processor and
memory, said processor being coupled to said memory, said method comprising:

accessing a textual description of said computer model into a compiled computer
model;
compiling said textual description of said computer model into a compiled computer
model;

 storing said compiled computer model in said memory;
 accessing said compiled computer model;
 accessing a first input value;
 accessing a first delayed input value;
 accessing a first delayed output value; and

executing a simulation program on said processor causing said processor to access a
first output value from said computer model using said first input value, said first
delayed input value and said first delayed output value, said first output value
corresponding to the output value of said circuit.104

 Synopsys contends that the term is defined by the specification:

Some sequential circuits, called Moore machines, have outputs that depend on a sequence
of previous inputs. Other sequential circuits, called Mealy machines, have outputs that
depend on the sequence of previous inputs and the current input. Each sequence of

103 In any event, the court found that the remote access claims are no longer at issue for other
reasons. See Docket No. 166 (denying Dynetix’s request to amend infringement contentions to
assert remote access claims against VCS Multicore on diligence grounds); Docket No. 362 at 12
(ruling that VCS Cloud, the only infringing device implicated by the remote access claims, does
not infringe because it does not use a GUI).

104 ‘473 patent, cols. 15-16, ll. 60-12.

31
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

previous inputs causes the circuit to assume a specific state for the sequential circuit.
Because sequential circuits have a finite number of these states, sequential circuits are
referred to as finite state machines (FSMs).105

 Factoring in this passage describing “Moore machines” and “Mealy machines,” both of

which could be finite state machines, Synopsys urges the court to construe “finite state machine” as

“a circuit that has a finite number of output values at a given instant that are dependent on a

sequence of previous inputs.” Synopsys asserts that this proposed construction also is consistent

with the claim language and the IEEE Dictionary, which defines “state” in the field of modeling

and simulation as the “values assumed at a given instant by the variables that define the

characteristics of a system, component, or simulation.”
106 Flip-flops would meet this definition –

they are defined by the IEEE Dictionary as “a circuit or device capable of assuming either of two

stable states, and which can be made to switch states by applying the proper signal or combination

of signals to its inputs.”
107

 Dynetix, on the other hand, asks the court to interpret “finite state machine” as “a

computational model of sequential circuits” with “outputs that depend on, among other things, the

previous inputs.” Dynetix further asks the court to exclude “simple devices such as flip-flops”

from this definition. Looking at the same passage provided by Synopsys, Dynetix contends that

Synopsys’ definition is inaccurate because at least some sequential circuits (Mealy machines) have

outputs depends on more than just previous inputs, but also current ones. Further, the specification

shows that the model is intended to be a compilation of primitive devices. For example, a netlist

computer model is described as “a number of interconnected primitive models” and each

105 Id. at col. 1, ll. 17-26.

106 Docket No. 133, Ex. C.

107 IEEE Dictionary 443 (7th ed. 2000).

32
Case No.: 11-5973 PSG
FINAL CLAIM CONSTRUCTION ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t

C
ou

rt

F
or

 th
e

N
or

th
er

n
D

is
tr

ic
t

of
 C

al
ifo

rn
ia

“primitive model” is described as “a model of a primitive digital device such as an AND gate, OR

gate, or a D flip-flop, or a multiplexor.”
108

 The court finds that the passage cited by both parties provides the definition for a finite

state machine. What both parties miss in their briefing, however, is that both Moore machines and

Mealy machines are included in the definition of finite state machines. Therefore, the construction

of that term should include sequential circuits that depend on previous inputs, current inputs, or

both.

 As for Dynetix’s proposed exclusion of flip flops from the definition of finite state machine,

the court sees no reason to implement such an explicit exclusion. “Negative limitations should not

be accepted [] absent clear disavowal, disclaimer or estoppel.”
109 Although Dynetix cites parts of

the specification describing computer model as being comprised of more “primitive models… such

as… a D flip-flop,”
110 those excerpts are far from clear disavowals of claim scope because they

merely cite examples, not requirements. Just because some examples of finite state machines are

built from multiple components does not mean that all finite state machines must be so. Nothing in

the claim language or specification limits a finite state machine to a more complex compilation of

simpler components.

IT IS SO ORDERED.

Dated: September 11, 2013

 PAUL S. GREWAL
 United States Magistrate Judge

108 ‘473 patent, col. 3, ll. 37-39.

109 Nuance Commc’ns, Inc. v. Abbyy Software House, Inc., Case No. C 08-02912 JSW, 2012 WL
1188903, at *4 (N.D. Cal. Apr. 9, 2012) (internal quotations omitted).

110 ‘473 patent, col. 2, ll. 7-11.

