EXHIBIT 1
Part 2

Leader Technologies Inc. v. Facebook Inc. Doc. 447 Att. 2

Dockets Justia.com

http://dockets.justia.com/docket/delaware/dedce/1:2008cv00862/41430/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2008cv00862/41430/447/2.html
http://dockets.justia.com/

12

¢ Searching for activity by user or by properties

» Tracking updates and keeping an historical record of activities

e Create views on the fly, which are updated dynamically whenever new activity takes
place

e Saving these views for later use

As we will see, each of these concepts can be applied to the DISCIPLE system in order to
allow the user to more easily grasp the work that the team has performed on a given

project.

2.3 Taligent

The former Taligent corporation produced a workgroup software product called Places
For Project Teams around 1997. Since then, the firm has been dissolved, and their
product line has, for the most part, been absorbed intQ IBM’s software division. Thave
been unable, uﬁfortunately, to locate any refereﬁce to Places in the IBM literature. |
However, this package introduced some concepts which could be helpful within

DISCIPLE.

The goal of the Places environment was to facilitate workgroup discussions, track
milestones, and share data. A key portion of its functionality is derived from a time-

based view of the history of each discussion conducted within the system. Messages are

13

displayed using colored bars overlaid on a chart. Header information is displayed for
each of these when selected, and full details can be retrieved as well. Milestones are

-shown in this view as well.[10]

This view provides a method of rapidly conveying to the viewer information about which
documents have been contributed by each collaborator. It is easy to see how this is
applicable to the DISCIPLE environment, where a major challenge is to allow the user to

understand the involvement of all other team members.

2.4 DISCIPLE Archive Server

Previous work in CAIP Center resulted in an Archive Server for the DISCIPLE
environment to populate a database and maintain a session history. [20] These sessions
can then be replayed in order to allow users to review the work that had been performed

previously.

Prior to this point, DISCIPLE was useful only for synchronous work, where all
participants could find a common time during which to “meet” electroﬁjcally. This can
be especially difficult when users are distributed across multiple time zones. The
Archive Server, through its ability to replay sessions, lets those individuals contribute at

times that are convenient for them.

14

While this was a step forward, it was limited in its practicality. A method was needed for
consolidating the reams of data that result from collaborative sessions, displaying it

within its context, and transferring this knowledge to the user.

The EventStream interface provides this context. The Archive Server’s replay feature is

still quite valuable, and the two components complement each other.

2.5 MITRE Multi-Modal Logger

The MITRE corporation, a not-for-profit group, has done some work on recording
activities during human-computer and human-human interactive sessions. They’ve
termed their effort the Multi-Modal Logger, and its goals include recording, retrieving,

annotating and visualizing data about collaborative sessions. [12]

The Multi-Modal Logger supports many types of content, including audio, text and
graphics (although it runs atop a flat-file database — it does not store complex data, but
rather a pointer to its location elsewhere). It provides this functionality via an API which

is available for several languages and platforms.

Perhaps the most relevant portion of the project to the EventStreams environment is the
visualization tool. It consists of a grid where horizontal lines represent datatypes, and

time is represented by vertical lines.

As we will see below, EventStreams addresses many of the same challenges as the

MITRE system, but takes a slightly different tack.

15 -

16

3 EventStreams Interface

The research being performed on the Lifestreams metaphor at Yale University and at
Mirror Worlds Technologies has been described above. With some modification, these
concepts can be adapted to fit within the DISCIPLE environment and greatly enhance its

ability to meet its design criteria.

The Lifestream system is based on using the document as its atomic unit. All entities
within the system are represented as documents — messages, appointment reminders,
stock quotes, etc. Within the shared-workspace environment that is DISCIPLE, though,
the concept of the document is meaningless. DISCIPLE’s basic units are the object and

the event.

The current whiteboard application lets users work with and see the state of the objects
within their current project. What is needed is a method of viewing the events that have
occurred thus far, along with other semantic information about them. This need can be
filled using a derivative of the Lifestreams metaphor, which I’ve termed the

EventStreams interface. As its name implies, the basic unit of this system is the event.

‘Whereas a Lifestream consists of the documents created by an individual, his
EventStream would consist of the actions performed by that person. Perhaps the
following example will help clarify the difference. The Lifestream of an investor might

consist of a series of monthly statements (documents) that are received from his

17

brokerage company. His EventStream, however, would consist of a stack of purchases
and sales (events), which would include information such as date/time, shares, dollar
value, executing broker, commission charges, realized capital gains, etc. Each of these

paradigms has areas of applicability, and other areas that it does not represent very well.

3.1 System Architecture

EventStreams is implemented as a new module within the DISCIPLE framewaork,
designed to be used alongside the existing DISCIPLE shared workspace.[4] Itis a read-
only environment, meaning that all modifications to the state of the current project

continue to be effected from within the workspace.

18

Event-
Streams
Inlerface

Workspace

Event-
Streams
Interface

Workspace

Place Server

Event-
Streams
Inierface

Workspace

Current Archive Sarver
Inferf; Obsolet

Archive Sarver

JDBC Layer

Undarlying RDBMS or ODBMS §

Figure 3 DISCIPLE/EventStreams System Architecture

19

It is linked to the other components in the system via the underlying relational or object-
oriented database management system that is used to record the history of a collaborative

effort. The interaction of these components can be seen in the Figure 3.

As the diagram shows, each user could have both the WorRSpabe JavaBean container
application and the EventStreams client active on their workstation (although there is no
requirement that both be running — the user may choose to use only one during a work
session). New contributions to the team effort (creation, modification, and deletion of
JavaBeans) would continue to be made via the Workspace, but the EventStreams view
would be available for use in reviewing all work done to this point in time. New activity
would be communicated unidirectionally through the database. More detail is given on

this in the sections covering database structure and communications. 1

'The dashed line to the Archive Server in Figure 3 indicates that upon request the
EventStreams client will initiate a request for it to replay some portion of a project. The
interface currently used to access the Archive Server is shown grayed-out, as it can now

be subsumed into the more functional EventStreams package.

Each time a new event occurs at any node during a session, it must be communicated to
all other collaborators. This process is handled by the DISCIPLE Collaboration Bus. A

high-level overview of the system is shown here:

Workspace

EventAdapter BeanMgr

| venlStrearns

Archive Server

Workspace

EventAdapter BeanMgr

RDEBMS/
OODBMS

Figure 4 Event Propagation via the Collaboration Bus

o
o
m
c
2
=
m
e
g
a
f“
1G]
O

20

21

‘When a user at any node generates a change in any object in the system, the component
will inform any registered listeners about the change, including the EventAdapter module
of the Collaboration Bus. The Event Adapter lets the Bean Manager know as well. This

has all taken place locally on the user’s workstation.[17]

The Bean Man:iger broadcasts the event over the collaboration bus layer to all other
active Bean Managers, as well as the Place Server. The listening Bean Managers pass the
message along to their local instance of the component to ensure that all the Workspaces
are in sync. The Archive Server updates the underlying database to add the latest event
to the history stream that it is building. Note that messages are only added to the
c;étabase, never modified or deleted. This is the key that allows EventStreams to present

a complete view of all the actions that have taken place during a project.

The local EventStreams clients on each node poll tﬁe database and learn of new events.
These are posted to all appropriate views (views are described in Section 5.4 on
Substreams). Ultimately, it would probably be desirable to simply register the
EventStreams clients as listeners, which would improve performance over slow, widely

dispersed networks.

3.2 Stream View

The Stream View, which is based on the Lifestreams format, is the workhorse of the

EventStreams system. It is the default view that is shown when the user logs on, and

22

displays a chronologically ordered stack of pages, each of which represents a single,
atomic action that a collaborator has performed during the project. A sample is shown in

Figure 5.

[TV T

11415498 3:5
11/15298 3:¢

4.1 A0 W A.E

Figure 5 Sample Event Stream view.

The hypothetical project from which the sample screen is taken is the effort of four
individuals from four different locations. They have collaborated in three separate
sessions, and performed a total of fourteen different actions within the DISCIPLE

Workspace.

The objects that the collaborators are working with in this example are five different

transportation vehicles (car, boat, rocket, plane, bicycle). These real world objects are

23

represented within the DISCIPLE environment by JavaBeans (the user drags, for

example, the boat JavaBean into the Workspace, and a boat object is then nstantiated). '

1t is the responsibility of the JavaBean author to provide a good simulation of the entity
that he is attempting to model. It must possess a range of properties and methods which
allow the participants to express to each other exactly what actions they wish to perform .

on it.

The Car object might have associated in a database table such properties as make, model,

year, miles per gallon rating, and capacity. It might also provide methods to allow tﬁe

user to perform such tasks as get its location, set its destination, and start and stop the
engine. The fact that all the functionality of the real-world object is encapsulated within

its JavaBean means that the collaboration environment is indi’fferent to the content of the

project that it is being used for, and can handle anything that can be modeled by a Bean.

The Stream View window is divided into four major areas (Figure 5). The first of these

is the menu bar, which is configured as shown in Figure 6.

24

Stream View
Window
I
[1]
File Substreams Help
\: Open — New View 1: Overview
Exit — Modify View About DISCIPLE
— Replay Selected
— Replay All

— View as Timeline

Figure 6 Stream View menu structure

The functions included in the menu will be discussed in turn in the following sections.

The upper-left region is a stack of pages, each of which represents a single event (Figure
5). In a project of any significant size, there may be more events to be displayed in the
view than will fit within the window. Therefore, to the right of the stack is a vertical

scroll bar which can be used to move through the entire set of events.

Due to the need to display many pages in this pane, very little information can be shown
for each event (for all intents and purposes, only the type of object that the event occurred
on is visible to the user in this area). Thus, the upper-right hand area contains the Detail
Panel (Figure 5). When the user selects any event in the stack by clicking on it, full
details are provided in this panel about that event. This includes the user who performed

the action, the date and time that it occurred, and the session name.

25

It is important here to recall that the Detail Panel is displaying information about a
particular event, and not about an object. This information is generic and is the same for
all events, regardless of the underlying object. And it is also important to remember that
this is not an attempt to visualize the event itself, but to provide a description of the

event.

One of the items displayed about the event is an icon (the purpose of which is to help
users assimilate the information a bit more easily than if only a textual name were
displayed). This icon is that associated with the JavaBean of the underlying object on
which the event occurred. The Detail Panel, knowing the underlying object, retricves and

displays the icon related to that object (it is not stored in the event database).

The final section is the status area, which is located on the lower portion of the form

(Figure 5). The key items are:

s Record Count — This line indicates the number of records in the current view, and
the total number of recofds in the project overall. The number of records in the
current view is determined by the selection criteria for the window. This is discussed
in the section on substreams.

s Data Grid — Provides a complete presentation of all the data retrieved by the current
query. This may or may not be considered necessary when the interface is ready for

final release, but it is extremely useful during development.

26

e Connection String — Indicates the database to which the user is connected, along

with relevant connection parameters.

More detail on the Stream View is given later when queries and substreams are

introduced.

3.3 TimeLine View

The Stream View provides a great deal of information and is very flexible in allowing the
user to determine how he would like to have the data presented. However, the one piece
of contextual information that it does not provide is a sense of the timing of the events.

I’ ve attempted to address this shortcoming by introducing the TimeLine View.

The TimeLine View is arranged along a scrolling grid, with time running along the X-
Axis and the list of collaborators running along the Y-Axis. Each event that occurs is
plotted graphically on the grid using the icon representing the object. A sample screen

shot is shown in Figure 7, taken from the sample project described above.

27

STimie Stame -5

. esaonium] Descriptior
11/22/98 3:¢ Euro Compliance

1142249810

Figure 7 Sample TimeLine View screen shot

You’ll notice that the form uses a tabbed-page metaphor, with each page representing a
single collaborative session (\.Nith the title of the session appearing on the tab). The
reason for this is that a single session generally has a duration of minutes to hours,
whereas sessions may be spread over weeks or months. The tabbed-page construction
allows the user to quickly zero in on the particular point in the collaborative process

which is of interest.

28

The TimeLine View can be selected from any Stream View window by selecting the
Substreams menu item and clicking View as TimeLine (Figure 6). The new window that
is created will represent the same set of events that have Been selected in the Stream
View. This view provides more of an overview of the collaborative process than a great
deal of detail. It simply indicates the times at which each user created or modified an
object of a given type. For a more in-depth analysis, one would need to return to the
Stream View, or perhaps replay the events via the functionality provided by the Archive

Server.

The lower portion of the form is devoted to two data grids, which display the full results
remmed by the active query, and the set of sessions to be displayed (Figure 7). This
shows much more data than can be displayed on the TimeLine itself. It is very useful
during the development process, but may or may not be considered practical in the final

release.

3.4 Substreams

To this point, we have been primarily concerned only with a project’s comi)lete
EventStream. However, as a project grows large, this single view becomes increasingly
unwieldy. When the stream consists of hundreds or thousands of events, it is not realistic
to expect users to be able to locate items of interest or to be able to glean any
understanding of the relationships among them. Collaborators must be provided with a

tool to “slice and dice” the data to put it in a more manageable format.

29

This tool is provided by the substream feature. When the user selects the Modify View
choice from the Substreams menu, they are able to specify the criteria which an event
must meet in order to be included in the current view. They design this query using the

form in Figure 8.

Settimgs for Current Yiew

SELECT DISTINCTROW Events.Indes,
Events [User 1D], Events.[Time Stamp],

Events, Session, Events.[Dbject Type].
Events.[Action/E vent], Events. [Previous State],
Events.[Semantic Detail), Objects. [Object 0],
(Objects.Marme, Caollabaratoes. JFull Mame),

i Sessions. Description, Objects.lcan FROM
Nigel Smythe Sessions INNER JOIN (Gbiects INNER JOIN
ivon Momo (Callaboratars INMER JOIN Events OM
Collaboratars, Useriumber = Events. [User [D])
ON Objects.[Object |D] = Events. [Object Type])
OM 5 essions. SessiotiMurm = Events.Session
'WHERE [[{0bjects. Mame]="Car" OR

[Objects. Mame}="Baat” OR

[Objects. Hame]="Plane" OR

[Objects Mame)="HRocket'] AND
{{Collaborators.{Full Name]l="Matt Bianca' OR

Euro Compliance

Figure 8 Substream query criteria screen shot

This interface uses an easy to understand query-by-example metaphor to enable the user
to specify items of interest. The entire project database is searched, and each type of
object, participaht, and session is retrieved. Each of these may be selected in any

combination (e.g. all the events initiated by a given user in either of two sessions,

30

regardless of the object type). These choices are displayed in three scrolling multiple-

* selection boxes on the left of the form.

The right-hand portion of the window is dedicated to the query display window. After
the user has made his selections, he may select the “Update Query” button. The |
application then formulates an appropriate SQL query which will produce the desired
results, and displays it within this panel for review. At this time, changes can be made to
the query specifications, and the SQL code can be regenerated. Alternatively, the Cancel
button can be pressed, and the application will ignore any changes that have been made.
Finally, if the user is happy with the new filter, he can click OK, and the results of the

effort will be returned to the parent window.

When a new query string is returned to the parent Stream View window, the application
reloads its list of events to reflect this. The updated stack is displayed in the left hand
pane, and the record count is updated to indicate how many events have been selected out

of the total number in the project.

In addition to modifying the current window, the user may elect to spawn a new, separate
substream window. This is accomplished by selecting New View from the Substreams
menu (Figure 6). There is virtually no limit to the number of windows which may be

opened, and the selection criteria for each is independent from all others.

31

3.5 Persistent and Transient Views

One of the strengths of the EventStreams interface is the ease with which new views can
be created on the fly by specifying new query criteria (thus generating a custom-designed
substream). This gives the user the freedom to look at a problem in many different ways,
without becoming discouraged by having to complete a complex and time-consuming

procedure to do it.

Thus, a user might quickly create a view of a project to allow him to see a very specific
aspect of the effort. This view might very likely be useful only under the current
situation, and will probably never be used again. After using the substream for a brief
period, the collaborator would then delete it altogether. This type of query is referred to
as a transient view, as it is created, utilized, and deleted in a short petiod of time. An
example would be “Show me all the instances where User X interacted with any instance

of Object Y.”

Alternatively, there will be a set of views that will always be useful. After creating one
of these, the user will want to refer to it over and over, and not lose the definition. These
are referred to as persistent views. Although not implemented at this time, these queries
would be saved back into the database to allow them to be recalled at the user’s
convenience. A case where this might be useful would be if Object Z represented a
particularly sensitive piece of information (say, a salary file for a corporation), and the

user always wanted to know whenever anyone accessed this data. A view could be

32

created which would dynamically update whenever this was the case. The query would

be given a name, and saved for further use.

3.6 Session Replay

Despite the features of the EventStreams interface, it would still be useful under certain
circumstances to have the ability to replay all or part of a collaborative session. A

mechanism to achieve this already exists within the DISCIPLE environment.

A previous paper written by the DISCIPLE team describes a module for recording
participant actions and replaying them.[20] This is accomplished by re-executing the

stream of events that have been stored in an object database.

Rather than re-implement this existing functionality, it would be more productive to
create hooks into the existing components. This work has not been completed to this
point, but it should be straightforward to pass a start and end time to the Archive Server
from EventStreams, rather than having ﬁe usef enter this information 1;111’0 the replay

system’s current user interface.

Also, the previous Archive Server was developed in C++, and needs to be ported to Java

in order to be fully integrated into DISCIPLE.

33

3.7 “Squish” Technology

The DISCIPLE collaboration-enabling &amework was designed to accommodate all
general-purpose JavaBeans. No special properties or methods need to be built into a
component to allow it to be utilized within the shared workspace. However, if an object
is built with the collaboration framework in mjnd, certain features can be included that
provide extra functionality to the user. The DISCIPLE framgwork supports two types of
collaborative applications: “Collaboration Transparent” and “Collaboration

Aware.”[17,18] _ -

To this point, it hasn’t mattered whether each of the JavaBeans being utilized within an
EventStreams session was collaboration-aware or —unaware. All the features described
thus far are equally applicable to both types, but we would like to take advantage of

collaboration-awareness when it exists.

One of the most powerful features of the Lifestreams interface is something that the
designers refer to as “Squish” technology.[6,16] This is a means of condensing the
conténts of many separate documents down into one summary document. The content of
the summary document depends on the type of document being condensed. For example,
given a stack of documents representing each of the stocks in a portfolio, the Squished

document could provide a summary of profit/loss, graphs, and perhaps a statistical

summary of the risks involved.

34

While not implemented at this time, it should be fairly straightforward to provide a set of
hooks from the EventStreams interface which would call the methods in a collaboration-
aware JavaBean to have it summarize the events contained in an active substream. This
addition would dramatically enhance the functionality of the system and the amount of
value that it can add to the collaboration process. The only limits are what features can

be included within the Beans that are part of the project.

35

4 Collaborative Features

As mentioned above, the DISCIPLE system is being developed under the auspices of
DARPA as part of their effort to build a groupware environment that enables
geographically dispersed participants to cooperatively manipulate multimedia data.[3]
The EventStreams system is an attempt to address several of the DARPA requirements
that are not satisfactorily fulfilled by the existing collaboration framework architecture.
The following is a descriﬁtion of some of the specific goals and requirements set forth in

the contract, and how EventStreams can be used as a solution.

4.1 Addressing DARPA Goals

DISCIPLE is meant to address the requirements of the DARPA Intelligent Collaboration
& Visualization (IC&V) program, which are set forth in an overview paper of the same

name. This document lists the following tasks as the key éhallenges for the project:[14]

Develop Adaptive Session Management Software

Develop Semantically-based Tools for Sharing Meaning

Develop Team-based Visualization Software for Sharing Views

Evaluation Metrics and Methodologies

36

The EventStreams paradigm answers, to some degree, the second and third challenges.

These are discussed in the following two sections.

4.2 Tools for Sharing Meaning

The goal here is to “develop structures for describing collaboration objects and the
relationship between those objects in a form that can be understood jointly by human
collaborators™. These are the objectives of the Stream and TimeLine .Views — allowing
the.use_r to easily grasp the state of a project, rand the path that the collaborative effort has

taken to this point. Some of the more specific sub-tasks into which this challenge can be i

decomposed include:

Need methods for capturing, Sessions are archived by the combination of the
summarizing, and indexing collaboration bus and archive server.
collaborative sessions. EventStreams doesn’t, strictly speaking, index the

contents of each session, but it does provide a

means of rapidly locating points of interest.

Summarization can be accomplished through the

implementation of Squish agents as described

above.,

Develop tools to help users
structure and annotate irregular
information associated with

collaborative sessions.

| Create semantic structures and
algorithms that enable
automated assistance in the
discovery of relevant

collaberators and information.

37

The Stream and TimeLine views provide a means
of visualizing the sequence and timing of
participant interactions. Annotations are not
implemented in the current version, but it would
be straightforward to add a mechanism for users to
attach comments to events which would then be

stored in the database for future reference.

Substreams and query-by-example features allow a
small subset of events to be retrieved which meet
some specific criteria. For example, a collaborator
could create a view which would show all
instances of particular actions being performed on
a certain object. Only those items of interest are
displayed. Once this information is obtained, it
would be obvious who else among the participants
may have similar areas of investigation. For

- example, an engineer working on modifications to
a rocket’s guidance system might want to create a
view which shows which of his peers have worked
on the same system. Thus, he can coordinate with

them to ensure that his changes are compatible

38

with their requirements.

The EventStreams User Directory could then be
employed to obtain further personal information
about that participant and to understand their role
in the project. Additional on-line or off-line
sessions could then be arranged. This feature is

described in detail in the following sections.

The key to EventStreams’ ability to aid in the collaboration process is the fact that it can
convey the context in which events occurred. This allows participants to understand
relationships to other events and among participants. This support for the valuable
semantic information associated with the project workflow is lacking in most groupware

applications today.

4.3 Visualization Software for Sharing Views

The challenge in this case is to use visualization techniques to improve the collaborative

effort. More specifically, it can be broken down into the following components:

39

Can individual views of a I think that this challenge is more directly

situation be adapted based on | addressed to the DISCIPLE workspace. However,

roles taken within a EventStreams does offer the ability to create
collaboration to improve the customized views for each individual {(which;
effectiveness of a problem- consequently, would be role—base&). This can be
solving team? accomplished through the substream and query

functions, whereby each user can create an array
of streams which are tailored to his or her role in
the project (see the section on Persistent and |
Transient Views for more detail). This allows the
user to focus solely on the data that is relevant to

him, and therefore should increase his

effectiveness.
| Can novel means of _ I’'m biased, so I leave this question for the reader
represg:nting collaboration (and EventStreams user) to decide. But one point:
spaces and shared objects in addition to the built-in Stream and TimeLine
improve the effectiveness of | views, the “novel means™ of representing data will
collaborations? be provided by the summary views generated by

the Squish agents.

40

EventStreams provides a set of powerful tools to aid a user (who may or may not be
familiar with work done previously on a project) visualize and intemalize the events that
-have transpired. This lets the participant come up to speed more quickly, and stay current

with more aspects of a project than would otherwise be possible.

4.4 User Directory

As important as it is for a participant to grasp the events that have occurred during the
course of a project, perhaps just as vital is an understanding of the identities of the other
team members, their roles, and their areas of expertise. The DISCIPLE environment
already offers a means to gain this insight [4], but the EventStreams system gives further

information through a User Directory.

The User Directory is accessible from any Stream View window. When one selects an
event from the stack, several facts are displayed abéut it within the Detail Panel (Figure
5), such as the time it ocourred. One of the pieces of information thét is displayed is the
name of the individual who performed that action. The user may double-click on this
item, and the system will display the creator’s biographical record from the database. A

sample directory record is shown in Figure 9.

41

= DISCIPLE User Directory-

Figure 9 User Directory sample screen shot |

Each user’s record displays important personal and contact information on the upper
portion of the form. The lower portion contains a data grid which holds all of the user’s
ID record from the database. This is primarily for development purposes, and may very

well be removed in the production release.

The user directory is an important part of the EventStreams interface. It opens the door

for participants to seek out those with overlapping responsibilities and interests.

Ultimately, it could hold much more detailed data on each user describing this. Team

members could then contaét each other (either through DISCIPLE or by traditional

means) to arrange for further cooperative work. This allows all participants to leverage

42

the knowledge of other collaborators, and the whole becomes more than the sum of its

parts.

4.5 Security and Auditing

Many organizations (the military definitely among them) require a strong set of internal
controls for all systems. An audit trail must be generated that will enable an investigator

to recreate the sequence of events as they'took place.

EventStreams can be used as a platform for examining past sessions to ensure that no
improper activity has occurred. Every creation, modification, and deletion is duly
recorded and can be reviewed at any time. Periodic audits can be performed, or a “post-

mortem” can be undertaken after a situation has blown up.

The query functionality built into the EventStreams environment can be a great time-
saver in this regard. It aliows the auditor to quickly distill a mass of data down to just the

interesting components, and effort can be spent where it is most useful.

43

5 Class and Databa.se Structure

The EventStream system has been designed to easily integrate into DISCIPLE. Itis
written in Java to allow portability across multiple platforms. Its interaction with the
other components, detailed above in Figure 3, is via the database created by the Archive

Server. Further design details are given here.

5.1 EveniStream Classes

The EventStreams environment is written entirely in the Java programming language.
The application is comprised of a handful of major classes that provide it with the

functionality described in this document. A brief overview is given here.

E;entS&eam This is the centre;l' class fc‘;f-ftlllle application, EventSl{r‘xleam()ﬁ— generates
and contains the code for the Stream Viéw. form, calls other methods to
When an EveﬁtStreams session is started, build the data structures

an instance of this class is presented.
Additionally, it contains the code for the BuildEventIconArray() —
application’s main menu. creates an instance of the

Eventlcon class for each

Also handles maintenance of the event selected by the current

Eventlcon

SetView

information in the Detail Panel. One
should keep in mind the fact that the Detail
Panel shows information about the event
(time, user, type of action, etc.), and not

about the object.

Each of the pages in the event stack in the
Stream View is an instance of an
Eventlcon. When a user clicks on an
Eventlcon, it displays detailed information
about itself in the Detail Panel, such as
time of event, user who executed it, session

during which it occurred, etc.

Creates the query-by-example form that is
used to specify the critena for items to be
included in the current substream. Also

contains the logic to generate the SQL code

44

query

SetDetailPanel() — populates
the fields of the Detail Panel
with inforrnatior_i about the

selected event

Menultem Click() — calls
the functions listed in the

application’s main menu

Eventlcon() — creates data

structure

Eventlcon_click() —updates

Detail Panel

SetView() — generates form,
retrieves data for QBE

boxes

45

TimeLine

UserInfo

that is sent to the database server to
retrieve these records, and presents this in a

window for review,

Builds a graphical workspace on which the
TimeLine view is drawn. It retrieves the
icons associated with each object type in
order to do this and plots them in the
appropriate location. Smooth scrolling via
the horizontal and vertical scrollbars on the

form is handled as well.

Retrieves whatever personal and
professional information about any project

participant is stored in the user directory.

UpdateQuery() — examines
user selection in QBE boxes

and generates appropriate

SQL code

TimeLine() - generates
form, builds bitmaps for all

sessions

Tabstrip_SelectedIndexCha
nged() — determines which
session is now active and

displays it

Various Paint() — displays
the appropriate bitmap,
taking into consideration
tabstrip selection and

scrollbar positions

UserInfo() — generates form,
retrieves and displays all

fields

46

If a photograph is available, it will display

that as well.

These classes encapsulate all the functionality described in this document, and due to the
object-oriented nature of the Java programming language, the application is portable

across many environments and is easy to extend.

5.2 Relational vs. Object Databases

For the proof-of-concept stage, the EventStreams system has been developed to utilize a
relational database. However, when a production-ready version is written it will likely

utilize an object database, or a hybrid object-relational system.

A relational database is poorly equipped to handle the complex relationships which
characterize the objects in a Java application. In an object database, the tight integration
of code and data can be represented.[2] Many of the reasons for adopting an OODBMS

for use within the DISCIPLE system can be found in the Archive Server document.[20]

Recently, hybrid object-relational systems have become available both commercially and
from academic research projects.[1] Several of the large commercial database vendors
have grafied object functionality onto their core systems. Informix, with their DataBlade

technology, is a good example of this. Poet Software, with their namesake Poet database,

47

have come from the opposite direction: they’ve added relational capabilities onto an

object database.

The hybrid model, [believe, will ultimately become the correct choice for DISCIPLE. In
addition to serializing the actual objects themselves, other metadata needs to be stored (a
description of the kinds of things that must be recorded are deseribed in the next section).

Thus, the strengths of both types of DBMS are required.

5.3 Current Database Structure

In order for the EventStreams interface to provide any useful functionality, as much
information as possible should be recorded for each event. The more data that is

recorded, the more sophisticated a query can the user make against the database.

There is a certain base level of detail that the system knows about any action performed
against a component, regardless of whether the JavaBean is collaboration-aware or —

unaware. However, 1f a component is collaboration-aware, it may be able to provide

extra semantic information about a state change. It is important for the system to take

advantage of any extra detail that can be provided by collaboration-aware Beans, since
this will provide the user with a much richer and more informative experience. The

database schema must be engineered with this in mind.

48

An example of extra semantic information that we might like to record would be, in the
case of a trading system for an investment bank, limit violations. At the point when a-
trader entered into a transaction, the JavaBean would determine whether any applicable
limits had been breached, and record this fact. This is specialized intelligence that a
collaboration-aware object could make available to the EventStreams system so that it

could be utilized later as part of the query criteria.

The entity-relationship diagram for the EventStreams database, as currently designed, is
shown in Figure 10. It is really a skeleton at this point in time, but was built to

accommodate future expansion.

User ID

Time Stamp
Session

Object Type
ActionEvent
Prewvious State
Semantic Detail

e

Figure 10 Entity-relationship diagram for EventStreams database

49

The following is a brief description of the detail that must be recorded about each event

for it to be fully described within the system:

User ID

Date/Time Stamp

Session Name

| The login name of the user who performed the action.

This information is linked to the user directory, which
contains full details about all participants on the project

team.

In addition, this information is very valuable for auditing
purposes (determining who performed a particular action,

or who was involved in a certain sequence of events).

Recording identities is often a prerequisite for system

acceptance in any secure installation.

Exact time when an action was performed, synchronized

to one standardized time zone (GMT, for example).

Name of the collaborative session during which a given
action took place. This is linked to a Sessions table

which can held further details, including start and end

50

Object Type

Action/Event

Previous State Information

Semantic Detail (for

collaboration aware objects)

times.

The class of the object upon which the event has taken
place. This information provides the user the capability
to create a substream consisting of only those events
which were performed on objects in which he is
interested. For example, the user can specify that he only
wants to see events that involved objects of type “Plane”

or “Bicycle” in the running example.

This is a description of the activity that actually has taken
place. Ttis a notification that an object has been created
or deleted within the workspace, or a description of a

particular property which has been modified.

It may be desirable to record the status of a component
before a change is made. This would allow a user to
query for situations where an object was modified from
one particular state to another (which would otherwise be

difficult to ascertain).

If a Bean can provide us with additional detail about a

given action, we should record this and make it available

51

for later inspection. Give example

This could include things such as calculated data (e.g.
distance, time and fuel requirements) or “expert system™

type notices (e.g. warnings about suspicious activity).

This intelligence would be completely built into the
JavaBean, and made available via the collaboration bus
interface. Thus, it requires collaboration-aware

JavaBeans.

The same pieces of information that have been stored for the proof-of-concept version
will need to be accommodated in the completed release, even though it will likely be built
using a hybrid object-relational DBMS as a foundation (as opposed to the purely

relational prototype system used in this version).

5.4 JavaBeans and Introspection Features

The more information that can be obtained about 2 Bean 1n use within a collaborative

session, the better EventStreams can represent its events. Luckily, the JavaBeans API

52

includes a set of introspection facilities by which an object can make its internal structure
visible to any interested application.[12] Though introspection was designed primarily

with application-building systems in mind, it has a wider range of uses.

These services can be used to determine, typically, the public properties and methods
which are available to the inquiring application (though not limited to just these). This
ability will be very useful within EventStreams, as it will allow the system to determine
which Squish methods are built in. Thus, a Bean can support as many different Squish
techniques as the Bean author wants to build in. For example, in the case where the
EventStream represents a string of stock purchases and sales, the Bean author might want
to write Squish routines to calculate profit and loss, draw grai)hs, or even try to detect
insider trading patterns. The EventStreams framework would know about each of these

through the Bean’s introspection feature.

For example, a group of objects which represent empirically observed engineering data
might contain compression methods that perform a statistical analysis, creates several
types of charts, and flag values that meet certain criteria. EventStreams can use the
introspection facilities to learn of these methods, and can therefore be very flexible in the

way it displays objects.

53

6 Conclusion

DISCIPLE is a strong framework that provides collaborators with a means of
communication and interaction. The EventStreams environment extends the functionality
of this environment by providing participants with several new tools to help them rapidly
internalize what has taken place thus far (even if they have been uninvolved to this point),

and to understand the role of each of the other team members. These include:

¢ The Stream View, which is a representation of a set of actions, graphically depicted
as a stack of pages. Details can be obtained by clicking on a given page.

¢ The TimeLine View, which displays less detail than the Stream View, but quickly‘
imparts an understanding of who the participants were in a given session and their
areas of responsibility/interest.

¢ Substreams, where large numbers of events are interactively sliced and diced into
small portions that answer some specific question via a user-defined ad hoc query.

o The User Directory, which help team members find (and possibly contact) others who
share a related ﬁrea of interest.

» Squish technology, where a collaboration-aware component can contribute extra

semantic information about itself.

These features fill a multitude of gaps in DISCIPLE, and help it to better address the

challenges required of it by the DARPA contract specifications.

54

6.1 Limitations

The architecture of the system currently relies on all EventStreams sessions being able to
connect to either a central database, or a local replica of the main database. This
limitation detracts from the distributed nature of the DISCIPLE system, which is built to

perform all communication over the collaboration bus via an object request broker.

At some point, the DISCIPLE system will need to be re-engineered so that it links into

the collaboration bus as well so that the scalability of the system can be maintained.

6.2 Future Work

There are a few interesting areas which might be extended in EventStreams in future

releases that will enhance its usefulness.

The most important of these is work on the addition of support for the “Squish”
technology. This feature will have the most extensive impact on the system. The extent
to which this is useful will be limited only by the functionality that can be built into a
JavaBean (the Bean would need to be collaboration-aware). The summaries produced
will provide a perspective on the activity which otherwise might not be apparent, even

with careful scrutiny.

55

Collaboration-aware beans could also provide the Stream View with a visualization of the
event. For example, if the Bean were a graphics editor, and the event were the drawing
of a polygon, then the collaboration-aware editor could return an image of this. The
Detail Panel of the Stream View could render this, making it abundantly clear exactly
what that event represents. In more complicated events, perhaps a short animation could

‘be returned to represent the action that took place.

Another helpful addition would be to add a comment feature to the system.
EventStreams is currently read-only, but it might help a team to be able to add a “Post-It”
type of note to one or more events in the database. These comments would then be
displayed in all appropriate Stream and TimeLine views, allowing new participants to

assimilate the situation even more rapidly.
Currently, the hooks are in place to allow the EventStreams application to spéwn a replay

session, but the links are not coinplete. It would seem that a rather minimal set of

parameters would need to be passed (start and end times, along with a replay speed).

6.3 Summary

The DISCIPLE system developed at CATP is a powerful groupware environment that

gives geographically dispersed team members the ability to work together to create and

56

manipulate multimedia content. Up to this point, its significant limitation was that it did
not provide a convenient way to access the wealth of contextual information generated by

team’s collaborative effort.

The EventStreams interface that I have implemented and described in this paper
addresses this shortcoming by providing a range of intuitive, graphical views of the
collaborative process. Tts dynamic querying capability allows information overload to be
avoided by distilling a large mass of data into small, useful, related pieces. T feel that

EventStreams greatly enhances the utility of the entire DISCIPLE environment.

10.

11.

12.

13.

57

References

. “A Comparison Between Relational and Object Oriented Databases for Object

Oriented Application Development.” POET Learning Center White Papers, 1997.
http://www.poet.com/products/oss/white _papers/rel_vs_obj/rel vs_obj.html

Bloom, Paul I. Object Databases versus Universal Servers: Reality and Myth. Volpe,
Brown, Whelan & Co. 1997

“DARPA Project Summary: The DISCIPLE System, Rutgers University” 1997

http://www.caip.rutgers.edu/disciple/

Dorohonceanu, Bogdan and Marsic, Ivan. A desktop design for synchronous
collaboration. In Proc. Graphics Interface '99 (GI°99), Kingston, Ontario, Canada,
pp.27-35, June 1999. '

Fertig, Scott Freeman, Eric and Gelernter, David. “Finding and Reminding .
Reconsidered.” Yale University Department of Computer Science 1995,
http://www.cs.yale.cdu/~freeman/papers/SIGCHI/paper.html

Freeman, Eric and Fertig, Scott. “Lifestreams: Organizing your Electronic Life.”
Northwest Artificial Intelligence Forum Journal, Vol. 6

Gelernter, David. “The Computer of the Future.” Mirror Worlds Technologies 1998,
http://www.mirrorworlds.com/horizons/index.html

Gelemter, David. “The Cyber-Road Not Taken.” The Washington Post. April 3,
1994

Johnson, Steven. “Tech’s Missing Link.” The Industry Standard. November 2-9,
1998 ‘

Marshall, Patrick. “Taligent provides clean places for workgroup talks.” InfolWWorld.
Vol. 19, Issue 42, October 20, 1997

Marsic, Ivan. DISCIPLE: A framework for multimodal collaboration in heterogeneous
environments. To appear in ACM Computing Surveys, 1999.

“The MITRE Multi-Modal Logger.” The MITRE Corporation 1997.
http://www.mitre.org/research/logger/release/1.0/html/execsum.html

Morrison, Michael, et al. Java Unleashed, Third Edition. Sams Publishing 1997

14.

15.

16.

i7.

18.

19.

20.

21.

58

Petreley, Nicholas. “Readers reject Band-Aids and believe Lifestreams will cure the
broken UL InfoWorld. September 29, 1997

Scholtz, Jean. “Intelligent Collaboration and Visualization.” DARPA Information
Technology Office. http://www.darpa.mil/ito/research/icv/index.html

Sener, John. “Current Educational Trends and Concepts, and their Relation to ALN.”
Asynchronous Learning Networks Magazine, Vol. 1, Issue 1, March 1997

Steinberg, Steve G. “Lifestreams.” Wired Magazine, Vol. 5, Issue 2, February 1997

Sundaram, Sentilkumar. “A Collaboration-Enabling Framework for JavaBeans.”
Master's thesis, Department of Electrical and Computer Engineering, Rutgers
University, New Brunswick, NI, January 1998.

Wang, Weicong, Dorohonceanu, Bogdan, and Marsic, Ivan, Design of the DISCIPLE
synchronous collaboration framework. In Proceedings of the 3™ IASTED
International Conference on Internet and Multimedia Systems and Applications,
Nassau, Grand Bahamas, October 1999,

Whitaker, Randall. “Computer Supported Cooperative Work and Groupware:
Overview, Definitions, and Distinctions.” 1989. http://www.informatik.umu.se/
~rwhit/CSCW.html

Wu, Dawei. “Archive Server for Real-Time Collaboration in DISCIPLE.” Master's
thesis, Department of Electrical and Computer Engineering, Rutgers University, New
Brunswick, NJ, October 1997.

EXHIBIT E

47272010 CVW Overview

Collaborative Virtual Workspace Overview

Introduction

The Collaborative Virtual Workspace (CVW) is a prototype collaborative computing environment,
designed to support temporally and geographically dispersed work teams. From a user's point of
view, CVW provides a persistent virtual space within which applications, decuments and people
are directly accessible in rooms, floors and buildings. From a technical point of view, itis a
framework for integrating diverse collaborative capabilities.

To a user, a CVW is a building that is divided into floors and rooms, where each room provides a
context for communication and document sharing. CVW allows people to gather in rooms to talk
through chat or audio/video conferencing and io share text and URLs with one another with their
chat. (See figure 1 below.) Defining rooms as the basis for communication means that users are
not required to set up sessions or know user locations; they need only enter a room. If users
choose to communicate through audio, video or text, then the communication session is
established automatically for them. Users can also lock rooms and communicate privately within
and between rooms.

Rooms are also the basis for document sharing. Users can place documents of different types into
a room, allowing anyone else in that room o read the document or view information about the
document (such as creator, description, creation date, modified date, last modified by).
Persistence is supported because the rooms exist even when no one is in them. Consequently, the
document remains in the room for future visitors to see untit some authorized user moves or
deletes it.

Document types include whiteboards, URLs, notes and other documents edited through the user's
local applications (e.g., word processor, spreadsheet). Documents that can be edited through local
applications are managed through a document server within CVW. The document server provides
a universally available file space (ensuring a document is available even if the owner's file space is
not) and enforces single-user editing through document lock while editing. It also tracks information
about who has edited a document and when, and allows each editor to summarize changes upon
saving. '

web.archive.org/.../CYWOverview.html 1/5

4/2/2010 CVW Overview

Virtual Building
Floor Plan:

- Chatter

Brivate Data

| :&vwW DownlcpmosiGen...

" Shared Whiteboard

Audio Conferencing

‘Mes {':bﬂfe-ranc‘mjgj
Figure 1. CVW Client Interface

Rooms and Floors

The metaphor of a building with rooms and floors provides the representations of the collaborative
space within CVW. Each room provides context for collaborations within it. Floors and rooms may
be named as appropriate, and room descriptions can be provided to provide additional context for
the room. A graphical "map" display of the floor planis provided to help visualize the collaboration
space. Users can navigate through the virtual building with the graphical map or with a fextual
command. Additionally, users can navigate by joining a specific user, without knowing their current
location in CVW.

Rooms contain people and objects. The types of objects CVW supports are:

folders

room recorders (e.g., note takers) that record public text chatter that occurs within the room
notes (simple text notepad)

documents (e.g., word processor, spreadsheet, graphics, binary, postscript, URL)
whiteboards (shared annotation surface)

web.archive.org/.../.CYWOverview.html| 2/5

4/2/2010 CVYW Overview

Room Access

CVW provides the ability to restrict room access, based on an access control list. Often, the
access control listis defined by a "group", although specific individuals may be added to the _
room's access control list. For example, a group can be created (and assigned a set of users) and !
assigned access to a particular room, and any users not belonging to the group are restricted from
accessing the room.

Téxt-bésed Communications

CVW's textual communications capabilities are extensive, providing the ability to communicate
and express one's self in a manner similar to verbal communication. The textual communications
capabilities that CVV provides include: ' |

« the ability to direct communication from one person to another or from one person to a group
of people

« the ability to privately communicate with people in the same room or another personin
another room

¢ the ability to express in a 'non-verbal' manner (e.g., John nods) to all people in a room or
privately to another person

« the ability to paste a text selection from another application to the people in the room

¢ the ability to privately pasie a text selection from another application to a particular person

¢ the ability to send a URL (web page reference) as a hot link to the people inthe room
(clicking on the hot link in the room scrollback opens your web browser and automatically
displays the web page)

Audio and Video Conferencing

CVW provides muitipoint audio and video conferencing capabilities. The audio and video
conferencing is self-configuring on a per room basis, providing conferencing capabilities with other
the other people in the room. Users do not have to establish conference sessions or know other
users' locations to use audio and video; they need only enter a room. CVW also provides a phone
capability for private audio discussions between two people.

Room Scrollback

All interaction that occurs within a given room in CVW is displayed to the user in the textual
scrollback window. This includes all text communication and activities which occur within the room
(e.g., notices of when people enter and leave the room, notices of when someone places a
document in the room). Users can customize the appearance of the text that appears in their
individual scrollback by color-coding it. A users can set different colors for:

text chat contributed by a specific person
text chat directed to the user

private chat directed to the user

specific text expressions

web.archive.org/.../CYWOverview.htm! 3/5 ;

4/2/2010 CVW Overview
CVW also provides the ability to save the text scrollback or a selection of the text scrollback and
export it to a file. CVW also provides the ability to perform basic searching of the scroliback
window contents.

Room Recording

CVW provides a room recorder (e.g., note taker) capability which captures the public text
communications that occur within a room. Users have the ability at any time to create a personaf
transcript of the current recorder session.

Data Objects

CVW supports the creation and sharing of a variety of data, including notes, documents (e.g., word
processor, spreadsheet, graphics), URLs, folders, and whiteboards. Users can import files into
CVW's shared document space to share with other team members. Data objects in CVW can be
manipulated in a variety of ways, including:

the ability to set an access list on the item to control who has edit permissions

the ability to place a reference item in a room and lock it down so that no on can take it
the ability to move an item between the room and their personal (private) folder

the ability to give anitem to another personin CVW

the ability to copy any item to which the user has permissions

> & & @& »

Shared Whiteboard

CVW provides persistent shared whiteboards that enable multiple people to view an image (such
as a map) and annotate the image together in real time. The whiteboards do not disappear after
the session ends, and can be opened and re-used to continue the work process. Whiteboards
maintain attribution of the annotator, so it is easy to see who marked up the whiteboard surface
and how. The contents of whiteboards can be printed or exported fo a file so that it can be included
in another product such as a report.

Locating Users, Rooms, and Data

With many users navigating around the many rooms that can exist in CVW, it can be difficult to
know how to find someone, know if that person is available, or where that person left a document.
To simplify finding people, rooms, and data, CVW provides:

¢ a search capability that allows the search of different document types, rooms, or people
based on name matching (All matches are displayed in a window with descriptive
information about each match.)

« the ability find out which users are currently logged in, how Iong since they have been active,
and their current location within the CVW

Proxies

Proxies enable people to be intwo rooms at the same time in the virtual building. A person can
place his/her proxy in any room that they have permissions to enter. Through the proxy, the user can

web.archive.org/.../CYWOverview.html 4/5

4/2/2010 CVW Overview
communicate textually and share text and URLs with anyone in the proxy's room. If more interaction
is required, users can quickly switch places with their proxy and use the other features of CVW in
the proxy's room (e.g., audio/video conferencing, documents).

Last update: 19 April 1999

Please send your commentsto info@cvw.mitre.org

Copyright © 1994-1999. The MITRE Corporation. All Rights Reserved,

information in this document is subject to change without notice.

Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

web.archive.org/.../CVWGOverview.html 5/5

