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S N R D E N TO N | SNR Denton US LLP Jennifer D. Bennett
1530 Page Mill Road Managing Associate
Suite 200 jennifer.bennett@snrdenton.com
Palo Alto, CA 94304-1125 USA D +1650 798 0325
T +1650 798 0300
F +1650 798 0310
snrdenton.com

March 10, 2011

BY COURIER

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Re:  Personalized User Model LLP v. Google Inc., C.A. No. 09-00525-LPS

To Whom it May Concern:

On July 16, 2010, my client Personalized User Model, LLP brought a civil action against Google,
Inc. for patent infringement in the United States District Court for the District of Delaware. You are being
contacted because SRI International is likely to have documents and other information relevant to the
case arising from its association and dealings with Google, Inc. Please see the attached subpoena and
exhibits for instructions on how to respond.

Kind regards,

/s/ Jennifer D. Bennett

Jennifer D. Bennett

Enclosure
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AO 88A (Rev. 01/09) Subpoena to Testify at a Deposition or to Produce Documents in a Civil Action

UNITED STATES DISTRICT COURT

for the
Northern District of California

Personalized User Model, LLP )
Plaintiff )
V. ) Civil Action No. 1:09-cv-525 (LPS)
Google, Inc. )
) (If the action is pending in another district, state where:
Defendant ) District of Delaware

SUBPOENA TO TESTIFY AT A DEPOSITION
OR TO PRODUCE DOCUMENTS IN A CIVIL ACTION

To: SRI International
333 Ravenswood Avenue, Menlo Park, CA 94025

E( Testimony:. YOU ARE COMMANDED to appear at the time, date, and place set forth below to testify at a
deposition to be taken in this civil action. If you are an organization that is not a party in this case, you must designate
one or more officers, directors, or managing agents, or designate other persons who consent to testify on your behalf
about the following matters, or those set forth in an attachment:

Place: SNR Denton US LLP ‘ Date and Time:
Palo Alto, CA 94304 \

The deposition will be recorded by this method: Stenographic and video

O Production: You, or your representatives, must also bring with you to the deposition the following documents,
electronically stored information, or objects, and permit their inspection, copying, testing, or sampling of the
material:

The provisions of Fed. R. Civ. P. 45(c), relating to your protection as a person subject to a subpoena, and Rule
45 (d) and (e), relating to your duty to respond to this subpoena and the potential consequences of not doing so, are
attached.

Date: 03/10/2011
CLERK OF COURT
OR

/s! Jennifer Bennett
Signature of Clerk or Deputy Clerk Attorney’s signature

The name, address, e-mail, and telephone number of the attorney representing (name of party)
Personalized User Model, LLP , who issues or requests this subpoena, are:

Jennifer Bennett
SNR Denton US LLP
1530 Page Mill Road, Suite 200, Palo Alto, CA 94304; T: 650.798.0300; Email: jennifer.bennett@snrdenton.com
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Civil Action No. 1:09-cv-525 (LPS)

PROOF OF SERVICE
(This section should not be filed with the court unless required by Fed. R. Civ. P. 45.)

This subpoena for (name of individual and title, if any)

was received by me on (date)

(3 I personally served the subpoena on the individual at (place)

on (date) ; or

(3 I left the subpoena at the individual’s residence or usual place of abode with (name)
, a person of suitable age and discretion who resides there,

on (date) , and mailed a copy to the individual’s last known address; or

(3 I served the subpoena on (name of individual) , who is
designated by law to accept service of process on behalf of (name of organization)

on (date) ; or
(3 Ireturned the subpoena unexecuted because ; Or

(O Other (specify):

Unless the subpoena was issued on behalf of the United States, or one of its officers or agents, I have also
tendered to the witness fees for one day’s attendance, and the mileage allowed by law, in the amount of

$

My fees are $ for travel and $ for services, for a total of $ 0.00

I declare under penalty of perjury that this information is true.

Date:

Server’s signature

Printed name and title

Server’s address

Additional information regarding attempted service, etc:
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Federal Rule of Civil Procedure 45 (¢), (d), and (e) (Effective 12/1/07)

(c) Protecting a Person Subject to a Subpoena.

(1) Avoiding Undue Burden or Expense; Sanctions. A party or
attorney responsible for issuing and serving a subpoena must take
reasonable steps to avoid imposing undue burden or expense on a
person subject to the subpoena. The issuing court must enforce this
duty and impose an appropriate sanction — which may include lost
earnings and reasonable attorney’s fees — on a party or attorney
who fails to comply.

(2) Command to Produce Materials or Permit Inspection.

(A) Appearance Not Required. A person commanded to produce
documents, electronically stored information, or tangible things, or
to permit the inspection of premises, need not appear in person at the
place of production or inspection unless also commanded to appear
for a deposition, hearing, or trial.

(B) Objections. A person commanded to produce documents or
tangible things or to permit inspection may serve on the party or
attorney designated in the subpoena a written objection to
inspecting, copying, testing or sampling any or all of the materials or
to inspecting the premises — or to producing electronically stored
information in the form or forms requested. The objection must be
served before the earlier of the time specified for compliance or 14
days after the subpoena is served. If an objection is made, the
following rules apply:

(i) At any time, on notice to the commanded person, the serving
party may move the issuing court for an order compelling production
or inspection.

(ii) These acts may be required only as directed in the order, and
the order must protect a person who is neither a party nor a party’s
officer from significant expense resulting from compliance.

(3) Quashing or Modifying a Subpoena.

(A) When Required. On timely motion, the issuing court must
quash or modify a subpoena that:

(i) fails to allow a reasonable time to comply;

(ii) requires a person who is neither a party nor a party’s officer
to travel more than 100 miles from where that person resides, is
employed, or regularly transacts business in person — except that,
subject to Rule 45(c)(3)(B)(iii), the person may be commanded to
attend a trial by traveling from any such place within the state where
the trial is held;

(iii) requires disclosure of privileged or other protected matter, if
no exception or waiver applies; or

(iv) subjects a person to undue burden.

(B) When Permitted. To protect a person subject to or affected by
a subpoena, the issuing court may, on motion, quash or modify the
subpoena if it requires:

(i) disclosing a trade secret or other confidential research,
development, or commercial information;

(ii) disclosing an unretained expert’s opinion or information that
does not describe specific occurrences in dispute and results from
the expert’s study that was not requested by a party; or

(iii) a person who is neither a party nor a party’s officer to incur
substantial expense to travel more than 100 miles to attend trial.

(C) Specifying Conditions as an Alternative. In the circumstances
described in Rule 45(c)(3)(B), the court may, instead of quashing or
modifying a subpoena, order appearance or production under
specified conditions if the serving party:

(i) shows a substantial need for the testimony or material that
cannot be otherwise met without undue hardship; and

(ii) ensures that the subpoenaed person will be reasonably
compensated.

(d) Duties in Responding to a Subpoena.

(1) Producing Documents or Electronically Stored Information.
These procedures apply to producing documents or electronically
stored information:

(A) Documents. A person responding to a subpoena to produce
documents must produce them as they are kept in the ordinary
course of business or must organize and label them to correspond to
the categories in the demand.

(B) Form for Producing Electronically Stored Information Not
Specified. 1f a subpoena does not specify a form for producing
electronically stored information, the person responding must
produce it in a form or forms in which it is ordinarily maintained or
in a reasonably usable form or forms.

(C) Electronically Stored Information Produced in Only One
Form. The person responding need not produce the same
electronically stored information in more than one form.

(D) Inaccessible Electronically Stored Information. The person
responding need not provide discovery of electronically stored
information from sources that the person identifies as not reasonably
accessible because of undue burden or cost. On motion to compel
discovery or for a protective order, the person responding must show
that the information is not reasonably accessible because of undue
burden or cost. If that showing is made, the court may nonetheless
order discovery from such sources if the requesting party shows
good cause, considering the limitations of Rule 26(b)(2)(C). The
court may specify conditions for the discovery.

(2) Claiming Privilege or Protection.

(A) Information Withheld. A person withholding subpoenaed
information under a claim that it is privileged or subject to
protection as trial-preparation material must:

(i) expressly make the claim; and

(ii) describe the nature of the withheld documents,
communications, or tangible things in a manner that, without
revealing information itself privileged or protected, will enable the
parties to assess the claim.

(B) Information Produced. If information produced in response to a
subpoena is subject to a claim of privilege or of protection as trial-
preparation material, the person making the claim may notify any
party that received the information of the claim and the basis for it.
After being notified, a party must promptly return, sequester, or
destroy the specified information and any copies it has; must not use
or disclose the information until the claim is resolved; must take
reasonable steps to retrieve the information if the party disclosed it
before being notified; and may promptly present the information to
the court under seal for a determination of the claim. The person
who produced the information must preserve the information until
the claim is resolved.

(e) Contempt. The issuing court may hold in contempt a person
who, having been served, fails without adequate excuse to obey the
subpoena. A nonparty’s failure to obey must be excused if the
subpoena purports to require the nonparty to attend or produce at a
place outside the limits of Rule 45(c)(3)(A)(ii).



IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF DELAWARE

PERSONALIZED USER MODEL,
L.L.P.,

Plaintiff,
C.A. No. 09-525 (LPS)
GOOGLE, INC.,

)

)

)

)

)

V. )
)

)

)

Defendant. )
)

NOTICE OF RULE 30(b)(6) DEPOSITION OF SRI INTERNATIONAL

PLEASE TAKE NOTICE that, pursuant to Rules 26 and 30 of the Federal Rules of
Civil Procedure, Plaintiff Personalized User Model, L.L.P. (“P.U.M.”) will take the
deposition of Third Party SRI International (“SRI”) concerning the topics identified in
Exhibit A, beginning at 9:00 a.m. on March 21, 2011, or at an otherwise mutually agreeable
date, and will be held at the offices of SNR Denton US LLP, 1530 Page Mill Road, CA
94304, or at an otherwise mutually agreeable location. If the deposition is not completed on
the date set out above, the taking of the deposition will continue day to day thereafter or
pursuant to the parties’ agreement. The deposition will be recorded by stenographic,
videographic, and/or audiographic means.

Pursuant to Rule 30(b)(6) of the Federal Rules of Civil Procedure, SRI is directed to
designate one or more officers, directors, or managing agents, or other persons who will
testify on its behalf, who are most knowledgeable regarding the matters identified in the
attached Exhibit A. SRI is requested to provide a written designation of the names and

positions of the officers, directors, managing agents, or other persons designated to testify



concerning the matters identified in the attached Exhibit and, for each person, identify the

matters on which he or she will testify.

P.U.M. reserves the right to serve additional 30(b)(6) notices.

Dated: March 10, 2011

By:_ /s/ Jennifer D. Bennett
Jennifer D. Bennett (California State Bar
No. 235196)
SNR Denton US LLP
1530 Page Mill Road, Suite 200
Palo Alto, CA 94304
Telephone: (650) 798-0300
Facsimile: (650) 798-0310
E-Mail: jennifer.bennett@snrdenton.com

Marc S. Friedman

SNR Denton US LLP

1221 Avenue of the Americas

New York, NY 10020-1089

Telephone: (212) 768-6700

Facsimile: (212) 768.6800

E-Mail: marc.friedman@snrdenton.com

Attorneys for Plaintiff
PERSONALIZED USER MODEL, L.L.P.




CERTIFICATE OF SERVICE

I hereby certify that on March 10, 2011, copies of the foregoing were caused to be

served by e-mail upon the following:

Richard L. Horwitz

David E. Moore

POTTER ANDERSON & CORROON LLP
1313 N. Market St., 6t Floor

Wilmington, DE 19801
rhorwitz@potternanderson.com
dmoore@potteranderson.com

Brian C. Cannon

QUINN EMANUEL URQUHART OLIVER
& HEDGES, LLP
briancannon@quinnemanuel.com

Charles K. Verhoeven

QUINN EMANUEL URQUHART OLIVER
& HEDGES, LLP
charlesverhoeven@quinnemanuel.com

David A. Perlson

QUINN EMANUEL URQUHART OLIVER
& HEDGES, LLP
davidperlson@quinnemanuel.com

Antonio R. Sistos

QUINN EMANUEL URQUHART OLIVER
& HEDGES, LLP
antoniosistos@quinnemanuel.com

Eugene Novikov

QUINN EMANUEL URQUHART OLIVER
& HEDGES, LLP
eugenenovikov@quinnemanuel.com

/s/ Jennifer D. Bennett
Jennifer D. Bennett (Cal. Bar. No. 235196)
SNR Denton US LLP
1530 Page Mill Road, Suite 200
Palo Alto, CA 94304-1125
(650) 798-0300




EXHIBIT A

1 DEFINITIONS

1. “SRI,” “YOU,” and “YOUR,” means SRI International, and its officers, directors,
current and former employees, counsel, agents, consultants, representatives, and any other
persons acting on behalf of any of the foregoing, and SRI International’s affiliates, parents,
divisions, joint ventures, licensees, franchisees, assigns, predecessors and successors in interest,
and any other legal entities, whether foreign or domestic, that are owned or controlled by SRI
International, and all predecessors and successors in interest to such entities.

2. “Google” means Google, Inc. and its officers, directors, current and former
employees, counsel, agents, consultants, representatives, attorneys, and any other persons
acting on behalf of any of the foregoing, and Google’s affiliates, parents, divisions, joint
ventures, licensees, franchisees, assigns, predecessors and successors in interest, and any other
legal entities, whether foreign or domestic, that are owned or controlled by Google, and all
predecessors and successors in interest to such entities.

3. “Lawsuit” means the case styled Personalized User Model LLP v. Google, Inc.,
1:09-cv-525, in the United States District Court for the District of Delaware.

4, “‘040 PATENT” means U.S. Patent No. 6,981,040, entitled “Automatic,
Personalized Online Information and Product Services,” all underlying patent applications, all
continuations, continuations-in-part, divisionals, reissues, and any other patent applications in the
‘040 patent family

5. “‘031 PATENT” means U.S. Patent No. 7,320,031, entitled “Automatic,
Personalized Online Information and Product Services,” all underlying patent applications, all

continuations, continuations-in-part, divisionals, reissues, and any other patent applications in the



‘031 patent family.

6. “276 PATENT” means U.S. Patent No. 7,685,276, entitled “Automatic,
Personalized Online Information and Product Services,” all underlying patent applications, all
continuations, continuations-in-part, divisionals, reissues, and any other patent applications in the
‘031 patent family.

7. “PATENTS-IN-SUIT” shall refer to the ‘040 PATENT, the ‘031 PATENT, and
the ‘276 PATENT individually and collectively.

8. “DOCUMENT” shall mean all materials and information that are discoverable
pursuant to Rule 34 of the Federal Rules of Civil Procedure. A draft or non-identical copy is a
separate document within the meaning of this term.

9. “PUM” and “PLAINTIFF” shall mean Personalized User Model LLP., Plaintiff in
the civil case captioned Personalized User Model, LLP v. Google Inc., Case No. 09-525 (JJF).

10.  The term “PERSON” shall refer to any individual, corporation, proprietorship,
association, joint venture, company, partnership or other business or legal entity, including
governmental bodies and agencies.

11.  “REFLECT,” “REFLECTING,” “RELATE TO,” “REFER TO,” “RELATING
TO,” and “REFERRING TO” shall mean relating to, referring to, concerning, mentioning,
reflecting, pertaining to, evidencing, involving, describing, discussing, commenting on,
embodying, responding to, supporting, contradicting, or constituting (in whole or in part), as the
context makes appropriate.

12.  “Include” and “including” shall mean including without limitation.

13.  Use of the singular also includes the plural and vice-versa.

14.  The words “or” and “and” shall be read in the conjunctive and in the disjunctive



wherever they appear, and neither of these words shall be interpreted to limit the scope of these
Interrogatories.

15.  The use of a verb in any tense shall be construed as the use of the verb in all other
tenses.

DEPOSITION TOPICS

1. All facts and circumstances, including but not limited to all communications whether
written, oral or otherwise, between Google and SRI, concerning all transactions, contracts,
agreements and understandings, and payments between Google and SRI concerning the patents-
in-suit or any invention(s) claimed therein, and/or Yochai Konig.

2. The work performed by Yochai Konig while at SRI.

3. Any and all documents or other evidence that Dr. Konig developed the inventions claimed
in the patents-in-suit using SRI’s equipment, supplies, facility, or trade secret information, or
during the time of day when he was supposed to be working for SRI.

4. All documents provided by SRI to Google regarding Y ochai Konig or work performed by
him for SRI.

5. All invoices submitted by SRI to Google for work responding to discovery in connection
with this lawsuit.

6. SRI’s knowledge of Yochai Konig and/or Utopy’s work after Dr. Konig left the
employment of SRI.

7. Activities of the SRI Speech Technology and Research (STAR) Laboratory from 1996
through 1999.

8. All business relationships or contracts between SRI and Google, or subsidiary or affiliate
of Google, including, but not limited to (a) all work performed by SRI for Google, or subsidiary or
affiliate of Google, in the last 10 years; (b) all work performed by Google, or subsidiary or

affiliate of Google, for SRI in the last 10 years, and (¢) all sums of money received by SRI from



Google, or any subsidiary or affiliate of Google, or any officers or directors of these entities in the
last 10 years.

9. All documents produced by SRI to PUM under the previously served subpoena, including, but
not limited, to the authenticity of such documents and the manner in which they were created and kept.

10. All information received from third parties relating to any of the above subjects.
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IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF DELAWARE

)

PERSONALIZED USER MODEL, )
LiL.P; ) C.A. No. 09-525-LPS

)

Plaintiff, )

)

V. )

)

GOOGLE, INC,, )

)

Defendant. )

)

DECLARATION OF ROY TWERSKY IN SUPPORT OF PLAINTIFF PERSONALIZED
USER MODEL, L.L.P.’S BRIEF IN OPPOSITION TO DEFENDANT GOOGLE, INC.’S
MOTION FOR LEAVE TO FILE ITS MOTION FOR SUMMARY JUDGMENT

I, Roy Twersky, declare:

1 I make this declaration in support of P.U.M.’s Brief in Opposition to Defendant
Google, Inc.’s Motion for Leave to File its Motion for Summary Judgment.

2. I received my undergraduate degree in economics and mathematics from Tel Aviv
University in 1986. Five years later, I received my MBA from the Wharton School of Business.
I also completed the All-But-Dissertation requirements for the PhD program at Stanford
University's Graduate School of Business. While at both Tel Aviv University and Stanford, I
took courses in computer science and mathematics.

3 Around early 1999, Yochai Konig and [ started thinking generally about the
problem of information overload on the Internet and whether there might be solutions to that
problem. At that time, Mr. Konig and I also discussed starting a company to develop technology
to address the problem. In order to form the company, I knew we would first need to generate
capital. During the Spring and Summer of 1999 I reached out to potential investors to raise
capital to fund the company. I approached investors with the general idea of personalized

information services that we hoped to develop after receiving funding. The presentation that I
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gave to investors in July 1999, attached hereto as Exhibit A, represents the general idea of the

technology that might solve the problem.
REDACTED

REDACTED

REDACTED

14940866\V-4



REDACTED

I declare under penalty of perjury under the laws of the United States of America that the

foregoing is true and correct.

Dated: March 10, 2011

/s/ Roy Twersky
Roy Twersky

14940866\V-4
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FULLY REDACTED



EXHIBIT B

FULLY REDACTED
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IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF DELAWARE

PERSONALIZED USER MODEL,
LL.P.,

C.A. No. 09-525-LPS
Plaintiff,
v.

GOOGLE, INC.,

Defendant.

S M M M N e e N e e e

DECLARATION OF YOCHAI KONIG IN SUPPORT OF PLAINTIFF PERSONALIZED
USER MODEL, L.L.P.’S BRIEF IN OPPOSITION TO DEFENDANT GOOGLE, INC.’S
MOTION FOR LEAVE TO FILE ITS MOTION FOR SUMMARY JUDGMENT

I, Yochai Konig, declare:

1. I make this declaration in support of P.U.M.’s Brief in Opposition to Defendant
Google, Inc.’s Motion for Leave to File its Motion for Summary Judgment.

2. I received my Bachelor’s of Science degree in Computer Engineering from
Technion-Israel Institute of Technology in 1990. As part of my B.S. curriculum, I studied
probability, artificial intelligence, engineering and computer science. See Transcript, attached as
Exhibit A. At this time, I was introduced to the concepts of machine learning. Six years later, in
1996, I received my Ph.D in Computer Science from University of California, Berkeley. While
at Berkeley, I took courses in machine learning, artificial intelligence, natural language
processing, probability and statistics, and digital signal processing. See Transcript, attached as
Exhibit B. As part of the Ph.D program, I authored a dissertation titled “REMAP: Recursive
Estimation and Maximization of a Posteriori Probabilities - Application to Transition-based
Connectionist Speech Recognition.” See Exhibit C. In sum, the focus of my studies during my
Ph.D program was in artificial intelligence, machine learning, statistics and probability, speech
recognition and signal processing.

3. From 1991 to 1996, I was a research assistant at the International Computer

Science Institute, in the Speech Group. At the Speech Group, I conducted various research in

14940835\V-4



speech recognition, statistical machine learning, stochastical processes, optimization theory and
neural computation. Thus, by the beginning of 1996, I had been working with machine learning
concepts for more than eight years.

4, On April 8, 1996, I began working as a research scientist at SRI in the Speech
Technology and Research Laboratory (“Star Lab”). While employed by SRI, I researched over-
the-telephone large vocabulary speech recognition. I later became the principal investigator of a
research project funded by the Department of Defense, researching Nonlinear Discriminant
Feature Extraction for Robust Text-Independent Speaker Recognition. My research at SRI was
in no way related to the Internet, search, or the development of personalized on-line information
services. Rather, the focus of my research was creating speaker recognition systems that are
robust to telephone handset distortion by discriminative feature design. See published research,
attached as Exhibits D-F.

5. Toward the conclusion of my employment at SRI, Mr. Twersky and I began to
think generally about the problem of information overload on the Internet and concluded that
perhaps we should team with each other and we started to discuss an approach to achieving a
solution to this problem. Prior to my departure from SRI, we had not yet conceived of the
inventions claimed in the patents-in-suit. For this reason, I did not think it was necessary to
disclose our very general ideas to SRI pursuant to my Employment Agreement.

6. Also, while I was employed by SRI I used no equipment, supplies, facilities or
trade secret information belonging to SRI to work on the ideas that eventually became the
inventions disclosed in the patents-in-suit. And, any time that I did spend working on potential
solutions to the information overload problem was entirely my personal time (i.e., nights and
weekends).

7. In sum, the inventions claimed in the patents-in-suit did not result from my work
for SRI.

8. I ended my employment at SRI on August 5, 1999 and shortly thereafter joined

Roy Twersky as a co-founder of Utopy, Inc. After terminating my employment at SRI, Mr.

14940839\V-4



Twersky and I had the time and resources to dedicate to conceiving the inventions claimed in the
patents-in-suit.

9. In conceiving the inventions claimed in the patents-in-suit, I did not rely on my
work at SRI’s Star Lab involving discriminative feature design in speaker recognition systems to
make them robust to telephone handset distortion. Instead, I drew upon my education and
training that I had acquired well before joining SRI, including education and training in machine
learning, speech recognition, stochastic modeling, neural networks and statistical pattern
recognition. Iapplied my expertise in these areas to conceive of the inventions in the patents-in-

suit.
REDACTED

I declare under penalty of perjury under the laws of the United States of America that the

foregoing is true and correct.

Dated: March 10, 2011

/s/ Yochai Konig
Yochai Konig

14940839NV-4
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FULLY REDACTED
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REMAP: Recursive Estimation and Maximization of A
Posteriori Probabilities in Transition-based Speech
Recognition

by

Yochai Konig

B.S. (Technion, Israel Institute of Technology) 1990

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Nelson Morgan, Chair
Professor Jerome Feldman
Professor Charles Stone

1996



REMAP: Recursive Estimation and Maximization of A
Posteriori Probabilities in Transition-based Speech

Recognition

Copyright 1996

by
Yochai Konig



Abstract

REMAP: Recursive Estimation and Maximization of A Posteriori Probabilities in

Transition-based Speech Recognition
by

Yochai Konig
Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Nelson Morgan, Chair

In this thesis we present a framework for training and modeling continuous speech recogni-
tion systems based on the theoretically optimal Maximum a Posteriori (MAP) criterion. In
contrast, most state-of-the-art systems are trained according to the Maximum Likelihood
(ML) criterion. Specifically, we introduce a discriminant training algorithm (REMAP) for
statistical sequence classification which, for any given sentence, monotonically increases the
posterior probability of the correct sentence while reducing the probabilities of all rival
models.

Based on the studies described here, which show that explicitly modeling tran-
sitions between speech units can improve recognition performance, REMAP is developed
in the context of a transition-based model (although it is also applicable to non-transition-
based models). Furthermore, the model uses local transition probabilities (i.e., the posterior
probability of the current state given the current acoustic vector and the previous state)
to estimate global posteriors of sentences. Thus, it is a true recognition model, i.e., it di-
rectly maps from acoustic sequences to sentences, unlike Hidden Markov Models (HMMs)
which model the inverse relation (the likelihood of producing an acoustic sequence given an
assumed state sequence).

Experimental results support the proposed framework. In comparison to a baseline
system, the results show an increase in the estimates of posterior probabilities of the correct

sentences after training, and a significant decrease in error rate.



To my parents, Pnina and Aron Konig
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Chapter 1

Introduction and Goals

1.1 Thesis Overview

Many pattern recognition problems that are of crucial importance today are inher-
ently sequential in nature. Some examples include recognizing an utterance given a sequence
of samples from a speech signal, or deciphering a hand written sentence given a digitized
pen trajectory. Theoretically the optimal way to classify an input sequence is to choose
the class with the highest posterior probability given this sequence (Duda & Hart 1973).
Therefore, at training one wants to maximize the posterior probability of the correct model
(sentence) given the evidence (sequence of acoustic vectors). An optimization criterion for
parameter estimation that achieves this goal during training is the Maximum A Posteriori
(MAP) criterion. Most state-of-the-art systems, however, are trained according to other
criteria such as Maximum Likelihood (ML), which achieve this goal only under strong as-
sumptions as discussed in Chapter 3. In this thesis we present a framework for training and
modeling continuous speech recognition systems based on the MAP criterion. Specifically,
we introduce a discriminant training algorithm for statistical sequence classification that
monotonically increases the posterior probability of the correct sentence while reducing the
probabilities of all rival models (sentences). Roughly speaking, instead of modeling the dis-
tribution of each class observation, the boundaries between classes are modeled. Thus, the
correctness of the model is not assumed and during training one can optimize the overall
goal of minimizing recognition errors.

REMAP can be used in a new form of hybrid Hidden Markov Models (HMM)/ Ar-
tificial Neural Network (ANN) which, in addition to the advantages of standard HMM/ANN



hybrids, uses “full” posterior probabilities for training and recognition. Furthermore, in the
new HMM/ANN hybrid, the ANN targets and weights are iteratively re-estimated, a pro-
cess that guarantees an increase of the posterior probability of the correct model, hence
reducing the error rate.

Based on the studies described here, which show that explicitly modeling transi-
tions between speech units can improve recognition performance, a training algorithm is
developed in the context of a transition-based model (the algorithm is general, and also
applicable to other models). Our interest in transition-based models was motivated by per-
ceptual and physiological evidence, e.g., (Lindblom & Studdert-Kennedy 1967; Furui 1986b;
Kiang 1984; Ruggero 1994; Smith & Zwislocki 1975), which show that spectral transi-
tion information is crucial for human perception. Furthermore, the Discriminant HMM
(DHMM) model, uses local transition probabilities (the posterior probability of the current
state given the current acoustic vector and the previous state) to estimate global sentence
posteriors. It is a true recognition model. It directly maps from acoustic sequences to
sentences, unlike HMMs that model the inverse relation (the likelihood of producing an
acoustic sequence given an assumed state sequence) (Levinson et al. 1983b; Jelinek 1976;
Jelinek & Mercer 1980; Baker 1975).

Experimental results support the proposed framework. In comparison to a baseline
system, the results show an increase in the estimates of posterior probabilities of the correct
sentences after training, and a significant decrease in error rate. Thus, a posterior based
approach may be a viable alternative to current paradigms.

In the following sections we expand on the goals and the motivations for this study.

1.2 Thesis Goals

1.2.1 A Recognition Model

In automatic speech recognition the following two steps are usually performed:

1. The first step is to transform the speech signal into a finite sequence of numbers
hopefully without loss of relevant information for recognition. This step, usually
called feature extraction, is constrained on the one hand by the need to reduce the
dimensionality of the data and on the other hand by the need to have good information

for recognizing the utterance.



Sentence P(acoustic vector sequence)
You look good Production P({(0.2,0.3),...,(0.4,0.1)}) = 0.2
Model

(e.g, HMM) | P({(0.1,0.5),...,(0.3,0.9)}) = 0.3

Acoustic Vector P(sentence)
Sequence
Recognition P("You look good") = 0.1
{(0.2,0.3),..,(0.3,-1.9)} | Model P("Who looks good?") = 0.4

Figure 1.1: Goal - A Recognition Model

2. The second step is to construct a model that provides a mapping from the acoustic

vector sequence into sentences, i.e., a recognition model.

In current state-of-the-art systems however, inverse modeling is usually used. Specifically,
given a sentence, these systems model the likelihood of producing an acoustic sequence, a
production model. This involves modeling all the possible ways that a given sentence can be
spoken, taking into account differences between speakers, different speaking rates, styles,
pronunciations, and variability due to environmental and channel noise.

An illustration of the difference between a production model and a recognition
model is given in Figure 1.1. The illustration specifies the domain and range for production
and recognition models. When recognizing an utterance, the input is a sequence of acoustic
vectors and the output should be the recognized sentence, i.e., the domain and range are
the same as in the recognition model. Hence, directly optimizing the recognition model
parameters (during training) to increase the posterior probabilities of the correct models is

more straightforward, compared with the production model with inverse range and domain.

1.2.2 Transition-based Modeling

One basic goal of this thesis is to explicitly model transitions between speech units®.

Specifically, the goal is to estimate “soft boundaries” between speech units, i.e., to estimate

!The choice of the speech unit set determines the type of transitions that we model



the posterior probability of the current state given the current acoustic vector and the
previous state, where states represent basic speech units such as phones. Roughly speaking,
a “soft boundary” represents a probability of having a transition at a particular time point,
i.e., values between zero and one. This is in contrast to a “hard boundary” that marks
each time point as a transition, or non-transition point, i.e., values of ones and zeros only.
This goal is motivated by our experimental results as described in Chapter 4. other related
work (Goldenthal 1994; Deng 1992), and perceptual and physiological evidence (Lindblom
& Studdert-Kennedy 1967; Furui 1986b; Kiang 1984: Ruggero 1994; Sachs et al. 1988;
Smith & Zwislocki 1975; Seneff 1988) that show that spectral transition information is
crucial for human perception.

The underlying reason for the “soft boundaries” is that human speech production
is a continuous process, and modeling it as a sequence of discrete states is at best an approx-
imation. A popular model of human speech production is that an utterance is organized as
a succession of vocal-tract states, where each of these states represents a different config-
uration of the articulators. Further, at the level of articulatory performance, the gestures
invoked to actualize these states are relatively slow. They merge spatially and temporally
into a continuous process that usually only approximates the intended states and is highly
sensitive to co-articulation (Deng & Sun 1994). Thus, there is not a single time point of
transition between two states, but rather a “window” of transition which can be modeled

9

with “soft boundaries.” Similarly, in human speech perception, the point at which a new

phonetic element could be perceived is distributed in time.

1.2.3 A Discriminant Training Algorithm

Statistical pattern recognition theory tells us that the optimal recognition proce-
dure (in terms of minimum classification error) is the one that chooses the sentence with
the highest posterior probability given the acoustic vectors and all other available sources
of knowledge (Duda & Hart 1973). Consequently, a training algorithm should estimate the
parameters of a classifier to increase the posterior probability of the correct sentence (known
during the training phase) while reducing the posteriors of all rival models (sentences). An
illustration of a discriminant algorithm is given in Figure 1.2.

Roughly speaking, instead of modeling the distribution of the observations of each

class, the boundaries between classes are modeled. Theoretically, both of these model-



P (correct sentence) = 0.2

Parameters Z P (other sentences) = 0.8
Modified P (correct sentence) = 0.4
Parameters Z P (other sentences) = 0.6

Figure 1.2: Goal - A Discriminant Training Algorithm

ing techniques can be used to achieve an optimal classifier. In practice, however, some
assumptions have to be made in order to implement these approaches. In discriminant
training model correctness is not assumed, and a training algorithm can directly minimize
recognition errors. Generally, fewer free parameters are needed since the model describes

boundaries, because there is no need to model the data everywhere (Lubensky et al. 1994;

Renals et al. 1992).

1.3 Thesis Structure

Our starting point is to formulate the problem. This formulation serves both as
a goal and an aid in evaluating existing solutions to this problem. It is followed by a
description of the most popular models and algorithms used to solve this problem. These
include Hidden Markov Models (HMMs) and hybrid systems of Artificial Neural Networks
(ANNs) and HMMs, and their various training algorithms. In particular there is an emphasis
on discriminant approaches such as Maximum Mutual Information (MMI) and Generalized
Probabilistic Descent (GPD). The models are described in Chapter 2, and their training
algorithms in Chapter 3.

In Chapter 4 the motivation for the use of transition-based models is given. Our
early interest in modeling transitions was based on perceptual and physiological studies.
Later, our own experiments reaffirmed the usefulness of it, and other recent related work
strengthened this decision. In Chapter 5 we describe a particular model, Discriminant HMM
(DHMM) that is a transition-based recognition model, and discusses its related mathemat-

ical theory. Experiments with this model motivated the need for a new training algorithm,



REMAP, which is described in Chapter 6. The training algorithm, REMAP, is an approach
for Recursively Lstimating and Maximizing A posteriori Probabilities of transition-based
Hidden Markov Models given input sequences. It is a discriminant training algorithm;
REMAP maximizes the posterior probability of the correct sentence while reducing the
posteriors of all rival models. Experimental results are reported in Chapter 7. These ex-
periments were both on isolated and continuous speech tasks. The results show an increase
in the estimates of the posterior probabilities of the correct sentences after training, and a
significant decrease in error rates in comparison to a baseline system. The thesis ends with
conclusions and discussion of the remaining open problems, and future research directions
in Chapter 8. The text proper is followed by an Appendix giving the proofs for theorems
used in REMAP.



Chapter 2

Problem Formulation and Existing

Models

2.1 Introduction

2.1.1 Bayes Decision Theory

Bayes decision theory is a statistical approach to pattern classification. The
approach is aimed at finding a decision rule that tells us which action to take for ev-
ery possible observation. To simplify the discussion, let us assume a two-class classi-
fication problem wherein we have to choose between two classes My and My;. We as-
sume some a priori probability P(Mj) that the next observation belongs to M;j, and
similarly for M,;. These a priori probabilities reflect our beliefs and prior knowledge
about the models before seeing any evidence, e.g., if we needed to classify males and fe-
males based on their voices, we would assign equal prior probabilities! (Konig et al. 1993;
Konig & Morgan 1993).

FEach observation is a feature vector 2, for instance (continuing the gender classi-
fication example) the fundamental frequency of the speaker and other speaker-dependent
spectral information. The distribution of the feature vectors is class-dependent. Specifi-
cally, given a class say M, the distribution of the feature vectors is the likclihood function
of the class, p(z|M;). For instance, given that the class is “male”, we give higher probability

to feature vectors with fundamental frequency around 120 Hz than to feature vectors with

'We assume equal number of males and females in the training set.



fundamental frequency around 210 Hz. If the class is “female” it would be the other way
around.
Bayes rule specifies how observing the value of 2 transforms the a priori probability

P(M;) into the a posteriori probability P(M;|z) (for the 2-class example):

Pl ) = P (2.1)
where
Pla) = Y- Pl PO (2.2

Furthermore, according to Bayes decision theory, in order to minimize the average proba-
bility of error we should select the class with the highest a posterior probability P(M;|x)
(Duda & Hart 1973). Hence the general decision rule for I classes is:

Choose M; if P(M;|z) > P(M;|z) Yi#j (2.3)
Note that this would be equivalent to
Choose M; if P(xz|M;)P(M;) > P(xz|M;)P(M;) Vi#j (2.4)

as P(z) is fixed during recognition. Nonetheless, we are still left with the problem of
choosing a model and estimating its parameters. The implication of Bayes decision rule is
that we should optimize at training time the same measure that we use at recognition time,

i.e., the a posteriori probability of the model given the observation.

2.1.2 Problem Formulation
Parameter Estimation

In statistical pattern classification as described above, it is known that a system
leading to the minimum probability of error is the one that is trained to maximize the
a posteriori probability of the correct class conditioned on the evidence (Duda & Hart
1973) and uses that same criterion during recognition. In real-life problems, however, we
rarely have accurate knowledge about the structure of the probability functions. Given the
typical high-dimensional input space and the limited training set, we can not evaluate the
probability function directly from the training samples. Therefore, some parameterization
of the probability function is needed, e.g., if we assume a normal density we only need to

estimate its mean and covariance matrix.



In speech recognition two sources of knowledge are commonly used: “acoustic” and
“language” knowledge. The acoustic knowledge provides the relation between the sound
wave (or spectral patterns in the sound wave) and the linguistic identity of the utterance.
The language information tells us about the phonemes and words, i.e., the pronunciation
of each word in our vocabulary. In addition, the language model estimates the probability
of a word given the hypothesized previous words.

Hence, these two sources of knowledge are used to parameterize the probabil-
ity function that maps the acoustics of the utterance to the space of possible sentences.
Specifically, if the speech signal is sampled at some fixed interval, and the acoustic vec-
tors are concatenated, we can represent the input sequence to he classified with X =
{o1,....2p....,2n}. Additionally, we denote by M; (i = 1,...,T) one from the set of all
possible sentences. Then we parameterize P(M;|X ) (the a posteriori probability of a sen-
tence given a sequence of acoustic vectors) with I. the parameter set which represents the
language knowledge, (both a lexicon and a probabilistic grammar), and ©, the parameter
set that represents the acoustic information. Thus, we want to estimate in training and use

in recognition the following probability function P(M|X, L, 0).

Problem Formulation

Bayes Decision theory shows (as described above) that X will be optimally assigned

to the sentence associated with model M; if

M; = argmax P(M;|X,L,0), i=1,...,1 (2.5)
M;
During training we should optimize the measure that we use in recognition. Thus,

the ideal training algorithm should determine the set of parameters (@,L) that will maximize

P(M,, | X;, I,0) for all training utterances® X, (7 = 1,...,.J), associated with /\/[71,‘737 ie.,
o J

(0,1) = argmax H P(M.,,;|X;,1,0) (2.6)
((;‘)7 T/) =1

?Note that J is the number of training sentences in the training set, while N is the number of acoustic
vectors in a particular acoustic vector sequence.

SM% represents the correct model associated with the specific input sequence X, that is known at
training time. Strictly speaking, w; is the index of the correct model for the acoustic vector sequence j.
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with the following constraint:

I
Y P(Mi|X;,1,0) = 1, Vj; (2.7)

=1
for every X, and where the sum over ¢ represents the sum over all possible models. Note
that this constraint makes the Maximum a Posteriori (MAP) criterion (2.6) discriminant.
That is, when increasing the posterior probability of the correct model, the total probability

mass assigned to all other models will automatically be reduced.

Preview

The problem formulation above does not specify the model. i.e., how to estimate
the posterior probability of a sentence given the parameters, acoustics, and the language
maodel. In the following sections we describe several solutions to this problem. The discus-
sion is divided into existing models and training algorithms. Specifically, we discuss models
such as the Hidden Markov Model (HMM), hybrid systems of Artificial Neural Networks
(ANNs) and HMMs, and segment-based models. The next chapter includes a discussion of
several training algorithms and approaches for the models mentioned above. In particular
there is an emphasis on discriminant approaches, such as Maximum Mutual Information
(MMI) and Generalized Probabilistic Descent (GPD). Overall, we show that these solutions
do not maximize the MAP criterion. They either maximize other criteria or approximate

them.

2.1.3 Definitions and Notation

To facilitate the following discussion notation and basic terms are defined:

e A set of states Q@ = {q¢1,...,qx}, that contains all the states from which phone and
word models will be built. Fach state class will be associated with a specific proba-
bility density function (PDF) or with specific statistical properties (see “conditional
transition probabilities” in Section 5.2). For instance, if one wants to model the acous-
tic production in the beginning, middle, and end of a phone differently, cach phone is

modeled by three different states.

e X = {xy,...,znN} is a sequence of acoustic vectors that is associated with a specific

utterance. A sub-sequence of acoustic vectors that is local to the current vector,
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extending ¢ frames into the past and d frames into the future is expressed by ngcd =
{&n_csee @py...,nrq}. Fach acoustic vector is calculated from a short interval of

speech, usually around 20 ms (shifted every 10 ms).

M; is defined for ¢« € 7 = {1,2,...,7}, the set of possible model indices; 7 is the
number of possible models (in the case of continuous speech, [ indicates the number
of possible sentences allowed by the grammar, although this is generally infinite). In
continuous speech recognition the models represent all possible sentences. M; is a

directed graph with C; states each of which belongs to .

My,, w; € T, is the “correct” model associated with a specific training sequence
X

i 7 = 1,...,J. Strictly speaking, w; is the index of the correct model for the

training sequence X;.

The parameter set describing all models is defined as @ = {Aq,..., A;,..., A7}, in
which A; represents only the parameters present in M;. Of course, the different M,’s,
fore=1....,7Z, can share some common parameters. In the hybrid systems discussed
in this study, all models share the same set of parameters @ through a common neural

network, which will be parameterized in terms of ©.

The set of parameters that are only present in M,,; will be denoted ©,, , which is a

subset of 0.
¢" denotes the state at time n.

g, means that state g, has occurred at time n. Strictly speaking, g¢; denotes the

assignment of the value k to the random variable ¢".

I' is a state sequence of length N. FEach I' is a realization of the stochastic state
process, where the values assigned to the state process at each time step are taken
from ). Sometimes we write it explicitly as I'; = {q]l], . .,q]@],...,q{—\‘:}. A state

sequence which is legal in a given model M; is also called a path in M;.

P(-) represents probabilities, while p(-) denotes probability density functions (PDFs)
and likelihoods.
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2.2 Hidden Markov Models (HMMs)

2.2.1 Introduction

This section is a short review of the classical HMM approach to speech recognition.
For a complete explanation, see (Huang et al. 1990; Levinson et al. 1983a; Rabiner 1989;
Baker 1975; Jelinek 1976; Jelinek & Mercer 1980). Currently, this approach is very popu-
lar and a number of large-vocabulary, speaker-independent, continuous speech recognition
state-of-the-art systems have been based on this approach. An HMM used for speech is
a production model, and for each sentence it models the inherent statistical variations in
speaking rate, pronunciation, and the differences between speakers (in speaker-independent
models). The main idea is that we can approximate a continuous process as a sequence of
short steady states. Roughly speaking we can model human speaking as moving between
different states such that each state has fixed properties in terms of its repertoire of sounds.

In order to implement practical systems based on HMMs, a number of simplifying
assumptions are typically made about the signal. For instance, although speech is a non-
stationary process, HMMs model the sequence of feature vectors as a piecewise stationary
process. That is, an utterance X = {xy,...,2,,...,2x} is modeled as if it were produced by
a succession L of discrete stationary states ¢ € Q, with instantaneous transitions between
these states. In this case, an HMM is defined (and represented) as a stochastic finite
state automaton with a particular topology (usually strictly left-to-right, since speech is
sequential). The approach defines two concurrent stochastic processes: the sequence of
HMM states (modeling the temporal structure of speech), and a set of state output processes
(modeling the [locally] stationary character of the speech signal). The HMM is called a
“hidden” Markov model because there is an underlying stochastic process, the sequence of
states, that is not observable but that affects the observed sequence of events. It is called
“Markov” because the statistics of the current state are modeled as being dependent only
on the current and the previous state (for the first-order Markov case).

Ideally, there should be an HMM for every possible utterance. However, this is
clearly infeasible for all but extremely constrained tasks. (Generally a hierarchical scheme
must be adopted to reduce the number of possible models. First, a sentence is modeled as a
sequence of words. To further reduce the number of parameters (and the required amount of
training material) and to avoid the need of a new training each time a new word is added to

the lexicon, sub-word units are usually preferred to word models. Although there are good



13

linguistic arguments for choosing units such as syllables or demi-syllables (Fujimura 1975;
Segui et al. 1980; Levelt & Wheeldon 1994), the unit most commonly used is the phone (or
context-dependent versions such as the triphone). This is the unit that we have generally
used in our work, resulting in a selection of between 50 and 70 sub-word models. In this
case, word models consist of concatenations of phone models (constrained by pronunciations
from a lexicon), and sentence models consist of concatenations of word models (constrained
by a grammar).

In the following section we describe the assumptions of HMM modeling.

2.2.2 Assumptions

Traditionally, in HMM modeling, the probability estimation process is divided
into two parts: (1) langnage modeling, which does not depend on the acoustic data, and
(2) acoustic modeling. The goal of the language model is to estimate prior probabilities of
sentence models P(M;|L). The acoustic modeling role is to estimate the model-dependent
probability densities p(X|M;, ©).

Additionally, several additional assumptions are usually required to make the es-

timation of p(X|M;, ©;) tractable:

¢ Output-independence Assumption: Acoustic vectors are not correlated (obser-
vational independence). The current acoustic vector z,, is assumed to be conditionally
independent of the previous acoustic vectors (e.g., Xf_l). Furthermore, the assump-
tion is that observations within the same speech segment (generated by the same
state) are independent and identically distributed (i.i.d.), an unrealistic assumption

given the non-stationary nature of speech.

To limit the impact of these assumptions, acoustic vectors at time n are usually com-
plemented by their first and second time derivatives (Furui 1986h; Poritz & Richter
1986) computed over a span of a few frames, allowing very limited acoustical context
modeling. Another solution to limit these assumptions is to consider a few adjacent
frames (typically 3-5 frames in total) on which linear discriminant analysis is per-

formed to reduce the dimension of the acoustic features (Haeb-Umbach & Ney 1992).

¢ Markov Assumption: Markov models are generally first-order Markov chains.

Explicitly, the probability that the Markov chain is in state ¢, at time n depends only
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Figure 2.1: HMM - An Example

on the state of the Markov chain at time n — 1, and is conditionally independent of
the past (both the past acoustic vector sequence and the states before the previous

one).

2.2.3 Definition of the Hidden Markov Model

In this section we formally describe HMMs. An HMM can be defined by:

o A= {ajla; = P(¢"T" = j|l¢" = 1)}, a state transition probability distribution, where
a;; denotes the transition probability from state ¢ to state j. Usually the assumption

is that this probability distribution is the same for all time steps.

o B = {b;(x)|bj(z;) = P(z;]q¢ = j)}, for each state, there is a corresponding output
probability (a discrete probability distribution in the discrete case and a continuous
probability density function in the continuous case). It refers to the probability of
generating some discrete symbol z; in state ¢;. Usually these probabilities are called

emission probabilities.
o Il = {r;|m; = P(q' = 1)}, denotes the initial state distribution.

These definitions in addition to the relevant definitions in Section 2.1.3, represent an HMM,

A= (A, B, 1I). A very simplistic HMM is pictured in Figure 2.1.
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2.3 Hybrid Systems

2.3.1 Multilayer Perceptrons (MLPs)

In this thesis, the discussion of neural networks for speech will be limited to the
Multi-Layer Perceptron (MLP), a form of ANN that is commonly used for speech recog-
nition. However, the analyses that follow are generally extensible to other kinds of ANN,
e.g., a recurrent neural network (Robinson 1994), or a Time-Delay Neural Network (TDNN)
(Waibel et al. 1989).

MLPs have a layered feed-forward architecture with an input layer. zero or more
hidden layers. and an output layer. FEach layer computes a set of linear discriminant func-
tions (Duda & Hart 1973) (via a weight matrix) followed by a nonlinear function, which is

often a sigmoid function
1
f(T) o 14 exp(—m)

As discussed in (Bourlard & Morgan 1994), this nonlinear function performs a different

(2.8)

role for the hidden and the output units. On the hidden units, it serves to generate high
order moments of the input; this can be done effectively by many nonlinear functions, not
only by sigmoids. On the output units, the nonlinearity can be viewed as a differentiable
approximation to the decision threshold of a threshold logic unit or perceptron (Rumelhart
et al. 1986), essentially to count errors. For this purpose, the output nonlinearity should
be a sigmoid or sigmoid-like function. Alternatively, a function called softmax can be used.

For an output layer of K units, this function is defined as

oy = exp(i)
flzq) Zle exp(en) (2.9)

It can be proved that MLPs with enough hidden units can (in principle) provide
arbitrary mappings g(z) between input and output. The MLP parameter set © (the ele-
ments of the weight matrices) are trained to associate a “desired” output vector with an
input vector. This is generally achieved via the Frror Back-Propagation (EBP) algorithm
(Rumelhart et al. 1986) that uses a steepest descent procedure to iteratively minimize a
cost function in their parameter space. Since in our approach the HMMs will be described
by the parameters of the neural network, we also denote the MLP parameter space by 0.

Popular cost functions are, among others, the Mean Square Error (MSE) criterion:

N
b= Z_: I 9(20,0) = d(z) | (2.10)
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or the relative entropy criterion*:

E, = i i d(n) In —En)_ (2.11)

n=1 k=1 gk($n7®)

where g(2,,0) = (g1(2,,0), ..., 9x(2,,0),...,9x(2,,0))" represents the actual MLP out-
put vector (depending on the current input vector z,, and the MLP parameters ©), d(z,) =
(di(zn), .. dp(xy),....drg(x,))" represents the desired output vector (as given by the la-
beled training data), K the total number of classes, and N the total number of training
patterns.

MTI.Ps, as well as other neurally-inspired architectures, have been used for many
speech-related tasks. For instance, for some problems the entire temporal acoustic sequence
is processed as a spatial pattern by the MLP. For isolated word recognition, for instance,
each word can be associated with an output of the network. However, this approach has
not been useful for continuous speech recognition and will not be discussed further here

(Lippmann 1989).

2.3.2 Motivations

ANNs have several advantages that make them particularly attractive for Auto-

matic Speech Recognition (ASR), e.g.:

e They can provide discriminant learning between speech units or HMM states that are
represented by ANN output classes. That is, when trained for classification (using
common cost functions such as MSE or relative entropy), the parameters of the ANN
output classes are trained to minimize the error rate while maximizing the discrim-
ination between the correct output class and the rival ones. In other words, ANNs
not only can train and optimize the parameters of each class on the data belonging to
that class, but also can attempt to reject data belonging to the other (rival) classes.
This is in contrast to the likelihood criterion that does not lead to minimization of

the error rate.

*Tn a number of references, including (Bourlard & Morgan 1994), this criterion is defined differently. Tn
particular, the desired outputs are sometimes assumed to be independent, binary random variables and as a
result this criterion gets a different form (which is sometimes called the cross entropy (Richard & Lippmann
1991)). However, viewing the network outputs as a posterior distribution over the values of one random
variable (class conditioned on acoustic data), a discrete version of the classical definition of relative entropy
may be used, as given here.
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e Because ANNs can incorporate multiple constraints and find optimal combinations
of constraints for classification, feature vectors do not need to be assumed indepen-
dent. More generally, there is no need for strong assumptions about the statistical

distributions of the input features (as is usually required in standard HMMs).

e They have a very flexible architecture that easily accommodates contextual inputs

and feedback, and both binary and continuous inputs.

e ANNSs are typically highly parallel and regular structures, which makes them especially

amenable to high-performance architectures and hardware implementations.

A general formulation of statistical ASR can be summarized simply by a question:
how can an input sequence (e.g., a sequence of spectral vectors) be explained in terms of
an output sequence (e.g., a sequence of phones or words) when the two sequences are not
synchronous (since there are multiple acoustic vectors associated with each pronounced word
or phone)? It is true that neural networks are able to learn complex mappings between two
vector variables. However, a purely connectionist formalism is not very well suited to solve
the sequence-mapping problem. Most early applications of ANNs to speech recognition
have depended on severe simplifying assumptions, e.g., small vocabulary, isolated words,
known word or phone boundaries (Lippmann 1989). We shall see here that further structure
(beyond a simple MLP) is required to perform well on continuous speech recognition, and
that HMMs provide one solution to this problem. First, the relation between ANNs and
HMMs must be explored.

2.3.3 MULPs as Statistical Estimators

MLPs can be used to classify speech classes such as words. However, MLPs by
themselves classifying complete temporal sequences have not been successful for continuous
speech recognition (Lippmann 1989). In fact, used as spatial pattern classifiers, they are
not likely to work well for continuous speech since the number of possible word sequences in
an utterance is generally infinite. On the other hand, HMMs provide a reasonable structure
for representing sequences of speech sounds or words. One good application for MLPs is to
provide the local distance measure for HMMs, while alleviating typical drawbacks such as
lack of discrimination and assumptions of no correlation between acoustic vectors.

For statistical recognition systems, the role of the local estimator is to approximate
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Figure 2.2: MLP - An Example

probabilities or probability density functions. In particular, given the basic HMM equations,
we would like to estimate something like p(x,|qx), which is the value of the probability
density function (pdf) of the observed data vector given the hypothesized HMM state. The
MLP can be trained to produce the posterior probability P(qi|z,) of the HMM state given
the acoustic data. This can be converted to emission probability density function values
using Bayes’ rule.

Several authors (Bourlard & Wellekens 1989a; Bourlard & Morgan 1994; Gish 1990;
Richard & Lippmann 1991) have shown that ANNs can be trained to estimate a posteriori
probabilities of output classes conditioned on the input pattern. Recently, this property
has been successfully used in HMM systems, referred to as hybrid HMM/ANN systems, in
which ANNs are trained to estimate local probabilities P(gg|2,) of HMM states given the
acoustic data (see, e.g., (Lubensky et al. 1994)).

Since MLPs require supervised training, all these systems have been used so far in
the framework of Viterbi training, which provides the segmentation of the training sentences
in terms of g;’s and, hence, MLP training targets. A typical MLP is pictured in Figure 2.2.
The principle of these systems is briefly recalled here.

Let ¢p, with £ = 1,..., K, be an output class of an MLP. Since we will use the
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MLP for probability estimation associated with each HMM state ¢, (k= 1,..., K), there is
a one-to-one equivalence between the ¢;’s and the ¢;’s that is associated with the discrete
stationary states of ). Also, we associate the parameter set @ as defined for HMMs with
the MLP parameter set.

The output activation of the k-th MLP output class for a given set of parameters
O and an input x, is denoted gx(z,,0). Since MLP training is supervised we will also
assume the training set consists of a sequence of N acoustic vectors {y,29,...,2p,..., 2N}
labeled in terms of ¢;’s. At time n, the input pattern of the MLP is acoustic vector z,, and
is associated with a state ¢ .

For the popular MLP cost functions, it can be proved (as noted above) that the
optimal MLP output values are estimates of the probability distribution over classes con-

ditioned on the input la(qk|mn):
gr(2n, ©7") = P(gyle,) (2.12)
if:
e the MLP contains “enough” parameters to be able to reasonably approximate the
input/output mapping function,

e the network is not over-trained (which can be assured by stopping the training before

the decline of generalization performance on an independent cross-validation set),
e the training does not get stuck at a local minimum.

In (2.12), ©°" represents the parameter set minimizing (2.10) or (2.11).

It has been experimentally observed that, for systems trained on a large speech
corpus, the outputs of a properly trained MLP do in fact approximate posterior probabilities
(Bourlard & Morgan 1994).

This conclusion can easily be extended to other cases. For example, if we provide
the MLP input not only with the acoustic vector x,, at time n, but also with some acoustic

context Xﬁj’;j =&y ey Ty Xpig ), the output values of the MLP will estimate
9e(,,07) = P(qp|X)3D),  Wi=1,.. K (2.13)

This windowing over time has been used in the standard hybrid HMM/ANN system (briefly

summarized later in this section) to account for correlation between acoustic vectors. If the
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previous class is also provided to the input layer (leading to a quasi-recurrent network), the

MLP output values will be estimates of
9o, O71) = P(GEIXIFE 1Y), Vi (=1, K (2.14)

It will be shown in Chapter 4 that this is a form of the local probability the hybrid
HMM/MLP theory tells us to use. This will be referred to as the “conditional transition
probability” and will be the major theme throughout this thesis.

In addition, this conclusion remains valid for other kinds of networks, given similar
training conditions. For example, recurrent networks (Robinson 1994) and radial basis
function networks (Renals et al. 1991) can also be used to estimate posterior probabilities.

There is another important generalization of this property that will be essential
later in this thesis. If the ANNs are trained with an estimate of the posterior probabil-
ities of the output states (as opposed to the “1-from-K” binary output targets used for
a classification mode training), then (2.12) remains valid. In other words, if the targets
come from some independent “expert”, the net will learn to produce posterior proba-
bilities as well.> Although this property is mentioned in (Bourlard & Wellekens 1989a;
Bourlard & Morgan 1994; Richard & Lippmann 1991), it has not previously used in hybrid
HMM/MLP systems because of the lack of a full algorithm for the convergence to better
probabilities. Such an algorithm has now been developed, and will be presented in this

thesis.

Estimating HMM Likelihoods with MLP

Since the network outputs approximate Bayesian probabilities, gi(x,,0) is an

estimate of
p@nlqe) Plar)
p(an)

which implicitly contains the a priori class probability P(gz). Tt is thus possible to vary the

P(gplx,) = (2.15)

class priors during classification without retraining, since these probabilities occur only as
multiplicative terms in producing the network outputs. As a result, class probabilities can
be adjusted during use of a classifier to compensate for training data with class probabilities

that are not representative of actual use or test conditions (Richard & Lippmann 1991).

®Actually, it is easy to prove that, for the popular MLP cost functions, g(zy) will be an estimate of
E{d(zn)|zn}, where E stands for the expected value.
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Scaled likelihoods p(z,|qx) for use as emission probabilities in standard HMMs can
be obtained by dividing the network outputs gi(z,) by the relative frequency of class ¢ in

the training set, which gives us an estimate of:

Plarlen) _ plealar)
P(qr) p@n)

During recognition, the scaling factor p(x,) is a constant for all classes and will not change

(2.16)

the classification. It could be argued that, when dividing by the priors, we are using a scaled
likelihood, which is no longer a discriminant criterion. However, this need not be true, since
the discriminant training has affected the parametric optimization for the system that is
used during recognition. Thus, this permits the use of the standard HMM formalism, while

taking advantage of ANN characteristics.

2.4 Non-stationary Modeling

This section includes a brief a number of models that have been proposed to remedy
some of the shortcomings of HMMs. A quick solution might be to represent each unit of
speech by enough different states to approximate its non-stationary nature in a stepwise
fashion. For instance, a vowel could be represented by ten different states. This solution

has two major limitations:

e There are too many free and independent model parameters. This necessitates more
training data, and also might be more prone to capturing irrelevant sources of variance

in the data than a simpler model.

e Such a model does not capture the correlation and dependence between the different
states. For states with a short duration, this would be even more pronounced, since the
change hetween two states in a sequence would correspond to only a small movement

of articulators for a given speaker.

Several extensions to the basic HMM have been proposed in order to overcome
some of these deficiencies. For example, autoregressive HMMs condition the emission prob-
ability of a given state on previous observations (Juang & Rabiner 1985). However, none of
these extensions have explicitly modeled the emission in a given phone as a non-stationary

process. In general this is too difficult to handle with a practical number of parameters.
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A number of HMM alternatives model the sequence of frames emitted in a given
sub-word unit as correlated and dependent on each other (Digalakis 1992; Ostendorf &
Roukos 1989; Ghitza & Sondhi 1993; Deng 1992) (see also Section 4.3.2). The models differ
in their assumptions about the nature of the correlation between the frames in the sequence.
For instance, some assume that only consecutive frames are correlated, while others assume
that all the frames in the sequence are dependent on each other. In general these models do
not require the HMM assumption of independent and identically distributed observations.

In the following section we survey segment-based approaches that are in this family.

2.4.1 Segment-Based Approaches
Introduction

In segment-based models the basic unit is a sequence of acoustic vectors emitted
in a given speech unit (a “segment”), as opposed to a single acoustic vector as used for
HMMs. The production of the acoustic vectors in a segment may be described as a three

step procedure (Digalakis 1992):

1. Select the length of the segment according to P(L|sy), where L is the random variable

that denotes the length of the segment, and s is a particular speech unit.

2. Generate a fixed length segment M according to the distribution P(y1,y2, ..., yar|sk)-
The distribution models the trajectory of the sound in the feature vector space. M
is chosen to be greater than all the possible values of L. Y = g1, ys,...,yar is called

the hidden sequence of acoustic vectors.

3. Down-sample Y using the time-warping transformation 77 and output the observed
sequence of acoustic vectors X = {zy,29,...,2p}. This transformation can be either

linear or non-linear depending on the specific segmental model.

Segmental Models

These models differ in the form of the distribution (Y]s;) and in the time-warping
transformation 77. Ostendorf and Roukos (Ostendorf & Roukos 1989) have used (among a
number of methods) linear time sampling in their study, i.e., sampling Y in equal intervals
along the time axis as their time warping procedure. Their specific implementation had

ten 14-dimensional vectors of cepstral coeflicients. They used a multivariate Gaussian to
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represent the entire segment, which can require a 140 by 140 full covariance matrix for each
phone (assuming that feature dependence is accounted for).
Ghitza and Sondhi developed a model (Ghitza & Sondhi 1993) that can also be

viewed as a stochastic segment model with the following distinctions:

e Their warping procedure is a dynamic time warping technique, instead of the linear

time warping method used by Ostendorf and Roukos.

e They used diphones as their sub-word units, as opposed to the phones in Ostendorf

and Roukos’ stochastic segment model (Ostendorf & Roukos 1989).

e They maintained the HMM framework and assumed a semi-hidden Markov chain, i.e.,

each state has an explicit duration distribution.

These stochastic segment models are not inherently subject to the constraints of

the i.i.d. assumptions discussed earlier. However, there are some practical difficulties:

1. There are many free parameters that must be estimated reliably from the data, e.g.,
a large covariance matrix. As a result, independence assumptions are often made,

leading to less powerful models.

2. These methods explicitly assume a particular parametric form for the observation dis-
tributions, e.g., multivariate Gaussian. This assumption is already faulty for standard
HMMs, but may be even a worse approximation once observation interdependencies

are taken into account. (Nonetheless, it is a sensible place to start.)

3. All the models assume a given segmentation, e.g., the knowledge of the boundaries
between the basic speech units, which is difficult to obtain. One solution is to do an

exhaustive search of all reasonable segmentations.

4. Warping the data to afixed length segment may delete or obscure relevant information.

A Stochastic Dynamic System Approach

This model assumes a discrete-time, linear, stochastic dynamic system, with a
state process as the source for the observation process. To model an underlying dynamic
system, some assumptions are required. For example, Digalakis has proposed two possible

model constraints:
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1. Trajectory invariance: 1t is assumed that the unobserved trajectory of state vectors
in the state space is the same for each speech segment length and is the source for
all possible realizations of the speech segment. Given that the state vector at each
time step is a vector random variable, this translates into a fixed sequence of state
transition matrices. The observed speech segment is then a down-sampled version of
the trajectory of the feature vectors created by the system. For a long realization (a
long observation sequence) the underlying trajectory is sampled at shorter intervals
than a short observation sequence. Consequently, long observation sequences have

higher correlation between successive frames than short observation sequences.

2. Correlation invariance: Tt is assumed that the underlying trajectory in state space
varies with the realization length, and the sequence of state-transition matrices for a
particular realization depends on the realization length. It is assumed that the correla-
tion between two observations depends only on the relative location of the observations
in the segment. The correlation is invariant under the time-warping transformation.
Roughly speaking the trajectory length is chosen according to the length of the re-
alization. Thus, the state change rate is slower than under the trajectory invariance

assumption, making it somehow a more realistic approach.

In his study, Digalakis assumes that the observed segment of speech is the output of a
piecewise time-invariant linear dynamical system. He uses up to five invariant regions for
each model. The models based on the correlation invariance assumption outperformed the
models based on the trajectory invariance assumption for the task of phone classification.
For more details see (Digalakis 1992; Digalakis et al. 1993). The stochastic dynamic system
approach appears to have more modeling power than an HMM, and can potentially capture
the dynamics of acoustic vectors within a segment of speech. However, there are still open
issues about the structure of the dynamic system, such as the arguable assumptions of

linearity and several types of invariance.
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Chapter 3

Training Algorithms and

Optimization Criteria

3.1 Likelihood Estimation and Training

3.1.1 Introduction

Theoretically the optimal way to classify an input sequence is to choose the class
with the highest posterior probability given this sequence (Duda & Hart 1973). Therefore,
at training we want to maximize the posterior probability of the correct model (sentence)
given the evidence (sequence of acoustic vectors). An optimization criterion for parameter
estimation that achieves this goal during training, is the Maximum a Posteriori (MAP)
criterion. Most speech recognition systems however, are trained according to a maximum
likelihood criterion that maximizes, in the parameter space, the likelihood of the data given
some model. In this section, besides describing the ML criterion, we discuss under what
assumptions it results in the best possible parameter set.

In HMMs, this likelihood can be represented as P(X|M,0). Training HMMs

according to the ML criterion is aimed at finding the best set of parameters © such that:

J
© — argmax H P(X;|M,,,,0) (3.1)
e =

Note that this criterion is different from the criterion that is specified in (2.6). The main

difference is that ML is not discriminant; maximization of (3.1), the likelihood of the correct
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sentence producing the utterance, does not necessarily decrease the likelihood of all other

models, unlike the MAP criterion that “ties” all models by (2.7).

3.1.2 The Relation between ML and MAP

Classically, the relation between likelihood estimation and MAP estimation is ob-
tained by applying Bayes’ rule:

P(X|M,L,0)P(M|L,O)
P(X|L,0)

P(M|X,L,0) = (3.2)

For practical reasons, it is assumed that:

1. The parameters O of the acoustic model are independent of the parameters I, of the

language model, yielding

Q

P(X|M,I,0) P(X|M,0) (3.3)

P(M|L,0O)

X

P(M|L)

2. Despite the fact that © and L vary during training, P(X|L,Q) is assumed to be

constant.

Incorporating these assumptions for a particular model M, associated with the training

utterance x; we get,

P(XG[ My, ©)P(My, | L)

P(M, |X;,L,0) = 3.4
(Mo, X £,6) HIL.0) o
Since p(X;|L.0)is not constant during training
P(Mu,| X5, L, 0) &
XMy, 7® P(M,,, | T

Yoigu, PXGIMi, @)P(MG|L) + P(X ;| My, ©)P(M,, | L)

Maximum likelihood training maximizes p( X;|M,,,, ©) which appears both in the numerator
and the denominator of (3.5). However, it does not necessarily maximize the left side, which
is our goal. Furthermore, besides increasing the probability of the correct model we might

also be increasing the probabilities of the incorrect models.
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3.1.3 Implementation - The EM Algorithm

The most popular approach to iterative maximization (3.1) has been described
in a number of classic papers (Baum & Petrie 1966; Baum et al. 1970; Baum 1972; Li-
porace 1982). Starting from initial guesses ©°, the model parameters are iteratively up-
dated according to the “Forward-Backward” algorithm [or, equivalently, the Expectation-
Maximization (EM) algorithm (Dempster et al. 1977)] so that (3.1) is maximized at each
iteration. This kind of training algorithm, often referred to as Baum-Welch training in the
particular case of HMMs, can also be interpreted in terms of gradient techniques (Levinson
et al. 1983a; Levinson 1985).

Below we describe the general idea behind the EM algorithm. Besides its usage
in HMM training as described above, it has a role in the training algorithm that will be

presented in Chapter 6.

The EM Algorithm

This section is a brief description of the EM algorithm. Its application to HMM
parameter estimation is described in (Huang et al. 1990; Levinson et al. 1983b; Baker 1975;
Jelinek 1976; Jelinek & Mercer 1980; Lee 1989). Roughly speaking, there is an optimization
problem that would be greatly simplified by the knowledge of additional variables Y. For
example, optimizing (3.1), the likelihood of producing the acoustics, would be easier if the
state sequence that produced the data was known. So we estimate the missing data Y (state
sequence) using the observed data (acoustic sequences) and the current set of parameters
0,. We mazimize the function using the estimated Y and we get a new set of parameters
0©,41 that lead to a new estimate of the missing data Y. The estimation and maximization
steps are iterated until the guaranteed convergence to a local maximum (Dempster et al.
1977).

More precisely, following (Dempster et al. 1977), the goal is to maximize the fol-
lowing likelihood function L(X;©), where @ is the set of the parameters of the function and
X the observations. The function estimates the log-likelihood of producing the observations
given ©. The problem would be simplified by the knowledge of additional variables Y. In
that case we will maximize L.(X UY;0), the log-likelihood of producing the complete data
X UY given O, and usually called the complete likelihood. However, since Y is not observ-

able, the EM algorithm relies on integrating over the distribution of Y, with the following
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auxiliary function:

Q(0,0,) = Ey[L.(X U Y;0)|X,0/ (3.6)

which is the expected value of the complete data likelihood, given the observed data X and
the current estimate of the parameters 0.

The main difference between the likelihood function and the auxiliary function is
that the auxiliary function is a deterministic function and we can optimize it, while the
likelihood function is a stochastic one (it depends on the unobserved data Y). The EM

algorithm iterates between the following two steps:
e Estimation: Compute Q(0, 0;) based on 0.

e Maximization: Maximize the auxiliary function.

041 = argmax Q(0,0y) (3.7)
€]

In the case that we are unable to maximize the auxiliary function as required by
the EM algorithm Q(©,0,), but can only increase it, the algorithm is called Generalized

EM (GEM), and is also guaranteed to converge to a local maximum.

3.1.4 Summary

The two main conceptual problems with the maximum likelihood approach are:

e It is implicitly assumed that the model (with all its assumptions relative to its topol-
ogy and probability density functions) is accurate and reflects the structure of the
data (although the data might not adhere to the constraints imposed by the HMMs).
If we had enough training data, it might be preferable to infer all the parameters
of the models (including topology and non-parametric probability density functions)
directly from the data. This can be seen as implicitly using a Bayes or MAP criterion
(maximizing P(M|X)) during training instead of M1.. Since the posterior probability
includes the effects of prior information, the language model would also be inferred
from the training data. However, it appears that this would require a prohibitive
amount of training data. Nonetheless, the role of domain-specific knowledge is irre-

placeable. It has the role of reducing the search space, i.e., the search is constrained to
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all models that are feasible given our knowledge. In addition, the use of other knowl-
edge sources might result in better generalization, as the dependency on a particular
training set is weaker. Hence, a combination of data-driven and knowledge-based

approaches is desired.

e By training with ML instead of MAP, we strongly reduce the discriminant properties
of HMMs. Ideally, each HMM should be trained not only to generate high probabilities

for its own class, but also to discriminate against rival models.

Both of these two points (but particularly the second one) are related to the discussion that
follows on discriminant criteria for HMM training.

The ML criterion can lead to optimal recognition performance only if the model is
an exact statistical model of the source and the amount of training data is infinite (Nadas
1983; Duda & Hart 1973). However, these conditions are rarely (if ever) satisfied in speech

recognition.

3.2 Discriminant Approaches

3.2.1 Introduction

In this section we describe discriminant approaches that have been proposed for
speech recognition in general, and for HMMs in particular. Roughly speaking, discriminant
approaches try to model the boundaries between the classes, and not model the classes
themselves. Thus, a priori knowledge of class models does not play the same role. With an
inaccurate model, the best we can do is to optimize its ability to distinguish between the un-
derlying classes, which is typically achieved by replacing the ML criterion by a discriminant

one.

3.2.2 Maximum Mutual Information (MMT)

Initially introduced in (Bahl et al. 1986; Brown 1987), this method aims at max-
imizing the mutual information (Cover & Joy 1991) between a set of (sentence) models
M,,, and the associated sequences of acoustic vectors X;. This mutual information is then
defined as (Cover & Joy 1991):
p(My;, X;|L, 0)

POL, L.opx, 1.0 Y

I(My,. X;|L,0) = > p(My,X;|L,0)log
My, X
w]7 J
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p(ijvXﬂLv@) } (3‘9)

= Loy, xiLe) {bg P(M,,|L,0)p(X,[L.0)

where © is the whole parameter space (for all models) in which optimization is performed
and the sum over (M,,, X;) represents a sum over all training utterances. Ep(Mw] X,|L.,0)
stands for the expected value according to the mass function p(M,, , X;/L,0). For one
particular (M,,, X;) set, we then have:
o MM X|L.0)

P(Moy 1L, O)p(X,IL, 0)

P(Xj| My, L, O)

Sy (XM, L ©)P(M;| L, ©)

I(My,, X;|L,0) =

As already mentioned in Section 2.2, the language model parameters I, are often
assumed independent of the acoustic parameters © and are estimated independently from a
(large) text copra. Furthermore, the likelihoods p( X ;| M;, ©®) depend only on the parameters
O; present in M;. As a consequence, (3.10) can be rewritten as
p(Xj|Mw] ) ®w] )

(M, ,X|L,0)=1
(M- 511, 0) Ongzlp(XﬂMn@i)P(Mi\L)

(3.11)

in which the contribution of each term in the denominator is weighted according to the
prior probability of the associated sentence as given by the language model. independent of
the acoustic training data.

It is obvious that (3.10) and (3.11) are discriminant criteria. In (Bahl et al. 1986) it
is shown that it is possible to get some kind of re-estimation recursion of local probabilities
but, unfortunately, there is no proof that the recursion converges and there is no guarantee
that the new estimates of (e.g., transition) probabilities are positive. As a consequence, a
local gradient ascent method is usually used for optimization and the standard (likelihood-
based) forward-backward recurrences are used to estimate the gradient. This is similar to
the Alpha-Nets presented in (Bridle 1990) in which the gradient of the mutual information
criterion takes the form of the backward recurrence used in the Baum-Welch algorithm. In
the framework of hybrid HMM/ANN systems, this MMI criterion has been used in (Bengio
et al. 1992). in which the ANN generates the sequence of acoustic vectors for the HMM
and is trained to optimize the (global) MMI. In that paper, it is shown that it is possible
to compute the gradient of the HMM training criterion (MMI or ML) with respect to the
parameters of the ANNs.



31

However, in addition to “theoretical” problems, this algorithm suffers from a “prac-
tical” problem for continuous speech recognition. Indeed, optimization of © to maximize
(3.10) requires not only a forward recurrence for the numerator, but also many forward
recurrences for the denominator to estimate the contribution of all possible rival models.

Several solutions have been proposed to alleviate this problem, including;:

1. If phoneme models are trained, the use of a “looped” phonetic model, i.e., a word
model that allows any possible phoneme sequence (Merialdo 1988). This model
may generate all possible phoneme sequences and, by running the forward recursion

through it, may provide the summed probability in the denominator of (3.10).

2. Estimating the denominator in (3.10) by running an N-best algorithm (Schwartz &
Chow 1990; Schwartz & Austin 1991), that provides the N-hest (rival) sentences

through which we run the forward recursion.

With the algorithm proposed in this thesis, in addition to all the advantages of
“standard” HMM/MLP hybrids (i.e., local nonlinear discrimination, time correlation and
no significant assumptions about probability density functions as discussed below), multiple
forward recursions are not needed. Also, all probabilities will always be estimates of actual

(local and global) posterior probabilities, will be positive, and will sum to one.

3.2.3 Generalized Probabilistic Descent (GPD)

Generalized Probabilistic Descent (GPD) is another discriminant approach that is
sometimes used to train speech recognition systems. GPD is actually very close in spirit
to MMI, although it permits generalization to different kinds of training criteria (Katagiri
et al. 1991).

The idea of GPD is simple and can be summarized as follows. Given the whole set
of parameters! @, define a discriminant function associated with each (word or sentence)
model M; as g;(X; ©). This discriminant function can be any differentiable distance function
or probability distribution. Several instances of this are discussed in (Katagiri et al. 1991),
cach of them leading to different interpretations (as is also the case for MMI and MAP

training). However, often the discriminant function is defined as:

9i(X;0) = —log p(X|M;,0) (3.12)

'In the following discussion we omit the language model L
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Here again, (3.12) can be considered as the “full” (word or sentence) likelihood, the best-
path (Viterbi) approximation (referred to as “segmental GPD training”) or any intermediate
solution like a sum over the S-best matching path scores. Another solution could be to define
¢/(X:0) as the MMI in (3.11). However, since this will then be used in a discriminant
measure (as defined below) taking all the classes into account, it can be easily shown that
using MMTI or full likelihoods as discriminant functions results in the same misclassification
measure.

Classification (i.e., recognition) will then be based on that discriminant function

according to the (usual) rule

X € M; if j= argmax ¢;(X;0) (3.13)
:

Given this discriminant function, we can define a misclassification measure that
will measure the “distance” between one specific class and all the others. Here again, several
measures can be used, each of them leading to different interpretations. However, one of
the most general ones given in (Katagiri et al. 1991) is:

1/n
di(X;0)=g¢;(X,0)—log fll ZGXP(U%(XQ 0)) (3.14)
i#]
in which I represents the total number of possible reference models.

It is easy to see that if = 1, (3.14) is then similar to (3.11), assuming (3.12), as
a weighted ratio of the likelihood of the correct model by the likelihoods all models.

The error measure (3.14) could be used as the criterion for optimization by a
gradient-like procedure, which would result in something very similar to MMI training.
However, the goal of GPD is to minimize the actual misclassification rate, which can be
achieved by passing d;(X;©) through a nonlinear, nondecreasing, differentiable function #’
(such as a sigmoid function) and then minimizing

FO)=Y Y Fldi(X;0)) (3.15)
7 XeM;
Other functions can be used to approximate the error rate. For example, we can also
assign zero cost when an input is correctly classified and a unit cost when it is not properly
classified, which is then another formulation of the minimum Bayes risk.

As briefly shown above, this approach is certainly very general and includes several

discriminant approaches as special cases. For some problems such as continuous speech
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recognition, however, this approach has the same potential difficulty as MMI, i.e., the need
to estimate “scores” (whatever they might be) of both the correct model and all possible

rival models.
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Chapter 4

Transition-based Modeling

4.1 Introduction

In this section we describe our motivation for studying a transition-based mod-
eling approach to speech recognition, a particular model (the time-index model), and our
experiments with the model. Our early interest in modeling transitions between speech
units was motivated by perceptual and physiological studies. Therefore, we decided to
study the following question: given accurate transition information between speech units,
can we significantly improve recognition performance? Specifically, given boundary infor-
mation between speech units, we explicitly condition the emission probability of a state on
the time index, where time index is defined as the number of frames between entering a
state and the current frame. Fxperiments with the time-index model as described below
established the necessary condition that accurate transition information can significantly
improve recognition performance. These results were corroborated by a recent study by
Goldenthal (Goldenthal 1994). Goldenthal found a consistent improvement in phone recog-
nition results when enhancing his segment-based models with explicit transition models.
He used a set of 200 canonical transitions that were created by clustering all the transitions
in the training set. Each canonical transition modeled the trajectory of a fixed number of

frames centered about the transition boundary.
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4.2 Perceptual and Physiological Point of View

A popular model of human speech production is that an utterance is organized as
a succession of vocal-tract states, where each of these states represents a different config-
uration of the articulators. Further, at the level of articulatory performance, the gestures
invoked to actualize these states are relatively slow. They merge spatially and temporally
into a continuous process that usually only approximates the intended states and is highly
sensitive to co-articulation (Deng & Sun 1994). For example, when vowels are co-articulated
with consonants, the spectral pattern of the speech signal varies such that the acoustic tar-
gets found in isolated vowels are never fully realized in the changing spectrum. This is
usually called “undershoot” (Lindblom & Studdert-Kennedy 1967). Ohviously, in humans
this problem is normally coped with.

The question whether human phonemic recognition is context-free or context-
dependent has been addressed by Lindblom and Studdert-Kennedy among others (Lindblom
& Studdert-Kennedy 1967). In their experiments, they tested the role of formant transitions
in vowel recognition. Specifically they tested whether vowel recognition is done by the
steady-state of the formants, i.e., zero rate of change, or by the short-term acoustic context,
such as the direction and rate of adjacent formant transition. In the experiment, American
English listeners were asked to identify monosyllabic nonsense speech. Each consonant-
vowel-consonant (CVC) syllable was a sequence of three elements: transition 4+ pattern at
point of closest approach to target + transition. The vowel-formant patterns assigned to
the points of closest approach to the target were selected from a continuum ranging from
[I] to [u]. The rate and direction of the adjacent transitions were varied by the choice of
two consonantal frames: [w-w]| and [j-j]. Their results showed that the identity of the vowel
stimulus is determined not only by the formant pattern at the point of closest approach to
the target, but also by the direction of the adjacent formant transitions. For instance the
same vowel pattern: Fy = 350H z, Iy, = 1578 Hz, F3 = 2604 H = was recognized by almost
all the subjects as [I] in the context of [jVj] and was recognized by most of them as [U] in
the context of [wVw]. In general, it was shown that the categorization of the continuum is
adjusted in the different environments so as to compensate for an undershoot effect in the
vowel stimuli.

In a more recent study Furui has suggested that sufflicient information for both

vowel and consonant identification is contained across the same initial part of each syllable
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(Furui 1986a). This part includes the maximum spectral transition. He also verified that
the steady-state portions of the formants are not the only key for either vowel or syllable
perception.

Auditory physiologists have collected a vast amount of data describing the response
of mammalian auditory-nerve fibers to simple signals (Kiang 1984; Ruggero 1994) as well
as more complex signals such as synthetic speech (Sachs et al. 1988). From these data it is
clear that some sort of frequency analysis is performed and the dynamics of the response
to non-steady-state signals is an important aspect of the auditory processing. Specifically,
during the initial 15 ms of acoustic stimulation, the discharge rate of auditory-nerve fibers is
often significantly higher than during the steady-state level. The decrease in response rate
is referred to as “adaptation.” Usually there is a very rapid initial decay in rate immediately
after the onset, followed by a slower decay to a steady-state level, about 50 ms after the

onset (Smith & Zwislocki 1975).

4.3 The Time-Index Model

4.3.1 Introduction

Motivated by the studies mentioned above we decided to consider the following
question: given accurate transition information between speech units can we significantly
improve recognition performance? The model that we chose to answer this question is the
time-index model. The main idea behind the time-index model is that all the trajectories of
a phone in the acoustic vector space share a stochastic dependency on the time elapsed since
the beginning of the phone. This dependency can be modeled by a parametric distribution
as in Deng’s model (Deng 1992) or by using an MLP in our model.

4.3.2 Deng’s Trended HMM

Deng described a model that explicitly conditioned the emission probability of a
state on the time index, i.e., on the number of frames between the current frame and the
previous state transition. For example, if the Markov chain has two states A and B, and we
assume a specific realization that alternates between the states, the time index for a given
state is depicted in Figure 4.1 (the figure does not show all the “machinery” of the HMM).
Deng has coined his model the “trended HMM” (Deng 1992). In this model, a sequence of
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State Sequence: A A B B B A A
Time Index: 1 2 1 2 3 1 2

Figure 4.1: Depiction of the time index along with the current state

observation vectors generated in a given state is a combination of a stationary process and
a deterministic function of time, as illustrated in the following equation for the multivariate

normal distribution:

p(ay|state, ti) = (4.1)

exp(—(21 — Gorare ()T () Har — Grare(17)))
(27)7 (detX)0-5

where ti is the time index as defined above, gsq() is a deterministic function of the time
index and has parameters that may differ from state to state. In this simplified example,
Gstate() shifts the mean vector of distribution as a function of the time index, while the
stationary part is the variance-covariance matrix X. In principle this model explicitly con-
ditions the emission probability on the time index, and a sequence of observations emitted
from a given state is no longer assumed i.i.d. We do not know however the optimal form of
Gstate() for each unit of speech. For example, one would expect a different time index de-
pendence for vowels and stops. In the following, the time-index idea has been incorporated

into a connectionist context.

4.3.3 An Introduction to the Time-Index Model

We propose a time-index model that 1) differs from an HMM in that the obser-
vations emitted in a given phone are no longer identically distributed and that 2) differs
from Deng’s model and others by its use of posterior probabilities estimated by a connec-
tionist network. In the time-index model, the realizations of the state process are no longer
sequences of values taken from the phone set, but rather are chosen from a set of pairs
consisting of a phone and a time index. The time index is defined as the number of frames
between the current frame and the previous state transition. For this model, the probability

of generating a sequence of observations X = {4, 2¢11,..., 2447} in a given phone ¢; is:

t+T
P(X{q;) = II Pailg,i=t+1)) (4.2)
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Figure 4.2: The topology of the time-index model

We can see that the ¢’s in the traditional HMM are replaced by a ¢ and time index pair,
as the state process is defined differently !. See also (Konig & Morgan 1994).

4.3.4 An Example

Figure 4.2 shows the topology of a basic unit of speech. In this case phones are
the basic speech units. Only the last state in the model has a self loop. For states with
indices smaller than the minimum duration, D, for that phone, only a transition to the
next state (corresponding to a time index increment of one) is permitted. For all other
states, transitions are permitted either to the next state or to the exit state. This model
differs from a traditional HMM (assuming a similar representation for duration) primarily
in that now the emission probability for each state (for each time associated with a phone
or subphone unit type) is not constrained to be equal. Specifically, the emission probability
of a state in the Markov chain is P(x|(g;,ti)), where ¢7 is the time index. Similar equations
could be used for multi-state HMMs that are also commonly used, in which the basic speech
unit is smaller than a phone. While certainly one could define a standard HMM with the
kind of model shown in Figure 4.2, and with a separate emission probability for each state,
the basic problems are how to reliably estimate so many free parameters and to model the
correlation between these these states. One possible solution is to share parameters between
the estimates for the separate densities. Another solution would be to assume a parametric
form for the trajectory, as was done by Deng. Reported here is a multi-layer perceptron
(MLP) approach which, in our previous work at ICSI (as discussed in Section 2.3.3), has
proved useful for such estimates (Bourlard & Morgan 1994).

Formally the values of the state process are ordered pairs of the phone and the time-index.
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4.3.5 An Implementation of the Time-Index Model

In our model we define the emission probability of a state as P(z|g;,?i) . While
such a quantity can always be defined, the important question is how to estimate it. Now
consider the following decomposition according to Bayes’ law:

Plelg;, ti) _ Plgj|ti, ) P(ti])
P(x) P(ti, q7)

(4.3)

Where 17 is the value of the time index, x is the acoustic vector, and g; is a specific phone.

Alternatively, this can be decomposed as follows:

P(xlqj, ti) _ P(tilg;, ) P(q;]2)
P(x) P(ti. q;)

Each of the terms conditioned on 2 can be estimated by an MLP with an acoustic vector (or

(4.4)

a local neighborhood of acoustic vectors) as input, as well as any additional conditioning
terms as input (for instance, an additional input representing time index ti in order to
estimate P(g;|ti,z) ). The targets correspond to a discrete binary coding of the class
identity that is to the left of the condition bar (e.g., ¢; for estimating P(g;|t2, ), or t7 for
estimating P(t7|2)). We have currently chosen to represent the #i inputs with a continuous-
valued input as a smoother representation that requires fewer parameters. The first form of
the equations given above requires the estimation of P(g;|ti, ), and this can be done with
the MLP shown in Figure 4.3.

P(ti, phone;) can be estimated by counting the relative frequencies in the training
set. Given that there is an accurate estimate of the boundaries between the phones we can
calculate P(ti|z); otherwise an estimation of this probability is a difficult problem (Glass

1988).

4.3.6 Experiments

The Resource Management (RM) speaker independent task (Price et al. 1988) and
the TIMIT database were used for initial experiments. In the RM experiments our training
data consisted of 3990 read, continuous-speech sentences, and the 300-sentence Feb89 test
set for network cross-validation and testing. The time-index net (as shown in Figure 4.3)
had 1000 hidden units and 61 outputs (the size of phone set). There were 235 inputs to
the net, including 234 that consisted of 9 frames of 26 features each (PLP12 + log gain +
delta features for each of these 13) (Hermansky 1990), and a final time-index input. With



40

P(phone | time—-index, acoustic vectors)

[N N O

Time Index Acoustic Vectors

Figure 4.3: The time index net

the exception of this final input feature, this net was the same as the hybrid HMM/MLP
system as described in (Bourlard & Morgan 1994).

During training we can find the boundaries between phones by running a Viterbi
alignment on the known word strings and from these boundaries to calculate the time
index as the distance of the current frame from the beginning of the phone as marked
by the previous boundary. For the preliminary tests the boundaries between the phones
were determined by an automatic alignment (Viterbi) procedure on the known word string
(Viterbi 1967), also during recognition. This side information about the word sequence
was used only to generate boundaries and no explicit phonetic information was preserved.
Obviously during realistic recognition experiments the identity of the spoken sentence is not
known. Therefore, one can expect little improvement over the boundary detection found by
the Viterbi procedure with a known word sequence. Hence, these initial time-index results
serve as a lower bound on the error. The results are summarized in Table 4.3.6.

The TIMIT corpus was chosen for the second set of experiments because it is
phonetically balanced, and in addition there are time-aligned phonetic transcriptions of

all the sentences in the database. The goals were to verify the potential of the model on
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Task | Baseline | Time-Index + Boundary Information
RM 4.8% 1.1%
TIMIT | 36.4% 25.0%

Table 4.1: Time-Index Results with Known Boundaries

a different test set and also to answer a potential criticism that the reduction of error is
due to restricting the recognizer to utterances with the same number of phones as in the
answers. By using the boundaries from the Viterbi alignment on the known word strings,
we restrict the potential answers to have the same number of boundaries as in the answers,
i.e., the same number of phones.

The experiments were done on a 200-sentence development set that was selected
from the official training set and which was not used for the training. The size of the nets
and the features were the same as in the RM task experiments. We used 3300 sentences for
training and 396 sentences for cross-validation (the 200 sentence development set is a subset
of the cross-validation set). No language model was used in these experiments. All results
are on the full 61 TIMIT phone set. The standard system had 36.4% phone errors on this
task, while the incorporation of the knowledge of phoneme boundaries in the time-index
network reduced the error to 25.0%. See also Table 4.3.6. When we restricted our standard
system to sentences that have the same number of phones as in the known answers, the
error rate was still 36.4%, but with a different mix of insertions, deletions, and substitutions.
Hence, the crucial information was the timing of the boundaries and not their number.

These results suggest that, given good information about the phoneme boundary
locations, recognition error rate can be greatly reduced. This was a necessary result for the
transition-based approach to be ultimately useful, but it is certainly not sufficient. There
is still the difficult problem of either specifically locating boundaries, or getting smooth

estimates of them.
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Chapter 5

Discriminant HMM (DHMM)

5.1 Introduction

Motivated by the experimental results that indicate the importance of the timing
of transitions between basic speech units as described above, we chose to study the Discrim-
inant HMM (DHMM) model, that uses local transition probabilities to estimate posterior
probabilities of word sequences. Furthermore it is a true recognition model, i.e., it directly
maps from acoustic sequences to sentences, unlike HMMs that model the inverse relation
(the likelihood of producing an acoustic sequence).

The original theory of DHMM was described in (Bourlard & Wellekens 1989b).
However, in the years following the original theoretical formulation, simplified systems to
reduce the dependence on distributional assumptions for the observation space, and to
make the probability estimates more discriminant. These simplified approaches did not
make use of the full power of the initial scheme. Nonetheless, in controlled tests they
displayed significant strength (Lubensky et al. 1994; Renals et al. 1994; Robinson et al.
1993). The basic scheme consisted of training neural networks to estimate probabilities of
HMM states, and then using simple functions of these probabilities to label the training data
using Viterbi decoding (dynamic programming). This procedure was repeated iteratively
to train the system. During recognition the Viterbi procedure was used with probabilities
produced by trained networks.

The remainder of this section will describe the original theory, but with the benefit
of hindsight because of more recent developments. In addition, we describe experiments

incorporating the original theory. An analysis of these experimental results suggests a
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P(/k/ | /k/, x) P(/ae/ | /ae/, x) P(/t/ | /t/, x)

() ()

—

T !

P(/ae/ | /k/, x) P(/t/ | /ae/, x)

Figure 5.1: An example of a Discriminant HMM for the word “cat”. The variable x refers
to a specific acoustic observation z, at time n.

partial explanation why the original theory did not initially work. In the next chapter we

describe a new training algorithm that overcomes some of the problems.

5.2 Estimation of the Posterior Probability of Word Se-

quences

In (Bourlard & Morgan 1994) it was shown that it is possible to compute the
global posterior probability P(M|X, L, ) of (2.5) and (2.6) as:

P(M|X’L’®) = ZP(M7F]|X7L7®) (51)
FJ

= D P(M|T;, X, L,0)P(I)|X, 1,0) (5.2)
FJ

in which “I';” represents a legal state sequence in M, see Section 2.1.3. Considering the
second factor of (5.2) as the acoustic model and assuming that it is independent of the

language model parameters, i.e..:
P(T|X,L,0)~ P(T|X,0) (5.3)
and writing P(T| X, 0) explicitly as P(q',...,q"V|X,0), allows us to factor it as follows:

P(q¢',....q"|X,0) = P(¢"|X,0) P(¢*|X,q". 0)...

PV IX gV 0) (5.4)
N

IT Pl¢"x.077".0) (5.5)

n=1
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P(Current_state | Acoustics, Previous_state)
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Acoustics

Figure 5.2: An example MLP that estimates local conditional probabilities.

where ¢" represents the state observed at time n and Q1 the state sequence associated
with X{V. Probabilities P(q',...,¢"|X,0) can thus be calculated from “local” probabilities
P(q"| X, Q?_l, 0). These local probabilities may be simplified by relaxing the conditional
constraints, by assuming dependency only on the previous state (first-order Markov model
assumption) and on a temporal window X"+ around the acoustic vector at time n (acous-
tic correlation limited to the contextual window). These local contributions can then be

approximated by
P(¢"X,q"...,¢" 7", 0) ~ P(¢"|X!E ¢"710) (5.6)

where input contextual information is taken into account. These probabilities can be esti-
mated at the outputs of an MLP with contextual input and output feedback, as described
in Figure 5.2.

Thus, using Bayes’ law, we can then rewrite (5.4) for a particular path T'; as:

n—«c?

N
PTiI1X,0) ~ ] Pet lor " X150, 0) (5.7)
n=1

A simple example of the model is given in Figure 5.2.
These new acoustic models, referred to as Discriminant HMMs (DHMM)?!, are

now described in terms of conditional transition probabilities P(q’|¢*_,.z,), in which ¢,

Tt could be argued that these models are no longer HMMs but more like “stochastic finite state accep-
tors”, a name suggested recently by John Bridle.
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stands for the specific state ¢* of Q hypothesized at time n. As with traditional hybrid
HMM/ANN systems, conditional transition probabilities can be estimated by an ANN (in
our case a multi-layer perceptron) with K output units and in which the acoustic input 2,
is? complemented by a set of additional input units representing the state ¢* hypothesized
at the previous time step n — 1. The conditional transition probabilities are also functions
of @, the ANN parameter set, and can be written as P(q’|¢"_,.z,, 0).

In estimating the first factor in (5.2) P(M|L';, X, L, Q) given the state sequence

and the language model we can assume no dependence on the acoustic sequence:
P(MIT,, X, 1.0)~ P(MIT;, 1.0) (5.8)
Thus, (5.2) can be rewritten as:

P(M|X.0.T)~ 3 P(I|X.0)P(M[T;.1.6) (5.9)

T

in which P(I';|X,0) is computed as described above.

5.2.1 Recognition

In the case that there are no homonyms, i.e., there is not a phone sequence that
corresponds to more than one sentence, then the term P(M|L';, L, ©) serves as a 0/1-valued

filter. Equation (5.9) can then be rewritten as follows:

P(M;|X,0,L)~ Y P(I,]X,0) (5.10)
ryeM;
And it can be estimated with the following efficient forward recursion®.
Forward Recursion
We start with some definitions:
o (k[M;) = P(Ta,q0 X7, 0) (5.11)

TneM,;

2As done with previous hybrid HMM/ANN systems, =z, will usually be replaced by Xsi'g =
{Tn—c, ..., Tn,...,Tntd} to take some acoustic context into account.

#Note this forward recursion will be different from the forward recursion that is used in training time and
will be defined in the next section.
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summing up all the paths of length n in model M; that end in state ¢, at time n. We
initialize the recursion with:
o1 (k|M;) = P(qxle1,0) (5.12)
for the first k valid states in model M;. Now for the dynamic programming step:
anpt((M;) = Y7 P(Tagr, g X4, 0) (5.13)
[hy1€M,

= > P, Xt e)Pg Xt T,. 0)
I'neM;

assuming causality : P(I',| X!, 0) = P(I',| X}, 0), denoting
the ith state of ', by %, and assuming 1st order Markov model

= i kM)P(F 2101 ©) (5.14)
k
Thus, equation (5.10) can be computed using the forward recursion:
P(M{|X,L,0)~ > an(qs|M;) (5.15)
95
where ¢y is a legal final state for the model M;. The use of the language model (in the case

that we have homonyms) is discussed in Section 6.4.

5.3 MAP Constraints

In the previous section we described how to estimate the global posterior proba-
bility of a Markov model given the acoustic sequence. In this section we show that it can

be done while meeting the constraint specified in Equation (2.7), i.e.,

ZI:P(MAX,L,(D) =1 (5.16)

=1
where the sum over 7 represents the sum over all possible Markov models (Bourlard et al.
1994). Here lies the difference between an MI. and an MAP criterion. Any modification of
the parameters of a model M; must be complemented by a modification of all the parameters
of the other models so as to preserve this constraint, hence making the MAP procedure
discriminant.

It is also important to show that, in this case, if the “local” constraint:

K

> plaflen, g~ 0) =1 (5.17)
k=1
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is met (which will be the case, at least approximately, with sigmoidal MLP outputs?), the
constraint (2.7) on the global MAP probabilities is also met. Indeed, summing over the set

n

of all possible paths {¢',...,¢",...,¢"} in all possible Markov models M;, we have:

> P(Mi|X.L.,0) >N P(M;,T;|X,L,0) (5.18)
i I, i

= > 3 P(M;|X,I;,L,0)P(I;|X,L,0)
r;, 4

Assuming (5.3) and (5.8)
r 7

J

and, assuming Z P(M T, L,0) =1, VI :

13

K
Z P(q;, |21.0)...

/=1

K K
: (Z P(q}|v2,q1,.0) ... ( DO A CTET AR )) )

lr=1 =1

It is however important to remember that this property is valid only if one considers all
possible paths through the models.

Besides the advantage of forcing discrimination, numerical problems that plague
the classical HMM are avoided when using discriminant models: namely, the lack of balance
between the transition probability values (which only depend on the topology of the model)
and the emission probability values (which decrease with the dimension of the input feature

space) (Brown 1987).

5.4 Early Experiments and Error Analysis

5.4.1 Early Experiments

Given the theoretical properties of the Discriminant HMM /MLP model described
earlier, we felt that empirical evaluations of this model would be a good first step in improv-

ing our understanding of transition-based systems. In particular, we began to empirically

*This constraint is precisely met in the case of a softmax output layer, since the outputs are normalized
to sum to 1.
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evaluate conditional transition probabilities as used in Discriminant HMM/MLP systems
on phoneme classification and phonemic frame classification tasks.

As presented in the initial theory (Bourlard & Morgan 1994) the paradigm for
training (and recognition) was to use the Viterbi approximation, i.e., to consider only the
most probable state sequence in assigning phonetic labels to acoustic frames. The local
discriminant probabilities (2.14) were estimated by an MLP as represented in Figure 5.2.
In this case, the previous state is coded as additional binary inputs, one for each possible
previous state. For every hypothesized previous state we set the corresponding input to one
and the rest to zero. The set of possible previous states (or the set of possible successor
states for a given ¢; at the input) will be given by the topology of the HMMs (and by the
currently hypothesized states of the matching process).

In Viterbi training (as used so far) we know the correct previous state (again
considering only the most probable state sequence), either by having a hand-segmented
database such as TIMIT, or by running an automatic alignment (Forced-Viterbi) on the
training data. During recognition however, the MLP outputs will have to be hypothesized
for every possible previous state (possibly constrained by a particular HMM topology or a
language model).

The TIMIT corpus (Garofolo 1988) was chosen for the experiments because it is
phonetically balanced and in addition there are time-aligned phonetic transcriptions of all
the sentences in the database. The experiments were done on a 200-sentence development
set that was selected from the official training set and was not used for the training. We used
3300 sentences for training and 396 sentences for cross-validation (where the 200 sentence
development set is a subset of the cross-validation set). No language model was used in
these experiments. All the results were on the full TIMIT 61 phone set. Phone models were
simple one-state-per-phone models.

The net that estimated the local discriminant probabilities (as shown in Figure
5.2) had 1000 hidden units, 61 outputs (the size of the phone set). There were 295 inputs to
the net, including 234 that consisted of 9 frames of 26 features each (PLP12 + log gain +
delta features for each of these 13) (Hermansky 1990), and 61 binary inputs that represented
the possible previous state. With the exception of these binary inputs, this net was the
same as the hybrid HMM/MLP system as described in (Bourlard & Morgan 1994). The
baseline HMM /MLP system (Bourlard & Morgan 1994) had 36.3% phone error on this task.
When evaluating the Discriminant HMM on this task the error rate was 40.4%. This was
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an intriguingly negative result; increasing the amount of input information led to a decrease
in generalization performance. Why should this be so? Although it is difficult to draw firm
conclusions from a negative result, it can at least inspire directions of inquiry. This result

motivated the error analysis as described in the following section.

5.4.2 Error Analysis

As shown in the following, the error analysis suggested two potential reasons® for
the observed performance loss: (1) poor transition detection, and (2) mismatch between
the input space distribution of the MLP during training and recognition.

The first potential problem is missing transitions; implicitly the net is a transition
detector because when it determines that the current state is different from the previous one
it signals a transition, and transition detection between phonemes is known to be a hard
problem (see (Glass 1988)). In order to test this assumption we compared the performance of
the MLP described above on two kinds of acoustic frames: transition frames that start a new
segment, i.e., their phonetic label is different from the previous frame, and all other frames,
self-loop frames. While presenting the correct previous state, the frame level performance

on the development set was:

1. Self-loop frames: 85.5% of correct phonemic classification.

2. Transition frames: 39.2% of correct transition detection and classification.

Transitions thus seems harder to detect and classify than “steady-state” frames. However,
we suspect that this is not (only) due to the properties of transitions, but to two problems

related to the training and testing procedure:

1. We have much less training data for transition frames than for “steady-state” frames
(less than one-sixth). Thus the learning ability of the classifier will tend to focus on

the steady-state phonetic classification.

2. Our training procedure assumes that a single frame is the transition and that its

neighbors are not transitions® . This does not make sense in terms of the acoustic
phonetics, since many spectral transitions are gradual. This makes a difficult classifi-

cation function for a network to learn.

®Other than bugs.
SA transition frame is a frame whose target for the current state is different from the hypothesized
previous state.
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The second potential problem is the possible disparity between training and recog-
nition input populations. During training we only present to the net “correct” pairs of
acoustic vectors and the correct previous state, while in recognition we expect the net to
generalize to all possible combinations of acoustic vectors and previous states. Some of
these recognition inputs can be completely meaningless, e.g., like the combination of the
acoustics of a middle of a vowel and a previous state that corresponds to a plosive. The
net is not trained on anything close to these “impossible” pairs, but through the vagaries of
interpolation these pairs could end up having the highest MLP outputs during recognition.
This problem is often referred to as the “lack of negative training example” problem and
sometimes can he partially overcome by presenting additional negative training examples
to the net (Zavaliagkos et al. 1994).

In order to test this hypothesis we computed the frame level performance of the

net on the development set for the following two cases:

1. When the correct previous state is presented as input, the highest probability output

was correct 79.4% of the time.

2. Presenting all possible previous states and taking as the winner the output with the
highest activity, i.e., taking for every frame the maximum of 61 by 61 probabilities
(61 outputs for each possible previous state), and checking if it was the correct pair
of previous state and current state. In this case the result was 15.9% correct, which
was the weighted average of 18.3% correct on self-loop frames and 0.4% correct on

transition frames.

These results seem to suggest that, even for “steady-state” frames there is a problem of
mismatch between the space of training and testing for hypothesized inputs. Of course,
performance is also hurt by the problems mentioned earlier.

All the problems identified here motivated the REMAP training and recognition
algorithm for HMM /MTLP hybrids that is presented below. Specifically, the first experiment
showed that “hard” transitions are difficult to detect. As we will see, the full MAP training
will provide the nets with soft targets and soft decisions, i.e., with conditional probabilities
of transitions. Furthermore, by considering all possible paths and transitions, we will reduce
the mismatch between training and recognition. A formalism will be introduced that au-
tomatically considers negative training examples without the need for explicit enumeration

of impossible input combinations.
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Chapter 6

REMAP Training of HMM /MLP
Hybrids

6.1 Introduction

6.1.1 Motivations

The discriminant HMM/MLP theory as described above uses transition-based
probabilities as the key building block for acoustic recognition. However, it is well known
that estimating transitions accurately is a difficult problem (Glass 1988). Due to the inertia
of the articulators, the boundaries between phones are blurred and overlapped in contin-
uous speech (Deng & Sun 1994). It is also likely that some time variability exists in the
human perception of the onset of a new phonetic region. Consequently, we would like to
have a “window” of possible transitions instead of a single transition. Ideally the width of
the transition window should depend on the specific bi-phone and on the speaker. Thus we
need an automated way of estimating the transition windows to be used as targets in the
MT.P training.

In hybrid HMM/MTLP systems, targets are typically obtained using an antomatic
alignment procedure incorporating a Viterbi approximation. However, this procedure yields
rigid transition targets, and thus suffers from the problems mentioned above. Furthermore,
our preliminary experiments with this procedure yielded poor transition detection perfor-
marnce.

Another related problem in our Viterbi-based MLP training procedure is a dispar-



52

ity between the training input space of the MLP and the input space used in recognition.
Specifically, in training the network only processes inputs consisting of “correct” pairs of
acoustic vectors and correct previous state, while in recognition we expect the net to gen-
eralize to all possible combinations of acoustic vectors and previous states.

One possible solution to these problems is to use a full MAP algorithm to find
transition probabilities at each frame for all possible transitions with a forward-backward-
like algorithm (Liporace 1982), which takes all possible paths into account. Furthermore a
MAP algorithm would increase the a posteriori probability of the correct model and reduce
the posterior probabilities of all other models. Thus, it might improve the approximation
to an optimal Bayes classifier.

In the rest of this chapter, we describe a set of procedures that were derived in order

to train and use the desired discriminant probability estimators in a full MAP framework.

6.1.2 Problem Formulation

Global MAP training of Discriminant HMMs should find the optimal acoustic
parameter set © maximizing (2.6). In the following derivation the dependency on the
language model L is omitted, in order to concentrate on the acoustic model parameters
(the role of the language model will be discussed in Section 6.4). Although, in principle,
we could use a generalized back-propagation-like gradient descent in ® could maximize
(2.6) (see, e.g.. (Bengio et al. 1992)), an EM-like algorithm would have better convergence
properties and would preserve the statistical interpretation of the ANN outputs. In this
case, “full” MAP training of transition-based HMM/ANN hybrids requires a solution to
the following problem: given a trained ANN at iteration ¢ providing a parameter set ©°
and, consequently, estimates of P(q’|z,,¢"_,,©!), how can we determine new ANN targets

that:

1. Will be smooth estimates of conditional transition probabilities, V possible (k, () state
transition pairs in M and Vn € [1, N].

2. When used in training the ANN for iteration ¢4 1, will lead to new estimates of @+!

and P(q’|2,,¢"_;,0") which are guaranteed to incrementally increase (2.6)?
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6.2 Solution - REMAP

6.2.1 Introduction

In this section we describe a solution to the problem mentioned above. Specifically,

we prove that for any training sentence X, an iteration consisting of

1. estimating new MLP training targets from a previously trained MLP via a backward

recursion, and
2. training the MLP with the new targets

will increase the global MAP probability of the sentence model given the sequence of acous-
tic vectors! P(M|X). Tt is easy to see that this proof can be generalized to several training
sentences, since this is then simply equivalent to training on a long sentence built by con-
catenating all training sentences (with additional start and end point constraints). We
describe below the main ideas and steps underlying the proof. Some of the technical details

are discussed in Appendix A. The proof has three main steps:

1. Defining an auxiliary function such that maximizing this function is equivalent to max-
imizing the global posterior probability of the correct model and, since such probabil-
ities must sum to 1 for the complete set of possible models, minimizing the posterior

probabilities of the rival models.
2. Finding new targets for training the MLP that maximize the auxiliary function.

3. Showing that training the MLP with those new targets (using a weighted relative

entropy error criterion) leads to an increase in the value of the auxiliary function.

Note that while this thesis has largely assumed the use of an MLP for the required proba-
bility estimation. other gradient-trained estimators (such as a recurrent network) could also

be used.

'To simplify onr notation, in all the following discussion only one training sentence X is associated with
the Markov model M, but it is easy to see that the discussion remain valid in the case of several training
senlences X, associated with My, for 3 =1,...,J.
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6.2.2 Definitions

Let us define an auxiliary function? R(vy, v3) as a function on two probability sets

vy, Ug, where T is defined below:
Y = {PAq} w0, VR CEL, ..., K], VnEl,....,N],z € Z} (6.1)

Each set contains K%(N — 1) possible conditional transition probabilities, where K is the
number of states in the model, and N is the number of acoustic vectors, and Z the number
of possible legal sets. Note that the probability sets can be a function of a probability
estimator. In our study, these probabilities are estimated by an MLP with parameter
(weight) set ©, in which we denote the probabilities as P(q}f’|mn,q};71,(~)). In this case, the
probability set v also becomes a function of ©® and is then denoted by v(Q).

The auxiliary function R(wq,v3) is defined as

R(vi,v3) = ! )ZP(M,F|X,U1) log P(M,T| X, vq) (6.2)
r

P(M|X, v,

where I' is a legal path (state sequence) in model M and P(M,I'|X,v;) represents the
probability of a specific path I in M given a probability set v,.

6.2.3 Theorem 1
Theorem 1: IF R(vy,v2) > R(v1,v1)
THEN P(M|X,vg) > P(M|X,v1).
In other words, if we can find a new set of probabilities vy increasing R, the new set of

probabilities will also increase the posterior probability of the model M. The proof is
described in Appendix A.

6.2.4 Theorem 2

The question that arises from the first theorem is how to find a new set of prob-
abilities w9 that increases the value of the auxiliary function R(-) and, consequently, the
posterior probability of the correct model (and therefore also minimizes the posterior prob-

ability of the rival models).

*This auxiliary function is usually denoted Q(-) (Dempster et al. 1977). However, to avoid any possible
ambiguity with an HMM state sequence, we denote it R(-) in this thesis.
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Theorem 2:

Given vy a fixed set of probabilities that is estimated by an MLP with a fixed set of weights
0. we show that R(vq,vq) attains its maximum value when the conditional transitional

probabilities P,, (¢} |z, q}z—l) € vy are defined as®
P, (@7 e, i ™") = Plaf| X, q; ", 0i(©), M) (6.3)

Theorem 2 says the following: a trained MLP with a fixed set of parameters (MLP weights)
O provides us with estimates of conditional transition probabilities P(q?\xn,qz_l,vl((ﬂ))
(estimated on a given training data set X = {xy,...,2,,....2n}) Vo = 1,..., N and
Vk,t = 1,..., K. Given these estimates, obtained at the output of the MLP, it is possi-
ble to compute re-estimates of the conditional transition probabilities Pq)z(qﬂmn,ng) =
P(q}f\}(,(]}:’71,?)1(@)7 M) by the backward recursion given in (6.14) to increase the global
posterior probability of the correct model M over P(M|X,vy). The proof is described in
Appendix A.

6.2.5 Theorem 3

As opposed to the “standard” EM algorithm (Baum et al. 1970; Baum 1972),
Theorems 1 and 2 are not enough to prove convergence of the training process for two

reasons:

1. The MLP training is usually minimizing a function (e.g., least mean square or relative
entropy) that is different from the function optimized in Theorem 2. As a consequence,

convergence must be proved through the same auxiliary function R(-).

2. Theorem 2 gives new (“optimal”) values (MLP targets) for the conditional transition
probabilities which are going to be used to train the MLP. If the cost function can be
trained to reach its optimal minimum, the MILLP will just “learn” the targets and we

will have
gﬂ(mnqurilv(;)) = p(qﬂX, (72717 M', ?)1) (64)

which, by Theorem 2, is known to increase R(-) and, consequently, P(M|X). In this

case, of course, we proved that MLP training is increasing P(M|X ) and we do not

F0f course, all z,,’s in the following should be replaced by Xsi'g if local contextual input is used, or X7
for a recurrent network.
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need anything more. However, in general, the nets will not be trained to their optimal

minimum because of

e “overlapping” of input patterns (e.g., two instances of the same pattern with two

different classifications).

e use of cross-validation (early stopping) (Bourlard & Morgan 1994) to avoid over-

fitting and to get better estimates of actual probabilities.

Below we describe a training procedure for the MLP and a corresponding error
criterion. We show that by minimizing this criterion we are maximizing the auxiliary
function R(-). Thus by Theorem 1 the posterior probability of the correct sentence is
increased. By this we show convergence (at least to a local minimum) on the training set.

Specifically, given a trained MTP with a set of weights ©®" which provides a set of
conditional transition probabilities v1(@7) and given a sequence of acoustic vectors X and
a model M. the Discriminant HMM backward recursion can be used to compute a new set

of probabilities
T = {Pr(ql o f™") = a1 X, g~ 0n(©0), M) Ve, L= 1, Ki¥m = 1., N} (6.5)

which will be used as targets to adapt further the MLP weights to a new set of weights
Ot and, consequently, a new set of conditional transition probabilities vy(@F!).

In the following we prove this property in the case of a weighted relative entropy
E.. similar to a common cost function for MLP training.* In this case, given a sequence of
acoustic vectors X and a model M and the current set of parameters @', the parameters
©'t! of the MLP are trained to minimize

K

n—l)
E(0™) = Ep(, r=tiarx .00 2 Praion, i7" ) log
/=1

PT(Q?‘xn: Qk
gi(wn, g~ Q1)

(6.6)

where g((mn,qzq,@tH) is the (-th output of the MLP given weight set @' and inputs
(2,,qx). Note that the expected value gP(m,,,,qZ” 1M, X,00) is taken according to the distribu-

tion of the input variables that in the case of the Discriminant HMM are the concatenation

*Relative entropy is a particularly common error criterion for classification and probability estimation
tasks, and we have used it for all of the speech training systems that we have developed over the last few
years. The new criterion will actually only differ in that the expectation leading to its formulation will be
taken with respect to the entire network input space, which includes a choice for the previous state.
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of the acoustic input and the previous state. In this case (6.6) can also be expressed as:

K n—1
— - PT(qn‘xn q )
F(07) = S Plow M, X,00) S Pr(gh|en, 1) log — L0 2 G
o g /=1 g gﬁ(anz 17®t+1)
T k

N K
SN Pl M, X, 2,00 P(2,| X, M, ©F)

n:lk:l
K n—1
_ Prig/len. ¢ )
Pr(q}len, ¢~ ") log — (6.7)
gZ:; g gé(xn:Qk l:G)H_l)

Given that P(q}:’_l|/\/l'7 X, 2,00 = P(q}j_lw\/ﬁ X, 0% and using the fact that
P(a,| X, M, 01 = 1,

N K
E (07 = >3 P(gp M, X, 0"

n=1 k=1

K n—1
_ PT((]?an(Zk )
Pr(q}|zn, q; ") log -
; " go(wn, =, OHT)

replacing Pr(-) with its definition (6.5) we get :

N K
= > > Plgp "M, X,0"

n:lk:l
K n n—1 +
_ Pqp|X.q;" ", vn1(0F), M)
P(q}1X, g~ v1(0©), M)log k2 (6.8)
|JZ:; ‘ g gé(xn:Qk 1: GH—I)

It is easy to see that the above criterion will reach its global minimum when the
outputs of the MLP are equal to the targets ®. Note that the relative entropy between two
probability mass functions is always greater or equal to zero (Cover & Joy 1991). Given
that the targets are posterior probabilities, a network trained to the global minimum of
error criterion (6.8) will estimate the posteriors.

' is not one of the features that

An important point is that previous state ¢,
are extracted from the speech waveform. Thus the scaling factor P(q}:f1 X, M, o1(01) s
needed to compute the expected value over the “extended” input space. There are several
ways to implement this scaling, one being to choose the previous state uniformly and to

scale the error signal that is back propagated by this factor. An alternative way in stochastic

gradient descent training (online training) is to implement this criterion by first choosing

°In the case that both the target probability and the net output are zero, this still holds given
limc_g elogf =0
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the acoustic frame z, at random from the training test, and then choosing the previous
state according to P(q} ™' |X, M, v,(0Y)).

Theorem 3:

Minimizing the weighted relative entropy criterion (6.6 ) with the target set T’
(which is calculated from a probability set v;) maximizes the auxiliary function R(-).
Specifically, the new set of probabilities vy, implemented by the trained MLP, satisfies
the following:

E(0™) < E(0") = R(v1(0"),12(01)) > R(v1(0"), 11(0")) (6.9)

By proving Theorem 3 as described in Appendix A, we show that minimizing error
criterion (6.8) is equivalent (within a scaling factor) to maximizing the auxiliary function.
In combination with the previous Theorems, this confirms that a network trained using
error criterion (6.8) and targets defined by Theorem 2 will increase the auxiliary function.
This in turn means that the global probability of the correct model will be increased. In
practice the change of the error measure on a cross-validation set is used to guide the

training schedule of the MLP, e.g., for deciding the learning rate and the stopping point.

6.2.6 Summary and Discussion

Like the EM algorithm, REMAP training consists of two major steps: estimation
(which in this case is estimating new targets for the MLP), and maximization (which here
consists of adapting the MLP weights to maximize performance on the new set of targets).
Here we have proved three theorems that together show that each iteration of REMAP
training increases the posterior probability of the training sentence. It is assumed that the
training set is a good sample of the overall input space, and cross-validation techniques are
used to check that we have not over-fit to the training data, e.g., by computing the change
of the posterior probability on an independent set after every iteration of the REMAP
algorithm. In principle, REMAP should ultimately provide improved recognition accuracy
for practical systems. However, as with all other gradient-based optimization techniques,

we will be vulnerable to potential difficulties with local minima.
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6.3 REMAP Training

6.3.1 Introduction

Since it is now well-known (Bourlard & Morgan 1994) how to train an MLP to
lead to good estimates of posterior probabilities (whether the MLP targets are “1-from-K”
binary vector or themselves estimates of posterior probabilities), the remaining problem is
to find an efficient algorithm to express P(¢;'| X, q}j_l, M) in terms of P(qf\Xﬁfcd, q}j_l) 50
that the next iteration’s targets can be found, and also how to estimate P(qZ_I|X,M) in
order to select the previous state in an adequate way. Note that from now on, to simplify
notation, and only when there is no risk of confusion, we will drop the indices of M and
X, keeping in mind that M will represent either a specific model associated with a specific
training sentence X or one of the many possible hypothesized maodels during recognition of

X.

6.3.2 Target Estimation

In this section we describe dynamic programming procedures for efficient estima-

tion of the MLP targets. By simple statistical rules the desired targets may be expressed

as.
o e (X, M
P(qf|X,qp7' M) = ( b ) (6.10)
p(X7Qk 7M)
X, ¢" L gh. M
p( 7(]k nv_(l]zvn ) (611)
Z[ p(X7Qk 7(]g:M)
in which
(X, gy g, M) = > p(X,Tiqp ™" g7 M) (6.12)

is equal to the sum of the probabilities of all possible paths T'; in a particular M visiting ¢z
at time n — 1 and ¢y at time n. In a similar way, the denominator represents the sum of the
probabilities of all possible paths in M visiting g at time n — 1. Since we cannot afford to

compute and memorize all possible paths in (6.12), to compute P(q/| X, qzq, M) we need
ndd

to find efficient recursions in terms of local probabilities P(q;'| X, 7. qzq) generated by the

MLP. Denoting

o Gk (M) = p(XéV,qﬂXf_l,qZ_l,M) as the “backward” probability, defined as

the probability of observing the rest of the sequence and starting from state ¢, at time
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n given the previously observed Xf_l, and given state occupancy of class ¢, at time

n—1.

Bk, (| M) is explicitly written with a conditional on M in the parentheses to remind us that
the backward recurrences will be run through a specific Markov model M with a specific
topology.

Backward Recursion

By using simple statistical rules, we have:

Gui kM) = p(XY G IXT g M)
= Doplre Xl g XY g M)
I3
= ZP(X;\—TIJ7q;'+1|X1n7q;’717q27 M) p(m”‘/qz‘xri1,q;i17 M)
£

assuming 1st order HMMs :

Y Bupr (ks €1M) P(GEIXT,qf 1 M) p(a X770 qf ™ M) (6.13)
l

12

As with standard HMMs, the conditional of “local” probabilities P(qf"’1 Xt qr, M) will
d

be restricted to a contextual acoustic window X1

and the local posterior (as generated by
the neural network) will be assumed independent of M, leading to the following backward

recursion:

B kIM) = p(af| X0t a7 en(§) S Buga(k. (M) (6.14)
¥

where ¢,(j) denotes p(a,| X7, ?_I,M).

Note that the last simplification, i.e., P(qﬂX{b,q?_l) ~ p(q}ﬂXﬁi’cd,q?_l) is not
necessary in the case of a recurrent net for estimation of the conditional transition proba-
bilities. However, in practice it might not make a difference if an MLP is used to estimate

the conditional transition probabilities, i.e., to do the last simplification. Initialization of

this backward recursion can be done according to
ﬁN-I—l(LvFU\/[):p(X]]\\77+17(ZFN+1|X1N7q]LV7]\/[): 1 (615)

in which ¢p is the (non-emitting) final state and ¢, represents any last emitting HMM state

(associated with M, as imposed by the conditional).
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MLP Output Targets Update

Equation (6.10) may now be expressed in terms of the backward recursion:
P(X, ¢ qp| M)
p(X, ¢ M)
dividing numerator and denominator by P(Xf_l,q;?_lﬂM)
Bn(js k| M)

>0 Bnl3, M)
following (6.13)

Z[ﬁn-l-l(k‘vaM) ( |Xn+cvq;b 1) Cn(]‘M)
3220 Burr (B AIM) PR X34 g7 e (GIM)
Zﬁ ﬁ”+1(k7/|M) ( |Xn+r7q;7 1)

_ 6.16
Zh,Zﬁ ﬁn-H(hvaM) ( |Xw+rvq;7 1) ( )

This final form of the equation shows that the probabilities required to determine MI.P

P(gi| X. ¢/~ M)

targets can be obtained from the previous MLP outputs and the beta recursions alone.

6.3.3 Forward Recursion

In order to efficiently calculate the posterior probability P(qZ_I\X, M) we define

a forward recursion®. We start with some definitions:
an (k| M) = P(qp| X7, M;, 0) (6.17)

e.. the probability of being at g at time n given the acoustic vectors from the beginning

of the utterance until time n. Also

ar(HIM;) = Plg}ler, M, ©) (6.18)
Now for the recursion step:
B M) = 5 PN 0,0 (6.19)
77+1
= > P(T,|X7T, M, 0)P(q;" | X7+, T, M, 0)
]_‘77,

assuming causality : P(T,| Xt M, 0)= P(T,| X7, M,0)), denoting
the ith state of I',, by k, and assuming 1st order Markov model

= D" il M) P @, g M, ©)
k

5The forward recursion as described here is used at training time, i.e., when we know the correct model.
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where the transition from ¢, to ¢, is legal in model M;. When the local probabilities are
“tied” across models the recursion becomes:

O ((M;) = Y ik M) P(qp " @, af . ©) (6.20)
P

6.3.4 Estimating the Previous State Distribution

We can compute P(q}j_1|X, 0'), the posterior probability of being in class ¢; at
time n — 1 used in the training of the MLP as specified below, according to the following;:

Plgp ', X|M, 0"
P(X|M, 6"
dividing numerator and denominator by P(X7 '|M,0)
1 (k|M) Zﬁ ﬁn(kv ]|M)

T S o (BIM) S, Bk 1 M) (6.22)

6.3.5 REMAP Training Algorithm

P(gp "X, M, 0" (6.21)

The general scheme of the MAP Forward-Backward training of hybrid HMM/MLP

systems can be summarized as follow:

1. Start from some initial net providing P(qﬂXﬁfg,qZ_l,@t), t = 0, for all possible
(k. ()-pairs”.

2. Run backward recurrences to compute MLP targets P(q;'|X;, M;, qz_l, 0') according
to (6.16), for all training sentences X; associated with HMM M;, for all possible (&, ()
state transition pairs in M; and for all z,, n =1,..., N in X; (see next point). Also
as part of the forward and backward recurrences we compute P(qZ_I\X, 0') (6.21),
the posterior probability of being in class ¢; at time n — 1, conditioned on the acoustic

vector sequence X, to be used in the training of the MLP as specified below.

3. For every x, (or X"t} in the training set choose q;~" according to P(q} ' X, 0%,
train the MLP to minimize the relative entropy between the network outputs and
targets which equal to P(q}|X, q};’q,@t). (See Appendix A for a more theoretical

explanation.) This provides us with a new set of parameters @', for ¢ = ¢ + 1.

4. Iterate from 2 until convergence.

"This can be done, for instance, by training up such a net from a hand-labeled database like TIMIT
or from some initial forward-backward estimator of equivalent local probabilities (usually referred to as
“gamma” probabilities in the Baum-Welch procedure).
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MLP
Train MLP M - STEP

Figure 6.1: An illustration of REMAP

This procedure is composed of two steps: an Estimation (E) step, corresponding
to step 2 above, and a Maximization (M) step, corresponding to step 3 above. In this
regards, it is reminiscent of the Estimation-Maximization (EM) algorithm as discussed in
(Dempster et al. 1977). The algorithm is illustrated in Figure 6.1. However, in the standard
EM algorithm, the M step involves the actual maximization of the likelihood function. In a
related approach, usually referred to as the Generalized EM (GEM) algorithm, the M step
does not actually maximize the likelihood, but simply increases it (by using, e.g., a gradient
procedure). Similarly, REMAP increases the global posterior function during the M step (in
the direction of targets that actually maximize that global function), rather than actually
maximizing it. Recently, a similar approach was suggested for mapping input sequences to

output sequences (Bengio & Frasconi 1995).

6.3.6 Complexity Issues

It is important the computational cost of REMAP, particularly in comparison to
the standard approach of training hybrid HMM/MLP systems (Bourlard & Morgan 1994).
The computation of the MLP targets and the distribution of the previous state is done by
running the forward and backward recurrences as described above. Denoting the number
of states in a particular model M; by K and the number of frames in a particular training
sentence associated with M; by N, the complexity of running the recurrences is O(KN).

This is explained by the fact that the number of operations per state per frame is a constant,
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assuming a bounded branching factor of the directed graph that represents the topology
of® M;. This is the same computational cost as running a forced alignment (Viterbi) to get
targets for the MLP training as done in the standard HMM/MLP systems. The difference,
though, is that to obtain the conditional transition probabilities that are the input for
the recurrences, we need to perform more computations in the REMAP case. Specifically,
we have to present every acoustic frame once for every possible previous state’. Hence, we
have to do K feed-forward runs for every acoustic frame. This is in contrast to the standard
HMM/MLP system training, which requires presenting each acoustic frame only once.
During training, for each acoustic frame, the previous state is selected by random
according to the previous state distribution as computed by the forward and backward
recurrences (in the current implementation). Thus, due to the extra input which represents
the previous state, there are up to K times more training patterns. In practice most of
the previous states have very low probability (< 0.05) and can he ignored, resulting in only
two to three times more patterns. Therefore, the overall training time is two to three times
longer than the standard HMM/MLP training, which has the standard back-propagation
complexity of O(T'W), where T' is the number of acoustic frames, and W is the number of

the MLP weights.

6.4 The Role of the Language Model

So far, in the description of the suggested training algorithm. we have omitted the
language model. In this section we describe some initial ideas about incorporating the lan-
guage model into the REMAP framework. Current techniques of speech modeling assume
a separation between the language model parameters and the acoustic model parameters
as described in Section 3.1. Usually the language model estimates prior probabilities of
sentences by computing n-grams (the probability of a word given the previous (n-1) words),
by counting the relative frequencies in the training set or in a large text corpus. Acous-
tic models use a separate set of parameters, which are estimated independently from the
language model parameters. In the posterior-based framework proposed here, the poste-
rior probability of the sentence should be estimated given both the acoustics and high-level

knowledge such as a language model (see Chapter 2). Furthermore, at training time we

8This is a reasonable assumption given that the transitions are strictly from left to right in our models.
°This computation cost could be reduced by pruning based on the probability of each previous state
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want to optimize the measure that we use in recognition. Therefore. it would be desirable
to maximize the posterior probability of the correct model given both the acoustics and the
language model. However, the training algorithm that is proposed in this study, REMAP,
increases the posterior probability of the correct model based only on acoustic information.

An alternative to the separation assumption is a unified model with one parame-
ter set, e.g.. a neural network for isolated word recognition, with one output unit for each
possible word. It is not clear however, how to avoid the separation assumption in modeling
continuous speech recognition, given the unavoidable hierarchical modeling. In hierarchical
modeling the larger units (sentences) are built from smaller units (words and phone-like
units) that are shared across the larger representation. Thus, there is usually one model for
the relation hetween phones and acoustic vectors (e.g., emission and transition probabili-
ties), one for the relation between phones and words (e.g., pronunciation models), and one
for the relation hetween words and sentences (e.g., language model). Consequently, instead
of directly estimating P(M|X, L,0), we decompose it into terms which can be estimated
separately. Currently, the model M represents a sequence of words, i.e., there is one-to-one
mapping between sentences and models'®. Thus, going one level down in the modeling

hierarchy, the model may be described in terms of state sequences:
P(M|X,L,0)= ZP(FZ'|X,L,®)P(M|FZ',X,L,@) (6.23)
Iy
Although acoustic information such as fundamental frequency, silences, and energy levels,
might help to estimate the word sequence from the state sequence, our algorithm currently
does not utilize it. Thus, assuming that given the state sequence and the language model,
the dependence on the acoustic sequence can be dropped, we get:

P(M|X,L,0)~ Y P(I'4|X,L,0)P(M|T;, L,0) (6.24)
LI

Using Bayes’ rule, we also have:

T\ M, L,O)P(M|I.
P11, 0)

)

P(M|X,0.L)~ Y P(I4|X,0,1) it
LI

Approximating that the effect of the language model can be ignored in the acoustic term'!,

°In contrast to speech understanding tasks where the model may represent an action (e.g., dialing a
particular phone number) that can be expressed by several sentences.
" This approximation is especially inaccurate at word boundaries.
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ie., P(I|X.L,0)= P(I';| X, 0), yields:

P(M|X,L,0)~ Y P(I}]|X,0) P10

Iy

(6.25)

in which P(I';| X, ©) is computed as described in Chapter 5. P(M|L,©) can be assumed
independent of the acoustic model parameters and can be estimated using standard language
modeling techniques. In principle P(I';|M, L,0) and P(I';|L,0) can be estimated during
training by dynamic programming techniques similar to our a and  recurrences (Bourlard
et al. 1994), and the ratio of these two terms represents the additional state transition

information that is gained by knowing the specific word sequence.
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Chapter 7

Experimental Results with

REMAP

7.1 Isolated Speech Experiments

In this section we report on experiments with isolated speech, where recognition
was based on acoustic information. The initial task was isolated speech recognition task
on the Digits+ corpus in use at ICSI, which is a subset of a larger database recorded
over a clean telephone line at Bellcore. It is composed of 200 speakers saying the words
“zera” through “nine”, “oh”, “no”, and “yes”. The additive noise in these experiments was
automotive sound that was recorded over a cellular telephone. Noise was randomly selected
from this source and then added to the clean speech waveforms (10 dB S/N ratio). In order
to better utilize the data we used a jackknife procedure (Efron 1982). For each of four
experiments, three fourths of the data was used for training and cross-validation, and one
fourth was used for testing. Specifically, in each experiment there were 1720 utterances for
training, 230 for cross-validation and 650 (from 50 speakers) for testing. All nets had 214
inputs: 153 inputs for the acoustic features, and 61 to represent the previous state (one
unit for every possible previous state). The acoustic features were combined from 9 frames
with 17 features each (RASTA-PL.P8 4 delta features + delta log gain) computed with an
analysis window of 25 ms computed every 12.5 ms (overlapping windows) and the sampling
rate was 8 Khz. The nets had 200 hidden units and 61 outputs. All the initial weights
for the nets were from a net that was trained on the NTIMIT database. The combined
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System cut 1 | cut 2 | cut 3 | cut 4 | Overall Error | Avg. Posterior
Baseline Hybrid 3.5% | 2.3% | 4.4% | 3.4% 3.4% -
DHMM, pre-REMAP | 2.5% | 2.6% | 2.9% | 2.5% 2.7% 0.1269
1 REMAP iteration 2.8% | 2.0% | 2.5% | 2.8% 2.5% 0.1731
2 REMAP iterations | 2.9% | 2.0% | 2.5% | 2.6% 2.5% 0.1773

Table 7.1: Training and testing on noisy isolated digits.

results for all four cuts are summarized in Table 7.1. Note that the row entitled “Baseline
Hybrid” refers to an ANN trained on targets of 1’s and 0’s that were obtained from a forced
Viterbi procedure by our standard HMM /ANN system as described in (Bourlard & Morgan
1994): the row entitled “DHMM, pre-REMAP” means a Discriminant HMM using the same
training approach, with hard targets determined by the first system, and additional inputs
to represent the previous state. The rightmost column gives the average probability of the
correct model over all test words as determined during recognition. The recognition rate
after the first and second iterations of REMAP is significantly better (at p < 0.05 level) than
the baseline hybrid system. Although the contribution of the REMAP step is small for this
task, The overall improvement including the effect of using the transition-based, posterior
framework as done in the Discriminant HMM, is significant. In figure 7.1 we illustrate the
effect of REMAP iterations of the probability of transition, i.e., changing state for every
frame in the utterance “one.” Specifically, we calculated the probability that the current
state is different from the previous state. As a result of REMAP iterations we get smoother

transition probabilities as desired.

7.2 Continuous Speech Experiments

The next step was to test whether this improved performance can also be ob-
tained with continuous speech. For this purpose we chose the Numbers’93 corpus. It is a
continuous-speech database collected by CSLU at the Oregon Graduate Institute. It consists
of numbers spoken naturally over telephone lines on the public-switched network (Cole et al.
1994). The Numbers’93 database consists of 2167 speech files of spoken numbers produced
by 1132 callers. We used 877 of these utterances for training and 657 for cross-validation and

testing (200 for cross-validation). There are 36 words in the vocabulary, namely zero, oh, 1,
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Figure 7.1: The probability of a transition (changing state) for every frame in the utterance
“one.” The Y-axis represents the probability of transition, and the X-axis the time step
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System Error Rate
DHMM, pre REMAD 14.9%
1 REMAP iteration 13.6%
2 REMAP iterations 13.2%

Table 7.2: Training and testing on continuous numbers, no syntax, no durational models.

2.8,...,20, 30, 40, 50,...,100, 1000, a, and, dash, hyphen, and double. As before, all the nets
have 214 inputs: 153 inputs for the acoustic features, and 61 to represent the previous state
(one unit for every possible previous state). All the initial weights for the nets were from a
net that was trained on the NTIMIT database. The acoustic features were combined from
9 frames with 17 features each (RASTA—PLPS + delta features + delta log gain) computed
with an analysis window of 25 ms computed every 12.5 ms (overlapping windows) and the
sampling rate was 8 Khz. The nets have 200 hidden units and 61 outputs. Qur results
are summarized in Table 7.2. Note that the row entitled “DHMM, pre-REMAP” means a
Discriminant HMM using our standard training approach, with hard targets determined by
the first system, and additional inputs to represent the previous state.

The improvement in the recognition rate as a result of REMAP iterations was
significant at p < 0.05. However, all the experiments were done using acoustic informa-
tion alone. Using our (baseline) hybrid system under equal conditions, i.e., no duration
information and no language information, yielded 31.6% word error; adding the duration

information back reduced the error rate to 12.4%.

7.3 Analysis and Discussion

7.3.1 Invalid State Sequences

The improvement in the recognition performance as a result of REMAP training
was significant for the continuous speech experiment and not significant for the isolated
speech experiment. Most of the improvement in the isolated speech task came from using the
posterior-based model, DHMM. This is an intriguing result, especially given the significant
increase in the posterior probabilities of the correct models in the DIGITS+ experiment.

One explanation for this might be related to phone sequences that do not represent any
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valid sentence.

Essentially, REMAP discriminates between phone sequences (through the state
sequences). In Section 5.3 we show that the MAP constraint is met by the DHMM model,
i.e., the sum of all posterior probabilities of all state sequences is 1. However, some of these

! are not valid in any particular model. They can be viewed as part of a big

state sequences
“garbage model” that includes all invalid state sequences. Further, the sum of the posterior
probability of this “garbage model” and the posterior probabilities of all valid models is
one. The question is how big is the share of the “garbage model” 7 This share could be
evaluated for the DIGITS+ case (given that we only have 13 legal models). As it turns
out, the average posterior probability of the “garbage model” before the REMAP iterations
is 0.87, and REMAP reduced it to 0.82. Therefore, it might be the case that most of the
increase in the average posterior probability of the correct models was at the expense of
the “garbage model” and not at the expense of other valid rival models. We tested this
hypothesis by measuring the arithmetic average of the ratio of the posterior probability
of the correct model and the sum of the posterior probabilities of all valid models, before
and after REMAP. Before REMAP this ratio was 0.971, and REMAP increased it to 0.975.
Explicitly, the average posterior probability of the correct models before REMAP was 0.1269
and the posterior probability of all other incorrect yet feasible models before REMAP sum
to 0.00379, and REMAP increased them to 0.1773 and 0.00455 respectively. Therefore,
REMAP only slightly increased the posterior probability of the correct model relative to
the other valid models. In other words, for this task the model that had lower probabilities
were primarily “illegal” models. This might be more useful in a word spotting task, where
illegal sequences may be input.

The same measures could not be calculated for the NUMBERS93 task given the
very large number of valid models (continuous speech). However, the share of the probability
mass dedicated to the “garbage model” may not be very hig. The reason is that, given
more valid models, more state sequences are encompassed. Therefore, there are fewer state
sequences left for the “garbage model.” This might explain the significant improvement in
the continuous speech experiment. Hopefully, for large tasks (in terms of vocabulary and
perplexity) the valid models will cover more possible sound sequences, resulting in a less

influential “garbage model.”

!Fach state sequence represents one phone sequence, as each state belongs to a particular phone.
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7.3.2 Hard Targets
Number of Transitions

In chapter 5 we observed that for a phone classification task training DHMM with
“hard” targets resulted in worse performance than for the baseline system. In contrast, on
both the DIGITS+ and the NUMBERS’93 experiments, we got better results with DHMM
trained on “hard” targets than with the baseline system under equivalent training and
testing conditions. One possible explanation is related to the number of phone transitions
that the network has to learn. In the DIGITS+ corpus and the NUMBERS‘93 task the
number of possible transitions is small (less than a hundred) . in contrast to more than
1000 possible transitions in the TIMIT case?. Therefore, it might be possible to learn a
small number of transitions with “hard” targets, but this approach may not be scalable to
a task with a large number of transitions, or at the very least might require significantly

more data for training.

Initialization

In order to start the REMAP iteration there is a need for a trained MLP to supply
the initial conditional transition probabilities for the forward and backward recursions. In
these experiments, these probabilities were estimated using a network trained on “hard
targets.” It might be that this initialization limits the training to networks that are too
similar to the initial network. One way try to overcome this potential limitation might
be to add noise (analogous to simulated annealing techniques) to the initial MLP weights.
Alternatively we can blur the “hard” targets, e.g., by adding a Gaussian centered around
each target. Both of these approaches might result in initial transition probabilities that

are smoother than the ones that are estimated by the MLP trained on “hard targets.”

2The exact number of possible transitions are function of the phone set in use
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis introduced a framework for training and modeling continuous speech
recognition systems based on the theoretically optimal MAP criterion. In contrast, most
current state-of-the-art systems are trained according to other criteria such as Maximum
Likelihood (ML). Our proposed HMM/ANN paradigm is based on re-estimating ANN tar-
gets and weights to guarantee an increase in the posterior probability of the correct model
(sentence). We have described the theory behind the new framework, included a conver-
gence proof for the training algorithm, and reported on experimental results that support
the proposed paradigm.

Our studies have shown that explicitly modeling transitions between speech units
can improve recognition performance. Specifically, we have shown that accurate boundary
information between phones can improve recognition performance significantly. We have
studied a transition-based model that uses local transition probabilities (i.e., the posterior
probability of the current state given the current acoustic vector and the previous state)
to estimate glohal posterior of sentences. Therefore, it is a true recognition model, and it
directly maps from acoustic sequences to sentences, unlike HMMs that model the inverse
relation (the likelihood of producing an acoustic sequence)

Early experiments with the proposed model and the Viterbi-based training proce-
dure showed the need for a new training algorithm. Specifically, the Viterbi-based training
(when applied to the transition-based model) suffered from poor transition detection and

a mismatch between the input space distribution during training and recognition. These
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reasons, combined with the goal of training HMM/ANN systems based on the theoretically
optimal MAP criterion, led to a new discriminant training algorithm, REMAP.

REMAP is a method to estimate parameters and train systems that classify se-
quences according to the MAP criterion. This can be used in a new form of hybrid
HMM/MLP that, in addition to the advantages of standard HMM/MLP hybrids, uses
“full” posterior probabilities for training and recognition. We still use neural nets (in our
case MLPs, though recurrent nets or TDNNs could be used) to estimate local posterior
probabilities (conditional transition probabilities), but our nets are trained with probabilis-
tic targets that are themselves estimates of local posterior probabilities (conditioned on the
acoustic data and the previous state).

There is now a way, similar in spirit to the forward-backward recursions of the
Baum-Welch algorithm, of estimating these optimal targets given a previously trained neural
network. Additionally, we have a convergence proof that guarantees iterative increase of the
global posterior probability. This method is valid for any hybrid HMM/ANN system but,
in this thesis, was developed in the framework of “Discriminant HMMs” using conditional
transition probabilities.

While our gains with this approach are still small, in many ways the experimental
results support the proposed framework. Experimenting with an isolated speech recognition
task resulted in an increase in the estimates of the posterior probabilities of the correct
sentences after training. Extending these experiments to a continuous speech recognition
task achieved a significant decrease in error rate in comparison to a baseline system. While
learning a larger number of transitions may be difficult, it still may be the case that larger
tasks will be better for REMAP, since less probability mass will be associated with “illegal”

state sequences.

8.2 Future Work

8.2.1 Incorporating Language Information

This work and other current approaches to speech recognition modeling assume
independent models for language and acoustic information. Usually the language model
estimates prior probabilities of sentences by computing n-grams (the probability of a word

given the previous (n-1) words), by counting the relative frequencies in the training test
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L. Acoustic models use a separate set of parameters, which are

or in a large text corpus
estimated independently from the language model parameters.

In the posterior-based framework proposed here, we should estimate the posterior
probability of the sentence given both the acoustics and high-level knowledge such as a lan-
guage model (see Chapter 2). Furthermore, during training we want to optimize the measure
that we use in recognition. Therefore, we want to maximize the posterior probability of
the correct model given both the acoustics and the language model. However, the training
algorithm that is proposed in this study, REMAP, increases the posterior probability of the
correct model based only on acoustic information.

One possible solution is described in Section 6.4. Specifically, Equation (6.25)
describes a way to incorporate the language model into the estimation of the posterior
probability of a particular model. So far, we have not not experimented with this approach.
Another possible solution is to estimate “local” probabilities, e.g., local conditional posterior
probabilities in this work, based on both the local acoustic and on language information.
Specifically, we could take into account whether the transition between two phones occurs
in the middle of a word or between two words, e.g., one phone is the last phone of the
current word and the second is the first in the following word. A possible implementation
of this idea is to add an additional input to the MLP described in Figure 5.2 to represent
the words of the source and target phones. In the case of large vocabularies, the words can
be clustered into classes as has been done in class grammar techniques. Unfortunately, this
increases the dimensionality of the input space, resulting in a need for more training data
and more computation.

Several researchers have worked on learning pronunciation models using both the
linguistic and the acoustic training data (Stolcke & Omohundro 1993b; Stolcke & Omo-
hundro 1993a; Wooters 1993). Extending this line of work towards learning probabilistic
grammars based on both the linguistic and the acoustic training data seems like a direction
worth pursuing. Eventually we might learn the models themselves (not just the parameters
of the models) from the data. Complementing this data-driven direction as much domain-
specific knowledge should be incorporated as possible. For instance. new experiments are

now being done at ICSI using enforced minimum duration constraints with REMAP.

!Generally, smoothing techniques are used to get a better estimate of rare or non-occurring word transi-
tions, e.g., averaging the bigram probabilities with the product of the corresponding unigram probabilities.
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8.2.2 Extensions
A Smaller Phone Set

In section 7.3 we describe a potential problem regarding invalid state sequences.
We showed that in a small isolated speech experiment, around 80% of the probability mass
was dedicated to a “garbage model”, which contains all phone sequences that are not part
of any valid model. Furthermore, our speculation was that in the continuous speech task,
this problem is not so severe, given the large number of legal models which encompass more
phone sequences. Additionally, a potential partial solution is to use a smaller phone set,
such that the phone sequences “covered” by the legal models will have a larger portion from

all phone sequences.

Recurrent Nets

In all the mathematical development through this thesis we rely on the assumption
that to estimate conditional transition probabilities, we can represent both the acoustic
past and the previous state sequence by the most recent previous state and by a temporal
window of several acoustic frames into the past. This simplifying assumption can be relaxed
by replacing the MLP used in this study by a recurrent neural network (Robinson 1994). A
recurrent neural network encodes the past in its state units. Hence, the estimation of the

transition probabilities is conditioned on the captured history of the utterance.

Negative Training

In section 5.4.2 we describe a potential problem regarding a mismatch between the
input space distribution during training and recognition. During training the net is only
presented with “correct” pairs of acoustic vectors and the correct previous state, while in
recognition the net is expected to generalize to all possible combinations of acoustic vectors
and previous states. A possible solution might be to do explicit negative training. Specif-
ically, we would train the network with all possible combinations of acoustic vectors and
previous states, but for the “incorrect” previous states we would present uniform targets,
i.e., all targets would have the same value. We can estimate the posterior probability of
each previous state, by running the alpha and beta recursions in a fully-connected phone

model. According to this estimated distribution of the previous state we would select the
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pairs of acoustic vectors and previous states as described in Section 6.3. In other work,
Lyon and Yaeger recently showed that explicit training on negative examples can improve

recognition for on-line hand-recognition with ANNs (Lyon & Yaeger 1996).

Modeling Extensions

In this study although we could increase the complexity we have used a simple
1st order Markov model. The extension to an M-th order model is described in (Bourlard
et al. 1994). However, the increased complexity of the model requires more training data to
reliably estimate the model parameters. Further, a more complex model has no guarantee to
work better. Other modeling extensions might be to encode speaker-dependent information
such as gender, speaking rate, and accent as extra inputs to the Discriminant HMM. Another
possible extension is to apply REMAP to perceptually-motivated models such as SPAM
(Morgan et al. 1994; Morgan et al. 1995).

8.3 Epilog

In experimental science such as speech recognition, a division between data de-
scription and data modeling can be drawn (Cohen 1995). Data description is taking an
existing model and increasing its complexity, adding more exceptions to better fit the ob-
served data; for instance, adding triphones to HMMs. In contrast, data modeling refers
to finding models that are a better match to the underlying phenomena, such as a model
based on a parameter for vocal tract length. Furthermore, these new models should be a
simpler explanation of the observed data, with better generalization capabilities, and not
just a more complex version of the existing models.

Currently, in speech recognition, the most popular models are HMMs, with a
number of labs and companies using hybrid HMM/ANN in different forms. Tn this thesis
we suggest a different framework than HMMs for speech recognition. The main difference
between HMMs and our suggested framework is in the modeling objective. HMMs model
a production system, i.e., all the different ways that a given sentence can be realized.
Their input is a sentence and their output its acoustic realizations. Thus, a mismatch with
observed data could be solved through a more detailed model of the production process,
e.g., having different models for males and females. The framework proposed here models

a recognition process, i.e., the input is an acoustic utterance and the output is a sentence.
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We estimate a fixed number of classes (phones in our implementation) given the context.
The context can represent the previous state (as done in this study), the speaking rate of
the speaker, the gender of the speaker, the noise level, etc.

The long term usefulness of the proposed framework may be determined on the
performance on larger and more challenging speech tasks (such as the Switchboard corpus
(NIST 1992)) than tested here and on application of it to other domains that are also
sequential in nature such as hand-writing recognition. For REMAP to become a popular
approach for speech recognition, two main objectives must be achieved. The first objec-
tive is to incorporate more speech specific knowledge into this framework, such as duration
constraints, speaking rate, etc. Initial experiments with enforcing minimum duration con-
straints are beginning to produce promising results. The second objective is to integrate
the language information into the framework. We do believe that the framework presented

here is a good start.
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Appendix A

REMAP Convergence - Theorem
Proof

A.1 Theorem 1

Theorem 1:

IF R(U],Ug) Z R(vl,vl)
THEN P(M|X.vy) > P(M|X,vy).

In other words, if we can find a new set of probabilities vy increasing R, the new set of
probabilities will also increase the posterior probability of the model M.

Proof:

P(M|X7U2)
log ————~

P(M|X7U1)
Z P(M,T|X, ) P(M,T| X, v9)
P(M|X,v1) P(M,T|X,v)
)

= log

T
>Z P(M,T|X7?)1)]O [P(M,T|X7?)2]
5 P(M|X,vy) P(M,T|X, )

(because of Jensen’s inequality and concavity of log function)
= R(v1,v2) — R(vy, v1)

Note that the random variable used for the Jensen’s inequality is a PMTIX %) which is a
P(M.T|X,00)
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function of the random variable I'). As a consequence, we have:

log JJZ(M|X’ 2 S R(or, o) — B(vr, 1) (A1)

(M|X7 Ul)
which proves the theorem. If a new set of probabilities v, that makes the right-hand side

of (A.1) positive can be found, then the model re-estimation algorithm can be guaranteed

to increase the posterior probability of the model to P(M|.X, vq).

A.2 Theorem 2

Theorem 2:

Given vy, a fixed set of probabilities that is estimated by an MLP with a fixed set of weights
0. we show that R(vy, v2) attains its local maximum value when the conditional transitional

probabilities P,, (q}?’|mmq};’71) are defined as'

P (g} an, qp ") = P(q/| X, g7, v1(©), M) (A.2)

Proof:

We now treat the conditional transitional probabilities P,,(-) as the variables for the op-
timization. Thus, we need to maximize R(-) in the space of transition-probability sets T,

under the K' N constraints

K
ZPW((]ﬂxn,qZ—l) =1, vk=1,....K;¥n=1,....N (A.3)
i=1

Using Lagrange multipliers A = (A1 1,..., A Ny« oy AR 15+ -5 Ak N)E, maximization of R(-)

as defined in (6.2) under the constraints specified in (A.3) is then equivalent to maximization

of
K

R*(v1,v9,A) = R(?)h?)g)—l—ZAkm ]fZPq,Q(q;\mmqu) (A4)

k,n 7=1
So there are K2N unknowns that are the conditional transition probabilities in vy and
K N unknowns that are the Lagrange multipliers. Fortunately, there are the same number

of equations as we compute the partial derivative of R*(-) relative to each unknown and

1Of course, all z,’s in the following should be replaced by Xsi'g if local contextual input is used, or X7
for a recurrent network.
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equalize it to zero. Furthermore, it turns out that we can solve each of the K?N equations
described above independently and find solutions that satisfy the K N constraints.
Considering a specific transition (q}z—l, q;'), we then have:
IR*(+)
aAk,n

=0 (A.5)

which returns the constraint (A.3). For the partial derivative of R*(:) with respect to P,,,(+),

we first use the following decomposition:
P(M,T|X,vy) = P(I'|X,v2) P(M|I', X, v3) (A.6)

According to (5.7), the first factor in (A.6) can be expressed as

N
F|X ?)2 H [ qﬁ|T777qI< 1) (A7)

Also, the second factor in (A.6) can be assumed independent of the conditional transition
probabilities (i.e., given a state sequence, the probability of the model does not depend on

the transition probabilities), in which case we have:
P(M|I', X,vy) = P(M|T', X') (A.8)

Taking partial derivatives, then, the second term in (A.6) has no effect, since it
can be assumed to have no dependence on P, (¢} |z, qz_l) and since it only appears as an

additive term once the logarithmic function has been applied.

We then get
IR*(+)
0P, (q}2n, a5 ")
1 1
= BT P(M, Ty 0| X, 01) | Ak
P(M|X7 7)1) ]—\%:’n P?)Q(qg‘mﬂ',Qk 1)
-0 (A.9)

where I'y, 1, stands for those paths containing the transition (q};’*1 .q/). Solving (A.9) gives:

1 Ekﬁnp( ’ ’ )
Py (gflen, g™t = = ” Al

[13 77

We now have to find the value (or value) of Ap, that guarantees that the

new estimates of P, (¢, qz_l) will meet the constraint. It is possible to find it without
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directly solving the set of equations. It is indeed easy to show that:

Dt POM Tl Xov1)  Yur P(MLT, g7, g7 [ X, v9)
P(M|X7U1) ; P(M|X7U1)
_ P(M7 (]?7(]2_1|X7 Ul)
P(M|X7 Ul)

= P(Q?,QZ_HX,M,?A)
= P(q?m;z_lev Mv Ul)P(f]Z_l\X:M: Ul) (All)

Since the second factor in (A.11) is a function of &k and n only, we can set

Akn to P(qZ_I\X, M, vy) which then gives us, according to (A.10):
P (a7 |7n, g1 ") = P(af | X, i~ M o) (A.12)

This is a valid solution since the constraint

K
ZP(qﬂX, ‘]Z_laM, v1) = 1,Vk and Vn
/=1

given in (A.3) is automatically met.? In order to verify that we have a local maximum point
we have to compute the Hessian matrix. It is easy to see by looking at (A.9) that all the

non diagonal elements are zero. In computing the diagonal elements we get

O*R*(+)
8P32(Q?|$n7q2_1)
- > | P(M,Tppn X, 01) !
= — s Lk n |, U1 n n—
POMIX,vn) (&~ Poy (g an. g ")

(A.13)

and it is obvious that for probabilities (i.e., positive numbers) we get negative diagonal

elements. Thus, this is a local maximum point. This proves Theorem 2.

A.3 Theorem 3

Theorem 3:

When minimizing the weighted relative entropy criterion (20) with the target set 7" (which is

calculated from a probability set v1), the auxiliary function R(-) is maximized. Specifically

2We cannot prove that this is a unique solution since most of the equations are nonlinear, but we know
this is at least one valid solution.
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the new set of probabilities vy, implemented by the trained MLP satisfies the following:

E (0 < E(0Y) = R(v1(0Y),02(0")) > R(v1(0Y), v1(0Y)) (A.14)

Proof:

N K
B0 — E.(0) = SN P(¢f X, M, 0i(0Y))

n=1 k=1

s 1 t gl ‘]Z_l Gt)
Plq}| X, q ", M,v1(0"))lo n’ ’
> P(g/1X, qp 1(01) e T O

/=1

N K K el
no n— , g((mw:q 7(;) )
= DD Plafgp X ML (1) log £
n=1 k=1 /=1

gf(mﬂt q: 17®t+1)
(A.15)

Below we show that the change in the auxiliary function R(-) has the same magnitude then

FE., but was with the opposite sign.

R(v1(0), v5(0™1)) — R(v1(0"), vi(0"))
_ ZP(M,F|X,U1)1O [ (M, T|X. vy)
— P(M|X,v1) P(M,T[X,vy)
( )
( )

> P(M,T|X,v) [P ML, X, v P(TX,UQ)]
= — ‘o
— P(M|X,v1) P(M|T', X, v1)P(T|X, vy)

(A.16)

Given a state sequence, the probability of the model does not depend on the transition

probabilities (vq and vg). As stated in (A.8), we then get:

R(v1(0Y), v2(0'1)) — R(v1(0Y), v1(0Y))
B Z P(M, r|X m [ (I| X, vz]
-4 P(M[X, o) P(T|X,v7)
- Z M, TIX, ?)1 [ P70 1®H—1)] . Jasin (A.7)]
r (M|X ?)1 (7/|quk -,(“)t)

= ZP(F|M,X,U1)10g lH ((7/|quk ®t+1)]
r Hn:l P(qﬁ |$n7 Qk 7®t)

rearranging the terms in the summation :

K K . .

Z > Ty, .0
S>> P(TpenlM, X, v1)log 9. g5 Lo )
ge(Tn, q; ", 0

n=1k=1/{= legn
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N K K nel pigl
— n Lns 7®
S S P M, X, 01(0)) log L2 O
n=1k=1/=1 T gi(Tn, q; ", 0
N K K n—1 i+1
n— n gf(xn:q :®
- ZZZP(qk 17q€|M7X7U1(®t))log kn—l ¢ :
n=1 k=1 ¢=1 gf(xn:Qk :® )
(A.17)

in which I'y s, stands for those paths containing the transition (qz_l, q7).

A closer look at the last equation shows the term that we got for the difference in
the auxiliary function R(-)is with an opposite sign and the same magnitude as the difference
in E,. in (A.15). Thus, minimizing the cost function F. (as part of the MLP training) is
equivalent to maximizing the auxiliary function R(-). Hence, we have proved Theorem 3,
and in fact showed that minimizing the error criterion (6.8) is equivalent (within a scaling

factor) to maximizing the auxiliary function.
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NONLINEAR DISCRIMINANT FEATURE EXTRACTION FOR ROBUST
TEXT-INDEPENDENT SPEAKER RECOGNITION

Yochai Konig, Larry Heck, Mitch Weintraub, and Kemal Sonmez

Speech Technology and Research Laboratory
SRI International
Menlo Park, CA 94025

RESUME

Cet article propose une méthode basée sur I’analyse dis-
criminative non-linéaire pour extraire et sélectionner un
ensemble de vecteurs acoustiques utilisés pour 1’identi-
fication de locuteurs. L’approche consiste a mesurer et
grouper un grand nombre de mesures acoustiques (corre-
spondant a plusieurs trames de données consécutives), et
a réduire la dimensionalité du vecteur résultant au moyen
d’un reseau de neurones artificielles. Le critere utilisé
pour optimiser les poids du réseau consiste a maximiser
une mesure de la séparation entre les locuteurs d’une base
de données d’apprentissage. L’architecture du reseau est
telle que 1’une de ses couches intermédiaires représente la
projection des vecteurs acoustiques d’entrée sur un espace
de dimensionalité inferieure. Apres la phase d’apprentis-
sage, cette partie du réseau peut etre isolée et utilisée pour
projeter les vecteurs acoustiques d’une base de données
de test. Les vecteurs acoustiques projetés peuvent alors
étre classifiés. Combiné a un classificateur cepstral, le
classificateur utilisant ces nouveaux vecteurs acoustiques
réduit de 15% le taux d’erreur de classification de la base
de données définie par NIST en 1997 pour I’évaluation des
systémes de reconnaissance du locuteur.

ABSTRACT

We study a nonlinear discriminant analysis (NLDA) tech-
nique that extracts a speaker-discriminant feature set. Our
approach is to train a multilayer perceptron (MLP) to max-
imize the separation between speakers by nonlinearly pro-
jecting a large set of acoustic features (e.g., several frames)
to a lower-dimensional feature set. The extracted features
are optimized to discriminate between speakers and to be
robust to mismatched training and testing conditions. We
train the MLP on a development set and apply it to the
training and testing utterances. Our results show that by
combining the NLDA-based system with a state of the
art cepstrum-based system we improve the speaker verifi-
cation performance on the 1997 NIST Speaker Recogni-
tion Evaluation set by 15% in average compared with our
cepstrum-only system.

1. INTRODUCTION

Our goal is to extract and select features that are more in-
variant to non-speaker-related conditions such as handset
type, sentence content, and channel effects. Such fea-
tures will be robust to mismatched training and testing
conditions of speaker verification systems. With current
feature sets (e.g., cepstrum) there is a big performance
gap between matched and mismatched tests [8] even af-
ter applying standard channel compensation techniques
[4]. In order to find these features, the feature extraction
step should be directly optimized to increase discrimina-
tion between speakers, and to filter out the non-relevant
information.

Our proposed solution is to train a multilayer percep-
tron (MLP) to nonlinearly project a large set of acoustic
features to a lower-dimensional feature set, such that it
maximizes speaker separation. We train the MLP on a
development set that includes several realizations of the
same speakers under different conditions. We then apply
the learned transformation (MLP in feed-forward mode)
to the training and testing utterances. Finally, we use the
resulting features for training the speaker recognition sys-
tem, e.g., Bayesian adapted Gaussian mixture system [9].

We begin by reviewing related studies in Section 2. We
describe the proposed feature extraction technique in Sec-
tion 3. The Development database is described in Section
4. In Section 5, we report the experimental results on the
1997 NIST evaluation set. We continue with analysis of
the results in Section 6. Finally, we conclude and describe
directions for future work in Section 7.

2. RELATED STUDIES

The related studies to the NLDA technique can be di-
vided into two main categories: robust speaker verification
systems, and data-driven feature extraction techniques.
Previously proposed approaches to increase robustness to
mismatched training and testing conditions, especially to
handset variations, include handset-dependent background



models [3], and a handset-dependent score normaliza-
tion procedure known as Hnorm [9]. Data-driven feature
extraction techniques were mainly suggested for speech
recognition tasks. Rahim, Bengio and LeCun suggested
optimizing a set of parallel class specific (e.g., phones) net-
works performing feature transformation based on mini-
mum classification (MCE) criterion [7]. Fontaine, Ris and
Boite used 2-hidden layer MLP to perform NLDA for iso-
lated word, large vocabulary speech recognition task [2].
The training criterion for the MLPs was phonetic classi-
fication. Bengio and his colleagues suggested a global
optimization of a neural network-hidden Markov (HMM)
hybrid, where the outputs of the neural network constitute
the observation sequence for the HMM [1].

3. NONLINEAR DISCRIMINANT ANALYSIS
(NLDA)

We explore a nonlinear discriminant analysis (NLDA)
technique that finds a nonlinear projection of the original
feature space into a lower dimensional space that maxi-
mizes speaker recognition performance. This maximiza-
tion problem can be expressed as

A* = argmax J{A(X)} (1)
A

Where A(X) is a nonlinear projection of the original fea-
ture space X onto a lower dimensional space, and J{} is
a closed-set speaker identification performance measure.
To find the best A we train a 5 layer multilayer perceptron
(MLP) to discriminate between speakers in a carefully se-
lected development set (as described below). The MLP
is constructed from a large input layer, a first large non-
linear hidden unit, a small (“bottleneck™) second linear
hidden layer, a large third nonlinear hidden layer, and a
softmax output layer (see Figure 1). The idea is that A is
the projection of the input features speaker onto the “bot-
tleneck” layer. After training the 5-layer MLP (denoted
‘MLP5”) we can remove the last hidden layer and the out-
put layer, and use the remaining 3-layer MLP to project
the target speaker data. Then, we use the transformed fea-
tures to train the speaker verification system, for example,
a Bayesian adapted GMM system (see Figure 2). The
underlying assumption is that the transformation as found
in the development set will be invariant across different
speaker populations.

4. DEVELOPMENT DATABASE

To train the 5-layer MLP, we chose 855 Switchboard sen-
tences (about 2 hours) from 31 speakers with a balanced
mix of carbon and electret handsets, and balanced across
gender. The input consists of 17 cepstral coefficients
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Figure 2: MLP3 for Feature Transformation

and an estimate of the pitch for the current frame, four
past frames and four future frames, resulting in a 162-
dimension vector. The first hidden layer has 500 sigmoidal
units, the bottleneck layer has 34 linear units, the third hid-
den layer has 500 sigmoidal units, and a softmax output
layer has 31 outputs (one for each speaker in the develop-
ment set). After training the MLPS5, we chopped the upper
two layers. The resulting MLP (‘MLP3’) has one hidden
layer and was used to transform the data of the target and
impostor speakers in a test set as described above.

5. EXPERIMENTAL RESULTS

We used the 1997 NIST Speaker Recognition Evaluation
corpus for testing. We report results for three different
systems: (1) our best cepstrum system, which is our imple-
mentation of the state of the art in text independent speaker
verification systems [6]) with 33 input features comprised
of 10 cepstral coefficients, energy term, and first and sec-
ond time derivatives (2) the NLDA based system described
in this paper, (3) a combination of the cepstrum and the



Test Cepstrum | NLDA | Combined
female 3 18.4% 23.0% 16.7%
female 10 12.1% 14.6% 10.8%
female 30 10.5% 12.4% 9.0%

male 3 14.9% 19.4% 14.4%
male 10 13.2% 12.9% 11.1%
male 30 7.9% 11.0% 7.1%

Table 1: Equal Error Rate (EER) Results of the 1997 NIST
Eval., 1h condition

Test Cepstrum | NLDA | Combined
female 10 13.5% 17.0% 12.5%
male 10 11.3% 14.4% 10.5%

Table 2: Equal Error Rate (EER) Results of the 1997 NIST
Eval., 1s condition

NLDA systems. The third system is a linear combination
of the normalized scores with weights of 0.7 for the cep-
strum system scores and 0.3 for the NLDA system scores
(expect for the 3 second cases, where we used 0.6 for the
cepstrum system and 0.4 for the NLDA system). We use
the equal error rate (EER) between misses and false alarms
as a performance measure for reporting results. In Table
1, we summarize the results for the 1h condition in the
NIST evaluation. In this condition the training consists
of 2 phone calls from the same handset, each 1 minute in
duration. There are three different test lengths: 3, 10, and
30 seconds. We report the results for each gender sepa-
rately, by pooling all the test data together (matched and
mismatched telephone number).

The results show a consistent win for the combined
system over our state of the art cepstrum system. We
observe the same consistent win for another condition,
Is, in the 1997 NIST Speaker Recognition Evaluation as
demonstrated for the 10 second case in Table 2, and across
all regions of the DET (false alarm probability versus miss
probability) curves as illustrated in Figure 3 for the male,
10 seconds (1h condition) for the cepstrum only system
and the combined system. These results are consistent
with our initial results for the 1998 Evaluation corpus.

6. RESULT ANALYSIS

In this section, we examine our “black box” approach,
provide insight to its success and give directions for po-
tential improvements. In order to examine the importance
of the pitch input, the 9 frame temporal window, and the
degradation loss as a result of the dimension reduction
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Figure 3: DET Curve for male, 1h, 10 seconds

Inputs Name Frame Correct
9 frames + pitch | MLP3 37.2%
9 frames + pitch | MLP5-34 28.9%
9 frames + pitch | MLP5-50 29.0%
9 frames, no pitch | MLP5-NO 25.9%
1 frame + pitch MLP5-1fr 18.6%

Table 3: Frame-level results on the cross-validation set

from 162 inputs to 34 hidden units in the bottleneck layer,
we trained several MLPs and tested their cross-validation,
frame-level performance on a close set speaker recogni-
tion (our development set as described above). In the
development phase we found a strong correlation between
these frame-level results and the “full cycle” results of the
speaker verification system. The results are summarized
in Table 3.

We trained two types of MLPs: a 5-layer MLP, and
a "vanilla” MLP with three layers including one hidden
layer (denoted “MLP3’). As mentioned above there were
31 speakers in our development set, 687156 frames for
training and 77904 for cross-validation. Our baseline MLP
is the MLP5 described above with 162 inputsand 3 hidden
layers with 500, 34, and 500 units (named ‘MLP5-34").
The output layer of all our nets has 31 outputs, one output
for each speaker in our development set. The MLPS5 named
‘MLP5-NO’ is the same as the baseline but without pitch
information (only 153 inputs). The MLPS named ‘MLP5-
1’ is the same as the baseline but with only one input frame
(as compared to the 9 frames used in the other systems)

Training a 5-layer MLP is difficult given the complex



nonlinear error surface and requires a lot of training data
preferably a ratio of at least 10 between frames than free
parameters. In these experiments the ratio was around 4.7
(700k frames to 150k parameters). This might explain the
disparity in performance between the MLP3 to the MLPS.
This is not due to the bottleneck size as shown by the result
of the MLP5 named ‘MLP5-50" (the same as ‘MLP5-34’
but with 50 hidden units in the bottleneck layer). In our
speech recognition experiments [5] with NLDA, with the
right ratio between frames to free parameters, we did not
observe any performance loss because of the dimension
reduction at the bottleneck layer. Thus, we planto increase
the size of the development set and hopefully improve
the performance of the MLP5 and the overall technique.
Additionally comparing the second row to the fourth and
fifth rows in Table 3, we observe from these results that
that we get a 3% absolute gain from the pitch information,
and 10.3% absolute gain from the temporal window.

Another set of interesting results is the correlation be-
tween the cepstrum and the NLDA scores on 1997 Eval.
set, 1h condition, as summarized in Table 4. From these
results, we observe that the NLDA technique contribute
a significant amount of new information, especially for
the shorter test lengths. This is consistent with the results
previously shown in Table 1.

Test Length | Male | Female
3 0.61 0.47
10 0.68 0.71
30 0.76 0.77

Table4: Correlation Coefficients between NLDA and Cep-
strum systems on 1997 Eval. set, 1h condition

7. CONCLUSIONS AND FUTURE WORK

We presented a nonlinear discriminant analysis (NLDA)
technique that extracts a speaker-discriminant feature set.
Our results on the 1997 NIST evaluation show a consis-
tent (across 12 different tests) and significant (around 15%
in relative error) improvement when combining the sys-
tem trained with the NLDA features with cepstrum based
system. Our initial results on 1998 NIST evaluation are
consistent with 1997 results. Furthermore, our analysis
suggests that there is a potential for performance improve-
ment given more development data. We also plan to exper-
iment with other types of input data such as speech over
cellular phones and speaker-phone speech. In addition,
we plan to extend this study by using a wider range of
input representations and resolutions such as first and sec-
ond derivatives of cepstrum, filter-bank energy levels, and

different analysis windows. Finally we want to note that
although the training of the MLP with 5 layers is compu-
tationally expensive (25 x real time), the application of the
MLP3 in a feed forward mode is very fast (less than 0.4
real-time), thus the NLDA approach is feasible in realistic
settings.
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ABSTRACT

We show that the standard hypothesis scoring paradigm
used in maximum-likelihood-based speech recognition
systems is not optimal with regard to minimizing the
word error rate, the commonly used performance metric in
speech recognition. This can lead to sub-optimal perfor-
mance, especially in high-error-rate environments where
word error and sentence error are not necessarily monoton-
ically related. To address this discrepancy, we developed a
new algorithm that explicitly minimizes expected word er-
ror for recognition hypotheses. First, we approximate the
posterior hypothesis probabilities using N-best lists. We
then compute the expected word error for each hypothe-
sis with respect to the posterior distribution, and choose
the hypothesis with the lowest error. Experiments show
improved recognition rates on two spontaneous speech
corpora.

1. INTRODUCTION

The standard selection criterion for speech recognition hy-
potheses aims at maximizing the posterior probability of a
hypothesis ¥ given the acoustic evidence X [1]:

W= = argmax P(W]|X)
W
_ PW)P(XW)
= argmax TP )
= argmax P(W)P(X|W) 2)
w

Here P(WV) is the prior probability of a word sequence
according to a language model, and P(X|W) is given by
the acoustic model. Equation (1) is Bayes’ Rule, while
(2) is due to the fact that P(X) does not depend on W
and can therefore be ignored during maximization. Bayes
decision theory (see, e.g., [2]) tells us that this criterion
(assuming accurate language and acoustic models) max-
imizes the probability of picking the correct W; i.e., it
minimizes sentence error rate. However, speech recog-
nizers are usually evaluated primarily for their word error
rates.

Empirically, sentence and word error rates are highly
correlated, so that minimizing one tends to minimize the
other. Still, if only for theoretical interest, two questions
arise:

(A) Arethere cases where optimizing expected word error
and expected sentence error produce different results?

(B) Is there an effective algorithm to optimize expected
word error explicitly?

Note that question (A) is not about the difference between
word and sentence error in a particular instance of X and its
correct transcription, since obviously the two error criteria
would likely pick different best hypotheses in any given
instance. Instead, we are concerned with the expected
errors, as they would be obtained by averaging over many
instances of the same acoustic evidence with varying true
word sequences, i.¢., if we sampled from the true posterior
distribution P(W|X).

We will answer question (A) first by way of a constructed
example, showing that indeed the two error metrics can
diverge in their choice of the best hypothesis. Regarding
question (B), we develop a new N-best rescoring algo-
rithm that explicitly estimates and minimizes word error.
We then verify that the algorithm produces lower word
error on two benchmark test sets, thus demonstrating that
question (A) can be answered in the affirmative even for
practical purposes.

2. AN EXAMPLE

The following is a hypothetical list of recognition outputs
with attached (true) posterior probabilities.

w; wr P(wlwz\X) P(w1|X) P(w2|X) E[COI’I‘CCt]
a d .0 44 4 .84

a e 24 44 .34 78

a f 2 44 26 7

b d 2 26 4 .66

b e .05 .26 34 .6

b f .01 .26 26 52

c d 2 3 4 7

c e .05 3 34 .64

¢ f .05 3 26 .56

For simplicity we assume that all hypotheses consist of ex-
actly two words, w; and w,, shown in the first two columns.
The third column shows the assumed joint posterior prob-
abilities P(w)w,| X)) for these hypotheses. Columns4 and
5 give the posterior probabilities P(w;|X) and P(w,|X)
for individual words. These posterior word probabilities
follow from the joint posteriors but summing over all hy-
potheses that share a word in a given position. For exam-
ple, the posterior P(w; = a|X) is obtained by summing



P(wjw,| X') ofall hypotheses such that w; = a. Column 6
shows the expected number of correct words E/[correct] in
each hypothesis, under the assumed posterior distribution.
This is simply the sum of P(w;|X) and P(w,|X), since

Elwords correct(ww; )| X]
= E[correct(w;)| X] 4+ FE[correct(w,)|X]
= P(wi|X) + P(un|X)

As can be seen, although the first hypothesis (“a d”) has
posterior 0, it has the highest expected number of words
correct, i.e., the minimum expected word error. Thus, we
have shown by construction that optimizing overall poste-
rior probability (sentence error) does not always minimize
expected word error. Of course the example was con-
structed such that two words that each have high posterior
probability happen to have low (i.e., zero) probability when
combined. Note that this is not unrealistic: for example,
the language model could all but “prohibit” certain word
combinations.

Furthermore, we can expect the discrepancy between
word and sentence error to occur more at high error rates.
When error rates are low, i.e., when there are at most one of
two word errors per sentence, each word error corresponds
to a sentence error and vice-versa. Thus, if we had an
algorithm to optimize the expected word error directly, we
would expect to see its benefits mostly at high error rates.

3. THE ALGORITHM

We now give an algorithm that minimizes the expected
word error rate (WER) in the N-best rescoring paradigm
[5]. The algorithm has two components: (1) approxi-
mating the posterior distribution over hypotheses and (2)
computing the expected WER for N-best hypotheses (and
picking the one with lowest expected WER).

3.1. Approximating posterior probabilities

An estimate of the posterior probability P(1¥|X) of a
hypothesis W can be derived from Equation (1), with
modifications to account for practical limitations:

e The true distributions P(W) and P(X|M) are re-
placed by their imperfect counterparts, the language
model probability P y(W) and the acoustic model
likelihood Pac(X|W).

e The dynamic range of the acoustic model, due to un-
warranted independence assumptions, needs to be at-
tenuated by an exponent 1/ (X is the language model
weight commonly used in speech recognizers, and op-
timized empirically).

e The normalization term

P(X) =3 P(W)P(X|W)
w

is replaced by a finite sum over all the hypotheses
in the N-best list. This is not strictly necessary for
the algorithm since it is invariant to constant factors
on the posterior estimates, but it conveniently makes
these estimates sum to 1.

Let IW; be the ¢th hypothesis in the /V -best list; the posterior
estimate is thus
Pov(Wi) Pac(W;] X) %
> it Pou(We) Pac(Wi | X) >
This N-best approximation to the posterior has previously

been used, e.g., in the computation of posterior word prob-
abilities for keyword spotting [7].

P(W;|X) ~

3.2. Computing expected WER

Given a list of N-best hypotheses and their posterior proba-
bility estimates, we approximate the expected WER as the
weighted average word error relative to all the hypothe-
ses in the N-best list. That is, we consider each of the
N hypotheses in turn as the “truth” and weight the word
error counts from them with the corresponding posterior
probability:

N
E[WE(W)[X] ~ > P(W; | X)WE(W|W:)  (3)

i=1

where WE(W|W;) denotes the word error of W using
W; as the reference string (computed in the standard way
using dynamic programming string alignment).

3.3. Computational Complexity

Rescoring N hypotheses requires N2 word error com-
putations, which can become quite expensive for N-best
lists of 1000 or more hypotheses. We found empirically
that the algorithm very rarely picks a hypothesis that is
not within the top 10 according to posterior probability.
This suggests a shortcut version of the algorithm that only
computes expected word error for the top K hypotheses,
where X' < N. Note that we still need to consider all
N hypotheses to compute the expected word error as in
Equation (3), otherwise these estimates become very poor
and affect the final result noticeably. The practical version
of our algorithm thus has complexity O(K N).

3.4. Other knowledge sources and weight optimiza-
tion

Often other knowledge sources are added to the standard
language model and acoustic scores to improve recogni-
tion, such as word transition penalties or scores expressing
syntactic or semantic well-formedness (e.g., [4]). Even
though these additional scores cannot always be inter-
preted as probabilities, they can still be combined with
exponential weights; the weights are then optimized on a
held-out set to minimize WER [5].

This weight optimization should not be confused with
the word error minimization discussed here; instead, the
two methods complement each other. The additional
knowledge sources can be used to yield improved pos-
terior probability estimates, based on which the algorithm
described here can be applied. In this scheme, one should
first optimize the language model and other knowledge
source weights to achieve the best posterior probability
estimates (e.g., by minimizing empirical sentence error).



WER SER

Switchboard
Standard rescoring 52.7 84.0
WER minimization | 522 84.4
CallHome Spanish
Standard rescoring 684 809
WER minimization | 67.8 81.2

Table 1. Word (WER) and Sentence error rates (SER) of
standard and word-error-minimizing rescoring methods

So far, we have not implemented combined weight and
word error optimization. The experiments reported below
used standard language model weights and word transition
penalties that had previously been determined as near-
optimal in the standard recognition paradigm.

4. EXPERIMENTS

We tested the new rescoring algorithm on 2000-best lists
for two test sets taken from spontaneous speech corpora.
Test set 1 consisted of 25 conversations from the Switch-
board corpus [3]. Test set 2 were 25 conversations from
the Spanish CallHome corpus collected by the Linguistic
Data Consortium. Due to the properties of spontaneous
speech, error rates are relative high on these data, mak-
ing word error minimization more promising, as discussed
earlier.

The results for both standard rescoring and WER mini-
mization are shown in Table 1. On both test sets the WER
was reduced by about 0.5% (absolute) using the word er-
ror minimization method. A per-sentence analysis of the
differences in word error show that the improvement is
highly significant in both cases (Sign test p < 0.0005).
Note that, as expected, the sentence error rate (SER) in-
creased slightly, since we no longer were trying to optimize
that criterion.

For comparison, we also applied our algorithm to the
1995 ARPA Hub3 development test set. This data yields
much lower word error rates, between 10% and 30%. In
this case the algorithm invariably picked the hypothesis
with the highest posterior probability estimate, confirming
our earlier reasoning that word error minimization was less
likely to make a difference at lower error rates.

5. DISCUSSION AND CONCLUSION

We have shown a discrepancy between the classical hy-
pothesis selection method for speech recognizers and the
goal of minimizing word error. A new N-best rescoring
algorithm has been proposed that corrects this discrepancy
by explicitly minimizing expected word error (as opposed
to sentence error) according to the posterior distribution of
hypotheses. Experiments show that the new algorithm re-
sults in small, but consistent (and statistically significant)
reductions in word error under high error rate conditions.

In our experiments so far, the improvement in WER is
small. However, the experiments confirm that the theo-
retical possibility of suboptimal WER using the standard

rescoring approach is manifest in practice. An important
aspect of the WER minimization algorithm is that it can
use other, more sophisticated posterior probability esti-
mators, with the potential for larger improvements. Our
experiments so far have been based on the commonly used
acoustic and language model scores, but we are already ex-
perimenting with more complex posterior estimator meth-
ods based on neural network models [6].
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ABSTRACT

This paper summarizes part of SRI’s effort to improve acoustic mod-
eling in the context of the Large Vocabulary Continuous Speech
Recognition (LVCSR) project. It concentrates on two problems
that are believed to contribute to the large error rates observed with
LVCSR databases: (1) the lack of discriminative power of the speech
models in the acoustic space, and (2) the discrepancy between the
criterion used to train the models (typically frame-level maximum
likelihood) and the task expected from the models (word-level recog-
nition).

We address the first issue by searching for features that help in nar-
rowing the model distributions, and by proposing a neural-network-
based architecture to combine these features. The neural networks
(NNET) are used in association with a set of large Gaussian mixture
models (GMM) whose mixture weights are dynamically estimated
by the neural networks, for each frame of incoming data. We call the
resulting algorithm DYNAMO, for dynamic acoustic modeling. To
address the second problem, we propose two discriminative training
criteria, both defined at the sentence level. We report preliminary
results with the Spanish Callhome database.

1. Introduction

Many factors contribute to the relatively low performance of state-
of-the-art speech recognizers operating on spontaneous, telephone
speech. A few of these factors are: the diversity of speakers
and speaking styles, the typically relaxed articulation, the multi-
tude of pronunciation variants, the presence of extraneous noises,
the superposition of more than one voice in some segments, and
the distortion due to the communication channel. Whereas some
of these factors can be efficiently dealt with by explicit modeling
(e.g. vocal tract normalization (e.g. [AKC94]), pronunciation mod-
eling (e.g. [Slo95, FW97])), many others are left for the acoustic
models’s multi-modal distributions to model implicitly. This, how-
ever, has the well-known result of broad overlapping distributions
which often lead to recognition errors.

In this context, identifying features that act as discriminants in the
acoustic space would be useful to narrow the acoustic distributions.
If such features can be found, the problem becomes how to use them,
and how to ensure that sufficient data sharing is allowed for the model
parameters to be reliably estimated. These are the main issues that
motivated this work.

In the past decade, contextual linguistic features have been widely
used in conjunction with decision tree models, and have significantly
improved recognition performance (e.g. [BASGT91, YOW94]). De-
cision trees, however, make data sharing among different states diffi-
cult, and are not well suited to the use of features that are continuous

in nature, as opposed to binary. For these reasons, we chose instead
to base our models on neural networks.

More recently, Ostendorf et al. [OBB*97] showed that a combina-
tion of acoustic and prosodic features could greatly help identifying
speech segments that were erroneously recognized (32% predictabil-
ity improvement for a 10-hour training subset of Switchboard). Sim-
ilar results were reported by various researchers working on confi-
dence measures for word recognition (e.g. [WBR* 97]). Presumably,
some of these features, which include various measures of speaking
rate, SNR, energy, fundamental frequency, stress pattern, and sylla-
ble position, could be directly used to disambiguate large acoustic
distributions.

In the field of speaker recognition, the use of handset detectors has
dramatically decreased recognition error rates by sorting out carbon
button from electret handsets [Rey96, HW97]. The handset type
could also be used as an input to the acoustic modeling algorithms.

Another important issue in acoustic modeling is how to capture the
dynamics of the speech signal. Much research has recently been
devoted to relaxing the independence assumption imposed by most
hidden Markov modeling approaches (HMM) and to modeling the
correlation between successive frames of data, leading to the fam-
ily of so-called segment models [ODK96]. Without embarking in
this level of complexity, and following a feature-based approach, we
propose to include in the acoustic models time features similar to the
time index proposed in [GN93, DASW94] and [KM94]. These fea-
tures don’t model correlation but they do alleviate the independence
assumption.

Our goal here is to explore the usefulness of such knowledge sources
as acoustic discriminants, and to propose an efficient and robust ar-
chitecture to incorporate them in the acoustic models. Clearly, the
richness of the acoustic space representation will have a strong influ-
ence on how far this approach can be pushed, but the success of the
experiments cited above (handset classification, feature-based error
prediction, etc.) indicate that the cepstrum-based representation that
most systems use offers enough flexibility for the acoustic models to
be significantly improved.

As mentioned before, the architecture we propose relies on neural
networks. An important issue related to this choice is the selection
of a training criterion to optimize the weights of the networks. The
desirable properties for this criterion are (1) to be discriminative, (2)
to be closely related to the metric used to evaluate the performance
of the recognizer (typically the word error rate (WER)), and (3) to
be differentiable with respect to the weights of the neural networks.

Not all the above issues will be discussed in the paper since this



| System | Eval ’95 | Eval 96 |

baseline 71.00 65.22
+ DT 67.77 64.37
+ CI (size: 1/16 DTs) | 68.77 65.22
+ CI (size: 1/8 DTs) | 68.27 65.22
+ CI (size: 1/4 DTs) | 68.34 65.10
+CI (size: 1/2DTs) | 67.98 64.49
+ CI (size: 1/1 DTs) | 67.69 64.31
N-best error rate 52.54 /

Table 1: N-best list rescoring with decision tree models and context-
independent phone models of different sizes: WER in %.

work is still in an early stage. Our first goals were to validate the
architecture we propose and to investigate different discriminative
training criteria. These two points will be addressed. Feature selec-
tion, however, will be the object of future work: for our preliminary
experiments, we used a set generic knowledge sources including
linguistic features and time indices.

2. Baseline System and Databases

The baseline system for this work is a speaker-independent con-
tinuous speech recognition system trained with 75 conversations of
Callhome Spanish data and 80 conversations from Callfriend Span-
ish. It is based on continuous-density, genonic HMMs [DMM96],
and uses a multipass recognition strategy [MBDW93] with a vocab-
ulary of 8K words, non-cross-word acoustic models, and a bigram
language model. N-best lists are generated, and rescored with the
original acoustic models, a trigram language model, and additional
acoustic models such as decision-tree-based cross-word models (DT)
or large context-independent phone GMMs (CI).

3. Recognition with Large
Context-Independent Models

Using the Spanish Callhome database, we conducted a series of N-
best list rescoring experiments with decision tree models and with
large context-independent GMMs. The numbers of Gaussians in
the GMMs were chosen to be fractions of the numbers of Gaussians
used in the corresponding decision tree models. The smallest models
had 16 times fewer Gaussians than the decision tree models, and the
largest models had exactly the same size. Recognition experiments
were performed with two sets of 200 sentences selected at random
from the male evaluation test sets of 1995 and 1996. The results,
reported in Table 1, show that, for this database, context-independent
models perform as well as or slightly better than decision tree models,
provided that the numbers of parameters are equal.

4. The DYNAMO Algorithm

The architecture we propose is based on a hybrid system combining
feedforward neural networks and context-independent phone mod-
els. Each phone is modeled with a large GMM whose mixture
weights are dynamically estimated by a neural network (see Fig.
1), hence the name of the algorithm, DYNAMO. The means and
variances of the GMMs are held constant. The inputs to the neural
network are the knowledge sources discussed in the introduction.
For each data frame, the knowledge sources for each phone are eval-
uated and input into the corresponding NNET. Each NNET outputs

a set of mixture weights, and the likelihood of the observed data is
computed from the corresponding phone GMM.

knowledge T , mixture ‘
sources i weights TR x| GMM) =
i /ae/ L f i Jael ro P
at time k ac 1 attime k ; ac, N
L oo
. Neural Pi(s Gaussian i
: Networks | 1 @ ¢ Mixture 7
- .| Models |
| E—_— ]\ésk) L.
"

(observation at time k)

Figure 1: A hybrid NNET-GMM model for dynamic acoustic mod-
eling.

Specifically, the likelihood of an observation, x, with respect to
phone ¢ is given by

N9
(x| N2, G%) =Y PE(SEING (xn), (M)
g=1

where A'¢ and G¥ denote, respectively, the NNET and the GMM
associated to phone ¢, N is the number of Gaussiansin G¥, NJ(.)
and P¢(.) are, respectively, the ¢*" mixture component and the ¢*"
mixture weight in G¥, and s} represents the vector of knowledge
sources for phone ¢, at time k.

Because the mixture weights for each phone must sum to one, the
training of the neural networks is a constrained optimization prob-
lem. To simplify the training procedure, we chose to hard-wire
this constraint in the architecture of the neural networks by using a
“softmax’ output layer [Bri90]:

eyg(s)

Z] evi(8)’

where y4(.) is the g™ output of the neural network, before the
softmax layer.

Py(s) = )

The Gaussians in each phone model can be interpreted as a set of
basis functions. A multimodal probability density function is then
estimated for each observation by taking a linear combination of the
basis functions, the weights of which are computed dynamically by
the neural network. The discriminative emphasis of certain portions
of the acoustic space at each instant has the effect of narrowing the
distributions around the acoustic areas where the data are expected
to lie.

This architecture thus outputs the likelihoods of the observations.
This is in contrast with NNET-HMM hybrids trained for state classi-
fication [BM90], where the outputs are state posterior probabilities
that need to be converted into likelihoods, and with approaches such
as REMAP [BKM95, KBM96] that estimate global posterior proba-
bilities of word sequences.

4.1. Training of the DYNAMO Models

The DYNAMO models are trained in two phases. First, the
context-independent phone GMMs are trained with the expectation-
maximization (EM) algorithm to maximize the log-likelihood of the



training data. The means and variances of these models are retained,;
the mixture weights are discarded. Then, the adaptive parameters of
the neural networks are trained with the stochastic steepest descent
algorithm to optimize some criterion £. The neural network weights
are thus updated according to

Y, = ©O5+A6 A3)
MO = Npsls, )

where ©F denotes the set of neural network weights for phone ¢ at
iteration n, Vev &, is the instantaneous gradient of the optimization
criterion &, for ] phone ¢, and g is a constant that controls the learning
rate.

Note that the optimization criterion &, does not need to be identical
to the criterion used to train the GMMs (ML). Indeed, we argue in
the next sections that discriminative training is better suited to this
task. For now, however, we will assume for simplicity that £, is the
average log-likelihood of the data,

€o =) log p(xi| N¥,G%), )
k
where the sum is taken over all the observations X, aligned to phone

Y.

Applying the chain rule to the derivatives of Eq. 5, and taking Eq. 2
into account, we find

o e Iy
Ve = =7 J 6
b ijayj 6% (6)
where
PEN®
(S] é a£¢ — J J _ P@ (7)

dy, L, PENG

can be backpropagated through the neural network, as in the tradi-
tional backpropagation algorithm [RMT86].

Intuitively, the backpropagation term, 6, for Gaussian j is large in
absolute value if the posterior probability of the Gaussian is very
different from its prior probability P,, with both probabilities being
functions of the knowledge sources for the current data frame.

To hasten the convergence of the neural networks and steer them
away from uninteresting local minima, we initially set their weights
so that the network outputs are equal to the mixture weights estimated
with the EM algorithm.

5. Recognition Experiments with ML-trained
Dynamo Models

We performed a set of rescoring experiments with ML-trained DY-
NAMO models, using linguistic questions and, in some experiments,
time features. We chose the linguistic features to be identical to those
selected by the decision trees in previous DT-rescoring experiments
(Table 1). The time features for a hypothesized phone aligned to
T frames of data were the phone duration, 7', and the relative time
index t/7, where t = 0.7 — 1.

Results are given in Table 2, where the baseline obtained by rescor-
ing the N-best lists with the GMMs is given for comparison. These

| GMM size | Experiment | WER |
x1/16 no NNETs — baseline 68.77
x1/16 NNETs w/ ling. feat. & time feat. | 69.20
x1/16 NNETs w/ ling. feat. only 68.92
x1/8 no NNETs — baseline 68.27
x1/8 NNETs w/ ling. feat. & time feat. | 69.35

Table 2: Rescoring experiments with ML-trained DYNAMO models:
WER in %.

numbers show that the introduction of the ML-trained networks in-
creased the overall WER. Further analysis of the results revealed that
the likelihood of the test data had increased as a result of training but
that the posterior probabilities of the correct models had decreased.
This indicated that competing models scored higher than the correct
model, which confirmed that discriminative training should be used
instead.

6. Discriminative Training Criteria

Discriminative training of speech models was first introduced by
Bahl ef al. under the form of Maximum Mutual Information (MMI)
estimation [BBASMS&6]. In this framework, the speech models are
trained to maximize the mutual information between the observation

sequence X' = [Xi,...,Xx,...Xn] and the correct word sequence

We:
©" = argmax Io(W,, X), (8)

)
with
(/Y W ) p(X[We )
Io(W., X) = = 9)
Werd) = O] = 5 o (X W (7Y

where the sum in the denominator is taken over all possible word
sequences, W.

Practical implementations of Eq. 9 for continuous speech recognition
include the estimation of the denominator with a phone loop model
[Mer88], and its approximation by a sum over the hypotheses in an
N-best list [Cho90].

The first optimization criterion we propose is similar to the N-best
list implementation of MMI, but differs in that we augment the N-
best list with the correct word sequence, W.. We then maximize the
posterior probability of the correct word sequence,

<Mw>mw
W)+ S p(X Wi )p(Wh)

P(W.|X) = (10)

p(X[We)p

where N}, is the N-best list depth. The inclusion of the joint prob-
ability of the observation and the correct word sequence in the de-
nominator makes the criterion depart from the original MMI but has
a useful property in terms neural network training, as we will show.

Another family of discriminative criteria stems from the motivation
of directly optimizing the metric used to evaluate the recognizer,
i.e. the word error rate. Bahl et al. proposed the heuristic “corrective
training” procedure in [BBASM88]. Katagiri et al. developed the
Generalized Probabilistic Descent method that extends the idea of
Bayes optimum classification by introducing smooth classification



error functions, and generalizes this framework to the classification
of patterns of variable lengths [KLJ91].

The second criterion we propose consists in minimizing the average
number of errors over the N-best list,

Ny,
ANER(X) = Nih ZNER(Wh)P(Wh|X), an
h=1

where NER(WW3,) denotes the number of errors in the 2™ hypothesis,
and P(W3|X) is the posterior probability of the '™ hypothesis in
the (non-augmented) N-best list.

Both criteria are optimized in a stochastic optimization framework,
as we will discuss shortly. In both cases, the training procedure
requires N-best lists for all the training data. This is typically quite
costly but not infeasible, especially if the N-best list depth is limited
to a small number of hypotheses (5 or 10).

6.1. Maximizing the posterior probability of the
correct sentence

Let p(1) denote the joint probability of a word sequence ¢ (reference
or hypothesis) and of the corresponding acoustic sequence,

p(i) = prar (i) pane (i)', (12)

where pr (i) and pans (i) are shorthands for the language model
and acoustic model probabilities, p(W;) and p(X|W;), respectively,
and where X is the language model weight.

With this notation, we can rewrite the posterior probability of the
correct word sequence in Eq. 10 as

o) = ple)
ORIy -
Likewise,
7S p— ) E— (14)

ORI

denotes the posterior probability of the :'" hypothesis in the aug-
mented N-best list. (All posteriors and likelihoods are conditioned
upon the set of acoustic models { N, G, } for o = 1...N,.)

The first training criterion can be expressed as
1
€= 5D logPi(e) (15)

where N, is the number of sentences in the training set, and P (c)
represents the posterior probability of the correct transcription of
sentence s.

Adapting the neural network weights according to this criterion
amounts to adjusting them after the presentation of each training
sentence by an amount proportional to (stochastic gradient update)

VlngAM(C) — VlngAM(h) s (16)

Viog P.(c) = _ P.(h)

where we made use of the property

Ny,
P(c)+ Y Puh) = 1. (17)
h=1

Since the acoustic log-likelihoods can be expanded into sums over the
observations, X, in the sentence, the above weight update formula
modifies the neural network weights only for those frames where
the reference and the hypothesis strings do not coincide. In that
case, positive training is given to the correct model (c) and negative
training is given to the erroneously hypothesized model (h). The
log-likelihood gradients V log p(.) are calculated according to Egs.
6 and 7. This property results from the fact that the N-best list was
augmented with the correct transcription (Eq. 10).

Another desirable feature of this training criterion is that more train-
ing is given to hypotheses with high posterior probabilities (the mul-
tiplicative term, P(k)).

A potential disadvantage is that the correct hypothesis is often not
in the N-best list for databases with high error rates. Improving the
posterior of the correct sentence may thus result in decreasing the
probability of the best (although erroneous) hypothesis in the N-best
list.

6.2. Minimizing the average number of errors
in the N-best list

The second training criterion we propose is given by
1
£= 4 > ANER., (18)

where the average number of errors ANER: in a sentence was defined
in Eq. 11.

Note that here the posterior probability of a hypothesis is com-
puted only with respect to the other hypotheses in the N-best list
(i.e. without taking the reference into account):

poh) = ") (19)

> (b7

Intuitively, minimizing ANER. “redistributes” the posterior prob-
ability mass to favor hypotheses with few errors and penalize hy-
potheses with more errors.

Again, the weight update formula can be derived by taking the in-
stantaneous gradient of ¢ with respect to the weights of the neural
networks. The weight update for each sentence is therefore propor-
tional to

—VANER. = Y~ P.(h)V logp.an(h) |ANER. — NER.(h)|. (20)
h

The characteristics of this weight update formula are quite different
from those of the previous criterion. Negative training is given to
hypotheses that have a number of errors above average, and posi-
tive training is given to hypotheses with a number of errors below



average. Of course, this average, ANER., evolves with the training
of the models. If the learning process progresses correctly, ANER.
decreases with time, thereby progressively decreasing the number
of hypotheses that receive positive training. In the limit, all the
posteriors P(h) converge to zero except the one that corresponds to
the hypothesis with the lowest number of errors, £*, and ANER.
converges to NER. ("), thereby bringing the training process to an
end.

The main disadvantage of this criterion is that positive training is
given to all the frames in the best hypothesis, including those associ-
ated with incorrectly recognized words. This criterion, however, is
closer to the WER metric that we ultimately wish to optimize.

7. Recognition Experiments with
Discriminatively Trained Dynamo Models

These experiments were limited to the training of small models
(NNETs associated to GMMs x 1/16), with linguistic and time fea-
tures only. Fig.2 shows the results of a self-test experiment (i.e. the
test data is identical to the training data) with the 627 male sentences
of'the Eval’96 test set of the Spanish Callnome database. The N-best
list depth was limited to 10 hypotheses.

———  min NER training
max Pc training

s
5
B

Average number of errors in best hyp
-
]

Training epoch

Figure 2: Average number of errors as a function of the training
epoch, for both training criteria.

The N-best error rate for this set of sentences was 41.49%. The learn-
ing curves show that for the self-test experiment the ANER criterion
shows more promise. This, however, is not a fair experiment, and
the generalization properties of the max-posterior criterion may be
superior. N-best rescoring of 200 randomly selected male sentences
of the Eval’96 test set with the neural networks trained to minimize
the ANER gave a significant WER improvement (see Table 3).

| models | WER |
GMMs x 1/16 — —baseline | 65.22
min ANER NNETSs 63.89

to output mixture weights for the same small phone models (GMMs
% 1/16). The training data consisted of all 15K male sentences in the
training set, of which 10 % was held as a cross-validation set. The
models were tested on the same subset of Eval’96 as in the previous
experiments. The N-best list depth was limited to 5 hypotheses. The
error rate is given in Table 4. The WER improvement is modest but
since the phone GMMs in this experiments were small and hence not
very detailed, little margin for improvement was left to the NNETs.

| models | WER |
GMMs x 1/16 — —baseline | 65.22
max log-post NNETs 64.79

Table 4: N-best rescoring with log-posterior NNETSs, fair experi-
ment: WER in %.

8. Conclusions

We described an algorithm to incorporate new knowledge sources in
aset of acoustic models, with the objective of dynamically increasing
or decreasing the likelihoods of the different modes of the models,
thereby narrowing their distributions. The algorithm makes use of
feedforward neural networks to dynamically estimate the mixture
weights of the speech models, given the knowledge sources for the
current data frame.

We argued that the neural networks need to be discriminatively
trained, and we proposed two training criteria: maximizing the log-
posterior probability of the correct transcription and minimizing the
average number of errors in the N-best list. Preliminary experiments
showed a modest but encouraging improvement in WER. We are cur-
rently experimenting with larger phone models and increased N-best
list depths.
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