

EXHIBIT 9

Leader Technologies Inc. v. Facebook Inc. Doc. 406 Att. 5

Dockets.Justia.com

http://dockets.justia.com/docket/delaware/dedce/1:2008cv00862/41430/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2008cv00862/41430/406/5.html
http://dockets.justia.com/

....

.\

.

1 I " H

PTOISB/16 (10-O1)
Approved for use through 10/3112002 OMB 0651-0032

US Patent and Trademark Office, US DEPARTMENT OF COMMERCE ___
Under the Paperwork Reduction Act of 1995. no persons are reqUired to respond to a collectIon of information unless It displays a valid OMB control nu~r =

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53 (c). UlC..;J
PROVISIONAL APPLICA TION FOR PA TENT COVER SHEET ~~ =~

= -or-!

='tl
-....:j

I Express Mail Label No. J ~~ ~or-!
--~ =CIJ ~ '-'

INVENTOR(S)
Residence

Given Name (first and mIddle [if any]) FamIly Name or Surname (City and either State or Foreign Country)
MichaeiT. McKibben Westerville, Ohio
JeffR Lamb Westerville, Ohio

D Additional inventors are being named on the _ _ separately numbered sheets attached hereto

TITLE OF THE INVENTION (500 characters max)

METHOD FOR DYNAMIC ASSOCIAllON OF ELECTRONICAlL YSlORED INFORMAllON WITH TTERA11VEWORKFLOoIII CHANGES

Direct all correspondence to: CORRESPONDENCE ADDRESS
Place Customer Number

GJ I I Customer Number 25534 .. Bar Code Label here

OR Type Customer Number here

D Firm or
Inrh"irlll~1 I\I::lmp

Address

Address

City State ZIP

Country Telephone Fax

ENCLOSED APPLICATION PARTS (check aI/ that apply)

o Specification Number of Paqes I 18 I 0 CD(s), Number I I o Drawino(s} Number of Sheets I I 0 Other (specify) I D Apphcation Data Sheet. See 37 CFR 1.76

METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT

W Aoolicant cfalms small entity status. See 37 CFR 1.27. o A check or money order is enclosed to cover the filing fees
FILING FEE
AMOUNT ($)

D The Commissioner is hereby authorized to charge filing I I ~ fees or credIt any overpayment to Deposit Account Number:

D Payment by credit card. Form PTO-2038 is attached.

The invention was made by an agency of the United States Government or under a contract with an agency of the
United States Government

[Xl No

o Yes, the name of the U S Government agency and the Govemment contract number are

RCSP",",'J~S!f'MJ ~ ~
SIGNATURE A"..,.,.,

TYPED or PRINTdNAME Frederi~ N. Samuels

TELEPHONE 202-331-8777

Date I 12/11/2002 I
REGISTRATION NO.
(if appropriate)
Docket Number:

34715

547.0003P

I

USE ONL Y FOR FILING A PROVISIONAL APPLICATION FOR PATENT

,\0'

~:

r:;

This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a
provisional application. ConfidentIality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to
complete, including gathering, preparing, and submitting the complete proviSIonal application to the PTO. Time will vary depending upon the
individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should
be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington, D.C., 20231. DO
NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box ProVIsional Application, Assistant Commissioner for
Patents, Washington, D.C. 20231.

P _or-!

METHOD FOR DYNAMIC ASSOCIATION OF ELECTRONICALLY
STORED INFORMATION WITH ITERATIVE WORKFLOW CHANGES

I. Field of the Invention

[0001] This invention relates to management and storage of electronic information.

More particularly, this invention relates to new structures and methods for creating

relationships between users, applications, files and folders.

II. Background of the Invention

[0002] Digital communications solutions are presently supplied to users in ways that

are completely divorced from their business context. A particular item of communication

provides little or no inherent understanding of how that communication furthers the

purpose and intent of the group or enterprise. In other words, an email inbox collects

emails about all topics, business and personal. The email application itself is not

discerning about topic, priority or context beyond perhaps rudimentary "message filters"

that will look for certain key words or people then place those items in target folders.

Generally, it simply presents a sequential list of messages received. Similarly, a fax

machine receives fax pages in sequence. A fax machine is not discerning about topic,

priority or context. It simply outputs fax pages. Once received, it remains the task of

the reCipient to sort, categorize and organize these items of communication in ways

most meaningful to that person. The organization task generally occurs outside the

context of the particular communications tool itself.

[0003] Typical methods for organization of communications are limited and

fragmented. For example, for an email, the recipient may either leave all email in the

inbox or move it to another electronic folder. For a fax, the recipient is likely to place

that fax in a file folder that is identified by project name or name of recipient. These

typical methods of organizing communications are wholly inadequate for a number of

reasons:

[0004] 1. Organization - the recipient is left to do all the work of organization and

categorization of the communications rather than having the systems themselves doing

that work for them, automatically.

[0005] 2. Leadership - the linkage between business strategy and an individual act

of communication is non-existent.

[0006] 3. Categorization - the items themselves rarely apply to only one topic of

interest. As such, under current systems, the items would need to be manually stored

in multiple locations (either electronic or "brick and mortar" folders). For example, a fax

letter to a sales manager may contain information about contact addresses, market

intelligence data, specific product requests, and financial accounting.

[0007] 4. Knowledge Sharing - items often relate to organizational issues for

which one or more work groups need access; access that is denied when the recipient

"buries" that item in his/her personal filing system, electronic or otherwise.

[0008] 5. Context - prior art communications tools do not know the business and/or

personal context(s) within which files are created and used. For example, a person may

create three files in a word processor, one relating to sales, the second relating to

operations and the third relating to his son's football team. However, the word

processor itself has no way of knowing to automatically store those three files in at least

three different places.

[0009] 6. Security & Privacy - the applications and their file storage methods are

generally insecure; they do not conform to a single, dependable security model.

[0010] Known software applications create and store files outside of a contextual

framework. For example, when a user creates a Microsoft Word (*.doc) file in Microsoft

Word 2000, the user must select a single folder within which to store that file. The file

may be stored in an existing folder or the user may create a new folder to receive the

file. This file management method is known as Lightweight Directory Application

Protocol (LDAP). LDAP borrowed the physical world paper file management scheme

where a machine/application creates files, stores those files in individual folders and

stores those folders in cabinets. Under this scheme, context is completely independent

of the application. File context is limited to the decision made by the user about which

folder the file should be stored. The user decision does not adequately represent reflect

the true context of the file given that the file may contain information that could

reasonable be stored in multiple folders.

[0011] Another limitation of LDAP is that little or no information is contained within

the file about the user and the context and circumstances of the user at the time the file

was created. Current processes designed to add context to files such as the "meta

data" tagging approach, involve having a knowledge officer view files after they have

been stored and create meta-data tags with additional key words associated with the file

for search purposes.

[0012] Notwithstanding the usefulness of the above-described methods, a need still

exists for a communications tool that associates files generated by applications with

individuals, groups and topical context.

III. Summary of the Invention

[0013] It is an object of the invention to provide a communication tool that

seamlessly facilitates, collects, compiles and distributes communication data.

[0014] It is a further object of the invention to provide a communication tool that links

communication data to enterprise leadership priorities.

[0015] It is another objective of the invention to provide a communication tool that

performs communications tasks while simultaneously reminding the user of his/her

individual work priorities.

[0016] It is still a further object of the invention to provide a communication tool that

automatically stores contextual information relating to an item of communication and

utilizes that contextual in performance of communication tasks.

[0017] Sill another object of the invention is to provide a communication tool that

integrates two or more different communication applications such as telephony, unified

messaging, decision support, document management, portals, chat, collaboration,

search, vote, relationship management, calendar, personal information management,

profiling, directory management, executive information systems, dashboards, cockpits,

tasking, meeting, conferencing, etc. into a ?ommon application.

[0018] Still a further object of the invention is to provide a structure for defining

relationships between complex collections of data.

[0019] Yet another object of the invention is to provide a process for automating

workflow between multiple entities.

[0020]

[0021] Given the following enabling description, the invention should become

evident to a person of ordinary skill in the art.

IV. Description of the Embodiments

[0022] In the past, intuitive, dynamic, changeable workflow processes have proved

to be too dynamic and expensive for automation. The present invention utilizes

"boards" and "webs" to automate workflow processes and define relationships between

data and applications. As users create and change their contexts, the files and

applications automatically follow, dynamically capturing those shifts in context.

[0023] As used herein, a "board" is defined as a collection of data and application

functionality related to a user-defined topic. For example, a user defined topic may be a

department of a company or a project that involves the company. In the case of a

project, the board preferably includes all of the data relating to that project including

email, tasks, calendar events, ideas, discussions, meetings, phone calls, files, contact

records, people, etc. Data and applications may be grouped in a board based on the

identity of the tag.

[0024] As used herein, the term "web" refers to a collection of interelated boards.

Boards in a web may have, for example, a parent-child relationship. A given board may

have more than one parent and may have more than one child. A board may not be its

own child or its own parent. However, boards may have various relationships to each

other. For example, a board may be part of a circular relationship of any complexity

such as the following: A is parent to B; B is parent to C and C is parent to A.

[0025] In accordance with the invention, webs may be used to maintain the location

of content within a complex and changing set of boards and support automation of the

'j H

workflow process. Automation of the workflow process may shown by the following

example.

Example

The workflow process to be automated is A?B?C. Three different people

are assigned to each item. Therefore A(1,2,3) ? B(4,5,6) ? C(7,8,9). The workflow

change desired in this example is A ? B/C ? C.

In the known environment, LDAP, it is necessary for the automation

sequence to predetermine how work data flows from A to Band C. Then, the

automation module for inputs to D must be spelled out and rewritten to consolidate split

input from Band C. As such, the automation support for this workflow change will

always lag behind the ability of the people involved to start working with the new

workflow assumptions.

In contrast, in accordance with the present invention, webs and boards are

preferably the context for applications, files and folders. Hence, the workflow process

may be readily reorganized by making a change to one or more of the webs and

boards.

In preferred embodiments, webs may be utilized to maintain the location of

content within a complex and changing set of boards. Content is preferably associated

with a routing algorithm referred to herein as a webslice. Thus the content has an

intelligent quality whereby upon a change of structure of the web, the content knows

which board or boards it should be on both before and after the change of structure. In

keeping with a preferred aspect of the invention, the location of the content may be

determined at dynamically at run using the routing algorithm. Alternatively. the loction

of content may be determined by detecting changes in structure, detecting the

temporary location fo the content on the boards in the routing algorithm before and after

the change and adjusting the location of the affected content as part of the change in

structure.

ATTACHMENT 2

"board" Module

"WEB VERSION 1" WORKING DESCRIPTION

Webs are collections of boards and a collectio~ of parent-child relationships between
those boards. Boards in a web may have more than one parent and my have more than
one child. A board may not be its own child (and thus may not be its own parent), but
may participate in a circular relationship of any complexity (A is parent to B. B is parent
to C. C is parent to A).
WebSlices are a way of representing an algorithm that's ultimate output is a set of boards.
A webslice consists ofa Web, a starting board, and a traversal (ofarbitary complexity).
Take for example a web of boards a band c where band c are children ofa. A webslice
that referenced this board, started at a and used a traversal of "all cihldren" would return b
and c. If the smae traversal on the same web had started at b, the empty set would be the
result.
Webs can be utilized to maintain the location of content within a complex and changing
set of boards. If content has a webslice associated with it, then any change of structure in
the web would still result in the contt::nt (with the webslice) knowing what boards it
should be on both before and after the change of structure. Actually effecting this change
oflocation can be done by allowing the "location" to be determined dynamically at run
time using the webslice or can be accomplished by detecting changes in structure,
detecting the (temporary) location of the content on the boards in the slice before and
after the change and adjusting the location of the affected content as part of the change in
web structure.

ClAP also facilitates a new business workflow process. Workflow automation is
currently a site-specific effort. The workflow between A to B to C must be clearly
specified in all its variables prior to automation. Automation fixes this workflow in code.
Changes to the workflow require manual changes to the code. Predictable, repeatable,
transactional and hierarchical workflow processes are best suited to this approach. LD AP
and hierarchical storage models work best in this environment. Multiple applications
work independently of the storage, generating and reporting data to and from the storage
model.

Intuitive, dynamic, changeable workflow processes have proved too dynamic and
expensive for automation. ClAP changes that. ClAP is key off users and context, not off
of applications and files. As users create and change their contexts, the files and
applications automatically follow, dynamically capturing those shifts of context.

Professional services consulting is currently held hostage by a cumbersome, expensive,
time-consuming and often dehumanizing process known as "change management." The
modus operandi of these firms is to for the implementation of that fIrm's change model.
These models have a variety of names: Balanced Scorecard, Critical Success Factors,
Vital Signs, etc. These models are often intended to replace traditional "command and
control" models. Genenilly this is an either/or process. This change in the workflow
practices in a company is time consuming. Generally these new processes begin a spate
of new automation projects to support these changes. However, as any professional
services person knows, the automation, like the change process itself, is iterative.
Typically 50% of the changes initially championed will not work. Then 25% of the
secondary changes will not work. Then, 12.5 of the third round of changes will not
work ... and so on. As a consequence, automation always lags behind, many times in
terms of years.

ClAP allows professional services providers to support IT automation professionals with
an approach to automation support of workflow changes that changes and adapts as the
organization learns with little to no change to the underlying IT architecture.

To use a simple example, A ~ B ~ C is the workflow process we want to automate. We
assign 3 different people to each item, Therefore A(I,2,3) ~ B(4,5,6) ~ C(7,8,9).

LDAP Implementation
Persons (1,2,3,4,5,6,7,8,9) ~ Applications ~ Afiles, Bfiles, Cfiles ~ Afolders,
Bfoiders, Cfolders.

Now let's say a workflow change is proposed to look like this: A ~ B/C ~ D. In an
LDAP environment, before the people involved have any automation support for this
change, the automation sequence pre-determine how work data flows from A to B & C.
Then, the automation module for inputs to 0 must be spelled out and rewritten to
consolidate split input from B & C. In other words, the automation support for this
change will always lag behind the ability of the people involved to start working with the
new workflow assumptions. LDAP structure forces a regimented, minimalistic approach
to the automation of workflow processes.

ClAP Implementation
Persons (1,2,3,4,5,6,7,8,9) ~ Web ~ Aboard,Bboard,Cboard (incl. Applications, Files,
Folders)

Now let's say the workflow changes to A ~ B/C ~ D. In a ClAP environment a simple
adjustment is made to the webs & boards table and the entire workflow process is
reorganized with all the relevant data files appropriate reorganized and available. This
should always be the first step in the change process. The first step in the change process
should always be the instantaneous reorganization of the people and topic associations
along with the communications tools. At this stage in the change, no predictable,
repeatable, transactio~l or hierarchical process can be established. That can only come
with time and consistency. Some processes must remain flexible~ unpredictable, yet they

are processes nonetheless. ClAP allows for the simultaneous automation of repeatable
and dynamic processes.

In ClAP, the People, Webs and Boards become the automatic context for Applications,
Files and Folders. In LDAP the Applications, Files and Folders have no inherent
relationship to the People or their Context. The implications of this difference on the
automation of workflow process are profound.

Looking at the code for Web (my comments in [] 's) :

package com.leader.osapplication.board;

import java.util.*;
import com.leader.util.*;
import com.leader.debug.*;
import com.leader.persist.*;
import com.leader.persist.vbsf.*;
import com.leader.osapplication.*;
import com.leader.osapplication.field.*;
import com.leader.osapplication.util.*;
import com.leader.osapplication.actions.*;
import com.leader.osapplication.framework.*;
import com. leader . osapplication. exception. *; ,I

import com.leader.osapplication.interfaces.*;
import com.leader.osapplication.sessionstate.*;

/**
* A collections of boards with connected relationships tying them

together.
* The stereotypical example is an org chart in a company where each

person is
* a node on the web.
*
* @author Jeff R. Lamb
* @author Betsy Foote
* @author Eric Rosenberg
*1

public class Web extends Content

public static final String
"existingRelationshipsList";

public static final String
public static final String

RELATIONSHIPS LIST FIELD 10 =

CHILD BOARD FIELD 10 = "childBoard"; - - -
PARENT BOARD FIELD 10 = "parentBoard";

[These are the relationships that make up the web. If a board
participates in any relationship in this collection, then they are part
of this web]

private Collection relationships =
CollectionFactory.getPersistenceCapableColle~tion();

[Webs-are named to allow them to be easy to work with for the users]

private String name;

1**
* VBSF required no argument constructor.
*1

private Web(} {
. super () ;

1**
* Constructor
* @param name the name to give this Web
*1

public Web {String name) {
this () ;
this.name = name;

IICI
public Content Interface newContent(Map pairs, RequestState

requestState) throws LeaderException {
return new Web(TextField.convert("name",pairs»;

IlcI
public void setCurrentValues(Map pairs, RequestState requestState) {

if (pairs.containsKey("webNameTextField"}) {
setName((String)pairs.get("webNameTextField"»;

IICI
public String getValidForAqdErrorMessage(} {

String errorMessage = null;
if (getName() == null I I "".equals(getName{) .trim{))) {

errorMessage = "You must designate a name for your Web.";

return errorMessage;

IleI
public int getContentToolCode{) {

return LeaderConstants.BOARD WEB TOOL;

I**SE*I
public String getName() (

return name;

I**SE*I
public void setName(String name) {

this.name = name;

1**
* Add a WebRelationship to the Web.
* @param relationship The relationship to add.

*/
public void addWebRelationship(WebRelationship relationship) {

if (relationship != nUll} {
relationships.add(relationship);

/**
* Remove a WebRelationship from the Web.
* @param relationship The relationship to remove.
*/

public void removeWebRelationship(WebRelationship relationship) {
if (relationship != null) {

relationships.remove(relationship);

/**
* Remove a WebRelationship from the Web.
* @param relationshipld The object id of the relationship to remove.
*/

public void removeWebRelationship(Long relationshipId) {
if(relationshipld != null){

Iterator iterator = relationships.iterator();
while(iterator.hasNext(» {

WebRelationship relationship =

(WebRelationship)iterator.next();
if{relationshipId.equals(relationship.getld(») {

removeWebRelationship(relationship);

/**
* Get all the WebRelationships on this Web. If there are no

relationships,
* return a 0 length array.
* @return WebRelationship array.
*/

private WebRelationship[] getWebRelationships() {
return (WebRelationship [])new ArrayList(relationships) .toArray(new

WebRelationship[relationships.size(»)); //WebRelationship
[)relationships.toArray(new WebRelationship[relationships.size()]);

}

/**
* Determine whether a given board is in this web.
* @param board Board we want to check on.
* @return boolean True if board is in this web, false otherwise.
*/

public boolean contains (Board board) {
List webBoards = getBoardsList();
return webBoards.contains{board);

} -

/**

* Get all the board included in this Web. If there are no
relationships,

* and hence no boards, return an empty List.
* @return Board[] Array of boards in this Web.
*/

public List getBoardsList(){
List boardList = new ArrayList();
WebRelationship[] relations = getWebRelationships();
for (int i=O; i < relations.length; i++) {

Board parent = relations [i) .getParent();
Board child = relations[i].getChild();
if (!boardList.contains(parent» boardList.add(parent);
if (!boardList.contains(child» boardList.add(child);

return boardList;

/**
* Get all the Children of a Board on this Web.
* @param board the board to find children of.'
* @return Set of children Boards. a size set if board parameter is

null
* or when there are no children.
*/

public Set getChildren(Board board) {
Set childrenSet = new HashSet();
if(board == null) {

return childrenSet;

Iterator allRelationships = relationships.iterator();
while (allRelationships.hasNext()) {

WebRelationship relationship =
(WebRelationship)allRelationships.next();

if (relationship.getParent() .getld().equals(board.getld(») {
childrenSet.add(relationship.getChild(»:

return childrenSet;

/**
* Get all the Parents of a Board
* @param board the board to find
* @return Set of parent Boards.

null
* or when there are no parents.
*/

on this Web.
parents of.
o size set if board parameter is

public Set getParents(Board board) {
Set parentsSet = new HashSet();
if(board == null) {

return parentsSet:

Iterator allRelationships relationships.iterator();
while (allRelationships.hasNext(»{

WebRelationship relationship =
(WebRelationship)allRelationships.next();

if (relationship.getChild() .getld() .equals(board.getld(») {

parentsSet.add(relationship.getParent{});

return parentsSet;

1**
* Get all the Peers (all
* @param board the board
* @return Set of Boards.

children of all parents of the board).
to find siblings of.
o size set if board parameter is null

* or when there are no peers.
*1

public Set get Peers (Board board) {
Set childrenOfParents = new HashSet();
if(board == null} {

return childrenOfParents;

Set parentBoards = getParents(board);
Iterator parentBoardslterator = parentBoards.iterator();
while(parentBoardslterator.hasNext(» {

Set children = getChildren«Board)parentBoardslterator.next()};
childrenOfParents.addAll(children);

childrenOfParents.remove{board);
return childrenOfParents;

IlcI
public Field[J getDisplayFields(RequestState requestState) throws

LeaderException{
List fields = new ArrayList();
TextField text Field = new TextField("nameff,getName{), "Web Name"):
textField.setLinkText("(Edit)"};
textField.setUrlld(LeaderConstants.BOARD_WEB_TOOL,""+getId(»;
FieldUtilities.makeFieldAToolActivator{textField, requestState,

this, getContentToolCode(),getContentTooICode(»;
fields.add(textField);
Field[) dateFields = DateField.getComponentFields(new

DateTimeField(getLastModified(»);
dateFields[O) .setTitle("Last Modified Date");
fields.add(dateFields[O]):
fields.add(dateFields[l]);
return (Field[])fields.toArray(new Field(flelds.size()]);

IICI
public String getDisplayName(}{

return "Web";

IlcI
public Form getForm(Requeststate requestState,int displayCode,int

toolCode) {
Debug.println("Web.getForm: for n + this, Debug.DEBUG);

_Form form = new ConcreteForm("webForm", "General Web Attributes");
int page Index = 0;
int selectedlndex = requestState.getMultiPageIndex();

J

toolCode = getContentToolCode();

//Web name sub-form.
Page page = new ConcretePage("createWebPage", pagelndex,

selectedlndex):
SubForm sub = new Conc:reteSubForm("webNameSubForm", "Web name");
sub.add(new TextField{"webNameTextField", (getName() != null?

getName() : ""), "Web name", true»:
page.add(sub);

//Existing relationships sub-form.
sub = new ConcreteSubForm{"existingWebRelationshipsSubForm",

"Existing Web Relationships");
sub. add (getWebRelationshipsListField (requestState.getP airsMap(}»:

InterfaceAction action = new
InterfaceAction("removeRelationship","Remove Relationship",toolCode,
true) ;

action.addActionListener(RemoveWebRelationshipActionListener.GLOBAL);
action.addlnterfaceListener(AddlnterfaceListener.GLOBAL):
action.setErrorlnterfaceListener(AddlnterfaceListener.GLOBAL);
sub.addAction(action):
page. add (sub) ;

//Add new Relationships sub-form
sub = new ConcreteSubForm("createRelationshipsSubForm", "Create New

Relationship") :
SingleSelectGroupKeyField boardDropDown = new

BoardKeyField{PARENT_BOARD_FIELI?_ID, "Parent Board", null,
requestState.getCurrentUser() .getld{»:

sub.add{boardDropDown):
boardDropDown = new BoardKeyField(CHILD_BOARD FIELD 10, "Child

Board", null, requestState.getCurrentUser() .getld{»);
sub.add(boardDropDown):
action = new InterfaceAction("addRelationship","Add

Relationship",tooICode,true);
action.addActionListener(AddWebRelationshipActionListener.GLOBAL);
action.addlnterfaceListener(AddlnterfaceListener.GLOBAL);
action. setErrorlnterfaceListener (AddlnterfaceListener. GLOBAL):
sub.addAction(action);
page. add (sub) ;

form.add(page);
return form;

/**VBSF* /
private Collection getRelationshipsCollection{) (

return relationships:

/**VBSF*/
private void setRelationshipsCollection{Collection collection) {

this. relationships = collection:

/**
* Return a Field representing a list view of the web relationships

in this
* web. This is used by the getForm method, and by the

MyContextInterface.
* @param pairs SE
* @return a ~ield
*/

public Field getWebRelationshipsListField(Map pairs) {
Iterator iterator = relationships.iterator();
List displayFieldsList = new ArrayList();
Long[] keys = new Long[relationships.size()];
for(int i=O; iterator.hasNext(); i++) {

WebRelationship relationship = (WebRelationship)iterator.next();
keys [i) = relationship.getId();
displayFieldsList.add(relationship.getDisplayFields()};

Long[] selectedKeys =
MultiSelectListKeyField.convert(RELATIONSHIPS LIST FIELD ID, pairs);

Field[] [] displayFields = (Field[] [)displayFieldsList.toArray(new
Field [relationships. size ()] [0]) ; .

MultiSelectListKeyField relationshipsList = new
MultiSelectListKeyField(RELATIONSHIPS_LIST_FIELD_ID, keys, "Existing
Web Relationships", selectedKeys, displayFields};

return relationshipsList;

[END Web. java]

Looking at the code for WebSlice.java:

package com.leader.osapplication.board;

import com.leader.osapplication.framework.*;
import com.leader.osapplication.*;
import com.leader.osapplication.util.*;
import com.leader.osapplication.exception.*;
import com.leader.osapplication.sessionstate.*;
import com.leader.debug.*;
import java.util.*;

/**
* A collection of enough information to isolate a set of boards from

the set
* of all boards. This is typically codified as a Web to use, a

starting board
* and a Traversal. The Traversal is then used to travel acrosS the Web

from
* the starting board and return a list of Boards.

*
* @author Jeff R. Lamb
* @author Eric Rosenberg
*/

public class WebSlice extends AbstractPersistedObject{

private Web web;

private Board board;
private Traversal traversal;

/**VBSF*/
private WebSlice() {

super();

/**
* Constructor
* @param webToUse which Web is this WebSlice a slice of
* @param boardToUse when you start moving around the Web, where do

you
* start from?
* @param traversalToUse what traversal (strategy) should be used to
* move around the Web to carve out this WebSlice
*/

public WebSlice(Web webToUse, Board boardToUse, Traversal
traversalToUse) {

this();
setWeb(webToUse);
setBoard(boardToUse);
setTraversal(traversalToUse);

/**

can
* Return the boards that are currently part of this webslice. This

* change as the web that the webslice lies on is edited.
* @return the boards that are a member of the slice
*/

public Board[] getBoards(){
return getTraversal() .getBoards(web, board);

/**

the

* Specify the web that that this webslice is taken from.
* @param webToUse the web to use if coming up with the set of boards

* web slice represents
*/

public void setWeb(Web webToUse) { this.web webToUse;

/**
* Get the web that the webslice is taken from.
* @return web that the web slice is a part of
*/

public Web getWeb() { return this.web;}

/**
* Specify the board that is the starting point for this webslice
* @param boardToUse the board that is the starting point for the

webslice
* @throws IllegalArgumentException if boardToUse is not in this web
*/

public void setBoard(Board boardToUse){

// These null checks are to bypass the 'contains' check when VBSF
may

// be using this method with a null value or before setting web.
if (boardToUse == null I I web == null I I web.contains(boardToUse»{

this.board = boardToUse;

else{

// throw an IllegalArgumentException if boardToUse is NOT in
// webToUse.
throw new IllegalArgumentException(nThe starting Board of a

WebSlice must be part of the Web.");
}

/**
* Get the board that is the starting point for the webslice
* @return board that is the starting point for the webslice
*/

public Board getBoard(){ return this.board;}

1**
* Specify the traversal used to get the boards for this webslice
* @param traversalToUse SE
*/

,public void setTraversal(Traversal traversalToUse) {
this. traversal = traversalToUse;

1**
* Get the traversal used to get the boards for this webslice
* @return tr'aversal used to get the boards for this webs lice
*/

public Traversal getTraversal() { return this. traversal; }

I**VBSF*/
private int getTraversalCode() { return

TraversaIFactory.getCode(traversal); }

I**VBSF*/
private void setTraversalCode(int code) { this.traversal

TraversalFactory.getTraversal(code);}

	2002-12-11 Transmittal of New Application
	2002-12-11 Specification
	2002-12-11 Miscellaneous Incoming Letter

