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PREFACE

There are two problems in modermn science:
= too many people use different terminology to solve the same problems;
s ecven more people use the same terminology to address completely different

issues.
Anonymous

In recent years, there has been an explosive growth of methods for learning
(or estimating dependencies) from data. This is not surprising given the prolifera-
tion of —

e low-cost computers (for implementing such methods in software)
e low-cost sensors and database technology (for collecting and storing data)

e highly computer-literate application experts (who can pose “interesting’
application problems)

A learning method is an algorithm (usually implemented in software) that esti-

mates an unknown mapping (dependency) between a system’s inputs and outputs

from the available data, namely from known (input, output) samples. Once such
a dependency has been accurately estimated, it can be used for prediction of future
system outputs from the known input values. This book provides a unified descrip-
tion of principles and methods for learning dependencies from data. _
Methods for estimating dependencies from data have been traditionally explored
in diverse fields such as statistics (multivariate regression and classification), engi-
neering (pattern recognition), and computer science (artificial intelligence, machine
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2.1 FORMULATION OF THE LEARNING PROBLEM

Learning is the process of estimating an unknown (input, output) dependency or
structure of a System using a limited number of observations. The general leaming
scenario involves three components (Fig. 2.1): a Generator of randoin input vectors, a
Systern that returns an output for a given input vector, and the Learning Machine that
estimates an unknown (input, cutput) mapping of the System from the observed
(input, output) samples. This formulation is very general and describes many practi-
cal leaming problems found in engineering and statistics, such as interpolation,
regression, classification, clustering, and density estimation. Before we look at the
learming machine in detail, let us clearly describe the roles of each component in
mathematical terms: '

Generator: The generator (or sampling distribution) produces random vectors
x € R? drawn independently from a fixed probability density p(x), which is
unknown. In statistical termineology, this situation is called observational. It
differs from the designed experiment setting, which involves creating a deter-
ministic sampling scheme optimal for a specific analysis according to experi-
ment design theory. In this book, the observational setting is nsually assumed;
that is, a modeler (Jeaming machine) has had no control over which input values
were supplied to the System.

System: The systemm produces an output value y for every input vector X
according to the fixed conditional density p(y|x), which is also unknown.
Note that this description includes the specific case of a deterministic
system, where y=1(x), as well as the regression formulation of
y = #(x) + &, where £ is random noise with zero mean. Real systems rarely
have truly random outputs; however, they often have unmeasured inputs
(Fig. 1.1). Statistically, the effect of these changing unobserved inputs on the
output of the System can be characterized as random and represented as a
probability distribution.

Learning Machine: In the most general case, the Learning Machine 1s capable of
implementing a set of functions f(x, @), @ € €, where () is a set of abstract

»
Generator X - Learning -
of samples machine

y

I System

FIGURE 2.1 A Leaming Machine using observations of the System to form an
approximation of its output.




22 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

parameters used only to index the set of functions. In this formulation, the set
of functions implemented by the Learning Machine can be any set of
functions, chosen a priori, before the formal inference (learning) process
has begun. Let us look at some simple examples of Learning Machines and
how they fit this formal description. The examples chosen are all solutions to
the regression problem, which is only one of the four most common learning
tasks (Section 2.1.2). The examples illustrate the notion of a set of functions
(of a Learning Machine) and not the mechanism by which the ILearning
Machine chooses the best approximating function from this set.

Example 2.1: Parametric regression (fixed-degree polynomial)

In this example, the set of functions is specified as a polynomial of fixed degree and
the training data have a single predictor variable (x € ®'). The set of functions
implemented by the Learning Machine is

M1 -
f(x? w) = ZW{JC’, (2'1)
=0
where the set of parameters 2 takes the form of vectors w = [wg,...,wy_;] of

fixed length Af.

Example 2.2: Semiparametric regression (polynomial of arbitrary degree)

- One way to provide a wider class of functions for the Learning Machine is to
remove the restriction of fixed polynomial degree. The degree of the polynomial
now becomes another parameter that indexes the set of functions '

m—1
fm(x) Wm) — Zwi-xi- (22)

=0

Here the set of parameters €2 takes the form of vectors w,, = [wg, ..., Win—3], which
have an arbitrary length m.

Example 2.3: Nonparametric regression (kernel smoothing)

Additional flexibility can also be achieved by using a nonparameitric approach like
kernel averaging to define the set of functions supported by the Learning Machine.
Here the set of functions is

i: wiK, (x, x;)
Fo(x, Walx,) = rz}; ) 7 (2.3)
; K, (x, x;)

where » is the number of samples and K,(x,x’) is called the kernel function with
bandwidth . For the general case x € 9, the kernel function K (x,X’) obeys the
following properties:
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1. K(x,x") takes on its maximum value when x' = x
2. |K(x,x")] decreases with |x — x/|
3. K(x,x') is in general a symmetric function of 24 variables

Usually, the kernel function is chosen to be radially symmetric, making it a function
of one variable K{#), where 7 is the scaled distance between x and x':

|z —x|
T= &)

The scale factor s(x) defines the size (or width) of the region around x for which K
is large. It is common to set the scale factor to a constant value s(X) = «, which is
the form of the kernel used in our example equation (2.3). An example of a typical
kernel function is the Gaussian

K.(x,x') = exp (— (L_—xi) . (2.4)

20?

In this Learning Machine, the set of parameters {2 takes the form of vectors
fot, w1, ..., w,] of a fixed length that depends on the number of samples n. In this

* example, it is assumed that the input samples x,, = [x1, ..., x,] are used in the spe-

cification of the set of approximating functions of the Learning Machine. This is
formally stated in (2.3) by having the set of approximating functions conditioned
on the given vector of predictor sample values. The previous two examples did not
use input samples for specifying the set of functions.

Choice of approximating functions:  Ideally, the choice of a set of approximat-
ing functions reflects a priori knowledge about the System (unknown dependency).
However, in practice, due to complex and often informal nature of a priori knowl-

-edge, such specification of approximating functions may be difficult or impossible.

Hence, there may be a need to incorporate a priori knowledge into the learning
method with an already given set of approximating functions. These issues are dis-
cussed in more detail in Section 2.3. There is also an important distinction between
two types of approximating functions: linear in parameters or nonlinear in para-
meters. Throughout this book, learning (estimation) procedures using the former
are also referred to as linear, whereas those using the latter are called nonlinear
‘We point out that the notion of linearity is with respect to parameters rather than
input variables. For example, polynomial regression (2.2) is a linear method.
Another example of a linear class of approximating functions (for regression) is
the trigonoimetric expansion

m—1

o, 90, W) = Z (v; sin(jx) + wy cos(jx)) + wp.

J=1
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On the contrary, multilaver networks of the form
' . m d
Fn(X, W, V) = wpy + Z wig| vy + E XV
=1 =1

provide an example of nonlinear parameterization because it depends nonlinearly
on parameters V via nonlinear basis function g (usually taken as the so-called
sigmoid activation function).

The distinction between linear and nonlinear methods is important in practice
because learning (estimation) of model parameters amounts to solving a linear or
nonlinear optimization problem, respectively.

2.1.1 Objective of Learning

As noted in Section 1.5, there may be two distinct interpretations of the goal of
learning for generic system shown in Fig. 2.1. Under statistical model estirmnation
framework, the goal of learning is accurate identification of the unknown system,
whereas under predictive learning the goal is accurate imitation (of a system’s output).
1t should be clear that the goal of system identification is more demanding than the
goal of system imitation. For instance, accurate system identification does not
depend on the distribution of input samples, whereas good predictive model is
usually conditional upon this (unknown) distribution. Hence, an accurate model
(in the sense of system’s identification) would certainly provide good generalization
(in the predictive sense), but the opposite may not be true. The mathematical treat-
ment of system identification leads to the function approximation framework and to
fundamental problems of estimating multivariate functions known as the curse of
dimensionality (see Chapter 3). On the contrary, the goal of predictive learning
leads to Vapnik—Chervonenkis (VC) leaming theory described later in Chapter 4.
This book advocates the setting of predictive learning, which formally defines
the notion of accurate system imitation (via minimization of prediction risk) as
described in this section. We contrast the function approximation approach versus
predictive learning throughout the book, in particular, using empirical comparisons
in Section 3.4.5.

The problem encountered by the Learning Machine is to select a function (from
the set of functions it supports) that best approximates the System’s response. The
Learning Machine is limited to observing a finite number (n) of examples in order
to make this selection. These training data as produced by the Generator and
‘System will be independent and identically distributed (iid) according to the joint
probability density function (pdf) - '

p(x,y) = p(E)p(¥[x). (2.5)

» The finite sample (training data) from this distribution is denoted by

(xivyf)a (i= 17"'7")' (2'6)




