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2.1 Elementary Probability Theory 41

n P(Q) = 1

DISJOINT n Countable additivity : For disjoint sets Aj E F (i.e., Aj n Ak = 0 for
j ^ k)
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j=1
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We call P(A) the probability of the event A. These axioms say that an
event that encompasses, say, three distinct possibilities must have a
probability that is the sum of the probabilities of each possibility, and
that since an experiment must have some basic outcome as its result,
the probability of that is 1. Using basic set theory, we can derive from
these axioms a set of further properties of probability functions; see ex-
ercise 2.1.

PROBABILITY SPACE A well-founded probability space consists of a sample space 0, a o--field
of events F, and a probability function P. In Statistical NLP applications,
we always seek to properly define such a probability space for our mod-
els. Otherwise, the numbers we use are merely ad hoc scaling factors, and
there is no mathematical theory to help us. In practice, though, corners
often have been, and continue to be, cut.

Example 1: A fair coin is tossed 3 times. What is the chance of 2 heads?

Solution : The experimental protocol is clear. The sample space is:

0 = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT }

Each of the basic outcomes in 0 is equally likely, and thus has probability
1/8. A situation where each basic outcome is equally likely is called a

UNIFORM uniform distribution. In a finite sample space with equiprobable basic
DISTRIBUTION outcomes, P(A) _ 1 01' (where A is the number of elements in a set A).

The event of interest is:

A = {HHT, HTH, THH}

So:

P(A) = iii = 3
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Figure 2 .1 A diagram illustrating the calculation of conditional probabil-
ity P(AI B). Once we know that the outcome is in B, the probability of A becomes
P(A n B)/P(B).

2.1.2 Conditional probability and independence

Sometimes we have partial knowledge about the outcome of an experi-

ment and that naturally influences what experimental outcomes are pos-
CONDITIONAL sible. We capture this knowledge through the notion of conditional proba-
PROBABILITY bility. This is the updated probability of an event given some knowledge.

The probability of an event before we consider our additional knowledge
PRIOR PROBABILITY is called the prior probability of the event, while the new probability that

POSTERIOR results from using our additional knowledge is referred to as the pos-
PROBABILITY terior probability of the event. Returning to example 1 (the chance of

getting 2 heads when tossing 3 coins), if the first coin has been tossed

and is a head, then of the 4 remaining possible basic outcomes, 2 result

in 2 heads, and so the probability of getting 2 heads now becomes z . The

conditional probability of an event A given that an event B has occurred
(P (B) > 0) is:

(2.2) P(AIB) = P(A n B)
P (B)

Even if P (B) = 0 we have that:

(2.3) P(A n B) = P(B)P(AEB) = P(A)P(BjA) [The multiplication rule]

We can do the conditionalization either way because set intersection is
symmetric (A n B = B n A). One can easily visualize this result by looking
at the diagram in figure 2.1.
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The generalization of this rule to multiple events is a central result that
CHAIN RULE will be used throughout this book , the chain rule:

(2.4) P(AI n ... n An) = P(AI)P(A21AI)P(A3IAI n A2) ... P(AnI nn -i=1 Ai)

V The chain rule is used in many places in Statistical NLP, such as working
out the properties of Markov models in chapter 9.

INDEPENDENCE Two events A, B are independent of each other if P(AnB ) = P(A)P(B).
Unless P(B) = 0 this is equivalent to saying that P (A) = P(AIB) (i.e.,
knowing that B is the case does not affect the probability of A). This
equivalence follows trivially from the chain rule . Otherwise events are

DEPENDENCE dependent. We can also say that A and B are conditionally independent
CONDITIONAL C h P A B C- P A C P B C( I ) (I ) (I )

INDEPENDENCE
given w en n -

2.1.3 Bayes' theorem

BAYES' THEOREM Bayes' theorem lets us swap the order of dependence between events.

That is, it lets us calculate P (B I A) in terms of P (AI B). This is useful when

the former quantity is difficult to determine . It is a central tool that we

will use again and again , but it is a trivial consequence of the definition of

conditional probability and the chain rule introduced in equations (2.2)

and (2.3):

(2.5) P(BIA)
= P(B n A) - P(AIB)P(B)

P(A) P(A)

NORMALIZING The righthand side denominator P(A) can be viewed as a normalizing
CONSTANT constant , something that ensures that we have a probability function. If

we are simply interested in which event out of some set is most likely
given A, we can ignore it. Since the denominator is the same in all cases,
we have that:

(2.6) arg max
P(AIB)P

(B) = argmaxP (AIB)P(B)
B P(A) B

However , we can also evaluate the denominator by recalling that:

P(A n B) = P(AIB)P(B)

P(A n B) = P(AIB)P(B)

So we have:

P(A) = P(A n B) + P(A n B) [additivity]

= P(AIB)P(B) +P(AIB)P(B)
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