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SNR Denton US LLP 
1530 Page Mill Road 
Suite 200 
Palo Alto, CA 94304-1125 USA 

Jennifer D. Bennett 
Managing Associate 
jennifer.bennett@snrdenton.com 
D +1 650 798 0325 
T +1 650 798 0300 
F +1 650 798 0310 
snrdenton.com 

March 10, 2011 

BY COURIER 

SRI International 
333 Ravenswood Avenue 
Menlo Park, CA 94025 

Re: Personalized User Model LLP v. Google Inc., C.A. No. 09-00525-LPS 

To Whom it May Concern: 

 On July 16, 2010, my client Personalized User Model, LLP brought a civil action against Google, 
Inc. for patent infringement in the United States District Court for the District of Delaware.  You are being 
contacted because SRI International is likely to have documents and other information relevant to the 
case arising from its association and dealings with Google, Inc.  Please see the attached subpoena and 
exhibits for instructions on how to respond. 

Kind regards, 

/s/ Jennifer D. Bennett

Jennifer D. Bennett 

Enclosure 

14942824\V-1
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Plaintiff
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�'���)���!����������� ��*��������)��� �����!�+�������,)���-�
Defendant ..........�������!�����..........� �

SUBPOENA TO TESTIFY AT A DEPOSITION 
OR TO PRODUCE DOCUMENTS�IN A CIVIL ACTION

��-

� Testimony:��YOU ARE COMMANDED���������������)����"�+� ���+��� ��$�!����������)���$�,�����������������
 ������������������/�������)���!�	�$��!����
��'���������������*���0�������)������not�������������)���!���+�����"���� ���*����
�������"��������!���+� ���!����+����"���*��*��*����+���� ���*�������)�����������,)��!����������������������������)�$�
�������)����$$�,��*�"������+�����)������������)�����������!)"���-

�$�!�- ������� ���"�-

�)�� ����������,�$$������!�� � �����)���"��)� -

� Production:��1��+���������������������	��+�"�����$�������*�,��)���������)�� �����������)����$$�,��*� �!�"����+�
�$�!�����!�$$������� ������"�����+������2�!��+��� ����"����)���������!����+�!�����*+�������*+������"�$��*�����)�
"������$-

�)�����	����������3� 
��
�#�	
��
�45�!�+���$����*��������������!��������������������2�!���������������+��� ���$�
45�� ���� ����+���$����*��������� ������������� �����)�������������� ��)����������$�!����6���!���������� ���*���+����
����!)� 


����-
CLERK OF COURT

��

Signature of Clerk or Deputy Clerk Attorney’s signature

�)����"�+��  ����+��7"��$+��� ���$��)������"��������)����������������������*�(name of party)

+�,)��������������6�������)�����������+����-

Personalized User Model, LLP

Google, Inc.
1:09-cv-525 (LPS)

District of Delaware

SRI International
333 Ravenswood Avenue, Menlo Park, CA 94025

✔

SNR Denton US LLP
1530 Page Mill Road, Suite 200
Palo Alto, CA 94304

03/21/2011 09:00

Stenographic and video

03/10/2011

/s/ Jennifer Bennett

Personalized User Model, LLP
Jennifer Bennett
SNR Denton US LLP
1530 Page Mill Road, Suite 200, Palo Alto, CA 94304; T: 650.798.0300; Email: jennifer.bennett@snrdenton.com
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PROOF OF SERVICE
(This section should not be filed with the court unless required by Fed. R. Civ. P. 45.)

�)����������������(name of individual and title, if any)

,�����!��	� ����"�����(date) 


� '��������$$�����	� ��)���������������)���� �	� ��$����(place)

���(date) 9���

� '�$�����)���������������)���� �	� ��$:������ ��!���������$��$�!�������� ��,��)�(name)

+�������������������$���*���� � ��!�������,)������ ����)���+

���(date) +��� �"��$� ���!��������)���� �	� ��$:��$����/��,���  ����9���

� '����	� ��)��������������(name of individual) +�,)����

� ���*���� ����$�,�����!!�������	�!��������!���������)�$�����(name of organization)

���(date) 9���

� '�������� ��)��������������;�!��� ���!���� 9���

� ��)���(specify):




%�$�����)�����������,�������� ������)�$������)��%���� �������+�������������������!��������*����+�'�)�	���$���
��� ��� �����)��,�������������������� ��:������� ��!�+��� ��)��"�$��*���$$�,� ����$�,+�����)���"�������

< 


=�����������< �������	�$��� �< �������	�!��+�����������$����< 


'� �!$������ �������$���������2�����)����)��������"�������������


����-
Server’s signature

Printed name and title

Server’s address

�  ������$������"��������*�� ��*�����"��� ����	�!�+���!-

0.00

1:09-cv-525 (LPS)
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Federal Rule of Civil Procedure 45 (c), (d), and (e) (Effective 12/1/07)

(c) Protecting a Person Subject to a Subpoena.
  (1) Avoiding Undue Burden or Expense; Sanctions. ����������
������������������$������������*��� ����	��*������������"������/�
��������$������������	�� ��"�����*��� ������ �������;����������
����������2�!������)����������
��)��������*�!�����"���������!���)��
 ������ ��"�����������������������!�����?�,)�!)�"�����!$� ��$���
������*���� ���������$����������:�������?�����������������������
,)�����$�����!�"�$�

    (2) Command to Produce Materials or Permit Inspection.
    (A) Appearance Not Required. ���������!�""�� � ������� �!�
 �!�"����+��$�!�����!�$$������� ������"�����+�������*��$���)��*�+���
������"����)�������!�����������"����+���� ��������������������������)�
�$�!�������� �!�������������!�������$�����$���!�""�� � ����������
������ ���������+�)�����*+��������$

    (B) Objections. ���������!�""�� � ������� �!�� �!�"�������
���*��$���)��*�����������"��������!�����"������	������)����������
��������� ���*���� �����)�������������,���������2�!�������
�����!���*+�!�����*+�������*������"�$��*���������$$�����)��"������$����
��������!���*��)�����"�����?���������� �!��*��$�!�����!�$$������� 
�����"����������)�����"�������"����6����� 
��)����2�!�����"������
���	� ���������)�����$��������)����"�����!���� �����!�"�$���!������4
 �����������)�����������������	� 
�'�������2�!��������"� �+��)�
��$$�,��*���$������$�-
      (i) ���������"�+��������!������)��!�""�� � �������+��)�����	��*
������"���"�	���)��������*�!�������������� ���!�"��$$��*���� �!����
��������!����

      (ii) �)�����!���"��������6���� ���$����� ���!�� �����)���� ��+��� 
�)���� ���"���������!�����������,)���������)����������������������:�
����!������"���*����!�����;����������$���*����"�!�"�$���!�

  (3) Quashing or Modifying a Subpoena.
    (A) When Required. �����"�$��"�����+��)��������*�!�����"���
6���)����"� ����������������)��-
      (i) ���$������$$�,�����������$����"�����!�"�$�9
      (ii) ��6���������������,)���������)����������������������:������!��
������	�$�"�����)�������"�$������"�,)�����)�������������� ��+���
�"�$��� +������*�$��$��������!����������������������?��;!�����)��+
���2�!�������$��45�!��>��@������+��)���������"������!�""�� � ���
����� �������$�������	�$��*����"�������!)��$�!��,��)����)��������,)���
�)������$����)�$ 9
      (iii) ��6������ ��!$������������	�$�*� ������)��������!�� �"�����+���
����;!����������,��	������$���9���
      (iv) ���2�!����������������� ������ ��

    (B) When Permitted. ��������!��������������2�!������������!�� ���
����������+��)��������*�!�����"��+����"�����+�6���)����"� �����)�
�����������������6�����-
      (i)  ��!$����*������ ����!���������)���!���� �����$�������!)+
 �	�$��"���+����!�""��!��$������"�����9
      (ii)  ��!$����*������������� ��;����:������������������"�������)��
 �������� ��!��������!���!��!!�����!������ ��������� �����$������"
�)���;����:����� ���)���,���������6����� �����������9���
      (iii) ���������,)���������)����������������������:������!��������!��
����������$��;������������	�$�"�����)�������"�$����������� �����$

    (C) Specifying Conditions as an Alternative. '���)��!��!�"����!��
 ��!���� ������$��45�!��>��@�+��)��!�����"��+������� ����6���)��*���
"� �����*�����������+��� �����������!�������� �!������� ��
���!���� �!�� �����������)�����	��*������-
      (i) �)�,��������������$���� ������)�������"�������"������$��)��
!�����������)��,����"���,��)������ ���)�� �)��9��� 
      (ii) ���������)����)����������� ��������,�$$������������$�
!�"������� 


(d) Duties in Responding to a Subpoena.
  (1) Producing Documents or Electronically Stored Information.
�)�������!� ��������$�������� �!��*� �!�"���������$�!�����!�$$�
����� ������"�����-
    (A) Documents. ��������������� ��*��������������������� �!�
 �!�"�����"������� �!���)�"�����)�������/��������)���� �����
!���������������������"������*���0���� �$���$��)�"����!�������� ���
�)��!���*����������)�� �"�� 

    (B) Form for Producing Electronically Stored Information Not
Specified. '������������� �����������!���������"�������� �!��*
�$�!�����!�$$������� ������"�����+��)��������������� ��*�"���
��� �!�������������"�������"�����,)�!)��������� �����$��"�������� ���
�������������$������$�����"�������"�

    (C) Electronically Stored Information Produced in Only One
Form. �)��������������� ��*���� �������� �!���)����"�
�$�!�����!�$$������� ������"���������"�����)����������"

����(D) Inaccessible Electronically Stored Information. �)��������
������ ��*���� ��������	� �� ��!�	��������$�!�����!�$$������� 
�����"���������"�����!����)����)���������� ������������������������$�
�!!�����$����!���������� ������ ������!���
����"���������!�"��$
 ��!�	������������������!��	���� ��+��)��������������� ��*�"�����)�,
�)����)�������"���������������������$���!!�����$����!���������� ��
��� ������!���
�'���)����)�,��*����"� �+��)��!�����"��������)�$���
�� ��� ��!�	�������"���!)�����!�������)����6������*��������)�,�
*�� �!����+�!���� ����*��)��$�"��������������$��8A����8��#�
��)�
!�����"������!����!�� ������������)�� ��!�	���

  (2) Claiming Privilege or Protection.
  (A) Information Withheld. ���������,��))�$ ��*���������� 
�����"�������� �����!$��"��)������������	�$�*� �������2�!����
�����!������������$7������������"������$�"���-
    (i) �;�����$��"�/���)��!$��"9��� 
    (ii)  ��!������)�������������)��,��))�$ � �!�"����+
!�""���!������+�������*��$���)��*�������"�������)��+�,��)���
��	��$��*������"����������$�����	�$�*� ���������!�� +�,�$$�����$���)�
�������������������)��!$��"

��(B) Information Produced. '�������"��������� �!� �����������������
���������������2�!�������!$��"�������	�$�*�������������!������������$7
������������"������$+��)���������"�/��*��)��!$��"�"�������������
�������)�����!��	� ��)�������"����������)��!$��"��� ��)��������������

����������*�������� +���������"�������"��$��������+���6������+���
 ��������)�����!���� ������"�������� �����!���������)��9�"�����������
��� ��!$�����)�������"����������$��)��!$��"��������$	� 9�"������/�
��������$�����������������	���)�������"����������)�������� ��!$��� ���
�����������*�������� 9��� �"������"��$�����������)�������"��������
�)��!������� ������$������� ����"������������)��!$��"
��)��������
,)����� �!� ��)�������"������"����������	���)�������"����������$
�)��!$��"��������$	� 


(e) Contempt. �)��������*�!�����"���)�$ ����!����"�����������
,)�+�)�	��*���������	� +����$��,��)����� �6������;!�������������)�
��������
�����������:�����$������������"��������;!��� �����)�
�����������������������6������)������������������� ������� �!������
�$�!������� ���)��$�"���������$��45�!��>��������




IN THE UNITED STATES DISTRICT COURT 
FOR THE DISTRICT OF DELAWARE

PERSONALIZED USER MODEL, 
L.L.P.,

  Plaintiff, 

 v. 

GOOGLE, INC., 

  Defendant. 

)
)
)
)
)
)
)
)
)
)
)

C.A. No. 09-525 (LPS) 

NOTICE OF RULE 30(b)(6) DEPOSITION OF SRI INTERNATIONAL

PLEASE TAKE NOTICE that, pursuant to Rules 26 and 30 of the Federal Rules of 

Civil Procedure, Plaintiff Personalized User Model, L.L.P. (“P.U.M.”) will take the 

deposition of Third Party SRI International (“SRI”) concerning the topics identified in 

Exhibit A, beginning at 9:00 a.m. on March 21, 2011, or at an otherwise mutually agreeable 

date, and will be held at the offices of SNR Denton US LLP, 1530 Page Mill Road, CA 

94304, or at an otherwise mutually agreeable location.  If the deposition is not completed on 

the date set out above, the taking of the deposition will continue day to day thereafter or 

pursuant to the parties’ agreement.  The deposition will be recorded by stenographic, 

videographic, and/or audiographic means. 

Pursuant to Rule 30(b)(6) of the Federal Rules of Civil Procedure, SRI is directed to 

designate one or more officers, directors, or managing agents, or other persons who will 

testify on its behalf, who are most knowledgeable regarding the matters identified in the 

attached Exhibit A.  SRI is requested to provide a written designation of the names and 

positions of the officers, directors, managing agents, or other persons designated to testify 
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concerning the matters identified in the attached Exhibit and, for each person, identify the 

matters on which he or she will testify. 

P.U.M. reserves the right to serve additional 30(b)(6) notices. 

Dated:  March 10, 2011 

By:   /s/ Jennifer D. Bennett
Jennifer D. Bennett (California State Bar 
No. 235196) 
SNR Denton US LLP 
1530 Page Mill Road, Suite 200 
Palo Alto, CA 94304 
Telephone: (650) 798-0300 
Facsimile: (650) 798-0310 
E-Mail:  jennifer.bennett@snrdenton.com 

Marc S. Friedman 
SNR Denton US LLP 
1221 Avenue of the Americas 
New York, NY 10020-1089 
Telephone:  (212) 768-6700 
Facsimile:  (212) 768.6800 
E-Mail:  marc.friedman@snrdenton.com 

Attorneys for Plaintiff 
PERSONALIZED USER MODEL, L.L.P. 
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CERTIFICATE OF SERVICE 

I hereby certify that on March 10, 2011, copies of the foregoing were caused to be 

served by e-mail upon the following: 

Richard L. Horwitz 
David E. Moore 
POTTER ANDERSON & CORROON LLP 
1313 N. Market St., 6th Floor
Wilmington, DE 19801 
rhorwitz@potternanderson.com 
dmoore@potteranderson.com 

Brian C. Cannon 
QUINN EMANUEL URQUHART OLIVER 
& HEDGES, LLP 
briancannon@quinnemanuel.com

Charles K. Verhoeven 
QUINN EMANUEL URQUHART OLIVER 
& HEDGES, LLP 
charlesverhoeven@quinnemanuel.com

David A. Perlson 
QUINN EMANUEL URQUHART OLIVER 
& HEDGES, LLP 
davidperlson@quinnemanuel.com

Antonio R. Sistos 
QUINN EMANUEL URQUHART OLIVER 
& HEDGES, LLP 
antoniosistos@quinnemanuel.com

Eugene Novikov 
QUINN EMANUEL URQUHART OLIVER 
& HEDGES, LLP 
eugenenovikov@quinnemanuel.com

   /s/ Jennifer D. Bennett
Jennifer D. Bennett (Cal. Bar. No. 235196) 
SNR Denton US LLP 
1530 Page Mill Road, Suite 200 
Palo Alto, CA 94304-1125 
(650) 798-0300 



EXHIBIT A

I. DEFINITIONS 

1. “SRI,” “YOU,” and “YOUR,” means SRI International, and its officers, directors, 

current and former employees, counsel, agents, consultants, representatives, and any other 

persons acting on behalf of any of the foregoing, and SRI International’s affiliates, parents, 

divisions, joint ventures, licensees, franchisees, assigns, predecessors and successors in interest, 

and any other legal entities, whether foreign or domestic, that are owned or controlled by SRI 

International, and all predecessors and successors in interest to such entities. 

2. “Google” means Google, Inc. and its officers, directors, current and former 

employees, counsel, agents, consultants, representatives, attorneys, and any other persons 

acting on behalf of any of the foregoing, and Google’s affiliates, parents, divisions, joint 

ventures, licensees, franchisees, assigns, predecessors and successors in interest, and any other 

legal entities, whether foreign or domestic, that are owned or controlled by Google, and all 

predecessors and successors in interest to such entities. 

3. “Lawsuit” means the case styled Personalized User Model LLP v. Google, Inc.,

1:09-cv-525, in the United States District Court for the District of Delaware. 

4. “‘040 PATENT” means U.S. Patent No. 6,981,040, entitled “Automatic, 

Personalized Online Information and Product Services,” all underlying patent applications, all 

continuations, continuations-in-part, divisionals, reissues, and any other patent applications in the 

‘040 patent family 

5. “‘031 PATENT” means U.S. Patent No. 7,320,031, entitled “Automatic, 

Personalized Online Information and Product Services,” all underlying patent applications, all 

continuations, continuations-in-part, divisionals, reissues, and any other patent applications in the 
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‘031 patent family. 

6. “‘276 PATENT” means U.S. Patent No. 7,685,276, entitled “Automatic, 

Personalized Online Information and Product Services,” all underlying patent applications, all 

continuations, continuations-in-part, divisionals, reissues, and any other patent applications in the 

‘031 patent family. 

7. “PATENTS-IN-SUIT” shall refer to the ‘040 PATENT, the ‘031 PATENT, and 

the ‘276 PATENT individually and collectively. 

8. “DOCUMENT” shall mean all materials and information that are discoverable 

pursuant to Rule 34 of the Federal Rules of Civil Procedure. A draft or non-identical copy is a 

separate document within the meaning of this term. 

9. “PUM” and “PLAINTIFF” shall mean Personalized User Model LLP., Plaintiff in 

the civil case captioned Personalized User Model, LLP v. Google Inc., Case No. 09-525 (JJF). 

10. The term “PERSON” shall refer to any individual, corporation, proprietorship, 

association, joint venture, company, partnership or other business or legal entity, including 

governmental bodies and agencies. 

11. “REFLECT,” “REFLECTING,” “RELATE TO,” “REFER TO,” “RELATING 

TO,” and “REFERRING TO” shall mean relating to, referring to, concerning, mentioning, 

reflecting, pertaining to, evidencing, involving, describing, discussing, commenting on, 

embodying, responding to, supporting, contradicting, or constituting (in whole or in part), as the 

context makes appropriate. 

12. “Include” and “including” shall mean including without limitation. 

13. Use of the singular also includes the plural and vice-versa. 

14. The words “or” and “and” shall be read in the conjunctive and in the disjunctive 



3

wherever they appear, and neither of these words shall be interpreted to limit the scope of these 

Interrogatories. 

15. The use of a verb in any tense shall be construed as the use of the verb in all other 

tenses.

DEPOSITION TOPICS

1. All facts and circumstances, including but not limited to all communications whether 

written, oral or otherwise, between Google and SRI, concerning all transactions, contracts, 

agreements and understandings, and payments between Google and SRI concerning the patents-

in-suit or any invention(s) claimed therein, and/or Yochai Konig. 

2. The work performed by Yochai Konig while at SRI. 

3. Any and all documents or other evidence that Dr. Konig developed the inventions claimed 

in the patents-in-suit using SRI’s equipment, supplies, facility, or trade secret information, or 

during the time of day when he was supposed to be working for SRI. 

4. All documents provided by SRI to Google regarding Yochai Konig or work performed by 

him for SRI. 

5. All invoices submitted by SRI to Google for work responding to discovery in connection 

with this lawsuit. 

6. SRI’s knowledge of Yochai Konig and/or Utopy’s work after Dr. Konig left the 

employment of SRI. 

7. Activities of the SRI Speech Technology and Research (STAR) Laboratory from 1996 

through 1999. 

8. All business relationships or contracts between SRI and Google, or subsidiary or affiliate 

of Google, including, but not limited to (a) all work performed by SRI for Google, or subsidiary or 

affiliate of Google, in the last 10 years; (b) all work performed by Google, or subsidiary or 

affiliate of Google, for SRI in the last 10 years, and (c) all sums of money received by SRI from 
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Google, or any subsidiary or affiliate of Google, or any officers or directors of these entities in the 

last 10 years. 

9. All documents produced by SRI to PUM under the previously served subpoena, including, but 

not limited, to the authenticity of such documents and the manner in which they were created and kept. 

10. All information received from third parties relating to any of the above subjects. 
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NONLINEAR DISCRIMINANT FEATURE EXTRACTION FOR ROBUST
TEXT-INDEPENDENT SPEAKER RECOGNITION

Yochai Konig, Larry Heck, Mitch Weintraub, and Kemal Sonmez

Speech Technology and Research Laboratory
SRI International

Menlo Park, CA 94025

RÉSUMÉ
Cet article propose une méthode basée sur l’analyse dis-
criminative non-linéaire pour extraire et sélectionner un
ensemble de vecteurs acoustiques utilisés pour l’identi-
fication de locuteurs. L’approche consiste à mesurer et
grouper un grand nombre de mesures acoustiques (corre-
spondant à plusieurs trames de données consécutives), et
à réduire la dimensionalité du vecteur résultant au moyen
d’un reseau de neurones artificielles. Le critère utilisé
pour optimiser les poids du réseau consiste à maximiser
une mesure de la séparation entre les locuteurs d’une base
de données d’apprentissage. L’architecture du reseau est
telle que l’une de ses couches intermédiaires représente la
projection des vecteurs acoustiques d’entrée sur un espace
de dimensionalité inferieure. Après la phase d’apprentis-
sage, cette partie du réseau peut etre isolée et utilisée pour
projeter les vecteurs acoustiques d’une base de données
de test. Les vecteurs acoustiques projetés peuvent alors
être classifiés. Combiné à un classificateur cepstral, le
classificateur utilisant ces nouveaux vecteurs acoustiques
réduit de 15% le taux d’erreur de classification de la base
de données définie par NIST en 1997 pour l’évaluation des
systèmes de reconnaissance du locuteur.

ABSTRACT
We study a nonlinear discriminant analysis (NLDA) tech-
nique that extracts a speaker-discriminant feature set. Our
approach is to train a multilayer perceptron (MLP) to max-
imize the separation between speakers by nonlinearly pro-
jecting a large set of acoustic features (e.g., several frames)
to a lower-dimensional feature set. The extracted features
are optimized to discriminate between speakers and to be
robust to mismatched training and testing conditions. We
train the MLP on a development set and apply it to the
training and testing utterances. Our results show that by
combining the NLDA-based system with a state of the
art cepstrum-based system we improve the speaker verifi-
cation performance on the 1997 NIST Speaker Recogni-
tion Evaluation set by 15% in average compared with our
cepstrum-only system.

1. INTRODUCTION

Our goal is to extract and select features that are more in-
variant to non-speaker-related conditions such as handset
type, sentence content, and channel effects. Such fea-
tures will be robust to mismatched training and testing
conditions of speaker verification systems. With current
feature sets (e.g., cepstrum) there is a big performance
gap between matched and mismatched tests [8] even af-
ter applying standard channel compensation techniques
[4]. In order to find these features, the feature extraction
step should be directly optimized to increase discrimina-
tion between speakers, and to filter out the non-relevant
information.

Our proposed solution is to train a multilayer percep-
tron (MLP) to nonlinearly project a large set of acoustic
features to a lower-dimensional feature set, such that it
maximizes speaker separation. We train the MLP on a
development set that includes several realizations of the
same speakers under different conditions. We then apply
the learned transformation (MLP in feed-forward mode)
to the training and testing utterances. Finally, we use the
resulting features for training the speaker recognition sys-
tem, e.g., Bayesian adapted Gaussian mixture system [9].

We begin by reviewing related studies in Section 2. We
describe the proposed feature extraction technique in Sec-
tion 3. The Development database is described in Section
4. In Section 5, we report the experimental results on the
1997 NIST evaluation set. We continue with analysis of
the results in Section 6. Finally, we conclude and describe
directions for future work in Section 7.

2. RELATED STUDIES

The related studies to the NLDA technique can be di-
vided into two main categories: robust speaker verification
systems, and data-driven feature extraction techniques.
Previously proposed approaches to increase robustness to
mismatched training and testing conditions, especially to
handset variations, include handset-dependent background



models [3], and a handset-dependent score normaliza-
tion procedure known as Hnorm [9]. Data-driven feature
extraction techniques were mainly suggested for speech
recognition tasks. Rahim, Bengio and LeCun suggested
optimizing a set of parallel class specific (e.g., phones) net-
works performing feature transformation based on mini-
mum classification (MCE) criterion [7]. Fontaine, Ris and
Boite used 2-hidden layer MLP to perform NLDA for iso-
lated word, large vocabulary speech recognition task [2].
The training criterion for the MLPs was phonetic classi-
fication. Bengio and his colleagues suggested a global
optimization of a neural network-hidden Markov (HMM)
hybrid, where the outputs of the neural network constitute
the observation sequence for the HMM [1].

3. NONLINEAR DISCRIMINANT ANALYSIS
(NLDA)

We explore a nonlinear discriminant analysis (NLDA)
technique that finds a nonlinear projection of the original
feature space into a lower dimensional space that maxi-
mizes speaker recognition performance. This maximiza-
tion problem can be expressed as

A
� � argmax

A

JfA�X�g (1)

Where A�X� is a nonlinear projection of the original fea-
ture space X onto a lower dimensional space, and Jfg is
a closed-set speaker identification performance measure.
To find the best A we train a 5 layer multilayer perceptron
(MLP) to discriminate between speakers in a carefully se-
lected development set (as described below). The MLP
is constructed from a large input layer, a first large non-
linear hidden unit, a small (“bottleneck”) second linear
hidden layer, a large third nonlinear hidden layer, and a
softmax output layer (see Figure 1). The idea is that A is
the projection of the input features speaker onto the “bot-
tleneck” layer. After training the 5-layer MLP (denoted
‘MLP5’) we can remove the last hidden layer and the out-
put layer, and use the remaining 3-layer MLP to project
the target speaker data. Then, we use the transformed fea-
tures to train the speaker verification system, for example,
a Bayesian adapted GMM system (see Figure 2). The
underlying assumption is that the transformation as found
in the development set will be invariant across different
speaker populations.

4. DEVELOPMENT DATABASE

To train the 5-layer MLP, we chose 855 Switchboard sen-
tences (about 2 hours) from 31 speakers with a balanced
mix of carbon and electret handsets, and balanced across
gender. The input consists of 17 cepstral coefficients

..

Inputs

Output Layer

Non−Linear

Non−Linear

Projected Features

P(Speaker | Inputs)

9 frames x (cepstrum, pitch)

Figure 1: MLP5 for Speaker Recognition

..

Inputs

Non−Linear

Projected Features

Gaussian Mixture Model

9 frames x (cepstrum, pitch)

Figure 2: MLP3 for Feature Transformation

and an estimate of the pitch for the current frame, four
past frames and four future frames, resulting in a 162-
dimension vector. The first hidden layer has 500 sigmoidal
units, the bottleneck layer has 34 linear units, the third hid-
den layer has 500 sigmoidal units, and a softmax output
layer has 31 outputs (one for each speaker in the develop-
ment set). After training the MLP5, we chopped the upper
two layers. The resulting MLP (‘MLP3’) has one hidden
layer and was used to transform the data of the target and
impostor speakers in a test set as described above.

5. EXPERIMENTAL RESULTS

We used the 1997 NIST Speaker Recognition Evaluation
corpus for testing. We report results for three different
systems: (1) our best cepstrum system, which is our imple-
mentation of the state of the art in text independent speaker
verification systems [6]) with 33 input features comprised
of 10 cepstral coefficients, energy term, and first and sec-
ond time derivatives (2) the NLDA based system described
in this paper, (3) a combination of the cepstrum and the



Test Cepstrum NLDA Combined
female 3 18.4% 23.0% 16.7%
female 10 12.1% 14.6% 10.8%
female 30 10.5% 12.4% 9.0%
male 3 14.9% 19.4% 14.4%
male 10 13.2% 12.9% 11.1%
male 30 7.9% 11.0% 7.1%

Table 1: Equal Error Rate (EER) Results of the 1997 NIST
Eval., 1h condition

Test Cepstrum NLDA Combined
female 10 13.5% 17.0% 12.5%
male 10 11.3% 14.4% 10.5%

Table 2: Equal Error Rate (EER) Results of the 1997 NIST
Eval., 1s condition

NLDA systems. The third system is a linear combination
of the normalized scores with weights of 0.7 for the cep-
strum system scores and 0.3 for the NLDA system scores
(expect for the 3 second cases, where we used 0.6 for the
cepstrum system and 0.4 for the NLDA system). We use
the equal error rate (EER) between misses and false alarms
as a performance measure for reporting results. In Table
1, we summarize the results for the 1h condition in the
NIST evaluation. In this condition the training consists
of 2 phone calls from the same handset, each 1 minute in
duration. There are three different test lengths: 3, 10, and
30 seconds. We report the results for each gender sepa-
rately, by pooling all the test data together (matched and
mismatched telephone number).

The results show a consistent win for the combined
system over our state of the art cepstrum system. We
observe the same consistent win for another condition,
1s, in the 1997 NIST Speaker Recognition Evaluation as
demonstrated for the 10 second case in Table 2, and across
all regions of the DET (false alarm probability versus miss
probability) curves as illustrated in Figure 3 for the male,
10 seconds (1h condition) for the cepstrum only system
and the combined system. These results are consistent
with our initial results for the 1998 Evaluation corpus.

6. RESULT ANALYSIS

In this section, we examine our “black box” approach,
provide insight to its success and give directions for po-
tential improvements. In order to examine the importance
of the pitch input, the 9 frame temporal window, and the
degradation loss as a result of the dimension reduction
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Figure 3: DET Curve for male, 1h, 10 seconds

Inputs Name Frame Correct
9 frames � pitch MLP3 37.2%
9 frames � pitch MLP5-34 28.9%
9 frames � pitch MLP5-50 29.0%
9 frames, no pitch MLP5-NO 25.9%
1 frame � pitch MLP5-1fr 18.6%

Table 3: Frame-level results on the cross-validation set

from 162 inputs to 34 hidden units in the bottleneck layer,
we trained several MLPs and tested their cross-validation,
frame-level performance on a close set speaker recogni-
tion (our development set as described above). In the
development phase we found a strong correlation between
these frame-level results and the “full cycle” results of the
speaker verification system. The results are summarized
in Table 3.

We trained two types of MLPs: a 5-layer MLP, and
a "vanilla” MLP with three layers including one hidden
layer (denoted ‘MLP3’). As mentioned above there were
31 speakers in our development set, 687156 frames for
training and 77904 for cross-validation. Our baseline MLP
is the MLP5 described above with 162 inputs and 3 hidden
layers with 500, 34, and 500 units (named ‘MLP5-34’).
The output layer of all our nets has 31 outputs, one output
for each speaker in our development set. The MLP5 named
‘MLP5-NO’ is the same as the baseline but without pitch
information (only 153 inputs). The MLP5 named ‘MLP5-
1’ is the same as the baseline but with only one input frame
(as compared to the 9 frames used in the other systems)

Training a 5-layer MLP is difficult given the complex



nonlinear error surface and requires a lot of training data
preferably a ratio of at least 10 between frames than free
parameters. In these experiments the ratio was around 4.7
(700k frames to 150k parameters). This might explain the
disparity in performance between the MLP3 to the MLP5.
This is not due to the bottleneck size as shown by the result
of the MLP5 named ‘MLP5-50’ (the same as ‘MLP5-34’
but with 50 hidden units in the bottleneck layer). In our
speech recognition experiments [5] with NLDA, with the
right ratio between frames to free parameters, we did not
observe any performance loss because of the dimension
reduction at the bottleneck layer. Thus, we plan to increase
the size of the development set and hopefully improve
the performance of the MLP5 and the overall technique.
Additionally comparing the second row to the fourth and
fifth rows in Table 3, we observe from these results that
that we get a 3% absolute gain from the pitch information,
and 10.3% absolute gain from the temporal window.

Another set of interesting results is the correlation be-
tween the cepstrum and the NLDA scores on 1997 Eval.
set, 1h condition, as summarized in Table 4. From these
results, we observe that the NLDA technique contribute
a significant amount of new information, especially for
the shorter test lengths. This is consistent with the results
previously shown in Table 1.

Test Length Male Female
3 0.61 0.47

10 0.68 0.71
30 0.76 0.77

Table 4: Correlation Coefficients between NLDA and Cep-
strum systems on 1997 Eval. set, 1h condition

7. CONCLUSIONS AND FUTURE WORK

We presented a nonlinear discriminant analysis (NLDA)
technique that extracts a speaker-discriminant feature set.
Our results on the 1997 NIST evaluation show a consis-
tent (across 12 different tests) and significant (around 15%
in relative error) improvement when combining the sys-
tem trained with the NLDA features with cepstrum based
system. Our initial results on 1998 NIST evaluation are
consistent with 1997 results. Furthermore, our analysis
suggests that there is a potential for performance improve-
ment given more development data. We also plan to exper-
iment with other types of input data such as speech over
cellular phones and speaker-phone speech. In addition,
we plan to extend this study by using a wider range of
input representations and resolutions such as first and sec-
ond derivatives of cepstrum, filter-bank energy levels, and

different analysis windows. Finally we want to note that
although the training of the MLP with 5 layers is compu-
tationally expensive (25 x real time), the application of the
MLP3 in a feed forward mode is very fast (less than 0.4
real-time), thus the NLDA approach is feasible in realistic
settings.
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ABSTRACT

We show that the standard hypothesis scoring paradigm
used in maximum-likelihood-based speech recognition
systems is not optimal with regard to minimizing the
word error rate, the commonly used performance metric in
speech recognition. This can lead to sub-optimal perfor-
mance, especially in high-error-rate environments where
word error and sentence error are not necessarily monoton-
ically related. To address this discrepancy, we developed a
new algorithm that explicitly minimizes expected word er-
ror for recognition hypotheses. First, we approximate the
posterior hypothesis probabilities using N-best lists. We
then compute the expected word error for each hypothe-
sis with respect to the posterior distribution, and choose
the hypothesis with the lowest error. Experiments show
improved recognition rates on two spontaneous speech
corpora.

1. INTRODUCTION

The standard selection criterion for speech recognition hy-
potheses aims at maximizing the posterior probability of a
hypothesis given the acoustic evidence [1]:

argmax

argmax (1)

argmax (2)

Here is the prior probability of a word sequence
according to a language model, and is given by
the acoustic model. Equation (1) is Bayes’ Rule, while
(2) is due to the fact that does not depend on
and can therefore be ignored during maximization. Bayes
decision theory (see, e.g., [2]) tells us that this criterion
(assuming accurate language and acoustic models) max-
imizes the probability of picking the correct ; i.e., it
minimizes sentence error rate. However, speech recog-
nizers are usually evaluated primarily for their word error
rates.

Empirically, sentence and word error rates are highly
correlated, so that minimizing one tends to minimize the
other. Still, if only for theoretical interest, two questions
arise:

(A) Are there cases where optimizing expected word error
and expected sentence error produce different results?

(B) Is there an effective algorithm to optimize expected
word error explicitly?

Note that question (A) is not about the difference between
word and sentence error in a particular instance of and its
correct transcription, since obviously the two error criteria
would likely pick different best hypotheses in any given
instance. Instead, we are concerned with the expected
errors, as they would be obtained by averaging over many
instances of the same acoustic evidence with varying true
word sequences, i.e., if we sampled from the true posterior
distribution .

We will answer question (A) first by way of a constructed
example, showing that indeed the two error metrics can
diverge in their choice of the best hypothesis. Regarding
question (B), we develop a new N-best rescoring algo-
rithm that explicitly estimates and minimizes word error.
We then verify that the algorithm produces lower word
error on two benchmark test sets, thus demonstrating that
question (A) can be answered in the affirmative even for
practical purposes.

2. AN EXAMPLE
The following is a hypothetical list of recognition outputs
with attached (true) posterior probabilities.

1 2 1 2 1 2 correct
a d .0 .44 .4 .84
a e .24 .44 .34 .78
a f .2 .44 .26 .7
b d .2 .26 .4 .66
b e .05 .26 .34 .6
b f .01 .26 .26 .52
c d .2 .3 .4 .7
c e .05 .3 .34 .64
c f .05 .3 .26 .56

For simplicity we assume that all hypotheses consist of ex-
actly two words, 1 and 2, shown in the first two columns.
The third column shows the assumed joint posterior prob-
abilities 1 2 for these hypotheses. Columns 4 and
5 give the posterior probabilities 1 and 2
for individual words. These posterior word probabilities
follow from the joint posteriors but summing over all hy-
potheses that share a word in a given position. For exam-
ple, the posterior 1 is obtained by summing



1 2 of all hypotheses such that 1 a. Column 6
shows the expected number of correct words correct in
each hypothesis, under the assumed posterior distribution.
This is simply the sum of 1 and 2 , since

words correct 1 2

correct 1 correct 2

1 2

As can be seen, although the first hypothesis (“a d”) has
posterior 0, it has the highest expected number of words
correct, i.e., the minimum expected word error. Thus, we
have shown by construction that optimizing overall poste-
rior probability (sentence error) does not always minimize
expected word error. Of course the example was con-
structed such that two words that each have high posterior
probability happen to have low (i.e., zero) probability when
combined. Note that this is not unrealistic: for example,
the language model could all but “prohibit” certain word
combinations.

Furthermore, we can expect the discrepancy between
word and sentence error to occur more at high error rates.
When error rates are low, i.e., when there are at most one of
two word errors per sentence, each word error corresponds
to a sentence error and vice-versa. Thus, if we had an
algorithm to optimize the expected word error directly, we
would expect to see its benefits mostly at high error rates.

3. THE ALGORITHM

We now give an algorithm that minimizes the expected
word error rate (WER) in the N-best rescoring paradigm
[5]. The algorithm has two components: (1) approxi-
mating the posterior distribution over hypotheses and (2)
computing the expected WER for N-best hypotheses (and
picking the one with lowest expected WER).

3.1. Approximating posterior probabilities
An estimate of the posterior probability of a
hypothesis can be derived from Equation (1), with
modifications to account for practical limitations:

The true distributions and are re-
placed by their imperfect counterparts, the language
model probability LM and the acoustic model
likelihood AC .
The dynamic range of the acoustic model, due to un-
warranted independence assumptions, needs to be at-
tenuated by an exponent 1 ( is the language model
weight commonly used in speech recognizers, and op-
timized empirically).
The normalization term

is replaced by a finite sum over all the hypotheses
in the N-best list. This is not strictly necessary for
the algorithm since it is invariant to constant factors
on the posterior estimates, but it conveniently makes
these estimates sum to 1.

Let be the th hypothesis in the -best list; the posterior
estimate is thus

LM AC
1

1 LM AC
1

This N-best approximation to the posterior has previously
been used, e.g., in the computation of posterior word prob-
abilities for keyword spotting [7].

3.2. Computing expected WER
Given a list of N-best hypotheses and their posterior proba-
bility estimates, we approximate the expected WER as the
weighted average word error relative to all the hypothe-
ses in the N-best list. That is, we consider each of the

hypotheses in turn as the “truth” and weight the word
error counts from them with the corresponding posterior
probability:

WE
1

WE (3)

where WE denotes the word error of using
as the reference string (computed in the standard way

using dynamic programming string alignment).

3.3. Computational Complexity
Rescoring hypotheses requires 2 word error com-
putations, which can become quite expensive for N-best
lists of 1000 or more hypotheses. We found empirically
that the algorithm very rarely picks a hypothesis that is
not within the top 10 according to posterior probability.
This suggests a shortcut version of the algorithm that only
computes expected word error for the top hypotheses,
where . Note that we still need to consider all

hypotheses to compute the expected word error as in
Equation (3), otherwise these estimates become very poor
and affect the final result noticeably. The practical version
of our algorithm thus has complexity .

3.4. Other knowledge sources and weight optimiza-
tion

Often other knowledge sources are added to the standard
language model and acoustic scores to improve recogni-
tion, such as word transition penalties or scores expressing
syntactic or semantic well-formedness (e.g., [4]). Even
though these additional scores cannot always be inter-
preted as probabilities, they can still be combined with
exponential weights; the weights are then optimized on a
held-out set to minimize WER [5].

This weight optimization should not be confused with
the word error minimization discussed here; instead, the
two methods complement each other. The additional
knowledge sources can be used to yield improved pos-
terior probability estimates, based on which the algorithm
described here can be applied. In this scheme, one should
first optimize the language model and other knowledge
source weights to achieve the best posterior probability
estimates (e.g., by minimizing empirical sentence error).



WER SER
Switchboard
Standard rescoring 52.7 84.0
WER minimization 52.2 84.4
CallHome Spanish
Standard rescoring 68.4 80.9
WER minimization 67.8 81.2

Table 1. Word (WER) and Sentence error rates (SER) of
standard and word-error-minimizing rescoring methods

So far, we have not implemented combined weight and
word error optimization. The experiments reported below
used standard language model weights and word transition
penalties that had previously been determined as near-
optimal in the standard recognition paradigm.

4. EXPERIMENTS

We tested the new rescoring algorithm on 2000-best lists
for two test sets taken from spontaneous speech corpora.
Test set 1 consisted of 25 conversations from the Switch-
board corpus [3]. Test set 2 were 25 conversations from
the Spanish CallHome corpus collected by the Linguistic
Data Consortium. Due to the properties of spontaneous
speech, error rates are relative high on these data, mak-
ing word error minimization more promising, as discussed
earlier.

The results for both standard rescoring and WER mini-
mization are shown in Table 1. On both test sets the WER
was reduced by about 0.5% (absolute) using the word er-
ror minimization method. A per-sentence analysis of the
differences in word error show that the improvement is
highly significant in both cases (Sign test 0 0005).
Note that, as expected, the sentence error rate (SER) in-
creased slightly, since we no longer were trying to optimize
that criterion.

For comparison, we also applied our algorithm to the
1995 ARPA Hub3 development test set. This data yields
much lower word error rates, between 10% and 30%. In
this case the algorithm invariably picked the hypothesis
with the highest posterior probability estimate, confirming
our earlier reasoning that word error minimization was less
likely to make a difference at lower error rates.

5. DISCUSSION AND CONCLUSION

We have shown a discrepancy between the classical hy-
pothesis selection method for speech recognizers and the
goal of minimizing word error. A new N-best rescoring
algorithm has been proposed that corrects this discrepancy
by explicitly minimizing expected word error (as opposed
to sentence error) according to the posterior distributionof
hypotheses. Experiments show that the new algorithm re-
sults in small, but consistent (and statistically significant)
reductions in word error under high error rate conditions.

In our experiments so far, the improvement in WER is
small. However, the experiments confirm that the theo-
retical possibility of suboptimal WER using the standard

rescoring approach is manifest in practice. An important
aspect of the WER minimization algorithm is that it can
use other, more sophisticated posterior probability esti-
mators, with the potential for larger improvements. Our
experiments so far have been based on the commonly used
acoustic and language model scores, but we are already ex-
perimenting with more complex posterior estimator meth-
ods based on neural network models [6].
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ABSTRACT
This paper summarizes part of SRI’s effort to improve acoustic mod-
eling in the context of the Large Vocabulary Continuous Speech
Recognition (LVCSR) project. It concentrates on two problems
that are believed to contribute to the large error rates observed with
LVCSR databases: (1) the lack of discriminative power of the speech
models in the acoustic space, and (2) the discrepancy between the
criterion used to train the models (typically frame-level maximum
likelihood) and the task expected from the models (word-level recog-
nition).

We address the first issue by searching for features that help in nar-
rowing the model distributions, and by proposing a neural-network-
based architecture to combine these features. The neural networks
(NNET) are used in association with a set of large Gaussian mixture
models (GMM) whose mixture weights are dynamically estimated
by the neural networks, for each frame of incoming data. We call the
resulting algorithm DYNAMO, for dynamic acoustic modeling. To
address the second problem, we propose two discriminative training
criteria, both defined at the sentence level. We report preliminary
results with the Spanish Callhome database.

1. Introduction
Many factors contribute to the relatively low performance of state-
of-the-art speech recognizers operating on spontaneous, telephone
speech. A few of these factors are: the diversity of speakers
and speaking styles, the typically relaxed articulation, the multi-
tude of pronunciation variants, the presence of extraneous noises,
the superposition of more than one voice in some segments, and
the distortion due to the communication channel. Whereas some
of these factors can be efficiently dealt with by explicit modeling
(e.g. vocal tract normalization (e.g. [AKC94]), pronunciation mod-
eling (e.g. [Slo95, FW97])), many others are left for the acoustic
models’s multi-modal distributions to model implicitly. This, how-
ever, has the well-known result of broad overlapping distributions
which often lead to recognition errors.

In this context, identifying features that act as discriminants in the
acoustic space would be useful to narrow the acoustic distributions.
If such features can be found, the problem becomes how to use them,
and how to ensure that sufficient data sharing is allowed for the model
parameters to be reliably estimated. These are the main issues that
motivated this work.

In the past decade, contextual linguistic features have been widely
used in conjunction with decision tree models, and have significantly
improved recognition performance (e.g. [BdSG 91, YOW94]). De-
cision trees, however, make data sharing among different states diffi-
cult, and are not well suited to the use of features that are continuous

in nature, as opposed to binary. For these reasons, we chose instead
to base our models on neural networks.

More recently, Ostendorf et al. [OBB 97] showed that a combina-
tion of acoustic and prosodic features could greatly help identifying
speechsegments that were erroneously recognized (32% predictabil-
ity improvement for a 10-hour training subset of Switchboard). Sim-
ilar results were reported by various researchers working on confi-
dence measures for word recognition (e.g. [WBR 97]). Presumably,
some of these features, which include various measures of speaking
rate, SNR, energy, fundamental frequency, stress pattern, and sylla-
ble position, could be directly used to disambiguate large acoustic
distributions.

In the field of speaker recognition, the use of handset detectors has
dramatically decreased recognition error rates by sorting out carbon
button from electret handsets [Rey96, HW97]. The handset type
could also be used as an input to the acoustic modeling algorithms.

Another important issue in acoustic modeling is how to capture the
dynamics of the speech signal. Much research has recently been
devoted to relaxing the independence assumption imposed by most
hidden Markov modeling approaches (HMM) and to modeling the
correlation between successive frames of data, leading to the fam-
ily of so-called segment models [ODK96]. Without embarking in
this level of complexity, and following a feature-based approach, we
propose to include in the acoustic models time features similar to the
time index proposed in [GN93, DASW94] and [KM94]. These fea-
tures don’t model correlation but they do alleviate the independence
assumption.

Our goal here is to explore the usefulness of such knowledge sources
as acoustic discriminants, and to propose an efficient and robust ar-
chitecture to incorporate them in the acoustic models. Clearly, the
richness of the acoustic space representation will have a strong influ-
ence on how far this approach can be pushed, but the success of the
experiments cited above (handset classification, feature-based error
prediction, etc.) indicate that the cepstrum-based representation that
most systems use offers enough flexibility for the acoustic models to
be significantly improved.

As mentioned before, the architecture we propose relies on neural
networks. An important issue related to this choice is the selection
of a training criterion to optimize the weights of the networks. The
desirable properties for this criterion are (1) to be discriminative, (2)
to be closely related to the metric used to evaluate the performance
of the recognizer (typically the word error rate (WER)), and (3) to
be differentiable with respect to the weights of the neural networks.

Not all the above issues will be discussed in the paper since this



System Eval ’95 Eval ’96
baseline 71 00 65 22

DT 67 77 64 37
+ CI (size: 1/16 DTs) 68 77 65 22
+ CI (size: 1/8 DTs) 68 27 65 22
+ CI (size: 1/4 DTs) 68 34 65 10
+ CI (size: 1/2 DTs) 67 98 64 49
+ CI (size: 1/1 DTs) 67 69 64 31
N-best error rate 52 54

Table 1: N-best list rescoring with decision tree models and context-
independent phone models of different sizes: WER in %.

work is still in an early stage. Our first goals were to validate the
architecture we propose and to investigate different discriminative
training criteria. These two points will be addressed. Feature selec-
tion, however, will be the object of future work: for our preliminary
experiments, we used a set generic knowledge sources including
linguistic features and time indices.

2. Baseline System and Databases
The baseline system for this work is a speaker-independent con-
tinuous speech recognition system trained with 75 conversations of
Callhome Spanish data and 80 conversations from Callfriend Span-
ish. It is based on continuous-density, genonic HMMs [DMM96],
and uses a multipass recognition strategy [MBDW93] with a vocab-
ulary of 8K words, non-cross-word acoustic models, and a bigram
language model. N-best lists are generated, and rescored with the
original acoustic models, a trigram language model, and additional
acoustic models such as decision-tree-basedcross-word models (DT)
or large context-independent phone GMMs (CI).

3. Recognition with Large
Context-Independent Models

Using the Spanish Callhome database, we conducted a series of N-
best list rescoring experiments with decision tree models and with
large context-independent GMMs. The numbers of Gaussians in
the GMMs were chosen to be fractions of the numbers of Gaussians
used in the corresponding decision tree models. The smallest models
had 16 times fewer Gaussians than the decision tree models, and the
largest models had exactly the same size. Recognition experiments
were performed with two sets of 200 sentences selected at random
from the male evaluation test sets of 1995 and 1996. The results,
reported in Table 1, show that, for this database, context-independent
models perform as well as or slightly better than decision tree models,
provided that the numbers of parameters are equal.

4. The DYNAMO Algorithm
The architecture we propose is based on a hybrid system combining
feedforward neural networks and context-independent phone mod-
els. Each phone is modeled with a large GMM whose mixture
weights are dynamically estimated by a neural network (see Fig.
1), hence the name of the algorithm, DYNAMO. The means and
variances of the GMMs are held constant. The inputs to the neural
network are the knowledge sources discussed in the introduction.
For each data frame, the knowledge sources for each phone are eval-
uated and input into the corresponding NNET. Each NNET outputs

a set of mixture weights, and the likelihood of the observed data is
computed from the corresponding phone GMM.
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Figure 1: A hybrid NNET-GMM model for dynamic acoustic mod-
eling.

Specifically, the likelihood of an observation, , with respect to
phone is given by

1

(1)

where and denote, respectively, the NNET and the GMM
associated to phone , is the number of Gaussians in ,
and are, respectively, the mixture component and the
mixture weight in , and represents the vector of knowledge
sources for phone , at time .

Because the mixture weights for each phone must sum to one, the
training of the neural networks is a constrained optimization prob-
lem. To simplify the training procedure, we chose to hard-wire
this constraint in the architecture of the neural networks by using a
“softmax” output layer [Bri90]:

(2)

where is the output of the neural network, before the
softmax layer.

The Gaussians in each phone model can be interpreted as a set of
basis functions. A multimodal probability density function is then
estimated for each observation by taking a linear combination of the
basis functions, the weights of which are computed dynamically by
the neural network. The discriminative emphasis of certain portions
of the acoustic space at each instant has the effect of narrowing the
distributions around the acoustic areas where the data are expected
to lie.

This architecture thus outputs the likelihoods of the observations.
This is in contrast with NNET-HMM hybrids trained for state classi-
fication [BM90], where the outputs are state posterior probabilities
that need to be converted into likelihoods, and with approaches such
as REMAP [BKM95, KBM96] that estimate global posterior proba-
bilities of word sequences.

4.1. Training of the DYNAMO Models
The DYNAMO models are trained in two phases. First, the
context-independent phone GMMs are trained with the expectation-
maximization (EM) algorithm to maximize the log-likelihood of the



training data. The means and variances of these models are retained;
the mixture weights are discarded. Then, the adaptive parameters of
the neural networks are trained with the stochastic steepest descent
algorithm to optimize some criterion . The neural network weights
are thus updated according to

Θ 1 Θ ΔΘ (3)

ΔΘ ˆ
Θ (4)

where Θ denotes the set of neural network weights for phone at
iteration , ˆ

Θ is the instantaneous gradient of the optimization
criterion for phone , and is a constant that controls the learning
rate.

Note that the optimization criterion does not need to be identical
to the criterion used to train the GMMs (ML). Indeed, we argue in
the next sections that discriminative training is better suited to this
task. For now, however, we will assume for simplicity that is the
average log-likelihood of the data,

log (5)

where the sum is taken over all the observations aligned to phone
.

Applying the chain rule to the derivatives of Eq. 5, and taking Eq. 2
into account, we find

ˆ
Θ Θ

(6)

where

(7)

can be backpropagated through the neural network, as in the tradi-
tional backpropagation algorithm [RMT86].

Intuitively, the backpropagation term, , for Gaussian is large in
absolute value if the posterior probability of the Gaussian is very
different from its prior probability , with both probabilities being
functions of the knowledge sources for the current data frame.

To hasten the convergence of the neural networks and steer them
away from uninteresting local minima, we initially set their weights
so that the network outputs are equal to the mixture weights estimated
with the EM algorithm.

5. Recognition Experiments with ML-trained
Dynamo Models

We performed a set of rescoring experiments with ML-trained DY-
NAMO models, using linguistic questions and, in some experiments,
time features. We chose the linguistic features to be identical to those
selected by the decision trees in previous DT-rescoring experiments
(Table 1). The time features for a hypothesized phone aligned to

frames of data were the phone duration, , and the relative time
index , where 0 1.

Results are given in Table 2, where the baseline obtained by rescor-
ing the N-best lists with the GMMs is given for comparison. These

GMM size Experiment WER
1 16 no NNETs – baseline 68 77
1 16 NNETs w/ ling. feat. & time feat. 69 20
1 16 NNETs w/ ling. feat. only 68 92
1 8 no NNETs – baseline 68 27
1 8 NNETs w/ ling. feat. & time feat. 69 35

Table 2: Rescoring experiments with ML-trained DYNAMO models:
WER in %.

numbers show that the introduction of the ML-trained networks in-
creased the overall WER. Further analysis of the results revealed that
the likelihood of the test data had increased as a result of training but
that the posterior probabilities of the correct models had decreased.
This indicated that competing models scored higher than the correct
model, which confirmed that discriminative training should be used
instead.

6. Discriminative Training Criteria
Discriminative training of speech models was first introduced by
Bahl et al. under the form of Maximum Mutual Information (MMI)
estimation [BBdSM86]. In this framework, the speech models are
trained to maximize the mutual information between the observation
sequence 1 and the correct word sequence

:

Θ arg max
Θ

Θ (8)

with

Θ (9)

where the sum in the denominator is taken over all possible word
sequences, .

Practical implementations of Eq. 9 for continuous speech recognition
include the estimation of the denominator with a phone loop model
[Mer88], and its approximation by a sum over the hypotheses in an
N-best list [Cho90].

The first optimization criterion we propose is similar to the N-best
list implementation of MMI, but differs in that we augment the N-
best list with the correct word sequence, . We then maximize the
posterior probability of the correct word sequence,

1

(10)

where is the N-best list depth. The inclusion of the joint prob-
ability of the observation and the correct word sequence in the de-
nominator makes the criterion depart from the original MMI but has
a useful property in terms neural network training, as we will show.

Another family of discriminative criteria stems from the motivation
of directly optimizing the metric used to evaluate the recognizer,
i.e. the word error rate. Bahl et al. proposed the heuristic “corrective
training” procedure in [BBdSM88]. Katagiri et al. developed the
Generalized Probabilistic Descent method that extends the idea of
Bayes optimum classification by introducing smooth classification



error functions, and generalizes this framework to the classification
of patterns of variable lengths [KLJ91].

The second criterion we propose consists in minimizing the average
number of errors over the N-best list,

ANER 1

1

NER (11)

where NER denotes the number of errors in the hypothesis,
and is the posterior probability of the hypothesis in
the (non-augmented) N-best list.

Both criteria are optimized in a stochastic optimization framework,
as we will discuss shortly. In both cases, the training procedure
requires N-best lists for all the training data. This is typically quite
costly but not infeasible, especially if the N-best list depth is limited
to a small number of hypotheses (5 or 10).

6.1. Maximizing the posterior probability of the
correct sentence

Let denote the joint probability of a word sequence (reference
or hypothesis) and of the corresponding acoustic sequence,

1 (12)

where and are shorthands for the language model
and acoustic model probabilities, and , respectively,
and where is the language model weight.

With this notation, we can rewrite the posterior probability of the
correct word sequence in Eq. 10 as

(13)

Likewise,

(14)

denotes the posterior probability of the hypothesis in the aug-
mented N-best list. (All posteriors and likelihoods are conditioned
upon the set of acoustic models for 1 .)

The first training criterion can be expressed as

1 log (15)

where is the number of sentences in the training set, and
represents the posterior probability of the correct transcription of
sentence .

Adapting the neural network weights according to this criterion
amounts to adjusting them after the presentation of each training
sentence by an amount proportional to (stochastic gradient update)

log log log (16)

where we made use of the property

1

1 (17)

Since the acoustic log-likelihoods can be expanded into sums over the
observations, , in the sentence, the above weight update formula
modifies the neural network weights only for those frames where
the reference and the hypothesis strings do not coincide. In that
case, positive training is given to the correct model (c) and negative
training is given to the erroneously hypothesized model (h). The
log-likelihood gradients log are calculated according to Eqs.
6 and 7. This property results from the fact that the N-best list was
augmented with the correct transcription (Eq. 10).

Another desirable feature of this training criterion is that more train-
ing is given to hypotheses with high posterior probabilities (the mul-
tiplicative term, ).

A potential disadvantage is that the correct hypothesis is often not
in the N-best list for databases with high error rates. Improving the
posterior of the correct sentence may thus result in decreasing the
probability of the best (although erroneous) hypothesis in the N-best
list.

6.2. Minimizing the average number of errors
in the N-best list

The second training criterion we propose is given by

1 ANER (18)

where the average number of errors ANER in a sentence was defined
in Eq. 11.

Note that here the posterior probability of a hypothesis is com-
puted only with respect to the other hypotheses in the N-best list
(i.e. without taking the reference into account):

(19)

Intuitively, minimizing ANER “redistributes” the posterior prob-
ability mass to favor hypotheses with few errors and penalize hy-
potheses with more errors.

Again, the weight update formula can be derived by taking the in-
stantaneous gradient of with respect to the weights of the neural
networks. The weight update for each sentence is therefore propor-
tional to

ANER log ANER NER (20)

The characteristics of this weight update formula are quite different
from those of the previous criterion. Negative training is given to
hypotheses that have a number of errors above average, and posi-
tive training is given to hypotheses with a number of errors below



average. Of course, this average, ANER , evolves with the training
of the models. If the learning process progresses correctly, ANER
decreases with time, thereby progressively decreasing the number
of hypotheses that receive positive training. In the limit, all the
posteriors converge to zero except the one that corresponds to
the hypothesis with the lowest number of errors, , and ANER
converges to NER , thereby bringing the training process to an
end.

The main disadvantage of this criterion is that positive training is
given to all the frames in the best hypothesis, including those associ-
ated with incorrectly recognized words. This criterion, however, is
closer to the WER metric that we ultimately wish to optimize.

7. Recognition Experiments with
Discriminatively Trained Dynamo Models

These experiments were limited to the training of small models
(NNETs associated to GMMs 1/16), with linguistic and time fea-
tures only. Fig.2 shows the results of a self-test experiment (i.e. the
test data is identical to the training data) with the 627 male sentences
of the Eval’96 test set of the Spanish Callhome database. The N-best
list depth was limited to 10 hypotheses.
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Figure 2: Average number of errors as a function of the training
epoch, for both training criteria.

The N-best error rate for this set of sentenceswas 41.49%. The learn-
ing curves show that for the self-test experiment the ANER criterion
shows more promise. This, however, is not a fair experiment, and
the generalization properties of the max-posterior criterion may be
superior. N-best rescoring of 200 randomly selected male sentences
of the Eval’96 test set with the neural networks trained to minimize
the ANER gave a significant WER improvement (see Table 3).

models WER
GMMs 1 16 baseline 65 22
min ANER NNETs 63 89

Table 3: N-best rescoring with ANER NNETs, self-test experiment:
WER in %.

A fair experiment was conductedwith the max-posterior criterion. A
set of neural networks was trained from linguistic and time features

to output mixture weights for the same small phone models (GMMs
1/16). The training data consisted of all 15K male sentences in the

training set, of which 10 % was held as a cross-validation set. The
models were tested on the same subset of Eval’96 as in the previous
experiments. The N-best list depth was limited to 5 hypotheses. The
error rate is given in Table 4. The WER improvement is modest but
since the phone GMMs in this experiments were small and hence not
very detailed, little margin for improvement was left to the NNETs.

models WER
GMMs 1 16 baseline 65 22
max log-post NNETs 64 79

Table 4: N-best rescoring with log-posterior NNETs, fair experi-
ment: WER in %.

8. Conclusions
We described an algorithm to incorporate new knowledge sources in
a set of acoustic models, with the objective of dynamically increasing
or decreasing the likelihoods of the different modes of the models,
thereby narrowing their distributions. The algorithm makes use of
feedforward neural networks to dynamically estimate the mixture
weights of the speech models, given the knowledge sources for the
current data frame.

We argued that the neural networks need to be discriminatively
trained, and we proposed two training criteria: maximizing the log-
posterior probability of the correct transcription and minimizing the
average number of errors in the N-best list. Preliminary experiments
showed a modest but encouraging improvement in WER. We are cur-
rently experimenting with larger phone models and increased N-best
list depths.
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