
Copyright © 1997 IEEE. All rights reserved. 207

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

14.6.6 Occupied channel bandwidth

Occupied channel bandwidth shall meet all applicable local geographic regulations for 1 MHz channel spac-
ing. The rate at which the PMD entity will hop is governed by the MAC. The hop rate is an attribute with a
maximum dwell time subject to local geographic regulations.

14.6.7 Minimum hop rate

The minimum hop rate shall be governed by the regulatory authorities.

Table 40ÑRequirements in Spain
(values speciÞed in GHz)

Channel # Value Channel # Value Channel # Value

47 2.447 56 2.456 65 2.465

48 2.448 57 2.457 66 2.466

49 2.449 58 2.458 67 2.467

50 2.450 59 2.459 68 2.468

51 2.451 60 2.460 69 2.469

52 2.452 61 2.461 70 2.470

53 2.453 62 2.462 71 2.471

54 2.454 63 2.463 72 2.472

55 2.455 64 2.464 73 2.473

Table 41ÑRequirements in France
(values speciÞed in GHz)

Channel # Value Channel # Value Channel # Value

48 2.448 60 2.460 72 2.472

49 2.449 61 2.461 73 2.473

50 2.450 62 2.462 74 2.474

51 2.451 63 2.463 75 2.475

52 2.452 64 2.464 76 2.476

53 2.453 65 2.465 77 2.477

54 2.454 66 2.466 78 2.478

55 2.455 67 2.467 79 2.479

56 2.456 68 2.468 80 2.480

57 2.457 69 2.469 81 2.481

58 2.458 70 2.470 82 2.482

59 2.459 71 2.471 Ñ Ñ

Nokia Corporation v. Apple Inc. Doc. 379 Att. 3

Dockets.Justia.com

http://dockets.justia.com/docket/delaware/dedce/1:2009cv00791/43078/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2009cv00791/43078/379/3.html
http://dockets.justia.com/

208 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

14.6.8 Hop sequences

The hopping sequence of an individual PMD entity is used to create a pseudorandom hopping pattern utiliz-
ing uniformly the designated frequency band. Sets of hopping sequences are used to co-locate multiple PMD
entities in similar networks in the same geographic area and to enhance the overall efÞciency and throughput
capacity of each individual network.

An FH pattern, Fx, consists of a permutation of all frequency channels deÞned in Table 38 and Table 39. For
a given pattern number, x, the hopping sequence can be written as follows:

Fx = {fx (1), fx (2),...fx (p)}

where

fx (i) is the channel number (as deÞned in 14.6.4) for i th frequency in x th hopping pattern;
p is the number of frequency channels in hopping pattern (79 for North America and most of Europe,

23 for Japan, 27 for France, 35 for Spain)

Given the hopping pattern number, x, and the index for the next frequency, i (in the range 1 to p), the channel
number shall be deÞned to be as follows:

fx (I) = [b(i) + x] mod (79) + 2 in North America and most of Europe, with b(i) deÞned in Table 42.
= [(i Ð 1) ´ x] mod (23) + 73 in Japan.
= [b(i) + x] mod (27) + 47 in Spain with b(i) deÞned in Table 43.
= [b(i) + x] mod (35) + 48 in France with b(i) deÞned in Table 44.

Table 42ÑBase-Hopping sequence b(i) for North America and most of Europe

i b(i) i b(i) i b(i) i b(i) i b(i) i b(i) i b(i) i b(i)

1 0 11 76 21 18 31 34 41 14 51 20 61 48 71 55

2 23 12 29 22 11 32 66 42 57 52 73 62 15 72 35

3 62 13 59 23 36 33 7 43 41 53 64 63 5 73 53

4 8 14 22 24 72 34 68 44 74 54 39 64 17 74 24

5 43 15 52 25 54 35 75 45 32 55 13 65 6 75 44

6 16 16 63 26 69 36 4 46 70 56 33 66 67 76 51

7 71 17 26 27 21 37 60 47 9 57 65 67 49 77 38

8 47 18 77 28 3 38 27 48 58 58 50 68 40 78 30

9 19 19 31 29 37 39 12 49 78 59 56 69 1 79 46

10 61 20 2 30 10 40 25 50 45 60 42 70 28 Ñ Ñ

Copyright © 1997 IEEE. All rights reserved. 209

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

The sequences are designed to ensure some minimum distance in frequency between contiguous hops. The
minimum hop size is 6 MHz for North America and Europe, including Spain and France, and 5 MHz for Japan.

The hopping pattern numbers x are divided into three sets. The sets are designed to avoid prolonged collision
periods between different hopping sequences in a set. Hopping sequence sets contain 26 sequences for North
America and Europe, and 4 sequences per set for Japan:

For North America and most of Europe:

x = {0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75} Set 1
x = {1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76} Set 2

Table 43ÑBase-Hopping sequence b(i) for Spain

i b(i) i b(i) i b(i)

 1 13 10 19 19 14

 2 4 11 8 20 1

 3 24 12 23 21 20

 4 18 13 15 22 7

 5 5 14 22 23 16

 6 12 15 9 24 2

 7 3 16 21 25 11

 8 10 17 0 26 17

 9 25 18 6 27 26

Table 44ÑBase-Hopping sequence b(i) for France

i b(i) i b(i) i b(i)

 1 17 13 31 25 15

 2 5 14 20 26 3

 3 18 15 29 27 11

 4 32 16 22 28 30

 5 23 17 12 29 24

 6 7 18 6 30 9

 7 16 19 28 31 27

 8 4 20 14 32 19

 9 13 21 25 33 2

10 33 22 0 34 21

11 26 23 8 35 34

12 10 24 1 Ñ Ñ

210 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

x = {2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,72,74,77} Set 3

For Japan:

x = {6,9,12,15} Set 1
x = {7,10,13,16} Set 2
x = {8,11,14,17} Set 3

For Spain:

x = {0,3,6,9,12,15,18,21,24} Set 1
x = {1,4,7,10,13,16,19,22,25} Set 2
x = {2,5,8,11,14,17,20,23,26} Set 3

For France:

x = {0,3,6,9,12,15,18,21,24,27,30} Set 1
x = {1,4,7,10,13,16,19,22,25,28,31} Set 2
x = {2,5,8,11,14,17,20,23,26,29,32} Set 3

The three sets of hopping sequences for North America and most of Europe, of 26 patterns each, are listed
Tables B.1, B.2, and B.3 in Annex B. Similarly, there are three sets for Japan of four patterns each. The three
sets for Spain have nine patterns each. The three sets for France have 11 patterns each. The channel numbers
listed under each pattern refer to the actual frequency values listed in Table 38 and Table 39.

14.6.9 Unwanted emissions

Conformant PMD implementations of this FHSS standard shall limit the emissions that fall outside of the
operating frequency range, deÞned in Table 36 of 14.6.3, to the geographically applicable limits.

14.6.10 Modulation

The minimum set of requirements for a PMD to be compliant with the IEEE 802.11 FHSS PHY shall be as
follows.

The PMD shall be capable of operating using two-level Gaussian frequency shift key (GFSK) modulation
with a nominal bandwidth bit-period (BT)=0.5. The PMD shall accept symbols from the set {{1},{0}}from
the PLCP. The symbol {1} shall be encoded with a peak deviation of (+fd), giving a peak transmit frequency
of (Fc+fd), which is greater than the carrier center frequency (Fc). The symbol {0} shall be encoded with a
peak frequency deviation of (Ðfd), giving a peak transmit frequency of (FcÐfd).

An incoming bit stream at 1 Mbit/s will be converted to symbols at Fclk = 1 Msymbols/s, as shown in Table 45.

Table 45ÑSymbol encoding into carrier deviation (1 Mbit/s, 2-GFSK)

Symbol Carrier deviation

1 1/2 ´ h2 ´ Fclk

0 Ð1/2 ´ h2 ´ Fclk

NOTEÑThese deviation values are measured using the center sym-
bol of 7 consecutive symbols of the same value. The instantaneous
deviation will vary due to Gaussian pulse shaping.

Copyright © 1997 IEEE. All rights reserved. 211

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

The deviation factor h2 for 2GFSK (measured as difference between frequencies measured in the middle of
0000 and 1111 patterns encountered in the SFD, divided by 1 MHz) will nominally be 0.32.

The minimum frequency deviation, as shown in Figure 83, shall be greater than 110 kHz relative to the nom-
inal center frequency Fc. Fd is the average center frequency of the last 8 bits of the Preamble Sync Þeld,
measured as the deviation at the midsymbol. Midsymbol is deÞned as the point that is midway between the
zero crossings derived from a best Þt to the last 8 bits of the Sync Þeld. Maximum deviation is not speciÞed,
but modulation is subject to the occupied bandwidth limits of 14.6.5.

The zero crossing error shall be less than ±1/8 of a symbol period. The zero crossing error is the time differ-
ence between the ideal symbol periods and measured crossings of Fc. This is illustrated in Figure 83.

14.6.11 Channel data rate

 A compliant IEEE 802.11 FHSS PMD shall be capable of transmitting and receiving at a nominal data rate
of 1.0 Mbit/s ± 50 ppm.

14.6.12 Channel switching/settling time

The time to change from one operating channel frequency, as speciÞed in 14.6.3, is deÞned as 224 ms. A con-
formant PMD meets this switching time speciÞcation when the operating channel center frequency has set-
tled to within ±60 kHz of the nominal channel center frequency as outlined in 14.6.3.

14.6.13 Receive to transmit switch time

The maximum time for a conformant PMD to switch the radio from the receive state to the transmit state and
place the start of the Þrst bit on the air shall be 19 ms. At the end of this 19 ms, the RF carrier shall be within
the nominal transmit power level range, and within the described modulation speciÞcations.

Figure 83ÑTransmit modulation mask

212 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

14.6.14 PMD transmit speciÞcations

The following portion of this subclause describes the transmit functions and parameters associated with the
PMD sublayer. In general, these are speciÞed by primitives from the PLCP, and the transmit PMD entity pro-
vides the actual means by which the signals required by the PLCP primitives are imposed onto the medium.

14.6.14.1 Nominal transmit power

The nominal transmit power of a frame is deÞned as the power averaged between the start of the Þrst symbol
in the PLCP Header to the end of the last symbol in the PLCP Header. When in the transmit state, the trans-
mit power shall be within 2 dB of the nominal transmit power from the start of the Preamble SYNC Þeld to
the last symbol at the end of the frame.

14.6.14.2 Transmit power levels

Unless governed by more stringent local geographic regulations, the radiated emissions from compliant
devices shall meet IEEE Std C95.1-1991 limits for controlled or uncontrolled environments, in accordance
with their intended usage. In addition, all conformant PMD implementations shall support at least one power
level with a minimum equivalent isotropically radiated power (EIRP) of 10 mW.

14.6.14.3 Transmit power level control

 If a conformant PMD implementation has the ability to transmit in a manner that results in the EIRP of the
transmit signal exceeding the level of 100 mW, at least one level of transmit power control shall be imple-
mented. This transmit power control shall be such that the level of the emission is reduced to a level at or
below 100 mW under the inßuence of said power control.

14.6.14.4 Transmit spectrum shape

Within the operational frequency band the transmitter shall pass a spectrum mask test. The duty cycle
between Tx and Rx is nominally 50% and the transmit frame length is nominally 400 ms. The adjacent chan-
nel power is deÞned as the sum of the power measured in a 1 MHz band. For a pseudorandom data pattern,
the adjacent channel power shall be a function of the offset between channel number N and the assigned
transmitter channel M, where M is the actual transmitted center frequency and N a channel separated from it
by an integer number of MHz.

Channel offset:

|NÐM|=2 Ð20 dBm or Ð40 dBc, whichever is the lower power.

|NÐM|³3 Ð40 dBm or Ð60 dBc, whichever is the lower power.

The levels given in dBc are measured relative to the transmitter power measured in a 1 MHz channel cen-
tered on the transmitter center frequency. The adjacent channel power and the transmitter power for this sub-
clause of the speciÞcation shall be measured with a resolution bandwidth of 100 kHz, a video bandwidth of
300 kHz, and a peak detector, and with the measurement device set to maximum hold.

For any transmit center frequency M, two exceptions to the spectrum mask requirements are permitted
within the operational frequency band, provided the exceptions are less than Ð50 dBc, where each offset
channel exceeded counts as a separate exception. An exception occurs when the total energy within a given
1 MHz channel as deÞned in 14.6.5 exceeds the levels speciÞed above.

Copyright © 1997 IEEE. All rights reserved. 213

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

14.6.14.5 Transmit center frequency tolerance

The PMD transmit center frequency shall be within ±60 kHz of the nominal center frequency as speciÞed in
14.6.5.

14.6.14.6 Transmitter ramp periods

The transmitter shall go from off to within 2 dB of the nominal transmit power in 8 ms or less. The transmit-
ter shall go from within 2 dB of the nominal transmit power to off (less than Ð50 dBm) in 8 ms or less.

14.6.15 PMD receiver speciÞcations

The following portion of this subclause describes the receive functions and parameters associated with the
PMD sublayer. In general, these are speciÞed by primitives from the PLCP. The Receive PMD entity pro-
vides the actual means by which the signals required by the PLCP primitives are recovered from the
medium. The PMD sublayer monitors signals on the medium and will return symbols from the set {{1},{0}}
to the PLCP sublayer.

14.6.15.1 Input signal range

The PMD shall be capable of recovering a conformant PMD signal from the medium, as described in related
subclauses, with a frame error ratio (FER) £3% for PSDUs of 400 octets generated with pseudorandom data,
for receiver input signal levels in the range from Ð20 dBm to the receiver sensitivity (as speciÞed in
14.6.15.4), across the frequency band of operation.

14.6.15.2 Receive center frequency acceptance range

An IEEE 802.11 FHSS compliant PMD shall meet all speciÞcations with an input signal having a center fre-
quency range of ±60 kHz from nominal.

14.6.15.3 CCA power threshold

In the presence of any IEEE 802.11-compliant 1 Mbit/s FH PMD signal above Ð85 dBm that starts synchro-
nously with respect to slot times as speciÞed in 14.3.3.2.1, the PHY shall signal busy, with a 90% probability of
detection, during the preamble within the CCA assessment window. In the presence of any IEEE 802.11-compli-
ant 1 Mbit/s FH PMD signal above Ð85 dBm that starts asynchronously with respect to slot times as speciÞed in
14.3.3.2.1, the PHY shall signal busy, with a 70% probability of detection, during the preamble within the CCA
window. In the presence of any IEEE 802.11 compliant 1 Mbit/s FH PMD signal above Ð65 dBm, the PHY shall
signal busy, with a 70% probability of detection, during random data within the CCA window. This speciÞcation
applies to a PMD operating with a nominal EIRP of < 100 mW. A compliant PMD operating at a nominal output
power greater than 100 mW shall use the following equation to deÞne the CCA threshold, where Pt represents
transmit power.

CCA threshold (preamble) =

CCA threshold (random data) = CCA threshold (preamble) + 20 dB

14.6.15.4 Receiver sensitivity

The sensitivity is deÞned as the minimum signal level required for an FER of 3% for PSDUs of 400 octets gen-
erated with pseudorandom data. The sensitivity shall be less than or equal to Ð80 dBm. The reference sensitiv-
ity is deÞned as Ð80 dBm for the 1 Mbit/s FH PHY speciÞcations.

85 dBmÐ 5 ́ log 10
P

t

100 mW

 è ø
æ ö dBmÐ

214

Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

14.6.15.5 Intermodulation

Intermodulation protection (IMp) is deÞned as the ratio of the minimum amplitude of one of two equal inter-
fering signals to the desired signal amplitude, where the interfering signals are spaced 4 and 8 MHz removed
from the center frequency of the desired signal, both on the same side of center frequency. The IMp protec-
tion ratio is established at the interfering signal level that causes the FER of the receiver to be increased to
3% for PSDUs of 400 octets generated with pseudorandom data, when the desired signal is Ð77 dBm. Each
interfering signal is modulated with the FH PMD modulation uncorrelated in time to each other or the
desired signal. The PMD shall have the IMp for the interfering signal at 4 and 8 MHz be

³

30 dB.

14.6.15.6 Desensitization

Desensitization (Dp) is deÞned as the ratio to measured sensitivity of the minimum amplitude of an interfer-
ing signal that causes the FER at the output of the receiver to be increased to 3% for PSDUs of 400 octets
generated with pseudorandom data, when the desired signal is Ð77 dBm. The interfering signal shall be mod-
ulated with the FHSS PMD modulation uncorrelated in time to the desired signal. The minimum Dp shall be
as given in Table 46. The spectral purity of the interferer shall be sufÞcient to ensure that the measurement is
limited by the receiver performance.

14.6.15.7 Receiver radiation

The signal leakage when receiving shall not exceed Ð50 dBm EIRP in the operating frequency range.

14.6.16 Operating temperature range

Two temperature ranges for full operation compliance to the FH PHY are speciÞed. Type 1 is deÞned as 0

°

C
to 40

°

C and is designated for ofÞce environments. Type 2 is deÞned as Ð30

°

C to +70

°

C and is designated
for industrial environments.

 14.7 FHSS PMD sublayer, 2.0 Mbit/s

14.7.1 Overview

This subclause details the RF speciÞcation differences of the optional 2 Mbit/s operation from the baseline
1 Mbit/s PMD as contained in 14.6. Unless otherwise speciÞed in this subclause, the compliant PMD shall
also meet all requirements of 14.6 when transmitting at 2 Mbit/s. When implementing the 2 Mbit/s option,
the preamble and PHY Header shall be transmitted at 1 Mbit/s. STAs implementing the 2 Mbit/s option shall
also be capable of transmitting and receiving PPDUs at 1 Mbit/s.

a

Where

M

 is the interferer frequency and

N

 is the desired channel frequency.

Table 46Ñ1 Mbit/s Dp

Interferer frequency

a

Dp minimum

M = N

±

 2 30 dB

M = N

±

 3 or more 40 dB

Copyright © 1997 IEEE. All rights reserved.

215

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

14.7.2 Four-Level GFSK modulation

For an FHSS 2 Mbit/s PMD, the modulation scheme shall be four-level Gaussian frequency shift keying
(4GFSK), with a nominal symbol-period bandwidth product (BT) of 0.5. The four-level deviation factor,
deÞned as the frequency separation of adjacent symbols divided by symbol rate, h4, shall be related to the
deviation factor of the 2GFSK modulation, h2, by the following equation:

h4/h2 = 0.45

±

 0.01

An incoming bit stream at 2 Mbit/s will be converted to 2-bit words or symbols, with a rate of Fclk =
1

M

symbol/s. The Þrst received bit will be encoded as the LMB of the symbol in Table 47. The bits will be
encoded into symbols as shown in Table 47.

The deviation factor h2 for 2GFSK (measured as the difference between frequencies measured in the middle
of 0000 and 1111 patterns encountered in the SFD, divided by 1 MHz) will nominally be 0.32. The deviation
factor h2 will be no less than 0.30 (with maximum dictated by regulatory bandwidth requirement). Accord-
ingly, h4 (measured as a difference between the outermost frequencies, divided by 3, divided by 1 MHz) is
nominally 0.45

´

 0.32 = 0.144, and it will be no less than 0.45

´

 0.3 = 0.135.

The modulation error shall be less than

±

15 kHz at the midsymbol time for 4GFSK, from the frequency
deviations speciÞed above, for a symbol surrounded by identical symbols, and less than

±

25 kHz for any
symbol. The deviation is relative to the actual center frequency of the RF carrier. For deÞnition purposes, the
actual center frequency is the midfrequency between symbols 11 and 01. The actual center frequency shall
be within

±

60 kHz of the nominal channel center frequency deÞned in 14.6.5 and shall not vary by more
than

±

10 kHz/ms, from the start to end of the PPDU. The peak-to-peak variation of the actual center fre-
quency over the PPDU shall not exceed 15 kHz. Symbols and terms used within this subclause are illustrated
in Figure 84.

Table 47ÑSymbol encoding into carrier deviation

1 Mbit/s, 2GFSK

Symbol Carrier deviation

1 1/2

´

 h2

´

 Fclk

0 Ð1/2

´

 h2

´

Fclk

2 Mbit/s, 4GFSK

Symbol Carrier deviation

10 3/2

´

h4

´

Fclk

11 1/2

´

h4

´

Fclk

01 Ð1/2

´

h4

´

Fclk

00 Ð3/2

´

h4

´

Fclk

NOTEÑThese deviation values are measured using the
center symbol of 7 consecutive symbols of the same value.
The instantaneous deviation will vary due to Gaussian pulse
shaping.

216

Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

14.7.2.1 Frame structure for HS FHSS PHY

The high rate FHSS PPDU consists of PLCP Preamble, PLCP Header, and whitened PSDU. The PLCP Pre-
amble and PLCP Header format are identical to 1 Mbit/s PHY, as described in 14.3.2. The whitened PSDU is
transmitted in 2GFSK, 4GFSK, or potentially a higher-rate format, according to the rate chosen. The rate is
indicated in a 3-bit Þeld in a PLCP Header, having a value of 1 or 2 bits/symbol (or Mbit/s).

The PPDU is transmitted as four-level symbols, with the amount determined by number_of_symbols =
(number_of_PSDU_octets ´ 8)/rate.

The input bits are scrambled according to the method in 14.3.2.3.

The scrambled bit stream is divided into groups of rate (1 or 2) consecutive bits. The bits are mapped into
symbols according to Table 47.

A bias suppression algorithm is applied to the resulting symbol stream. The bias suppression algorithm is
deÞned in 14.3.2.3, Figure 71, and Figure 74. A polarity control symbol is inserted prior to each block of 32
symbols (or less for the last block). The polarity control signals are 4GFSK symbols 10 or 00. The algorithm
is equivalent to the case of 2GFSK, with the polarity symbol 2GFSK Ò1Ó replaced with 4GFSK symbol Ò10,Ó
and the 2GFSK polarity symbol Ò0Ó replaced with a 4GFSK symbol Ò00.Ó

14.7.3 Channel data rate

The data rate for the whitened PSDU at the optional rate shall be 2.0 Mbit/s ± 50 ppm.

14.7.3.1 Input dynamic range

The PMD shall be capable of recovering a conformant PMD signal from the medium, as described in related
subclauses, with an FER £3% for PSDUs of 400 octets generated with pseudorandom data, for receiver
input signal levels in the range from Ð20 dBm to the receiver sensitivity (as speciÞed in 14.7.3.2), across the
frequency band of operation.

Figure 84ÑFour-Level GFSK transmit modulation

Copyright © 1997 IEEE. All rights reserved. 217

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

14.7.3.2 Receiver sensitivity

The sensitivity is deÞned as the minimum signal level required for an FER of 3% for PSDUs of 400 octets
generated with pseudorandom data. The sensitivity shall be less than or equal to Ð75 dBm. The reference
sensitivity is deÞned as Ð75 dBm for the 2 Mbit/s FH PHY speciÞcations.

14.7.3.3 IMp

IMp is deÞned as the ratio to Ð77 dBm of the minimum amplitude of one of the two equal level interfering
signals at 4 and 8 MHz removed from center frequency, both on the same side of center frequency, that cause
the FER of the receiver to be increased to 3% for PSDUs of 400 octets generated with pseudorandom data,
when the desired signal is Ð72 dBm (3 dB above the speciÞed sensitivity speciÞed in 14.7.3.2). Each inter-
fering signal is modulated with the FH 1 Mbit/s PMD modulation uncorrelated in time to each other or the
desired signal. The FHSS optional 2 Mbit/s rate IMp shall be ³25 dB.

14.7.3.4 Dp

Dp is deÞned as the ratio to measured sensitivity of the minimum amplitude of an interfering signal that
causes the FER of the receiver to be increased to 3% for PSDUs of 400 octets generated with pseudorandom
data, when the desired signal is Ð72 dB (3 dB above sensitivity speciÞed in 14.7.3.2). The interfering signal
shall be modulated with the FHSS PMD modulation uncorrelated in time to the desired signal. The mini-
mum Dp shall be as given in Table 48.

14.8 FHSS PHY management information base (MIB)

14.8.1 Overview

The following is the MIB for the FHSS PHY.

aWhere M is the interferer frequency and N is the desired channel frequency.

Table 48Ñ2 Mbit/s Dp

Interferer frequencya DP minimum

M = N ± 2 20 dB

M = N ± 3 or more 30 dB

218 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

14.8.2 FH PHY attributes

This subclause deÞnes the attributes for the FHSS MIB. Table 49 lists these attributes and the default values.
Following the table is a description of each attribute.

Table 49ÑFHSS PHY attributes

Attribute Default value Operational
semantics Operational behavior

aPHYType FHSS = X'01' Static Identical for all FH PHYs

aRegDomainsSupported FCC = X'10'
IC = X'20'
ETSI = X'30'
Spain = X'31'
France = X'32'
MKK = X'40'

Static Implementation dependent

aCurrentRegDomain X'00' Dynamic LME Implementation dependent

aSlotTime 50 ms Static Identical for all FH PHYs

aCCATime 27 ms Static Identical for all FH PHYs

aRxTxTurnaroundTime 20 ms Static Identical for all FH PHYs

aTxPLCPDelay 1 ms Static Identical for all FH PHYs

aRxTxSwitchTime 10 ms Static Identical for all FH PHYs

aTxRampOnTime 8 ms Static Identical for all FH PHYs

aTxRFDelay 1 ms Static Identical for all FH PHYs

aSIFSTime 28 ms Static Identical for all FH PHYs

aRxRFDelay 4 ms Static Identical for all FH PHYs

aRxPLCPDelay 2 ms Static Identical for all FH PHYs

aMACProcessingDelay 2 ms Static Identical for all FH PHYs

aTxRampOffTime 8 ms Static Identical for all FH PHYs

aPreambleLength 96 ms Static Identical for all FH PHYs

aPLCPHdrLength 32 ms Static Identical for all FH PHYs

aMPDUDurationFactor 1.03125 Static Identical for all FH PHYs

aAirPropagationTime 1 ms Static Identical for all FH PHYs

aTempType Type 1 = X'01'
Type 2 = X'02'
Type 3 = X'03'

Static Implementation dependent

aCWmin 15 Static Identical for all FH PHYs

aCWmax 1023 Static Identical for all FH PHYs

aSupportedDataRatesTX 1 Mbit/s = X'02' manda-
tory
2 Mbit/s = X'04' optional

Static Identical for all FH PHYs

aSupportedDataRatesRX 1 Mbit/s = X'02' manda-
tory
2 Mbit/s = X'04' optional

Static Identical for all FH PHYs

aMPDUMaxLength 4095 octets Static Identical for all FH PHYs

aSupportedTxAntennas Ant 1 = X'01'
Ant 2 = X'02'
Ant 3 = X'03'
Ant n = n

Static Implementation dependent

aCurrentTxAntenna Ant 1 = default Dynamic LME Implementation dependent

Copyright © 1997 IEEE. All rights reserved. 219

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

aSupportedRxAntennas Ant 1 = X'01'
Ant 2 = X'02'
Ant 3 = X'03'
Ant n = n

Static Implementation dependent

aDiversitySupport Available = X'01'
Not avail. = X'02'
Control avail. = X'03'

Static Implementation dependent

aDiversitySelectionRx Ant 1 = X'01'
Ant 2 = X'02'
Ant 3 = X'03'
Ant 4 = X'04'
Ant 5 = X'05'
Ant 6 = X'06'
Ant 7 = X'07'
Ant 8 = X'08'

Dynamic LME Implementation dependent

aNumberSupportedPowerLevels Lvl1 = X'01'
Lvl2 = X'02'
Lvl3 = X'03'
Lvl4 = X'04'
Lvl5 = X'05'
Lvl6 = X'06'
Lvl7 = X'07'
Lvl8 = X'08'

Static Implementation dependent

aTxPowerLevel1 Factory def. default Static Implementation dependent

aTxPowerLevel2 Factory def. Static Implementation dependent

aTxPowerLevel3 Factory def. Static Implementation dependent

aTxPowerLevel4 Factory def. Static Implementation dependent

aTxPowerLevel5 Factory def. Static Implementation dependent

aTxPowerLevel6 Factory def. Static Implementation dependent

aTxPowerLevel7 Factory def. Static Implementation dependent

aTxPowerLevel8 Factory def. Static Implementation dependent

aCurrentTxPowerLevel TxPowerLevel1 Dynamic LME Implementation dependent

aHopTime 224 ms Static Identical for all FH PHYs

aCurrentChannelNumber X'00' Dynamic PLME

aMaxDwellTime 390 TU Static Regulatory domain dependent

aCurrentSet X'00' Dynamic PLME

aCurrentPattern X'00' Dynamic PLME

aCurrentIndex X'00' Dynamic PLME

aCurrentPowerState X'01' off
X'02' on

Dynamic LME

NOTEÑThe column titled ÒOperational semanticsÓ contains two types: static and dynamic. Static MIB attributes are
Þxed and cannot be modiÞed for a given PHY implementation. MIB attributes deÞned as dynamic can be modiÞed by
some management entity. Whenever an attribute is deÞned as dynamic, the column also shows which entity has control
over the attribute. LME refers to the MAC sublayer management entity (MLME), while PHY refers to the physical
layer management entity (PLME).

Table 49ÑFHSS PHY attributes (continued)

Attribute Default value Operational
semantics Operational behavior

220 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

14.8.2.1 FH PHY attribute deÞnitions

14.8.2.1.1 aPHYType

The aPHYType is FHSS. The LME uses this attribute to determine what PLCP and PMD is providing ser-
vices to the MAC. It also is used by the MAC to determine what MAC sublayer management state machines
must be invoke to support the PHY. The value of this attribute is deÞned as the integer 01 to indicate the
FHSS PHY.

14.8.2.1.2 aRegDomainsSupported

Operational requirements for FHSS PHY are deÞned by agencies representing certain geographical regula-
tory domains. These regulatory agencies may deÞne limits on various parameters that differ from region to
region. This parameters may include aTxPowerLevels, and aMaxDwellTime, as well as the total number of
frequencies in the hopping pattern. The values shown in Table 50 indicate regulatory agencies supported by
this document.

Since a PLCP and PMD might be designed to support operation in more than one regulatory domain, this
attribute can actually represent a list of agencies. This list can be one or more of the above agencies and must
be terminated using the null terminator. Upon activation of the PLCP and PMD, the information in this list
must be used to set the value of the aCurrentRegDomain attribute.

14.8.2.1.3 aCurrentRegDomain

The aCurrentRegDomain attribute for the FHSS PHY is deÞned as the regulatory domain under which the
PMD is currently operating. This value must be one of the values listed in the aRegDomainsSupported list.
This MIB attribute is managed by the LME.

14.8.2.1.4 aSlotTime

The aSlotTime is a PHY dependent attribute used by the MAC sublayer to determine the PIFS and DIFS
periods. It is deÞned using the following equation:

aCCATime + aRxTxTurnaroundTime + aAirPropagationTime + aMACProcessingDelay

For the FHSS PHY, the aCCATime is 27 ms, and the aRxTxTurnaroundTime is 20 ms. The aAirPropagation-
Time is Þxed at 1 ms. The aMACProcessingDelay is nominally 2 ms. The value of this attribute is 50 ms.

Table 50ÑRegulatory domain codes

Code point Regulatory agency Region

X'10' FCC United States

X'20' IC Canada

X'30' ETSI Most of Europe

X'31' Spain Spain

X'32' France France

X'40' MKK Japan

X'00' Null terminator Ñ

Copyright © 1997 IEEE. All rights reserved. 221

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

14.8.2.1.5 aCCATime

The aCCATime for the FHSS PHY is deÞned as the time the receiver must use to evaluate the medium at the
antenna to determine the state of the channel. This time period for the FHSS PHY is 27 ms. This period
includes the aRxRFDelay and the aRxPLCPDelay.

14.8.2.1.6 aRxTxTurnaround Time

The aRxTxTurnaroundTime for the FHSS PHY is deÞned as the time it takes a STA to place a valid symbol
on the medium after a PHY-TXSTART.request. The aRxTxTurnaroundTime is determined using the follow-
ing equation.

aTxPLCPDelay + aRxTxSwitchTime + aTxRampOnTime + aTxRFDelay

For the FHSS PHY, the aTxPLCPDelay is 1 ms, the aRxTxSwitchTime is 10 ms, the aTxRampOnTime is
8 ms, and the aTxRFDelay is 1 ms, for a total of 20 ms. This is the maximum time for getting valid data on the
medium. STAs can use less time but not more than 20 ms.

14.8.2.1.7 aTxPLCPDelay

The aTxPLCPDelay for the FHSS PHY is deÞned as the delay the PLCP introduces in getting data onto the
air in the transmit direction. This value for the FHSS PHY is nominally 1 ms. Implementors may choose to
increase or decrease this delay as long as the requirements of aRxTxTurnaroundTime are met.

14.8.2.1.8 aRxTxSwitchTime

The aRxTxSwitchTime for the FHSS PHY is deÞned as the delay the PMD requires to change from receive
to transmit. This value for the FHSS PHY is nominally 10 ms. Implementors may choose to increase or
decrease this delay as long as the requirements of aRxTxTurnaroundTime are met.

14.8.2.1.9 aTxRampOnTime

The aTxRampOnTime for the FHSS PHY is deÞned as the delay the PMD requires to turn on the transmit
power ampliÞer. This value for the FHSS PHY is nominally 8 ms. Implementors may choose to increase or
decrease this delay as long as the requirements of aRxTxTurnaroundTime are met.

14.8.2.1.10 aTxRFDelay

The aTxRFDelay for the FHSS PHY is deÞned as the nominal time in microseconds between the issuance of
a PMDDATA.request to the PMD and the start of the corresponding symbol at the air interface. The start of
a symbol is deÞned to be 1/2 symbol period prior to the center of the symbol. This value for the FHSS PHY
is nominally 1 ms. Implementors may choose to increase or decrease this delay as long as the requirements of
aRxTxTurnaroundTime are met.

14.8.2.1.11 aSIFSTime

The aSIFSTime for the FHSS PHY is deÞned as the time the MAC and PHY sublayers will require to
receive the last symbol of a frame at the air interface, process the frame, and respond with the Þrst symbol of
a preamble on the air interface. The aSIFSTime is determined using the following equation:

aRxRFDelay + aRxPLCPDelay + aMACProcessingDelay + aRxTxTurnaroundTime

222 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

For the FHSS PHY, the aRxRFDelay is 4 ms, the aRxPLCPDelay is 2 ms, the aMACProcessingDelay is 2 ms,
and the aRxTxTurnaroundTime is 20 ms, for a total of 28 ms. This is the nominal value for aSIFSTime. In
order to account for variations between implementations, this value has a tolerance as speciÞed in 9.2.3.1.

14.8.2.1.12 aRXRFDelay

The aRxRFDelay for the FHSS PHY is deÞned as the nominal time in microseconds between the end of a sym-
bol at the air interface to the issuance of a PMDDATA.indicate to the PLCP. The end of a symbol is deÞned to
be 1/2 symbol period after the center of the symbol. This value for the FHSS PHY is nominally 4 ms. Imple-
mentors may choose to increase or decrease this delay as long as the requirements of aSIFSTime and aCCA-
Time are met.

14.8.2.1.13 aRxPLCPDelay

The aRxPLCPDelay for the FHSS PHY is deÞned as the delay the PLCP introduces in the data path between
the PMD and the MAC sublayer. This value for the FHSS PHY is nominally 2 ms. Implementors may choose
to increase or decrease this delay as long as the requirements of aSIFSTime and aCCATime are met.

14.8.2.1.14 aMACProcessingDelay

The aMACProcessingDelay for the FHSS PHY is deÞned as the delay between when a PHY-RXEND.indi-
cate is issued by the PHY till a corresponding PHY-TXSTART.request is issued by the MAC. This value for
the FHSS PHY is nominally 2 ms. Implementors may choose to increase or decrease this delay as long as the
requirements of aSIFSTime are met.

14.8.2.1.15 aTxRampOffTime

The aTxRampOffTime for the FHSS PHY is deÞned as the delay the PMD requires to turn off the transmit
power ampliÞer. This value for the FHSS PHY is a maximum of 8 ms.

14.8.2.1.16 aPreambleLength

The parameter aPreambleLength deÞnes the time required by the FHSS PHY to transmit the PLCP Pream-
ble. For both the 1 and 2 Mbit/s FHSS PHYs, this value is 96 ms.

14.8.2.1.17 aPLCPHdrLength

The parameter aPLCPHdrLength deÞnes the time required by the FHSS PHY to transmit the PLCP Header.
For both the 1 and 2 Mbit/s FHSS PHYs, this value is 32 ms.

14.8.2.1.18 aMPDUDurationFactor

The parameter aMPDUDurationFactor deÞnes the overhead added by the PHY to the PSDU as it is transmit-
ted over the air. For the FHSS PHY, this factor is 1.03125. This factor is calculated as 33/32 to account for
the expansion due to the data whitener encoding algorithm. The total time to transmit a PPDU over the air is
the following equation rounded up to the next integer microsecond:

aPreambleLength + aPLCPHdrLength + aMPDUDurationFactor ´ 8 ´ PSDU length (octets)/data rate

The total time in microseconds to the beginning of any octet in an PPDU from the Þrst symbol of the pream-
ble can be calculated using the duration factor in the following equation:

Truncate[aPreambleLength + aPLCPHdrLength + aMPDUDurationFactor ´ 8 ´ N/data rate] + 1

Copyright © 1997 IEEE. All rights reserved. 223

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

where N is the number of octets prior to the desired octet.

14.8.2.1.19 aAirPropagationTime

The parameter aAirPropagationTime is the time it takes a transmitted signal to go from the transmitting STA
to the receiving STA. A nominal value of 1 ms has been allocated for this parameter. Variations in the actual
propagation time are accounted for in the allowable range of aSIFSTime.

14.8.2.1.20 aTempType

The parameter aTempType deÞnes the temperature range supported by the PHY. Type 1 equipment (X'01') sup-
ports a temperature range of 0 °C to 40 °C. Type 2 equipment (X'02') supports a temperature range of Ð20 °C to
+55 °C. Type 3 equipment (X'03') supports a temperature range of Ð30 °C to +70 °C.

14.8.2.1.21 aCWmin

The parameter aCWmin deÞnes the minimum size of the contention window, in slots. For the FH PHY, this
number is 15 decimal.

14.8.2.1.22 aCWmax

The parameter aCWmin deÞnes the maximum size of the contention window, in slots. For the FH PHY, this
number is 1023 decimal.

14.8.2.1.23 aCurrentPowerState

The aCurrentPowerState attribute for the FHSS PHY allows the MAC sublayer management entity to con-
trol the power state of the PHY. This attribute can be updated using the PLMESET.request. The permissible
values are ON and OFF.

14.8.2.1.24 aSupportedDataRatesTX

The aSupportedDataRatesTX attribute for the FHSS PHY is deÞned as a null terminated list of supported data
rates in the transmit mode for this implementation. Table 51 shows the possible values appearing in the list.

Table 51ÑSupported data rate codes (aSupportedDataRatesTX)

Code point Data rate

X'02' 1 Mbit/s

X'04' 2 Mbit/s

X'00' Null terminator

224 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

14.8.2.1.25 aSupportedDataRatesRX

The aSupportedDataRatesRX attribute for the FHSS PHY is deÞned as a null terminated list of supported data
rates in the receive mode for this implementation. Table 52 shows the possible values appearing in the list.

14.8.2.1.26 aMPDUMaxLength

The aMPDUMaximumLength attribute for the FHSS PHY is deÞned as the maximum PSDU, in octets, that
the PHY shall ever be capable of accepting. This value for the FHSS PHY is set at 4095 octets. The recom-
mended value for maximum PSDU length in an FHSS PHY system is 400 octets at 1 Mbit/s and 800 octets
at 2 Mbit/s, which corresponds to a frame duration less than 3.5 ms. These values are optimized to achieve
high performance in a variety of RF channel conditions, particularly with respect to indoor multipath, chan-
nel stability for moving STAs, and interference in the 2.4 GHz band.

14.8.2.1.27 aSupportedTxAntennas

The aSupportedTxAntennas attribute for the FHSS PHY is deÞned as a null terminated list of antennas that
this implementation can use to transmit data. Table 53 shows the possible values appearing in the list, where
N £ 255.

14.8.2.1.28 aCurrentTxAntenna

The CurrentTxAntenna attribute for the FHSS PHY is used to describe the current antenna the implementa-
tion is using for transmission. This value should represent one of the antennas appearing in the SupportedTx-
Antennas list.

14.8.2.1.29 aSupportedRxAntenna

The aSupportedRxAntennas attribute for the FHSS PHY is deÞned as a null terminated list of antennas that this
implementation can use to receive data. In the FHSS PHY primitives, one of these values is passed as part of

Table 52ÑSupported data rate codes (aSupportedDataRatesRX)

Code point Data rate

X'02' 1 Mbit/s

X'04' 2 Mbit/s

X'00' Null terminator

Table 53ÑNumber of transmit antennas

Code point Antenna number

X'01' Tx Antenna 1

X'02' Tx Antenna 2

X'03' Tx Antenna 3

É É

N Tx Antenna N

X'00' Null terminator

Copyright © 1997 IEEE. All rights reserved. 225

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

the PHY-RXSTART.indicate to the MAC sublayer for every received packet. Table 54 shows the possible val-
ues appearing in the list, where N £ 255.

14.8.2.1.30 aDiversitySupport

The aDiversitySupport attribute for the FHSS PHY is used to describe the implementationÕs diversity sup-
port. Table 55 shows the possible values appearing in the list.

The value X'01' indicates that this implementation uses two or more antennas for diversity. The value X'02'
indicates that the implementation has no diversity support. The value X'03' indicates that the choice of anten-
nas used during diversity is programmable. (See 14.8.2.1.31.)

14.8.2.1.31 aDiversitySelectionRx

The aDiversitySelectionRx attribute for the FHSS PHY is a null terminated list describing the receive
antenna or antennas currently in use during diversity and packet reception. Table 56 below shows the possi-
ble values appearing in the list, where N £ 255.

Table 54ÑNumber of receive antennas

Code point Antenna number

X'01' Rx Antenna 1

X'02' Rx Antenna 2

X'03' Rx Antenna 3

É É

N Rx Antenna N

X'00' Null terminator

Table 55ÑDiversity support codes

Code point Diversity support

X'01' Diversity available

X'02' No diversity

X'03' Control available

Table 56ÑDiversity select antenna codes

Code point Antenna number

X'01' Rx Antenna 1

X'02' Rx Antenna 2

X'03' Rx Antenna 3

N Rx Antenna N

X'00' Null terminator

226 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

The null terminated list can consist of one or more of the receive antennas listed in the aSupportedRxAnten-
nas attribute. This attribute can be changed dynamically by the LME.

14.8.2.1.32 aNumberSupportedPowerLevels

The aNumberSupportedPowerLevels attribute for the FHSS PHY describes the number of power levels this
implementation supports. This attribute can be an integer of value 1 through 8, inclusive.

14.8.2.1.33 aTxPowerLevel1-8

Some implementations may provide up to eight different transmit power levels. The aTxPowerLevels
attribute for the FHSS PHY is a list of up to eight power levels supported. Table 57 describes the list.

14.8.2.1.34 aCurrentTxPowerLevel

The aCurrentTxPowerLevel attribute for the FHSS PHY is deÞned as the current transmit output power
level. This level shall be one of the levels implemented in the list of attributes called aTxPowerLevelN
(where N is 1Ð8). This MIB attribute is also used to deÞne the sensitivity of the CCA mechanism when the
output power exceeds 100 mW. This MIB attribute is managed by the LME.

14.8.2.1.35 aHopTime

The aHopTime attribute for the FHSS PHY describes the time allocated for the PHY to change to a new fre-
quency. For the FHSS PHY, this time period is 224 ms.

14.8.2.1.36 aCurrentChannelNumber

The aCurrentChannelNumber attribute for the FHSS PHY is deÞned as the current operating channel num-
ber of the PMD. The values of this attribute correspond to the values shown in Table 38. This MIB attribute
is managed by the PLME and is updated as the result of a PLMESET.request to aCurrentSet, aCurrentPat-
tern, or aCurrentIndex.

14.8.2.1.37 aMaxDwellTime

The aMaxDwellTime attribute for the FHSS PHY is deÞned as the maximum time the PMD can dwell on a
channel and meet the requirements of the current regulatory domain. For the FCC regulatory domain, this
number is 390 TU (FCC = 400 ms). The recommended dwell time for the FHSS PHY is 19 TU.

Table 57ÑTransmit power levels

Attribute Power level

TxPowerLevel1 Default setting

TxPowerLevel2 Level 2

TxPowerLevel3 Level 3

TxPowerLevel4 Level 4

TxPowerLevel5 Level 5

TxPowerLevel6 Level 6

TxPowerLevel7 Level 7

TxPowerLevel8 Level 8

Copyright © 1997 IEEE. All rights reserved. 227

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

14.8.2.1.38 aCurrentSet

The FHSS PHY contains three sets of hopping patterns. The aCurrentSet attribute for the FHSS PHY deÞnes
what set the STA is using to determine the hopping pattern. Its value can be 1, 2, or 3. This attribute is man-
aged by the PLME.

14.8.2.1.39 aCurrentPattern

There are up to 26 patterns in each hopping set used by the FHSS PHY. The aCurrentPattern attribute for the
FHSS PHY deÞnes what pattern the STA is using to determine the hopping sequence. Its value has various
ranges, always within the overall range of 1 to 26, depending on the aCurrentRegDomain. This attribute is
managed by the PLME.

14.8.2.1.40 aCurrentIndex

The FHSS PHY addresses each channel in the selected hopping pattern through an index. The aCurrentIndex
attribute for the FHSS PHY deÞnes what index the STA will use to determine the next hop-channel number.
Its value has various ranges, always within the overall range of 1 to 26, depending on the aCurrentRegDo-
main. This attribute is managed by the PLME.

14.8.2.1.41 aCurrentPowerState

The parameter aCurrentPowerState deÞnes the operational state of the FHSS PHY. When this attribute has a
value of X'01', the PHY is ÒOFF.Ó When this attribute has a value of X'02', the PHY is ÒON.Ó This attribute is
managed by the PLME.

228 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15. Direct sequence spread spectrum (DSSS) PHY speciÞcation for the
2.4 GHz band designated for ISM applications

15.1 Overview

The PHY for the direct sequence spread spectrum (DSSS) system is described in this clause. The RF LAN
system is initially aimed for the 2.4 GHz band designated for ISM applications as provided in the USA
according to FCC 15.247, in Europe by ETS 300Ð328, and in other countries according to 15.4.6.2.

The DSSS system provides a wireless LAN with both a 1 Mbit/s and a 2 Mbit/s data payload communication
capability. According to the FCC regulations, the DSSS system shall provide a processing gain of at least
10 dB. This shall be accomplished by chipping the baseband signal at 11 MHz with an 11-chip PN code. The
DSSS system uses baseband modulations of differential binary phase shift keying (DBPSK) and differential
quadrature phase shift keying (DQPSK) to provide the 1 and 2 Mbit/s data rates, respectively.

15.1.1 Scope

The PHY services provided to the IEEE 802.11 wireless LAN MAC by the 2.4 GHz DSSS system are
described in this clause. The DSSS PHY layer consists of two protocol functions:

a) A physical layer convergence function, which adapts the capabilities of the physical medium depen-
dent (PMD) system to the PHY service. This function shall be supported by the physical layer con-
vergence procedure (PLCP), which deÞnes a method of mapping the IEEE 802.11 MAC sublayer
protocol data units (MPDU) into a framing format suitable for sending and receiving user data and
management information between two or more STAs using the associated PMD system.

b) A PMD system, whose function deÞnes the characteristics of, and method of transmitting and
receiving data through, a wireless medium (WM) between two or more STAs each using the DSSS
system.

15.1.2 DSSS PHY functions

The 2.4 GHz DSSS PHY architecture is depicted in the reference model shown in Figure 11. The DSSS
PHY contains three functional entities: the PMD function, the physical layer convergence function, and the
layer management function. Each of these functions is described in detail in the following subclauses.

The DSSS PHY service shall be provided to the MAC through the PHY service primitives described in
Clause 12.

15.1.2.1 PLCP sublayer

To allow the IEEE 802.11 MAC to operate with minimum dependence on the PMD sublayer, a physical
layer convergence sublayer is deÞned. This function simpliÞes the PHY service interface to the IEEE 802.11
MAC services.

15.1.2.2 PMD sublayer

The PMD sublayer provides a means to send and receive data between two or more STAs. This clause is
concerned with the 2.4 GHz ISM bands using direct sequence modulation.

15.1.2.3 Physical layer management entity (PLME)

The PLME performs management of the local PHY functions in conjunction with the MAC management
entity.

Copyright © 1997 IEEE. All rights reserved. 229

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

15.1.3 Service speciÞcation method and notation

The models represented by Þgures and state diagrams are intended to be illustrations of functions provided.
It is important to distinguish between a model and a real implementation. The models are optimized for sim-
plicity and clarity of presentation; the actual method of implementation is left to the discretion of the IEEE
802.11 DSSS PHY compliant developer.

The service of a layer or sublayer is a set of capabilities that it offers to a user in the next-higher layer (or
sublayer). Abstract services are speciÞed here by describing the service primitives and parameters that char-
acterize each service. This deÞnition is independent of any particular implementation.

15.2 DSSS PLCP sublayer

15.2.1 Overview

This clause provides a convergence procedure in which MPDUs are converted to and from PPDUs. During
transmission, the MPDU shall be prepended with a PLCP Preamble and Header to create the PPDU. At the
receiver, the PLCP Preamble and header are processed to aid in demodulation and delivery of the MPDU.

15.2.2 PLCP frame format

Figure 85 shows the format for the PPDU including the DSSS PLCP Preamble, the DSSS PLCP Header, and
the MPDU. The PLCP Preamble contains the following Þelds: Synchronization (Sync) and Start Frame
Delimiter (SFD). The PLCP Header contains the following Þelds: IEEE 802.11 Signaling (Signal), IEEE
802.11 Service (Service), LENGTH (Length), and CCITT CRC-16. Each of these Þelds is described in
detail in 15.2.3.

15.2.3 PLCP Þeld deÞnitions

The entire PLCP Preamble and Header shall be transmitted using the 1 Mbit/s DBPSK modulation described
in 15.4.7. All transmitted bits shall be scrambled using the feedthrough scrambler described in 15.2.4.

15.2.3.1 PLCP Synchronization (SYNC) Þeld

The SYNC Þeld shall consist of 128 bits of scrambled 1 bit. This Þeld shall be provided so that the receiver
can perform the necessary operations for synchronization.

Figure 85ÑPLCP frame format

230 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15.2.3.2 PLCP Start Frame Delimiter (SFD)

The SFD shall be provided to indicate the start of PHY dependent parameters within the PLCP Preamble.
The SFD shall be a 16-bit Þeld, X'F3A0' (msb to lsb). The lsb shall be transmitted Þrst in time.

15.2.3.3 PLCP IEEE 802.11 Signal (SIGNAL) Þeld

The 8-bit IEEE 802.11 signal Þeld indicates to the PHY the modulation that shall be used for transmission
(and reception) of the MPDU. The data rate shall be equal to the Signal Þeld value multiplied by 100 kbit/s.
The DSSS PHY currently supports two mandatory modulation services given by the following 8-bit words,
where the lsb shall be transmitted Þrst in time:

a) X'0A' (msb to lsb) for 1 Mbit/s DBPSK
b) X'14' (msb to lsb) for 2 Mbit/s DQPSK

The DSSS PHY rate change capability is described in 15.2.5. This Þeld shall be protected by the CCITT
CRC-16 frame check sequence described in 15.2.3.6.

15.2.3.4 PLCP IEEE 802.11 Service (SERVICE) Þeld

The 8-bit IEEE 802.11 service Þeld shall be reserved for future use. The value of X'00' signiÞes IEEE 802.11
device compliance. The lsb shall be transmitted Þrst in time. This Þeld shall be protected by the CCITT
CRC-16 frame check sequence described in 15.2.3.6.

15.2.3.5 PLCP Length (LENGTH) Þeld

The PLCP Length Þeld shall be an unsigned 16-bit integer that indicates the number of microseconds (16 to
216Ð1 as deÞned by aMPDUMaxLength) required to transmit the MPDU. The transmitted value shall be
determined from the LENGTH parameter in the TXVECTOR issued with the PHY-TXSTART.request prim-
itive described in 12.3.5.4. The Length Þeld provided in the TXVECTOR is in bytes and is converted to
microseconds for inclusion in the PLCP LENGTH Þeld. The lsb shall be transmitted Þrst in time. This Þeld
shall be protected by the CCITT CRC-16 frame check sequence described in 15.2.3.6.

15.2.3.6 PLCP CRC (CCITT CRC-16) Þeld

The IEEE 802.11 SIGNAL, IEEE 802.11 SERVICE, and LENGTH Þelds shall be protected with a CCITT
CRC-16 FCS (frame check sequence). The CCITT CRC-16 FCS shall be the oneÕs complement of the
remainder generated by the modulo 2 division of the protected PLCP Þelds by the polynomial:

x16 + x12 + x5 + 1

The protected bits shall be processed in transmit order. All FCS calculations shall be made prior to data
scrambling.

As an example, the SIGNAL, SERVICE, and LENGTH Þelds for a DBPSK signal with a packet length of
192 ms (24 bytes) would be given by the following:

0101 0000 0000 0000 0000 0011 0000 0000 (leftmost bit transmitted Þrst in time)

The oneÕs complement FCS for these protected PLCP Preamble bits would be the following:

0101 1011 0101 0111 (leftmost bit transmitted Þrst in time)

Figure 86 depicts this example.

Copyright © 1997 IEEE. All rights reserved. 231

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

An illustrative example of the CCITT CRC-16 FCS using the information from Figure 86 follows in Figure 87.

Data CRC registers
msb lsb

1111111111111111 ; initialize preset to 1Õs
0 1110111111011111
1 1101111110111110
0 1010111101011101
1 0101111010111010
0 1011110101110100
0 0110101011001001
0 1101010110010010
0 1011101100000101
0 0110011000101011
0 1100110001010110
0 1000100010001101
0 0000000100111011
0 0000001001110110
0 0000010011101100
0 0000100111011000
0 0001001110110000
0 0010011101100000
0 0100111011000000
0 1001110110000000
0 0010101100100001
0 0101011001000010
0 1010110010000100
1 0101100100001000
1 1010001000110001
0 0101010001000011
0 1010100010000110
0 0100000100101101
0 1000001001011010
0 0001010010010101
0 0010100100101010
0 0101001001010100
0 1010010010101000

0101101101010111 ; oneÕs complement, result = CRC FCS parity

Figure 87ÑExample CRC calculation

Figure 86ÑCCITT CRC-16 implementation

232 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15.2.4 PLCP/DSSS PHY data scrambler and descrambler

The polynomial G(z) = zÐ7 + zÐ4 + 1 shall be used to scramble all bits transmitted by the DSSS PHY. The
feedthrough conÞguration of the scrambler and descrambler is self-synchronizing, which requires no prior
knowledge of the transmitter initialization of the scrambler for receive processing. Figure 88 and Figure 89
show typical implementations of the data scrambler and descrambler, but other implementations are possible.

The scrambler should be initialized to any state except all ones when transmitting.

15.2.5 PLCP data modulation and modulation rate change

The PLCP Preamble shall be transmitted using the 1 Mbit/s DBPSK modulation. The IEEE 802.11 SIGNAL
Þeld shall indicate the modulation that shall be used to transmit the MPDU. The transmitter and receiver
shall initiate the modulation indicated by the IEEE 802.11 SIGNAL Þeld starting with the Þrst symbol (1 bit
for DBPSK or 2 bits for DQPSK) of the MPDU. The MPDU transmission rate shall be set by the DAT-
ARATE parameter in the TXVECTOR issued with the PHY-TXSTART.request primitive described in
15.4.4.1.

15.2.6 PLCP transmit procedure

The PLCP transmit procedure is shown in Figure 90.

In order to transmit data, PHY-TXSTART.request shall be enabled so that the PHY entity shall be in the
transmit state. Further, the PHY shall be set to operate at the appropriate channel through station manage-
ment via the PLME. Other transmit parameters such as DATARATE, TX antenna, and TX power are set via
the PHY-SAP with the PHY-TXSTART.request(TXVECTOR) as described in 15.4.4.2.

Figure 88ÑData scrambler

Figure 89ÑData descrambler

Copyright © 1997 IEEE. All rights reserved. 233

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Based on the status of clear channel assessment (CCA) indicated by PHY-CCA.indicate, the MAC will assess
that the channel is clear. A clear channel shall be indicated by PHY-CCA.indicate(IDLE). If the channel is
clear, transmission of the PPDU shall be initiated by issuing the PHY-TXSTART.request (TXVECTOR) primi-
tive. The TXVECTOR elements for the PHY-TXSTART.request are the PLCP Header parameters SIGNAL
(DATARATE), SERVICE, and LENGTH, and the PMD parameters of TX_ANTENNA and TXPWR_LEVEL.
The PLCP Header parameter LENGTH is calculated from the TXVECTOR element by multiplying by 8 for
1 Mbit/s and by 4 for 2 Mbit/s.

The PLCP shall issue PMD_ANTSEL, PMD_RATE, and PMD_TXPWRLVL primitives to conÞgure the PHY.
The PLCP shall then issue a PMD_TXSTART.request and the PHY entity shall immediately initiate data
scrambling and transmission of the PLCP Preamble based on the parameters passed in the PHY-
TXSTART.request primitive. The time required for TX power on ramp described in 15.4.7.7 shall be included
in the PLCP synchronization Þeld. Once the PLCP Preamble transmission is complete, data shall be exchanged
between the MAC and the PHY by a series of PHY-DATA.request(DATA) primitives issued by the MAC and
PHY-DATA.conÞrm primitives issued by the PHY. The modulation rate change, if any, shall be initiated with
the Þrst data symbol of the MPDU as described in 15.2.5. The PHY proceeds with MPDU transmission
through a series of data octet transfers from the MAC. At the PMD layer, the data octets are sent in lsb to msb
order and presented to the PHY layer through PMD_DATA.request primitives. Transmission can be prema-
turely terminated by the MAC through the primitive PHY-TXEND.request. PHY-TXSTART shall be disabled
by the issuance of the PHY-TXEND.request. Normal termination occurs after the transmission of the Þnal bit
of the last MPDU octet according to the number supplied in the DSSS PHY preamble LENGTH Þeld. The
packet transmission shall be completed and the PHY entity shall enter the receive state (i.e., PHY-TXSTART
shall be disabled). It is recommended that chipping continue during power-down. Each PHY-TXEND.request
is acknowledged with a PHY-TXEND.conÞrm primitive from the PHY.

A typical state machine implementation of the PLCP transmit procedure is provided in Figure 91.

15.2.7 PLCP receive procedure

The PLCP receive procedure is shown in Figure 92.

In order to receive data, PHY-TXSTART.request shall be disabled so that the PHY entity is in the receive
state. Further, through station management via the PLME, the PHY is set to the appropriate channel and the
CCA method is chosen. Other receive parameters such as receive signal strength indication (RSSI), signal
quality (SQ), and indicated DATARATE may be accessed via the PHY-SAP.

Figure 90ÑPLCP transmit procedure

234 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Figure 91ÑPLCP transmit state machine

Figure 92ÑPLCP receive procedure

Copyright © 1997 IEEE. All rights reserved. 235

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Upon receiving the transmitted energy, according to the selected CCA mode, the PMD_ED shall be enabled
(according to 15.4.8.4) as the RSSI strength reaches the ED_THRESHOLD and/or PMD_CS shall be
enabled after code lock is established. These conditions are used to indicate activity to the MAC via PHY-
CCA.indicate according to 15.4.8.4. PHY-CCA.indicate(BUSY) shall be issued for energy detection and/or
code lock prior to correct reception of the PLCP frame. The PMD primitives PMD_SQ and PMD_RSSI are
issued to update the RSSI and SQ parameters reported to the MAC.

After PHY-CCA.indicate is issued, the PHY entity shall begin searching for the SFD Þeld. Once the SFD
Þeld is detected, CCITT CRC-16 processing shall be initiated and the PLCP IEEE 802.11 SIGNAL, IEEE
802.11 SERVICE and LENGTH Þelds are received. The CCITT CRC-16 FCS shall be processed. If the
CCITT CRC-16 FCS check fails, the PHY receiver shall return to the RX Idle state as depicted in Figure 93.
Should the status of CCA return to the IDLE state during reception prior to completion of the full PLCP pro-
cessing, the PHY receiver shall return to the RX Idle state.

If the PLCP Header reception is successful (and the SIGNAL Þeld is completely recognizable and sup-
ported), a PHY-RXSTART.indicate(RXVECTOR) shall be issued. The RXVECTOR associated with this
primitive includes the SIGNAL Þeld, the SERVICE Þeld, the MPDU length in bytes (calculated from the
LENGTH Þeld in microseconds), the antenna used for receive (RX_ANTENNA), RSSI, and SQ.

The received MPDU bits are assembled into octets and presented to the MAC using a series of PHY-
DATA.indicate(DATA) primitive exchanges. The rate change indicated in the IEEE 802.11 SIGNAL Þeld
shall be initiated with the Þrst symbol of the MPDU as described in 15.2.5. The PHY proceeds with MPDU
reception. After the reception of the Þnal bit of the last MPDU octet indicated by the PLCP Preamble
LENGTH Þeld, the receiver shall be returned to the RX Idle state as shown in Figure 93. A PHY-
RXEND.indicate(NoError) primitive shall be issued. A PHY-CCA.indicate(IDLE) primitive shall be issued
following a change in PHYCS (PHY carrier sense) and/or PHYED (PHY energy detection) according to the
selected CCA method.

In the event that a change in PHYCS or PHYED would cause the status of CCA to return to the IDLE state
before the complete reception of the MPDU as indicated by the PLCP LENGTH Þeld, the error condition
PHY-RXEND.indicate(CarrierLost) shall be reported to the MAC. The DSSS PHY will ensure that the CCA
will indicate a busy medium for the intended duration of the transmitted packet.

If the PLCP Header is successful, but the indicated rate in the SIGNAL Þeld is not receivable, a PHY-
RXSTART.indicate will not be issued. The PHY shall issue the error condition PHY-RXEND.indi-
cate(UnsupportedRate). If the PLCP Header is successful, but the SERVICE Þeld is out of IEEE 802.11
DSSS speciÞcation, a PHY-RXSTART.indicate will not be issued. The PHY shall issue the error condition
PHY-RXEND.indicate(FormatViolation). Also, in both cases, the DSSS PHY will ensure that the CCA shall
indicate a busy medium for the intended duration of the transmitted frame as indicated by the Length Þeld.
The intended duration is indicated by the Length Þeld (length´1 ms).

A typical state machine implementation of the PLCP receive procedure is provided in Figure 93.

236 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15.3 DSSS physical layer management entity (PLME)

15.3.1 PLME_SAP sublayer management primitives

Table 58 lists the MIB attributes that may be accessed by the PHY sublayer entities and intralayer of higher
layer management entities (LME). These attributes are accessed via the PLME-GET, PLME-SET, and
PLME-RESET primitives deÞned in Clause 10.

15.3.2 DSSS PHY MIB

All DSSS PHY MIB attributes are deÞned in Clause 12, with speciÞc values deÞned in Table 58.

Figure 93ÑPLCP receive state machine

Copyright © 1997 IEEE. All rights reserved. 237

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Table 58ÑMIB attribute default values/ranges

Managed object Default value/range Operational
semantics

agPhyOperationGroup

aPHYType DSSSÐ2.4 (02) Static

aTempType Implementation dependent Static

aCWmin 31 Static

aCWmax 1023 Static

aRegDomainsSupported Implementation dependent Static

aCurrentRegDomain Implementation dependent Static

aSlotTime 20 ms Static

aCCATime £15 ms Static

aRxTxTurnaroundTime £5 ms Static

aTxPLCPDelay Implementation dependent Static

aRxTxSwitchTime £5 ms Static

aTxRampOnTime Implementation dependent Static

aTxRFDelay Implementation dependent Static

aSIFSTime 10 ms Static

aRxRFDelay Implementation dependent Static

aRxPLCPDelay Implementation dependent Static

aMACProcessingDelay Not applicable n/a

aTxRampOffTime Implementation dependent Static

aPreambleLength 144 bits Static

aPLCPHeaderLength 48 bits Static

agPhyRateGroup

aSupportedDataRatesTx X'02', X'04' Static

aSupportedDataRatesRx X'02', X'04' Static

aMPDUMaxLength 4 £ ´ £ (213 Ð 1) Static

agPhyAntennaGroup

aCurrentTxAntenna Implementation dependent Dynamic

aDiversitySupport Implementation dependent Static

agPhyTxPowerGroup

aNumberSupportedPowerLevels Implementation dependent Static

aTxPowerLevel1 Implementation dependent Static

aTxPowerLevel2 Implementation dependent Static

aTxPowerLevel3 Implementation dependent Static

aTxPowerLevel4 Implementation dependent Static

aTxPowerLevel5 Implementation dependent Static

aTxPowerLevel6 Implementation dependent Static

aTxPowerLevel7 implementation dependent Static

aTxPowerLevel8 Implementation dependent Static

aCurrentTxPowerLevel Implementation dependent Dynamic

238 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15.4 DSSS PMD sublayer

15.4.1 Scope and Þeld of application

This subclause describes the PMD services provided to the PLCP for the DSSS PHY. Also deÞned in this
subclause are the functional, electrical, and RF characteristics required for interoperability of implementa-
tions conforming to this speciÞcation. The relationship of this speciÞcation to the entire DSSS physical layer
is shown in Figure 94.

15.4.2 Overview of service

The DSSS PMD sublayer accepts PLCP sublayer service primitives and provides the actual means by which
data shall be transmitted or received from the medium. The combined function of DSSS PMD sublayer
primitives and parameters for the receive function results in a data stream, timing information, and associ-

agPhyStatusGroup

aSynthesizerLocked Implementation dependent Dynamic

agPhyDSSSGroup

aCurrentChannel Implementation dependent Dynamic

aCCAModeSupport Implementation dependent Static

aCurrentCCAMode Implementation dependent Dynamic

aEDThreshold Implementation dependent Dynamic

agPhyPwrSavingGroup

aDozeTurnonTime Implementation dependent Static

aCurrentPowerState Implementation dependent Dynamic

agAntennasListGroup

aSupportTxAntennas Implementation dependent Static

aSupportRxAntennas Implementation dependent Static

aDiversitySelectRx Implementation dependent Dynamic

NOTEÑThe column titled ÒOperational semanticsÓ contains two types: static and dynamic.
Static MIB attributes are Þxed and cannot be modiÞed for a given PHY implementation.
MIB attributes deÞned as dynamic can be modiÞed by some management entities.

Table 58ÑMIB attribute default values/ranges (continued)

Managed object Default value/range Operational
semantics

Figure 94ÑPMD layer reference model

Copyright © 1997 IEEE. All rights reserved. 239

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

ated received signal parameters being delivered to the PLCP sublayer. A similar functionality shall be pro-
vided for data transmission.

15.4.3 Overview of interactions

The primitives associated with the IEEE 802.11 PLCP sublayer to the DSSS PMD fall into two basic
categories:

a) Service primitives that support PLCP peer-to-peer interactions, and
b) Service primitives that have local signiÞcance and that support sublayer-to-sublayer interactions.

15.4.4 Basic service and options

All of the service primitives described in this clause are considered mandatory unless otherwise speciÞed.

15.4.4.1 PMD_SAP peer-to-peer service primitives

Table 59 indicates the primitives for peer-to-peer interactions.

15.4.4.2 PMD_SAP peer-to-peer service primitive parameters

Several service primitives include a parameter vector. This vector shall be actually a list of parameters that
may vary depending on PHY type. Table 60 indicates the parameters required by the MAC or DSSS PHY in
each of the parameter vectors used for peer-to-peer interactions.

Table 59ÑPMD_SAP peer-to-peer service primitives

Primitive Request Indicate ConÞrm Response

PHY-RXSTART X

PHY-RXEND X

PHY-CCA X

PHY-TXSTART X X

PHY-TXEND X X

PHY-DATA X X X

Table 60ÑDSSS PMD_SAP peer-to-peer service primitives

Parameter Associated primitive Value

LENGTH RXVECTOR, TXVECTOR 4 to 216 Ð 1

DATARATE RXVECTOR, TXVECTOR PHY dependent

SERVICE RXVECTOR, TXVECTOR PHY dependent

TXPWR_LEVEL TXVECTOR PHY dependent

TX_ANTENNA TXVECTOR PHY dependent

RSSI RXVECTOR PHY dependent

SQ RXVECTOR PHY dependent

RX_ANTENNA RXVECTOR PHY dependent

240 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15.4.4.3 PMD_SAP sublayer-to-sublayer service primitives

Table 61 indicates the primitives for sublayer-to-sublayer interactions.

15.4.4.4 PMD_SAP service primitive parameters

Table 62 indicates the parameters for the PMD primitives.

Table 61ÑPMD_SAP sublayer-to-sublayer service primitives

Primitive Request Indicate ConÞrm Response

PMD_TXSTART X

PMD_TXEND X

PMD_ANTSEL X X

PMD_TXPWRLVL X

PMD_RATE X X

PMD_RSSI X

PMD_SQ X

PMD_CS X

PMD_ED X X

Table 62ÑList of parameters for the PMD primitives

Parameter Associate primitive Value

DATA PHY-DATA.request
PHY-DATA.indicate

Octet value: X'00'ÐX'FF'

TXVECTOR PHY-DATA.request A set of parameters

RXVECTOR PHY-DATA.indicate A set of parameters

TXD_UNIT PMD_DATA.request One(1), Zero(0): DBPSK
dibit combinations
00,01,11,10: DQPSK

RXD_UNIT PMD_DATA.indicate One(1), Zero(0): DBPSK
dibit combinations
00,01,11,10: DQPSK

RF_STATE PMD_TXE.request Receive, Transmit

ANT_STATE PMD_ANTSEL.indicate
PMD_ANTSEL.request

1 to 256

TXPWR_LEVEL PHY-TXSTART 0, 1, 2, 3 (max of 4 levels)

RATE PMD_RATE.indicate
PMD_RATE.request

X'0A' for 1 Mbit/s DBPSK
X'14' for 2 Mbit/s DQPSK

RSSI PMD_RSSI.indicate 0Ð8 bits of RSSI

SQ PMD_SQ.indicate 0Ð8 bits of SQ

Copyright © 1997 IEEE. All rights reserved. 241

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

15.4.5 PMD_SAP detailed service speciÞcation

The following subclauses describe the services provided by each PMD primitive.

15.4.5.1 PMD_DATA.request

15.4.5.1.1 Function

This primitive deÞnes the transfer of data from the PLCP sublayer to the PMD entity.

15.4.5.1.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_DATA.request(TXD_UNIT)

The TXD_UNIT parameter takes on the value of either one(1) or zero(0) for DBPSK modulation or the dibit
combination 00, 01, 11, or 10 for DQPSK modulation. This parameter represents a single block of data,
which, in turn, shall be used by the PHY to be differentially encoded into a DBPSK or DQPSK transmitted
symbol. The symbol itself shall be spread by the PN code prior to transmission.

15.4.5.1.3 When generated

This primitive shall be generated by the PLCP sublayer to request transmission of a symbol. The data clock
for this primitive shall be supplied by PMD layer based on the PN code repetition.

15.4.5.1.4 Effect of receipt

The PMD performs the differential encoding, PN code modulation and transmission of the data.

15.4.5.2 PMD_DATA.indicate

15.4.5.2.1 Function

This primitive deÞnes the transfer of data from the PMD entity to the PLCP sublayer.

15.4.5.2.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_DATA.indicate(RXD_UNIT)

The RXD_UNIT parameter takes on the value of one(1) or zero(0) for DBPSK modulation or as the dibit 00,
01, 11, or 10 for DQPSK modulation. This parameter represents a single symbol that has been demodulated
by the PMD entity.

15.4.5.2.3 When generated

This primitive, which is generated by the PMD entity, forwards received data to the PLCP sublayer. The data
clock for this primitive shall be supplied by PMD layer based on the PN code repetition.

242 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15.4.5.2.4 Effect of receipt

The PLCP sublayer either interprets the bit or bits that are recovered as part of the PLCP convergence proce-
dure or passes the data to the MAC sublayer as part of the MPDU.

15.4.5.3 PMD_TXSTART.request

15.4.5.3.1 Function

This primitive, which is generated by the PHY PLCP sublayer, initiates PPDU transmission by the PMD
layer.

15.4.5.3.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_TXSTART.request

15.4.5.3.3 When generated

This primitive shall be generated by the PLCP sublayer to initiate the PMD layer transmission of the PPDU.
The PHY-DATA.request primitive shall be provided to the PLCP sublayer prior to issuing the
PMD_TXSTART command.

15.4.5.3.4 Effect of receipt

PMD_TXSTART initiates transmission of a PPDU by the PMD sublayer.

15.4.5.4 PMD_TXEND.request

15.4.5.4.1 Function

This primitive, which is generated by the PHY PLCP sublayer, ends PPDU transmission by the PMD layer.

15.4.5.4.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_TXEND.request

15.4.5.4.3 When generated

This primitive shall be generated by the PLCP sublayer to terminate the PMD layer transmission of the
PPDU.

15.4.5.4.4 Effect of receipt

PMD_TXEND terminates transmission of a PPDU by the PMD sublayer.

Copyright © 1997 IEEE. All rights reserved. 243

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

15.4.5.5 PMD_ANTSEL.request

15.4.5.5.1 Function

This primitive, which is generated by the PHY PLCP sublayer, selects the antenna used by the PHY for
transmission or reception (when diversity is disabled).

15.4.5.5.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_ANTSEL.request(ANT_STATE)

ANT_STATE selects which of the available antennas should be used for transmit. The number of available
antennas shall be determined from the MIB table parameters aSuprtRxAntennas and aSuprtTxAntennas.

15.4.5.5.3 When generated

This primitive shall be generated by the PLCP sublayer to select a speciÞc antenna for transmission (or
reception when diversity is disabled).

15.4.5.5.4 Effect of receipt

PMD_ANTSEL immediately selects the antenna speciÞed by ANT_STATE.

15.4.5.6 PMD_ANTSEL.indicate

15.4.5.6.1 Function

This primitive, which is generated by the PHY PLCP sublayer, reports the antenna used by the PHY for
reception of the most recent packet.

15.4.5.6.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_ANTSEL.indicate(ANT_STATE)

ANT_STATE reports which of the available antennas was used for reception of the most recent packet.

15.4.5.6.3 When generated

This primitive shall be generated by the PLCP sublayer to report the antenna used for the most recent packet
reception.

15.4.5.6.4 Effect of receipt

PMD_ANTSEL immediately reports the antenna speciÞed by ANT_STATE.

244 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15.4.5.7 PMD_TXPWRLVL.request

15.4.5.7.1 Function

This primitive, which is generated by the PHY PLCP sublayer, selects the power level used by the PHY for
transmission.

15.4.5.7.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_TXPWRLVL.request(TXPWR_LEVEL)

TXPWR_LEVEL selects which of the optional transmit power levels should be used for the current packet
transmission. The number of available power levels shall be determined by the MIB parameter aNumber-
SupportedPowerLevels. Subclause 15.4.7.3 provides further information on the optional DSSS PHY power
level control capabilities.

15.4.5.7.3 When generated

This primitive shall be generated by the PLCP sublayer to select a speciÞc transmit power. This primitive
shall be applied prior to setting PMD_TXSTART into the transmit state.

15.4.5.7.4 Effect of receipt

PMD_TXPWRLVL immediately sets the transmit power level given by TXPWR_LEVEL.

15.4.5.8 PMD_RATE.request

15.4.5.8.1 Function

This primitive, which is generated by the PHY PLCP sublayer, selects the modulation rate that shall be used
by the DSSS PHY for transmission.

15.4.5.8.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_RATE.request(RATE)

RATE selects which of the DSSS PHY data rates shall be used for MPDU transmission. Subclause 15.4.6.4
provides further information on the DSSS PHY modulation rates. The DSSS PHY rate change capability is
fully described in 15.2.

15.4.5.8.3 When generated

This primitive shall be generated by the PLCP sublayer to change or set the current DSSS PHY modulation
rate used for the MPDU portion of a PPDU.

15.4.5.8.4 Effect of receipt

The receipt of PMD_RATE selects the rate that shall be used for all subsequent MPDU transmissions. This
rate shall be used for transmission only. The DSSS PHY shall still be capable of receiving all the required
DSSS PHY modulation rates.

Copyright © 1997 IEEE. All rights reserved. 245

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

15.4.5.9 PMD_RATE.indicate

15.4.5.9.1 Function

This primitive, which is generated by the PMD sublayer, indicates which modulation rate was used to
receive the MPDU portion of the PPDU. The modulation shall be indicated in the PLCP Preamble IEEE
802.11 SIGNALING Þeld.

15.4.5.9.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_RATE.indicate(RATE)

In receive mode, the RATE parameter informs the PLCP layer which of the DSSS PHY data rates was used
to process the MPDU portion of the PPDU. Subclause 15.4.6.4 provides further information on the DSSS
PHY modulation rates. The DSSS PHY rate change capability is fully described in 15.2.

15.4.5.9.3 When generated

This primitive shall be generated by the PMD sublayer when the PLCP Preamble IEEE 802.11 SIGNALING
Þeld has been properly detected.

15.4.5.9.4 Effect of receipt

This parameter shall be provided to the PLCP layer for information only.

15.4.5.10 PMD_RSSI.indicate

15.4.5.10.1 Function

This optional primitive, which is generated by the PMD sublayer, provides to the PLCP and MAC entity the
received signal strength.

15.4.5.10.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_RSSI.indicate(RSSI)

The RSSI shall be a measure of the RF energy received by the DSSS PHY. RSSI indications of up to 8 bits
(256 levels) are supported.

15.4.5.10.3 When generated

This primitive shall be generated by the PMD when the DSSS PHY is in the receive state. It shall be contin-
uously available to the PLCP, which, in turn, provides the parameter to the MAC entity.

15.4.5.10.4 Effect of receipt

This parameter shall be provided to the PLCP layer for information only. The RSSI may be used in conjunc-
tion with SQ as part of a CCA scheme.

246 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15.4.5.11 PMD_SQ.indicate

15.4.5.11.1 Function

This optional primitive, which is generated by the PMD sublayer, provides to the PLCP and MAC entity the
signal quality (SQ) of the DSSS PHY PN code correlation. The SQ shall be sampled when the DSSS PHY
achieves code lock and held until the next code lock acquisition.

15.4.5.11.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_SQ.indicate(SQ)

The SQ shall be a measure of the PN code correlation quality received by the DSSS PHY. SQ indications of
up to 8 bits (256 levels) are supported.

15.4.5.11.3 When generated

This primitive shall be generated by the PMD when the DSSS PHY is in the receive state and code lock is
achieved. It shall be continuously available to the PLCP, which, in turn, provides the parameter to the MAC
entity.

15.4.5.11.4 Effect of receipt

This parameter shall be provided to the PLCP layer for information only. The SQ may be used in conjunc-
tion with RSSI as part of a CCA scheme.

15.4.5.12 PMD_CS.indicate

This primitive, which is generated by the PMD, shall indicate to the PLCP layer that the receiver has
acquired (locked) the PN code and data is being demodulated.

15.4.5.12.1 Function

This primitive, which is generated by the PMD, shall indicate to the PLCP layer that the receiver has
acquired (locked) the PN code and data is being demodulated.

15.4.5.12.2 Semantics of the service primitive

The PMD_CS (carrier sense) primitive in conjunction with PMD_ED provide CCA status through the PLCP
layer PHYCCA primitive. PMD_CS indicates a binary status of ENABLED or DISABLED. PMD_CS shall
be ENABLED when the correlator SQ indicated in PMD_SQ is greater than the CS_THRESHOLD parame-
ter. PMD_CS shall be DISABLED when the PMD_SQ falls below the correlation threshold.

15.4.5.12.3 When generated

This primitive shall be generated by the PHY sublayer when the DSSS PHY is receiving a PPDU and the PN
code has been acquired.

15.4.5.12.4 Effect of receipt

This indicator shall be provided to the PLCP for forwarding to the MAC entity for information purposes
through the PHYCCA indicator. This parameter shall indicate that the RF medium is busy and occupied by a

Copyright © 1997 IEEE. All rights reserved. 247

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

DSSS PHY signal. The DSSS PHY should not be placed into the transmit state when PMD_CS is
ENABLED.

15.4.5.13 PMD_ED.indicate

15.4.5.13.1 Function

This optional primitive, which is generated by the PMD, shall indicate to the PLCP layer that the receiver
has detected RF energy indicated by the PMD_RSSI primitive that is above a predeÞned threshold.

15.4.5.13.2 Semantics of the service primitive

The PMD_ED (energy detect) primitive, along with the PMD_SQ, provides CCA status at the PLCP layer
through the PHYCCA primitive. PMD_ED indicates a binary status of ENABLED or DISABLED.
PMD_ED shall be ENABLED when the RSSI indicated in PMD_RSSI is greater than the
ED_THRESHOLD parameter. PMD_ED shall be DISABLED when the PMD_RSSI falls below the energy
detect threshold.

15.4.5.13.3 When generated

This primitive shall be generated by the PHY sublayer when the PHY is receiving RF energy from any
source that exceeds the ED_THRESHOLD parameter.

15.4.5.13.4 Effect of receipt

This indicator shall be provided to the PLCP for forwarding to the MAC entity for information purposes
through the PMD_ED indicator. This parameter shall indicate that the RF medium may be busy with an RF
energy source that is not DSSS PHY compliant. If a DSSS PHY source is being received, the PMD_CS
function shall be enabled shortly after the PMD_ED function is enabled.

15.4.5.14 PMD_ED.request

15.4.5.14.1 Function

This optional primitive, which is generated by the PHY PLCP, sets the energy detect ED THRESHOLD
value.

15.4.5.14.2 Semantics of the service primitive

The primitive shall provide the following parameters:

PMD_ED.request(ED_THRESHOLD)

ED_THRESHOLD sets the threshold that the RSSI indicated shall be greater than in order for PMD_ED to
be enabled.

15.4.5.14.3 When generated

This primitive shall be generated by the PLCP sublayer to change or set the current DSSS PHY energy
detect threshold.

248 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15.4.5.14.4 Effect of receipt

The receipt of PMD_ED immediately changes the energy detection threshold as set by the
ED_THRESHOLD parameter.

15.4.5.15 PHY-CCA.indicate

15.4.5.15.1 Function

This primitive, which is generated by the PMD, indicates to the PLCP layer that the receiver has detected RF
energy that adheres to the CCA algorithm.

15.4.5.15.2 Semantics of the service primitive

The PHY-CCA primitive provides CCA status at the PLCP layer to the MAC.

15.4.5.15.3 When generated

This primitive shall be generated by the PHY sublayer when the PHY is receiving RF energy from any
source that exceeds the ED_THRESHOLD parameter (PMD_ED is active), and optionally is a valid corre-
lated DSSS PHY signal whereby PMD_CS would also be active.

15.4.5.15.4 Effect of receipt

This indicator shall be provided to the PLCP for forwarding to the MAC entity for information purposes
through the PHY-CCA indicator. This parameter indicates that the RF medium may be busy with an RF
energy source that may or may not be DSSS PHY compliant. If a DSSS PHY source is being received, the
PMD_CS function shall be enabled shortly after the PMD_ED function is enabled.

15.4.6 PMD operating speciÞcations, general

The following subclauses provide general speciÞcations for the DSSS PMD sublayer. These speciÞcations
apply to both the Receive and the Transmit functions and general operation of a DSSS PHY.

15.4.6.1 Operating frequency range

The DSSS PHY shall operate in the frequency range of 2.4 GHz to 2.4835 GHz as allocated by regulatory
bodies in the USA and Europe or in the 2.471 GHz to 2.497 GHz frequency band as allocated by regulatory
authority in Japan.

15.4.6.2 Number of operating channels

The channel center frequencies and CHNL_ID numbers shall be as shown in Table 63. The FCC (US), IC
(Canada), and ETSI (Europe) specify operation from 2.4 GHz to 2.4835 GHz. For Japan, operation is speci-
Þed as 2.471 GHz to 2.497 GHz. France allows operation from 2.4465 GHz to 2.4835 GHz, and Spain

Copyright © 1997 IEEE. All rights reserved. 249

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

allows operation from 2.445 GHz to 2.475 GHz. For each supported regulatory domain, all channels in Table
63 marked with ÒXÓ shall be supported.

In a multiple cell network topology, overlapping and/or adjacent cells using different channels can operate
simultaneously without interference if the distance between the center frequencies is at least 30 MHz. Chan-
nel 14 shall be designated speciÞcally for operation in Japan.

15.4.6.3 Spreading sequence

The following 11-chip Barker sequence shall be used as the PN code sequence:

+1, Ð1, +1, +1, Ð1, +1, +1, +1, Ð1, Ð1, Ð1

The leftmost chip shall be output Þrst in time. The Þrst chip shall be aligned at the start of a transmitted sym-
bol. The symbol duration shall be exactly 11 chips long.

15.4.6.4 Modulation and channel data rates

Two modulation formats and data rates are speciÞed for the DSSS PHY: a basic access rate and an enhanced
access rate. The basic access rate shall be based on 1 Mbit/s DBPSK modulation. The DBPSK encoder is

Table 63ÑDSSS PHY frequency channel plan

Regulatory domains

CHNL_ID Frequency
X'10'
FCC

X'20'
IC

X'30'
ETSI

X'31'
Spain

X'32'
France

X'40'
MKK

1 2412 MHz X X X Ñ Ñ Ñ

2 2417 MHz X X X Ñ Ñ Ñ

3 2422 MHz X X X Ñ Ñ Ñ

4 2427 MHz X X X Ñ Ñ Ñ

5 2432 MHz X X X Ñ Ñ Ñ

6 2437 MHz X X X Ñ Ñ Ñ

7 2442 MHz X X X Ñ Ñ Ñ

8 2447 MHz X X X Ñ Ñ Ñ

9 2452 MHz X X X Ñ Ñ Ñ

10 2457 MHz X X X X X Ñ

11 2462 MHz X X X X X Ñ

12 2467 MHz Ñ Ñ X Ñ X Ñ

13 2472 MHz Ñ Ñ X Ñ X Ñ

14 2484 MHz Ñ Ñ Ñ Ñ Ñ X

250 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

speciÞed in Table 64. The enhanced access rate shall be based on 2 Mbit/s DQPSK. The DQPSK encoder is
speciÞed in Table 65. (In the tables, +jw shall be deÞned as counterclockwise rotation.)

15.4.6.5 Transmit and receive in-band and out-of-band spurious emissions

The DSSS PHY shall conform with in-band and out-of-band spurious emissions as set by regulatory bodies.
For the USA, refer to FCC 15.247, 15.205, and 15.209. For Europe, refer to ETS 300Ð328.

15.4.6.6 Transmit-to-receive turnaround time

The TX-to-RX turnaround time shall be less than 10 ms, including the power-down ramp speciÞed in
15.4.7.7.

The TX-to-RX turnaround time shall be measured at the air interface from the trailing edge of the last trans-
mitted symbol to valid CCA detection of the incoming signal. The CCA should occur within 25 ms (10 ms for
turnaround time plus 15 ms for energy detect) or by the next slot boundary occurring after the 25 ms has
elapsed (refer to 15.4.8.4). A receiver input signal 3 dB above the ED threshold described in 15.4.8.4 shall be
present at the receiver.

15.4.6.7 Receive-to-transmit turnaround time

The RX-to-TX turnaround time shall be measured at the MAC/PHY interface, using PHYTXSTART.request
and shall be £5 ms. This includes the transmit power up ramp described in 15.4.7.7.

15.4.6.8 Slot time

The slot time for the DSSS PHY shall be the sum of the RX-to-TX turnaround time (5 ms) and the energy
detect time (15 ms speciÞed in 15.4.8.4). The propagation delay shall be regarded as being included in the
energy detect time.

Table 64Ñ1 Mbit/s DBPSK encoding table

Bit input Phase change (+jw)

0 0

1 p

Table 65Ñ2 Mbit/s DQPSK encoding table

Dibit pattern (d0,d1)
d0 is Þrst in time Phase change (+jw)

00 0

01 p/2

11 p

10 3p/2 (Ðp/2)

Copyright © 1997 IEEE. All rights reserved. 251

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

15.4.6.9 Transmit and receive antenna port impedance

The impedance of the transmit and receive antenna port(s) shall be 50 W if the port is exposed.

15.4.6.10 Transmit and receive operating temperature range

Three temperature ranges for full operation compliance to the DSSS PHY are speciÞed in Clause 13. Type 1
shall be deÞned as 0 °C to 40 °C, and is designated for ofÞce environments. Type 2 shall be deÞned as Ð20 °C
to +50 °C, and Type 3 shall be deÞned as Ð30 °C to +70 °C. These are designated for industrial environments.

15.4.7 PMD transmit speciÞcations

The following subclauses describe the transmit functions and parameters associated with the PMD sublayer.

15.4.7.1 Transmit power levels

The maximum allowable output power as measured in accordance with practices speciÞed by the regulatory
bodies is shown in Table 66. In the USA, the radiated emissions should also conform with the ANSI uncon-
trolled radiation emission standards (IEEE Std C95.1-1991).

15.4.7.2 Minimum transmitted power level

The minimum transmitted power shall be no less than 1 mW.

15.4.7.3 Transmit power level control

Power control shall be provided for transmitted power greater than 100 mW. A maximum of four power lev-
els may be provided. At a minimum, a radio capable of transmission greater than 100 mW shall be capable
of switching power back to 100 mW or less.

15.4.7.4 Transmit spectrum mask

The transmitted spectral products shall be less than Ð30 dBr (dB relative to the SINx/x peak) for fc Ð 22 MHz
< f < fc Ð11 MHz, fc +11 MHz < f < fc + 22 MHz, Ð50 dBr for f < fc Ð22 MHz, and f > fc + 22 MHz, where fc
is the channel center frequency. The transmit spectral mask is shown in Figure 95. The measurements shall
be made using 100 kHz resolution bandwidth and a 30 kHz video bandwidth.

15.4.7.5 Transmit center frequency tolerance

The transmitted center frequency tolerance shall be ±25 ppm maximum.

Table 66ÑTransmit power levels

Maximum output power Geographic location Compliance document

1000 mW USA FCC 15.247

100 mW (EIRP) Europe ETS 300Ð328

10 mW/MHz Japan MPT ordinance for Regulating Radio
Equipment, Article 49-20

252 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15.4.7.6 Chip clock frequency tolerance

The PN code chip clock frequency tolerance shall be better than ±25 ppm maximum.

15.4.7.7 Transmit power-on and power-down ramp

The transmit power-on ramp for 10% to 90% of maximum power shall be no greater than 2 ms. The transmit
power-on ramp is shown in Figure 96.

The transmit power-down ramp for 90% to 10% maximum power shall be no greater than 2 ms. The transmit
power down ramp is shown in Figure 97.

The transmit power ramps shall be constructed such that the DSSS PHY emissions conform with spurious
frequency product speciÞcation deÞned in 15.4.6.5.

15.4.7.8 RF carrier suppression

The RF carrier suppression, measured at the channel center frequency, shall be at least 15 dB below the peak
SIN(x)/x power spectrum. The RF carrier suppression shall be measured while transmitting a repetitive 01
data sequence with the scrambler disabled using DQPSK modulation. A 100 kHz resolution bandwidth shall
be used to perform this measurement.

Figure 95ÑTransmit spectrum mask

Figure 96ÑTransmit power-on ramp

Copyright © 1997 IEEE. All rights reserved. 253

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

15.4.7.9 Transmit modulation accuracy

The transmit modulation accuracy requirement for the DSSS PHY shall be based on the difference between the
actual transmitted waveform and the ideal signal waveform. Modulation accuracy shall be determined by mea-
suring the peak vector error magnitude measured during each chip period. Worst-Case vector error magnitude
shall not exceeded 0.35 for the normalized sampled chip data. The ideal complex I and Q constellation points
associated with DQPSK modulation (0.707,0.707), (0.707, Ð0.707), (Ð0.707, 0.707), (Ð0.707, Ð0.707) shall be
used as the reference. These measurements shall be from baseband I and Q sampled data after recovery through
a reference receiver system.

Figure 98 illustrates the ideal DQPSK constellation points and range of worst-case error speciÞed for modu-
lation accuracy.

Error vector measurement requires a reference receiver capable of carrier lock. All measurements shall be
made under carrier lock conditions. The distortion induced in the constellation by the reference receiver
shall be calibrated and measured. The test data error vectors described below shall be corrected to compen-
sate for the reference receiver distortion.

Figure 97ÑTransmit power-down ramp

Figure 98ÑModulation accuracy measurement example

254 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

The IEEE 802.11 vendor compatible radio shall provide an exposed TX chip clock, which shall be used to
sample the I and Q outputs of the reference receiver.

The measurement shall be made under the conditions of continuous DQPSK transmission using scrambled
all 1Õs.

The eye pattern of the I channel shall be used to determine the I and Q sampling point. The chip clock pro-
vided by the vendor radio shall be time delayed such that the samples fall at a 1/2 chip period offset from the
mean of the zero crossing positions of the eye (see Figure 99). This is the ideal center of the eye and may not
be the point of maximum eye opening.

Using the aligned chip clock, 1000 samples of the I and Q baseband outputs from the reference receiver are
captured. The vector error magnitudes shall be calculated as follows:

Calculate the dc offsets for I and Q samples.

Calculate the dc corrected I and Q samples for all n =1000 sample pairs.

Idc(n)= I(n) Ð Imean

Qdc(n)= Q(n) Ð Qmean

Calculate the average magnitude of I and Q samples.

Figure 99ÑChip clock alignment with baseband eye pattern

Imean I n() 1000¤
n 0=

1000

å=

Qmean Q n() 1000¤
n 0=

1000

å=

Copyright © 1997 IEEE. All rights reserved. 255

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Calculate the normalized error vector magnitude for the Idc(n)/Qdc(n) pairs.

with Vcorrection = error induced by the reference receiver system.

A vendor DSSS PHY implementation shall be compliant if for all n =1000 samples the following condition
is met:

Verr(n) < 0.35

15.4.8 PMD receiver speciÞcations

The following subclauses describe the receive functions and parameters associated with the PMD sublayer.

15.4.8.1 Receiver minimum input level sensitivity

The frame error ratio (FER) shall be less than 8´10Ð2 at an MPDU length of 1024 bytes for an input level of Ð
80 dBm measured at the antenna connector. This FER shall be speciÞed for 2 Mbit/s DQPSK modulation. The
test for the minimum input level sensitivity shall be conducted with the energy detection threshold set less than
or equal to Ð80 dBm.

15.4.8.2 Receiver maximum input level

The receiver shall provide a maximum FER of 8´10Ð2 at an MPDU length of 1024 bytes for a maximum
input level of Ð4 dBm measured at the antenna. This FER shall be speciÞed for 2 Mbit/s DQPSK modula-
tion.

15.4.8.3 Receiver adjacent channel rejection

Adjacent channel rejection is deÞned between any two channels with ³30 MHz separation in each channel
group deÞned in 15.4.6.2.

The adjacent channel rejection shall be equal to or better than 35 dB with an FER of 8´10Ð2 using 2 Mbit/s
DQPSK modulation described in 15.4.6.4 and an MPDU length of 1024 bytes.

The adjacent channel rejection shall be measured using the following method:

Input a 2 Mbit/s DQPSK modulated signal at a level 6 dB greater than speciÞed in 15.4.8.1. In an adjacent
channel (³30 MHz separation as deÞned by the channel numbering), input a signal modulated in a similar
fashion that adheres to the transmit mask speciÞed in 15.4.7.4 to a level 41 dB above the level speciÞed in
15.4.8.1. The adjacent channel signal shall be derived from a separate signal source. It cannot be a frequency
shifted version of the reference channel. Under these conditions, the FER shall be no worse than 8´10Ð2.

Imag Idc n() 1000¤
n 0=

1000

å=

Qmag Qdc n() 1000¤
n 0=

1000

å=

Verr n()
1
2
--- Idc n() Imag¤{ }(2´ Qdc n() Qmag¤{ }2)+

1
2

VcorrectionÐ=

256 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

15.4.8.4 CCA

The DSSS PHY shall provide the capability to perform CCA according to at least one of the following three
methods:

Ñ CCA Mode 1: Energy above threshold. CCA shall report a busy medium upon detecting any energy
above the ED threshold.

Ñ CCA Mode 2: Carrier sense only. CCA shall report a busy medium only upon the detection of a
DSSS signal. This signal may be above or below the ED threshold.

Ñ CCA Mode 3: Carrier sense with energy above threshold. CCA shall report a busy medium upon the
detection of a DSSS signal with energy above the ED threshold.

The energy detection status shall be given by the PMD primitive, PMD_ED. The carrier sense status shall be
given by PMD_CS. The status of PMD_ED and PMD_CS is used in the PLCP convergence procedure to
indicate activity to the MAC through the PHY interface primitive PHY-CCA.indicate.

A busy channel shall be indicated by PHY-CCA.indicate of class BUSY.

Clear channel shall be indicated by PHY-CCA.indicate of class IDLE.

The PHY MIB attribute aCCAModeSuprt shall indicate the appropriate operation modes. The PHY shall be
conÞgured through the PHY MIB attribute aCurrentCCAMode.

The CCA shall be TRUE if there is no energy detect or carrier sense. The CCA parameters are subject to the
following criteria:

a) The energy detection threshold shall be less than or equal to Ð80 dBm for TX power > 100 mW, Ð76
dBm for 50 mW < TX power £ 100 mW, and Ð70 dBm for TX power £ 50 mW.

b) With a valid signal (according to the CCA mode of operation) present at the receiver antenna within
5 ms of the start of a MAC slot boundary, the CCA indicator shall report channel busy before the end
of the slot time. This implies that the CCA signal is available as an exposed test point. Refer to Fig-
ure 47 for a deÞnition of slot time boundary deÞnition.

c) In the event that a correct PLCP Header is received, the DSSS PHY shall hold the CCA signal inac-
tive (channel busy) for the full duration as indicated by the PLCP LENGTH Þeld. Should a loss of
carrier sense occur in the middle of reception, the CCA shall indicate a busy medium for the
intended duration of the transmitted packet.

Conformance to DSSS PHY CCA shall be demonstrated by applying a DSSS compliant signal, above the
appropriate ED threshold (a), such that all conditions described in b) and c) above are demonstrated.

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Copyright © 1997 IEEE. All rights reserved. 257

16. Infrared (IR) PHY speciÞcation

16.1 Overview

The physical layer for the infrared system is speciÞed in this clause. The IR PHY uses near-visible light in
the 850 nm to 950 nm range for signaling. This is similar to the spectral usage of both common consumer
devices such as infrared remote controls, as well as other data communications equipment, such as IrDA
(Infrared Data Association) devices.

Unlike many other infrared devices, however, the IR PHY is not directed. That is, the receiver and transmit-
ter do not have to be aimed at each other and do not need a clear line of sight. This permits the construction
of a true LAN system, whereas with an aimed system, it would be difÞcult or impossible to install a LAN
because of physical constraints.

A pair of conformant infrared devices would be able to communicate in a typical environment at a range up
to about 10 m. The standard allows conformant devices to have more sensitive receivers, and this may
increase range up to about 20 m.

 The IR PHY relies on both reßected infrared energy as well as line-of-sight infrared energy for communica-
tions. Most designs anticipate that all of the energy at the receiver is reßected energy. This reliance on
reßected infrared energy is called diffuse infrared transmission.

The standard speciÞes the transmitter and receiver in such a way that a conformant design will operate well
in most environments where there is no line-of-sight path from the transmitter to the receiver. However, in an
environment that has few or no reßecting surfaces, and where there is no line of sight, an IR PHY system
may suffer reduced range.

The IR PHY will operate only in indoor environments. Infrared radiation does not pass through walls, and is
signiÞcantly attenuated passing through most exterior windows. This characteristic can be used to ÒcontainÓ
an IR PHY in a single physical room, like a classroom or conference room. Different LANs using the IR
PHY can operate in adjacent rooms separated only by a wall without interference, and without the possibil-
ity of eavesdropping.

At the time of this standardÕs preparation, the only known regulatory standards that apply to the use of infra-
red radiation are safety regulations, such as IEC 60825-1 [B2] and ANSI Z136.1 [B1]. While a conformant
IR PHY device can be designed to also comply with these safety standards, conformance with this standard
does not ensure conformance with other standards.

Worldwide, there are currently no frequency allocation or bandwidth allocation regulatory restrictions on
infrared emissions.

Emitter (typically LED) and detector (typically PIN diode) devices for infrared communications are rela-
tively inexpensive at the infrared wavelengths speciÞed in the IR PHY, and at the electrical operating fre-
quencies required by this PHY.

While many other devices in common use also use infrared emissions in the same optical band, these devices
usually transmit infrared intermittently and do not interfere with the proper operation of a compliant IR
PHY. If such a device does interfere, by transmitting continuously and with a very strong signal, it can be
physically isolated (placing it in a different room) from the IEEE 802.11 LAN.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

258 Copyright © 1997 IEEE. All rights reserved.

16.1.1 Scope

The PHY services provided to the IEEE 802.11 wireless LAN MAC by the IR system are described in this
clause. The IR PHY layer consists of two protocol functions as follows:

a) A physical layer convergence function, which adapts the capabilities of the physical medium depen-
dent (PMD) system to the PHY service. This function is supported by the physical layer conver-
gence procedure (PLCP), which deÞnes a method of mapping the IEEE 802.11 MAC sublayer
protocol data units (MPDU) into a framing format suitable for sending and receiving user data and
management information between two or more STAs using the associated PMD system.

b) A PMD system, whose function deÞnes the characteristics of, and method of transmitting and receiv-
ing data through, the wireless medium (WM) between two or more STAs.

16.1.2 IR PHY functions

The IR PHY contains three functional entities: the PMD function, the physical layer convergence function,
and the layer management function. Each of these functions is described in detail below.

The IR PHY service is provided to the MAC entity at the STA through a service access point (SAP) as
described in Clause 12. For a visual guide to the relationship of the IR PHY to the remainder of a system,
refer to Figure 11.

16.1.2.1 PLCP sublayer

To allow the IEEE 802.11 MAC to operate with minimum dependence on the PMD sublayer, a physical
layer convergence sublayer is deÞned. This function simpliÞes the PHY service interface to the IEEE 802.11
MAC services. The PHY-speciÞc preamble is normally associated with this convergence layer.

16.1.2.2 PMD sublayer

The PMD sublayer provides a clear channel assessment (CCA) mechanism, transmission mechanism, and
reception mechanism that are used by the MAC via the PLCP to send or receive data between two or more
STAs.

16.1.2.3 PHY management entity (PLME)

The PLME performs management of the local PHY functions in conjunction with the MAC management
entity. Subclause 16.4 lists the MIB variables that may be accessed by the PHY sublayer entities and intra-
layer of higher layer management entities (LME). These variables are accessed via the PLME-GET, PLME-
SET, and PLME-RESET primitives deÞned in Clause 10.

16.1.3 Service speciÞcation method and notation

The models represented by Þgures and state diagrams are intended as the illustrations of functions provided.
It is important to distinguish between a model and a real implementation. The models are optimized for sim-
plicity and clarity of presentation; the actual method of implementation is left to the discretion of the IEEE
802.11 IR PHY compliant developer. Conformance to the standard is not dependent on following the model,
and an implementation that follows the model closely may not be conformant.

Abstract services are speciÞed here by describing the service primitives and parameters that characterize
each service. This deÞnition is independent of any particular implementation. In particular, the PHY-SAP
operations are deÞned and described as instantaneous; however, this may be difÞcult to achieve in an imple-
mentation.

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Copyright © 1997 IEEE. All rights reserved. 259

16.2 IR PLCP sublayer

While the PLCP sublayer and the PMD sublayer are described separately, the separation and distinction
between these sublayers is artiÞcial, and is not meant to imply that the implementation must separate these
functions. This distinction is made primarily to provide a point of reference from which to describe certain
functional components and aspects of the PMD. The functions of the PLCP can be subsumed by a PMD sub-
layer; in this case, the PMD will incorporate the PHY-SAP as its interface, and will not offer a PMD-SAP.

16.2.1 Overview

A convergence procedure is provided by which MPDUs are converted to and from PLCPDUs. During trans-
mission, the MPDU (PLCSDU) is prepended with a PLCP Preamble and PLCP Header to create the
PLCPDU. At the receiver, the PLCP Preamble is processed and the internal data Þelds are processed to aid in
demodulation and delivery of the MPDU (PSDU).

16.2.2 PLCP frame format

Figure 100 shows the format for the PLCPDU including the PLCP Preamble, the PLCP Header, and the PSDU.
The PLCP Preamble contains the following Þelds: Synchronization (SYNC) and Start Frame Delimiter (SFD).
The PLCP Header contains the following Þelds: Data Rate (DR), DC Level Adjustment (DCLA), Length
(LENGTH), and Cyclic Redundancy Check (CRC). Each of these Þelds is described in detail in 16.2.4.

16.2.3 PLCP modulation and rate change

The PLCP Preamble shall be transmitted using the basic pulse deÞned in 16.3.3.2. The PLCSDU, LENGTH,
and CRC Þelds shall be transmitted using pulse position modulation (PPM). PPM maps bits in the octet into
symbols: 16-PPM maps four bits into a 16-position symbol, and 4-PPM maps two bits into a 4-position sym-
bol. The basic L-PPM time unit is the slot. A slot corresponds to one of the L positions of a symbol and has
a 250 ns duration. The PLCSDU, LENGTH, and CRC Þelds are transmitted at one of two bit rates: 1 Mbit/s
or 2 Mbit/s. The Data Rate Þeld indicates the data rate that will be used to transmit the PLCSDU, LENGTH,
and CRC Þelds. The 1 Mbit/s data rate uses 16-PPM (basic access rate), and the 2 Mbit/s data rate uses 4-
PPM (enhanced access rate). The transmitter and receiver will initiate the modulation or demodulation indi-
cated by the DR Þeld starting with the Þrst 4 bits (in 16-PPM) or 2 bits (in 4-PPM) of the LENGTH Þeld.
The PSDU transmission rate is set by the DATARATE parameter in the PHY-TXSTART.request primitive.
Any conformant IR PHY shall be capable of receiving at 1 Mbit/s and 2 Mbit/s. Transmission at 2 Mbit/s is
optional.

A PHY-TXSTART.request that speciÞes a data rate which is not supported by a PHY instance will cause the
PHY to indicate an error to its MAC instance. A PHY is not permitted under any circumstance to transmit at
a different rate than the requested rate.

Figure 100ÑPLCPDU frame format

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

260 Copyright © 1997 IEEE. All rights reserved.

16.2.4 PLCP Þeld deÞnitions

16.2.4.1 PLCP Synchronization (SYNC) Þeld

The SYNC Þeld consists of a sequence of alternated presence and absence of a pulse in consecutive slots.
The SYNC Þeld has a minimum length of 57 L-PPM slots and a maximum length of 73 L-PPM slots and
shall terminate with the absence of a pulse in the last slot. This Þeld is provided so that the receiver can per-
form clock recovery (slot synchronization), automatic gain control (optional), signal-to-noise ratio estima-
tion (optional), and diversity selection (optional).

The SYNC Þeld is not modulated using L-PPM, but instead consists of transitions in L-PPM slots that would
otherwise constitute an illegal symbol. See 16.3.2.1 for legal symbols.

16.2.4.2 PLCP Start Frame Delimiter (SFD) Þeld

The SFD Þeld length is four L-PPM slots and consists of the binary sequence 1001, where 1 indicates a
pulse in the L-PPM slot and 0 indicates no pulse in the L-PPM slot. The leftmost bit shall be transmitted
Þrst. The SFD Þeld is provided to indicate the start of the PLCP Preamble and to perform bit and symbol
synchronization.

The SFD Þeld is not modulated using L-PPM, but instead consists of transitions in L-PPM slots that would
otherwise constitute an illegal symbol.

16.2.4.3 PLCP Data Rate (DR) Þeld

The DR Þeld indicates to the PHY the data rate that shall be used for the transmission or reception of the
PLCSDU, LENGTH, and CRC Þelds. The transmitted value shall be provided by the PHY-
TXSTART.request primitive as described in Clause 12. The DR Þeld has a length of three L-PPM slots. The
leftmost bit, as shown below, shall be transmitted Þrst. The IR PHY currently supports two data rates deÞned
by the slot pattern shown for the three L-PPM slots following the SFD, where 1 indicates a pulse in the L-
PPM slot and 0 indicates no pulse in the L-PPM slot:

1 Mbit/s: 000

2 Mbit/s: 001

The DR Þeld is not modulated using L-PPM, but instead consists of transitions in L-PPM slots that would
otherwise constitute an illegal symbol.

16.2.4.4 PLCP DC Level Adjustment (DCLA) Þeld

The DCLA Þeld is required to allow the receiver to stabilize the dc level after the SYNC, SFD, and DR
Þelds. The leftmost bit, as shown below, shall be transmitted Þrst. The length of the DCLA Þeld is 32 L-PPM
slots and consists of the contents shown, where 1 indicates a pulse in the L-PPM slot and 0 indicates no
pulse in the L-PPM slot:

1 Mbit/s: 00000000100000000000000010000000

2 Mbit/s: 00100010001000100010001000100010

The DCLA Þeld is not modulated using L-PPM, but instead consists of transitions in L-PPM slots that
would otherwise constitute an illegal symbol.

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Copyright © 1997 IEEE. All rights reserved. 261

16.2.4.5 PLCP LENGTH Þeld

The LENGTH Þeld is an unsigned 16-bit integer that indicates the number of octets to be transmitted in the
PSDU. The transmitted value shall be provided by the PHYTXSTART.request primitive as described in
Clause 12. The lsb shall be transmitted Þrst. This Þeld is modulated and sent in L-PPM format. This Þeld is
protected by the CRC described in 16.2.4.6.

16.2.4.6 PLCP CRC Þeld

The LENGTH Þeld shall be protected by a 16-bit CRC-CCITT. The CRC-CCITT is the oneÕs complement
of the remainder generated by the modulo 2 division of the LENGTH Þeld by the polynomial:

x16+x12+x5+1

The protected bits will be processed in transmit order. The msb of the 16-bit CRC-CCITT shall be transmitted
Þrst. This Þeld shall be modulated and sent in L-PPM format. All CRC-CCITT calculations shall be made prior
to L-PPM encoding on transmission and after L-PPM decoding on reception.

16.2.4.7 PSDU Þeld

This Þeld is composed of a variable number of octets. The minimum is 0 (zero) and the maximum is 2500.
The lsb of each octet shall be transmitted Þrst. All the octets of this Þeld shall be modulated and sent in L-
PPM format.

16.2.5 PLCP procedures

16.2.5.1 PLCP transmit procedure

All commands issued by the MAC require that a conÞrmation primitive be issued by the PHY. The conÞrma-
tion primitives provide ßow control between the MAC and the PHY.

The steps below are the transmit procedure:

a) Based on the status of CCA, the MAC shall determine whether the channel is clear.
b) If the channel is clear, transmission of the PSDU shall be initiated by a PHY-TXSTART.request with

parameters LENGTH and DATARATE.
c) The PHY entity shall immediately initiate transmission of the PLCP Preamble and PLCP Header

based on the LENGTH and DATARATE parameters passed in the PHY-TXSTART.request. Once the
PLCP Preamble and PLCP Header transmission is completed, the PHY entity shall issue a PHY-
TXSTART.conÞrm.

d) Each octet of the PSDU is passed from the MAC to the PHY by a single PHY-DATA.request primi-
tive. Each PHY-DATA.request shall be conÞrmed by the PHY with a PHY-DATA.conÞrm before the
next request can be made.

e) At the PHY layer each PSDU octet shall be divided into symbols of 2 or 4 bits each. The symbols
shall be modulated using L-PPM and transmitted into the medium.

f) Transmission is terminated by the MAC through the primitive PHY-TXEND.request. The PHY shall
conÞrm the resulting end of transmission with a PHY-TXEND.conÞrm.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

262 Copyright © 1997 IEEE. All rights reserved.

16.2.5.2 PLCP receive procedure

The steps below are the receive procedure:

a) CCA is provided to the MAC via the PHY-CCA.indicate primitive. When the PHY senses activity on
the medium, it shall indicate that the medium is busy with a PHY-CCA.indicate with a value of
BUSY. This will normally occur during the SYNC Þeld of the PLCP Preamble.

b) The PHY entity shall begin searching for the SFD Þeld. Once the SFD Þeld is detected, the PHY
entity shall attempt to receive the PLCP Header. After receiving the DR and DCLA Þelds, the PHY
shall initiate processing of the received CRC and LENGTH Þelds. The data rate indicated in the DR
Þeld applies to all symbols in the latter part of the received PHYSDU, commencing with the Þrst
symbol of the LENGTH Þeld. The CRC-CCITT shall be checked for correctness immediately after
its reception.

c) If the CRC-CCITT check fails, or the value received in the DR Þeld is not one supported by the
PHY, then a PHY-RXSTART.indicate shall not be issued to the MAC. When the medium is again
free, the PHY shall issue a PHY-CCA.indicate with a value of IDLE.

d) If the PLCP Preamble and PLCP Header reception is successful, the PHY shall send a PHY-
RXSTART.indicate to the MAC; this includes the parameters DATARATE and LENGTH.

In the absence of errors, the receiving PHY shall report the same length to its local MAC, in the
RXVECTOR parameter of the PHY-RXSTART.indicate primitive, that the peer MAC presented to
its local PHY entity in the TXVECTOR parameter of its respective PHY-TXSTART.request.

e) The received PLCSDU L-PPM symbols shall be assembled into octets and presented to the MAC
using a series of PHY-DATA.indicate primitives, one per octet.

f) Reception shall be terminated after the reception of the Þnal symbol of the last PLCSDU octet indi-
cated by the PLCP HeaderÕs LENGTH Þeld. After the PHY-DATA.indicate for that octet is issued,
the PHY shall issue a PHY-RXEND.indicate primitive to its MAC.

g) After issuing the PHY-RXEND.indicate primitive, and when the medium is no longer busy, the PHY
shall issue a PHY-CCA.indicate primitive with a value of IDLE.

16.2.5.3 CCA procedure

CCA is provided to the MAC via the PHY-CCA.indicate primitive.

The steps below are the CCA procedure:

a) When the PHY senses activity on the medium, a PHY-CCA.indicate primitive with a value of BUSY
shall be issued. This will normally occur during reception of the SYNC Þeld of the PLCP Preamble.

b) When the PHY senses that the medium is free, a PHY-CCA.indicate primitive with a value of IDLE
shall be issued.

c) At any time, the MAC may issue a PHY-CCARESET.request primitive, which will reset the PHYÕs
internal CCA detection mechanism to the medium not-busy (IDLE) state. This primitive will be
acknowledged with a PHY-CCARESET.conÞrm primitive.

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Copyright © 1997 IEEE. All rights reserved. 263

16.2.5.4 PMD_SAP peer-to-peer service primitive parameters

Several service primitives include a parameter vector. This vector shall be actually a list of parameters that
may vary depending on PHY type. Table 67 indicates the parameters required by the MAC or IR PHY in
each of the parameter vectors used for peer-to-peer interactions.

16.3 IR PMD sublayer

The IR PMD sublayer does not deÞne PMD SAPs. The mechanism for communications between the PLCP
and PMD sublayers, as well as the distinction between these two sublayers, if any, is left to implementors. In
particular, it is possible to design and implement in a conformant way a single sublayer that subsumes the
functions of both the PLCP and PMD, presenting only the PHY-SAP.

16.3.1 Overview

The PMD functional, electrical, and optical characteristics required for interoperability of implementations
conforming to this speciÞcation are described in this subclause. The relationship of this speciÞcation to the
entire IR physical layer is shown in Figure 11.

16.3.2 PMD operating speciÞcations, general

General speciÞcations for the IR PMD sublayer are provided in this subclause. These speciÞcations apply to
both the receive and transmit functions and general operation of a compliant IR PHY.

16.3.2.1 Modulation and channel data rates

Two modulation formats and data rates are speciÞed for the IR PHY: a basic access rate and an enhanced
access rate. The basic access rate is based on 1 Mbit/s 16-PPM modulation. The 16-PPM encoding is speci-
Þed in Table 68. Each group of 4 data bits is mapped to one of the 16-PPM symbols. The enhanced access
rate is based on 2 Mbit/s 4-PPM. The 4-PPM encoding is speciÞed in Table 69. Each group of 2 data bits is
mapped to one of the 4-PPM symbols. Transmission order of the symbol slots is from left to right, as shown
in the table, where a 1 indicates in-band energy in the slot, and a 0 indicates the absence of in-band energy in
the slot.

Table 67ÑIR PMD_SAP peer-to-peer service primitives

Parameter Associated primitive Value

LENGTH RXVECTOR, TXVECTOR 4 to 216 Ð 1

DATARATE RXVECTOR, TXVECTOR PHY dependent

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

264 Copyright © 1997 IEEE. All rights reserved.

The data in Table 68 and Table 69 have been arranged (gray coded) so that a single out-of-position-by-one
error in the medium, caused, for example, by intersymbol interference, results in only a single bit error in the
received data, rather than in a multiple bit error.

16.3.2.2 Octet partition and PPM symbol generation procedure

Since PPM is a block modulation method, with the block size less than a full octet, octets have to be parti-
tioned prior to modulation (mapping into PPM symbols).

Octet partition depends on the PPM order being used.

Assume an octet is formed by eight bits numbered 7 6 5 4 3 2 1 0, where bit 0 is the lsb. Partition the octet as
follows:

For 16-PPM, create two PPM symbols:

Ñ The symbol using bits 3 2 1 0 shall be transmitted onto the medium Þrst

Ñ The symbol using bits 7 6 5 4 shall be transmitted onto the medium last

Table 68ÑSixteen-PPM basic rate mapping

Data 16-PPM symbol

0000 0000000000000001

0001 0000000000000010

0011 0000000000000100

0010 0000000000001000

0110 0000000000010000

0111 0000000000100000

0101 0000000001000000

0100 0000000010000000

1100 0000000100000000

1101 0000001000000000

1111 0000010000000000

1110 0000100000000000

1010 0001000000000000

1011 0010000000000000

1001 0100000000000000

1000 1000000000000000

Table 69ÑFour-PPM enhanced rate mapping

Data 4-PPM symbol

00 0001

01 0010

11 0100

10 1000

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Copyright © 1997 IEEE. All rights reserved. 265

For 4-PPM, create four PPM symbols:

Ñ The symbol using bits 1 0 shall be transmitted onto the medium Þrst
Ñ The symbol using bits 3 2 shall be transmitted onto the medium second
Ñ The symbol using bits 5 4 shall be transmitted onto the medium third
Ñ The symbol using bits 7 6 shall be transmitted onto the medium last

16.3.2.3 Operating environment

The IR PHY will operate only in indoor environments. IR PHY interfaces cannot be exposed to direct sun-
light. The IR PHY relies on reßected infrared energy and does not require a line of sight between emitter and
receiver in order to work properly. The range and bit-error-rate of the system may vary with the geometry of
the environment and with natural and artiÞcial illumination conditions.

16.3.2.4 Operating temperature range

The temperature range for full operation compliance with the IR PHY is speciÞed as 0 °C to 40 °C.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

266 Copyright © 1997 IEEE. All rights reserved.

16.3.3 PMD transmit speciÞcations

The following subclauses describe the transmit functions and parameters associated with the PMD sublayer.

16.3.3.1 Transmitted peak optical power

The peak optical power of an emitted pulse shall be as speciÞed in Table 70.

16.3.3.2 Basic pulse shape and parameters

The basic pulse width, measured between the 50% amplitude points, shall be 250 ± 10 ns. The pulse rise
time, measured between the 10% and 90% amplitude points, shall be no more than 40 ns. The pulse fall
time, measured between the 10% and 90% amplitude points, shall be no more than 40 ns. The edge jitter,
deÞned as the absolute deviation of the edge from its correct position, shall be no more than 10 ns. The basic
pulse shape is shown in Figure 101.

Table 70ÑPeak optical power as a function of emitter radiation pattern mask

Emitter radiation
pattern mask Peak optical power

Mask 1 2 W ± 20%

Mask 2 0.55 W ± 20%

Figure 101ÑBasic pulse shape

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Copyright © 1997 IEEE. All rights reserved. 267

16.3.3.3 Emitter radiation pattern mask

Currently the standard contains two emitter radiation pattern masks. Mask 1 is deÞned in Table 71 and illus-
trated in Figure 102. Mask 2 is deÞned in Table 72 and illustrated in Figure 104.

Following is a description of how to interpret the Mask 1 table and Þgure. Position the conformant Mask 1
device in its recommended attitude. DeÞne the conformant Mask 1 device axis as the axis passing through
the emitter center and having the direction of the vertical from the ßoor. The mask represents the irradiance
normalized to the total peak emitted power, as a function of the angle between the conformant Mask 1 device
axis and the axis from the emitter center to the test receiver center (declination angle). The distance between
emitter and test receiver is 1 m. The test receiver normal is always aimed at the emitter center. The azimuth
angle is a rotation angle on the conformant device axis.

A device is conformant if for any azimuth angle its radiation pattern as a function of declination angle falls
within the pattern mask.

Figure 103 is a description of how to interpret the Mask 2 table with reference to Figure 104.

Table 71ÑDeÞnition of the emitter radiation pattern mask 1

Declination angle Normalized irradiance

a £ 60û > 3.5eÐ6

a £ 29û £ 2.2eÐ5

29û < a £ 43û £ Ð1.06eÐ4 + (0.44eÐ5) a

43û < a £ 57û £ 1.15eÐ4 Ð (7.1eÐ7) a

57û < a £ 74û £ 2.98eÐ4 Ð (3.9eÐ6) a

74û < a £ 90û £ 4.05eÐ5 Ð (4.5eÐ7) a

Figure 102ÑEmitter radiation pattern mask 1

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

268 Copyright © 1997 IEEE. All rights reserved.

Table 72ÑDeÞnition of emitter radiation pattern mask 2

Declination angle Pitch angle Normalized irradiance

a £ 60 a = 0 0.05 ± 15%

a £ 90 a = 0 0.025 ± 15%

a ³ 100 a = 0 £ 0.015

0 £ a £ 60 0 £ a £ 10 0.035 £ I £ 0.055

0 £ a £ 60 10 £ a £ 20 0.0225 £ I £ 0.05

0 £ a £ 60 a ³ 30 £ 0.015

Figure 103ÑMask 2 device orientation drawing

Figure 104ÑEmitter radiation pattern mask 2

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Copyright © 1997 IEEE. All rights reserved. 269

Position the conformant Mask 2 device in its recommended attitude. DeÞne the conformant Mask 2 device
axis as passing through the emitter center and having the direction relative to the device as deÞned by the
manufacturer. The declination angle plane is as deÞned by the manufacturer. The mask represents the irradi-
ance normalized to the peak emitted power on the conformant Mask 2 device axis, as a function of the angle
between the conformant device axis and the axis from the emitter center to the test receiver center (declina-
tion angle) in the declination plane. The distance between emitter and test receiver is 1 m. The test receiver
normal is always aimed at the emitter center. The pitch angle is an angle relative to the conformant device
axis which is perpendicular to the declination plane.

The device is conformant if, for a pitch angle of 0 degrees, at any declination angle from 0 to 100 degrees,
and if, for any declination angle from 0 to 60 degrees, at any pitch angle from 0 to 20 degrees, its radiation
pattern as a function of angle falls within the pattern mask.

Other radiation patterns are for future study.

16.3.3.4 Optical emitter peak wavelength

The optical emitter peak wavelength shall be between 850 and 950 nm.

16.3.3.5 Transmit spectrum mask

DeÞne the transmit spectrum of a transmitter as the Fourier Transform, or equivalent, of a voltage (or cur-
rent) signal whose amplitude, as a function of time, is proportional to the transmitted optical power.

The transmit spectrum of a conformant transmitter shall be 20 dB below its maximum for all frequencies
above 15 MHz. The transmit spectrum mask is shown in Figure 105.

16.3.4 PMD receiver speciÞcations

The following subclauses describe the receive functions and parameters associated with the PMD sublayer.

Figure 105ÑTransmit spectrum mask

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

270 Copyright © 1997 IEEE. All rights reserved.

16.3.4.1 Receiver sensitivity

The receiver sensitivity, deÞned as the minimum irradiance (in mW/cm2) at the photodetector plane required
for a frame error ratio (FER) of 4´10Ð5 with a PLCSDU of 512 octets and with an unmodulated background
IR source between 800 nm and 1000 nm with a level of 0.1 mW/cm2, shall be

1 Mbit/s: 2 ´ 10Ð5mW/cm2

2 Mbit/s: 8 ´ 10Ð5mW/cm2

16.3.4.2 Receiver dynamic range

The receiver dynamic range, deÞned as the ratio between the maximum and minimum irradiance at the plane
normal to the receiver axis that assures an FER lower than or equal to 4 ´ 10Ð5 with a PLCSDU of 512 octets
and with an unmodulated background IR source between 800 nm and 1000 nm with a level of 0.1 mW/cm2,
shall be ³30 dB.

16.3.4.3 Receiver Þeld-of-view (FOV)

The receiver axis is deÞned as the direction of incidence of the optical signal at which the received optical
power is maximum.

The received optical power shall be greater than the values given in Table 73, at the angles indicated, where
Òangle of incidenceÓ is the angle of incidence of the optical signal relative to the receiver axis, and Òreceived
powerÓ is the received optical power as a percentage of that measured at the receiver axis.

16.3.5 Energy Detect, Carrier Sense, and CCA deÞnitions

16.3.5.1 Energy Detect (ED) signal

The ED signal shall be set true when IR energy variations in the band between 1 MHz and 10 MHz exceed
0.001 mW/cm2.

The ED shall operate independently of the CS. ED shall not be asserted at the minimum signal level speci-
Þed in 16.3.4.1, which is below the level speciÞed in this subclause.

This signal is not directly available to the MAC.

16.3.5.2 Carrier Sense (CS) signal

The CS shall be asserted by the PHY when it detects and locks onto an incoming PLCP Preamble signal.
Conforming PHYs shall assert this condition within the Þrst 12 ms of signal reception, at the minimum signal

Table 73ÑDeÞnition of the receiver Þeld of view

Angle of incidence Received power

a £ 20û ³ 65%

a £ 40û ³ 55%

a £ 60û ³ 35%

a £ 80û ³ 10%

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Copyright © 1997 IEEE. All rights reserved. 271

level equal to the receiver sensitivity speciÞed in 16.3.4.1, with a background IR level as speciÞed in
16.3.4.1.

The CS shall be deasserted by the PHY when the receiving conformant device loses carrier lock.

NOTEÑThe 12 ms speciÞcation is somewhat less than the minimum length of the PLCP SYNC interval, which is 14.25 ms.

The CS shall operate independently of ED and shall not require a prior ED before the acquisition and asser-
tion of CS. This permits reception of signals at the minimum signal level speciÞed in 16.3.4.1, even though
these signals fall below the ED level.

This signal is not directly available to the MAC.

16.3.5.3 CCA

CCA shall be asserted ÒIDLEÓ by the PHY when the CS and the ED are both false, or when ED has been
continuously asserted for a period of time deÞned by the product of aCCAWatchdogTimerMax and aCCA-
WatchdogCountMax without CS becoming active. When either CS or ED go true, CCA is indicated as
ÒBUSYÓ to the MAC via the primitive PHY-CCA.indicate. CS and DE behavior are deÞned in 16.3.5.2.

Normally, CCA will be held ÒBUSYÓ throughout the period of the PLCP Header. After receiving the last
PLCP bit and the Þrst data octet, the PHY shall signal PHY-RXSTART.indicate with the parameters
LENGTH and RATE. CCA shall be held ÒBUSYÓ until the number of octets speciÞed in the decoded PLCP
Header are received. At that time the PHY shall signal PHY-RXEND.indicate. The CCA may remain
ÒBUSYÓ after the end of data if some form of energy is still being detected. The PHY will signal PHY-
CCA.indicate with a value of IDLE only when the CCA goes ÒCLEAR.Ó

The transition of CCA from ÒBUSYÓ to ÒIDLEÓ is indicated to the MAC via the primitive PHY-CCA.indicate.

If CS and ED go false before the PHY signals PHY-RXSTART.indicate, CCA is set to ÒIDLEÓ and immedi-
ately signaled to the MAC via PHY-CCA.indicate with a value of IDLE. If CS and ED go false after the
PHY has signaled PHY-RXSTART.indicate, implying that the PLCP Header has been properly decoded,
then the PHY shall not signal a change in state of CCA until the proper interval has passed for the number of
octets indicated by the received PLCP LENGTH. At that time, the PHY shall signal PHY-RXEND.indicate
with an RXERROR parameter of CarrierLost followed by PHY-CCA.indicate with a value of IDLE.

The transition of CCA from ÒCLEARÓ to ÒBUSYÓ resets the CCA watchdog timer and CCA watchdog
counter. aCCAWatchdogTimerMax and aCCAWatchdogCountMax are parameters available via MIB entries
and can be read and set via the LME.

Rise and fall times of CCA relative to the ORÕing of the CS and ED signals shall be less than 30 ns. CS and
ED are both internal signals to the PHY and are not available directly to the MAC, nor are they deÞned at
any exposed interface.

16.3.5.4 CHNL_ID

For the IR PHY, CHNL_ID = X'01' is deÞned as the baseband modulation method. All other values are not
deÞned.

16.4 PHY attributes

PHY attributes have allowed values and default values that are PHY-dependent. Table 74 describes those val-
ues, and further speciÞes whether they are permitted to vary from implementation to implementation.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

272 Copyright © 1997 IEEE. All rights reserved.

Table 74 does not provide the deÞnition of the attributes, but only provides the IR PHY-speciÞc values for
the attributes whose deÞnitions are in Clause 13 of this standard.

Table 74ÑIR PHY MIB attributes

PHY MIB object Default value Operational
semantics Operational behavior

aCCATime 5 ms Static Identical for all conformant PHY

aRxTxTurnaroundTime 0 ms Static Identical for all conformant PHY

aSlotTime 8 ms Static Identical for all conformant PHY

aRxTxSwitchTime 0 Static Identical for all conformant PHY

aTxRampOnTime 0 Static Identical for all conformant PHY

aRxPLCPDelay 1 ms Static Identical for all conformant PHY

aTxPLCPDelay Implementation
dependent

Static Identical for all conformant PHY

aRxRFDelay Implementation
dependent

Static Identical for all conformant PHY

aTxRFDelay Implementation
dependent

Static Identical for all conformant PHY

aCCAWatchdogTimerMax Implementation
dependent

Dynamic A conformant PHY may set this via
the LME

aCCAWatchdogCountMax Implementation
dependent

Dynamic A conformant PHY may set this via
the LME

aCCAWatchdogTimerMin 22 ms Static Identical for all conformant PHY

aCCAWatchdogCountMin 1 Static Identical for all conformant PHY

aMACProcessingtDelay 2 ms Static Identical for all conformant PHY

aTxRampOffTime 0 ms Static Identical for all conformant PHY

aMPDUMaxLength 2500 octets Static Identical for all conformant PHY

aSIFSTime 7 ms Static Identical for all conformant PHY

aSupportedRatesTx Implementation
dependent

Static All conformant PHY must include
the value X'02' (1 Mbit/s).

aSupportedRatesRx Implementation
dependent

Static All conformant PHY must include
the values X'02' (1 Mbit/s) and
X'04' (2 Mbit/s).

aPHYType 03 Static Identical for all conformant PHY

aCWmin 63 Static Identical for all conformant PHY

aCWmax 1023 Static Identical for all conformant PHY

aPLCPHeaderLength 41 ms (1 Mbit/s)
25 ms (2 Mbit/s)

Static Identical for all conformant PHY

aPreambleLength 16 ms (1 Mbit/s)
20 ms (2 Mbit/s)

Static Identical for all conformant PHY

Copyright © 1997 IEEE. All rights reserved. 273

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Annex A

(normative)

Protocol Implementation Conformance Statement (PICS)
proforma

A.1 Introduction

The supplier of a protocol implementation that is claimed to conform to IEEE Std 802.11-1997 shall com-
plete the following PICS proforma.

A completed PICS proforma is the PICS for the implementation in question. The PICS is a statement of
which capabilities and options of the protocol have been implemented. The PICS can have a number of uses,
including use

a) By the protocol implementor, as a checklist to reduce the risk of failure to conform to the standard
through oversight;

b) By the supplier and acquirer, or potential acquirer, of the implementation, as a detailed indication of
the capabilities of the implementation, stated relative to the common basis for understanding pro-
vided by the standard PICS proforma;

c) By the user, or potential user, of the implementation, as a basis for initially checking the possibility
of interworking with another implementation (note that, while interworking can never be guaran-
teed, failure to interwork can often be predicted from incompatible PICS proformas);

d) By a protocol tester, as the basis for selecting appropriate tests against which to assess the claim for
conformance of the implementation.

A.2 Abbreviations and special symbols

A.2.1 Status symbols

M mandatory
O optional
O.<n> optional, but support of at least one of the group of options labeled by the same numeral <n>

is required
pred: conditional symbol, including predicate identiÞcation

A.2.2 General abbreviations

N/A not applicable
AD address function capability
CF implementation under test (IUT) conÞguration
FR MAC frame capability
FS frame sequence capability
PC protocol capability
PICS protocol implementation conformance statement

274 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

A.3 Instructions for completing the PICS proforma

A.3.1 General structure of the PICS proforma

The Þrst part of the PICS proforma, Implementation IdentiÞcation and Protocol Summary, is to be com-
pleted as indicated with the information necessary to identify fully both the supplier and the implementation.

The main part of the PICS proforma is a Þxed questionnaire, divided into subclauses, each containing a
number of individual items. Answers to the questionnaire items are to be provided in the rightmost column,
either by simply marking an answer to indicate a restricted choice (usually Yes or No) or by entering a value
or a set or a range of values. (Note that there are some items where two or more choices from a set of possi-
ble answers may apply. All relevant choices are to be marked, in these cases.)

Each item is identiÞed by an item reference in the Þrst column. The second column contains the question to
be answered. The third column contains the reference or references to the material that speciÞes the item in
the main body of IEEE Std 802.11-1997. The remaining columns record the status of each item, i.e., whether
support is mandatory, optional, or conditional, and provide the space for the answers (see also A.3.4). Mark-
ing an item as supported is to be interpreted as a statement that all relevant requirements of the subclauses
and normative annexes, cited in the References column for the item, are met by the implementation.

A supplier may also provide, or be required to provide, further information, categorized as either Additional
Information or Exception Information. When present, each kind of further information is to be provided in a
further subclause of items labeled A<I> or X<I>, respectively, for cross-referencing purposes, where <I> is
any unambiguous identiÞcation for the item (e.g., simply a numeral). There are no other restrictions on its
format or presentation.

The PICS proforma for a station consists of A.4.1, through A.4.4 inclusive, and at least one of A.4.5, A.4.6,
or A.4.7 corresponding to the PHY implemented.

A completed PICS proforma, including any Additional Information and Exception Information, is the PICS
for the implementation in question.

NOTEÑWhere an implementation is capable of being conÞgured in more than one way, a single PICS may be able to
describe all such conÞgurations. However, the supplier has the choice of providing more than one PICS, each covering
some subset of the implementationÕs capabilities, if this makes for easier and clearer presentation of the information.

A.3.2 Additional Information

Items of Additional Information allow a supplier to provide further information intended to assist in the
interpretation of the PICS. It is not intended or expected that a large quantity of information will be supplied,
and a PICS can be considered complete without any such information. Examples of such Additional Infor-
mation might be a outline of the ways in which an (single) implementation can be set up to operate in a vari-
ety of environments and conÞgurations, or information about aspects of the implementation that are outside
the scope of this standard but have a bearing upon the answers to some items.

References to items of Additional Information may be entered next to any answer in the questionnaire, and
may be included in items of Exception Information.

A.3.3 Exception Information

It may happen occasionally that a supplier will wish to answer an item with mandatory status (after any con-
ditions have been applied) in a way that conßicts with the indicated requirement. No preprinted answer will

Copyright © 1997 IEEE. All rights reserved. 275

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

be found in the Support column for this. Instead, the supplier shall write the missing answer into the Support
column, together with an X<I> reference to an item of Exception Information, and shall provide the appro-
priate rationale in the Exception Information item itself.

An implementation for which an Exception Information item is required in this way does not conform to
IEEE Std 802.11-1997.

NOTEÑA possible reason for the situation described above is that a defect in IEEE Std 802.11-1997 has been reported,
a correction for which is expected to change the requirement not met by the implementation.

A.3.4 Conditional status

The PICS proforma contains a number of conditional items. These are items for which both the applicability
of the item itself, and its status if it does apply, mandatory or optional, are dependent upon whether or not
certain other items are supported.

Where a group of items is subject to the same condition for applicability, a separate preliminary question
about the condition appears at the head of the group, with an instruction to skip to a later point in the ques-
tionnaire if the ÒNot ApplicableÓ answer is selected. Otherwise, individual conditional items are indicated by
a conditional symbol in the Status column.

A conditional symbol is of the form Ò<pred>:<S>Ó, where Ò<pred>Ó is a predicate as described below, and
Ò<S>Ó is one of the status symbols M or O.

If the value of the predicate is true, the conditional item is applicable, and its status is given by S: the support
column is to be completed in the usual way. Otherwise, the conditional item is not relevant and the Not
Applicable (N/A) answer is to be marked.

A predicate is one of the following:

a) An item-reference for an item in the PICS proforma: the value of the predicate is true if the item is
marked as supported, and is false otherwise.

b) A boolean expression constructed by combining item-references using the boolean operator OR: the
value of the predicate is true if one or more of the items is marked as supported, and is false otherwise.

Each item referenced in a predicate, or in a preliminary question for grouped conditional items, is indicated
by an asterisk in the Item column.

276 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

A.4 PICS proformaÑIEEE Std 802.11-19977

A.4.1 Implementation identiÞcation

NOTES

1ÑOnly the Þrst three items are required for all implementations. Other information may be completed as appropriate in
meeting the requirement for full identiÞcation.

2ÑThe terms Name and Version should be interpreted appropriately to correspond with a supplierÕs terminology (e.g.,
Type, Series, Model).

A.4.2 Protocol summary, IEEE Std 802.11-1997

7Copyright release for PICS proforma: Users of this standard may freely reproduce the PICS proforma in this annex so that it can be
used for its intended purpose and may further publish the completed PICS.

Supplier

Contact point for queries about the PICS

Implementation Name(s) and Version(s)

Other information necessary for full identiÞcation, e.g.,
name(s) and version(s) of the machines and/or operating
systems(s), system names

IdentiÞcation of protocol standard IEEE Std 802.11-1997

IdentiÞcation of amendments and corrigenda to this
PICS proforma that have been completed as part of this
PICS

Amd. : Corr. :

Amd. : Corr. :

Have any exception items been required?
(See A.3.3; the answer Yes means that the implementa-
tion does not conform to IEEE Std 802.11-1997.)

Yes ❏ No ❏

Date of statement (dd/mm/yy)

Copyright © 1997 IEEE. All rights reserved. 277

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

A.4.4 MAC protocol

A.4.3 IUT conÞguration

Item IUT conÞguration References Status Support

What is the conÞguration of the IUT?

* CF1 Access Point (AP) 5.2 O.1 Yes ❏ No ❏

* CF2 Independent station (not an AP) 5.2 O.1 Yes ❏ No ❏

* CF3 Frequency-Hopping spread spectrum
(FHSS) PHY for the 2.4 GHz band

O.2 Yes ❏ No ❏

* CF4 Direct Sequence Spread Spectrum
(DSSS) PHY for the 2.4 GHz band

O.2 Yes ❏ No ❏

* CF5 Infrared PHY O.2 Yes ❏ No ❏

A.4.4.1 MAC protocol capabilities

Item Protocol capability References Status Support

Are the following MAC protocol capa-
bilities supported?

PC1 Authentication service 5.4.3.1,
5.4.3.2,
5.7.6, 5.7.7,
8.1, Annex C

M Yes ❏ No ❏

PC1.1 Authentication state 5.5 M Yes ❏ No ❏

PC1.2 Open System authentication 8.1.1 M Yes ❏ No ❏

PC1.3 Shared Key authentication 8.1.2, 8.3 PC2:M Yes ❏ No ❏ N/A ❏

* PC2 WEP algorithm 5.4.3.3, 8.2,
Annex C

O Yes ❏ No ❏

PC2.1 WEP Encryption procedure 8.2.3, 8.2.4,
8.2.5

PC2:M Yes ❏ No ❏ N/A ❏

PC2.2 WEP Decryption procedure 8.2.3, 8.2.4,
8.2.5

PC2:M Yes ❏ No ❏ N/A ❏

PC2.3 Security services management 8.3 M Yes ❏ No ❏

PC3 Distributed Coordination function 9.1, 9.2,
Annex C

M Yes ❏ No ❏

PC3.1 Net Allocation Vector (NAV)
function

9.2.1, 9.2.5,
9.3.2.2

M Yes ❏ No ❏

PC3.2 Interframe space usage and timing 9.2.3, 9.2.5,
9.2.10

M Yes ❏ No ❏

PC3.3 Random Backoff function 9.2.4 M Yes ❏ No ❏

PC3.4 DCF Access procedure 9.2.5.1,
9.2.5.5

M Yes ❏ No ❏

PC3.5 Random Backoff procedure 9.2.5.2 M Yes ❏ No ❏

PC3.6 Recovery procedures and
retransmit limits

9.2.5.3 M Yes ❏ No ❏

PC3.7 RTS/CTS procedure 9.2.5.4,
9.2.5.6,
9.2.5.7

M Yes ❏ No ❏

278 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

PC3.8 Directed MPDU transfer 9.2.6 M Yes ❏ No ❏

PC3.9 Broadcast and multicast MPDU
transfer

9.2.7 M Yes ❏ No ❏

PC3.10 MAC level acknowledgment 9.2.2, 9.2.8 M Yes ❏ No ❏

PC3.11 Duplicate detection and recovery 9.2.9 M Yes ❏ No ❏

* PC4 Point coordinator (PC) 9.1, 9.3,
Annex C

CF1:O Yes ❏ No ❏ N/A ❏

PC4.1 Maintenance of CFP structure
and timing

9.3.1, 9.3.2 PC4:M Yes ❏ No ❏ N/A ❏

PC4.2 PCF MPDU transfer from PC 9.3.3 PC4:M Yes ❏ No ❏ N/A ❏

* PC4.3 PCF MPDU transfer to PC 9.3.3 PC4:O Yes ❏ No ❏ N/A ❏

PC4.4 Overlapping PC provisions 9.3.3.2 PC4:M Yes ❏ No ❏ N/A ❏

PC4.5 Polling list maintenance 9.3.4 PC4.3:M Yes ❏ No ❏ N/A ❏

* PC5 CF-Pollable 9.1, 9.3,
Annex C

CF2:O Yes ❏ No ❏ N/A ❏

PC5.1 Interpretation of CFP structure
and timing

9.3.1, 9.3.2 PC5:M Yes ❏ No ❏ N/A ❏

PC5.2 PCF MPDU transfer to/from
and CF-Pollable STA

9.3.3 PC5:M Yes ❏ No ❏ N/A ❏

PC5.3 Polling list update 9.3.4 PC5:M Yes ❏ No ❏ N/A ❏

PC6 Fragmentation 9.2, 9.4,
Annex C

M Yes ❏ No ❏

PC7 Defragmentation 9.2, 9.5,
Annex C

M Yes ❏ No ❏

PC8 MAC data service 9.1.5, 9.8,
Annex C

M Yes ❏ No ❏

PC8.1 Reorderable-Multicast service class 9.8 M Yes ❏ No ❏

PC8.2 StrictlyOrdered service class 9.8 O Yes ❏ No ❏

PC9 Multirate support 9.6, Annex C M Yes ❏ No ❏

* PC10 Multiple outstanding MSDU support 9.8, Annex C O Yes ❏ No ❏

PC10.1 Multiple outstanding MSDU
transmission restrictions

9.8 PC10:M Yes ❏ No ❏ N/A ❏

PC11 Timing synchronization 11.1, Annex
C

M Yes ❏ No ❏

PC11.1 Timing in an infrastructure
network

11.1.1.1,
11.1.4

CF1:M Yes ❏ No ❏ N/A ❏

PC11.2 Timing in an Independent BSS
(IBSS)

11.1.1.2,
11.1.4

CF2:M Yes ❏ No ❏ N/A ❏

PC11.3 Beacon Generation function 11.1.2 M Yes ❏ No ❏ N/A ❏

PC11.5 TSF synchronization and accuracy 11.1.2 M Yes ❏ No ❏

PC11.5 Infrastructure BSS initialization 11.1.3 CF1:M Yes ❏ No ❏ N/A ❏

PC11.6 Independent BSS initialization 11.1.3 CF2:M Yes ❏ No ❏ N/A ❏

PC11.7 Passive scanning 11.1.3 CF2:M Yes ❏ No ❏ N/A ❏

PC11.8 Active scanning 11.1.3 CF2:M Yes ❏ No ❏ N/A ❏

A.4.4.1 MAC protocol capabilities (continued)

Item Protocol capability References Status Support

Copyright © 1997 IEEE. All rights reserved. 279

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

PC11.9 Probe response 11.1.3 M Yes ❏ No ❏

PC11.10 Hop Synchronization function 11.1.5 CF3:M Yes ❏ No ❏ N/A ❏

PC12 Infrastructure power management 11.2.1,
Annex C

M Yes ❏ No ❏

PC12.1 Station power management modes 11.2.1.1,
11.2.1.8

CF2:M Yes ❏ No ❏ N/A ❏

PC12.2 TIM transmission 11.2.1.2,
11.2.1.3

CF1:M Yes ❏ No ❏ N/A ❏

PC12.3 AP function during CP 11.2.1.4 CF1:M Yes ❏ No ❏ N/A ❏

PC12.4 AP function during CFP 11.2.1.5 PC4:M Yes ❏ No ❏ N/A ❏

PC12.5 Receive function during CP 11.2.1.6 CF2:M Yes ❏ No ❏ N/A ❏

PC12.6 Receive function during CFP 11.2.1.7 PC5:M Yes ❏ No ❏ N/A ❏

PC12.7 Aging function 11.2.1.9 CF1:M Yes ❏ No ❏ N/A ❏

PC13 IBSS power management 11.2.2,
Annex C

CF2:M Yes ❏ No ❏ N/A ❏

PC13.1 Initialization of power
management

11.2.2.2 CF2:M Yes ❏ No ❏ N/A ❏

PC13.2 STA power state transitions 11.2.2.3 CF2:M Yes ❏ No ❏ N/A ❏

PC13.3 ATIM and frame transmission 11.2.2.4 CF2:M Yes ❏ No ❏ N/A ❏

PC14 Association and reassociation 5.4, 5.7,
11.3,
Annex C

M Yes ❏ No ❏

PC14.1 Association state 5.5 M Yes ❏ No ❏

PC14.2 STA association procedure 11.3.1 CF2:M Yes ❏ No ❏ N/A ❏

PC14.3 AP association procedure 11.3.2 CF1:M Yes ❏ No ❏ N/A ❏

PC14.4 STA reassociation procedure 11.3.3 CF2:M Yes ❏ No ❏ N/A ❏

PC14.5 AP reassociation procedure 11.3.4 CF1:M Yes ❏ No ❏ N/A ❏

PC15 Management information base (MIB) 11.4,
Annex C

M Yes ❏ No ❏

PC15.1 SMT object class 11.4.2.1 M Yes ❏ No ❏

* PC15.2 Privacy package 11.4.2.1 PC2:M Yes ❏ No ❏ N/A ❏

PC15.3 MAC object class 11.4.2.2 M Yes ❏ No ❏

* PC15.4 MAC statistics package 11.4.2.2 O Yes ❏ No ❏

PC15.3 Resource type object class 11.4.2.3 M Yes ❏ No ❏

A.4.4.1 MAC protocol capabilities (continued)

Item Protocol capability References Status Support

280 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

A.4.4.2 MAC frames

Item MAC frame References Status Support

Is transmission of the following
MAC frames supported?

7, Annex C

FT1 Association request 7 CF2:M Yes ❏ No ❏ N/A ❏

FT2 Association response 7 CF1:M Yes ❏ No ❏ N/A ❏

FT3 Reassociation request 7 CF2:M Yes ❏ No ❏ N/A ❏

FT4 Reassociation response 7 CF1:M Yes ❏ No ❏ N/A ❏

FT5 Probe request 7 CF2:M Yes ❏ No ❏ N/A ❏

FT6 Probe response 7 M Yes ❏ No ❏

FT7 Beacon 7 M Yes ❏ No ❏

FT8 ATIM 7 CF2:M Yes ❏ No ❏ N/A ❏

FT9 Disassociation 7 M Yes ❏ No ❏

FT10 Authentication 7 M Yes ❏ No ❏

FT11 Deauthentication 7 M Yes ❏ No ❏

FT12 PS-Poll 7 CF2:M Yes ❏ No ❏ N/A ❏

FT13 RTS 7 M Yes ❏ No ❏

FT14 CTS 7 M Yes ❏ No ❏

FT15 ACK 7 M Yes ❏ No ❏

FT16 CF-End 7 PC4:M Yes ❏ No ❏ N/A ❏

FT17 CF End+CF-Ack 7 PC4:M Yes ❏ No ❏ N/A ❏

FT18 Data 7 M Yes ❏ No ❏

FT19 Data + CF-Ack 7 (PC4 OR
PC5):M

Yes ❏ No ❏ N/A ❏

FT20 Data + CF-Poll 7 PC4.3:M Yes ❏ No ❏ N/A ❏

FT21 Data + CF-Ack+CF-Poll 7 PC4.3:M Yes ❏ No ❏ N/A ❏

FT22 Null 7 M Yes ❏ No ❏

FT23 CF-Ack (no data) 7 (PC4 OR
PC5):M

Yes ❏ No ❏ N/A ❏

FT24 CF-Poll (no data) 7 PC4.3:M Yes ❏ No ❏ N/A ❏

FT25 CF-Ack+CF-Poll (no data) 7 PC4.3:M Yes ❏ No ❏ N/A ❏

Is reception of the following MAC
frames supported?

7, Annex C

FR1 Association request 7 CF1:M Yes ❏ No ❏ N/A ❏

FR2 Association response 7 CF2:M Yes ❏ No ❏ N/A ❏

FR3 Reassociation request 7 CF1:M Yes ❏ No ❏ N/A ❏

FR4 Reassociation response 7 CF2:M Yes ❏ No ❏ N/A ❏

FR5 Probe request 7 M Yes ❏ No ❏

FR6 Probe response 7 M Yes ❏ No ❏

FR7 Beacon 7 M Yes ❏ No ❏

FR8 ATIM 7 CF2:M Yes ❏ No ❏ N/A ❏

FR9 Disassociation 7 M Yes ❏ No ❏

FR10 Authentication 7 M Yes ❏ No ❏

Copyright © 1997 IEEE. All rights reserved. 281

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

FR11 Deauthentication 7 M Yes ❏ No ❏

FR12 PS-Poll 7 CF1:M Yes ❏ No ❏ N/A ❏

FR13 RTS 7 M Yes ❏ No ❏

FR14 CTS 7 M Yes ❏ No ❏

FR15 ACK 7 M Yes ❏ No ❏

FR16 CF-End 7 M Yes ❏ No ❏

FR17 CF End+CF-Ack 7 M Yes ❏ No ❏

FR18 Data 7 M Yes ❏ No ❏

FR19 Data + CF-Ack 7 M Yes ❏ No ❏

FR20 Data + CF-Poll 7 PC5:M Yes ❏ No ❏ N/A ❏

FR21 Data + CF-Ack+CF-Poll 7 PC5:M Yes ❏ No ❏ N/A ❏

FR22 Null 7 M Yes ❏ No ❏

FR23 CF-Ack (no data) 7 (PC4 OR
PC5):M

Yes ❏ No ❏ N/A ❏

FR24 CF-Poll (no data) 7 PC5:M Yes ❏ No ❏ N/A ❏

FR25 CF-Ack+CF-Poll (no data) 7 PC5:M Yes ❏ No ❏ N/A ❏

A.4.4.3 Frame exchange sequences

Item Frame exchange sequence References Status Support

Are the following frame sequences
supported?

FS1 Basic frame sequences 9.7, Annex C M Yes ❏ No ❏

FS2 CF-Frame sequences 9.7, Annex C (PC4 OR PC5):M Yes ❏ No ❏ N/A ❏

A.4.4.4 MAC addressing functions

Item MAC Address function References Status Support

Are the following MAC Addressing
functions supported?

AD1 STA universal individual
IEEE802 address

5.3.3,
7.1.3.3

M Yes ❏ No ❏

AD2 BSS identiÞer generation 7.1.3.3,
11.1.3,
Annex C

M Yes ❏ No ❏

AD3 Receive address matching 7.1.3.3,
7.2.2,
Annex C

M Yes ❏ No ❏ N/A ❏

A.4.4.2 MAC frames (continued)

Item MAC frame References Status Support

282 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

A.4.5 Frequency-Hopping PHY functions

Item Protocol feature References Status Support

Which requirements and options does the
PHY support?

FH1 PHY service primitive parameters

FH1.1 TXVECTOR parameter: LENGTH 14.2.2.1 M Yes ❏ No ❏

FH1.2 TXVECTOR parameter: PLCPBITRATE 14.2.2.2 M Yes ❏ No ❏

FH1.2.1 PLCPBITRATE = X'00' (1.0 Mbit/s) 14.2.2.2 M Yes ❏ No ❏

* FH1.2.2 PLCPBITRATE = X'02' (2.0 Mbit/s) 14.2.2.2 O Yes ❏ No ❏

FH1.3 RXVECTOR parameter: LENGTH 14.2.3.1 M Yes ❏ No ❏

FH1.4 RXVECTOR parameter: RSSI 14.2.3.2 O Yes ❏ No ❏

FH2 PLCP frame format

FH2.1 PLCP Preamble: Sync 14.3.2.1.1 M Yes ❏ No ❏

FH2.2 PLCP Preamble: Start Frame Delimiter 14.3.2.1.2 M Yes ❏ No ❏

FH2.3 PLCP Header: Length Word 14.3.2.2.1 M Yes ❏ No ❏

FH2.4 PLCP Header: Signaling Þeld 14.3.2.2.2 M Yes ❏ No ❏

FH2.5 PLCP Header: Header Error Check 14.3.2.2.3 M Yes ❏ No ❏

FH2.6 PLCP Data Whitener: Scrambling and
bias suppression encoding

14.3.2.3,
14.3.3.1.1

M Yes ❏ No ❏

FH3 PLCP Transmit procedure

FH3.1 Transmit: transmit on MAC request 14.3.3.1.1 M Yes ❏ No ❏

FH3.2 Transmit: format and whiten frame 14.3.3.1.1 M Yes ❏ No ❏

FH3.3 Transmit: Timing 14.3.3.1.1 M Yes ❏ No ❏

FH4 PLCP CS/CCA procedure

FH4.1 CS/CCA: perform on a minimum of one
antenna

14.3.3.2.1 M Yes ❏ No ❏

FH4.2. CS/CCA: Detect preamble starting up to
20 ms after start of slot time

14.3.3.2.1 M Yes ❏ No ❏

FH4.3 CS/CCA: Detect preamble starting at
least 16 ms prior to end of slot time

14.3.3.2.1 M Yes ❏ No ❏

FH4.4 CS/CCA: Detect random data 14.3.3.2.1 M Yes ❏ No ❏

FH4.5 CS/CCA: Perform on antenna with
essentially same gain and pattern as
transmit antenna

14.3.3.2.1 M Yes ❏ No ❏

FH4.6 CS/CCA: Detect valid SFD and PLCP
header

14.3.3.2.1 M Yes ❏ No ❏

FH4.7 CS/CCA: Maintain BUSY indication
until end of length contained in valid
PLCP header

14.3.3.2.1 M Yes ❏ No ❏

FH5 PLCP Receive procedure

FH5.1 Receive: Receive and dewhiten frame 14.3.3.3.1 M Yes ❏ No ❏

FH6 PHY LME

FH6.1 PLME: Support FH sync 14.4.2.2 M Yes ❏ No ❏

FH6.2 PLME: Support PLME primitives 14.4.3.2 O Yes ❏ No ❏

Copyright © 1997 IEEE. All rights reserved. 283

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

FH7 Geographic area speciÞc requirements

* FH7.1 Geographic areas

FH7.1.1 North America 14.6.2 O.1 Yes ❏ No ❏

FH7.1.2 Most of Europe 14.6.2 O.1 Yes ❏ No ❏

FH7.1.3 Japan 14.6.2 O.1 Yes ❏ No ❏

FH7.1.4 Spain 14.6.2 O.1 Yes ❏ No ❏

FH7.1.5 France 14.6.2 O.1 Yes ❏ No ❏

FH7.2 Operating frequency range 14.6.3 FH7.1:M Yes ❏ No ❏

FH7.3 Number of operating channels 14.6.4 FH7.1:M Yes ❏ No ❏

FH7.4 Operating channel frequencies 14.6.5 FH7.1:M Yes ❏ No ❏

FH7.5 Occupied channel bandwidth 14.6.6 FH7.1:M Yes ❏ No ❏

FH7.6 Minimum hop rate 14.6.7 FH7.1:M Yes ❏ No ❏

FH7.7 Hop sequences 14.6.8 FH7.1:M Yes ❏ No ❏

FH7.8 Unwanted emissions 14.6.9 FH7.1:M Yes ❏ No ❏

FH8 1 Mbit/s PMD

FH8.1 Modulation 2GFSK, BT=0.5, 1=positive
freq. dev, 0=negative freq. dev.

14.6.10 M Yes ❏ No ❏

FH8.2 Peak frequency deviation 14.6.10 M Yes ❏ No ❏

FH8.3 Zero-Crossing error 14.6.10 M Yes ❏ No ❏

FH8.4 Nominal channel data rate 14.6.11 M Yes ❏ No ❏

FH8.5 Channel switching/settling time 14.6.12 M Yes ❏ No ❏

FH8.6 Receive to transmit switch time 14.6.13 M Yes ❏ No ❏

FH8.7 Nominal transmit power 14.6.14.1 M Yes ❏ No ❏

FH8.8 Transmit power levels 14.6.14.2 M Yes ❏ No ❏

FH8.9 Transmit power level control to
<100 mW

14.6.14.3 M Yes ❏ No ❏

FH8.10 Transmit spectrum shape 14.6.14.4 M Yes ❏ No ❏

FH8.11 Transmit center frequency tolerance 14.6.14.5 M Yes ❏ No ❏

FH8.12 Transmitter ramp periods 14.6.14.6 M Yes ❏ No ❏

FH8.13 Receiver input dynamic range 14.6.15.1 M Yes ❏ No ❏

FH8.14 Receiver center frequency acceptance
range

14.6.15.2 M Yes ❏ No ❏

FH8.15 Clear channel assessment power thresh-
old for Pdet 90% (preamble)/70% (ran-
dom data) for 100 mW units

14.6.15.3 M Yes ❏ No ❏

FH8.16 Clear channel assessment power thresh-
old for units >100 mW; sensitivity
threshold is 1/2 dB lower for every dB
above 20 dBm

14.6.15.3 M Yes ❏ No ❏

FH8.17 Minimum receiver sensitivity at
FER=3% with 400 octet frames

14.6.15.4 M Yes ❏ No ❏

FH8.18 Intermodulation protection 14.6.15.5 M Yes ❏ No ❏

FH8.19 Desensitization 14.6.15.6 M Yes ❏ No ❏

A.4.5 Frequency-Hopping PHY functions (continued)

Item Protocol feature References Status Support

284 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

FH8.20 Operating temperature range 14.6.16 M Yes ❏ No ❏

FH8.20.1 Temperature type 1 14.6.16 O Yes ❏ No ❏

FH8.20.2 Temperature type 2 14.6.16 O Yes ❏ No ❏

FH8.20.3 Temperature type 3 14.6.16 O Yes ❏ No ❏

FH9 2 Mbit/s PMD

FH9.1 All 1M PMD requirements 14.7.1 FH1.2.2:M Yes ❏ No ❏ N/A ❏

FH9.2 Modulation 4GFSK, BT=0.5 14.7.2 FH1.2.2:M Yes ❏ No ❏ N/A ❏

FH9.3 Frame structure for 2M PHY 14.7.2.1 FH1.2.2:M Yes ❏ No ❏ N/A ❏

FH9.4 Nominal channel data rate 14.7.3 FH1.2.2:M Yes ❏ No ❏ N/A ❏

FH9.5 Input dynamic range 14.7.4 FH1.2.2:M Yes ❏ No ❏ N/A ❏

FH9.6 Minimum receiver sensitivity at
FER=3% with 400 octet frames

14.7.5 FH1.2.2:M Yes ❏ No ❏ N/A ❏

FH9.7 Intermodulation protection 14.7.6 FH1.2.2:M Yes ❏ No ❏ N/A ❏

FH9.8 Desensitization 14.7.7 FH1.2.2:M Yes ❏ No ❏ N/A ❏

FH10 MIB 13.1, 14.8,
Annex C

M Yes ❏ No ❏

 FH10.1 PHY object class 13.1,14.8 M Yes ❏ No ❏

A.4.6 Direct sequence PHY functions

Item PHY feature References Status Support

PLCP sublayer procedures 15.2

DS1 Preamble prepend on TX 15.2.1 M Yes ❏ No ❏

DS1.1 PLCP frame format 15.2.2, 15.2.3 M Yes ❏ No ❏

DS1.2 PLCP integrity check generation 15.2.3, 15.2.3.6 M Yes ❏ No ❏

DS1.3 TX rate change capability 15.2.3.3, 15.2.5 M Yes ❏ No ❏

DS1.4 Supported data rates 15.1, 15.2.3.3 M Yes ❏ No ❏

DS1.5 Data whitener scrambler 15.2.4 M Yes ❏ No ❏

DS1.6 Scrambler initialization 15.2.4 M Yes ❏ No ❏

DS2 Preamble process on RX 15.2.1

DS2.1 PLCP frame format 15.2.2, 15.2.3 M Yes ❏ No ❏

DS2.2 PLCP integrity check verify 15.2.3, 15.2.3.6 M Yes ❏ No ❏

DS2.3 RX Rate change capability 15.2.3.3, 15.2.5 M Yes ❏ No ❏

DS2.4 Data whitener descrambler 15.2.4 M Yes ❏ No ❏

DS3 PN code sequence 15.4.6.3 M Yes ❏ No ❏

DS4 Chipping continue on power down 15.2.6 O Yes ❏ No ❏

*DS5 Operating channel capability 15.2.6, 15.4.6.2

* DS5.1 North America (FCC) 15.2.6, 15.4.6.2 DS5:O.1 Yes ❏ No ❏ N/A ❏

DS5.1.1 channel 1 15.2.6, 15.4.6.2 DS5.1:M Yes ❏ No ❏ N/A ❏

A.4.5 Frequency-Hopping PHY functions (continued)

Item Protocol feature References Status Support

Copyright © 1997 IEEE. All rights reserved. 285

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

DS5.1.2 channel 2 15.2.6, 15.4.6.2 DS5.1:M Yes ❏ No ❏ N/A ❏

DS5.1.3 channel 3 15.2.6, 15.4.6.2 DS5.1:M Yes ❏ No ❏ N/A ❏

DS5.1.4 channel 4 15.2.6, 15.4.6.2 DS5.1:M Yes ❏ No ❏ N/A ❏

DS5.1.5 channel 5 15.2.6, 15.4.6.2 DS5.1:M Yes ❏ No ❏ N/A ❏

DS5.1.6 channel 6 15.2.6, 15.4.6.2 DS5.1:M Yes ❏ No ❏ N/A ❏

DS5.1.7 channel 7 15.2.6, 15.4.6.2 DS5.1:M Yes ❏ No ❏ N/A ❏

DS5.1.8 channel 8 15.2.6, 15.4.6.2 DS5.1:M Yes ❏ No ❏ N/A ❏

DS5.1.9 channel 9 15.2.6, 15.4.6.2 DS5.1:M Yes ❏ No ❏ N/A ❏

DS5.1.10 channel 10 15.2.6, 15.4.6.2 DS5.1:M Yes ❏ No ❏ N/A ❏

DS5.1.11 channel 11 15.2.6, 15.4.6.2 DS5.1:M Yes ❏ No ❏ N/A ❏

* DS5.2 Canada (IC) 15.2.6, 15.4.6.2 DS5:O.1 Yes ❏ No ❏ N/A ❏

DS5.2.1 channel 1 15.2.6, 15.4.6.2 DS5.2:M Yes ❏ No ❏ N/A ❏

DS5.2.2 channel 2 15.2.6, 15.4.6.2 DS5.2:M Yes ❏ No ❏ N/A ❏

DS5.2.3 channel 3 15.2.6, 15.4.6.2 DS5.2:M Yes ❏ No ❏ N/A ❏

DS5.2.4 channel 4 15.2.6, 15.4.6.2 DS5.2:M Yes ❏ No ❏ N/A ❏

DS5.2.5 channel 5 15.2.6, 15.4.6.2 DS5.2:M Yes ❏ No ❏ N/A ❏

DS5.2.6 channel 6 15.2.6, 15.4.6.2 DS5.2:M Yes ❏ No ❏ N/A ❏

DS5.2.7 channel 7 15.2.6, 15.4.6.2 DS5.2:M Yes ❏ No ❏ N/A ❏

DS5.2.8 channel 8 15.2.6, 15.4.6.2 DS5.2:M Yes ❏ No ❏ N/A ❏

DS5.2.9 channel 9 15.2.6, 15.4.6.2 DS5.2:M Yes ❏ No ❏ N/A ❏

DS5.2.10 channel 10 15.2.6, 15.4.6.2 DS5.2:M Yes ❏ No ❏ N/A ❏

DS5.2.11 channel 11 15.2.6, 15.4.6.2 DS5.2:M Yes ❏ No ❏ N/A ❏

* DS5.3 Europe (ETSI) 15.2.6, 15.4.6.2 DS5:O.1 Yes ❏ No ❏ N/A ❏

DS5.3.1 channel 1 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.2 channel 2 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.3 channel 3 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.4 channel 4 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.5 channel 5 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.6 channel 6 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.7 channel 7 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.8 channel 8 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.9 channel 9 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.10 channel 10 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.11 channel 11 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.12 channel 12 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

DS5.3.13 channel 13 15.2.6, 15.4.6.2 DS5.3:M Yes ❏ No ❏ N/A ❏

* DS5.4 France 15.2.6, 15.4.6.2 DS5:O.1 Yes ❏ No ❏ N/A ❏

DS5.4.1 channel 10 15.2.6, 15.4.6.2 DS5.4:M Yes ❏ No ❏ N/A ❏

DS5.4.2 channel 11 15.2.6, 15.4.6.2 DS5.4:M Yes ❏ No ❏ N/A ❏

DS5.4.3 channel 12 15.2.6, 15.4.6.2 DS5.4:M Yes ❏ No ❏ N/A ❏

A.4.6 Direct sequence PHY functions (continued)

Item PHY feature References Status Support

286 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

DS5.4.4 channel 13 15.2.6, 15.4.6.2 DS5.4:M Yes ❏ No ❏ N/A ❏

* DS5.5 Spain 15.2.6, 15.4.6.2 DS5:O.1 Yes ❏ No ❏ N/A ❏

DS5.5.1 channel 10 15.2.6, 15.4.6.2 DS5.5:M Yes ❏ No ❏ N/A ❏

DS5.5.2 channel 11 15.2.6, 15.4.6.2 DS5.5:M Yes ❏ No ❏ N/A ❏

* DS5.6 Japan (RCR) 15.2.6, 15.4.6.2 DS5:O.1 Yes ❏ No ❏ N/A ❏

DS6 Bits to symbol mapping 15.4.6.4

DS6.1 1 Mbit/s 15.4.6.4 M Yes ❏ No ❏

DS6.2 2 Mbit/s 15.4.6.4 M Yes ❏ No ❏

*DS7 CCA functionality 15.4.8.4

DS7.1 Energy Only (RSSI above threshold) 15.4.8.4 DS7:O.2 Yes ❏ No ❏

DS7.2 IEEE 802.11 DSSS correlation 15.4.8.4 DS7:O.2 Yes ❏ No ❏

DS7.3 Both methods 15.4.8.4 DS7:O.2 Yes ❏ No ❏

DS7.4 Hold CCA busy for packet duration
of a correctly received PLCP but car-
rier lost during reception of MPDU

15.2.7 M Yes ❏ No ❏

DS7.5 Hold CCA busy for packet duration
of a correctly received but out of spec
PLCP

15.2.7 M Yes ❏ No ❏

DS8 Transmit antenna selection 15.4.5.5,
15.4.5.6

O Yes ❏ No ❏

DS9 Receive antenna diversity 15.4.5.5,
15.4.5.6,
15.4.5.7

O Yes ❏ No ❏

*DS10 Antenna port(s) availability 15.4.6.9 O Yes ❏ No ❏

DS10.1 50 W impedance 15.4.6.9 DS10:M Yes ❏ No ❏ N/A ❏

*DS11 Transmit power level support 15.4.5.8,
15.4.7.3

O Yes ❏ No ❏

DS11.1 If greater than 100 mW capability 15.4.7.3 DS11:M Yes ❏ No ❏ N/A ❏

*DS12 Radio type (temperature range) 15.4.6.10

DS12.1 Type 1 15.4.6.10 DS12:O.3 Yes ❏ No ❏ N/A ❏

DS12.2 Type 2 15.4.6.10 DS12:O.3 Yes ❏ No ❏ N/A ❏

DS13 Spurious emissions conformance 15.4.6.5 M Yes ❏ No ❏

DS14 TX-RX turnaround time 15.4.6.6 M Yes ❏ No ❏

DS15 RX-TX turnaround time 15.4.6.7 M Yes ❏ No ❏

DS16 Slot time 15.4.6.8 M Yes ❏ No ❏

DS17 ED reporting time 15.4.6.8,
15.4.8.4

M Yes ❏ No ❏

DS18 Minimum transmit power level 15.4.7.2 M Yes ❏ No ❏

DS19 Transmit spectral mask conformance 15.4.7.4 M Yes ❏ No ❏

DS20 Transmitted center frequency
tolerance

15.4.7.5 M Yes ❏ No ❏

A.4.6 Direct sequence PHY functions (continued)

Item PHY feature References Status Support

Copyright © 1997 IEEE. All rights reserved. 287

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

DS21 Chip clock frequency tolerance 15.4.7.6 M Yes ❏ No ❏

DS22 Transmit power on ramp 15.4.7.7 M Yes ❏ No ❏

DS23 Transmit power down ramp 15.4.7.7 M Yes ❏ No ❏

DS24 RF carrier suppression 15.4.7.8 M Yes ❏ No ❏

DS25 Transmit modulation accuracy 15.4.7.9 M Yes ❏ No ❏

DS26 Receiver minimum input level
sensitivity

15.4.8.1 M Yes ❏ No ❏

DS27 Receiver maximum input level 15.4.8.2 M Yes ❏ No ❏

DS28 Receiver adjacent channel rejection 15.4.8.3 M Yes ❏ No ❏

DS29 MIB 13.1, 15.3.4,
Annex C

M Yes ❏ No ❏

DS29.1 PHY object class 13.1, 15.3.4 M Yes ❏ No ❏

A.4.7 Infrared baseband PHY functions

Item Feature References Status Support

IR1 Is the transmitted SYNC Þeld length in the
range of required number of PPM slots, with
the absence of a pulse in the last slot of the
Þeld?

16.2.4.1 M Yes ❏

IR2 Is the transmitted SYNC Þeld entirely popu-
lated by alternating presence and absence of
pulses in consecutive PPM slots, with the
absence of a pulse in the last slot of the Þeld?

16.2.4.1 M Yes ❏

IR3 Is the transmitted SFD Þeld the binary
sequence 1001, where 1 indicates a pulse in
the PPM slot and 0 indicates no pulse in the
PPM slot?

16.2.4.2 M Yes ❏

IR4 Is the transmitted DR Þeld pulse sequence
equal to the correct value for the data rate
provided by the TXVECTOR parameter
PLCP BITRATE, where 1 indicates a pulse
in the PPM slot and 0 indicates no pulse in
the PPM slot?

16.2.4.3 M Yes ❏

IR5 Is the transmitted DCLA Þeld 32 PPM slots
long with the speciÞed sequence for 1 Mbit/
s, where 1 indicates a pulse in the PPM slot
and 0 indicates no pulse in the PPM slot?
1 Mbit/s:
00000000100000000000000010000000

16.2.4.4 M Yes ❏

* IR5a Does the unit support 2 Mbit/s transmission? 16.2.4.4 O Yes ❏ No ❏

IR5b If the unit supports 2 Mbit/s transmission, is
the transmitted DCLA Þeld 32 PPM slots
long with the speciÞed sequence for 2 Mbit/
s, where 1 indicates a pulse in the PPM slot
and 0 indicates no pulse in the PPM slot?
2 Mbit/s:
00100010001000100010001000100010

16.2.4.4 IR5a:M Yes ❏ No ❏ N/A ❏

A.4.6 Direct sequence PHY functions (continued)

Item PHY feature References Status Support

288 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

IR6 Is the transmitted LENGTH Þeld the correct
PPM representation of the unsigned 16-bit
binary integer, lsb transmitted Þrst, equal to
the correct value provided by the TXVEC-
TOR parameter LENGTH?

16.2.4.5 M Yes ❏

IR7 Is the transmitted CRC Þeld the correct PPM
representation of the CRC value calculated
as per reference subclause, transmitted lsb
Þrst?

16.2.4.6 M Yes ❏

IR8 Is the transmitted PSDU Þeld the correct
PPM representation of the PSDU, transmit-
ted lsb Þrst?

16.2.4.7 M Yes ❏

IR9 When the CCA is false does transmission
begin based on PHYTXSTART.request?

16.2.5.1 M Yes ❏

IR10 Does the PHY issue a PHYTXSTART.con-
Þrm after the transmission of the PLCP
header?

16.2.5.1 M Yes ❏

IR11 Does the PHY accept each octet of the
PSDU in a PHYDATA.request and answer
with a PHYDATA.conÞrm?

16.2.5.1 M Yes ❏

IR12 Does the PHY cease transmission in
response to a PHYTXEND.request and
answer with a PHYTXEND.conÞrm?

16.2.5.1 M Yes ❏

IR13 Does the PHY of a receiving STA send a
PHYCCA.indicate during reception of the
SYNC Þeld?

16.2.5.2 M Yes ❏

IR14 Does the PHY of a receiving STA properly
receive a transmission that changes data rate
according to the DR Þeld?

16.2.5.2 M Yes ❏

IR15 Does the PHY of a receiving STA properly
reject an incorrect CRC?

16.2.5.2 M Yes ❏

IR16 Does the PHY of a receiving STA properly
reject a DR Þeld other than those speciÞed in
reference subclause?

16.2.5.2, 16.2.4.3 M Yes ❏

IR17 Does the PHY of a receiving STA send
PHYRXSTART.indicate with correct RATE
and LENGTH parameters after proper recep-
tion of PLCP preamble and PLCP header?

16.2.5.2 M Yes ❏

IR18 Does the PHY of a receiving STA forward
receive octets in PHYDATA.indicate primi-
tives?

16.2.5.2 M Yes ❏

IR19 Does the PHY of a receiving STA send a
PHYRXEND.indicate after the Þnal octet
indicated by the LENGTH Þeld?

16.2.5.2 M Yes ❏

IR20 Does the PHY of a receiving STA send a
PHYCCA.indicate with a state value of
IDLE after the PHYRXEND.indicate?

16.2.5.2 M Yes ❏

IR21 Does the PHY reset its CCA detection mech-
anism upon receiving a PHYC-
CARST.request, and respond with a
PHYCCARST.indicate?

16.2.5.3 M Yes ❏

A.4.7 Infrared baseband PHY functions (continued)

Item Feature References Status Support

Copyright © 1997 IEEE. All rights reserved. 289

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

IR22 When transmitting at 1 Mbit/s does the PHY
transmit PPM symbols according the 16-
PPM Basic Rate Mapping table, transmitting
from left to right?

16.3.2.1, 16.3.2.2 M Yes ❏

IR23 When transmitting at 2 Mbit/s does the PHY
transmit PPM symbols according to the 4-
PPM Enhanced Rate Mapping table, trans-
mitting from left to right?

16.3.2.1, 16.3.2.2 IR5a:M Yes ❏

IR24 Does the PHY operate over a temperature
range of 0 to 40 °C?

16.3.2.4 M Yes ❏

* IR25 If the unit is conformant to emitter radiation
mask 1, is the peak optical power of an emit-
ted pulse within the speciÞcation range aver-
aged over the pulse width?

16.3.3.1 O.1 Yes ❏ No ❏ N/A ❏

* IR26 If the unit is conformant to emitter radiation
mask 2, is the peak optical power of an emit-
ted pulse within the speciÞcation range aver-
aged over the pulse width?

16.3.3.1 O.1 Yes ❏ No ❏ N/A ❏

IR27 Does the transmitted pulse shape conform to
the description of the reference subclause?

16.3.3.2 M Yes ❏

IR28 Does the emitter radiation pattern as a func-
tion of angle conform to the requirements of
the reference subclause as applicable based
on conformance to emitter radiation mask 1?

16.3.3.3 IR25:M Yes ❏ No ❏ N/A ❏

IR28a Does the emitter radiation pattern as a func-
tion of angle conform to the requirements of
the reference subclause as applicable based
on conformance to emitter radiation mask 2?

16.3.3.3 IR26:M Yes ❏ No ❏ N/A ❏

IR29 Is the peak emitter optical output as a func-
tion of wavelength in the range speciÞed?

16.3.3.4 M Yes ❏

IR30 Does the spectrum of the transmit signal
amplitude as a voltage or current meet the
requirements of the reference subclause?

16.3.3.5 M Yes ❏

IR31 Does the receiver sensitivity meet the
requirements of the reference subclause for
receive signals of both 1 and 2 Mbit/s?

16.3.4.1 M Yes ❏

IR32 Does the receiver exhibit a dynamic range as
speciÞed in reference subclause?

16.3.4.2 M Yes ❏

IR33 Does the receiver Þeld of view conform to
the requirements of the reference subclause?

16.3.4.3 M Yes ❏

IR34 When it is known that the conditions are
such that the Carrier Detect Signal and the
Energy Detect Signal are false is the CCA
asserted IDLE?

16.3.5.1 M Yes ❏

A.4.7 Infrared baseband PHY functions (continued)

Item Feature References Status Support

290 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

IR35 When the conditions are such that Energy
Detect is true for greater then the time
deÞned in reference subclause, does CCA
become IDLE?

16.3.5.1 M Yes ❏

IR36 When conditions are such that either Carrier
Detect or Energy Detect go true, does CCA
go BUSY?

16.3.5.1 M Yes ❏

IR37 Is the MIB completely supported? 16.4 M Yes ❏

A.4.7 Infrared baseband PHY functions (continued)

Item Feature References Status Support

Copyright © 1997 IEEE. All rights reserved. 291

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Annex B

(informative)

Hopping sequences

The following tables pertain to the hopping sequences for North America and ETSI.

292 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Table B.1ÑHopping sequence set 1

index 0 3 6 9 12 15 18 21 24 27 30 33 36

1 2 5 8 11 14 17 20 23 26 29 32 35 38

2 25 28 31 34 37 40 43 46 49 52 55 58 61

3 64 67 70 73 76 79 3 6 9 12 15 18 21

4 10 13 16 19 22 25 28 31 34 37 40 43 46

5 45 48 51 54 57 60 63 66 69 72 75 78 2

6 18 21 24 27 30 33 36 39 42 45 48 51 54

7 73 76 79 3 6 9 12 15 18 21 24 27 30

8 49 52 55 58 61 64 67 70 73 76 79 3 6

9 21 24 27 30 33 36 39 42 45 48 51 54 57

10 63 66 69 72 75 78 2 5 8 11 14 17 20

11 78 2 5 8 11 14 17 20 23 26 29 32 35

12 31 34 37 40 43 46 49 52 55 58 61 64 67

13 61 64 67 70 73 76 79 3 6 9 12 15 18

14 24 27 30 33 36 39 42 45 48 51 54 57 60

15 54 57 60 63 66 69 72 75 78 2 5 8 11

16 65 68 71 74 77 80 4 7 10 13 16 19 22

17 28 31 34 37 40 43 46 49 52 55 58 61 64

18 79 3 6 9 12 15 18 21 24 27 30 33 36

19 33 36 39 42 45 48 51 54 57 60 63 66 69

20 4 7 10 13 16 19 22 25 28 31 34 37 40

21 20 23 26 29 32 35 38 41 44 47 50 53 56

22 13 16 19 22 25 28 31 34 37 40 43 46 49

23 38 41 44 47 50 53 56 59 62 65 68 71 74

24 74 77 80 4 7 10 13 16 19 22 25 28 31

25 56 59 62 65 68 71 74 77 80 4 7 10 13

26 71 74 77 80 4 7 10 13 16 19 22 25 28

27 23 26 29 32 35 38 41 44 47 50 53 56 59

28 5 8 11 14 17 20 23 26 29 32 35 38 41

29 39 42 45 48 51 54 57 60 63 66 69 72 75

30 12 15 18 21 24 27 30 33 36 39 42 45 48

31 36 39 42 45 48 51 54 57 60 63 66 69 72

32 68 71 74 77 80 4 7 10 13 16 19 22 25

33 9 12 15 18 21 24 27 30 33 36 39 42 45

34 70 73 76 79 3 6 9 12 15 18 21 24 27

35 77 80 4 7 10 13 16 19 22 25 28 31 34

36 6 9 12 15 18 21 24 27 30 33 36 39 42

37 62 65 68 71 74 77 80 4 7 10 13 16 19

38 29 32 35 38 41 44 47 50 53 56 59 62 65

39 14 17 20 23 26 29 32 35 38 41 44 47 50

Copyright © 1997 IEEE. All rights reserved. 293

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

index 0 3 6 9 12 15 18 21 24 27 30 33 36

40 27 30 33 36 39 42 45 48 51 54 57 60 63

41 16 19 22 25 28 31 34 37 40 43 46 49 52

42 59 62 65 68 71 74 77 80 4 7 10 13 16

43 43 46 49 52 55 58 61 64 67 70 73 76 79

44 76 79 3 6 9 12 15 18 21 24 27 30 33

45 34 37 40 43 46 49 52 55 58 61 64 67 70

46 72 75 78 2 5 8 11 14 17 20 23 26 29

47 11 14 17 20 23 26 29 32 35 38 41 44 47

48 60 63 66 69 72 75 78 2 5 8 11 14 17

49 80 4 7 10 13 16 19 22 25 28 31 34 37

50 47 50 53 56 59 62 65 68 71 74 77 80 4

51 22 25 28 31 34 37 40 43 46 49 52 55 58

52 75 78 2 5 8 11 14 17 20 23 26 29 32

53 66 69 72 75 78 2 5 8 11 14 17 20 23

54 41 44 47 50 53 56 59 62 65 68 71 74 77

55 15 18 21 24 27 30 33 36 39 42 45 48 51

56 35 38 41 44 47 50 53 56 59 62 65 68 71

57 67 70 73 76 79 3 6 9 12 15 18 21 24

58 52 55 58 61 64 67 70 73 76 79 3 6 9

59 58 61 64 67 70 73 76 79 3 6 9 12 15

60 44 47 50 53 56 59 62 65 68 71 74 77 80

61 50 53 56 59 62 65 68 71 74 77 80 4 7

62 17 20 23 26 29 32 35 38 41 44 47 50 53

63 7 10 13 16 19 22 25 28 31 34 37 40 43

64 19 22 25 28 31 34 37 40 43 46 49 52 55

65 8 11 14 17 20 23 26 29 32 35 38 41 44

66 69 72 75 78 2 5 8 11 14 17 20 23 26

67 51 54 57 60 63 66 69 72 75 78 2 5 8

68 42 45 48 51 54 57 60 63 66 69 72 75 78

69 3 6 9 12 15 18 21 24 27 30 33 36 39

70 30 33 36 39 42 45 48 51 54 57 60 63 66

71 57 60 63 66 69 72 75 78 2 5 8 11 14

72 37 40 43 46 49 52 55 58 61 64 67 70 73

73 55 58 61 64 67 70 73 76 79 3 6 9 12

74 26 29 32 35 38 41 44 47 50 53 56 59 62

75 46 49 52 55 58 61 64 67 70 73 76 79 3

76 53 56 59 62 65 68 71 74 77 80 4 7 10

77 40 43 46 49 52 55 58 61 64 67 70 73 76

78 32 35 38 41 44 47 50 53 56 59 62 65 68

79 48 51 54 57 60 63 66 69 72 75 78 2 5

Table B.1ÑHopping sequence set 1 (continued)

294 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

index 39 42 45 48 51 54 57 60 63 66 69 72 75

1 41 44 47 50 53 56 59 62 65 68 71 74 77

2 64 67 70 73 76 79 3 6 9 12 15 18 21

3 24 27 30 33 36 39 42 45 48 51 54 57 60

4 49 52 55 58 61 64 67 70 73 76 79 3 6

5 5 8 11 14 17 20 23 26 29 32 35 38 41

6 57 60 63 66 69 72 75 78 2 5 8 11 14

7 33 36 39 42 45 48 51 54 57 60 63 66 69

8 9 12 15 18 21 24 27 30 33 36 39 42 45

9 60 63 66 69 72 75 78 2 5 8 11 14 17

10 23 26 29 32 35 38 41 44 47 50 53 56 59

11 38 41 44 47 50 53 56 59 62 65 68 71 74

12 70 73 76 79 3 6 9 12 15 18 21 24 27

13 21 24 27 30 33 36 39 42 45 48 51 54 57

14 63 66 69 72 75 78 2 5 8 11 14 17 20

15 14 17 20 23 26 29 32 35 38 41 44 47 50

16 25 28 31 34 37 40 43 46 49 52 55 58 61

17 67 70 73 76 79 3 6 9 12 15 18 21 24

18 39 42 45 48 51 54 57 60 63 66 69 72 75

19 72 75 78 2 5 8 11 14 17 20 23 26 29

20 43 46 49 52 55 58 61 64 67 70 73 76 79

21 59 62 65 68 71 74 77 80 4 7 10 13 16

22 52 55 58 61 64 67 70 73 76 79 3 6 9

23 77 80 4 7 10 13 16 19 22 25 28 31 34

24 34 37 40 43 46 49 52 55 58 61 64 67 70

25 16 19 22 25 28 31 34 37 40 43 46 49 52

26 31 34 37 40 43 46 49 52 55 58 61 64 67

27 62 65 68 71 74 77 80 4 7 10 13 16 19

28 44 47 50 53 56 59 62 65 68 71 74 77 80

29 78 2 5 8 11 14 17 20 23 26 29 32 35

30 51 54 57 60 63 66 69 72 75 78 2 5 8

31 75 78 2 5 8 11 14 17 20 23 26 29 32

32 28 31 34 37 40 43 46 49 52 55 58 61 64

33 48 51 54 57 60 63 66 69 72 75 78 2 5

34 30 33 36 39 42 45 48 51 54 57 60 63 66

35 37 40 43 46 49 52 55 58 61 64 67 70 73

36 45 48 51 54 57 60 63 66 69 72 75 78 2

37 22 25 28 31 34 37 40 43 46 49 52 55 58

38 68 71 74 77 80 4 7 10 13 16 19 22 25

39 53 56 59 62 65 68 71 74 77 80 4 7 10

Table B.1ÑHopping sequence set 1 (continued)

Copyright © 1997 IEEE. All rights reserved. 295

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

index 39 42 45 48 51 54 57 60 63 66 69 72 75

40 66 69 72 75 78 2 5 8 11 14 17 20 23

41 55 58 61 64 67 70 73 76 79 3 6 9 12

42 19 22 25 28 31 34 37 40 43 46 49 52 55

43 3 6 9 12 15 18 21 24 27 30 33 36 39

44 36 39 42 45 48 51 54 57 60 63 66 69 72

45 73 76 79 3 6 9 12 15 18 21 24 27 30

46 32 35 38 41 44 47 50 53 56 59 62 65 68

47 50 53 56 59 62 65 68 71 74 77 80 4 7

48 20 23 26 29 32 35 38 41 44 47 50 53 56

49 40 43 46 49 52 55 58 61 64 67 70 73 76

50 7 10 13 16 19 22 25 28 31 34 37 40 43

51 61 64 67 70 73 76 79 3 6 9 12 15 18

52 35 38 41 44 47 50 53 56 59 62 65 68 71

53 26 29 32 35 38 41 44 47 50 53 56 59 62

54 80 4 7 10 13 16 19 22 25 28 31 34 37

55 54 57 60 63 66 69 72 75 78 2 5 8 11

56 74 77 80 4 7 10 13 16 19 22 25 28 31

57 27 30 33 36 39 42 45 48 51 54 57 60 63

58 12 15 18 21 24 27 30 33 36 39 42 45 48

59 18 21 24 27 30 33 36 39 42 45 48 51 54

60 4 7 10 13 16 19 22 25 28 31 34 37 40

61 10 13 16 19 22 25 28 31 34 37 40 43 46

62 56 59 62 65 68 71 74 77 80 4 7 10 13

63 46 49 52 55 58 61 64 67 70 73 76 79 3

64 58 61 64 67 70 73 76 79 3 6 9 12 15

65 47 50 53 56 59 62 65 68 71 74 77 80 4

66 29 32 35 38 41 44 47 50 53 56 59 62 65

67 11 14 17 20 23 26 29 32 35 38 41 44 47

68 2 5 8 11 14 17 20 23 26 29 32 35 38

69 42 45 48 51 54 57 60 63 66 69 72 75 78

70 69 72 75 78 2 5 8 11 14 17 20 23 26

71 17 20 23 26 29 32 35 38 41 44 47 50 53

72 76 79 3 6 9 12 15 18 21 24 27 30 33

73 15 18 21 24 27 30 33 36 39 42 45 48 51

74 65 68 71 74 77 80 4 7 10 13 16 19 22

75 6 9 12 15 18 21 24 27 30 33 36 39 42

76 13 16 19 22 25 28 31 34 37 40 43 46 49

77 79 3 6 9 12 15 18 21 24 27 30 33 36

78 71 74 77 80 4 7 10 13 16 19 22 25 28

79 8 11 14 17 20 23 26 29 32 35 38 41 44

Table B.1ÑHopping sequence set 1 (continued)

296 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Table B.2ÑHopping sequence set 2

index 1 4 7 10 13 16 19 22 25 28 31 34 37

1 3 6 9 12 15 18 21 24 27 30 33 36 39

2 26 29 32 35 38 41 44 47 50 53 56 59 62

3 65 68 71 74 77 80 4 7 10 13 16 19 22

4 11 14 17 20 23 26 29 32 35 38 41 44 47

5 46 49 52 55 58 61 64 67 70 73 76 79 3

6 19 22 25 28 31 34 37 40 43 46 49 52 55

7 74 77 80 4 7 10 13 16 19 22 25 28 31

8 50 53 56 59 62 65 68 71 74 77 80 4 7

9 22 25 28 31 34 37 40 43 46 49 52 55 58

10 64 67 70 73 76 79 3 6 9 12 15 18 21

11 79 3 6 9 12 15 18 21 24 27 30 33 36

12 32 35 38 41 44 47 50 53 56 59 62 65 68

13 62 65 68 71 74 77 80 4 7 10 13 16 19

14 25 28 31 34 37 40 43 46 49 52 55 58 61

15 55 58 61 64 67 70 73 76 79 3 6 9 12

16 66 69 72 75 78 2 5 8 11 14 17 20 23

17 29 32 35 38 41 44 47 50 53 56 59 62 65

18 80 4 7 10 13 16 19 22 25 28 31 34 37

19 34 37 40 43 46 49 52 55 58 61 64 67 70

20 5 8 11 14 17 20 23 26 29 32 35 38 41

21 21 24 27 30 33 36 39 42 45 48 51 54 57

22 14 17 20 23 26 29 32 35 38 41 44 47 50

23 39 42 45 48 51 54 57 60 63 66 69 72 75

24 75 78 2 5 8 11 14 17 20 23 26 29 32

25 57 60 63 66 69 72 75 78 2 5 8 11 14

26 72 75 78 2 5 8 11 14 17 20 23 26 29

27 24 27 30 33 36 39 42 45 48 51 54 57 60

28 6 9 12 15 18 21 24 27 30 33 36 39 42

29 40 43 46 49 52 55 58 61 64 67 70 73 76

30 13 16 19 22 25 28 31 34 37 40 43 46 49

31 37 40 43 46 49 52 55 58 61 64 67 70 73

32 69 72 75 78 2 5 8 11 14 17 20 23 26

33 10 13 16 19 22 25 28 31 34 37 40 43 46

34 71 74 77 80 4 7 10 13 16 19 22 25 28

35 78 2 5 8 11 14 17 20 23 26 29 32 35

36 7 10 13 16 19 22 25 28 31 34 37 40 43

37 63 66 69 72 75 78 2 5 8 11 14 17 20

38 30 33 36 39 42 45 48 51 54 57 60 63 66

39 15 18 21 24 27 30 33 36 39 42 45 48 51

Copyright © 1997 IEEE. All rights reserved. 297

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

index 1 4 7 10 13 16 19 22 25 28 31 34 37

40 28 31 34 37 40 43 46 49 52 55 58 61 64

41 17 20 23 26 29 32 35 38 41 44 47 50 53

42 60 63 66 69 72 75 78 2 5 8 11 14 17

43 44 47 50 53 56 59 62 65 68 71 74 77 80

44 77 80 4 7 10 13 16 19 22 25 28 31 34

45 35 38 41 44 47 50 53 56 59 62 65 68 71

46 73 76 79 3 6 9 12 15 18 21 24 27 30

47 12 15 18 21 24 27 30 33 36 39 42 45 48

48 61 64 67 70 73 76 79 3 6 9 12 15 18

49 2 5 8 11 14 17 20 23 26 29 32 35 38

50 48 51 54 57 60 63 66 69 72 75 78 2 5

51 23 26 29 32 35 38 41 44 47 50 53 56 59

52 76 79 3 6 9 12 15 18 21 24 27 30 33

53 67 70 73 76 79 3 6 9 12 15 18 21 24

54 42 45 48 51 54 57 60 63 66 69 72 75 78

55 16 19 22 25 28 31 34 37 40 43 46 49 52

56 36 39 42 45 48 51 54 57 60 63 66 69 72

57 68 71 74 77 80 4 7 10 13 16 19 22 25

58 53 56 59 62 65 68 71 74 77 80 4 7 10

59 59 62 65 68 71 74 77 80 4 7 10 13 16

60 45 48 51 54 57 60 63 66 69 72 75 78 2

61 51 54 57 60 63 66 69 72 75 78 2 5 8

62 18 21 24 27 30 33 36 39 42 45 48 51 54

63 8 11 14 17 20 23 26 29 32 35 38 41 44

64 20 23 26 29 32 35 38 41 44 47 50 53 56

65 9 12 15 18 21 24 27 30 33 36 39 42 45

66 70 73 76 79 3 6 9 12 15 18 21 24 27

67 52 55 58 61 64 67 70 73 76 79 3 6 9

68 43 46 49 52 55 58 61 64 67 70 73 76 79

69 4 7 10 13 16 19 22 25 28 31 34 37 40

70 31 34 37 40 43 46 49 52 55 58 61 64 67

71 58 61 64 67 70 73 76 79 3 6 9 12 15

72 38 41 44 47 50 53 56 59 62 65 68 71 74

73 56 59 62 65 68 71 74 77 80 4 7 10 13

74 27 30 33 36 39 42 45 48 51 54 57 60 63

75 47 50 53 56 59 62 65 68 71 74 77 80 4

76 54 57 60 63 66 69 72 75 78 2 5 8 11

77 41 44 47 50 53 56 59 62 65 68 71 74 77

78 33 36 39 42 45 48 51 54 57 60 63 66 69

79 49 52 55 58 61 64 67 70 73 76 79 3 6

Table B.2ÑHopping sequence set 2 (continued)

298 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

index 40 43 46 49 52 55 58 61 64 67 70 73 76

1 42 45 48 51 54 57 60 63 66 69 72 75 78

2 65 68 71 74 77 80 4 7 10 13 16 19 22

3 25 28 31 34 37 40 43 46 49 52 55 58 61

4 50 53 56 59 62 65 68 71 74 77 80 4 7

5 6 9 12 15 18 21 24 27 30 33 36 39 42

6 58 61 64 67 70 73 76 79 3 6 9 12 15

7 34 37 40 43 46 49 52 55 58 61 64 67 70

8 10 13 16 19 22 25 28 31 34 37 40 43 46

9 61 64 67 70 73 76 79 3 6 9 12 15 18

10 24 27 30 33 36 39 42 45 48 51 54 57 60

11 39 42 45 48 51 54 57 60 63 66 69 72 75

12 71 74 77 80 4 7 10 13 16 19 22 25 28

13 22 25 28 31 34 37 40 43 46 49 52 55 58

14 64 67 70 73 76 79 3 6 9 12 15 18 21

15 15 18 21 24 27 30 33 36 39 42 45 48 51

16 26 29 32 35 38 41 44 47 50 53 56 59 62

17 68 71 74 77 80 4 7 10 13 16 19 22 25

18 40 43 46 49 52 55 58 61 64 67 70 73 76

19 73 76 79 3 6 9 12 15 18 21 24 27 30

20 44 47 50 53 56 59 62 65 68 71 74 77 80

21 60 63 66 69 72 75 78 2 5 8 11 14 17

22 53 56 59 62 65 68 71 74 77 80 4 7 10

23 78 2 5 8 11 14 17 20 23 26 29 32 35

24 35 38 41 44 47 50 53 56 59 62 65 68 71

25 17 20 23 26 29 32 35 38 41 44 47 50 53

26 32 35 38 41 44 47 50 53 56 59 62 65 68

27 63 66 69 72 75 78 2 5 8 11 14 17 20

28 45 48 51 54 57 60 63 66 69 72 75 78 2

29 79 3 6 9 12 15 18 21 24 27 30 33 36

30 52 55 58 61 64 67 70 73 76 79 3 6 9

31 76 79 3 6 9 12 15 18 21 24 27 30 33

32 29 32 35 38 41 44 47 50 53 56 59 62 65

33 49 52 55 58 61 64 67 70 73 76 79 3 6

34 31 34 37 40 43 46 49 52 55 58 61 64 67

35 38 41 44 47 50 53 56 59 62 65 68 71 74

36 46 49 52 55 58 61 64 67 70 73 76 79 3

37 23 26 29 32 35 38 41 44 47 50 53 56 59

38 69 72 75 78 2 5 8 11 14 17 20 23 26

39 54 57 60 63 66 69 72 75 78 2 5 8 11

Table B.2ÑHopping sequence set 2 (continued)

Copyright © 1997 IEEE. All rights reserved. 299

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

index 40 43 46 49 52 55 58 61 64 67 70 73 76

40 67 70 73 76 79 3 6 9 12 15 18 21 24

41 56 59 62 65 68 71 74 77 80 4 7 10 13

42 20 23 26 29 32 35 38 41 44 47 50 53 56

43 4 7 10 13 16 19 22 25 28 31 34 37 40

44 37 40 43 46 49 52 55 58 61 64 67 70 73

45 74 77 80 4 7 10 13 16 19 22 25 28 31

46 33 36 39 42 45 48 51 54 57 60 63 66 69

47 51 54 57 60 63 66 69 72 75 78 2 5 8

48 21 24 27 30 33 36 39 42 45 48 51 54 57

49 41 44 47 50 53 56 59 62 65 68 71 74 77

50 8 11 14 17 20 23 26 29 32 35 38 41 44

51 62 65 68 71 74 77 80 4 7 10 13 16 19

52 36 39 42 45 48 51 54 57 60 63 66 69 72

53 27 30 33 36 39 42 45 48 51 54 57 60 63

54 2 5 8 11 14 17 20 23 26 29 32 35 38

55 55 58 61 64 67 70 73 76 79 3 6 9 12

56 75 78 2 5 8 11 14 17 20 23 26 29 32

57 28 31 34 37 40 43 46 49 52 55 58 61 64

58 13 16 19 22 25 28 31 34 37 40 43 46 49

59 19 22 25 28 31 34 37 40 43 46 49 52 55

60 5 8 11 14 17 20 23 26 29 32 35 38 41

61 11 14 17 20 23 26 29 32 35 38 41 44 47

62 57 60 63 66 69 72 75 78 2 5 8 11 14

63 47 50 53 56 59 62 65 68 71 74 77 80 4

64 59 62 65 68 71 74 77 80 4 7 10 13 16

65 48 51 54 57 60 63 66 69 72 75 78 2 5

66 30 33 36 39 42 45 48 51 54 57 60 63 66

67 12 15 18 21 24 27 30 33 36 39 42 45 48

68 3 6 9 12 15 18 21 24 27 30 33 36 39

69 43 46 49 52 55 58 61 64 67 70 73 76 79

70 70 73 76 79 3 6 9 12 15 18 21 24 27

71 18 21 24 27 30 33 36 39 42 45 48 51 54

72 77 80 4 7 10 13 16 19 22 25 28 31 34

73 16 19 22 25 28 31 34 37 40 43 46 49 52

74 66 69 72 75 78 2 5 8 11 14 17 20 23

75 7 10 13 16 19 22 25 28 31 34 37 40 43

76 14 17 20 23 26 29 32 35 38 41 44 47 50

77 80 4 7 10 13 16 19 22 25 28 31 34 37

78 72 75 78 2 5 8 11 14 17 20 23 26 29

79 9 12 15 18 21 24 27 30 33 36 39 42 45

Table B.2ÑHopping sequence set 2 (continued)

300 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Table B.3ÑHopping sequence set 3

index 2 5 8 11 14 17 20 23 26 29 32 35 38

1 4 7 10 13 16 19 22 25 28 31 34 37 40

2 27 30 33 36 39 42 45 48 51 54 57 60 63

3 66 69 72 75 78 2 5 8 11 14 17 20 23

4 12 15 18 21 24 27 30 33 36 39 42 45 48

5 47 50 53 56 59 62 65 68 71 74 77 80 4

6 20 23 26 29 32 35 38 41 44 47 50 53 56

7 75 78 2 5 8 11 14 17 20 23 26 29 32

8 51 54 57 60 63 66 69 72 75 78 2 5 8

9 23 26 29 32 35 38 41 44 47 50 53 56 59

10 65 68 71 74 77 80 4 7 10 13 16 19 22

11 80 4 7 10 13 16 19 22 25 28 31 34 37

12 33 36 39 42 45 48 51 54 57 60 63 66 69

13 63 66 69 72 75 78 2 5 8 11 14 17 20

14 26 29 32 35 38 41 44 47 50 53 56 59 62

15 56 59 62 65 68 71 74 77 80 4 7 10 13

16 67 70 73 76 79 3 6 9 12 15 18 21 24

17 30 33 36 39 42 45 48 51 54 57 60 63 66

18 2 5 8 11 14 17 20 23 26 29 32 35 38

19 35 38 41 44 47 50 53 56 59 62 65 68 71

20 6 9 12 15 18 21 24 27 30 33 36 39 42

21 22 25 28 31 34 37 40 43 46 49 52 55 58

22 15 18 21 24 27 30 33 36 39 42 45 48 51

23 40 43 46 49 52 55 58 61 64 67 70 73 76

24 76 79 3 6 9 12 15 18 21 24 27 30 33

25 58 61 64 67 70 73 76 79 3 6 9 12 15

26 73 76 79 3 6 9 12 15 18 21 24 27 30

27 25 28 31 34 37 40 43 46 49 52 55 58 61

28 7 10 13 16 19 22 25 28 31 34 37 40 43

29 41 44 47 50 53 56 59 62 65 68 71 74 77

30 14 17 20 23 26 29 32 35 38 41 44 47 50

31 38 41 44 47 50 53 56 59 62 65 68 71 74

32 70 73 76 79 3 6 9 12 15 18 21 24 27

33 11 14 17 20 23 26 29 32 35 38 41 44 47

34 72 75 78 2 5 8 11 14 17 20 23 26 29

35 79 3 6 9 12 15 18 21 24 27 30 33 36

36 8 11 14 17 20 23 26 29 32 35 38 41 44

37 64 67 70 73 76 79 3 6 9 12 15 18 21

38 31 34 37 40 43 46 49 52 55 58 61 64 67

39 16 19 22 25 28 31 34 37 40 43 46 49 52

Copyright © 1997 IEEE. All rights reserved. 301

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

index 2 5 8 11 14 17 20 23 26 29 32 35 38

40 29 32 35 38 41 44 47 50 53 56 59 62 65

41 18 21 24 27 30 33 36 39 42 45 48 51 54

42 61 64 67 70 73 76 79 3 6 9 12 15 18

43 45 48 51 54 57 60 63 66 69 72 75 78 2

44 78 2 5 8 11 14 17 20 23 26 29 32 35

45 36 39 42 45 48 51 54 57 60 63 66 69 72

46 74 77 80 4 7 10 13 16 19 22 25 28 31

47 13 16 19 22 25 28 31 34 37 40 43 46 49

48 62 65 68 71 74 77 80 4 7 10 13 16 19

49 3 6 9 12 15 18 21 24 27 30 33 36 39

50 49 52 55 58 61 64 67 70 73 76 79 3 6

51 24 27 30 33 36 39 42 45 48 51 54 57 60

52 77 80 4 7 10 13 16 19 22 25 28 31 34

53 68 71 74 77 80 4 7 10 13 16 19 22 25

54 43 46 49 52 55 58 61 64 67 70 73 76 79

55 17 20 23 26 29 32 35 38 41 44 47 50 53

56 37 40 43 46 49 52 55 58 61 64 67 70 73

57 69 72 75 78 2 5 8 11 14 17 20 23 26

58 54 57 60 63 66 69 72 75 78 2 5 8 11

59 60 63 66 69 72 75 78 2 5 8 11 14 17

60 46 49 52 55 58 61 64 67 70 73 76 79 3

61 52 55 58 61 64 67 70 73 76 79 3 6 9

62 19 22 25 28 31 34 37 40 43 46 49 52 55

63 9 12 15 18 21 24 27 30 33 36 39 42 45

64 21 24 27 30 33 36 39 42 45 48 51 54 57

65 10 13 16 19 22 25 28 31 34 37 40 43 46

66 71 74 77 80 4 7 10 13 16 19 22 25 28

67 53 56 59 62 65 68 71 74 77 80 4 7 10

68 44 47 50 53 56 59 62 65 68 71 74 77 80

69 5 8 11 14 17 20 23 26 29 32 35 38 41

70 32 35 38 41 44 47 50 53 56 59 62 65 68

71 59 62 65 68 71 74 77 80 4 7 10 13 16

72 39 42 45 48 51 54 57 60 63 66 69 72 75

73 57 60 63 66 69 72 75 78 2 5 8 11 14

74 28 31 34 37 40 43 46 49 52 55 58 61 64

75 48 51 54 57 60 63 66 69 72 75 78 2 5

76 55 58 61 64 67 70 73 76 79 3 6 9 12

77 42 45 48 51 54 57 60 63 66 69 72 75 78

78 34 37 40 43 46 49 52 55 58 61 64 67 70

79 50 53 56 59 62 65 68 71 74 77 80 4 7

Table B.3ÑHopping sequence set 3 (continued)

302 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

index 41 44 47 50 53 56 59 62 65 68 71 74 77

1 43 46 49 52 55 58 61 64 67 70 73 76 79

2 66 69 72 75 78 2 5 8 11 14 17 20 23

3 26 29 32 35 38 41 44 47 50 53 56 59 62

4 51 54 57 60 63 66 69 72 75 78 2 5 8

5 7 10 13 16 19 22 25 28 31 34 37 40 43

6 59 62 65 68 71 74 77 80 4 7 10 13 16

7 35 38 41 44 47 50 53 56 59 62 65 68 71

8 11 14 17 20 23 26 29 32 35 38 41 44 47

9 62 65 68 71 74 77 80 4 7 10 13 16 19

10 25 28 31 34 37 40 43 46 49 52 55 58 61

11 40 43 46 49 52 55 58 61 64 67 70 73 76

12 72 75 78 2 5 8 11 14 17 20 23 26 29

13 23 26 29 32 35 38 41 44 47 50 53 56 59

14 65 68 71 74 77 80 4 7 10 13 16 19 22

15 16 19 22 25 28 31 34 37 40 43 46 49 52

16 27 30 33 36 39 42 45 48 51 54 57 60 63

17 69 72 75 78 2 5 8 11 14 17 20 23 26

18 41 44 47 50 53 56 59 62 65 68 71 74 77

19 74 77 80 4 7 10 13 16 19 22 25 28 31

20 45 48 51 54 57 60 63 66 69 72 75 78 2

21 61 64 67 70 73 76 79 3 6 9 12 15 18

22 54 57 60 63 66 69 72 75 78 2 5 8 11

23 79 3 6 9 12 15 18 21 24 27 30 33 36

24 36 39 42 45 48 51 54 57 60 63 66 69 72

25 18 21 24 27 30 33 36 39 42 45 48 51 54

26 33 36 39 42 45 48 51 54 57 60 63 66 69

27 64 67 70 73 76 79 3 6 9 12 15 18 21

28 46 49 52 55 58 61 64 67 70 73 76 79 3

29 80 4 7 10 13 16 19 22 25 28 31 34 37

30 53 56 59 62 65 68 71 74 77 80 4 7 10

31 77 80 4 7 10 13 16 19 22 25 28 31 34

32 30 33 36 39 42 45 48 51 54 57 60 63 66

33 50 53 56 59 62 65 68 71 74 77 80 4 7

34 32 35 38 41 44 47 50 53 56 59 62 65 68

35 39 42 45 48 51 54 57 60 63 66 69 72 75

36 47 50 53 56 59 62 65 68 71 74 77 80 4

37 24 27 30 33 36 39 42 45 48 51 54 57 60

38 70 73 76 79 3 6 9 12 15 18 21 24 27

39 55 58 61 64 67 70 73 76 79 3 6 9 12

Table B.3ÑHopping sequence set 3 (continued)

Copyright © 1997 IEEE. All rights reserved. 303

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

index 41 44 47 50 53 56 59 62 65 68 71 74 77

40 68 71 74 77 80 4 7 10 13 16 19 22 25

41 57 60 63 66 69 72 75 78 2 5 8 11 14

42 21 24 27 30 33 36 39 42 45 48 51 54 57

43 5 8 11 14 17 20 23 26 29 32 35 38 41

44 38 41 44 47 50 53 56 59 62 65 68 71 74

45 75 78 2 5 8 11 14 17 20 23 26 29 32

46 34 37 40 43 46 49 52 55 58 61 64 67 70

47 52 55 58 61 64 67 70 73 76 79 3 6 9

48 22 25 28 31 34 37 40 43 46 49 52 55 58

49 42 45 48 51 54 57 60 63 66 69 72 75 78

50 9 12 15 18 21 24 27 30 33 36 39 42 45

51 63 66 69 72 75 78 2 5 8 11 14 17 20

52 37 40 43 46 49 52 55 58 61 64 67 70 73

53 28 31 34 37 40 43 46 49 52 55 58 61 64

54 3 6 9 12 15 18 21 24 27 30 33 36 39

55 56 59 62 65 68 71 74 77 80 4 7 10 13

56 76 79 3 6 9 12 15 18 21 24 27 30 33

57 29 32 35 38 41 44 47 50 53 56 59 62 65

58 14 17 20 23 26 29 32 35 38 41 44 47 50

59 20 23 26 29 32 35 38 41 44 47 50 53 56

60 6 9 12 15 18 21 24 27 30 33 36 39 42

61 12 15 18 21 24 27 30 33 36 39 42 45 48

62 58 61 64 67 70 73 76 79 3 6 9 12 15

63 48 51 54 57 60 63 66 69 72 75 78 2 5

64 60 63 66 69 72 75 78 2 5 8 11 14 17

65 49 52 55 58 61 64 67 70 73 76 79 3 6

66 31 34 37 40 43 46 49 52 55 58 61 64 67

67 13 16 19 22 25 28 31 34 37 40 43 46 49

68 4 7 10 13 16 19 22 25 28 31 34 37 40

69 44 47 50 53 56 59 62 65 68 71 74 77 80

70 71 74 77 80 4 7 10 13 16 19 22 25 28

71 19 22 25 28 31 34 37 40 43 46 49 52 55

72 78 2 5 8 11 14 17 20 23 26 29 32 35

73 17 20 23 26 29 32 35 38 41 44 47 50 53

74 67 70 73 76 79 3 6 9 12 15 18 21 24

75 8 11 14 17 20 23 26 29 32 35 38 41 44

76 15 18 21 24 27 30 33 36 39 42 45 48 51

77 2 5 8 11 14 17 20 23 26 29 32 35 38

78 73 76 79 3 6 9 12 15 18 21 24 27 30

79 10 13 16 19 22 25 28 31 34 37 40 43 46

Table B.3ÑHopping sequence set 3 (continued)

304 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Copyright © 1997 IEEE. All rights reserved. 305

IEEE
Std 802.11-1997

Annex C

(normative)

Formal description of MAC operation

This annex contains formal descriptions of the behavior of MAC station (STA) and access point (AP) enti-
ties. These descriptions also describe the frame formats and the generation and interpretation of information
encoded in MAC frames, in the parameters of service primitives supported by the MAC, and in MIB
attributes used or generated by the MAC. The MAC is described using the 1992 version of the ITU SpeciÞ-
cation and Description Language (SDL-92). SDL-92 is deÞned in ITU-T Recommendation Z.100 (03/93).
An update to Z.100 was approved in 1996 (SDL-96), but none of the SDL facilities used in this annex were
modiÞed. An introduction to the MAC formal description is provided in Clause C.1. DeÞnitions of the data
types and operators used by the MAC state machines are provided in Clause C.2. An SDL system describing
MAC operation at an IEEE 802.11 station is contained in Clause C.3. Finally, a subset of an SDL system
describing the aspects of MAC operation at an IEEE 802.11 AP that differ from operation at a non-AP sta-
tion is provided in Clause C.4.

In Annex D, the MAC and PHY management information bases are described in Abstract Syntax Notation
One (ASN.1), deÞned in ISO/IEC 8824 and ISO/IEC 8825. ITU-T Recommendation Z.105 (03/95) deÞnes
the use of SDL in conjunction with ASN.1, allowing system behavior to be deÞned using SDL and data
types to be deÞned using ASN.1. Incomplete tool support precluded the use of Z.105 in this annex. However,
within the limits of Z.100, the data types in Clause C.2 are deÞned in a similar manner to Z.105. Annex E
contains a listing of available documentation.

NOTES

1ÑSoftware for generating, analyzing, verifying, and simulating SDL system descriptions is available from several
sources. The SDL code in this annex was generated using SDT/PC version 3.02; from Telelogic AB, Malmo, Sweden
(+46-40-174700; internet: telelogic.se); USA ofÞce in Princeton, NJ (+1-609-520-1935; internet: telelogic.com). Telel-
ogic offers SDT for several workstation platforms in addition to SDT/PC.

2ÑThe SDL deÞnitions in this annex should be usable with any SDL tool that supports the 1993 version or 1996 update
of Recommendation Z.100. The use of TelelogicÕs product to prepare this annex does not constitute an endorsement of
SDT by the IEEE LAN/MAN Standards Committee or by the IEEE.

2ÑThe diagrams on the next two pages show most of the symbols of SDL graphical syntax (SDL-GR) used in the MAC
formal description. The symbols in these diagrams have labels and comments that explain their meanings. These dia-
grams are intended to serve as a legend for the SDL-GR symbols that comprise most of the process interaction and state
transition diagrams. These diagrams are neither a complete SDL system, nor a complete presentation of SDL-GR sym-
bology. Also, this state machine fragment exists to illustrate the SDL graphical syntax, and does not describe any useful
behavior.

306 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Block Interaction_Page_Legend 1a(1)

operator

Block_Z
This is a block reference symbol.
Blocks are the fundamental unit of lexical
scope and structural hierarchy. Each block
contains other blocks and/or processes,
procedures and data declarations.

Process_A (1,1)
After the process name
is the number of process
instances at startup and
the maximum number of
instances. For processes
created dynamically, the
dashed arrow connects
the parent process to
the offspring process.

This is a process reference symbol.
Processes specify dynamic behavior using
extended finite state machines. Processes
operate concurrently, communicating by means
of signals and remote variables (import/export).

Process_B (0,max) Process_C (1,1)

The connection point name
where a signal route hits the
block boundary identifies the
continuation of that signal
route in the enclosing block.

Procedure_Name

This is a procedure reference symbol.
A procedure is defined and called in the process where this
symbol appears. If declared "remote" the procedure may be
imported for calling from other processes. A value-returning
procedure, callable in assignment statements, is defined using
the "returns" keyword in the formal parameter list.

Operator_Name

This is an operator reference symbol.
Operators for custom sorts may be defined axiomatically or
algorithmically. An algorithmic operator is similar to a
value-returning procedure, except the operator does not use
states nor outputs, and does not modify its source operands.

Unidirectional_
SignalRoute

Signal5

Bidirectional_
SignalRoute

Signal3,
Signal4

Signal1,
Signal2

SignalRoute_
OutOfBlock

Signal3Signal2,
Signal6

PT

Copyright © 1997 IEEE. All rights reserved. 307

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process State_Machine_Legend 1a(1)

/* This is a text symbol, used to hold
data type (sort) definitions, declarations,
signal lists, and other SDL statements that
have no graphical representation. */ *

* in a state symbol
means all states
except those listed

signal_z
'when in
any state'

'actions in
response to
signal_z'

-

- in a state symbol
refers to the state
from which the
transition began.

*
(state_x,
state_y)

error_signal
'all states
except x,y'

'actions to
recover from

error'

state_N

Process Start symbol
(One per process,
contains no text.)

State_1
State symbol, arrowhead
indicates transition(s)
entering the state.

signal_A
Input symbol with wedge on left
side used for signals from LLC,
SME, self, and others logically
above or parallel to this process.

State_2
The transition taken when multiple
inputs follow a state is determined
by the first of the named signals to
reach the head of the input queue.

signal_A,
signal_B

'task symbol
for algorithmic
process steps'

'start timer'
set(end_time,

timer)

'call'
procedure
(parms)

State_3

signal_A,
signal_K

'call'
macro

(parms)

State_2

*
(signal_B)

A signal at head of the process
input queue that is not named
in any of the state's input
symbols is discarded unless
named in a Save symbol attached
to the state. * Save refers
to all remaining signal names.

signal_C,
signal_D,

signal_E
'text extension
symbol, holds
overflow text'

conditional_
expression

This transition is
able to begin only
when its Enabling
Condition is true.

'stop timer'
reset(timer)

decision
criterion

Label

Process Stop
symbol

signal_G
Input symbol with wedge on right
side used for signals from PHY &
others logically below this process.

out_sig_1
Output symbol with point to left
side used for signals to LLC,
SME, self, and others logically
above or parallel to this process.

process
(parms)

Create Request symbol used for
dynamic creation of an instance
of the specified process type.

out_sig_2
Output symbol with point to right
side used for signals to PHY &
others logically below this process.

State_4

signal_F

-

priority_
signal

A Priority Input symbol enables its
transition if the named signal is
anywhere in the process input queue.

Next_State

other_signal

Label

 result_1

result_2

308 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

C.1 Introduction to the MAC formal description

This formal description deÞnes the behavior of IEEE 802.11 MAC entities. The MAC protocol functional
decomposition used herein facilitates explicit description of the reference points and durations of the various
timed intervals; the bases for generation and/or validation of header Þelds, service parameters, and MIB
attributes; and the interpretation of each value in cases where enumerated data types are used in service
parameters.

C.1.1 Fundamental assumptions

The MAC protocol is described as an SDL system, which is a set of extended Þnite state machines. Each
state machine is a set of independent processes, all of which operate concurrently. All variable data-holding
entities and procedures exist solely within the context of a single process. In SDL all interprocess communi-
cation is done with signals (there are no global variables). Signals may be sent and received explicitly, using
SDLÕs output and input symbols, or implicitly, using SDLÕs export/import mechanism (only if the variables
or procedures are declared ÒremoteÓ). By default, signals incur delays when traversing channels between
blocks; however, only nondelaying channels and signal routes are used in the MAC state machines, and all
remote variables and procedures are declared with the ÒnodelayÓ property.

State transitions, procedure calls, and tasks (assignment statements and other algorithmic processing steps)
are assumed to require zero time. This permits the time intervals that are part of the normative MAC behav-
ior to be deÞned explicitly, using SDL timers. One unit of system time (a 1.0 change in the value of ÒnowÓ)
is assumed to represent one microsecond of real time. Usec (microsecond) and TU (time unit) data types are
deÞned, with operators to convert Usec and TU values to SDL time or duration when necessary.

The SDL system boundary encloses the MAC entities. The LLC, SME, PHY, and distribution system are
part of the environment. SDL generally assumes that entities in the environment operate as speciÞed; how-
ever, the MAC state machines that communicate with the various SAPs attempt to validate inputs from the
environment, and to handle cases where a pair of communicating entities, one within the system and the
other outside the system boundary, have different local views of the medium, station, or service state. All sta-
tions in an IEEE 802.11 service set are assumed to exhibit the behaviors described herein. Nevertheless,
because of the open nature of the wireless medium, the MAC state machines check for error cases that can
arise only when an entity on the wireless medium is transmitting IEEE 802.11 PDUs, but is not obeying the
communication protocols speciÞed by this standard.

C.1.2 Notation conventions

When practical, names used in the clauses of this standard are spelled identically in this annex. The principal
exceptions are those names that conßict with one of SDLÕs reserved words (such as power management
mode ÒactiveÓ is renamed Òsta_activeÓ in SDL). To help Þt the SDL text into the graphic symbols, acronyms
with multiple, sequential capital letters are written with only the Þrst letter capitalized (e.g., ÒMSDUÓ is
written ÒMsduÓ and ÒMLMEJoin.requestÓ is written ÒMlmeJoin.requestÓ).

SDL reserved words and the names of variables and synonyms (named constants) begin with lowercase let-
ters. The names of sorts (data types), signals, signal routes, channels, blocks, and processes begin with
uppercase letters. The names of certain groups of variables and/or synonyms begin with a particular lower-
case letter, followed by the remainder of the name, beginning with an uppercase letter. These groups are

ÒaNameOfAttributeÓ MIB attributes
ÒcNameOfCapabilityÓ Capability bits, also used for internal values exported as MIB counters
ÒdNameOfDurationÓ Duration (relative time) values, declared as Usec, TU, or Duration
ÒeNameOfElementÓ Element ID values

Copyright © 1997 IEEE. All rights reserved. 309

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

ÒmNameOfVariableÓ Remote variables used for intra-MAC communication, but not part of the MIB.
Most of these variables are exported from the MLME block.

ÒsNameOfStaticValueÓ Synonyms for static data values used within the MAC
ÒtNameOfTimeÓ Time (absolute time) values, declared as Usec, TU, or Time. The names of timers

begin with ÒT.Ó

C.1.3 Modeling techniques

State machines are grouped according to deÞned function sets that are visible, directly or indirectly, at an
exposed interface. The emphasis in the organization of the state machines is explicitly to show initiation of
and response to events at the exposed interfaces, and time-related actions, including those dependent on the
absence of external events (e.g., response timeouts) and intervals measured in derived units (e.g., backoff
ÒtimeÓ in units of slots during which the wireless medium is idle). The operations associated with the various
state transitions emphasize communication functions. Most of the details regarding insertion, extraction, and
encoding of information in Þelds of the protocol data units is encapsulated with the deÞnitions of those
Þelds. This approach, which relies heavily on SDLÕs abstract data type and inheritance mechanisms, permits
the behavior of the data-holding entities to be precisely deÞned, without obscuring process ßow by adding
in-line complexity to the individual state transitions.

The modeling of protocol and service data units requires sorts such as octet strings, and operators such as
bitwise boolean functions, which are not predeÞned in SDL. These sorts and operators are deÞned in Pack-
age macsorts, which appears in Clause C.2.

Protocol and service data unit sorts are based on the Bit sort. Bit is a subtype of SDLÕs predeÞned Boolean
sort. As a result, Bit literals Ò0Ó and Ò1Óare alternative names for ÒfalseÓ and Òtrue,Ó and have no numeric sig-
niÞcance. To use Ò0Ó or Ò1Ó as integer values requires a conversion operation. Items of the Bitstring sort are
0-origin, variable-length strings of Bits. With Bitstring operands, operators Òand,Ó Òor,Ó Òxor,Ó and
ÒnotÓoperate bitwise, with the length of the result equal to the length of the longest (or only) source string.
The Octet sort is a subtype of Bitstring that adds conversion operators to and from Integer. Each item of the
Octet sort has length=8 {by usage convention in Z.100, enforced in Z.105}. Items of the Octetstring sort are
0-origin, variable-length strings of Octets. The Frame sort is a subtype of Octetstring that adds operators to
extract and to modify all MAC header Þelds and most other MAC frame Þelds and elements. Most MAC
Þelds and elements that contain named values with speciÞc value assignments or enumerations are deÞned
as subtypes of Frame, Octetstring, or Bitstring with the names added as literals or synonyms, so the state
machines can refer to the names without introducing ambiguity about the value encodings.

Where communication at a SAP or between processes is strictly FIFO, the (implicit) input queue of the SDL
processes is used. When more sophisticated queue management is needed, a queue whose entries are
instances of one, speciÞed sort is created using the Queue generator. Entries on Queue sorts may be added
and removed at either the tail or the head, and the number of queue entries may be determined. The contents
of a Queue may also be searched to locate entries with particular parameter values.

Clause C.2 contains an SDL-92 Package (a named collection of SDL deÞnitions that can be included by ref-
erence into SDL System speciÞcation), which is a formal description of the formats and data encodings used
in IEEE 802.11 service data units, protocol data units, and the parameters of the service primitives used at
each of the service access points supported by the IEEE 802.11 MAC. This package also contains deÞnitions
for some data structures and operators used internally by one or more of the MAC state machines.

The behaviors of many intra-MAC operators are part of the normative description of the MAC protocol
because results of the speciÞed operations are visible, directly or indirectly, at exposed interfaces. For exam-
ple, custom operators are used to deÞne the generation of the CRC-32 value used in the FCS Þeld (operator
crc32, page 330), the calculation of frame transmission time used as part of the value in the Duration/ID Þeld
in certain types of frames (operator calcDur, page 343), the comparison of the values of particular Þelds of a

310 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

received MAC header with cached data values as part of the procedure for detecting duplicate frames (oper-
ator searchTupleCache, page 320), and numerous other aspects of frame formats and information encoding.
On the other hand, data structures used solely for intra-MAC storage or for transferring of information
between different state machines of a single station or access point, are only normative to the extent that they
deÞne items of internal state and the temporal sequence necessary for proper operation of the MAC protocol.
The speciÞc structures and encodings used for internal data storage and communication functions in this for-
mal description do not constrain MAC implementations, provided those implementations exhibit the speci-
Þed behaviors at the deÞned service access points and, in conjunction with an appropriate PHY, on the
wireless medium.

C.2 Data type and operator deÞnitions for the MAC state machines

This clause is in SDL/PR (phrase notation), with the exception of procedural operators, which are deÞned in
SDL/GR (graphic notation). Package macsorts contains the deÞnitions of the sorts (data types with associ-
ated operators and literals) and synonyms (named constants) used by the MAC state machines. Package
macmib deÞnes data types for attributes in the MAC MIB, and portions of the PHY MIB, accessed by the
MAC state machines. Package macmib exists solely to satisfy SDLÕs strong type checking in the absence of
an SDL tool that fully supports Z.105 (the combined use of SDL with ASN.1).

/***/
Package macsorts;

/***
 * Enumerated types used within the MAC state machines
 ***/
newtype ChangeType /* type of change due at the next boundary */
 literals dwell, /* dwell (only with FH PHY) */

mocp; /* medium occupancy (only with PCF) */
endnewtype ChangeType;

newtype Imed /* priority for queuing MMPDUs, relative to MSDUs */
 literals head, /* place MMPDU at head of transmit queue */

norm; /* place MMPDU at tail of transmit queue */
endnewtype Imed;

newtype NavSrc /* source of duration in SetNav & ClearNav signals */
 literals rts, /* RTS frame */

cfpBss, cfendBss, /* start/end of CFP in own BSS */
cfpOther, cfendOther, /* start/end of CFP in other BSS */
cswitch, /* channel switch */
misc, /* durId from other frame types */
nosrc; /* non-reception events */

endnewtype NavSrc;

newtype PsMode /* power-save mode of a station (PsResponse signal) */
 literals sta_active, power_save, unknown; endnewtype PsMode;

newtype PsState /* power-save state of this station */
 literals awake, doze; endnewtype PsState;

newtype StateErr /* requests disasoc or deauth (MmIndicate signal) */
 literals noerr, class2, class3; endnewtype StateErr;

newtype StationState /* asoc/auth state of sta (SsResponse signal) */
 literals not_auth, auth_open, auth_key, asoc, dis_asoc;
endnewtype StationState;

newtype TxResult /* transmission attempt status (PduConfirm signal) */

Copyright © 1997 IEEE. All rights reserved. 311

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

 literals successful, partial, retryLimit, txLifetime
 atimAck, atimNak; endnewtype TxResult;

/***
 * Enumerated types used in PHY service primitives
 ***/
newtype CcaStatus /* <state> parameter of PhyCca.indication */
 literals busy, idle; endnewtype CcaStatus;

newtype PhyRxStat /* <rxerror> parameter of PhyRxEnd.indication */
 literals no_error, fmt_violation, carrier_lost, unsupt_rate;
endnewtype PhyRxStat;

/***
 * PLACEHOLDERS FOR MLME/PLME GET/SET PARAMETER VALUES
 ***/

/* MibAtrib (placeholder in MlmeGet/Set definitions) */
syntype MibAtrib = Charstring endsyntype MibAtrib;

/* MibValue (placeholder in MlmeGet/Set definitions) */
syntype MibValue = Integer endsyntype MibValue;

/***
 * Enumerated types used in MAC and MLME service primitives
 ***/
newtype AuthTyp /* <authentication type> parm in Mlme primitives */
 inherits Octetstring operators all;
 adding literals open_system, shared_key;
 axioms open_system == mkOS(0, 2); shared_key == mkOS(1, 2);
endnewtype AuthType;

newtype AuthTypeSet powerset(AuthType); endnewtype AuthTypeSet;

newtype BssType /* <BSS type> parameter & BSS description element */
 literals infrastructure, independent, any_bss; endnewtype BssType;

newtype BssTypeSet powerset(BssType); endnewtype BssTypeSet;

newtype CfPriority /* <priority> parameter of various requests */
 literals contention, contentionFree; endnewtype CfPriority;

newtype MibStatus /* <status> parm of Mlme/Plme Get/Set.confirm */
 literals success, invalid, write_only, read_only;
endnewtype MibStatus;

newtype MlmeStatus /* <status> parm of Mlme operation confirm */
 literals success, invalid, timeout, refused,

tomany_req, already_bss; endnewtype MlmeStatus;

newtype PwrSave /* <power save mode> parameter of MlmePowerMgt */
 literals sta_active, power_save; endnewtype PwrSave;

newtype Routing /* <routing info> parameter for MAC data service */
 literals null_rt; endnewtype Routing;

newtype RxStatus /* <reception status> parm of MaUnitdata indication */
 literals rx_success, rx_failure; endnewtype RxStatus;

newtype ScanType /* <scan type> parameter of MlmeScan.request */
 literals active_scan, passive_scan; endnewtype ScanType;

newtype ServiceClass /* <service class> parameter for MaUnitdata */
 literals reorderable, strictlyOrdered; endnewtype ServiceClass;

312 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

newtype TxStatus /* <transmission status> parm of MaUnitdataStatus */
 literals successful, retryLimit, txLifetime, noBss,

excessiveDataLength, nonNullSourceRouting,
unsupportedPriority, unavailablePriority,
unsupportedServiceClass, unavailableServiceClass,
unavailableKeyMapping; endnewtype TxStatus;

/***
 * Intra-MAC remote variables (names of form mXYZ)
 ***/
remote mActingAsAp Boolean nodelay; /* =true if STA started BSS */
remote mAId AsocId nodelay; /* AID assigned to STA by AP */
remote mAssoc Boolean nodelay; /* =true if STA associated w/BSS */
remote mAtimW Boolean nodelay; /* =true if ATIM window in prog */
remote mBkIP Boolean nodelay; /* =true if backoff in prog */
remote mBrates Ratestring nodelay; /* basic rate set for this sta */
remote mBssId MacAddr nodelay; /* identifier of current (I)BSS */
remote mCap Octetstring nodelay; /* capability info from MlmeJoin */
remote mCfp Boolean nodelay; /* =true if CF period in progress */
remote mDisable Boolean nodelay; /* =true if not in any BSS; then */

/* TX only sends probe_req; RX */
/* only accepts beacon, probe_rsp */

remote mDtimCount Integer nodelay; /* =0 at Tbtt of Beacon with DTIM */
remote mDtimPeriod Integer nodelay; /* beacon periods per DTIM period */
remote mFxIP Boolean nodelay; /* =true during frame exchange seq */
remote mIbss Boolean nodelay; /* =true if STA is member of IBSS */
remote mListenInt Integer nodelay; /* beacons between wake up @TBTT */
remote mNavEnd Time nodelay; /* NAV end Time, <=now when idle */
remote mNextBdry Time nodelay; /* next boundary Time; =0 if none */
remote mNextTbtt Time nodelay; /* Time next beacon due to occur */
remote mOrates Ratestring nodelay; /* operational rate set in use */
remote mPcAvail Boolean nodelay; /* =true if point coord in BSS */
remote mPcDlvr Boolean nodelay; /* =true if CF delivery only */
remote mPcPoll Boolean nodelay; /* =true if CF delivery & polling */
remote mPdly Usec nodelay; /* probe delay from start or join */
remote mPsm PwrSave nodelay; /* power save mode of STA */
remote mPss PsState nodelay; /* power save state of STA */
remote mRxA Boolean nodelay; /* =true if RX indicated by PHY */
remote mSsId Octetstring nodelay; /* name of the current (I)BSS */
remote procedure TSF nodelay; /* read & update 64-bit TSF timer */
 fpar Integer, Boolean; returns Integer;

/***
 * Named static data values (names of form sXYZ)
 ***/
synonym sMaxMsduLng Integer = 2304; /* max octets in an MSDU */
synonym sMacHdrLng Integer = 24; /* octets in data header, no WEP */
synonym sWepHdrLng Integer = 28; /* octets in data header with WEP */
synonym sWepAddLng Integer = 8; /* octets added for WEP */
synonym sWdsAddLng Integer = 6; /* octets added for WDS (addr4) */
synonym sCrcLng Integer = 4; /* octets for crc32 (FCS, ICV) */
synonym sMaxMpduLng Integer = /* max octets in an MPDU */

(sMaxMsduLng + sMacHdrLng + sWdsAddLng + sWepAddLng + sCrcLng);
syntype FrameIndexRange = Integer /* index range for octets in MPDU */

constants 0 : sMaxMpduLng endsyntype FrameIndexRange;
synonym sTsOctet Integer = 24; /* first octet of Timestamp field */
synonym sMinFragLng Integer = 256; /* min value for aMpduMaxLength */
synonym sMaxFragNum Integer = /* maximum fragment number */

(sMaxMsduLng / (sMinFragLng - sMacHdrLng - sCrcLng));
synonym sAckCtsLng Integer = 112; /* bits in ACK and CTS frames */

Copyright © 1997 IEEE. All rights reserved. 313

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

/***
 * Station configuration flags (static, supplementary to MIB)
 ***/
synonym sVersion Integer = 0; /* supported Protocol Version */
synonym sCanBeAp Boolean = false; /* =true if STA can operate as AP */
synonym sCanBePc Boolean = false; /* =true if AP can be Point Coord */
synonym sCfPollable Boolean =true; /* =true if responds to CF-polls */

/***
 * Discrete microsecond and Time Unit sorts
 ***/

/* SDL does not define the relationship between its concept
/* of Time and physical time in the system being described.
/* An abstraction is needed to establish this relationship,
/* because Time in SDL uses the semantics of Real, whereas
/* time in the MAC protocol is discrete, with the semantics
/* of Natural and a step size (resolution) of 1 micosecond. */

/* Most MAC times are defined using the subtypes of Integer
/* Usec and TU. These have operators for explicit conversion
/* to SDL Time (tUsec, tTU), SDL Duration (dUsec, dTU), and
/* from SDL Time (uTime, tuTime) as needed to comply with SDLÕs
/* strong type checking. Where the MAC state machines need to
/* access the contents of the TSF timer, SDLÕs "now" (current
/* time) is used. This yields readable time-dependent code,
/* but the value of "now" cannot be modified by an SDL program,
/* so adopting the TSF time from timestamps in received Beacons
/* or Probe Responses is shown as a call to remote procedure TSF. */

/* Microsecond sort -- also has operators tmin and tmax */
newtype Usec inherits Integer operators all;
 adding operators
 dUsec : Usec -> Duration;
 tUsec : Usec -> Time;
 uTime : Time -> Usec;
 tmax : Usec, Usec -> Usec;
 tmin : Usec, Usec -> Usec;
 axioms
 for all u, w in Usec(
 u >= w ==> tmax(u, w) == u;
 u < w ==> tmax(u, w) == w;
 u >= w ==> tmin(u, w) == w;
 u < w ==> tmin(u, w) == u;
 for all t in Time(for all r in Real(
 r = float(u) ==> tUsec(u) == Time!(Duration!(r));
 t = Time!(Duration!(r)) and u = fix(r) ==> u == uTime(t);));
 for all d in Duration(for all r in Real(
 r = float(u) ==> dUsec(u) == Duration!(r);)));
 constants >= 0 /* constrain value range to be non-negative */
endnewtype Usec;

/* Time Unit sort -- (1 * TU) = (1024 * Usec) */
newtype TU inherits Integer operators all;
 adding operators
 dTU : TU -> Duration;
 tTU : TU -> Time;
 tuTime : Time -> TU;
 u2TU : Usec -> TU;
 tu2U : TU -> Usec;
 axioms
 for all k in TU(for all t in Time(for all r in Real(
 r = float(k) ==> tTU(k) == Time!(Duration!(1024 * r));
 t = Time!(Duration!(r)) and k = (fix(r) / 1024) ==>
 k == tuTime(t);));

314 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

 for all d in Duration(for all r in Real(
 r = float(k) ==> dTU(k) == Duration!(1024 * r);));
 for all u in Usec(
 u2TU(u) == u / 1024; k2U(k) == k * 1024;));
 constants >= 0 /* constrain value range to be non-negative */
endnewtype TU;

/***
 * Generator for 0-origin String sorts (adapted from Z.105, Annex A)
 ***/

/* String0(sort, nullSymbol) can define strings of any sort.
/* These strings are indexed starting from 0 rather than 1.
/* Sorts defined by String0 have the normal String operators, plus
/* Tail (all but first item), Head (all but last item), and
/* aggregators S2, S3, S4, S6, S8 (make fixed length strings). */

generator String0(type Item, literal Emptystring)
 literals Emptystring;
 operators
 MkString : Item -> String0; /* make a string from an item */
 Length : String0 -> Integer; /* length of string */
 First : String0 -> Item; /* first item in string */
 Tail : String0 -> String0; /* all but first item in string */
 Last : String0 -> Item; /* last item in string */
 head : String0 -> String0; /* all but last item in string */
 "//" : String0, String0 -> String0; /* concatenation */
 Extract! : String0, Integer -> Item; /* get item from string */
 Modify! : String0, Integer, Item -> String0; /* modify string */
 SubStr : String0, Integer, Integer -> String0;
 /* SubStr(s,i,j) is string0 of length j starting at string0(i) */
 S2 : Item, Item -> String0; S3 : Item, Item, Item -> String0;
 S4 : Item, Item, Item, Item -> String0;
 S6 : Item, Item, Item, Item, Item, Item -> String0;
 S8 : Item, Item, Item, Item, Item, Item, Item, Item -> String0;
 axioms
 for all item0,item1,item2,item3,item4,item5,item6,item7 in Item(
 for all s, s1, S2, S3 in String0(for all i, j in Integer(

/* constructors are Emptystring, MkString, and "//"; */
/* equalities between constructor terms */

 s // Emptystring == s;
 Emptystring // s == s;
 (s1 // S2) // S3 == s1 // (S2 // S3);

/* definition of Length by applying it to all constructors */
 type String Length(Emptystring) == 0;
 type String Length(MkString(item0)) == 1;
 type String Length(s1 // S2) == Length(s1) + Length(S2);

/* definition of Extract! by applying it to all constructors, */
 Extract!(MkString(item0), 0) == item0;
 i < Length(s1) ==> Extract!(s1 // S2, i) == Extract!(s1, i);
 i >= Length(s1)
 ==> Extract!(s1 // S2, i) == Extract!(S2, i - Length(s1));
 i < 0 or i >= Length(s) ==> Extract!(s, i) == error!;

/* definition of First and Last by other operations */
 First(s) == Extract!(s, 0);
 Last(s) == Extract!(s, Length(s) - 1);

/* definition of substr(s,i,j) by induction on j, */
 i >= 0 and i <= Length(s) ==> SubStr(s, i, 0) == Emptystring;
 i >= 0 and j > 0 and i + j <= Length(s)
 ==> SubStr(s, i, j) ==
 SubStr(s, i, j - 1) // MkString(Extract!(s, i + j - 1));
 i < 0 or j < 0 or i + j > Length(s) ==> SubStr(s, i, j) ==
 error!;

/* definition of Modify!, Head, Tail, Sx by other operations */
 Modify!(s, i, item0) ==
 SubStr(s, 0, i) // MkString(item0) //

Copyright © 1997 IEEE. All rights reserved. 315

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

 SubStr(s, i + 1, Length(s) - i - 1);
 head(s) == SubStr(s, 0, Length(s) - 1);
 Tail(s) == SubStr(s, 1, Length(s) - 1);
 S2(item0, item1) == MkString(item0) // MkString(item1);
 S3(item0, item1, item2) ==
 MkString(item0) // MkString(item1) // MkString(item2);
 S4(item0, item1, item2, item3) ==
 MkString(item0) // MkString(item1) // MkString(item2) //
 MkString(item3);
 S6(item0, item1, item2, item3, item4, item5) ==
 MkString(item0) // MkString(item1) // MkString(item2) //
 MkString(item3) // MkString(item4) // MkString(item5);
 S8(item0, item1, item2, item3, item4, item5, item6, item7) ==
 MkString(item0) // MkString(item1) // MkString(item2) //
 MkString(item3) // MkString(item4) // MkString(item5) //
 MkString(item6) // MkString(item7);)));
endgenerator String0;

/***
 * ASN.1-style BIT sort (from Z.105, Annex A)
 ***/

/* Bit is a subtype of Boolean -- bit values 0 and 1 are
/* not numerals and cannot be used with Integer operators */

newtype Bit inherits Boolean
 literals 0 = false, 1 = true; operators all; endnewtype Bit;

/***
 * ASN.1-style BIT STRING sort (adapted from Z.105, Annex A)
 ***/

/* Bitstrings are 0-origin strings of Bit. Z.105 uses ASN.1-style
/* literals in binary ('1011'B) or hexadecimal ('D3'H), but this
/* syntax is not accepted for Z.100 string literals. Therefore,
/* this version provides only hexadecimal literals 0x00-0xFF.
/* Bitstring operators '=>', 'not', 'and', 'or', and 'xor' act
/* bitwise, with the length of the result string equal to the
/* length of the longest (or only) source string. */

newtype Bitstring String0(Bit, '')
 adding literals macro Hex_Literals;
 operators
 "not" : Bitstring -> Bitstring;
 "and" : Bitstring, Bitstring -> Bitstring;
 "or" : Bitstring, Bitstring -> Bitstring;
 "xor" : Bitstring, Bitstring -> Bitstring;
 "=>" : Bitstring, Bitstring -> Bitstring; noequality;
 axioms macro Hex_Axioms;
 for all s, s1, S2, S3 in Bitstring(
 s = s == true;
 s1 = S2 == S2 = s1;
 s1 /= S2 == not (s1 = S2);
 s1 = S2 == true ==> s1 == S2;
 ((s1 = S2) and (S2 = S3)) ==> s1 = S3 == true;
 ((s1 = S2) and (S2 /= S3)) ==> s1 = S3 == false;
 for all b, b1, b2 in Bit(
 not ('') == "';
 not (MkString(b) // s) == MkString(not (b)) // not (s);
'' and '' == '';
 Length(s) > 0 ==> '' and s == MkString(0) and s;
 Length(s) > 0 ==> s and '' == s and MkString(0);
 (MkString(b1) // s1) and (MkString(b2) // S2) ==
 MkString(b1 and b2) // (s1 and S2);
 s1 or S2 == not (not s1 and not S2);
 s1 xor S2 == (s1 or S2) and not (s1 and S2);
 s1 => S2 == not (not s1 and S2);));
 map for all b1, b2 in Bitstring literals(

316 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

 for all bs1, bs2 in Charstring literals(
/* connection to the String generator */
 for all b in Bit literals(
 spelling(b1) = '''' // bs1 // bs2 // '''',
 spelling(b2) = '''' // bs2 // '''', spelling(b) = bs1
 ==> b1 == MkString(b) // b2;)));
endnewtype Bitstring;

/***
 * OCTET sort (influenced by Z.105, Annex A)
 ***/

/* Octet is a subtype of Bitstring where length always =8.
/* Z.105 adds a "size "keyword to SDL and defines Octet with
/* "... constants size (8) ... " to impose this length constraint.
/* Here Octet relies on proper use maintain lengths as multiples
/* of 8. Proper length strings are created by the hexadecimal
/* Bitstring literals (e.g. 0xD5) and operator mkOctet:
/* o:= mkOctet(i) converts a non-negative Integer (mod 256)
/* to an Octet (exactly 8 bits)
/* i:= octetVal(o) converts an Octet to an Integer (0:255)
/* o:= flip(o) reverses bit order of the Octet
/* (0<-->7, 1<-->6, 2<-->5, 3<-->4) */

newtype Octet inherits Bitstring operators all;
 adding operators
 mkOctet : Integer -> Octet;
 octetVal : Octet -> Integer;
 flip : Octet -> Octet;
 axioms
 for all i in Integer(for all z in Octet(
 i = 0 ==> mkOctet(i) == S8(0, 0, 0, 0, 0, 0, 0, 0);
 i = 1 ==> mkOctet(i) == S8(1, 0, 0, 0, 0, 0, 0, 0);
 i > 1 and i <= 255 ==> mkOctet(i) ==
 SubStr((First(mkOctet(i mod 2)) // mkOctet(i / 2)), 0, 8);
 i > 255 ==> mkOctet(i) == mkOctet(i mod 256);
 i < 0 ==> mkOctet(i) == error!;
 z = MkString(0) ==> octetVal(z) == 0;
 z = MkString(1) ==> octetVal(z) == 1;
 Length(z) > 1 and Length(z) <= 8 ==>
 octetVal(z) == octetVal(First(z)) +
 (2 * (octetVal(SubStr(z, 1, Length(z) - 1))));
 Length(z) > 8 ==> octetVal(z) == error!;
 flip(z) == S8(z(7),z(6),z(5),z(4),z(3),z(2),z(1),z(0));));
endnewtype Octet;

/***
 * OCTET STRING sort (somewhat influenced by Z.105, Annex A)
 ***/

/* Octetstrings are 0-ORIGIN strings of Octet, NOT 1-ORIGIN
/* strings like Octet_String in Z.105 (hence the name change).
/* Octetstring has conversion operators to and from Bitstring,
/* and integer to Octetstring. Octetstring literals are "null"
/* and 1-4, 6, 8 item 0x00 strings O1, O2, O3, O4, O6, O8. */

newtype Octetstring String0(Octet, null)
 adding literals O1, O2, O3, O4, O6, O8;
 operators
 B_S : Octetstring -> Bitstring; /* name changed from Z.105 */
 O_S : Bitstring -> Octetstring; /* name changed from Z.105 */
 mkOS : Integer,Integer -> Octetstring; /* mkOS(i1,i2) returns */

/* mkstring(mkOctet(i1)) padded (0x00) to length i2 */
 mk2octets : Integer -> Octetstring; /* 16-bit integer to 2-octets */
 axioms
 for all b, b1, b2 in Bitstring(
 for all s in Octetstring(for all o in Octet(
 B_S(null) == '';

Copyright © 1997 IEEE. All rights reserved. 317

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

 B_S(MkString(o) // s) == o // B_S(s);
 O_S('') == null;
 Length(b1) > 0, Length(b1) < 8 ==>
 O_S(b1) == MkString(b1 or 0x00); /* expand b1 to 8 bits */
 b == b1 // b2, Length(b1) = 8 ==>
 O_S(b) == MkString(b1) // O_S(b2);
 for all i, k in Integer(
 k = 1 ==> mkOS(i, k) == MkString(mkOctet(i));
 k > 1 ==> mkOS(i, k) == mkOS(i, k - 1) // MkString(0x00);
 k <= 0 ==> error!;
 mk2octets(i) == MkString(mkOctet(i mod 256)) //
 MkString(mkOctet(i / 256)););
 O1 == MkString(0x00); O2 == O1 // O1;
 O3 == O2 // O1; O4 == O2 // O2;
 O6 == O4 // O2; O8 == O4 // O4;)));
 map for all O1, O2 in Octetstring literals(
 for all b1, b2 in Bitstring literals(
 spelling(O1) = spelling(b1), spelling(O2) = spelling(b2)
 ==> O1 = O2 == b1 = b2;));
endnewtype Octetstring;

/***
 * MAC Address sorts
 ***/

/* MacAddr is a subtype of Octetstring with added operators:
/* isGroup(m) =true if given a group address
/* isBcst(m) =true if given the broadcast address
/* isLocal(m) =true if given a locally-administered address
/* adrOs(m) converts MacAddr to Octetstring
/* MAC addresses must be defined to be exactly 6 octets long,
/* typically using the S6 operator or nullAddr synonym. */

newtype MacAddr inherits Octetstring operators all;
 adding operators
 isGroup : MacAddr -> Boolean;
 isBcst : MacAddr -> Boolean;
 isLocal : MacAddr -> Boolean;
 adrOs : MacAddr -> Octetstring;
 axioms
 for all m in MacAddr(
 (Length(m) = 6) and ((Extract!(m,0) and 0x01) = 0x01)
 ==> isGroup(m) == true;
 (Length(m) = 6) and ((Extract!(m,0) and 0x01) = 0x00)
 ==> isGroup(m) == false;
 (Length(m) = 6) and (m = S6(0xFF,0xFF,0xFF,0xFF,0xFF,0xFF))
 ==> isBcst == true;
 (Length(m) = 6) and (m /= S6(0xFF,0xFF,0xFF,0xFF,0xFF,0xFF))
 ==> isBcst == false;
 (Length(m) = 6) and ((Extract!(m,0) and 0x02) = 0x02)
 ==> isLocal == true;
 (Length(m) = 6) and ((Extract!(m,0) and 0x02) = 0x00)
 ==> isLocal == false;
 Length(m) /= 6 ==> error! /* common error! term */;
 for all o in Octetstring(m = MacAddr!(o) == adrOs(m) = o;));
endnewtype MacAddr;

newtype MacAddrSet powerset(MacAddr) endnewtype MacAddrSet;

synonym bcstAddr MacAddr = /* Broadcast Address */
<<type MacAddr>> S6(0xFF,0xFF,0xFF,0xFF,0xFF,0xFF);

synonym nullAddr MacAddr = /* Null Address */
<< type MacAddr>> S6(0x00,0x00,0x00,0x00,0x00,0x00);

318 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

/***
 * BSS description sorts
 ***/

/* BssDscr is used with MlmeScan.confirm and MlmeJoin.request */
newtype BssDscr struct
 bdBssId MacAddr;
 bdSsId Octetstring; /* 1 <= length <= 32 */
 bdType BssType;
 bdBcnPer TU; /* beacon period in Time Units */
 bdDtimPer Integer; /* DTIM period in beacon periods */
 bdTstamp Octetstring; /* 8 Octets from ProbeRsp/Beacon */
 bdStartTs Octetstring; /* 8 Octets TSF when rx Tstamp */
 bdPhyParms PhyParms; /* empty if not needed by PHY */
 bdCfParms CfParms; /* empty if not CfPollable/no PCF */
 bdIbssParms IbssParms; /* empty if infrastructure BSS */
 bdCap Capability; /* capability information */
 bdBrates Ratestring; /* BSS basic rate set */
endnewtype BssDscr;

newtype BssDscrSet powerset(BssDscr) endnewtype BssDscrSet;

/***
 * Duplicate filtering support sorts
 ***/
syntype FragNum = Integer /* Range of possible fragment numbers */

constants 0:sMaxFragNum endsyntype FragNum;
syntype SeqNum = Integer /* Range of possible sequence numbers */

constants 0:4095 endsyntype SeqNum;
newtype Tuple struct /* for duplicate filtering & defragmentation */
 full Boolean; /* =true if Tuple contains valid info */
 ta MacAddr; /* transmitting station address (Addr2) */
 sn SeqNum; /* Msdu/Mmpdu sequence number */
 fn FragNum; /* most recent Mpdu fragment number */
 tRx Time; /* reception time (endRx of fragment) */
 default (. false, nullAddr, 0, 0, 0 .);
endnewtype Tuple;

/***
 * TupleCache support sorts
 ***/

/* Number of TupleCache entries and associated index range */
synonym tupleCacheSize Integer = 32; /* this value is an example,

TupleCache size is implementation dependent */
syntype CacheIndex = Integer constants 1:tupleCacheSize
 endsyntype CacheIndex;

/* TupleCache array
/* cache:= ClearTupleCache(cache) to initialize cache
/* cache:= UpdateTupleCache(cache, addr, seq, frag, endRx)
/* if <addr,seq> is already cached, updates frag
/* if <addr,seq> not cached, fills an empty entry
/* or replaces an entry using an unspecified algorithm
/* SearchTupleCache(cache, addr, seq, frag)
/* returns true if specified <addr,seq,frag> in cache */

newtype TupleCache Array(CacheIndex, Tuple);
 adding operators
 ClearTupleCache : TupleCache -> TupleCache;
 SearchTupleCache : TupleCache, MacAddr, SeqNum, FragNum -> Boolean;
 UpdateTupleCache : TupleCache, MacAddr, SeqNum, FragNum, Time ->
 TupleCache;
 operator ClearTupleCache;
 fpar cache TupleCache; returns TupleCache; referenced;
 operator SearchTupleCache;
 fpar cache TupleCache, taddr MacAddr, tseq SeqNum, tfrag FragNum;

Copyright © 1997 IEEE. All rights reserved. 319

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

 returns Boolean; referenced;
 operator UpdateTupleCache;
 fpar cache TupleCache, taddr MacAddr, tseq SeqNum, tfrag FragNum,
 tnow Time; returns TupleCache; referenced;
endnewtype TupleCache;

/***
 * 32-bit Counter sort and Integer string sort
 ***/

/* This sort used for MIB counters, needed because SDL Integers
/* have no specified maximum value. inc(counter) increments the
/* counter value by 1, with wraparound from (2^32)-1 to 0. */

newtype Counter32 inherits Integer operators all;
 adding operators
 inc : Counter32 -> Counter32;
 axioms
 for all c in Counter32(
 c < 4294967295 ==> inc(c) == c + 1;
 c >= 4294967295 ==> inc(c) == 0;);
endnewtype Counter32;

/* String (1-origin) of Integer */
newtype Intstring String(Integer, noInt); endnewtype Intstring;

; fpar
 cache TupleCache ;
returns TupleCache ;

Operator clearTupleCache ClearCache_1a(1)

/* This procedural operator is
 part of sort TupleCache.
 cache:= clearTupleCache(cache)
 marks all entries in cache as empty. */

dcl k CacheIndex ;

k:= 1

cache(k)!full:=
false

Mark all cache
entries as empty.

k

k:= k+1

cache

else

 (=tupleCacheSize)

320 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

; fpar
 cache TupleCache,
 taddr MacAddr,
 tseq SeqNum,
 tfrag FragNum ;
 returns Boolean ;

Operator searchTupleCache SearchCache_1a(1)

/* This procedural operator is
 part of sort TupleCache.
 hit:= searchTupleCache(cache, addr, seq, frag)
 returns hit=true if an entry in cache has
 (ta=addr) and (sn=seq) and (fn=frag);
 else returns hit=false. */

dcl k CacheIndex ;
dcl result Boolean ;

k:= 1

result:=
(cache(k)!ta=

taddr) and

Search for exact
{TA,SeqNum,FragNum}
match at non-empty
cache entries.

(cache(k)!sn=tseq)
 and
(cache(k)!fn=tfrag)
 and cache(k)!full

result

k

k:= k+1

result

(false)

else

 (=tupleCacheSize)

 (true)

Copyright © 1997 IEEE. All rights reserved. 321

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

; fpar
 cache TupleCache,
 taddr MacAddr,
 tseq SeqNum,
 tfrag FragNum,
 tnow Time ;
 returns TupleCache ;

Operator updateTupleCache UpdateCache_1b(1)

/* This procedural operator is
 part of sort TupleCache.
 cache:= updateTupleCache
 (addr, seq, frag, time)
 First searches cache for an entry,
 matching the base frame, so that
 (ta=addr) and (sn=seq).
 If such an entry exists, that
 entry is updated in place with
 (fn:= frag) and (tRx:= time).
 If no such entry is found, a free
 entry, or a non-free entry selected
 using an unspecified algorithm, is
 used for this frame, storing
 (ta:= addr) and (sn:= seq) and
 (fn:= frag) and (tRx:= time). */

dcl k CacheIndex ;
dcl test Boolean ;
dcl temp Tuple ;

k:= 1

temp:=
cache(k)

temp!full
= true

test:=(temp!ta=
taddr) and

(temp!sn=tseq)

If a match is found
with {TA,SeqNum},
update FragNum
and tRx for that
entry rather than
creating a new
(redundant) entry.test

k

k:= k+1

'k:= index to
use for new
cache entry'

Select cacheIndex for new
entry if no {TA,SeqNum}
match. If possible, use an
empty location, otherwise
choose an entry to replace
an entry selected based
on unspecified criteria. temp!full:=true,

temp!ta:=taddr,
temp!sn:=tseq

cache(k):=
temp

cache

 (true)

(false)

 else

 (=tupleCacheSize)

 (true)

 (false)

temp!fn:=tfrag,
temp!tRx:=
tnow

322 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

/***
 * Generator for Queue sorts
 ***/
 /* The Queue generator is derived from the String0 generator
 /* to create Queues of any sort. Queues operators are:
 /* Qfirst(queue,item) adds item as the first queue element
 /* Qlast(queue,item) adds item as the last queue element
 /* and the String0 operators Length, //, First, Last, Head, Tail
 /* Because operators can only return a single value, removing an
 /* element from a queue is a 2-step process:
 /* dequeue first: item:=First(queue); queue:=Tail(queue);
 /* dequeue last: item:=Last(queue); queue:=Head(queue); */
generator Queue(type Item, literal Emptyqueue)
 literals Emptyqueue;
 operators
 MkQ : Item -> Queue; /* make a queue from an item */
 Lengt : Queue -> Integer; /* number of items on queue */
 First : Queue -> Item; /* first item on queue */
 Qfirst : Queue,Item -> Queue; /* add item as first on queue */
 Tail : Queue -> Queue; /* all but first item on queue */
 Last : Queue -> Item; /* last item on queue */
 Qlast : Queue,Item -> Queue; /* add item as last on queue */
 head : Queue -> Queue; /* all but last item on queue */
 "//" : Queue,Queue -> Queue; /* concatenation */
 Extract! : Queue,Integer -> Item; /* copy item from queue */
 Modify! : Queue,Integer,Item -> Queue; /* modify item in queue */
 SubQ : Queue,Integer,Integer -> Queue;

/* SubQ(q,i,j) queue of length j starting from queue(i) */
 axioms
 for all item0 in Item(for all q, q1, q2, q3 in Queue(
 for all i, j in Integer(

/* constructors are Emptyqueue, MkQueue, and "//"; */
/* equalities between constructor terms */

 q // Emptyqueue == q;
 Emptyqueue // q == q;
 (q1 // q2) // q3 == q1 // (q2 // q3);

/* definition of Length by applying it to all constructors */
 type Queue Length(Emptyqueue) == 0;
 type Queue Length(MkQueue(item0)) == 1;
 type Queue Length(q1 // q2) == Length(q1) + Length(q2);

/* definition of Extract! by applying it to all constructors, */
 Extract!(MkQueue(item0), 0) == item0;
 i < Length(q1) ==> Extract!(q1 // q2, i) == Extract!(q1, i);
 i >= Length(q1)
 ==> Extract!(q1 // q2, i) == Extract!(q2, i - Length(q1));
 i < 0 or i >= Length(q) ==> Extract!(q, i) == error!;

/* definition of First and Last by other operations */
 First(q) == Extract!(q, 0);
 Last(q) == Extract!(q, Length(q) - 1);

/* definition of SubQ(q,i,j) by induction on j, */
 i >= 0 and i <= Length(q) ==> SubQ(q, i, 0) == Emptyqueue;
 i >= 0 and j > 0 and i + j <= Length(q) ==> SubQ(q, i, j) ==
 SubQ(q, i, j - 1) // MkQueue(Extract!(q, i + j - 1));
 i < 0 or j < 0 or i + j > Length(q) ==> SubQ(q,i,j) == error!;

/* define Modify!, Head, Tail, Qfirst, Qlast by other ops */
 Modify!(q, i, item0) == SubQ(q, 0, I) //
 MkQueue(item0) // SubQ(q, i + 1, Length(q) - i - 1);
 head(q) == SubQ(q, 0, Length(q) - 1);
 Tail(q) == SubQ(q, 1, Length(q) - 1);
 Qfirst(q, item0) == MkQueue(item0) // q;
 Qlast(q, item0) == q // MkQueue(item0);)));
endgenerator Queue;

Copyright © 1997 IEEE. All rights reserved. 323

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

/***
 * Fragmentation support sorts
 ***/

/* Array to hold up to FragNum fragments of an Msdu/Mmpdu */
newtype FragArray Array(FragNum, Frame); endnewtype FragArray;

/* FragSdu structure is for OUTGOING MSDUs/MMPDUs (called SDUs)
/* Each SDU, even if not fragmented, is held in an instance of
/* this structure awaiting its (re)transmission attempt(s).
/* Transmit queue(s) are ordered lists of FragSdu instances. */

newtype FragSdu struct
 fTot FragNum; /* number of fragments in pdus FragArray */
 fCur FragNum; /* next fragment number to send */
 fAnc FragNum; /* next fragment to announce in ATIM or TIM

 when fAnc > fCur, pdus(fCur)+ may be sent */
 eol Time; /* set to (now + dUsec(aMaxTxMsduLifetime))

 when the entry is created */
 sqf SeqNum; /* SDU sequence number, set at 1st Tx attempt */
 src Integer; /* short retry counter for this SDU */
 lrc Integer; /* long retry counter for this SDU */
 dst MacAddr; /* destinaton address */
 grpa Boolean; /* =true if RA (not DA) is a group address */
 psm Boolean; /* =true if RA (not DA) may be in pwr_save */
 resume Boolean; /* =true if fragment burst being resumed */
 cnfTo PId; /* address to which confirmation is sent */
 txrate Rate; /* data rate used for initial fragment */
 cf CfPriority; /* requested priority (from LLC) */
 pdus FragArray; /* array of Frame to hold fragments */
endnewtype FragSdu;

/* Queue of FragSdu
/* for power save buffers, etc., searchable with Qsearch operator:
/* index:= Qsearch(queue, addr) where queue is an SduQueue,
/* index identifies the first queue entry at which
/* entry!dst = addr; or as -1 if no match (or queue empty). */

newtype SduQueue Queue(FragSdu, emptyQ);
 adding operators
 qSearch : SduQueue, MacAddr -> Integer;
 operator qSearch;
 fpar que SduQueue, val MacAddr; returns Integer; referenced;
endnewtype SduQueue;

324 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

; fpar
 que SduQueue,
 val MacAddr ;
returns result Integer ;

Operator Qsearch Qsearch_1a(1)

dcl k, lng Integer ;

/* This procedural operator is
 part of sort SduQueue.
 index:= Qsearch(queue, addr)
 returns index of the first queue
 entry at which (entry!dst = addr);
 returns -1 if no match found.
 Also returns -1 for empty queue. */

que =
emptyQ

lng:=
length(que)

k:= 0

val =
que(k)!dst

k:= k + 1

k = lng

result:= -1

result

result:= k

(false)

 (false)

 (false)

 (true)

 (true)

(true)

Copyright © 1997 IEEE. All rights reserved. 325

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

/***
 * Defragmentation support sorts
 ***/

/* The PartialSdu structure is for INCOMPLETE MSDUs/MMPDUs
/* (generically SDUs) for which at least 1 fragment has been
/* received. Unfragmented SDUs are reported upward immediately,
/* and are never stored in instances of this structure. */

newtype PartialSdu struct
 inUse Boolean; /* =true if this instance holds any fragments */
 rta MacAddr; /* transmitting station (Addr2) */
 rsn SeqNum; /* SDU sequence number */
 rCur FragNum; /* fragment number of most recent Mpdu */
 reol Time; /* (now+dUsec(aMaxReceiveLifetime) @ 1st Mpdu */
 rsdu Frame; /* buffer where Mpdus are concatenated */
 default (. false, nullAddr, 0, 0, 0, null .);
endnewtype PartialSdu;

newtype PartialSduKeys struct /* if aPrivacyOptionImplemented=true *
 wDefKeys KeyVector; /* default keys when 1st frag received */
 wKeyMap KeyMapArray; /* key mappings when 1st frag received */
 wExclude Boolean; /* aExcludeUnencrypted @ 1st frag rx */
endnewtype PartialSduKeys;

/* Number of entries in defragmentation array at this station.
/* The value is implementation dependent (min=3, see 9.5). */

synonym defragSize Integer = 6;
syntype defragIndex = Integer constants 1:defragSize
endsyntype defragIndex;

/* Array of PartialSdu for use defragmenting Msdus and Mmpdus.
/* Searchable using the ArSearch operator
/* index:= ArSearch(array, addr, seq, frag)
/* where index is returned to identify the first element for which
/* ((inUse = true) and (entry!rta = addr) and (entry!rsn = seq)
/* and (entry!rCur = (frag-1)); or as =1 if no match found.
/* index:= ArFree(array) returns the index of a free entry,
/* or -1 if no entries free. May free an entry, selected using
/* an unspecified algorithm, to avoid returning -1.
/* array:= ArAge(array, age)
/* frees where (entry!eol < age), also used to clear array. */

newtype DefragArray Array(defragIndex, PartialSdu);
 adding operators
 ArSearch : DefragArray, MacAddr, SeqNum, FragNum -> Integer;
 ArFree : DefragArray -> Integer;
 ArAge : DefragArray, Time -> DefragArray;
 operator ArSearch;
 fpar ar DefragArray, adr MacAddr, seq SeqNum, frg FragNum;
 returns Integer; referenced;
 operator ArFree; fpar ar DefragArray; returns Integer; referenced;
 operator ArAge; fpar ar DefragArray, age Time;
 returns DefragArray; referenced;
endnewtype DefragArray;

newtype DefragKeysArray Array(defragIndex, PartialSduKeys);
endnewtype DefragKeysArray;

326 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

; fpar
 ar DefragArray,
 adr MacAddr,
 seq SeqNum,
 frg FragNum ;
returns Integer ;

Operator ArSearch ArSearch_1a(1)

/* This procedural operator is
 part of sort DefragArray.
 index:= ArSearch(array, addr, seq, frag)
 where array is a DefragArray;
 index is returned to identify the first element
 for which (inUse=true) and (entry!rta=addr) and
 (entry!rsn=seq) and (entry!rCur=frag-1);
 index is returned =1 if no match is found. */

dcl k DefragIndex ;
dcl result Integer ;
dcl te Boolean ;
dcl temp PartialSdu ;

k:= 1

temp:=ar(k),
te:=

temp!inUse

te

te:=
(temp!rta=
adr) and

Search for first
element where
(inUse=true) and
(rta=adr) and
(rsn=seq) and
(rCur=(frg-1))

(temp!rsn = seq)
 and
(temp!rCur
 = (frg-1))

te

k

k:= k+1

result:= -1

result

result:= k

 (true)

(false)

else

 (=defragSize)

 (true)

(false)

Copyright © 1997 IEEE. All rights reserved. 327

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

; fpar
 ar DefragArray ;
returns Integer ;

Operator ArFree ArFree_1b(1)

/* This procedural operator is
 part of the sort DefragArray.
 index:= ArFree(array)
 returns index of an unused entry
 in the array. If all entries are used,
 either returns -1, or selects an
 arbitrary entry to free in order to
 return a usable index. Decision
 criteria for case of no free entries
 are implementation dependent. */

dcl k DefragIndex ;
dcl result Integer ;
dcl te Boolean ;
dcl temp PartialSdu ;

k:= 1

temp:=ar(k),
te:=

temp!inUse

te

k

k:= k+1

'ok to
return -1'

This decision is
implementation
dependent.

result:= -1

result

'k:= index
of entry to
force free'

Select an entry to
re-use based on
unspecified criteria.

ar(k)!inUse:=
false,

result:= k

result:= k
Return index
of a free entry
if possible.

(true)

else

 (=defragSize)

 (true) (false)

 (false)

328 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

; fpar
 ar DefragArray,
 age Time ;
returns DefragArray ;

Operator ArAge ArAge_1a(1)

/* This procedural operator
 is part of sort DefragArray.
 array:= ArAge(array, age)
 frees entry!eol < age. This is
 used both for the aging function
 and to clear the DefragArray. */

dcl k DefragIndex ;
dcl te Boolean ;
dcl temp PartialSdu ;

k:= 1

temp:=ar(k),
te:=

temp!inUse

te

te:=
temp!reol

< age

te

temp!inUse:=
false,

ar(k):= temp

Mark all entries
with end-of-life
(reol) earlier
than specified
as not in use.

k

k:= k+1

ar

 (true)

 (true)

else

 (=defragSize)

(false)

(false)

Copyright © 1997 IEEE. All rights reserved. 329

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

/***
 * CRC-32 sorts (for FCS and ICV)
 ***/

/* Crc is a subtype of Octetstring with added operators:
/* crc:= Crc32(crc,octet)
/* updates the crc value to include the new octet, and
/* Mirror(crc), which returns a Crc value with the order
/* of the octets, and of the bits in each octet, reversed for
/* MSb-first transmission (see 7.1.1). Crc variables must have
/* exactly 4 octets, which is done using initCrc or S4. */

newtype Crc inherits Octetstring operators all;
 adding operators
 Crc32 : Crc, Octet -> Crc;
 mirror : Crc -> Octetstring;
 operator Crc32; fpar crcin Crc, val Octet; returns Crc; referenced;
 axioms for all c in Crc(
 mirror(c) == S4(flip(c(3)),flip(c(2)),flip(c(1)), flip(c(0))););
endnewtype Crc;

synonym initCrc Crc = /* Initial Crc value (all 1s) */
<< type Crc>> S4(0xFF,0xFF,0xFF,0xFF);

synonym goodCrc Crc = /* Unique remainder for valid CRC-32 */
<< type Crc>> S4(0x7B,0xDD,0x04,0xC7);

/***
 * WEP support sorts
 ***/

syntype KeyIndex = Integer constants 0:3 endsyntype KeyIndex;
newtype PrngKey inherits Octetstring operators all;
 adding literals nullKey; /* nullKey is not any of 2^40 key values */
 axioms nullKey == null; default nullKey; endnewtype PrngKey;
newtype KeyVector /* vector of default WEP keys */
 Array(KeyIndex, PrngKey); endnewtype KeyVector;

/* Number of entries in aWepKeyMappings array at this station.
/* implementation dependent value, minimum=10 (see 8.3.2). */

synonym sWepKeyMappingLength Integer = 10;
syntype KeyMappingRange = Integer

constants 1:sWepKeyMappingLength endsyntype KeyMappingRange;

newtype KeyMap struct /* structure used for entries in KeyMapArray */
 mappedAddr MacAddr;
 wepOn Boolean;
 wepKey PrngKey;
endnewtype KeyMap;

/* KeyMapArray -- used for aWepKeyMapping table;
/* an array of KeyMap indexed by KeyMappingRange, with operator
/* KeyMap := keyLookup(addr, keyMapArray, keyMapArrayLength)
/* returns the KeyMap entry for the specified addr, or
/* (. nullAddr, false, nullKey .) if no mapping for addr. */

newtype KeyMapArray Array(KeyMappingRange, KeyMap);
 adding operators
 keyLookup : MacAddr, KeyMapArray, Integer -> KeyMap;
 operator keyLookup;
 fpar luadr MacAddr, kma KeyMapArray, kml Integer;
 returns KeyMap; referenced;
endnewtype KeyMapArray;

330 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

; fpar
 crcin Crc,
 val Octet ;
 returns Crc ;

Operator Crc32 crc32_1a(1)

/* This procedural operator is
 part of sort Crc.
 crc:= Crc32(crc, octet)
 generates CRC-32 polynomial,
 LSb-first, for the 8 bits of
 octet into accumulator crc. */

dcl k Integer ;
dcl new Bit ;
dcl result Crc ;
dcl temp Bitstring ;

/* Bitstring with 1s at bit
 positions with feedback
 terms in CRC-32 polynomial */
synonym feedback Bitstring =
 S8(0,1,1,0,1,1,0,1) //
 S8(1,0,1,1,1,0,0,0) //
 S8(1,0,0,0,0,0,1,1) //
 S8(0,0,1,0,0,0,0,0) ;

k:= 0

temp:=
b_s(crcin)

new:=
val(k) xor
last(temp)

temp:=
mkstring(new)
// head(temp)

new = 1

temp:=
temp xor
feedback

k

k:= k+1

result:=
o_s(temp)

result

 (true)

else

 (=7)

 (false)

Copyright © 1997 IEEE. All rights reserved. 331

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

; fpar luadr MacAddr,
 kma KeyMapArray,
 kml Integer ;
returns KeyMap ;

Operator keyLookup KeyLookup_1a(1)

/* This procedural operator is
 part of sort KeyMapArray.
 keyMap:= keyLookup
 (addr, keyMapArray, keyMapArrayLength)
 If an entry is found with mappedAddr=addr,
 keyMap is set to the value of this entry.
 If no entry is found with mappedAddr=addr,
 keyMap is set to (. nullAddr, false, nullKey .) */

dcl lk Integer := 1 ;
dcl result KeyMap ;

luadr =
kma(lk)!

mappedAddr

lk:= lk + 1

lk =
(kml+1)

result!
mappedAddr:=

nullAddr

If the end of the key
map array is reached
without finding addr,
indicate the lack of
a mapping by returning
nullAddr. This avoids
ambiguity between an
entry which maps to
nullKey and nullKey
being returned due
to lack of a mapping.

result!
wepOn:=

false

result!
wepKey:=
nullKey

result

result:=
kma(lk)

Return first KeyMap
element with correct
mappedAddr value.

 (false)

(false) (true)

 (true)

332 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

/***
 * FRAME sort (the basic definition of fields in MAC frames)
 ***/

/* Frame is a subtype of Octetstring with operators for creating
/* MAC headers, extracting each of the header fields and some
/* management frame fields, and modifying most of these fields.
/* There are operators to create and extract management frame
/* elements, but no operators for the frame body, IV, ICV, and FCS
/* fields, which are handled directly as Octetstrings. */

newtype Frame inherits Octetstring operators all;
 adding operators
 mkFrame : TypeSubtype, MacAddr, MacAddr, Octetstring -> Frame;
 mkCtl : TypeSubtype, Octetstring, MacAddr -> Frame;
 protocolVer : Frame -> Integer; /* Protocol version (2 bits) */
 basetype : Frame -> BasicType; /* Type field (2 bits) */
 ftype : Frame -> TypeSubtype; /* Type & Subtype (6 bits) */
 setFtype : Frame, TypeSubtype -> Frame;
 toDs : Frame -> Bit; /* To DS bit (1 bit) */
 setToDs : Frame, Bit -> Frame;
 frDs : Frame -> Bit; /* From DS bit (1 bit) */
 setFrDs : Frame, Bit -> Frame;
 moreFrag : Frame -> Bit; /* More Fragments bit (1 bit) */
 setMoreFrag : Frame, Bit -> Frame;
 retryBit : Frame -> Bit; /* Retry bit (1 bit) */
 setRetryBit : Frame, Bit -> Frame;
 pwrMgt : Frame -> Bit; /* Power Management bit (1 bit) */
 setPwrMgt : Frame, Bit -> Frame;
 moreData : Frame -> Bit; /* More Data bit (1 bit) */
 setMoreData : Frame, Bit -> Frame;
 wepBit : Frame -> Bit; /* WEP bit (1 bit) */
 setWepBit : Frame, Bit -> Frame;
 orderBit : Frame -> Bit; /* {strictly}Order{ed} (1 bit) */
 setOrderBit : Frame, Bit -> Frame;
 durId : Frame -> Integer; /* Duration/ID field (2) */
 setDurId : Frame, Integer -> Frame;
 addr1 : Frame -> MacAddr; /* Address 1 [DA/RA] field (6) */
 setAddr1 : Frame, MacAddr -> Frame;
 addr2 : Frame -> MacAddr; /* Address 2 [SA/TA] field (6) */
 setAddr2 : Frame, MacAddr -> Frame;
 addr3 : Frame -> MacAddr; /* Address 3 [Bss/DA/SA] field */
 setAddr3 : Frame, MacAddr -> Frame;
 addr4 : Frame -> MacAddr; /* Address 4 [WDS-SA] field (6) */
 insAddr4 : Frame, MacAddr -> Frame;
 seq : Frame -> SeqNum; /* Sequence Number (12 bits) */
 setSeq : Frame, SeqNum -> Frame;
 frag : Frame -> FragNum; /* Fragment Number (4 bits) */
 setFrag : Frame, FragNum -> Frame;
 ts : Frame -> Time; /* Timestamp field (8) */
 setTs : Frame, Time -> Frame;
 mkElem : ElementID, Octetstring -> Frame; /* make element */
 GetElem : Frame, ElementID -> Frame; /* get element if aval */
 status : Frame -> StatusCode; /* Status Code field (2) */
 setStatus : Frame, StatusCode -> Frame;
 authStat : Frame -> StatusCode; /* Status Code in Auth frame */
 reason : Frame -> ReasonCode; /* Reason Code field (2) */
 authSeqNum : Frame -> Integer; /* Auth Sequence Number (2) */
 authAlg : Frame -> AuthType; /* Auth Algorithm field (2) */
 beaconInt : Frame -> TU; /* Beacon Interval field (2) */
 listenInt : Frame -> TU; /* Listen Interval field (2) */
 AId : Frame -> AsocId; /* Association ID field (2) */
 setAId : Frame, AsocId -> Frame;
 curApAddr : Frame -> MacAddr; /* Current AP Addr field (6) */
 capA : Frame, Capability -> Bit; /* Capability (Re)Asoc */
 setCapA : Frame, Capability, Bit -> Frame;

Copyright © 1997 IEEE. All rights reserved. 333

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

 capB : Frame, Capability -> Bit; /* Capability Bcn/Probe */
 setCapB : Frame, Capability, Bit -> Frame;
 keyId : Frame -> KeyIndex; /* Key ID subfield (2 bits) */
 setKeyId: Frame, KeyIndex -> Frame;
 operator GetElem;
 fpar fr Frame, el ElementID; returns Frame; referenced;
 axioms
 for all f in Frame(for all a, sa, da, ra, ta, bssa in MacAddr(
 for all body, dur, sid, info in Octetstring(
 addr1(f) == SubStr(f,4,6);
 setAddr1(f,a) == SubStr(f,0,4) // a // SubStr(f,10,Length(f)-10);
 addr2(f) == SubStr(f,10,6);
 setAddr2(f,a) == SubStr(f,0,10) // a // SubStr(f,16,Length(f)-16);
 addr3(f) == SubStr(f,16,6);
 setAddr3(f,a) == SubStr(f,0,16) // a // SubStr(f,22,Length(f)-22);
 addr4(f) == SubStr(f,24,6);
 insAddr4(f,a) == SubStr(f,0,24) // a // SubStr(f,24,Length(f)-24);
 curApAddr(f) == SubStr(f,28,6);
 for all ft in TypeSubtype(
 mkFrame(ft, da, bssa, body) ==
 ft // O3 // da // aMacAddress // bssa // O2 // body;
 (ft = rts) ==> mkCtl(ft, dur, ra) ==
 ft // O1 // dur // ra // aStationID;
 (ft = ps_poll) ==> mkCtl(ft, sid, bssa) ==
 ft // O1 // sid // bssa // aStationID;
 (ft = cts) or (ft = ack) ==> mkCtl(ft, dur, ra) ==
 ft // O1 // dur // ra;
 (ft = cfend) or (ft = cfend_ack) ==> mkCtl(ft, bssa, ra) ==
 ft // O3 // ra // bssa;
 ftype(f) == MkString(f(0) and 0xFC);
 setFtype(f, ft) == Modify!(f, 0, MkString((f(0) and 0x03) or
 ft)););
 for all bt in BasicType(basetype(f) == f(0) and 0x0C;);
 for all i in Integer(
 protocolVer(f) == octetVal(f(0) and 0x03);
 authSeqNum(f) == octetVal(f(26)) + (octetVal(f(27)) * 256);
 durId(f) == octetVal(f(2)) + (octetVal(f(3)) * 256);
 setDurId(f, i) == SubStr(f, 0, 2) // mkOS(i mod 256, 1) //
 mkOS(i / 256, 1) // SubStr(f, 4, Length(f) - 4););
 for all e in ElementID(
 mkElem(e, info) == e // mkOS(Length(info) + 2, 1) // info;);
 for all b in Bit(
 toDs(f) == if (f(1) and 0x01) then 1 else 0 fi;
 setToDs(f, b) ==
 Modify!(f, 1, (f(1) and 0xFE) or S8(0,0,0,0,0,0,0,b));
 frDs(f) == if (f(1) and 0x02) then 1 else 0 fi;
 setFrDs(f, b) ==
 Modify!(f, 1, (f(1) and 0xFD) or S8(0,0,0,0,0,0,b,0));
 moreFrag(f) == if (f(1) and 0x04) then 1 else 0 fi;
 setMoreFrag(f, b) ==
 Modify!(f, 1, (f(1) and 0xFB) or S8(0,0,0,0,0,b,0,0));
 retryBit(f) == if (f(1) and 0x08) then 1 else 0 fi;
 setRetryBit(f, b) ==
 Modify!(f, 1, (f(1) and 0xF7) or S8(0,0,0,0,b,0,0,0));
 pwrMgt(f) == if (f(1) and 0x10) then 1 else 0 fi;
 setPwrMgt(f, b) ==
 Modify!(f, 1, (f(1) and 0xFB) or S8(0,0,0,b,0,0,0,0));
 moreData(f) == if (f(1) and 0x20) then 1 else 0 fi;
 setMoreData(f, b) ==
 Modify!(f, 1, (f(1) and 0xFB) or S8(0,0,b,0,0,0,0,0));
 wepBit(f) == if (f(1) and 0x40) then 1 else 0 fi;
 setWepBit(f, b) ==
 Modify!(f, 1, (f(1) and 0xFB) or S8(0,b,0,0,0,0,0,0));
 orderBit(f) == if (f(1) and 0x80) then 1 else 0 fi;

334 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

 setOrderBit(f, b) ==
 Modify!(f, 1, (f(1) and 0xFB) or S8(b,0,0,0,0,0,0,0));
 for all c in Capability(
 capA(f,c) == if (B_S(SubStr(f,24,2)) and c) then 1 else 0 fi;
 setCapA(f,c,b) == SubStr(f,0,24) // (B_S(SubStr(f,24,2) and
 (not c)) or (if b then c else O2 fi)) //
 SubStr(f,26,Length(f) - 26);
 capB(f,c) == if (B_S(SubStr(f,34,2)) and c) then 1 else 0 fi;
 setCapB(f,c,b) == SubStr(f,0,34) // (B_S(SubStr(f,34,2) and
 (not c)) or (if b then c else O2 fi)) //
 SubStr(f,36,Length(f) - 36);));
 for all sq in SeqNum(
 seq(f) == (octetVal(f(22) and 0xF0)/16)+(octetVal(f(23)*16));
 setSeq(f, sq) == SubStr(f, 0, 22) // MkString((f(22) and 0x0F)
 or mkOctet((sq mod 16) * 16)) // mkOS(sq / 16, 1) //
 SubStr(f, 24, Length(f) - 24););
 for all fr in FragNum(
 frag(f) == octetVal(f(22) and 0x0F);
 setFrag(f, fr) ==
 SubStr(f, 0, 22) // MkString((f(22) and 0xF0) or
 mkOctet(fr)) // SubStr(f, 23, Length(f) - 23););
 for all tm in Time(
 ts(f) == tUsec(Usec!(octetVal(f(24)) +
 (256 * (octetVal(f(25)) +
 (256 * (octetVal(f(26)) +
 (256 * (octetVal(f(27)) +
 (256 * (octetVal(f(28)) +
 (256 * (octetVal(f(29)) +
 (256 * (octetVal(f(30)) +
 (256 * octetVal(f(31)))))))))))))))));
 setTs(f, tm) == SubStr(f, 0, 24) // mkOS(fix(tm), 1) //
 mkOS((fix(tm) / 256), 1) // mkOS((fix(tm) / 65536), 1) //
 mkOS((fix(tm) / 16777216), 1) //
 mkOS((fix(tm) / 4294967296), 1) //
 mkOS(((fix(tm) / 4294967296) / 256), 1) //
 mkOS(((fix(tm) / 4294967296) / 65536), 1) //
 mkOS(((fix(tm) / 4294967296) / 16777216), 1) //
 SubStr(f, 32, Length(f) - 32););
 for all stat in StatusCode(
 status(f) == SubStr(f, 26, 2);
 setStatus(f, stat) ==
 SubStr(f, 0, 26) // stat // SubStr(f, 28, Length(f) - 28);
 authStat(f) == SubStr(f, 28, 2););
 for all rea in ReasonCode(reason(f) == SubStr(f, 24, 2););
 for all alg in AuthType(AuthType(f) == SubStr(f, 24, 2););
 for all u in TU(
 beaconInt(f) == octetVal(f(32)) + (octetVal(f(33)) * 256);
 listenInt(f) == octetVal(f(26)) + (octetVal(f(27)) * 256););
 for all sta in AssocId(
 AId(f) == octetVal(f(28)) + (octetVal(f(29)) * 256);
 setAId(f, sta) == SubStr(f, 0, 28) // mkOS(sta mod 256, 1) //
 mkOS(sta / 256, 1) // SubStr(f, 30, Length(f) - 30););
 for all kid in KeyIndexRange(
 keyId(f) == octetVal(f(27)) / 64;
 setKeyId(f, kid) == Modify!(f, 27, mkOS(kid * 64)););)));
endnewtype Frame;

Copyright © 1997 IEEE. All rights reserved. 335

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

/***
 * ReasonCode sort
 ***/
newtype ReasonCode inherits Octetstring operators all;
 adding literals unspec_reason, auth_not_valid, deauth_lv_ss,
 inactivity, ap_overload, class2_err, class3_err,
 disas_lv_ss, asoc_not_auth;
 axioms
 unspec_reason == mkOS(1, 2); auth_not_valid == mkOS(2, 2);
 deauth_lv_ss == mkOS(3, 2); inactivity == mkOS(4, 2);
 ap_overload == mkOS(5, 2); class2_err == mkOS(6, 2);
 class3_err == mkOS(7, 2); disas_lv_ss == mkOS(8, 2);
 asoc_not_auth == mkOS(9, 2);
endnewtype ReasonCode;

/***
 * StatusCode sort
 ***/
newtype StatusCode inherits Octetstring operators all;
 adding literals successful, unspec_fail, unsup_cap,
 reasoc_no_asoc, fail_other, unsupt_alg, auth_seq_fail,
 chlng_fail, auth_timeout, ap_full, unsup_rate;
 axioms
 successful == mkOS(0, 2); unspec_failure == mkOS(1, 2);
 unsup_cap == mkOS(10, 2); reasoc_no_asoc == mkOS(11, 2);
 fail_other == mkOS(12, 2); unsupt_alg == mkOS(13, 2);
 auth_seq_fail == mkOS(14, 2); chlng_fail == mkOS(15, 2);
 auth_timeout == mkOS(16, 2); ap_full == mkOS(17, 2);
 unsup_rate == mkOS(18, 2);
endnewtype StatusCode;

336 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

; fpar
 fr Frame,
 el ElementId ;
returns Frame ;

Operator getElem GetElem_1a(1)

dcl k, lng, n Integer ;
dcl info Frame ;
dcl te Boolean ;
dcl v1, v2 Octet ;

/* This is a procedural operator
 is part of sort Frame. This
 operator extracts an element
 from a Management frame:
 elem:= getElem(fr,eI)
 Copies the info field of element
 with element ID eI from frame fr
 into elem. If there is no element
 with the specified element ID,
 elem is set to 'null'. */

n:= length(fr)

ftype(fr)

k:= 6

k:= k +
sMacHdrLng

te:= n >= k

te

info:= null

info

v1:= fr(k),
v2:= first(el)

v1 = v2

v1:= fr(k+1)

lng:=
octetVal(v1)

info:=
substr

(fr,k+2,lng)

info

v1:= fr(k+1)

k:= k +
octetVal
(v1) + 2

k:= 0 k:= 12 k:= 10 k:= 4

 (auth)

(false)
 (true)

 (true) (false)

 (probe_req)
 (beacon,
 probe_rsp) (reasoc_req)

 (asoc_req,
 asoc_rsp,
 reasoc_rsp)

 else

Copyright © 1997 IEEE. All rights reserved. 337

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

/***
 * Frame Type sorts
 ***/

/* TypeSubtype defines the full, 6-bit frame type identifiers.
/* These values are useful with ftype operator of Frame sort. */

newtype TypeSubtype inherits Octetstring operators all;
 adding literals asoc_req, asoc_rsp, reasoc_req, reasoc_rsp,
 probe_req, probe_rsp, beacon, atim, disasoc,

auth, deauth, ps_poll, rts, cts,
ack, cfend, cfend_ack, data, data_ack,
data_poll, data_poll_ack, null_frame, cfack,
cfpoll, cfpoll_ack;

 axioms
 asoc_req == MkString(S8(0,0,0,0,0,0,0,0));
 asoc_rsp == MkString(S8(0,0,0,0,1,0,0,0));
 reasoc_req == MkString(S8(0,0,0,0,0,1,0,0));
 reasoc_rsp == MkString(S8(0,0,0,0,1,1,0,0));
 probe_req == MkString(S8(0,0,0,0,0,0,1,0));
 probe_rsp == MkString(S8(0,0,0,0,1,0,1,0));
 beacon == MkString(S8(0,0,0,0,0,0,0,1));
 atim == MkString(S8(0,0,0,0,1,0,0,1));
 disasoc == MkString(S8(0,0,0,0,0,1,0,1));
 auth == MkString(S8(0,0,0,0,1,1,0,1));
 deauth == MkString(S8(0,0,0,0,0,0,1,1));
 ps_poll == MkString(S8(0,0,1,0,0,1,0,1));
 rts == MkString(S8(0,0,1,0,1,1,0,1));
 cts == MkString(S8(0,0,1,0,0,0,1,1));
 ack == MkString(S8(0,0,1,0,1,0,1,1));
 cfend == MkString(S8(0,0,1,0,0,1,1,1));
 cfend_ack == MkString(S8(0,0,1,0,1,1,1,1));
 data == MkString(S8(0,0,0,1,0,0,0,0));
 data_ack == MkString(S8(0,0,0,1,1,0,0,0));
 data_poll == MkString(S8(0,0,0,1,0,1,0,0));
 data_poll_ack == MkString(S8(0,0,0,1,1,1,0,0));
 null_frame == MkString(S8(0,0,0,1,0,0,1,0));
 cfack == MkString(S8(0,0,0,1,1,0,1,0));
 cfpoll == MkString(S8(0,0,0,1,0,1,1,0));
 cfpoll_ack == MkString(S8(0,0,0,1,1,1,1,0));
endnewtype TypeSubtype;

 /* BasicTypes defines the 2-bit frame type groups */
newtype BasicType inherits Bitstring operators all;
 adding literals control, data, management, reserved;
 axioms
 control == S8(0,0,1,0,0,0,0,0);
 data == S8(0,0,0,1,0,0,0,0);
 management == S8(0,0,0,0,0,0,0,0);
 reserved == S8(0,0,1,1,0,0,0,0);
endnewtype BasicType;

338 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

/***
 * ElementID sort
 ***/
newtype ElementID inherits Octetstring operators all;
 adding literals eSsId, eSupRates, eFhParms, eDsParms,
 eCfParms, eTim, eIbParms, eCtext;
 axioms
 eSsId == mkOS(0, 1); /* service set identifier (0:32) */
 eSupRates == mkOS(1, 1); /* supported rates (1:8) */
 eFhParms == mkOS(2, 1); /* FH parameter set (5) */
 eDsParms == mkOS(3, 1); /* DS parameter set (1) */
 eCfParms == mkOS(4, 1); /* CF parameter set (6) */
 eTim == mkOS(5, 1); /* Traffic Information Map (4:254) */
 eIbParms == mkOS(6, 1); /* IBSS parameter set (2) */
 eCtext == mkOS(16, 1); /* challenge text (128, see 8.1.2.2) */
endnewtype ElementID;

/***
 * Capability field bit assignments sort
 ***/
newtype Capability inherits Bitstring operators all;
 adding literals cEss, cIbss, cPollable, cPollReq, cPrivacy;
 axioms
 cEss == S8(1,0,0,0,0,0,0,0) // 0x00; /* ESS capability */
 cIbss == S8(0,1,0,0,0,0,0,0) // 0x00; /* IBSS capability */
 cPollable == S8(0,0,1,0,0,0,0,0) // 0x00; /* CF-pollable (sta),

 PC present (ap) */
 cPollReq == S8(0,0,0,1,0,0,0,0) // 0x00; /* not CF poll req (sta),

 PC polls (ap) */
 cPrivacy == S8(0,0,0,0,1,0,0,0) // 0x00; /* WEP required */
endnewtype Capability;

/***
 * IBSS parameter set sort
 ***/
newtype IbssParms inherits Octetstring operators all;
 adding operators
 atimWin : IbssParms -> TU;
 setAtimWin : IbssParms, TU -> IbssParms;
 axioms
 for all ib in IbssParms(for all u in TU(
 atimWin(ib) == octetVal(ib(0)) + (octetVal(ib(1)) * 256);
 setAtimWin(ib, u) == mkOS(u mod 256, 1) // mkOS(u / 256, 1);));
endnewtype IbssParms;

/***
 * CF parameter set sort
 ***/
newtype CfParms inherits Octetstring operators all;
 adding operators
 cfpCount : CfParms -> Integer; /* CfpCount field (1) */
 setCfpCount : CfParms, Integer -> CfParms;
 cfpPeriod : CfParms -> Integer; /* CfpPeriod field (1) */
 setCfpPeriod : CfParms, Integer -> CfParms;
 cfpMaxDur : CfParms -> TU; /* CfpMaxDuration field (2) */
 setCfpMaxDur : CfParms, TU -> CfParms;
 cfpDurRem : CfParms -> TU; /* CfpDurRemaining field (2) */
 setCfpDurRem : CfParms, TU -> CfParms;
 axioms
 for all cf in CfParms(for all i in Integer(for all u in TU(
 cfpCount(cf) == octetVal(cf(0));
 setCfpCount(cf, i) == mkOS(i, 1) // Tail(cf);
 cfpPeriod(cf) == octetVal(cf(1));
 setCfpPeriod(cf, i) == cf(0) // mkOS(i, 1) // SubStr(cf,2,4);

Copyright © 1997 IEEE. All rights reserved. 339

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

 cfpMaxDur(cf) == octetVal(cf(2)) + (octetVal(cf(3)) * 256);
 setCfpMaxDur(cf, u) == SubStr(cf, 0, 2) // mkOS(u mod 256, 1)
 // mkOS(u / 256, 1) // SubStr(cf, 4, 2);
 cfpDurRem(cf) == octetVal(cf(4)) + (octetVal(cf(5)) * 256);
 setCfpDurRem(cf, u) == SubStr(cf, 0, 4) // mkOS(u mod 256, 1)
 // mkOS(u / 256, 1);)));
endnewtype CfParms;

/***
 * Sorts for association management at AP
 ***/
synonym sMaxAId Integer = 2007; /* 2007 is largest allowable value */

/* implementation limit may be lower */
syntype AsocId = Integer constants 0:sMaxAId endsyntype AsocId;
 /* Station Association Record -- only used at APs */
newtype AsocData struct
 adAddr MacAddr; /* address of associated station */
 adPsm PwrSave; /* power save mode of the station */
 adCfPoll Boolean; /* true if station is CfPollable */
 adPollRq Boolean; /* true if station requested polling */
 adNoPoll Boolean; /* true if station requested no polling */
 adMsduIP Boolean; /* true if partial Msdu outstanding to sta */
 adAuth AuthType; /* authentication type used by station */
 adRates RateSet; /* supported rates from association request */
 adAge Time; /* time of association */
endnewtype AsocData;

/* Association table -- array of AsocData, only used at APs
/* index:= AIdLookup(table, addr)
/* returns the index of location where table(x)!adAddr=addr
/* or 0 if no such location found. */

newtype AIdTable Array(AsocId, AsocData);
 adding operators
 AIdLookup : AIdTable, MacAddr -> AsocId;
 operator AIdLookup;
 fpar tbl AIdTable, val MacAddr; returns AsocId; referenced;
endnewtype AIdTable;

/***
 * Traffic Information Map (TIM) support sorts
 ***/

/* TrafficMap is an Array of Bit indexed by AId.
/* Bits =1 in TrafficMap denote the presence of buffered frame(s)
/* for the station assigned that AId. TrafficMap operators are:
/* mkTim(trafficMap, dtimCnt, dtimPer, lowAId, highAId, bcst)
/* returns Octetstring to use as the info field of a TIM element
/* The TIM will contain bits =1 for TrafficMap locations in the
/* range (lowAId):(highAId). Buffered broadcasts and multicasts
/* (AId 0) are indicated if dtimCnt=0 and if bcst=true.
/* nextAId(trafficMap, currentAId)
/* returns index greater than currentAId at which TrafficMap=1.
/* If no locations before sMaxAId are =1, returns 0. */

newtype TrafficMap Array(AsocId, Bit);
 adding operators
 mkTim : TrafficMap, Integer, Integer, AsocId, AsocId, Boolean ->
 Octetstring;
 nextAId : TrafficMap, AsocId -> AsocId;
 operator mkTim;
 fpar trf TrafficMap, dtc Integer, dtp Integer, xlo AsocId,
 xhi AsocId, bc Boolean; returns Octetstring; referenced;
 operator nextAId;
 fpar trf TrafficMap, x AsocId; returns AsocId; referenced;
endnewtype TrafficMap;

/* TIM is a subtype of Octetstring with operators:
/* bufFrame(tim,AId) returns true if the TIM info field

340 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

/* (obtained using getElem) is =1 at tim(AId).
/* bufBcst(tim) returns true if the TIM info field
/* indicates buffered broadcast/multicast traffic
/* dtCount(tim) returns DTIM count value from TIM
/* dtPeriod(tim) returns DTIM period value from TIM */

newtype TIM inherits Octetstring operators all;
 adding operators
 bufFrame : TIM, AsocId -> Boolean;
 bufBcst : TIM -> Boolean;
 dtCount : TIM -> Integer;
 dtPeriod : TIM -> Integer;
 axioms
 for all el in TIM(for all a in AsocId(
 bufFrame(el, a) ==
 if a < (octetVal(el(2) and 0xFE) * 8) then false
 else
 if a >= ((octetVal(el(2) and 0xFE)*8) + ((Length(el)-3)*8))
 then false
 else
 Extract!(B_S(el), (a-(octetVal(el(2) and 0xFE)*8)+24)) = 1
 fi fi;
 bufBcst(el) == (el(2) and 0x01) = 0x01;
 dtCount(el) == octetVal(el(0));
 dtPeriod(el) == octetVal(el(1));));
endnewtype TIM;

; fpar
 tbl AIdTable,
 val MacAddr ;
returns AsocId ;

Operator AIdLookup AIdLookup_1a(1)

dcl k AsocId ;
dcl result AsocId ;
dcl tst AsocData ;

/* This is a procedural operator
 for sort AIdTable.
 The association ID table is
 searchable by MacAddr using
 index:= AIdLookup(table, addr)
 where table is an AIdTable.
 This operator returns the
 first index value where the
 table entry is equal to addr,
 or 0 if no match found. */

Start search at 1.
AIdTable index
range includes 0
because AId=0
is a shorthand
used to indicate
buffered broadcast
or multicast frames.

k:= 1 k:= k+1

tst:=
tbl(k)

tst!
adAddr

=val

k

result:= k result:= 0

result

(false)

 (true)

else

 (=sMaxAId)

Copyright © 1997 IEEE. All rights reserved. 341

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

; fpar
 trf TrafficMap,
 dtc Integer,
 dtp Integer,
 xlo AsocId,
 xhi AsocId,
 bc Boolean ;
returns Octetstring ;

Operator mkTim MkTim_1a(1)

dcl i, j, k AsocId ;
dcl tim, tmp
 Octetstring ;

/* This procedural operator is part
 of sort TrafficMap. mkTim builds
 the info field for a TIM element
 from the DTIM count and DTIM
 period values and the contents
 of the (xlo:xhi) range of bits in
 the TrafficMap. The resulting
 Octetstring can be used as an
 operand of mkElem (by an AP
 generating a Beacon frame). */

tim:=
mkOS(dtc,1) //
mkOS(dtp,1)

Start TIM
with DTIM
count and
period fields.

i:= xlo,
k:= xhi

trf(i)=0
Search up from
low limit (xlo)
for a non-zero
traffic map bit.

trf(k)=0

Search down from
high limit (xhi)
for a non-zero
traffic map bit.

i:=
(i / 16) * 2

Floor starting
index to even
multiple of 8.

j:= i +
if ((dtc=0)
and bc) and

Add starting
index to bc/mc
indicator to
get bitmap
control field
value for TIM.

(trf(0)=1)
then 1
else 0 fi

tmp:=
<<type

Octetstring>>

mkString(
mkOctet(j)),
tim:=
 tim // tmp

i:= i * 8,
k:=

((k-i) / 8) + 1

This method of calculating bitmap
index and octet count meets alignment
and length restrictions implicit in
the encoding of the TIM bitmap control
field (7.3.2.6). However, if xlo is not a
multiple of 16, or xhi is not a multiple
of 8, bits outside the range (xlo:xhi)
will appear in the TIM element. This
may be of concern to implementors, but
is not a problem in the formal description
because criteria for selecting bitmap
subsets are not part of this standard.

tim:= tim //
O_S(<<type
Bitstring>>

Append octets
in active part
of bitmap to
the TIM.

S8(trf(i),
 trf(i+1),
 trf(i+2),
 trf(i+3),
 trf(i+4),
 trf(i+5),
 trf(i+6),
 trf(i+7)))

i:= i + 8,
k:= k - 1

k = 0

tim

k:= k-1

i = xhi

i:= i+1

j:=
if ((dtc=0)
and bc) and

(trf(0)=1)
then 1
else 0 fi

tmp:=
<<type

Octetstring>>

mkString(
mkOctet(j)),
tim:= tim //
 tmp // O1

If no 1s in the partial
bitmap, generate TIM
with index 0 and one
octet =0 (see 7.3.2.6).

tim

(false)

(false)

 (false)

 (true)

 (true)

 (true)

 (false)
 (true)

342 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

; fpar
 trf TrafficMap,
 x AsocId ;
returns AsocId ;

Operator nextAId NextAId_1a(1)

/* This procedural operator
 is part of sort TrafficMap.
 nextAId searches upward
 from the specified initial
 index (x) in a TrafficMap
 and returns the index of
 the first bit =1. If the end
 of the TrafficMap (index=
 sMaxAId) is reached with
 no 1s found, a value of 0
 is returned. */

dcl k, result AsocId ; k:= x

k:= k+1

x =
sMaxAId

trf(k)=0

result:= k

result

result:= 0

 (false)
 (true)

 (false)

(true)

Copyright © 1997 IEEE. All rights reserved. 343

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

/***
 * Multi-rate support sorts
 ***/
newtype Rate inherits Octet operators all;
 adding operators
 calcDur : Rate, Integer -> Integer;

/* converts (rate,bitCount) to integer microseconds */
 rateVal : Rate -> Rate; /* clears high-order bit */
 basicRate : Rate -> Rate; /* sets high-order bit */
 isBasic : Rate -> Boolean; /* true if high-order bit set */
 axioms
 for all r in Rate(for all i in Integer(for all b in Boolean(
 calcDur(r, i) == ((((10000000 + (octetVal(r and 0x7F) - 1)) /
 (500 * octetVal(r and 0x7F))) * i) + 9999) / 10000;
 rateVal(r) == r and 0x7F;
 basicRate(r) == r or 0x80;
 isBasic(r) == (r and 0x80) = 0x80;)));
endnewtype Rate;

syntype RateString = Octetstring endsyntype RateString;

/***
 * MPDU duration factor support sort
 ***/

/* These operators support the encoding used to allow
/* an Integer to represent the value of aMpduDurationFactor.
/* calcDF(PlcpBits, MpduBits) returns an Integer which is
/* the fractional part of ((PlcpBits/MpduBits)-1)*(1e9).
/* stuff(durFactor, MpduBits) returns the number of PlcpBits
/* which result from MpduBits at the specified durFactor. */

newtype DurFactor inherits Integer operators all;
 adding operators
 calcDF : Integer, Integer -> DurFactor;
 stuff : DurFactor, Integer -> Integer;
 axioms
 for all df in DurFactor(for all mb, pb in Integer(
 calcDF(pb, mb) == ((pb * 1000000000) / mb) - 1000000000;
 stuff(df, mb) == ((mb * df) + (mb - 1)) / 1000000000;));
endnewtype DurFactor;

/***
 * Generic PHY parameter set sort
 ***/

/* Generic PHY parameter element for signals related to Beacons
/* and Probe Responses that are PHY-type independent. */

syntype PhyParms = Octetstring endsyntype PhyParms;

/***
 * FH parameter set sort
 ***/
newtype FhParms inherits Octetstring operators all;
 adding operators
 dwellTime : FhParms -> TU; /* Dwell Time field (2) */
 setDwellTime : FhParms, TU -> FhParms;
 hopSet : FhParms -> Integer; /* Hop Set field (1) */
 setHopSet : FhParms, Integer -> FhParms;
 hopPattern : FhParms -> Integer; /* Hop Pattern field (1) */
 setHopPattern : FhParms, Integer -> FhParms;
 hopIndex : FhParms -> Integer; /* Hop Index field (1) */
 setHopIndex : FhParms, Integer -> FhParms;
 axioms
 for all fh in FhParms(for all i in Integer(for all u in TU(
 dwellTime(fh) == octetVal(fh(0)) + (octetVal(fh(1)) * 256);
 setDwellTime(fh, u) ==

344 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

 mkOS(u mod 256, 1) // mkOS(u / 256, 1) // SubStr(fh, 2, 3);
 hopSet(fh) == octetVal(fh(2));
 setHopSet(fh,i) == SubStr(fh,0,2) // mkOS(i,1) // SubStr(fh,3,2);
 hopPattern(fh) == octetVal(fh(3));
 setHopPattern(fh, i) == SubStr(fh,0,3) // mkOS(i,1) // Last(fh);
 hopIndex(fh) == octetVal(fh(4));
 setHopIndex(fh, i) == SubStr(fh, 0, 4) // mkOS(i, 1);)));
endnewtype FhParms;

/***
 * DS parameter set sort
 ***/
newtype DsParms inherits Octetstring operators all;
 adding operators
 curChannel: DsParms -> Integer; /* Current Channel (1) */
 setCurChannel: DsParms, Integer -> DsParms;
 axioms
 for all ds in DsParms(for all i in Integer(
 curChannel(ds) == octetVal(ds(0));
 setCurChannel(ds, i) == mkOS(i);));
endnewtype DsParms;

endpackage;
/***/

/***/
use macsorts;
Package macmib;

/* This Package contains definitions of the MAC MIB attributes
/* and the subset of the PHY MIB attributes used by the MAC state
/* machines. These are needed under Z.100 to permit analysis of
/* the state machine definitions. In future revisions these may
/* be replaced with the ASN.1 MIB definition, from Annex D, if
/* a Z.105-compliant SDL tool is available. */

/***
 * StationConfig Group
 ***/
remote aMediumOccupancyLimit TU nodelay;
remote aReceiveDTIMs Boolean nodelay;
synonym aCfPollable Boolean = <<package macsorts>> sCfPollable;
remote aCfpPeriod Integer nodelay;
remote aCfpMaxDuration TU nodelay;
remote aAuthenticationResponseTimeout TU nodelay;
remote aAuthenticationType AuthTypeSet nodelay;
remote aWepUndecryptableCount Counter32 nodelay;

/***
 * AuthenticationAlgorithms Table
 ***/
synonym aAuthenticationAlgorithms AuthTypeSet =
 incl(open_system, incl(shared_key));

/* NOTE: Only include shared_key in this set
 if aPrivacyOptionImplemented=true. */

/***
 * WepDefaultKeys Table (only if aPrivacyOptionImplemented=true)
 ***/
remote aWepDefaultKeys KeyVector nodelay;

/***
 * WepKeyMappings Table (only if aPrivacyOptionImplemented=true)

Copyright © 1997 IEEE. All rights reserved. 345

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

 ***/
remote aWepKeyMappings KeyMapArray nodelay;
synonym aWepKeyMappingLength Integer =
 <<package macsorts>> sWepKeyMappingLength;

/***
 * Privacy Group (only 1 item if aPrivacyOptionImplemented=false)
 ***/
synonym aPrivacyOptionImplemented Boolean = true;
remote aPrivacyInvoked Boolean nodelay;
remote aWepDefaultKeyId KeyIndex nodelay;
remote aExcludeUnencrypted Boolean nodelay;
remote aWepIcvErrorCount Counter32 nodelay;
remote aWepExcludedCount Counter32 nodelay;

/***
 * Operation Group
 ***/
synonym aMacAddress MacAddr =
 <<type MacAddr>> S6(0x00, 0x11, 0x22, 0x33, 0x44, 0x55);
 /* each station has a unique globally administered address */
 /* Value may be overwritten with locally administered address at */
 /* MlmeReset, but is always a static value during MAC operation */
remote aRtsThreshold Integer nodelay;
remote aShortRetryLimit Integer nodelay;
remote aLongRetryLimit Integer nodelay;
remote aFragmentationThreshold Integer nodelay;
remote aMaxTransmitMsduLifetime TU nodelay;
remote aMaxReceiveLifetime TU nodelay;
synonym aManufacturerId Charstring = 'name of manufacturer';
synonym aProductId Charstring = 'identifier unique to manufacturer';

/***
 * GroupAddresses Table
 ***/
remote aGroupAddresses MacAddrSet nodelay;

/***
 * Counters Group
 ***/
remote aTransmittedFragmentCount Counter32 nodelay;
remote aMulticastTransmittedFrameCount Counter32 nodelay;
remote aFailedCount Counter32 nodelay;
remote aRetryCountCounter32 nodelay;
remote aMultipleRetryCount Counter32 nodelay;
remote aRtsSuccessCount Counter32 nodelay;
remote aRtsFailureCount Counter32 nodelay;
remote aAckFailureCount Counter32 nodelay;
remote aReceivedFragmentCount Counter32 nodelay;
remote aMulticastReceivedFrameCount Counter32 nodelay;
remote aFcsErrorCount Counter32 nodelay;
remote aFrameDuplicateCount Counter32 nodelay;

/***
 * PhyOperation Group (values shown are mostly for FH PHY)
 ***/
synonym aPHYType Integer = 01;
synonym RegDomainSupported Octetstring = S4(0x10, 0x20, 0x30, 0x00);
remote aCurrentRegDomain Integer nodelay;
synonym aSlotTime Usec = (aCcaTime + aRxTxTurnaroundTime +
 aAirPropagationTime + aMacProcessingTime);
synonym aCcaTime Usec = 27;
synonym aRxTxTurnaroundTime Usec = (aTxPlcpDelay + aRxTxSwitchTime +
 aTxRampOnTime + aTxRfDelay);

346 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

synonym aTxPlcpDelay Usec = 1;
synonym aRxTxSwitchTime Usec = 10;
synonym aTxRampOnTime Usec = 8;
synonym aTxRfDelay Usec = 1;
synonym aSifsTime Usec = (aRxRfDelay + aRxPlcpDelay +
 aMacProcessingTime + aRxTxTurnaroundTime);
synonym aRxRfDelay Usec = 4;
synonym aRxPlcpDelay Usec = 2;
synonym aMacProcessingTime Usec = 2;
synonym aTxRampOffTime Usec = 8;
synonym aPreambleLength Usec = 96;
synonym aPlcpHeaderLength Usec = 32;
synonym aMpduDurationFactor <<package macsorts>> DurFactor = 31250000;
synonym aAirPropagationTime Usec = 1;
synonym aTempType Integer = 01;
synonym aCWmax Integer = 1023;
synonym aCWmin Integer = 15;

/***
 * PhyRate Group (values shown are mostly for FH PHY)
 ***/
synonym aSupportedRatesTx Octetstring = S3(0x82, 0x04, 0x00);
synonym aSupportedRatesRx Octetstring = S3(0x82, 0x04, 0x00);
synonym aMpduMaxLength Integer = 4095;

/***
 * PhyFHSS Group (only used with FH PHY)
 ***/
synonym aHopTime Usec = 224;
remote aCurrentChannelNumber Integer nodelay;
synonym aMaxDwellTime TU = 390;
remote aCurrentSet Integer nodelay;
remote aCurrentPattern Integer nodelay;
remote aCurrentIndex Integer nodelay;

/***/
/* The MAC state machines do not reference any attributes in
/* PhyAntennaGroup, PhyTxPowerGroup, PhyDsssGroup,
/* PhyStatusGroup, PhyPowerSavingGroup,
/* PhyIR Group, AntennasList */

endpackage;
/***/

Copyright © 1997 IEEE. All rights reserved. 347

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

C.3 State machines for MAC stations

The following SDL-92 system speciÞcation deÞnes operation of the MAC protocol at an IEEE 802.11 STA.
Many aspects of STA operation also apply to AP operation. These are deÞned in blocks and processes refer-
enced from both the STA and AP system speciÞcations. Blocks and processes used in both STA and AP are
identiÞable by the SDL comment /* for STA & AP */ below the block or process name. Blocks and pro-
cesses speciÞc to STA operation are identiÞable by the SDL comment /* station version */ below the block
or process name. The deÞnitions of all blocks and processes referenced in the station system speciÞcation
appear in Clause C.3.

The remainder of Clause C.3 is the formal description, in SDL/GR, of an IEEE 802.11 STA.

348 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

use macsorts ;
use macmib ;

System Station Station_1a(3)

Includes request
validation and
add/remove
MAC headers.

MAC_Data_
_Service

/* for STA & AP */

MPDU_Generation_
_STA

/* station version */

Includes encryption,
fragmentation, and
power save queuing.

Protocol_Control_
_STA

/* station version */

Includes DCF,
Rts/Cts, Ack &
CF-Ack, retries,
CF-poll response,
Atim handling,
and PS-Poll.

Transmission

/* for STA & AP */

Includes backoff
FCS generate, and
timestamp insert.

 MAC_Management_
_Service

/* for STA & AP */

Includes MAC MIB,
MIB access, and
filtering of Mlme
request and confirm.

MLME_STA

/* station version */

Includes scan, join,
beacon/dwell and
awake/doze timing,
(re/dis)associate,
(de)authenticate,
start IBSS, and
monitor of station
& power save state.

Reception

/* for STA & AP */

Includes validate, decrypt,
address & duplicate filter,
defragment, channel state
(physical and virtual carrier
sense), and IFS & slot timing.

MAC_SAP

MaUnitdata.indication,
MaUnitdataStatus.indication

MaUnitdata.request

TSDU

MsduRequest

MsduConfirm

TPDU

PduRequest

AtimW,
PduConfirm,
CfPolled

RSDU

MsduIndicate

TX
Backoff,
Cancel,
TxRequest

BkDone,
TxConfirm

PHY_SAP_TX

PhyTxRequestSignals

PhyTxConfirmSignals

MLME_PLME_SAP

PlmeRequestSignals

PlmeConfirmSignals

SM_MLME_SAP

MlmeConfirmSignals,
MlmeIndicationSignals

MlmeRequestSignals

MMGT

MmgtRequestSignals

MmgtConfirmSignals,
MmgtIndicationSignals

MMTX

MmRequest,
PsChange,
PsResponse

MmConfirm,
PsInquiry

MCTL

Doze,
MmCancel,
SsResponse,
SwChnl,
Tbtt, Wake

MmIndicate,
PsmDone,
SsInquiry,
SwDone

RXRxIndicate,
NeedAck,
RxCfAck,
RxCfPoll ChangeNav

PS

PsIndicate

ChangeNav

CS

Busy,
Idle,
Slot

PHY_SAP_RX

PhyCcareset.request

PhyRxSignals

Copyright © 1997 IEEE. All rights reserved. 349

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

use macsorts ;
use macmib ;

System Station Sta_signals_2b(3)

signal
 MmCancel,
 MmConfirm(Frame,TxStatus),
 MmIndicate(Frame,Time,Time,StateErr),
 MmRequest(Frame,Imed,Rate),
 MsduConfirm(Frame,CfPriority,TxStatus),
 MsduIndicate(Frame,CfPriority),
 MsduRequest(Frame,CfPriority),
 NeedAck(MacAddr,Time,Duration,Rate),
 PduConfirm(FragSdu,TxResult),
 PduRequest(FragSdu),
 PhyCca.indication(Ccastatus),
 PhyCcarst.confirm,
 PhyCcarst.request,
 PhyData.confirm,
 PhyData.indication(Octet),
 PhyData.request(Octet),
 PhyRxEnd.indication(PhyRxStat),
 PhyRxStart.indication(Integer,Rate),
 PhyTxEnd.confirm,
 PhyTxEnd.request,
 PhyTxStart.confirm,
 PhyTxStart.request(Integer,Rate),
 PlmeGet.confirm(MibStatus,
 MibAtrib,MibValue),
 PlmeGet.request(MibAtrib),
 PlmeReset.confirm(Boolean),
 PlmeReset.request,
 PlmeSet.confirm(MibStatus,MibAtrib),
 PlmeSet.request(MibAtrib,MibValue),
 PsmDone,
 PsChange(MacAddr,PsMode),
 PsIndicate(MacAddr,PsMode),
 PsInquiry(MacAddr),
 PsResponse(MacAddr,PsMode),
 ResetMAC,
 RxCfAck(MacAddr),
 RxIndicate(Frame,Time,Time,Rate),
 Slot,
 SsInquiry(MacAddr),
 SsResponse(MacAddr,
 StationState,StationState),
 SwChnl(Integer,Boolean),
 SwDone,
 TBTT,
 TxConfirm,
 TxRequest(Frame,Rate),
 Wake ;

signal
 AtimW,
 Backoff(Integer,Integer),
 BkDone(Integer),
 Busy,
 Cancel,
 CfPolled,
 ChangeNav(Time,Duration,NavSrc),
 Doze,
 Idle,
 MaUnitdata.indication(MacAddr,MacAddr,
 Routing,Octetstring,RxStatus,
 CfPriority,ServiceClass),
 MaUnitdata.request(MacAddr,MacAddr,
 Routing,Octetstring,CfPriority,ServiceClass),
 MaUnitdataStatus.indication(MacAddr,
 MacAddr,TxStatus,CfPriority,ServiceClass),
 MlmeAssociate.confirm(MlmeStatus),
 MlmeAssociate.indication(MacAddr),
 MlmeAssociate.request(MacAddr,TU,Capability,Integer),
 MlmeAuthenticate.confirm
 (MacAddr,AuthType,MlmeStatus),
 MlmeAuthenticate.indication(MacAddr,AuthType),
 MlmeAuthenticate.request(MacAddr,AuthType,TU),
 MlmeDeauthenticate.confirm(MacAddr,MlmeStatus),
 MlmeDeauthenticate.indication(MacAddr,ReasonCode),
 MlmeDeauthenticate.request(MacAddr,ReasonCode),
 MlmeDisassociate.confirm(MlmeStatus),
 MlmeDisassociate.indication(MacAddr,ReasonCode),
 MlmeDisassociate.request(MacAddr,ReasonCode),
 MlmeGet.confirm(MibStatus,MibAtrib,MibValue),
 MlmeGet.request(MibAtrib),
 MlmeJoin.confirm(MlmeStatus),
 MlmeJoin.request(BssDscr,Integer,Usec,Ratestring),
 MlmePowermgt.confirm(MlmeStatus),
 MlmePowermgt.request(PwrSave,Boolean,Boolean),
 MlmeReassociate.confirm(MlmeStatus),
 MlmeReassociate.indication(MacAddr),
 MlmeReassociate.request(MacAddr,TU,Capability,Integer),
 MlmeReset.confirm(MlmeStatus),
 MlmeReset.request(MacAddr,Boolean),
 MlmeScan.confirm(BssDscrSet,MlmeStatus),
 MlmeScan.request(BssTypeSet,MacAddr,Octetstring,
 ScanType,Usec,Intstring,TU,TU),
 MlmeSet.confirm(MibStatus,MibAtrib),
 MlmeSet.request(MibAtrib,MibValue),
 MlmeStart.confirm(MlmeStatus),
 MlmeStart.request(Octetstring,BssType,TU,
 Integer,CfParms,PhyParms,IbssParms,Usec,
 Capability,Ratestring,Ratestring) ;

350 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

use macsorts ;
use macmib ;

System Station Sta_signallists_3a(3)

signallist
MlmeRequestSignals=
 MlmeAssociate.request,
 MlmeAuthenticate.request,
 MlmeDeauthenticate.request,
 MlmeDisassociate.request,
 MlmeGet.request,
 MlmeJoin.request,
 MlmePowermgt.request,
 MlmeReassociate.request,
 MlmeReset.request,
 MlmeScan.request,
 MlmeSet.request,
 MlmeStart.request ;

signallist
MlmeConfirmSignals=
 MlmeAssociate.confirm,
 MlmeAuthenticate.confirm,
 MlmeDeauthenticate.confirm,
 MlmeDisassociate.confirm,
 MlmeGet.confirm,
 MlmeJoin.confirm,
 MlmePowermgt.confirm,
 MlmeReassociate.confirm,
 MlmeReset.confirm,
 MlmeScan.confirm,
 MlmeSet.confirm,
 MlmeStart.confirm ;

signallist
MlmeIndicationSignals=
 MlmeAuthenticate.indication,
 MlmeDeauthenticate.indication,
 MlmeDisassociate.indication,
 MlmeAssociate.indication,
 MlmeReassociate.indication ;

signallist
MmgtRequestSignals=
 MlmeAssociate.request,
 MlmeAuthenticate.request,
 MlmeDeauthenticate.request,
 MlmeDisassociate.request,
 MlmeJoin.request,
 MlmePowermgt.request,
 MlmeReassociate.request,
 MlmeScan.request,
 MlmeStart.request ;

signallist
MmgtConfirmSignals=
 MlmeAssociate.confirm,
 MlmeAuthenticate.confirm,
 MlmeDeauthenticate.confirm,
 MlmeDisassociate.confirm,
 MlmeJoin.confirm,
 MlmePowermgt.confirm,
 MlmeReassociate.confirm,
 MlmeScan.confirm,
 MlmeStart.confirm ;

signallist
MmgtIndicationSignals=
 MlmeAuthenticate.indication,
 MlmeDeauthenticate.indication,
 MlmeDisassociate.indication,
 MlmeAssociate.indication,
 MlmeReassociate.indication ;

signallist
PhyTxRequestSignals=
 PhyTxStart.request,
 PhyTxEnd.request,
 PhyData.request ;

signallist
PhyTxConfirmSignals=
 PhyTxStart.confirm,
 PhyTxEnd.confirm,
 PhyData.confirm ;

signallist
PhyRxSignals=
 PhyRxStart.indication,
 PhyRxEnd.indication,
 PhyData.indication,
 PhyCca.indication,
 PhyCcareset.confirm ;

signallist
PlmeRequestSignals=
 PlmeGet.request,
 PlmeSet.request,
 PlmeReset.request ;

signallist
PlmeConfirmSignals=
 PlmeGet.confirm,
 PlmeReset.confirm,
 PlmeSet.confirm ;

Copyright © 1997 IEEE. All rights reserved. 351

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Block MAC_Data_Service Mac_Data_1a(1)

/* This block provides
the MAC_SAP functions,
described in Clause 6,
conveying MSDUs from
and to the LLC entity.
This block operates
identically in STA
and AP, but in STA
the TSDU signal route
connects directly to
MPDU_Generation, and
the RSDU signal route
connects directly
from Protocol_Control,
whereas in AP both of
these signal routes
connect to Distribution
Service. */

MSDU_to_LLC
(1,1)

MSDU_from_LLC
(1,1)

MAC_SAP

RSDU

RxMsdu

MsduIndicate

ToLLC

MaUnitdata._
indication

TSDU

FromLLC

MaUnitdataStatus._
indication

MaUnitdata.request

TxMsdu

MsduRequest

MsduConfirm

352 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process MSDU_from_LLC Msdu_from_LLC_1b(1)

dcl cf CfPriority ;
dcl LLCdata Octetstring ;
dcl rt Routing ;
dcl sa, da MacAddr ;
dcl sdu Frame ;
dcl srv ServiceClass ;
dcl stat TxStatus ;

imported mAssoc,
 mDisable, mIbss,
 mPcAvail Boolean ;
imported
 mPsm PwrSave ;
imported
 mBssId MacAddr ;

/* This process runs when
an MSDU to transmit is
presented by LLC. This
process validates request
parameters, and if valid
attaches a basic MAC
header and sends the MSDU
to MPDU preparation (at
STA) or to Distribution
Service (at AP). If request
is invalid, or when status
is available for the valid
Tx attempt, LLC is informed
by an MaUnitdataStatus._
Indication generated by
this process. */

From_LLC

MaUnit
data._
request

(sa, da, rt,
LLCdata,
cf, srv)

'validate
parameters'

stat:=

if rt /= null_rt then
 nonNullSourceRouting
else if (length(LLCdata)
 > sMsduMaxLng) or
 (length(LLCdata) < 0)
 then excessiveDataLength
else successful fi fistat =

successful

srv

stat:=
unsupported_
ServiceClass

MaUnit_
dataStatus._
indication

(sa, da,
stat,
cf, srv)

-

import
(mPsm)

stat:=
unavailable_
ServiceClass

import
(mDisable)

Reject Msdu
if station
not in BSS
or IBSS.

stat:=
noBss

cf

stat:=
unsupported_

Priority import
(mPcAvail)

MaUnit_
dataStatus._
indication

(sa, da,
unavailable_
 Priority,
cf, srv)

cf:=
contention

If no PCF,
inform LLC,
send Msdu in
in contention
period. 2nd
MaUnitdata_
Status reports
Tx result.

make_
msdu

MsduConfirm
(sdu,srv,
stat)

successful,
retryLimit,
txLifetime,
or noBss

srv:= if
orderBit
(sdu) = 1

then
 strictlyOrdered
else reorderable fi

da:= if
toDs(sdu) = 1

then addr3(sdu)
else addr1(sdu)
fi

MaUnit_
dataStatus._
indication

(addr2(sdu),
da, stat,
cf, srv)

-

make_
msdu

sdu:=
mkFrame
(data, da

Build frame with 24-octet
MAC header and LLCdata:
 ftype:= data
 toDS := 0
 addr1:= da
 addr2:= aMacAddress
 (sa parameter not used)
 addr3:= mBssId
 <other header fields> := 0

aMacAddress,
import(mBssId),
LLCdata)

srv

sdu:=
setOrderBit

(sdu, 1)

MsduRequest
(sdu, cf)

Send Msdu to
Mpdu preparation
(to distribution
service at AP)
with basic header.
Other fields are
filled in prior
to transmission.-

 (true)

 else

 (strictly_
 Ordered)

 else

 (sta_
 active)

 (true)

 (false)

 else

 (contention_
 Free)

 (false)
(true)

(contention)

(reorderable)

 (false)

(strictly_
Ordered) else

Copyright © 1997 IEEE. All rights reserved. 353

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process MSDU_to_LLC Msdu_to_LLC_1a(1)

dcl cf CfPriority ;
dcl LLCdata Octetstring ;
dcl sa, da MacAddr ;
dcl sdu Frame ;
dcl srv ServiceClass ;

/* This process runs when
reception is successfully
completed on an MSDU
addressed to the local
LLC entity. This process
extracts the appropriate
address and status info,
removes the MAC header
from the MSDU data field
(the FCS and IV/ICV are
removed much earlier in
reception handling), and
generates the indication
to LLC. Reception status
is always "successful"
because a receive error
causes the MSDU to be
discarded before reaching
MAC Data Service. */

To_LLC

MsduIndicate
(sdu, cf)

From source of the RSDU channel.
STA source is Protocol Control,
AP source is Distribution Service.

da:= addr1(sdu)

sa:= if frDs(sdu)=1
then addr3(sdu)

else addr2(sdu) fi

srv:=
if orderBit(sdu)=1

then strictlyOrdered
else reorderable fi

LLCdata:= substr
(sdu, sMacHdrLng,

length(sdu) -
sMacHdrLng)

Remove MAC header
from beginning of
MSDU to obtain the
LLC data octet string.

MaUnitdata._
indication(sa, da,
null_rt, LLCdata,
rx_success, cf, srv)

Reception status
always successful
because any error
would prevent the
MsduIndicate
from reaching
this process.

-

354 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Block MAC_Management_Service Mac_Mgmt_1a(1)

/* In this block are
the MAC MIB and
MLME_SAP service
primitives described
in Clause 10. The
MLME services are
performed in the
MLME block. This
block is used both
in station and AP. */

Mlme_Indications
(1,1)

This process is
a summary of
MIB access.
MIB attribute
definitions
(in ASN.1) are
in section C.4.

MIB (1,1)

Mlme_Requests
(1,1)This process handles

requests sequentially.
Start, join, powermgt,
scan, re/dis/associate
and deauthenticate
must be sequential.
It is possible to have
multiple authentication
sequences in progress
concurrently. To allow
this, AuthReq_Service
in the MLME block
would have to cache
challenge text and
match responses to
cached request info.

MlmeReset.request
sends a ResetMAC
signal to every
process in every
block. To reduce
diagram clutter,
ResetMAC signal
routing is not shown
outside this block.

SM_MLME_SAP

MMGT

FromMgt

MlmeAssociate._
 indication,
MlmeAuthenticate._
 indication,
MlmeDeauthenticate._
 indication,
MlmeDisassociate._
 indication,
MlmeReassociate._
 indication

Indications

MlmeAssociate._
 indication,
MlmeAuthenticate._
 indication,
MlmeDeauthenticate._
 indication,
MlmeDisassociate._
 indication,
MlmeReassociate._
 indication

GetSet

MlmeGet.confirm,
MlmeSet.confirm,
MlmeReset.confirm

MlmeGet.request,
MlmeSet.request,
MlmeReset.request

Mres

ResetMAC

ReqConfirm

MlmeAssociate.confirm,
MlmeAuthenticate.confirm,
MlmeDeauthenticate.confirm,
MlmeDisassociate.confirm,
MlmeJoin.confirm,
MlmePowermgt.confirm,
MlmeReassociate.confirm,
MlmeScan.confirm,
MlmeStart.confirm

MlmeAssociate.request,
MlmeAuthenticate.request,
MlmeDeauthenticate.request,
MlmeDisassociate.request,
MlmeJoin.request,
MlmePowermgt.request,
MlmeReassociate.request,
MlmeScan.request,
MlmeStart.request

ToMgt

MlmeAssociate.request,
MlmeAuthenticate.request,
MlmeDeauthenticate.request,
MlmeDisassociate.request,
MlmeJoin.request,
MlmePowermgt.request,
MlmeReassociate.request,
MlmeScan.request,
MlmeStart.request

MlmeAssociate.confirm,
MlmeAuthenticate.confirm,
MlmeDeauthenticate.confirm,
MlmeDisassociate.confirm,
MlmeJoin.confirm,
MlmePowermgt.confirm,
MlmeReassociate.confirm,
MlmeScan.confirm,
MlmeStart.confirm

Copyright © 1997 IEEE. All rights reserved. 355

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process MIB Mib_access_1a(2)

dcl x MibAtrib ;
dcl v MibValue ;
dcl adr MacAddr ;
dcl dflt Boolean ;

/* This process performs
 MlmeGet, MlmeSet, and
 MlmeReset functions.
 MIB access and update
 is described informally
 to avoid creating a full
 definition of the MIB
 in SDL (and anticipating
 the integration of the
 ASN.1 MIB definition
 using Z.105). */

'export values
of attributes

declared here'

MIB_idle

MlmeRe_
set.request
(adr,dflt)

ResetMAC
ResetMAC is sent to all processes
in all blocks. However, to reduce
clutter and enhance readability,
ResetMAC is omitted from signallists
and signal routes needed solely for
the ResetMAC signal are not shown.

dflt

'reset read-write
attributes to

default values'

Reset read-write attributes in the MAC
MIB. The write-only attributes in the
privacy group may also be reset.
If there is a (non-Mlme) means to alter
any of the read-only attribute values,
they must be restored to default values.'aMacAddress

set to adr if
adr is non-null'

A locally-administered MAC address
may be used in lieu of the unique,
globally-administered MAC address
assigned to the station. However, the
value of aMacAddress may not change
during MAC operation.

Mlme_
Reset.con_
firm(success)

MlmeGet._
request
(x)

'validate

x'

MlmeGet._
confirm
(invalid,x,)

-

'declared
here?'

'v:=
import(x)'

MlmeGet._
confirm
(success,x,v)

-

'v:=
value(x)'

MlmeGet._
confirm
(write_only,x,)

-

MlmeSet._
request
(x, v)

'validate

x'

MlmeSet._
confirm
(invalid,x)

-

'set
value(x):=v'

'export(x)'

MlmeSet._
confirm
(success,x)

-

MlmeSet._
confirm
(read_only,x)

-

 (true) (false)

 ('invalid') ('valid')

 ('no') ('yes')

 ('write_only') ('invalid') ('valid') ('read_only')

356 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process MIB Mib_import_export_2a(2)

/* Import of {Read-Only} MIB counter
 values exported from other processes */
imported
 aAckFailureCount,
 aFailedCount,
 aFcsErrorCount,
 aFrameDuplicateCount,
 aMulticastReceivedFrameCount,
 aMulticastTransmittedFrameCount,
 aMultipleRetryCount,
 aReceivedFragmentCount,
 aRetryCount,
 aRtsFailureCount,
 aRtsSuccessCount,
 aTransmittedFragmentCount,
 aWepExcludedCount,
 aWepIcvErrorCount,
 aWepUndecryptableCount Counter32 ;

/* Declarations of MIB attributes exported from this process */

 /* Read-Write attributes */
dcl exported
 aAuthenticationType AuthTypeSet:=
 incl(open_system, shared_key),
 aExcludeUnencrypted Boolean:= false,
 aFragmentationThreshold Integer:= 2346,
 aGroupAddresses MacAddrSet:= empty,
 aLongRetryLimit Integer:= 4,
 aMaxReceiveLifetime TU:= 512,
 aMaxTransmitMsduLifetime TU:= 512,
 aMediumOccupancyLimit TU:= 100,
 aPrivacyInvoked Boolean:= false,
 aReceiveDTIMs Boolean:= true,
 aCfpPeriod Integer:= 1,
 aCfpMaxDuration TU:= 200,
 aAuthenticationResponseTimeout TU:= 512,
 aRtsThreshold Integer:= 3000,
 aShortRetryLimit Integer:= 7,
 aWepDefaultKeyId KeyIndex:= 0,
 aCurrentChannelNumber Integer:= 0,
 aCurrentSet Integer:= 0,
 aCurrentPattern Integer:= 0,
 aCurrentIndex Integer:= 0 ;

 /* Write-Only attributes */
dcl exported
 aWepDefaultKeys KeyVector:= nullKey,
 aWepKeyMappings
 KeyMapArray:= (. nullAddr, false, nullKey .) ;

/* The following Read-Only attributes in the
 MAC MIB are defined as synonyms (named
 constants) rather than remote variables
 because they describe properties of the
 station which are static, at least during
 any single instance of MAC operation:
 aAuthenticationAlgorithms AuthTypeSet,
 aCfPollable Boolean,
 aMacAddress MacAddr,
 aManufacturerID Octetstring,
 aPrivacyOptionImplemented Boolean,
 aProductID Octetstring,
 aStationID MacAddr,
 aWepKeyMappingLength Integer ;

 In addition, all Read-Only attributes in the
 PHY MIB which are accessed by the MAC
 are defined as synonyms.
*/

/* NOTE:
 The values listed for MAC MIB attributes are the
 specified default values for those attributes.
 The values listed for PHY MIB attributes are either
 the default values for the FH PHY, or arbitrary
 values within the specified range. The specific
 values for PHY attributes in this SDL description
 of the MAC do not have normative significance.
*/

Copyright © 1997 IEEE. All rights reserved. 357

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Mlme_Indications Mlme_indication_1a(1)

dcl alg AuthType ;
dcl rsn ReasonCode ;
dcl sta MacAddr ;

Pass_
Through_

Idle

This state machine passes indications through, unmodified, from
MLME to the MLME SAP. MlmeAssociate.indication and
MlmeReassociate.indication are only generated by MLME at APs.

MlmeAsso_
ciate.ind_
ication(sta)

MlmeAsso_
ciate.ind_
ication(sta)

-

MlmeAuthen_
ticate.ind_
ication(sta,alg)

MlmeAuthen_
ticate.ind_
ication(sta,alg)

-

MlmeDeauth_
enticate.ind_
ication(sta,rsn)

MlmeDeauth_
enticate.ind_
ication(sta)

-

MlmeDisas_
sociate.ind_
ication(sta,rsn)

MlmeDisas_
sociate.ind_
ication(sta)

-

MlmeReas_
sociate.ind_
ication(sta)

MlmeReas_
sociate.ind_
ication(sta)

-

358 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Mlme_Requests Mlme_request_1b(3)

dcl exported mActingAsAp
 Boolean:= false ;
imported mAssoc,
 mIbss Boolean ;

/* This process tracks
the synchronization state
of the station as Idle
(not part of any Bss),
Ibss (started or joined
an independent Bss), Bss
(joined an infrastructure
Bss), or Ap (started an
infrastructure Bss).
Mlme operation requests
invalid in the current
state are rejected here,
while valid requests are
passed to the Mlme block
for processing. This
simplifies process flow
and signal saving in the
Mlme block, because only
meaningful Mlme requests
arrive for handling. */

dcl alg AuthType ;
dcl bRate, oRate, ss Octetstring ;
dcl bss BssDscr ;
dcl bssSet BssDscrSet ;
dcl btype BssType ;
dcl cap Capability ;
dcl cfpm CfParms ;
dcl chlist Intstring ;
dcl dtp, li Integer ;
dcl dly Usec ;
dcl ibpm IbssParms ;
dcl phpm PhyParms ;
dcl ps PwrSave ;
dcl rs ReasonCode ;
dcl scan ScanType ;
dcl sta, bid MacAddr ;
dcl sts MlmeStatus ;
dcl tBcn, tmax, tmin, tmot TU ;
dcl typeSet BssTypeSet ;
dcl wake, rdtm Boolean ;

newtype MRqState
 literals idle, bss, ibss, ap ;
 endnewtype MRqState ;
dcl rqState
 MRqState:= idle ;

export
(mActing_

AsAP)

IDLE Reject Authenticate,
allow Start if idle

Mlme_
Start._
request

(ss, btype, tBcn,
dtp, cfpm, phpm,
ibpm, dly, cap,
bRate, oRate)

btype

sCanBeAp

Mlme_
Start._
request

(ss, btype, tBcn,
dtp, cfpm, phpm,
ibpm, dly, cap,
bRate, oRate)

Wait_Mlme

MlmeStart._
confirm
(invalid)

-

MlmeAuth_
enticate.re_
quest(sta, ,)

Reject as invalid
due to not being
in a BSS.

MlmeAuth_
enticate._
confirm

(sta,
invalid)

re_
start

*
(IDLE, AP)

Reject Start if
not idle, allow
Auth if neither
IDLE nor AP.

MlmeAuth_
enticate._
request

(sta, alg,
tmot)

MlmeAuth_
enticate._
request

(sta, alg,
tmot)

Wait_Mlme

*
(IDLE)

MlmeStart._
request(, ,
 , , , , , , , ,)

MlmeStart._
confirm
(alreadyBss)

-*
Reset and
Deauthenticate
always allowed.

ResetMAC

rqState:= idle,
mActing_

AsAp:= false

re_
start

MlmeDeauth_
enticate._
request(sta,rs)

Deauthenticate
expunges local
authentication
record even if
there is no BSS
for sending the
notification.MlmeDeauth_

enticate._
request(sta,rs)

Wait_Mlme

 (infrastructure)

(true) (false)

 (independent)

Copyright © 1997 IEEE. All rights reserved. 359

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Mlme_Requests Mlme_request_2b(3)

BSS
Allow Associate
and Reassociate
while joined Bss.

Mlme_
Associate._
request

(sta, tmot,
cap,li)

import
(mAssoc)

Associate request
rejected as invalid
while associated.

MlmeAssoc_
iate.confirm
(invalid)

-

Mlme_
Associate._
request

(sta, tmot,
cap,li)

Wait_Mlme

MlmeRe_
associate._
request

(sta, tmot,
cap,li)

import
(mAssoc)

Reassociate request
rejected as invalid
if not associated.

MlmeReas_
sociate.con_
firm(invalid)

-

MlmeRe_
associate._
request

(sta, tmot,
cap,li)

Wait_Mlme

AP
Reject Scan, Join
and Powermgt; allow
Disassociate at AP.

MlmeScan._
request
(, , , , , , ,)

MlmeScan._
confirm
(,invalid)

-

MlmeJoin._
request
(, , ,)

MlmeJoin._
confirm
(invalid)

-

MlmePower_
mgt.request
(, ,)

MlmePower_
Mgt.confirm
(not_supt)

-

MlmeDisas_
sociate.re_
quest(sta,rs)

Only AP may send
disassociate to a
group address.

MlmeDisas_
sociate.re_
quest(sta,rs)

Wait_Mlme

*
(BSS)

Reject Associate and
Reassociate at AP and
at station not joined Bss.

Mlme_
Associate._
request(, , ,)

MlmeAssoc_
iate.confirm
(invalid)

-

MlmeRe_
associate._
request(, , ,)

MlmeReas_
sociate.con_
firm(invalid)

-

*
(AP)

If not AP, allow Join, Scan
and Powermgt, also allow
Disassociate if associated.

MlmeScan._
request
(btype,bid,

ss, scan,
dly, chlist,
tmin, tmax)

MlmeScan._
request
(btype,bid,

ss, scan,
dly, chlist,
tmin, tmax)

Wait_Mlme

MlmeJoin._
request(bss,
tmot,dly,oRate)

MlmeJoin._
request(bss,
tmot,dly,oRate)

Wait_Mlme

MlmeDisas_
sociate.re_
quest(sta,rs)

import
(mAssoc)

and
not(isGroup
(sta))

MlmeDisas_
sociate.re_
quest(sta,rs)

Wait_Mlme

MlmeDisas_
sociate.con_
firm(invalid)

-

MlmePower_
mgt.request
(ps,wake,rdtm)

MlmePower_
mgt.request
(ps,wake,rdtm)

Wait_Mlme

 (true) (false) (false) (true)

 (true) (false)

360 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Mlme_Requests Mlme_response_3a(3)

Wait_Mlme
Wait for MAC
management to
process request.

*
Save new (request)
signals while awaiting
response from MLME.

MlmeAuthen_
ticate.confirm
(sta,alg,sts)

MlmeAuthen_
ticate.confirm
(sta,alg,sts)

rqState

Return to the
state prior to
Wait_Mlme.

IDLE IBSS BSS AP

MlmeDeauth_
enticate.con_
firm(sta,sts)

MlmeDeauth_
enticate.con_
firm(sta,sts)

MlmeAs_
sociate._
confirm(sts)

MlmeAs_
sociate._
confirm(sts)

MlmeReas_
sociate._
confirm(sts)

MlmeReas_
sociate._
confirm(sts)

MlmeDis_
associate._
confirm(sts)

MlmeDis_
associate._
confirm(sts)

MlmeScan._
confirm
(bssSet,sts)

MlmeScan._
confirm
(bssSet,sts)

rqState:= idle
Scan leaves station
in Idle state because
synchronization with
a previous Bss is lost.
Implementations may
save and restore TSF
and association info
to automatically re-
join a previous Bss.

IDLE
Mlme_
Start._
confirm(sts)

Mlme_
Start._
confirm(sts)

sts

rqState:= idle

IDLE

import
(mIbss)

rqState:= ap,
mActing_

AsAP:= true

export
(mActing_

AsAP)

AP

rqState:= ibss

IBSS

MlmeJoin._
confirm
(sts)

MlmeJoin._
confirm
(sts)

sts

import
(mIbss)

rqState:= bss

BSS

 (idle) (ibss) (bss) (ap)

 else
 (success)

 (false)

(true)

else
 (success)

(false)

 (true)

Copyright © 1997 IEEE. All rights reserved. 361

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Block MLME_STA MLME_1a(1)

Signal
 StaState
 (MacAddr,StationState) ;

/* In this block are the handlers
 for Mlme operation requests,
 the responders for incoming
 management frames, and the
 time synchronization function
 for station operation, both
 as an associated station in
 an infrastructure BSS or as
 a member of an IBSS. This
 block also contains the
 process which maintains
 record of power save mode
 and station state for access
 by other processes. */

Power_Save_
_Monitor(1,1)

/* for STA & AP */

Records power
save mode and
station state.

Mlme_Sta_
_Services (1,1)

/* station version */

This process assumes
that the Mlme request
signals have been
validated by MAC
Management service.

MMGT

MM_
TX

MC_
TL

PS

FromRx

PsIndicate

Psm

PsChange,
PsResponse

PsInquiry

Sst

SsResponse SsInquiry

Mop

MlmeAssociate.confirm,
MlmeAuthenticate.confirm,
MlmeDeauthenticate.confirm,
MlmeDisassociate.confirm,
MlmeJoin.confirm,
MlmePowermgt.confirm,
MlmeReassociate.confirm,
MlmeScan.confirm,
MlmeStart.confirm,
MlmeAuthenticate.indication,
MlmeDeauthenticate.indication,
MlmeDisassociate.indication

MlmeAssociate.request,
MlmeAuthenticate.request,
MlmeDeauthenticate.request,
MlmeDisassociate.request,
MlmeJoin.request.
MlmePowermgt.request,
MlmeReassociate.request,
MlmeScan.request,
MlmeStart.request

To_Mtx

MmRequest MmConfirm

To_Mct

Doze,
MmCancel,
SwChnl,
Tbtt,
Wake

MmIndicate,
PsmDone

Ssu

StaState

ToRx

ChangeNav

362 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Mlme_Sta_Services sta_Mm_svc_1b(1)

/* Each of these ovals represents a
SERVICE. Each service contains
the state transitions to handle a
DISJOINT SUBSET of the input
signal set of this process. Services
share local variables and the input
queue. At any instant, a state
transition can occur in, at most, one
service -- the service which handles
the kind of signal at the head of the
process input queue. */

/* Intra-MAC remote variables */
dcl exported mAId AsocId:= 0,
mAssoc Boolean:= false,
mAtimW Boolean:= false,
mBrates Ratestring:=mkOS(2,1),
mBssId MacAddr:= nullAddr,
mCap Octetstring:= O2,
mCfp Boolean:= false,
mDisable Boolean:= true,
mDtimCount Integer:= 1,
mDtimPeriod Integer:= 1,
mIbss Boolean:= false,
mNextBdry Time:= 0,
mNextTbtt Time:= 0,
mOrates Ratestring:=mkOS(2,1),
mPcAvail Boolean:= false,
mPcPoll Boolean:= false,
mPdly Usec:= 0,
mPsm PwrSave:= sta_active,
mPss PsState:= awake,
mSsId Octetstring:= null ;

Signal Atim(Frame),
 AsocReq(Frame),
 AsocRsp(Frame),
 AuthEven(Frame),
 AuthOdd(Frame),
 Beacon(Frame,
 Time,Time),
 Cls2err(MacAddr),
 Cls3err(MacAddr),
 Deauth(Frame),
 Disasoc(Frame),
 ProbeReq(Frame),
 ProbeRsp(Frame,
 Time,Time),
 ReasocReq(Frame),
 ReasocRsp(Frame),
 Send(Frame,Imed),
 Sent(Frame,TxStatus),
 Sst(MacAddr,
 StationState),
 Xport ;

Timer Tasoc,
 Tauth, Tchal,
 Tbcn, Tatim ;

Distribute_
_Mmpdus

AuthReqService_
_Sta

AsocService_Sta

AuthRspService

Synchronization_
_Sta

ResetMAC
handled by
Sync service.

Mop

To_
Mtx

Ssu

To_
Mct

DsRx

Mm_
Indicate

ArqDs

AuthEven,
Cls2err

Sst,
Send,
Xport

ArqMop

MlmeAuthenticate.confirm,
MlmeDeauthenticate.confirm

MlmeAuthenticate._
 request,
MlmeDeauthenticate._
 request

AsDs

Sst,
Send,
Xport

AsocReq, ReasocReq,
AsocRsp, ReasocRsp,
Disasoc, Cls3err

AsMop

MlmeAssociate.confirm,
MlmeDisassociate.confirm,
MlmeDisassociate.indication,
MlmeReassociate.confirm

MlmeAssociate.request,
MlmeReassociate.request,
MlmeDisassociate.request

DsTx

MmRequest

MmConfirm

ArsDs

AuthOdd,
Deauth

Sst,
Send,
Xport

ArsInd

MlmeAuthenticate.indication,
MlmeDeauthenticate.indication

DsSs

StaState

SyDs
ProbeReq,
ProbeRsp,
Beacon,
Sent, Atim

Send,
Xport

SyCtl

Doze, Wake,
MmCancel,
SwChnl, Tbtt

PsmDone,
SwDone

SyMop

MlmeJoin.confirm,
MlmePowermgt.confirm,
MlmeScan.confirm,
MlmeStart.confirm

MlmeJoin.request,
MlmePowermgt.request,
MlmeScan.request,
MlmeStart.requestSyRx

ChangeNav

ToRx

Copyright © 1997 IEEE. All rights reserved. 363

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Service AsocService_Sta sta_disasoc_1a(2)

/* This service handles
Associate, Reassociate and
Disassociate requests at non-
AP stations. This service
also generates responses for
class 3 errors and incoming
(re)association requests. */

dcl asCap Capability ;
dcl asRsn ReasonCode ;
dcl asSta MacAddr ;
dcl asSts TxResult ;
dcl asTmot TU ;
dcl asRdu, asSdu Frame ;

asoc_
err

reset(Tasoc)

Asoc_Idle
On this page are Disassociate request, incoming
Disassociation frame, class 3 error, and incoming
(Re)Association request frames. More on next page.

Disasoc
(asRdu)

mAssoc

addr2(asRdu)
= mBssid

-
Ignore incoming
association frames
at non-AP station,
and disassociation
frames from all
but current AP.MlmeDis_

associate._
indication

(addr2(asRdu),
reason(asRdu))

Sst(asSta,
dis_asoc)

Update station
state regarding
this association.

mAssoc:=false
mBssid:=
nullAddr

Xport

-

AsocReq
(asRdu)

ReasocReq
(asRdu)

Cls3err
(asSta)

asRsn:=
class3_err

asSdu:=
mkFrame
(disasoc,

asSta,
mBssid,
asRsn)

Send
(asSdu,
norm)

Sst(asSta,
dis_asoc)

Local station state
updated even if
notification frame
is undeliverable.

asSta=
mBssId

If destination
is the current
AP clear mBssid
and mAssoc.

mAssoc:=false
mBssid:=
nullAddr

Xport

asRsn=
class3_err

Don't confirm
class 3 error
notifications.

MlmeDis_
associate._
confirm

(successful)

-

MlmeDis_
associate._
request

(asSta,
asRsn)

 (true)

(false)

 (true)

(false)

 (true)

 (false) (true)

 (false)

364 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Service AsocService_Sta sta_asoc_2a(2)

Asoc_Idle
On this page are associate request
and reassociate request. More
of this state on previous page.

Mlme_
Associate._
request

(asSta,
asTmot,
asCap)

asSdu:=
mkFrame
(asoc_req,

asSta,
mBssid,
(asCap //
mkOs(mLis_
tenInt,2) //
mkElem
(eSsId,mSsid)
// mkElem
(eSupRates,
mBrates)))

set(now +
dTU(as_

Tmot),Tasoc)

Send
(asSdu,
norm)

Wait_Asoc_
_Response

* AsocRsp
(asRdu)

asSta=
addr2(asRdu)

Only accept
response from
request target.

-

status
(asRdu)

MlmeAsso_
ciate.confirm
(refused)

asoc_
err

MlmeAsso_
ciate.confirm
(successful)

new_
asoc

Tasoc

MlmeAsso_
ciate.confirm
(timeout)

asoc_
err

MlmeRe_
associate._
request

(asSta,
asTmot,
asCap)

asSdu:=
mkFrame

(reasoc_req,

asSta,
mBssid,
(asCap //
mkOS(mLis_
tenInt,2) //
mBssid //
mkElem
(eSsId,mSsid)
// mkElem
(eSupRates,
mBrates)))

set(now +
dTU(as_

Tmot),Tasoc)

Send
(asSdu,
norm)

Wait_
Reasoc
_Response

* Reasoc_
Rsp(asRdu)

asSta=
addr2(asRdu)

Only accept
response from
request target.

-

status
(asRdu)

MlmeReas_
sociate.con_
firm(refused)

asoc_
err

MlmeReas_
sociate.con_
firm(successful)

old_
asoc

Tasoc

MlmeReas_
sociate.con_
firm(timeout)

asoc_
err

old_
asoc

Sst(mBssid,
dis_asoc)

Remove old
association
before saving
data on new
association.

Sst(asSta,
asoc)

reset(Tasoc)

mCap:=
CapA(asRdu)

mPcPoll:=
if (mCap and
cPollable)=cPollable
then true else false fi

mPcAvail:=
mPcPoll or

if (mCap and
cPollReq)=cPollReq
then true else false fi

mAId:=
AId(asRdu)

mOrates:=
getElem(asRdu,

eSupRates)

mBssid:=
addr2(asRdu)

mAsoc:=
true

Xport
Re-export
intra-MAC
variables.

Asoc_Idle

new_
assoc

 (false)

 (true)

 else (successful)

 (false)

 (true)

 else (successful)

Copyright © 1997 IEEE. All rights reserved. 365

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Service AuthReqService_Sta auth_req_1a(2)

dcl auAlg AuthType ;
dcl auCap Capability ;
dcl auRdu, auSdu Frame ;
dcl auRsn ReasonCode ;
dcl auSta MacAddr ;
dcl auSts TxResult ;
dcl auTmot TU ;

/* This service handles
(De)Authenticate requests.
This service also handles
incoming the generation of
responses for class 2 errors.

This state machine handles
Mlme requests sequentially,
which is the simplest case.
It is permissible to have
several authentications in
progress at once, provided
the destination stations are
all different. To support
concurrent sequences this
state machine gets collapsed
into one state, with sequence
state held in a variable. The
local variables are replicated
for each sequence, selected
by responder address. */

Auth_Req_
_Idle

Authenticate Request is on
this page, Deauthenticate
and class 2 error on next page.

MlmeAu_
thenticate._
request

(auSta,
auAlg,
auTmot)

(auAlg in
aAuthentication_
Algorithms and
(not isGroup(auSta))

auSdu:=
mkFrame

(auth, auSta,

mBssid,
(auAlg //
mkOS(1,2)
// O2)

set(now +
dTU(au_

Tmot),Tauth)

Send
(auSdu,
norm)

Wait_Auth_
_Seq_2

* AuthEven
(auRdu)

auSta=
addr2(auRdu)

Ignore auth
frames from
other stations.

-
auth_

SeqNum
(auRdu)

authStat
(auRdu)

MlmeAuth_
enticate.con_
firm(refused)

auth_
err

auAlg Sst(auSta,
auth_open)

Auth_Req_
_Idle

auth_
cont

Tauth

MlmeAuth_
enticate.con_
firm(timeout)

auth_
err

MlmeAuth_
enticate.con_
firm(invalid)

Cannot
authenticate
using group
address.

-

auth_
cont

auSdu:=
mkFrame

(auth, auSta,

Copy challenge
text from auth
seq #2 frame.

mBssid,
(auAlg //
mkOS(3,2) //
O2 //
substr(auRdu,
31,128)))auSdu:=

setWepBit
(mmpdu,1)

Mark shared
key frame #3
for encryption.

Send
(auSdu,
norm)

Wait_Auth_
_Seq_4

* AuthEven
(auRdu)

auSta=
addr2(auRdu)

-
auth_

SeqNum
(auRdu)

authStat
(auRdu)

MlmeAuth_
enticate.con_
firm(refused)

auth_
err

Sst(auSta,
auth_key)

Auth_Req_
_Idle

Ignore response
sequence errors,
which may be from
requests that timed out.
Also, there is no
status in odd to inform
the sender.

Tauth

MlmeAuth_
enticate.con_
firm(timeout)

Sst(auSta,
de_auth)

Auth_Req_
_Idle

auth_
err

 (true)

 (false)

 (true)
 else

 (2)

 else (succes_
 sful)

(open_system)

 (shared_
 _key)

 (false)

 (false)

 (true)
 else

 (4)

 else (succes_
 sful)

366 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Service AuthReqService_Sta deauth_2a(2)

Auth_Req_
Idle

Deauthenticate request and
class 2 error are on this page.
Authentication on previous page.

Cls2err
(auSta)

asRsn:=
class2_err

auSdu:=
mkFrame
(deauth,

auSta,
mBssid,
auRsn)

Send
(auSdu,
norm)

Send notification,
do not wait for
delivery confirmation.

Sst(asSta,
de_auth)

Update local stations state
records. Sending deauth also
clears asoc state if present.

auSta=
mBssId

If deauthenticating
the current AP, or
deauthenticating
everyone, end the
association (if
any) by clearing
mBssid and mAssoc.

or
isGroup
(auSta)

mAssoc:=false
mBssid:=
nullAddr

Xport

auRsn=
class2_err

Don't confirm
class 2 error
notifications.

MlmeDis_
associate._
confirm

(successful)

-

MlmeDeau_
thenticate._
request

(auSta,
auRsn)

 (true)

 (false) (true)

 (false)

Copyright © 1997 IEEE. All rights reserved. 367

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Service AuthRspService auth_rsp_1a(2)

dcl arAlg, arAlg2 AuthType ;
dcl arRdu, auSdu Frame ;
dcl arRsn ReasonCode ;
dcl arSeq, arSeq2 Integer ;
dcl arSta, arSta2, arSta3 MacAddr ;
dcl arSC StatusCode ;

/* This service handles
incoming Authentication
& Deauthentication frames.

This state machine handles
only a single shared key
authentication challenge
sequence at one time, which
is the simplest case. It is
possible to have several
authentication responses in
progress at once, provided
the source stations are all
different. To allow multiple
responses this state machine
gets collapsed into one state,
with sequence state held in a
variable. The local variables
are replicated for each
response, selected by
requester station address. */

/* Key to generate
 challenge text */
dcl chKey Octetstring ;

/* The RC4 PRNG is accessed
 as a remote procedure:
 prnString:= call RC4(key,length)
 This procedure only present when
 aPrivacyOptionImplemented=true
*/
imported procedure RC4 ;
 fpar PrngKey, Integer ;
 returns Octetstring ;

imported aAuth_
 enticationResponse_
 Timeout TU ;

Auth_Rsp_
_Idle

Tchal

-

AuthOdd
(arRdu)

arSeq:=
authSeqNum

(arRdu),

arAlg:=
authAlg
(arRdu),
arSta:=
addr2
(arRdu)

arSeq

arSC:=
auth_seq_

_fail

Sst(arSta,
de_auth)

arSdu:=
mkFrame

(auth, arSta,

mBssid,
(arAlg //
mkOS
(arSeq+1,2)
// arSC))

Send
(arSdu,
norm)

Auth_Rsp_
_Idle

arAlg
in

import
(aAuthenti_
cationType)

arSC:=
unsupt_alg arAlg

arSC:=
successful

A station
is allowed
to reject an
open system
auth request
with status
unspec_fail. Sst(arSta,

auth_open)

aPrivacy_ Option_
Implemented

bad_
alg

arChalng:=
call RC4

(chKey, 128)

The chKey value used to
generate challenge text is
arbitrary, and does not need
to be shared. However,
implementors are advised
that the source of chKey
SHOULD NOT be one
of the WEP keys, because
the output of the PRNG
when using chKey is sent,
unencrypted, in the
challenge text field.

arSdu:=
mkFrame

(auth,arSta,

mBssid,
(arAlg //
mkOS(2,2) //
successful //
mkElem(eCtxt,
arChalng)))Send

(arSdu,
norm)

set
now+import

(aAuthentica_
tionRespone_
Timeout), Tchal)

Set response
timeout and
await response
to challenge.

Wait_Chal_
_Rsp

bad_
alg

else
 (1)

 (false) (true)

 (open_
 _system)

 (shared_
 _key)

 (false)
 (true)

368 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Service AuthRspService auth_rsp_2a(2)

Wait_Chal_
_Rsp

AuthOdd
(arRdu)

arSeq2:=
authSeqNum

(arRdu),

arSta2:=
addr2
(arRdu)

arSeq2

In the case of
undecryptable
response, assume
Auth frame from
expected source
is sequence 3.

arSta =
arSta2

reset
(Tchal)

wepBit
(arRdu)

arChalng=
getElem
(eCtxt,
arRdu)

arSC:=
chnlg_fail

Sst(arSta2,
de_auth)

arSdu:=
mkFrame

(auth, arSta,

mBssid,
(arAlg //
mkOS(4,2)
// arSC))

Send
(arSdu,
norm)

Auth_Rsp_
_Idle

arSC:=
successful

Sst(arSta2,
auth_key)

arSC:=
unspec_fail

Sst(arSta2,
de_auth)

arSdu:=
mkFrame

(auth,arSta2,

mBssid,
(authAlg
(arRdu))
// mkOS
(arSeq2+1,
2) //
arSC))Send

(arSdu,
norm)

Wait_Chal_
_Rsp

Continue
to wait for
response to
challenge.

arSta =
arSta2

Open_system
request from a
different station
can be handled
while awaiting
challenge rsp.

arAlg

arAlg
in

import
(aAuthenti_
cationType)

arSC:=
unsupt_alg

arSC:=
successful

A station
is allowed
to reject an
open system
auth request
with status
unspec_fail.

Sst(arSta,
auth_open)

Tchal

Sst(arSta,
de_auth)

Timeout while
waiting is a
failed attempt.

Auth_Rsp_
_Idle

*

Deauth
(arRdu)

arSta3:=
addr2

(arRdu)

Sst(arSta3,
de_auth)

Update station
state, deauth
clears asoc
if present.

MlmeDeau_
thenticate._
indication

(arSta3,
reason
(arRdu))

arSta3=
mBssId

If deauth is
from current
AP, end asoc
(if any) by
clearing
mBssid and
mAssoc.mAssoc:=false

mBssid:=
nullAddr

Xport

-

 (3)

 (true)

 (1)

 (false)
 (true)

 (0)

(false)

 (1)

 (false)

 else
 (open_
 _system)

(false) (true)

 (true)

 else

 (true) (false)

Copyright © 1997 IEEE. All rights reserved. 369

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Service Distribute_Mmpdus mmpdu_svc_1a(1)

dcl mAdr MacAddr ;
dcl mIm Imed ;
dcl pri CfPriority ;
dcl mRate Rate ;
dcl mRpdu, mSpdu Frame ;
dcl mSerr StateErr ;
dcl mSst StationState ;
dcl mtE, mtT Time ;
dcl mTxstat TxStatus ;

/* This service routes
mmpdu and station state
update signals from and
to the mlme operational
services. Signals are
not modified, but some
superfluous parameters
are omitted in transfer. */

export(
mAId,

mAssoc,

mAtimW, mBssId, mCap,
mCfp, mDisable, mIbss,
mListenInt, mNextBdry,
mNextTbtt, mPcAvail,
mPcDlvr, mPcPoll,
mPsm, mPss, mSsId)

Mmpdu_
Idle

Xport

Re-export the
intra-MAC
remote
variables to
make updates
available.

re_
exp

Send
(mSpdu,
mIm)

'mRate:=
data rate to

send mmpdu'

The selection criteria for
Mmpdu Tx data rate are
not specified. Frames
to group addresses must
use one of the basic rates.
Requests should use one of
the basic rates unless the
operational rates of the
recipient station are known.
Responses must use a basic
rate or the rate at which
the request was received.

MmRequest
(mSpdu,
mIm,mRate)

-

MmConfirm
(mSpdu,
mTxstat)

ftype
(mSpdu)

Sent
(mSpdu,
mTxstat)

MmConfirm only
needed for probe
responses and
beacons.

-

MmIndicate
(mRpdu,mtE,
mtT,mSerr)

mSerr
Cls2Err
(addr2
(mRpdu))

-

Cls3Err
(addr2
(mRpdu))

ftype
(mRpdu)

AsocReq
(mRpdu)

AsocRsp
(mRpdu)

ReasocReq
(mRpdu)

ReasocRsp
(mRpdu)

ProbeReq
(mRpdu)

ProbeRsp
(mRpdu,
mtE,mtT)Atim

(mRpdu)

Beacon
(mRpdu,
mtE,mtT)

Disasoc
(mRpdu)

Deauth
(mRpdu)

mTst:= mod
(authSeqNum
(mRpdu), 2)

mTst

AuthEven
(mRpdu)

-

AuthOdd
(mRpdu)

Sst
(mAdr,
mSst)

StaState
(mAdr,
mSst)

-

re_
exp

 (beacon,
 probe_rsp) else

(class2) (class3)

 else

 (asoc_req) (asoc_rsp)

(reasoc_req) (reasoc_rsp)

(probe_req) (probe_rsp)

(atim)

(beacon) (disasoc) (deauth)

 (auth)

 (0) (1)

370 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Service Synchronization_Sta sta_Powermgt_1b(6)

dcl yAtimRx, yPsm, yRdtim, yWake Boolean ;
dcl yAtw, yBcn, yEnr, yMocp, yStt Time ;
dcl yBcnPeriod, ycmax, ycmin TU ;
dcl ybd BssDscr ;
dcl ybdset BssDscrSet ;
dcl ybtp BssType ;
dcl ybsid MacAddr ;
dcl yclist Intstring ;
dcl ycx, yJto, ytemp Integer ;
dcl yDspm DsParms ;
dcl yFhpm FhParms ;
dcl yIbpm IbssParms ;
dcl ypdly Usec ;

dcl yPhpm PhyParms ;
dcl yRdu, yTdu Frame ;
dcl yssid Octetstring ;
dcl ystp ScanType ;
dcl ytrsl TxResult ;

timer Tscan,
 Tmocp, Tpdly ;

ytemp:=
call TSF
(0, true)

Set TSF
time to
zero.

Xport

reset(Tbcn),
reset(Tatim),

Setting these
timers to now
causes events
in each of the
multi-state
services of the
process, forcing
each service to
its idle state.

set(now,Tasoc),
set(now,Tauth),
set(not,Tchal)

No_BSS

*

ResetMAC

'reset all
intra-MAC

remote

variables
to default
values'

PsmDone
PsmDone sent
by TxCoord
after change
in power save
indication is
announced in
frame exchange.not

mDisable

MlmePower_
mgt.confirm
(success)

-

No_Bss, Bss,
Ibss_Active,

Ibss_Idle

PowerMgt requests
valid in all
top-level states.

Mlme_
PowerMgt._
request

(yPsm,
yWake,
yRdtim)

'update mib:
aReceiveDtims
set to yRdtim'

(yWake and
(mPss = Doze))
or ((yPsm =
station_active)
and (mPsm =
power_save))

mPss:=
awake

Wake

mPsm:=
yPsm

Xport

-

 (true) (false)

Copyright © 1997 IEEE. All rights reserved. 371

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Service Synchronization_Sta sta_Scan_2c(6)

No_Bss, Bss,
Ibss_Active,

Ibss_Idle

Scan requests
valid in all
top-level states.

MlmeScan._
request(ybtp,
ybsid,

yssid, ystp,
ypdly, yclist,
ycmin, ycmax)

not import
(mFxIP)

Only accept
Scan request
when no frame
exchange is
in progress.

'parameters
valid'

MlmeScan._
confirm
(empty,invalid)

-

No loss sync
if scan parms
are invalid.

ybdset:=Empty,
ycx:= 0,

mDisable:=true

Xport,
Wake

ystype

tpdu:=
mkFrame

(probe_req,

bcstAddr,
yBsid, mkElem
(eSsId,ySsid) //
mkElem(eSup_
Rates,mOrates))

nx_
chnl

nx_
chnl

Act_Listen,
Act_Receive,
Pas_Listen

Beacon
(yrdu,yrend,
ytstr)

'ybd:= bss
description

info from yrdu'

ybd!bd_
StartTs:=

ytstr

ybdset:=
ybdset
or ybd

-

ProbeRsp
(yrdu,yrend,
ytstr)

nx_
chnl

ycx:=
ycx + 1

ycx >
length(yclist)

SwChnl
(yclist(ycx),
true)

ystype

Wait_Csw_
_Done

SwDone

set
(now+ypdly,

Tscan)

Set probe
delay
timeout.

Wait_Probe_
_Delay

Tscan

Send
(tpdu,imed)

Transmit
probe
request.

Set
(now+ycmim,

Tscan)

Set channel
activity
(min) timeout.

Act_Listen

*

Set
(now+ycmax,

Tscan)

Pas_Listen

'filter ybdset
for ybtype

and duplicates'

MlmeScan._
confirm
(ybdset,success)

No_Bss

Scan ends in
No_Bss state
since sync lost
with prior Bss.
Implementations
may save/restore
TSF and asoc
info to re-join
prior Bss.

Act_Receive,
Pas_Listen

Tscan

Act_Listen
Listen for
activity
on channel.

Tscan

Go to next
channel if
no activity
by min time.

nx_
chnl

import
(mRxA)

Set
(now+ycmax,

Tscan)

Set probe
response
(max) timeout.

Act_Receive
Receive
responses
on channel.

 (false)
 (true)

 (active_scan) (passive_scan)

 (false)

 (active_scan) (passive_scan)

 (true)

372 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Service Synchronization_Sta sta_Start_Ibss_3b(6)

No_BSS
Start IBSS on
this page, join
on next page.

MlmeStart._
request
(mSsid, yBtp,

yBcnPeriod,
mDtimPeriod,
/* cfpm */,
yPhpm,
yIbpm, ypdly,
mCap,
mBrates,
mOrates)yBytp

sCanBeAp

MlmeStart._
confirm
(invalid)

No_Bss

AP_Active

Activate
AP state
machine.

'parameters
valid'

mIbss:=true,
mPss:=awake,
mPdly:=ypdly

mBssId:=
0 // 1 //

'46 random bits'

46-bit string
needs to be
very random,
see 11.1.3.

yBcn:=
tTU

(yBcnPeriod)

yAtw:=tTU
(atimWin
(yIbpm))

'set actual
phy parameters

from phpm'

Xport

ibss_
init

ibss_
init

'using
FH phy'

yMocp:=tTU
(dwellTime
(yFhpm))

mNextBdry:=
now+(yMocp

- (call TSF
(0,false)
mod yMocp))

set
(mNextBdry,

Tmocp)
Initialize
dwell timer.

'yChan:=
first (or only)

channel'

Set starting
channel (FH)
or operating
channel (DS),
null for IR.

SwChnl
(yChan,true)

mNextTbtt:=
now+(yBcn
- (call TSF

(0,false)
mod yBcn))

set
(mNextBdry,

Tbcn)
Initialize
beacon timer.

mIbss:= true,
mDisable:=

false

Xport

MlmeStart._
confirm
(success)

set(now +
tTU(ypdly),

Tpdly)

Init_Wait_
_ProbeDelay

Wait probe
delay before
initiating a
transmission.

* Tpdly

Ibss_Active
Start out as
Ibss probe
responder.

 (infra_
 structure)

 (false) (true)

 (indep_
 endent)

 (true) (false)

 (true) (false)

Copyright © 1997 IEEE. All rights reserved. 373

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Service Synchronization_Sta sta_Join_4b(6)

No_Bss
Join on this
page, Start on
previous page

MlmeJoin._
request
(ybd,

yJto,
ypdly,
mOrates)

'bss dscr
valid'

MlmeJoin._
confirm
(invalid)

No_Bss

mBssId:=
ybd!bdBssId,

mSsId:=
 ybd!bdSsId,
yBcn:=tTU
 (ybd!_
 bdBcnPer),
mDtimPeriod
 := ybd!_
 bdDtimPer,
yphpm:=ybd!_
 bdPhyParms,
ycfpm:=ybd!_
 bdCfParms,
yibpm:=ybd!_
 bdIbParms,
mCap:= ybd!_
 bdCap,
mBrates:=
 ybd!bdRates,
mPdly:=ypdly

set
(now + yBcn,

Tbcn)

Xport

'select channel
of target Bss'

ytemp:=
call TSF(

(now -

ybd!_
 bdStartTs),
true)

Join_Wait_
_Beacon

Join_Wait_Bcn

Tbcn

yJto:=
yJto - 1

yJto

set
(now + yBcn,

Tbcn)

-

MlmeJoin._
confirm
(timeout)

mBssId:=
nullAddr,

mSsId:=null

No_Bss

Beacon
(yrdu, yenr,
ystt)

A probe response from
the bss/ibss can also be
used to establish sync.

(mBssId =
addr2(yrdu)) and
(mSsId = getElem
(eSsId,yrdu))

'adopt
values

from yrdu'

'using
FH phy'

yMocp:=tTU
(dwellTime
(yFhpm))

mNextBdry:=
now+(yMocp

- (call TSF
(0,false)
mod yMocp))

set
(mNextBdry,

Tmocp)
Initialize
dwell timer.

'yChan:=
first (or only)

channel'

Set starting
channel (FH)
or operating
channel (DS),
null for IR.

SwChnl
(yChan,true)

mNextTbtt:=
now+(yBcn
- (call TSF

(0,false)
mod yBcn))

set
(mNextTbtt,

Tbcn)
Initialize
beacon timer.

MlmeStart._
confirm
(success)

mCap and
cIbss

mDisable:=
false,

mIbss:=false

Xport

Bss

mDisable:=
false,

mIbss:= true

Xport

Ibss_Idle

-

 (false) (true)

 (>0) (=0)

 (true)

 (true)

 else (=cIbss)

 (false)

(false)

374 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Service Synchronization_Sta sta_TSF_Ibss_5a(6)

Ibss_Active,
Ibss_Idle

States when joined/started Ibss.
Ibss_Active when sent beacon this
interval so respond to probe requests.

Tbcn

set
(now+yBcn,

Tbcn)

Wake,
TBTT

ytdu:=
mkFrame
(beacon,

bcstAddr,
mBssId, O8
/* timestamp
 inserted
 during tx */
// mk2octets
 (yBcnPeriod)
// mCap
// mkElem
 (eSsId,
 mSsId)
// mkElem
 (eSupRates,
 mOrates)
// mkElem
 (ePhpm,
 yPhpm)
// mkElem
 (eIbss,
 yIbpm))

mAtimW:=true,
yAtimRx:=false,

mPss:=awake

Xport,
Send
(ytdu,imed)

set
(now+atimWin
(yIbpm),Tatim)

-

Atim
(yrdu)

yAtimRx:=
true

-

Beacon
(yRdu,
yEnr,yStt)

(mBssId =
addr2(yrdu)) and
(mSsId=getElem
(eSsId, yrdu))

(bCap(yrdu)
and cIbss)

= cIbss) and
(mSsId=getElem
(eSsId, yrdu))

-

tstamp
(yrdu)

> call TSF
(0, false)

'adopt
values

from yrdu'

MmCancel

ytemp:=
call TSF

(tstamp(yrdu)
+ (now - yStt),
true)

Xport

-

-

Sent
(,ytrsl)

ytrsl

Ibss_Idle

Ibss_Active

Tatim

mAtimW:=
false

mPsm
and

(not yAtimRx)
and (ytrsl
/= successful)

mPss:=
doze

Doze

Xport

-

 (false)

(false)
 (true)

 (true)
(false)

 (true) else (suc_
 cessful)

 (true) (false)

Copyright © 1997 IEEE. All rights reserved. 375

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Service Synchronization_Sta sta_TSF_bss_6a(6)

Bss
State when joined Bss, receive
beacons, ignore probe requests,
adjust TSF to track AP's time.

Tbcn
set

(now+yBcn,
Tbcn)

mDtim_
Count:=

if mDtimCount=0
then mDtimPeriod-1
else mDtimCount-1 fi

mDtim_
Count

bb_
done

yCfpm:=
setCfpCount

(yCfpm,

if CfpCount(yCfpm)=0
then CfpPeriod(yCfpm)-1
else CfpCount(yCfpm)-1 fi)

CfpCount
(yCfpm)

ChangeNav
(CfpMaxDur
(yCfpm),
cfp_bss)

yLicnt:=
if yLicnt=0
then yLint-1
else yLicnt-1 fi

(mPsm =
power_save) and
(yLicnt=0)
and (import
(aReceiveDtims))

mPss:=
awake

Wake

mAsoc
or mIbss

Xport

Bss

mDisable:=
true

Xport No_Bss

Beacon
(yrdu,
yEnr, yStt)

(mBssId =
addr2(yrdu)) and
(mSsId=getElem
(eSsId, yrdu))

'adopt
values

from yrdu'

ytemp:=
call TSF

(tstamp(yrdu)
+ (now - yStt),
true)

mCfp:= if
cfpDurRem
(yCfpm) > 0

then true
else false fi

mCfp

ChangeNav
(cfpDurRem
(yCfpm),
cfp_bss)

Xport

mPsm

yTim:=
getElem

(eTim, yrdu)

bufFrame
(yTim,

mAId) or
(bufBcst(yTim) and
(dtCount(yTim) = 0))

mPss:=
awake

Bss

Doze

-

-

Bss,
Ibss_Active,

Ibss_Idle

Tmocp

mNextBdry:=
mNextBdry +

yMocp

set
(mNextBdry,

Tmocp)

'yChan:=
next channel
in hop seq'

SwChnl
(yChan,true)

Wait_Hop_
Bss

SwDone

Bss

bb_
done

 else

 (=0)

 (=0)

 (true)

 (true) (false)

 (false)

 else

 (true)

 (true)

 (power_save)

 (true)
 (false)

 (station_
 active)

 (false)

(false)

376 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Power_Save_Monitor ps_monitor_1a(2)

/* Each of these sets holds MAC addresses of
 stations with a particular operational state.
 Stations are added to and removed from sets
 due to MLME requests, received management
 frames, and bits in received MAC headers.
 Sets are not aged, as there is no requirement
 for periodic activity, but aging to expunge
 addresses of inactive stations is permitted.
*/ dcl
awake, /* detected in sta_active mode */
asleep, /* detected in power_save mode */
authOs, /* authenticated by open system */
authKey, /* authenticated by any other alg. */
asoc /* associated (0|1 member, non-AP) */
 MacAddrSet ;

dcl psm
 PsMode ;
dcl psquery
 Boolean ;
dcl sst, asst
 StationState ;
dcl sta
 MacAddr ;

/* This process
records power
save state as
indicated in the
headers of all
valid rx frames;
and auth/asoc
state from all
management
exchanges by
this station. */

Clear specific
authentication
info at startup
but not reset.

authOs:=empty,
authKey:=empty

asoc:=empty
Clear info on
power save and
associated
stations at
startup and
at reset.PsIndicate

signals from
Rx block.

Monitor_Idle
Power Save Mode and
Station State monitoring
here, query on next page.

awake:=empty,
asleep:=empty

PsIndicate
(sta, psm)

StaState signals
from Auth, Asoc
Mlme services.

StaState
(sta, sst) ResetMAC Monitor_Idle

psm sst

awake:=
Incl(sta,
awake)

awake:=
Del(sta,
awake)

asoc:=
Incl(sta,

asoc)

authOS:=
Incl(sta,
authOs)

authKey:=
Incl(sta,
authKey)

authOS:=
Del(sta,
authOs)

sta in
asleep

asleep:=
Incl(sta,
asleep)

authKey:=
Del(sta,

authKey)

authOS:=
Del(sta,
authOs)

authKey:=
Del(sta,

authKey)

PsChange
(sta,
sta_active)

- sta in
asoc

asleep:=
Del(sta,
asleep)

Send PsChange
when sleeping
station reports
active mode.

asoc:=
Del(sta,
asoc)

-
Association
adds asoc
state while
leaving auth
info intact.

-

Deauthenticate
of associated
station causes
disassociate
at same time.

 (sta_active)

(power_save)

 (asoc) (auth_open) (auth_key) (de_auth) (dis_
 _asoc)

 (true) (false)

(true)(false)

Copyright © 1997 IEEE. All rights reserved. 377

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Power_Save_Monitor ps_monitor_2a(2)

Monitor_Idle
Power Save and Station State
query and response below,
monitoring on previous page.

PsInquiry
(sta)

PsInquiry returns PsResponse to
report power mode awake, asleep,
or unknown at the target station.

isGroup
(sta)

sta in
awake

sta in
asleep

psm:=
unknown

PsResponse
(sta, psm)
to sender

-

psm:=
asleep

psm:=
awake

SsInquiry
(sta)

SsInquiry returns SsResponse to report
station state not_auth, assoc, or dis_assoc;
and authentication state not_auth,
auth_open, or auth_key at the target station.

isGroup
(sta)

grp_
addr

sta in
authOs

sta in
authKey

asst:=
auth_key

sta in
asoc

sst:=
asoc

SsResponse
(sta,sst,asst)
to sender

-

sst:= asst
When there is no association
info, station state is identical
to authentication state.

asst:=
not_auth

asst:=
auth_open

grp_
addr

asst:=
not_auth

import
(mAssoc)

sst:=
dis_asoc

 (false)

 (false)

 (false)
(true)

(true)

 (true) (true)
(false)

 (false)

(true)

 (true) (false)

 (false)

(true)

 (false)
(true)

378 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Block MPDU_Generation_STA sta_Mpdu_gen_1a(1)

signal
 FragConfirm(FragSdu,TxResult),
 FragRequest(FragSdu) ;

/* This block converts
 outgoing Msdus and Mmpdus
 into Mpdus, fragmenting
 and encrypting as necessary.
 If the station is in a Bss,
 outgoing Msdus are directed
 via distribution service
 at the AP.

 The PM_Filter process queues
 frames needing announcement
 by Atim in an Ibss; or frames
 to be sent in the CF-period
 at a CF-pollable station in
 a Bss. */

Includes encryption if
aPrivacyOptionImplemented
=true. This is a typical
location, but implementors
may use other locations
between the MAC_SAP
and PHY_SAP_TX as
long as they provide
the specified behavior
as observed at LLC,
MLME and the WM.

Prepare_MPDU
(1,1)

/* for STA & AP */

PM_Filter_STA
(1,1)

/* station version */

TSDU

MM_
TX

TPDU

Msdu

MsduConfirm

MsduRequest

Mmpdu

MmConfirm

MmRequest

FragMsdu

FragRequest

FragConfirm

PwrMgt

PsInquiry

PsResponse,
PsChange

Mpdu

PduRequest

AtimW,
PduConfirm,
CfPolled

Copyright © 1997 IEEE. All rights reserved. 379

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process PM_Filter_STA sta_PM_Bss_1b(4)

dcl atPend, fsPend,
 sentBcn Boolean:= false ;
dcl cfQ, psQ, txQ, anQ
 SduQueue:= emptyQ ;
dcl dpsm PsMode ;
dcl fsdu, rsdu FragSdu ;
dcl k, n Integer ;
dcl resl TxResult ;
dcl sta MacAddr ;

*

ResetMAC

anQ:=emptyQ,
cfQ:=emptyQ,

psQ:=emptyQ,
txQ:=emptyQ

PM_Idle
Station not in any BSS,
only Mmpdus will be sent
down by Prepare_MPDU.

import
(mAssoc)

PM_Bss
PsChange
ignored when
assoc w/BSS.

Frag_
Request
(fsdu)

fsdu!cf

txQ:= qlast
(txQ, fsdu)

-

cfQ:= qlast
(cfQ, fsdu)

(not fsPend)
and (length
(txQ) /= 0)

fsdu:=first(txQ),
txQ:=tail(txQ)

Pdu_
Request
(fsdu)

fsPend:=
true

-

Pdu_
Confirm
(fsdu,resl)

fsPend:=
false

resl

fsdu!_
resume:=

true

txQ:= qfirst
(txQ, fsdu)

-

Frag_
Confirm
(fsdu,resl)

-

import
(mCfp)

Bss_Cfp

Cfp handling
is on next
page.

import
(mIbss)

PM_Ibss_
_Data

IBSS case is
two pages
ahead.

Frag_
Request
(fsdu)

Pdu_
Request
(fsdu)

-

Pass management frames
involved in scan, join,
and start.

Pdu_
Confirm
(fsdu,resl)

Frag_
Confirm
(fsdu,resl)

-

import
(mDisable)

 (contention)

 (contention_
 Free)

 (partial) else

380 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process PM_Filter_STA sta_PM_Cfp_2b(4)

Bss_Cfp

Frag_
Request
(fsdu)

fsdu!cf

txQ:= qlast
(txQ, fsdu)

-

cfQ:= qlast
(cfQ, fsdu)

not import
(mCfp)

PM_Bss

Pdu_
Confirm
(fsdu,resl)

fsPend:=
false

resl

fsdu!cf

fsdu!_
resume:=

true

txQ:= qfirst
(txQ, fsdu)

-

cfQ:= qfirst
(cfQ, fsdu)

fsPend:=
false

-

Frag_
Confirm
(fsdu,resl)

-

CfPolled
fsPend does not need
to be checked because
there is exactly one
transmission opportunity
per CfPoll.

length
(cfQ)

fsdu:=
first(cfQ),

cfQ:=tail(cfQ)

lenght
(cfQ) + length(txQ)

'set moreData
bit in each

fsdu fragment'

Pdu_
Request
(fsdu)

-

length
(txQ)

fsdu:=
first(txQ),

txQ:= tail(txQ)

length
(txQ)

'set moreData
bit in each

fsdu fragment'

Pdu_
Request
(fsdu)

-

Pdu_
Request
(nullSdu)

Send null SDU if
CFqueue empty. TxCtl
then responds with
CfAck or Null rather
than Data or DataAck.

-

 (contention)

 (contention_
 _free)

 (partial)

 (con_
 tention)

 (con_
 tention_
 _free)

 else

 (>0)

 (>0) (=0)

 (=0)

 (>0)

 (>0) (=0)

 (=0)

Copyright © 1997 IEEE. All rights reserved. 381

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process PM_Filter_STA sta_PM_Ibss_3b(4)

PM_Ibss_
_Data

Ibss data
transfers (not
Atim window)

AtimW

Frag_
Request
(fsdu)

PsInquiry
(fsdu!dst)

Wait_PS_
_Response

PsResponse
(,dpsm)

dpsm

fsdu!psm:=
true

psQ:= qlast
(psQ, fsdu)

PM_Ibss_
_Data

txQ:= qlast
(txQ, fsdu)

*

(not fsPend)
and import
(mAtimW)

Pre_Atim

Atim window
is on next
page.

(not fsPend)
and

(length(anQ)
 = 0) and
(length(txQ)
/= 0))

Announced queue
has priority over
non-PM transmit queue.

fsdu:=
first(anQ),

anQ:=tail(anQ)

Pdu_
Request
(fsdu)

fsPend:=
true

-

(not fsPend)
and (length
(anQ) /= 0)

fsdu:=
first(txQ),

txQ:=tail(txQ)

Pdu_
Request
(fsdu)

fsPend:=
true

-

Pdu_
Confirm
(fsdu,resl)

fsPend:=
false

resl

fsdu!_
resume:=

true

fsdu!psm

txQ:= qfirst
(txQ, fsdu)

-

anQ:= qfirst
(anQ, fsdu)

-

Frag_
Confirm
(fsdu,resl)

-

PsChange
(sta, psm)

n:=
qsearch

(psQ, sta)

n

txQ:=
qlast(txQ,
first(psQ))

psQ:=
tail(psQ)

-

 else
 (station_
 _active)

 (partial)

 (false) (true)

 else

 (>=0) (<0)

382 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process PM_Filter_STA sta_PM_AtimW_4b(4)

Pre_Atim
Wait until TxCoord
sends AtimW signal
to avoid chance that
Beacon fsdu reaches
TxCoord before the
TBTT signal is
processed by TxCoord.* AtimW

n:=
length(anQ)

n
psQ:=

qlast(psQ,
first(anQ)),

anQ:=tail(anQ),
n:= n-1

Move all
anQ entries
to psQ.

PM_Ibss_
_AtimW

Ibss during
Atim window.

(not atPend)
and (not import

(mAtimW))

sentBcn:=
false

PM_Ibss_
_Data

Frag_
Request
(fsdu)

Ensure that beacon
is first fsdu sent
during Atim window.

sentBcn

PsInquiry
(fsdu!dst)

Wait_PS_
_Response

* PsResponse
(,dpsm)

dpsm

fsdu!psm:=
true

psQ:= qlast
(psQ, fsdu)

PM_Ibss_
_AtimW

txQ:= qlast
(txQ, fsdu)

ftype(fsdu!
pdus(1))

Pdu_
Request
(fsdu)

sentBcn:=
true

-

Frag_
Request(fsdu)
to Self

Move fsdus
that arrive
before beacon
back onto end
of input queue.

-

PsChange
Pdu_
Confirm
(fsdu,resl)

atPend:=
false

resl

anQ:= qlast
(anQ, fsdu)

-

psQ:= qlast
(psQ, fsdu)

Handling is
implementation
dependent, can
either re-queue
until next atim
window or retry
during this
atim window.-

(not atPend)
and (length
(psQ) /= 0)

fsdu:=
first(psQ),

psQ:=tail(psQ)

Pdu_
Request
(fsdu)

atPend:=
true

-

 (>0)

 (=0)

 (true)

 else (station_active)

 (false)

 (beacon) else (atimAck) else

Copyright © 1997 IEEE. All rights reserved. 383

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Prepare_MPDU prepare_1b(2)

dcl bcmc, keyOk,
 useWep Boolean:= false ;
dcl f FragNum ;
dcl fsdu FragSdu ;
dcl mpduOvhd, p,
 pduSize, thld Integer ;
dcl pri CfPriority ;
dcl rrsl TxResult ;
dcl sdu, rsdu Frame ;

imported mAssoc, mIbss, aPrivacyInvoked Boolean ;
imported aFragmentationThreshold Integer ;
imported aWepDefaultKeys KeyVector ;
imported aWepDefaultKeyId KeyIndex ;
imported aWepKeyMappings KeyMapArray ;
imported aWepKeyMappingLength KeyMapArrayLength ;
imported mCap Octetstring ;

/* This process generates
one or more Mpdus from
each outgoing Msdu or
Mmpdu. If encryption is
needed, the Mpdus are
encrypted before being
passed to be filtered for
possible power save or
CF queuing before tx. */

Encrypt

Procedure used for WEP encryption.
If aPrivacyOptionImplemented=
false, this procedure is not present.

No_Bss

import
(mAssoc)

and (not
import(mAct_
ingAsAp))

Prepare_
_Bss

All data frames
in Bss sent to
distrib. service

not import
(mAssoc)

No_Bss

Msdu_
Request
(sdu,pri)

sdu:=
setAddr3(sdu,
addr1(sdu)),

sdu:=
 setAddr1
 (sdu,import
 (mBssId)),
sdu:=
 setToDs
 (sdu,1)

useWep:=
import(

aPrivacy_

Invoked) and
aPrivacy_
Option_
Implemented

frag_
ment

Fragment and
encrypt is
on next page.

import
(mIbss)

Prepare_
_Ibss

All data frames
in Ibss sent to
destination sta.

Msdu_
Request
(sdu,pri)

not import
(mIbss)

No_Bss

import
(mActing_

AsAp)

Prepare_
_AP

Msdu_
Request
(sdu,pri)

not import
(mActing_

AsAp)

No_Bss

Msdu_
Request
(sdu,pri)

MsduConfirm
(sdu,pri,
noBss)

Data frames
rejected if
no Bss/Ibss.
Implementations
may retain these
frames until a
Bss becomes
(re)available.

No_Bss

*

ResetMAC

No_Bss

Mm_
Request
(sdu,pri)

Mmpdus sent
even when not
in Bss/Ibss.

bcmc:=
isGroup(

addr1(sdu))

useWep:=
aPrivacy_
Option_
Implemented
and if
wepBit(sdu)=1
 then true
 else false fi

wepBit=true in
request for 3rd
frame of shared
key auth. seq.

frag_
ment

Frag_
Confirm
(fsdu,pri,rrsl)

rsdu:= substr
(fsdu!

pdus(0), 0,
sMacHdrLng),
pri:= fsdu!cf

basetype (fsdu!
pdus(0))

Msdu_
Confirm
(rsdu,pri,rrsl)

Confirm Msdu to
MAC data service,
confirm Mmpdu to
MLME sub-block.

-

MmConfirm
(rsdu,pri,rrsl)
to fsdu!cnfTo

 else
 (management)

384 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Prepare_MPDU fragment_2b(2)

frag_
ment

fsdu!fTot:=1,
fsdu!fCur:=0,
fsdu!fAnc:=0,

Initialize
FragSdu
structure

fsdu!eol:=0, fsdu!sqf:=0,
fsdu!src:=0, fsdu!lrc:=0,
fsdu!psm:=false,
fsdu!txrate:=0

fsdu!grpa:=
isGrp(

addr1(sdu)),

fsdu!cf:=pri,
fsdu!cnfTo:=sender,
fsdu!resume:=false

mpduOvhd:=
sMacHdrLng +

sCrcLng

Iv and Icv fields
not counted in pre-
fragment overhead.

pduSize:=
import

aFragmentation_
Threshold must
not be > aMax_
MpduLength.

(aFragment_
 ation_
 Threshold)

not(
fsdu!grpa)

and
length(sdu) >
 pduSize

pduSize:=
length(sdu) -
sMacHdrLng

fsdu!fTot:=
if fsdu!fTot=0
then 1
else fsdu!fTot fi

make_
pdus

pduSize:=
pduSize -

mpduOvhd

This is the typical
case, with the length
of all but the last
fragment equal to
aFragmentation_
Threshold (plus
sWepAddLng if
useWep=true). The
value selected for
pduSize must be
>=256, even, and
<=aMpduMaxLength.

fsdu!fTot:=
((length(sdu) -
sMacHdrLng) /

pduSize) +
if ((length(sdu) -
 sMacHdrLng)
 mod pduSize)
 /=0
then 1
else 0 fi

make_
pdus

f:=0,
p:=

sMacHdrLng

fsdu!pdus(f):=
null,

keyOk:=false

fsdu!pdus(f):=
fsdu!pdus(f) //
substr(sdu,0,

sMacHdrLng) //
substr(sdu,p,
 pduSize)

fsdu!pdus(f):=
setFrag(

fsdu!pdus(f),f)

(f+1) <
fsdu!fTot

fsdu!pdus(f):=
setMoreFrag(

fsdu!pdus(f),1)

useWep

Encrypt
(fsdu!pdus(f),

keyOk,

import
 (aWepKeyMappings),
import(aWepKey_
 MappingLength),
import
 (aWepDefaultKeys),
import(aWepDefault_
 KeyId), import(mCap))keyOk

f:= f+1,
p:= p+pduSize,

pduSize:= if
 (p+pduSize) > length(sdu)
then (length(sdu) - p + 1)
else pduSize fi

Final fragment may
be shorter than
initial/intermediate
fragments.

f =
fsdu!fTot

FragRequest
(fsdu) Encryption expands

each pdu by
sWepAddLng,
hence Mpdus may
be longer than
aMaxMpduLength
by sWepAddLng.

-

Msdu_
Confirm
(sdu, pri,

unavailable_
KeyMapping)

 (false) (true) (true)

 (true)

(true)

 (false)

 (true)

 (false)

 (false)

 (false)

Copyright © 1997 IEEE. All rights reserved. 385

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

; fpar in/out wpdu Frame,
in/out keyOk Boolean,
in maps KeyMapArray,
in mapLength KeyMapArrayLength,
in kvec KeyVector,
in kndx KeyIndex,
in caps Octetstring ;

Procedure Encrypt encrypt_1c(1)

dcl icv Crc ;
dcl encryptLng, k, n Integer ;
dcl encryptStr, newIV Octetstring ;
dcl key PrngKey ;
dcl kmap KeyMap ;
imported procedure RC4 ;
 fpar PrngKey, Integer ;
 returns Octetstring ;

/* The algorithm for changing
aWepDefaultKeyId is not specified.
If all stations in the Bss have the
same values in the {relevant subset
of} aWepDefaultKeys, a station's
DefaultKeyId algorithm does not
affect interoperability. */

isWds:=
toDs(pdu) and

frDs(pdu)

Test if addr4
field is present.
Only need at AP.

encryptLng:=
length(wpdu) -
sMacHdrLng -

Icv field is
encrypted, but
this length
is the pre-Icv
loop count.

if isWds then
sWdsAddLng
else 0 fi

'newIV:=
call genIV(x)'

The IV generation algorithm
is not specified, but use of
a new IV for each Mpdu is
recommended STRONGLY.

isGrp(addr1
(wpdu))

B_S(caps)
and cPrivacy

no_
encr

key:=
kvec(kndx)

key=
nullKey

Return error
to LLC if
key is null.

key:= key //
PrngKey!

newIV

Concatenate
key with IV
for encryption
PRNG seed.

encryptStr:=
call RC4

(key,

Use RC4 PRNG
to generate an
encrypt string
at long as the
MPDU payload
plus the ICV
field.

encryptLng+
sCrcLng)

wpdu:=
substr(wpdu,0,
sMacHdrLng)

Insert IV and
keyId between
MAC header
and data field.

// newIV // O1 //
substr(wpdu, sMac_
HdrLng, encryptLng)

wpdu:=
setKeyId

(wpdu,kndx)
en_

cipher

keyOk:=
false

kmap:=
keyLookup

(addr1(wpdu),
maps,
mapLength)

mappedAddr
=nullAddr

Use default
key if no
mapping or
group dest.

kmap!
keyOn

key:=
kmap!wepKey,

kndx:= 0
keyOk:=

true

If mapping
keyOn=false,
do not encrypt.

en_
cipher

icv:=
initCrc

k:= 0,
n:=

sWepHdrLng +

if isWds then
sWdsAddLng
else 0 fi

icv:= crc32
(icv,wpdu(n))

ICV value
calculated from
plaintext.

wpdu(n):=
wpdu(n) xor
encryptStr(k)

Encrypt by xor
of payload with
encrypt string.

k:= k+1,
n:= n+1

k =
(encryptLng)

n:= 0

icv:=
mirror(

not(icv))

raw ICV is 1's
complement of
crc32, MSb-first

wpdu:=
wpdu //

(icv(n)
 xor
encryptStr(k))

Encrypt ICV
octets and
attach to end
of Mpdu.

k:= k+1,
n:= n+1

n =
sCrcLng

wepdu:=
setWepBit
(wepdu,1),

keyOk:=
true

Set WEP bit
in Frame
Control field.

no_
encr

 (true)

 else (=cPrivacy)

 (false) (true)

 (false)

 (false)

 (true)

 (false)

(true)

 (false)

 (true)

 (false)

 (true)

386 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Block Protocol_Control_STA sta_CTL_1a(1)

signal
 Ack(Time,Rate),
 Cfend,
 Cfpoll(Time,Rate),
 Cts(Time,Rate),
 TxCfAck(Time,Rate) ;

/* This block performs the
DCF functions, as well as
CF-responder functions if
the station is CF-pollable.
Tx_Coordination includes
RTS and ATIM generation.
Rx_Coordination generates
acknowledgements, routes
data frames to MAC data
service and management
frames to MLME, an
indicates receipt of Ack,
Cts, and CF-Poll frames
to Tx_Coordination. */

Rx_Coordination
(1,1)

/* for STA and AP */

Tx_Coordination_sta
(1,1)

/* station version */

Includes the
CF responder
if station is
Cf-pollable.

RSDU TPDU

 MCTL

TX

MLME_PLME_SAP RX

RxI

RxIndicate,
NeedAck,
RxCfAck,
RxCfPoll

Rdat

MsduIndicate

BcMgt
MmIndicate,
SsInquiry

SsResponse

TxRx

Ack,
Cts,
Cfend,
Cfpoll,
TxCfAck

Tdat

AtimW,
PduConfirm,
CfPolled

PduRequest

Tmgt
PsmDone,
SwDone

Doze,
MmCancel,
SwChnl,
Tbtt,
Wake

TxO

Backoff,
Cancel,
TxRequest

Done,
TxConfirm

Pctl

PlmeGet_
 .request,
PlmeSet_
 .request,
PlmeReset_
 .request

PlmeGet_
 .confirm,
PlmeSet_
 .confirm,
Plme_
 Reset_
 .confirm

Rctl

ChangeNav

Trsp

TxRequest TxConfirm

Copyright © 1997 IEEE. All rights reserved. 387

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Rx_Coordination rx_coord_1a(3)

timer Tsifs ;

dcl ackFrom, ackTo MacAddr ;
dcl dAck, dCts, dRsp,
 dSifsDly Duration ;
dcl endRx, strTs Time ;
dcl pdu, rspdu Frame ;
dcl rxRate Rate ;
dcl sas, sau StationState ;
imported mNavEnd Time ;

*
(RxC_Idle)

aRxTxTurn_
aroundTime)

dSifsDly:=
dUsec

(aSifsTime -
ResetMAC

first(import
(mBrates)),
 stuff
 (aMpdu_
 Duration_
 Factor,
 sAckCtsLng
+ aPlcpHdr_
 Length)
+ aPream_
 bleLength))

dRsp:=dUsec(
aSifsTime +

calcDur(

Duration of
PS-Poll and
Ack response.

reset(Tsifs)

No_Bss
The rest of
No_Bss state
is on 3rd page.

RxC_Idle
RxC_Idle state
continues on
next page.

import
(mDisable)

NeedAck
(ackTo,endRx,
dAck,rxRate)

RxCfAck
(ackFrom) RxCfPoll

dAck:= dAck -
if dAck>0 then
dRsp else 0 fi

Ack(0,0)
No parameter
values because
without CfPoll
during Cfp the
transmitter
cannot send
after this ack.send_

sifs
mkOs(dAck),
ackTo)

rspdu:=
mkCtl
(ack,

-

set(endRx+
dSifsDly,

Tsifs)

Wait_Sifs

* Tsifs
RxCfPoll
(endRx,
rxRate)

Receipt of RxCfPoll
while waiting to
send result of
NeedAck cancels
regular Ack wait
and reports the
need for +cfAck
to TxCoord, which
will be in a
Sifs wait when
this signal
arrives.

TxRequest
(rspdu,
rxRate)

reset
(Tsifs)

Wait_TxDone
CfPoll
(endRx,
rxRate)

* TxConfirm
TxCfAck
(endRx,
rxRate)

RxC_Idle RxC_Idle

388 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Rx_Coordination rx_coord_2a(3)

RxC_Idle
RxC_Idle state
is continued
from previous page.

RxIndicate
(pdu,endRx,
strTs,rxRate)

Class 1 frames handled
on this page, class 2 and
3 frames on next page.

ftype
(pdu)

Ack
(endRx,
rxRate)

import
(mIbss)

-
Cts
(endRx,
rxRate)

isGroup
(addr1(pdu))

Ack(0,0) -
Mm_
Indicate
(pdu,

if import(mCfp)
 then contention_free
 else contention fi)

CfEnd chk_
sst

None of these
frames should
have group DA.

RxC_Idle

SsInquiry
(addr2(pdu))

MmIndicate
(pdu,
endRx,

strTs,
noerr) Wait_Asoc_

_Response

import(mNavEnd)
> now * SsResponse

(,sas,sau)

-
rspdu:=
mkCtl
(cts,

durId(rspdu)-dRsp,
addr2(pdu))

sas =
asoc

send_
sifs

CTS respone to
RTS only when
the Nav is clear.

ck_
auth

Mm_
Indicate
(pdu,

if import(mCfp)
 then contention_free
 else contention fi)

RxC_Idle

 (ack) data

 (cts) (authentication,
 deauthentication,
 atim,
 probe_rsp)

(cfend_ack)

(cfend) else

(beacon,
probe_req)

 (rts)

 (true) (false)

 (true)

 (false)

 (true)
 (false)

 (false) (true)

Copyright © 1997 IEEE. All rights reserved. 389

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Rx_Coordination rx_coord_3b(3)

No_Bss
Beacon and probe_rsp
sent to Mlme_Req_Rsp
while scaning, other
types acknowledged
(if unicast to this
station) but ignored.

not import
(mDisable)

RxC_Idle

RxIndicate
(pdu,endRx,
strTs,dAck)

ftype(pdu)

MmIndicate
(pdu,endRx,
strTs,noerr)

RxC_Idle

chk_
sst

SsInquiry
(addr2(pdu))

Wait_Sst_
_Response

SsResponse
(,sas,sau)

ftype(pdu)

At station
Rx with toDs=1
discarded by
Filter_MPDU.
frDs=1 never
sent by Sta, so
explicit fromDs
test not
needed here.

RxC_Idle
(sau =

authOpen)
or

(sau =
authKey)

MmIndicate
(pdu, , ,
class2)

RxC_Idle

ftype(pdu)

MmIndicate
(pdu, , ,noerr)

RxC_Idle

import
(mActingAsAp)

RxC_Idle
PsPoll should
not be received
at station.

PsPoll
(pdu,endRx,
rxrate)

Signal receipt
of PsPoll to
AP transmit
coordination.

(sas=asoc)
and sCfPollable

ftype(pdu)

Msdu_
Indicate
(pdu)

RxC_Idle

sau =
not_auth

MmIndicate
(pdu, , ,
class3)

RxC_Idle

MmIndicate
(pdu, , ,
class2)

RxC_Idle

*

ck_
auth

 (beacon,
 probe_rsp)

 else

 else

 (null_frame, disasoc,
 asoc_req, reasoc_req,
 asoc_rsp, reasoc_rsp)

 (false) (true)

(null_
_frame)

 else

 (pspoll)

 (false) (true)

 (data_ack,
 data_poll,
 data_poll_ack,
 cfack,
 cfpoll,
 cfpoll_ack)

 (true)

 (data_ack,
 data_poll,
 data_poll_ack)

 else

 (false)

 (false) (true)

390 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Tx_Coordination_sta sta_tx_init_1c(8)

dcl atimcw, bstat, chan,
 dcfcnt, dcfcw Integer ;
dcl ccw Integer:= aCwMin ;
dcl curPm Bit ;
dcl doHop, psmChg, cont
 Boolean:= false ;
dcl dSifsDelay, endRx Time ;
dcl fsdu FragSdu ;
dcl rtype Ftype ;
dcl seqnum, ssrc, slrc, n Integer:= 0;
dcl tpdu Frame ;
dcl txrate Rate ;

/* at start of frame exchange
sequence, when setting mFxIP,
check if mPsm=curPsm, if not,
when indicating the new Psm,
also set PsmChange boolean;
at end of frame exchange
sequence, when clearing FxIP,
test & reset mPsmChange, if
true, send PsmDone to Mlme */

timer Tifs,
 Trsp, Tpdly ;

Imported aRtsThreshld,
aShortRetryLimit,
aLongRetryLimit,
aFragmentationThreshold,
aMaxTransmitMsduLifetime Integer,
mPdly Usec ;

/* RANDOM NUMBER FUNCTION */
imported procedure Random ;
 fpar limit Integer ; returns Integer ;

dcl exported FxIP Boolean:= false ;
dcl cTfrg exported as
 aTransmittedFragmentCount,
 cTmcfrg exported as
 aMulticastTransmittedFrameCount,
 cFail exported as aFailedCount,
 cRtry exported as aRetryCount,
 cMrtry exported as aMultipleRetryCount,
 cCts exported as aRtsSuccessCount,
 cNcts exported as aRtsFailureCount,
 cNack exported as aAckFailureCount
 Counter32:= 0 ;

PlmeReset._
Request

dSifsDelay:=
dUsec

(aSifsTime -
aRxTxTurn_
aroundTime)

'mmrate:=
rate to send
mmpdus'

Mmrate must be
selected from
mBrates. Other
selection criteria
are not specified.

ssrc:= 0,
slrc:= 0

ccw:=
import

(aCWmin),
dcfcw:= ccw,
atimcw:= ccw

Backoff
(ccw,-1)

TxC_Idle

*

ResetMAC

tx_
sifs

Send frame
at Sifs

set(endRx
+dSifsDelay,

Tifs)

tpdu:=
setPwrMgt

(tpdu,curPm)

Wait_Sifs

Tifs

TxRequest
(tpdu,trate)

Wait_Tx_
Done

TxConfirm

TxC_Idle

*

*

Copyright © 1997 IEEE. All rights reserved. 391

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Tx_Coordination_sta sta_tx_idle_2c(8)

TxC_Idle
Ack, Cfend, Cts, Wake
and MmCancel ignored
in TxC_Idle state.

Pdu_
Request
(fsdu)

tpdu:=
fsdu!pdus

(fsdu!fCur)

fsdu!eol
Test if fsdu
sequence number
and tx lifetime
have been set.

fsdu!sqf:=
seqnum,

seqnum:=
 if seqnum=4095
 then 0 else
 seqnum+1 fi,
fsdu!eol:=
 now + import
 (aMaxTransmit_
 MsduLifetime)

tpdu:=
setSeq(tpdu,

fsdu!sqf)

'txrate:=
selected tx
data rate'

See 9.6 for rules
about selecting
transmit data rate.

tpdu:=
setDurId(tpdu,
calcDur(txrate,

With FH PHY,
if next fragment
will be after a
dwell boundary,
Duration/ID
may be set to
one ACK time
plus SIFS time.

(aSifsTime + (calcDur(txrate,stuff
 (aMpduDurationFactor,sAckCtsLng))
 + aPlcpHeaderLength + aPreamble_
 Length) + if (fsdu!fTot = (fsdu!fCur+1))
then 0 else ((2*aSifsTime)+(calcDur
 (txrate,stuff(aMpduDurationFactor,
 sAckCtsLng)) + aPlcpHeaderLength
 + aPreambleLength) + stuff(aMpdu_
 DurationFactor,((length(fsdu!pdus
 (fsdu!fCur+1)) + sCrcLng)*8)) + aPlcp_
 HeaderLength + aPreambleLength))))

This assumes that the data
rate change (if any) is at the
end of the Plcp header. The
IR PHY, changes rate in the
middle of its Plcp header, so
the Duration/ID value may
be adjusted when using IR
PHY non-basic data rates.

tpdu:=set_
PwrMgt(tpdu,
import(mPsm))

((length
(tpdu) +

send_
mpdu

sCrcLng) > import(aRtsThreshold))
and (not fsdu!grpa) and ((fsdu!fCur=0)
or retry(tpdu) or (fsdu!resume))

rtsdu:=
mkctl(rts,

stuff(aMpduDurationFactor,
 ((length(tpdu)+sCrcLng)*8))
 + aPlcpHeaderLength
 + aPreambleLength +
 (3*aSifsTime) + (2*calcDur
 (txrate, stuff(aMpduDuration_
 Factor,sAckCtsLng)) + aPlcp_
 HeaderLength+aPreambleLength))

send_
rts

CfPoll
(endRx,)

rx_
poll

import
(mCfp)

These transitions are
only present at
Cf-pollable stations.

TxC_Cfp

TBTT

dcfcnt:= -1

import
(mIbss)

- dcfcw:=ccw,
ccw:=atimcw

AtimW

Atim_
Window

TxCfAck
(endRx,)

tpdu:=
mkFrame(

Cfack,

import(mBssId),
import(mBssId),
)

tx_
sifs

txc_
req

Entry when
station wakes
up to transmit.

Atw_Start

* BkDone
(dcfcnt)

send_
frag

next_
frag

fsdu!eol
< now

fsdu!fCur:=
 fsdu!fCur+1

send_
frag

PduConfirm
(fsdu,
txLife)

TxC_Idle

 (=0)

 (false) (true)

 else

 (false) (true)

 (false) (true)

392 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Tx_Coordination_sta sta_tx_dcf_3c(8)

send_
rts

Wait_Rts_
_Backoff*

not import
(mBkIP)

psmChg:=
if curPsm =

import(mPsm)
then false
else true fi

mFxIP:=true,
cTfrg:=

inc(cTfrg)

export
(mFxIP,
cTfrg)

TxRequest
(rtsdu,txrate)

Wait_Rts_
_Sent

TxConfirm

set(now+dUsec
(aSifsTime +

calcDur(txrate,

stuff(aMpduD_
urationFactor,
sAckCtsLng))+
aPlcpHeaderL_
ength+aPream_
bleLength+aSl_
otTime), Trsp)Wait_Cts

Trsp

cNcts:=
inc(cNcts)

export(cNcts) cts_
fail

*
Cts
(endRx,
txrate)

reset
(Trsp)

ssrc:=0,
fsdu!src:=0

rx_
cts

*

TBTT

PduConfirm
(fsdu,
partial)

Cancel

Atw_Start

send_
mpdu

Wait_Mpdu_
_Backoff *

TBTT not import
(mBkIP)

TxRequest
(tpdu,txrate)

fsdu!grpa

psmChg

PsmDone

mFxIP:=false,
psmChg:=false

export
(mFxIP)

ccw:=aCWmin

slrc:=0,
ssrc:=0,

fsdu!lrc:=0,
fsdu!src:=0

fsdu!fTot=
fsdu!fCur+1

PduConfirm
(fsdu,
success)

Backoff
(ccw,-1)

TxC_Backoff

next_
frag

Wait_Pdu_
_Sent

TxConfirm

set(now+dUsec
(aSifsTime +

calcDur(txrate,

stuff(aMpduD_
urationFactor,
sAckCtsLng))+
aPlcpHeaderL_
ength+aPream_
bleLength+aSl_
otTime), Trsp)Wait_Ack

*
Ack
(endRx,
txrate)

end_
fx

Trsp

cNack:=
inc(cNack)

export(cNack)

ack_
fail

*

rx_
cts

cCts:=
inc(cCts)

export(cCts)

set(endRx
+dSifsDelay,

Tifs)

tpdu:=
setDurId(tpdu,
calcDur(txrate,

(aSifsTime + (calcDur
 (txrate,stuff(aMpdu_
 DurationFactor,sAck_
 CtsLng))+aPlcpHeader_
 Length+aPreambleLength)
 + if (fsdu!fTot = (fsdu!
 fCur+1)) then 0 else
 ((2*aSifsTime)+(calcDur
 (txrate,stuff(aMpdu_
 DurationFactor,sAck_
 CtsLng)) + aPlcpHeader_
 Length + aPreambleLen_
 gth)+stuff(aMpduDuration_
 Factor,((length(fsdu!pdus
 (fsdu!fCur+1))+sCrcLng)
 *8)) + aPlcpHeaderLength
 + aPreambleLength))))

Wait_Cts_
_Sifs

Tifs

*

end_
fx

 (true)

 (true)

 (true)

 (false)

 (false)

 (false)

Copyright © 1997 IEEE. All rights reserved. 393

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Tx_Coordination_sta sta_retry_4c(8)

cts_
fail

mFxIP:=false

export
(mFxIP)

ccw:= if
ccw = aCWmax

then aCWmax
else (2*ccw)+1
fi

Backoff
(ccw,-1)

slrc:=
slrc+1,

fsdu!lrc:=
 fsdu!lrc+1

slrc =import(aLong_
 RetryLimit)

ccw:=
aCwMin

fsdu!lrc =import(aLong_
 RetryLimit)

PduConfirm
(fsdu,
retryLimit)

cFail:=
inc(cFail),
cont:= false

export(cFail)

TxC_Backoff

cont:= true
This shows the case where the
same pdu is retried after the
backoff. It is also allowable to
return this fsdu to PM_Filter with
status=partial, and to go to
TxC_Backoff state with cont=false.
This will allow a different pdu
(if available) to be sent as the
next transmission.

ack_
fail

mFxIP:=false

export
(mFxIP)

ccw:= if
ccw = aCWmax

then aCWmax
else (2*ccw)+1
fi

Backoff
(ccw,-1)

tpdu:=
setRetry
(tpdu,1),

fsdu!pdus
 (fsdu!fCur):=
setRetry
 (fsdu!pdus
 (fsdu!fCur),1)

((length
(tpdu) +

sCrcLng) >
import(aRts_
Threshold))

ssrc:=
ssrc+1,

fsdu!src:=
 fsdu!src+1

ssrc = import(aShort_
 RetryLimit)

ccw:=
aCwMin

fsdu!src = import(aShort_
 RetryLimit)

 (true)

 (true)

 (false)

 (false)

 (true)
 (false)

 (true)

 (true)

 (false)

 (false)

394 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Tx_Coordination_sta sta_tx_atim_5c(8)

Atim_
Window

Ack, CfPoll, Cts, Doze,
MmCancel, Tbtt, TxCfAck
and Wake ignored in this state.

not import
(mAtimW)

atimcw:=ccw,
ccw:=dcfcw

dcfcnt
Backoff
(ccw,
dcfcnt)

cont:= true

TxC_Backoff

 cont:= false

TxC_Idle

Pdu_
Request
(fsdu)

PM_Filter ensures that a
beacon frame will be the
first first sent after Tbtt.

ftype
(fsdu!pdus(1))

tpdu:=
mkFrame

(atim,

fsdu!dst,
aMac_
 Address,)

Backoff
(ccw,-1)

Ibss_Wait_
Atim

not import
(mAtimW)

atimcw:=ccw,
ccw:=dcfcw

TxC_Idle

Done
(bstat)

TxRequest
(tpdu,
mmrate)

fsdu!
grpa

atim_
ack

dRsp:=dUsec(
aSifsTime +

calcDur(

txrate, stuff
 (aMpduDuration_
 Factor, sAckCtsLng
 + aPlcpHdrLength)
 + aPreambleLength))

set
(now+dRsp,

Trsp)

Wait_Atim_
Ack

Ack(,)

ccw:=
aCWmin

atim_
ack

Trsp

ccw:= if
ccw = aCWmax

then aCWmax
else (2*ccw)+1
fi

ssrc:=
ssrc+1,

fsdu!src:=
 fsdu!src+1

ssrc =import(aShort_
 RetryLimit)

ccw:=
aCwMin

fsdu!src =import(aShort_
 RetryLimit)

atim_
fail

atim_
limit

n:= call
Random

(2*aCWmin)

Backoff
(n,-1)

Ibss_Wait_
_Beacon

* Done
(bstat)

TxRequest
(fsdu!pdus(1),
mmrate)

Wait_Beacon_
_Transmit

* TxConfirm

Atim_
_Window

MmCancel

Cancel

Wait_Beacon_
_Cancel

Done(n)

Atim_
_Window

*

atim_
fail

PduConfirm
(fsdu,
atimNak)

Atim_
_Window

atim_
ack

PduConfirm
(fsdu,
atimAck)

fsdu!fAnc:=
fsdu!fCur+1

atim_
limit

PduConfirm
(fsdu,
retryLimit)

(>=0)

 (<0)

 else

(true)

 (false)

 (true)

 (false) (true)

 (false)

 (beacon)

Copyright © 1997 IEEE. All rights reserved. 395

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Tx_Coordination_sta sta_backoff_6b(8)

TxC_Backoff

TBTT

import
(mIbss)

-

Cancel

dcfcw:=ccw,
ccw:=atimcw

AtimW

Atim_
Window

Done
(bstat)

cont
If cont=true,
continue with
same mpdu.

TxC_Idle

cont:= false

send_
frag

*

*

Doze

'turn off
stuff to

save power'

'PlmeSet._
request
(doze stuff)'

Asleep

Pdu_
Request
(fsdu)

The station
may wake up
to transmit,
see 11.2.1.1.

'turn on
stuff that
was off'

'PlmeSet._
request
(wake stuff)'

ChangeNav
(0,cswitch)

set(now+tUsec
(import(

mPdly),Tpdly)

Wake_Wait_
_ProbeDelay

Wait for Probe
Delay interval
before starting
transmission.

* Tpdly

txc_
req

Wake

Sync sends
Wake at Tbtt
before other
signals such
as TBTT
or beacon
frame.

'turn on
stuff that
was off'

'PlmeSet._
request
(wake stuff)'

ChangeNav
(0,cswitch)

TxC_Idle

SwChnl
(chan,
doBkoff)

ChangeNav
(0,cswitch)

'channel
change is

Phy-specific'

'PlmeSet._
request
(chan stuff)'

Wait_
_Channel

'PlmeSet.
confirm
(status stuff)'

SwDone

doBkoff

Backoff
(ccw,-1)

SwChnl_
_Backoff

Done
(bstat)

import
(mAtimW)

TxC_Idle Atim_
_Window *

*

 (false) (true) (false) (true)

 (true)

 (false) (true)

 (false)

396 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Tx_Coordination_sta sta_cf_respond_7a(8)

TxC_Cfp
Transitions on this
page are only present
if station is Cf-pollable.

CfPoll
(endRx,)

tpdu:=mkframe
(null_frame,

mBssId,mBssId)

set(now +
dSifsDelay,

Trsp)

CfPolled

Cf_
_Response *

TxCfAck
(,)

tpdu:=mkframe
(cfack,

mBssId,mBssId)

-

Pdu_
Request
(fsdu)

pack:=
ftype(tpdu)

tpdu:=
fdsu!pdus

(fsdu!fCur)

fsdu!eol

fsdu!sqf:=
seqnum,

seqnum:=
 seqnum+1,
fsdu!eol:=
 now + import
 (aMaxTransmit_
 MsduLifetime)tpdu:=

setSeq(tpdu,
fsdu!sqf)

tpdu:=
setFtype
(tpdu,

Change data to
data+cfAck if
appropriate.

ftype(tpdu)
or pack)

'txrate:=
selected tx
data rate'

See 9.6 for rules
about selecting
transmit data rate.

Wait_Cfp_
Sifs

Trsp

TxRequest
(tpdu,
txrate)

cTfrg:=
inc(cTfrg),

cTmcfrg:=
if fsdu!grpa
then inc(cTmcfrg)
else cTmcfrg fi

export
(cTfrg,

cTmcfrg)

Wait_Cfp_
TxDone

TxConfirm

set(now+
aSifsTime,

Trsp)

Wait_CfAck

*

not import
(mCfp)

TxC_Idle

CfEnd TxCfAck
(endRx)

rtype:=
cfAck

tpdu:=
mkFrame(

rtype,
import(mBssId),
import(mBssId),)

tx_
sifs

*

rx_
poll

Wait_Cfp_
Sifs

Trsp * TxCfAck
(,)

tpdu:=
setFtype

(tpdu,data_ack)

-

 (=0) else

Copyright © 1997 IEEE. All rights reserved. 397

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Tx_Coordination_sta sta_cf_retry_8a(8)

Wait_CfAck

Ack
(endRx,)

TxC_Cfp

Trsp

cNack:=
inc(cNack),

export
(cNack)

tpdu:=
setRetry
(tpdu,1),

fsdu!pdus
 (fsdu!fCur):=
setRetry
 (fsdu!pdus
 (fsdu!fCur),1)

fsdu!src:=
fsdu!src+1

fsdu!src = import(aLong_
 RetryLimit))

PduConfirm
(fsdu,
retryLimit)

cFail:=
inc(cFail)

export(cFail)

TxC_Cfp

PduConfirm
(fsdu,
partial)

This returns the fsdu
to the queue. At the
next cf-poll, either
the same fsdu or a
different fsdu may
be selected for
transmission.cRtry:=

inc(cRtry)

export(cRtry)

*

 (true)
 (false)

398 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Block Reception receive_1a(1)

/* This block handles octet-level
 reception of MPDUs from the
 PHY, and validation, filtering,
 and decryption needed so higher
 blocks have uniform, error-free
 information from the relevant rx
 events. This block also maintains
 the MAC's view of channel state,
 including the NAV (and remote
 variable mNavEnd), rx activity
 (and the remote variable mRxA),
 and slot timing (providing the
 Busy, Idle and Slot signals to
 the Transmission block). */

signal ClearNav(NavSrc),
 RtsTimeout,
 RxMpdu(Frame,Time,Time,
 Rate,Boolean,
 KeyVector,KeyMapArray),
 SetNav(Time,
 Duration,NavSrc),
 UseDifs(Time),
 UseEifs(Time) ;

Includes decryption if
aPrivacyOptionImplemented
=true. This is a typical
location, but implementors
may use other locations
between the PHY_SAP_RX
and MAC_SAP as long as
they provide the specified
behavior as observed at
LLC, MLME and the WM.

Defragment
(1,1)

/* also decrypt */

Filter_MPDU
(1,1)

Channel_State
(1,1)

Validate_MPDU
(1,1)

RX

FromCtl

ChangeNav

PS

FromSync

ChangeNav

ToRx

RxIndicate

Defrag

RxMpdu

IndAck

NeedAck,
RxCfAck,
RxCfPoll

ToPs

PsIndicate

CS ToTx

Busy, Idle, Slot

UpdNav

SetNav,
ClearNav

PhyCca

PhyCcarst.request

PhyCca.indication,
PhyCcarst.confirm

Filter

RxMpdu

IfsCtl

RtsTimeout,
UseDifs,
UseEifs

FromPHY

PhyRxStart.indication,
PhyRxEnd.indication,
PhyData.indication

PHY_SAP_RX

Copyright © 1997 IEEE. All rights reserved. 399

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Channel_State nav_clear_1b(2)

timer Tifs ;
timer Tnav ;
timer Tslot ;

dcl cs CcaStatus ;
dcl rxtx, slot, sifs Integer ;
dcl dDifs, dEifs, dIfs, dNav,
 dRxTx, dSifs, dSlot Duration ;
dcl tNew, tRef, tRxEnd Time ;
dcl newSrc, curSrc NavSrc ;dcl exported

 tNavEnd as
 mNavEnd Time ;

/* This process
 maintains channel
 state based on
 both physical and
 virtual carrier
 sense, generates
 slot time reference,
 and provides Busy,
 Idle & Slot signals
 to Transmission. */

*

ResetMAC

dIfs:=
dEifs

cs:= busy,
tNavEnd:=0

Assume channel
busy until Phy
indicates idle.
tNavEnd is =0
until first rx
that sets Nav.

reset(Tnav)

PhyCcarst._
request

PhyCcareset._
confirm is
ignored.

export
(tNavEnd)

curSrc:=
nosrc

Busy

Cs_noNav

dSifs:=
dUsec

(aSifsTime),

dRxTx:=dUsec
(aRxTxTurn_
aroundTime)

dSlot:=
dUsec

(aSlotTime),
dDifs:=dSifs +
(2 * dSlot)

dEifs:=
dUsec

(aSifsTime +

Eifs based
on the lowest
basic rate.

calcDur(first(
 import(mBrates)),
 stuff(aMpdu_
 DurationFactor,
 sAckCtsLng) +
 aPlcpHdrLength
 + aPreamble_
 Length) + dDifs)

Wait_IFS
/* IDLE */

ClearNav, RtsTimeout,
Tnav, Tslot ignored
in Wait_IFS state.

not
active(Tifs)

Idle
Idle signal is
sent at end of
the M2 interval
(Figure 47).

set
(now+dSlot,

Tslot)

noCs_noNav
/* IDLE */

RtsTimeout,
Tnav, ClearNav,
Tifs ignored
in this state.

PhyCca._
indication
(cs)

cs

-

SetNav
(tRef,dNav,
curSrc)

tNavEnd:=
tRef+dNav

set
(tNavEnd,

Tnav)

Busy

export
(tNavEnd) noCs_Nav

Tslot

Slot

Slot signal is
generated at
the end of each
M2 interval
(Fig. 47) while
channel is idle.

set
(now+dSlot,

Tslot)

-

Tifs
PhyCca._
indication
(cs)

cs

- Cs_noNav
/* BUSY */

ClearNav, Tnav, Tifs,
RtsTimeout, Tslot
ignored in this state.

PhyCca._
indication
(cs)

cs

set
(now+dIfs,

Tifs)

Wait_IFS

-

SetNav
(tRef,dNav,
curSrc)

tNavEnd:=
tRef+dNav

set
(tNavEnd,

Tnav)

export
(tNavEnd)

Cs_Nav

SetNav
(tRef,dNav,
curSrc)

 (busy) (idle)

 (idle) (busy)

 (idle)

 (busy)

400 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Channel_State nav_set_2b(2)

noCs_Nav
/* BUSY */

Tslot and Tifs
ignored in
noCs_Nav state.

PhyCca._
indication
(cs)

cs

Cs_Nav -

Tnav

PhyCcarst._
request

curSrc:=
nosrc

set
(now+dIfs,

Tifs)

Wait_IFS

Cs_Nav
/* BUSY */

Tslot and Tifs
ignored in
Cs_Nav state.

PhyCca._
indication
(cs)

cs

- noCs_Nav

Tnav

PhyCcarst._
request

curSrc:=
nosrc

set
(now+dIfs,

Tifs)

Cs_noNav

*
/* all states */

UseEifs
(tRxEnd)

dIfs:=
dEifs-dRxTx

The initial dIfs
value is dEifs,
set by a UseEifs
signal generated
by Validate_Mpdu
at startup and
due to ResetMAC.

set
(tRxEnd+dIfs,

Tifs)

-

UseDifs
(tRxEnd)

dIfs:=
dDifs-dRxTx

ChangeNav
(tRef,dNav,
newSrc)

newSrc=
cswitch

ChangeNav is
SetNav if not
channel switch.

tNew:=
tRef+dNav

tNew>
tNavEnd

tNavEnd:=
tNew,

curSrc:=newSrc

set(tNavEnd,
Tnav)

export
(tNavEnd) -

-

dIfs:=
dEifs-dRxTx

Clear NAV and
use EIFS after
channel change.

set(now,Tnav)

tNavEnd:=0,
curSrc:=nosrc

tNavEnd is =0
until first rx
on new channel.

noCs_Nav,
Cs_Nav

/* all NAV */

SetNav
(tRef,dNav,
newSrc)

Rts_
Timeout

Clearing NAV on
RTS timeout is
optional (9.2.5.4).

curSrc=
rts

tNavEnd:=
now,

curSrc:=nosrc

Nav is cleared by setting Tnav
to now. This causes immediate
Tnav signal to enable exit from
noCs_Nav or Cs_Nav state.

ClearNav
(newSrc)

 (busy) (idle) (busy) (idle)

(false)

 (true)

(false)

 (true) (false) (true)

Copyright © 1997 IEEE. All rights reserved. 401

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Defragment wep_filter_1a(3)

dcl exported cIerr as aWepIcvErrorCount,
 cUndc as aWepUndecryptableCount,
 cExcl as aWepExcludedCount Counter32:= 0 ;

imported mCfp Boolean ;
imported aMaxReceiveLifetime TU ;
imported procedure RC4 ; fpar PrngKey, Integer ;
 returns Octetstring ;

dcl buf DefragArray ;
dcl dLife Duration ;
dcl endRx, startTs Time ;
dcl icvOk Boolean ;
dcl k DefragIndex ;
dcl keys DefragKeysArray ;
dcl pri CfPriority ;
dcl pdu, sdu Frame ;
dcl wExcl Boolean ;
dcl wDefault KeyVector ;
dcl wMap KeyMapArray ;

dLife:=
dTU(
import

(aMax_
Receive_
Lifetime))

export(
cIerr, cUndc,

cExcl)

buf:=
ArAge(buf,

now+dLife+1)

Defragmentation
buffers forced
empty using the
aging function.

Defrag_
Inactive

not import
(mDisable)

mDisable=false
when started
or joined Bss.

Defrag_
Idle

import
(mDisable)

RxMpdu
(pdu,
endRx,

startTs,rxRate,
wExcl,wDefault,
wMap)

basetype
(pdu)

wepBit
(pdu)

rx_
ind

(ftype
(pdu)=

cUndc:=
inc(cUndc)

export(cUndc)

-

auth) and
authSeqNum
(pdu)=3) and
import(
aPrivacy_
Option_
Implemented) de_

crypt

wepBit
(pdu)

wExcl

cExcl:=
inc(cExcl)

export(cExcl)

-

de_
frag

import(
aPrivacy_
Option_
Implemented)

de_
crypt

RxMpdu
(pdu,
endRx,

startTs,rxRate,
wExcl,wDefault,
wMap)

ftype
(pdu)

When not in Bss
only pass beacon
and probe_rsp.

RxIndicate
(pdu,endRx,
startTs,rxRate

-

Decrypt

 (management)

 (=0)
 (=1)

(false)

 (true)

 else

 (=0)

 (true) (false)

 (=1)

 (false)
(true)

 (control)

 (beacon, probe_rsp) else

402 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Defragment wep_decrypt_2a(3)

de_
crypt

Decrypt
(pdu,

icvOk,

wMap, sKey_
MappingLength,
wDefault)

icvOk
Icv errors and
certain undecryptable
errors counted in
Decrypt procedure.

de_
frag

ftype
(pdu)

RxIndicate
(pdu,endRx,
startTs,rxRate

Authentication
challenge resposnes
with Icv errors
are reported, but
Decrypt removes
payload so Auth
service is able
to distinguish
a bad key from
a non-response.

-
Do not report
receipt of
data frames
with Icv errors.

 (true) (false)

 (auth) else

Copyright © 1997 IEEE. All rights reserved. 403

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Defragment defragment_3b(3)

rx_
ind

RxIndicate
(pdu,endRx,
startTs,rxRate)

Mpdu is not
fragmented or
defragmentation
is complete.

buf:=
ArAge

(buf,now)

-

de_
frag

(moreFrag
(pdu)=0)

and
(fragNum
(pdu)=0))

fragNum
(pdu)=0

k:=
arFree(buf)

Initial Mpdu
of fragmented
Msdu. Find free
buffer to begin
Msdu reception.

k > 0

buf:=
arAge

(buf,now),
k:=
arFree(buf)

k > 0

buf(k)!inUse:=
true,

buf(k)!rta:=

addr2(pdu),
buf(k)!rsn:=
 seqNum(pdu)

buf(k)!rCur:=
fragNum(pdu),
buf(k)!reol:=

now + tTU
(import(
aMaxReceive_
Lifetime))

buf(k)!
rsdu:=pdu,

keys(k)!
 wDefKeys:=
 wDefault,
keys(k)!
 wKeyMap:=
 wMap,
keys(k)!
 wExclude:=
 wExcl

age

-

k:=
arSearch

(buf,

Intermediate or
final Mpdu of
fragmented Msdu.

addr2(pdu),
seqNum(pdu),
fragNum(pdu))

k > 0

age

(length
(pdu) +

length
(buf(k)!rsdu) -
sMacHdrLng)
<= sMaxMsduLng

buf(k)!inUse:=
false

age

buf(k)!rCur:=
fragNum(pdu),

buf(k)!rsdu:=
buf(k)!rsdu //
substr(pdu,
sMacHdrLng,
length(pdu)-
sMacHdrLng)

moreFrag
(pdu)=0

rpdu:=
buf(k)!rsdu,

Final fragment
if moreFrag=0,
indicate Msdu.

buf(k)!inUse:=
false

rx_
ind

age
(true)

 (false)

 (true)

 (false)

(true)
 (false)

 (true)

 (false)

 (false) (true)

 (false) (true)

(false)
 (true)

404 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

; fpar
 in/out pdu Frame,
 in/out icvOk Boolean,
 in map KeyMapArray,
 in maplength
 KeyMapArrayLength,
 in kvec KeyVector ;

Procedure Decrypt decrypt_1a(1)

dcl icv Crc ;
dcl isWds Boolean ;
dcl decryptLng, k, n Integer ;
dcl decryptStr Octetstring ;
dcl key PrngKey ;
dcl kmap KeyMap ;

isWds:=
toDs(pdu) and

frDs(pdu)

Test whether addr4
field is present.
Only needed at AP.

decryptLng:=
length(pdu) -

sMacHdrLng -

sWepAddLng +
sCrcLng - if isWds
then sWdsAddLng else 0 fi

isGroup(
addr1(pdu))

kmap:=
keyLookup

(addr2(pdu),
map,
maplength)

kmap!mappedAddr
=nullAddr

key:=
kmap!

wepKey,

key =
nullKey

or
kmap!wepOn
 = false

key:= key //
PrngKey!
Iv(pdu)

Concatenate
key with IV
from frame.

encryptStr:=
call RC4

(key,
decryptLng)

Use RC4 PRNG
to generate an
decrypt string
as long as the
MPDU payload
plus the ICV
field.

de_
cipher

basetype
(pdu)

cUndc:=
inc(cUndc)

export(cUndc)

pdu:=
substr(pdu,0,
sMacHdrLng)

If calculated
ICV not valid,
discard frame
body, and
report error.

icvOk:= false

cIerr:=
inc(cIerr)

export(cIerr)

key:= kvec
(keyId(pdu))

Use default key
selected by
keyId value.

de_
cipher

icv:=
initCrc

k:= 0,
n:=

sWepHdrLng +

if isWds then
sWdsAddLng
else 0 fi

pdu(n):=
pdu(n) xor

decryptStr(k)

Decrypt by xor
of payload with
decrypt string.

icv:= crc32
(icv, pdu(n))

ICV test value
calculated from
decrypted data.

k:= k+1,
n:= n+1

k =
decryptLng

icv =
goodCrc

pdu:=
substr(pdu,0,
sMacHdrLng)

// substr(pdu,
sWepHdrLng,
decryptLng -
sCrclng)

Remove ICV
and IV fields
from MPDU,
report decrypt
success if ICV
result correct
or selected
key value null.

icvOk:= true

 (false)

 (true)

 (false)
 (true)

 (data)
 (management)

 (false)

 (true)

(false)

 (true)

 (false) (true)

Copyright © 1997 IEEE. All rights reserved. 405

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Filter_MPDU pre_filter_1a(4)

dcl exported cDup as aFrameDuplicateCount,
 cMc as aMulticastReceivedFrameCount,
 cRx as aReceivedFrameCount Counter32:= 0 ;

imported mBrates Ratestring,
 mBssid MacAddr,
 mCfp Boolean,
 aGroupAddresses MacAddrSet,
 mIbss Boolean,
 mSsid Octetstring,
 aStationId MacAddr ;

dcl cache TupleCache ;
dcl dup, myBss Boolean ;
dcl dNav, dPsp, dAck Duration ;
dcl endRx, strTs Time ;
dcl pdu Frame ;
dcl rxRate Rate ;
dcl src NavSrc ;
dcl wDefault KeyVector ;
dcl wExclude Boolean ;
dcl wKeyMap KeyMapArray ;

/* This process filters valid received
 frames by destination address, and
 BssId for group destination addresses.
 This process also maintains received
 pdu counters and the tuple cache for
 detecting duplicated unicast frames.

 Data and management frames which
 need acknowledgement cause a
 NeedAck signal to Protocol_Control
 as well as an RxMpdu to Defragment.
 Piggybacked CfAcks cause RxCfack
 signals, and CfPolls cause RxCfpoll
 signals to Protocol_Control. If an
 RxCfPoll is sent for a Data+CfPoll
 or Data+CfPoll+CfAck, the NeedAck
 has to reach TxCoord during the Sifs.
 (The data frame report cannot serve
 this purpose because the payload may
 be a non-final fragment.)

 Duration and Cfp duration remaining
 are reported to Channel_State, and
 power save mode is reported to Mlme. */

dPsp:=dUsec(
aSifsTime +

calcDur(

Duration of
PS-Poll and
Ack response.

first(import(mBrates)),
 stuff(aMpduDuration_
 Factor, sAckCtsLng
 + aPlcpHdrLength)
 + aPreambleLength))

cache:=
clearTuple_

Cache(cache)

Initialize tuple cache
for duplicate filtering.
Cache capacity is set
by "tupleCacheSize"
but a specific size
is not specified.

Filter_Idle

ResetMac
RxMpdu
(pdu,
endRx,

startTs,rxRate,
wExclude,wDefault,
wKeyMap)

dAck:=
if (moreData
(pdu) = 1) or

(durID(pdu) > 32767)
then dUsec(durId(pdu))
else 0 fi

PsIndicate
(addr2(pdu),
pwrmgt(pdu))

Gather Power
management
info from all
valid frames.

dNav:=dUsec
(durId(pdu)),

src:= misc

import(mActing_
AsAp)

ap_
addr

AP, check
all frames, 2
pages ahead.

toDs(pdu)

durId(pdu)

SetNav
(endRx,
dNav, src)

Filter_Idle
Frames with toDs=1
ignored by non-APs,
except Duration/Id
field for Nav update.

sta_
addr

Non-AP,
toDS=0 to
accept frame,
next page.

 (true)
 (false)

 (=1)

 (1:32767) else

 (=0)

406 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Filter_MPDU filter_sta_2a(4)

sta_
addr

sCfPollable

ftype(pdu)

RxCfAck
(addr2(pdu))

Unsolicited
RxCfAck signals
are ignored.

isGroup
(addr1(pdu))

If addr1 (RA) is
group address,
check the BssId.

import
(mBssId)

= (if frDs(pdu)=1
then addr2(pdu)
else addr3(pdu) fi)

other_
bss

Check for
beacon from
another BSS.

addr1(pdu)
in (

BcAddr or
import(aGro_
upAddresses)

multi_
cast

Rx broadcast
or multicast,
2 pages ahead.

Filter_Idle
Ignore frames
addressed to
other groups
in this BSS.

addr1(pdu)
=

import
(aMac_
Address)

src:= if rts=
ftype(pdu) then
rts else src fi

durId(pdu)

dNav:=
dPsp

Update Nav
for PS-Poll
Ack Dur/Id
field is AID.

SetNav
(endRx,
dNav, src)

Update Nav using
Duration/ID value
from frames to all
other stations.
Else case is for
DurId=32768
in the CF period. Filter_Idle

addr3
(pdu) =

import
(mBssId)

Ensure that
Cfpoll comes
from own Bss.

sCfPollable

ftype(pdu)

RxCfPoll
(endRx,
rxRate)

Only report
cfpoll from
unicast to sta.

uni_
cast

Rx directed
frame to sta,
2 pages ahead.

other_
bss

ftype
(pdu)

import
(mIbss)

Report probe
requests only
when in Ibss.

Filter_Idle multi_
cast

import
(mIbss)

and ssid(pdu) =
 import(mSsid)
and capB(pdu)=cIbss

RxIndicate
(pdu,
endRx,

startTs,
rxRate,
wExclude,
wDefault,
wKeyMap)

Report Ibss beacon
with own SsId but
other BssId, for use
based on TSF age.

Filter_Idle

cfDur_
Rem(pdu)

dNav:=
dUsec(cfDur_

Rem(pdu))

SetNav
(endRx,dNav,
cfpOther)

Filter_Idle

ClearNav
(cfend_
Other)

 (true)

 (cfack,
 data_ack,
 cfpoll_ack,
 data_poll_ack,
 cfend_ack)

 (true)

 (false) (true)

 (true) (false)

 (false)

 (false)

 (49153:
 51159)

 (1:
 32767)

 else

 (true)

 (true)

 (true)

 (cfpoll,
 cfpoll_ack,
 data_poll_
 _ack)

 else

 (false)

 (false)

 else

 (false)

 (probe_req)
 (false) (true)

 (beacon)

 (true) (false)

 (>0) else

 (cfend,
 cfend_ack)

 else

Copyright © 1997 IEEE. All rights reserved. 407

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Filter_MPDU filter_ap_3a(4)

ap_
addr

isGroup
(addr1(pdu))

All frames to
AP are directed
except probe_req.

addr1(pdu)
=

import
(aMacAddress)

import
(mCfp)

ftype(pdu)

RxCfAck
(addr2(pdu))

Unsolicited
RxCfAck signals
should not occur.

uni_
cast

Rx directed
frame to AP,
next page.

src:= if rts=
ftype(pdu) then
rts else src fi

durId(pdu)

dNav:=
dPsp

Nav to cover
PS-Poll Ack
when DurID
field is SID.

SetNav
(endRx,
dNav, src)Update Nav

using value
in Duration/ID
field of frames
directed to all
other stations.
Else case is for
DurId=32768
in the CF period.

Filter_Idle

ftype
(pdu)

multi-
cast

Receive probe
request at AP
the same as at
Ibss station.

cfDur_
Rem(pdu)

dNav:=
dUsec(cfDur_

Rem(pdu))

SetNav
(endRx,dNav,
cfpOther)

Filter_Idle

ClearNav
(cfend_
Other)

 (false)

 (true)

 (true)

 (data_ack,
 cfend_ack,
 cfack)

 else

 (false)

 (false)

 (49153:
 51159)

 (1:
 32767)

 else

 (true)

 (probe_req) (beacon)

 (>0) else

 (cfend,
 cfend_ack)

 else

408 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Filter_MPDU report_rx_4a(4)

uni_
cast

Report incoming
directed frames,
including all
received frames
accepted at AP.

cRx:= inc(cRx)
Count all valid
directed frames
to this sta, even
those that will
be discarded
as duplicates
or due to WEP. export(cRx)

retryBit
(pdu)

dup:=
searchTupleCache
(cache, addr2(pdu),
seq(pdu), frag(pdu))

dup

cDup:=
inc(cDup)

export(cDup)

basetype
(pdu)

Ps-Poll is on
else path (as
control frame)
to allow ack
or data as the
response from
protocol ctl. NeedAck

(addr2(pdu),
endRx,dAck)

Directed Atim frames must
be acknowledged, but may be
omitted from cache, see 9.2.9.

cache:=
New cache entry
if (addr2,seq)
is not cached.
If entry exists
for (addr2,seq),
update time
and fragment
number of entry.

updateTupleCache
(cache, addr2(pdu),
seq(pdu),frag(pdu),
endRx)

Filter_Idle

RxMpdu
(pdu,
endRx,

startTs,
rxRate,
wExclude,
wDefault,
wKeyMap)

multi_
cast

Report incoming
group-addressed
frames at station.

cRx:= inc(cRx),
cMc:= inc(cMc)

Count all valid
broadcast and
multicast frames
to this sta, even
those that will
be discarded
due to WEP.export

(cRx, cMc)

ftype(pdu)

cfDurRem
(pdu)

dNav:=
dUsec(cfDur_

Rem(pdu))

SetNav
(endRx,dNav,
cfpBss)

RxMpdu
(pdu,
endRx,

startTs,
rxRate,
wExclude,
wDefault,
wKeyMap)

Filter_Idle

ClearNav
(cfendBss)

 (=1)

 (true)

 (data, management) else

 (false)

 (=0) (beacon)

 (>0)

 (cfend,
 cfend_ack) else

Copyright © 1997 IEEE. All rights reserved. 409

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Validate_MPDU start_rx_1a(2)

/* This process receives an MPDU from the
 PHY while calculating and checking the
 FCS value. Frames with valid FCS, length
 and protocol version are sent for receive
 filtering, along with a snapshot of the WEP
 keys if aPrivacyOptionImplemented=true.

 This process also provides Channel_State
 with Difs/Eifs and Rts timeout signals,
 and maintains the mRxA remote variable. */

dcl exported mRxA Boolean:=false,
 cErr as aFcsErrorCount Counter32:= 0 ;
imported mBrates Ratestring,
 aWepDefaultKeys KeyVector,
 aWepKeyMappings KeyMapArray,
 aExcludeUnencrypted Boolean ;
timer Trts ;

dcl fcs Crc ;
dcl D1, dRts Duration ;
dcl endRx, startTs Time ;
dcl k, rxLength Integer ;
dcl pdu Frame ;
dcl rxRate Rate ;
dcl status PhyRxStat ;
dcl v Octet ;
dcl wDefault KeyVector ;
dcl wKeyMap KeyMapArray ;
dcl wExclude Boolean ;

D1:= dUsec
(aRxRfDelay+
aRxPlcpDelay)

Calculate PHY
Rx delay that
is subtracted
from now to
get reference
point times.

cErr:=0,
mRxA:=false

export
(cErr,mRxA)

Rx_Idle

Trts

Indicate Rts
non-response
timeout.

RtsTimeout

-

PhyRxStart._
indication

(rxLength,
rxRate)

reset(Trts)

mRxA:=true
Indicate that
a reception
is in progress.

export(mRxA)

k:= 0,
fcs:= initCrc,

pdu:= null

Initialize CRC &
clear pdu buffer
(length(pdu)=0).

aPrivacy_ Option_
Implemented

Rx_Frame save_
keys

*
(Rx_Idle)

ResetMAC

reset(Trts)

save_
keys

wDefault:=
import(aWep_
DefaultKeys)

Save copy of
WEP keys at
RxStart in case
Mpdu is first
fragment of
encrypted
Msdu/Mmpdu.wKeyMap:=

import(aWep_
KeyMappings)

wExclude:=
import

(aExclude_
Unencrypted)

Rx_Frame

 (false) (true)

410 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Validate_MPDU validate_rx_2b(2)

Rx_Frame

PhyRxData._
indication(v)

pdu:=
pdu //

mkstring(v),

Accumulate
octet into Mpdu
and CRC check.

fcs:=
crc32(fcs, v)

k =
sTsOctet

startTs:=
now-D1

Save arrival time
of first octet of
{what may be a}
timestamp field.

k:= k+1

k =
sMaxMpdu_

Lng

- Rx_Error

PhyRxEnd._
indication
(status)

PhyData.indicate
ignored to drop
excess octets.

endRx:=
now-D1

Save time of Rx
end as reference
for start of IFS.

UseEifs
(endRx)

Eifs based
on the lowest
basic rate.
Assumed to
be the first
element of
mBrates.

mRxA:=false

export(mRxA)
Indicate that
reception is
not in progress.

Rx_Idle

PhyRxEnd._
indication
(status)

endRx:=
now-D1

Save time of Rx
end as reference
for start of IFS.

status

k =
rxLength

protocol_
Ver(pdu)

fcs =
goodCrc

ftype(pdu)

dRts:=dUsec(
(2*aSifsTime)+
(2*aSlotTime)+

calcDur(rxRate,
 stuff(aMpdu_
 DurationFactor,
 sAckCtsLng) +
 aPlcpHdrLength +
 aPreambleLength))

Rts timeout
based on
rate of Rts.

set
(now+dRts,

Trts)

pdu:= substr
(pdu, 0,

(rxLength -
 sCrcLng))

Drop FCS field from
frame before passing
up for filtering.

UseDifs
(endRx)

aPrivacy_
Option_
Implemented and
wepBit(pdu)

RxMpdu
(pdu,
endRx,

startTs,
rxRate,
 , ,)

RxMpdu
(pdu,
endRx,

startTs,rxRate,
wExclude,wDefault,
wKeyMap)

cErr:=
inc(cErr)

export(cErr)

 (true)

 (false) (true)

 (false) (no_error)

 (true)

 (=sVersion)

(true)

 (rts)

 (false) (true)

 else

 (false)

else

(false)

else

Copyright © 1997 IEEE. All rights reserved. 411

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Block Transmission transmit_1a(1)

/* This block does octet-
 level transfers of MPDUs
 from the MAC to the PHY
 transmitter, generating
 FCS fields and inserting
 timestamp values where
 necessary. Process Data_
 Pump begins transmitting
 when TxRequest arrives.
 The sender of TxRequest
 is assumed to have done
 the appropriate actions
 prior to transimtting onto
 the WM. If these actions
 include performing random
 backoff or invoking the
 "backoff procedure" (see
 9.2.5.2), a Backoff signal
 is sent to process Backoff.
 At the completion of each
 backoff, a BkDone signal
 is returned to the sender
 of the Backoff signal at
 the correct time to send
 a TxRequest. The medium
 state updates (busy, idle,
 slot) from Channel_State
 are forwarded to Backoff_
 Procedure via Data_Pump
 to prevent decrementing
 the backoff count while
 transmitting Cts or Ack
 frames. This block is used
 in both station and AP. */

Data_Pump
(1,1)

Backoff_Procedure
(1,1)

TX

Txrq

TxRequest

TxConfirm

FwdCs

Busy,
Idle,
Slot

Bkof

BkDone

Backoff,
Cancel

ToPHY

PhyTxStart.request,
PhyTxEnd.request,
PhyData.request

PhyTxStart.confirm,
PhyTxEnd.confirm,
PhyData.confirm

PHY_SAP_TX

 CS
FromCs

Busy, Idle, Slot

412 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Backoff_Procedure backoff_1a(1)

/* RANDOM NUMBER FUNCTION */
imported procedure Random ;
 fpar limit Integer ; returns Integer ;
/* This function returns an integer
 from a uniform distribution over
 the range (0 <= value <= limit).
 Implementors need to be aware
 that proper operation of the MAC
 protocol requires statistically
 independent (pseudo-)random
 sequences to be generated by
 each station in a service area. */

/* This process performs the
Backoff Procedure (see 9.2.5.2),
returning Done(-1) when Tx may
begin, or Done(n>=0) if cancelled.
Backoff(cw,-1) starts new random
backoff. Backoff(x,n>=0) resumes
cancelled backoff. Backoff(0,0)
sends Done(-1) when WM idle. */

dcl slotCnt,
 cw, cnt
 Integer ;
dcl source PId;
dcl exported
 mBkIP
 Boolean:=
 false ; /* Input Signal Summary

BUSY is sent by Channel_State
 when the WM changes from idle
 to busy due to CCA and/or NAV,
 and by Data_Pump at TxStart.
CANCEL is sent by TxCoordination
 to terminate a backoff and return
 the residual backoff count value.
IDLE is sent by Channel_State at the
 end of the M2 interval (see 9.2.10)
 that busy WM has been idle (CCA &
 NAV) for DIFS (EIFS after Rx error).
SLOT is sent by Channel_State at the
 end of each M2 interval (see 9.2.10)
 while the WM is idle.
Busy, Idle and Slot are forwarded
from Channel_State via Data_Pump
when transmit is not in progress. */

No_Backoff

Backoff
(cw, cnt)

cw is contention
window, cnt is
slot count from
previous Done.
If cnt<0, a new
random count
is generated.

source:=
sender,

mBkIP:=true

Save PId from
request to use
as addr of Done.

export
(mBkIP)

cnt

slotCnt:= call
Random(cw)

Choose random
backoff count
if cnt = -1.

Channel_Busy
At start assume that the WM
is busy until receiving a signal
which indicates the WM is idle.

Idle
Transitions to
Channel_Idle
also align the
Backoff signal
arrival time to
slot boundary
(M2) timing.

Channel_Idle

Idle

Idle signal
not sent if
WM free. This
consumes any
Idles still on
input queue.

-

Slot

slotCnt:=
slotCnt - 1

Decrement count
for each slot
when WM idle.

-

Busy

Channel_Busy

Go back and
wait for WM
to become idle.

slotCnt = 0

Finish at M2
of proper slot,
even if slotCnt
=0 at entry
to state.

BkDone
(-1)
to source

Done sent with
value -1 when
backoff counts
down to zero.

Done

Cancel

Cancel has priority over other
transitions. Done(0) returned if
Cancel arrives at instant slotCnt:=0.

BkDone
(slotCnt)
to source

Done

Slot

Slot only sent
when WM idle.
This is for the
case where WM
idle at arrival of
Backoff signal.

Busy

-

Cancel

slotCnt:= cnt
Resume with count
from cancelled
backoff if cnt>=0.

mBkIP:=
false

export
(mBkIP)

No_Backoff

Done

*

ResetMAC

 (<0) (>=0)

Copyright © 1997 IEEE. All rights reserved. 413

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Data_Pump transmit_1a(1)

dcl fcs Crc ;
dcl dTx
 Duration ;
dcl k, txLength
 Integer ;
dcl pdu Frame ;
dcl rate Octet ;
dcl source PId ;

imported
 procedure Tsf ;
 fpar Integer,
 Boolean;
 returns Integer ;

/* This process sends an
 Mpdu to the Phy while
 generating & appending
 the Fcs. On beacons and
 probe responses inserts
 (TSF + Phy TxDelay) in
 the timestamp field at
 confirm of octet 23.

 To transmit after Sifs,
 send TxRequest at end
 of the M1 interval (see
 9.2.10). For Pifs, Difs,
 or any backoff slot,
 TxRequest is sent at the
 end of the appropriate
 M2 interval. */

send1

PhyData._
request
(pdu(k))

fcs:= crc32
(fcs,pdu(k))

k:= k+1

k =
txLength

k:= 0,
fcs:= mirror
(not(fcs))

Send_CRC
Send the 1's
complement
of calculated
FCS value,
MSb to LSb.

PhyData._
confirm

k =
sCrcLng

PhyData._
request
(fcs(k))

k:= k+1

Send_CRC

PhyTxEnd._
request

Wait_TxEnd

PhyTxEnd._
confirm

TxConfirm
to source

TxConfirm goes
to process that
sent TxRequest.

Tx_Idle

ftype(pdu)

Send_Frame

k =
sTsOctet

Insert_
Timestamp

Start of time
stamp in beacon
and probe_rsp.

PhyData._
confirm

pdu:=setTs
(pdu,call Tsf

(0,false)+dTx)

At confirm
of octet 23,
insert TSF +
Phy Tx delay
into [24:31]
of beacon or
probe rsp. send1

Send_Frame

PhyData._
confirm

*
(Tx_Idle)

ResetMAC
No TxConfirm
if Tx halted
by ResetMAC.

PhyTxEnd._
request

Do not wait
for TxEnd._
confirm.

Tx_Idle
Pass Busy, Idle and Slot signals
to Backoff_Procedure while Tx is
idle, but not during transmissions.

TxRequest
(pdu, rate)

source:=
sender

k:= 0,
fcs:= initCrc

txLength:=
Length(pdu)

Plcp length is
Mpdu length
+ Fcs length

Busy
Indicate medium
busy to freeze
backoff count
during transmit.

PhyTxStart._
request

(txLength+
sCrcLng,
rate)

Wait_TxStart

PhyTxStart._
confirm

send1

Busy

Busy

-

Idle

Idle

Slot

Slot

dTx:= dUsec
(aTxRfDelay +
aTxPlcpDelay)

Delay from
Phy_Sap(tx)
to antenna.

 (true)

 (false) (true)

 (false)

else
 (probe_rsp,
 beacon)

(false)
 (true)

414 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

C.4 State machines for MAC access point

The following SDL-92 system speciÞcation deÞnes operation of the MAC protocol at an IEEE 802.11 AP.
Many aspects of AP operation are identical to STA operation. These are deÞned in blocks and processes ref-
erenced from both the STA and AP system speciÞcations. Blocks and processes used in both STA and AP are
identiÞable by the SDL comment /* for STA & AP */ below the block or process name. The deÞnitions of
these blocks and processes appear in Clause C.3. Blocks and processes speciÞc to AP operation are identiÞ-
able by the SDL comment /* AP version */ below the block or process name. The deÞnitions of these blocks
and processes appear in this subclause.

The remainder of Clause C.4 is the formal description, in SDL/GR, of an IEEE 802.11 AP.

Copyright © 1997 IEEE. All rights reserved. 415

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

use macsorts ;
use macmib ;

System Access_Point AP_1a(3)

MAC_Data_
_Service

/* for STA & AP */

Includes request
validation and
add/remove
MAC headers.

Distribution_
_Service

/* only at AP */

MPDU_
_Generation_AP

/* AP version */

Includes encryption,
fragmentation, TIM
generation, and
queuing for BC/MC,
PSM, CFP & fromDS.

Protocol_
_Control_AP

/* AP version */

Includes DCF, PCF,
PS-Poll response,
Acknowledgement,
Rts/Cts, and retry.

Transmission

/* for STA & AP */

Includes backoff,
FCS generate, and
timestamp insert.

MAC_Management_
_Service

/* for STA & AP */

Includes MAC MIB,
MIB access, and
filtering of Mlme
request and confirm.

MLME_AP

/* AP version */

Includes start BSS,
beacon, dwell, CFP
& occupancy timing,
(re/dis)associate,
(de)authenticate,
probe response, and
monitor of station
& power save state.

Reception

/* for STA & AP */

Includes validate, decrypt,
address & duplicate filter,
defragment, channel state
(physical and virtual carrier
sense), and IFS & slot timing.

MAC_SAP

MaUnitdata.indication,
MaUnitdataStatus.indication

MaUnitdata.request

TSDU

MsduRequest

MsduConfirm

DSM

ToDsm

FromDsm

RSDU

MsduIndicate

FRDS

Msdu_
Request

Msdu_
Confirm

TPDU

PduRequest

PduConfirm,
PsPolled

TODS

Msdu_
Indicate

TX
Backoff,
Cancel,
TxRequest

BkDone,
TxConfirm

PHY_SAP_TX

PhyTxRequestSignals

PhyTxConfirmSignals

MLME_PLME_SAP

PlmeRequestSignals

PlmeConfirmSignals

SM_MLME_SAP

MlmeConfirmSignals,
MlmeIndicationSignals

MlmeRequestSignals

MMGT

MmgtRequestSignals

MmgtConfirmSignals,
MmgtIndicationSignals

MMTX

AsChange,
MmRequest,
PsChange,
PsResponse

MmConfirm,
PsInquiry

MMDS

DsInquiry,
DsNotify

DsResponse

MCTL

MmCancel,
SsResponse,
SwChnl

MmIndicate,
SsInquiry,
SwDone

RXRxIndicate,
NeedAck,
RxCfAck

ChangeNav

PS

PsIndicate

ChangeNav

CS

Busy,
Idle,
Slot

PHY_SAP_RX

PhyCcarst.request

PhyRxSignals

416 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

use macsorts ;
use macmib ;

System Access_Point AP_signals_2b(3)

newtype DsStatus literals
 assoc, disassoc, reassoc, unknown
endnewtype DsStatus ;

signal
 MmCancel,
 MmConfirm(Frame,TxStatus),
 MmIndicate(Frame,Time,Time,StateErr),
 MmRequest(Frame,Imed,Rate),
 MsduConfirm(Frame,CfPriority,TxStatus),
 MsduIndicate(Frame,CfPriority),
 MsduRequest(Frame,CfPriority),
 NeedAck(MacAddr,Time,Duration,Rate),
 PduConfirm(FragSdu,TxResult),
 PduRequest(FragSdu),
 PhyCca.indication(Ccastatus),
 PhyCcarst.confirm,
 PhyCcarst.request,
 PhyData.confirm,
 PhyData.indication(Octet),
 PhyData.request(Octet),
 PhyRxEnd.indication(PhyRxStat),
 PhyRxStart.indication(Integer,Rate),
 PhyTxEnd.confirm,
 PhyTxEnd.request,
 PhyTxStart.confirm,
 PhyTxStart.request(Integer,Rate),
 PlmeGet.confirm(MibStatus,
 MibAtrib,MibValue),
 PlmeGet.request(MibAtrib),
 PlmeReset.confirm(Boolean),
 PlmeReset.request,
 PlmeSet.confirm(MibStatus,MibAtrib),
 PlmeSet.request(MibAtrib,MibValue),
 PsmDone,
 PsPolled(MacAddr,AsocId),
 PsChange(MacAddr,PsMode),
 PsIndicate(MacAddr,PsMode),
 PsInquiry(MacAddr),
 PsResponse(MacAddr,PsMode),
 ResetMAC,
 RxCfAck(MacAddr),
 RxIndicate(Frame,Time,Time,Rate),
 Slot,
 SsInquiry(MacAddr),
 SsResponse(MacAddr,
 StationState,StationState),
 SwChnl(Integer,Boolean),
 SwDone,
 ToDsm(MacAddr,MacAddr,Octetstring),
 TxConfirm,
 TxRequest(Frame,Rate) ;

signal
 AsChange(Frame,DsStatus)
 Backoff(Integer,Integer),
 BkDone(Integer),
 Busy,
 Cancel,
 ChangeNav(Time,Duration,NavSrc),
 DsInquiry(MacAddr,MacAddr),
 DsNotify(MacAddr,DsStatus)
 DsResponse(MacAddr,MacAddr,DsStatus),
 FromDsm(MacAddr,MacAddr,Octetstring),
 Idle,
 MaUnitdata.indication(MacAddr,MacAddr,
 Routing,Octetstring,RxStatus,
 CfPriority,ServiceClass),
 MaUnitdata.request(MacAddr,MacAddr,
 Routing,Octetstring,CfPriority,ServiceClass),
 MaUnitdataStatus.indication(MacAddr,
 MacAddr,TxStatus,CfPriority,ServiceClass),
 MlmeAssociate.confirm(MlmeStatus),
 MlmeAssociate.indication(MacAddr),
 MlmeAssociate.request(MacAddr,TU,Capability,Integer),
 MlmeAuthenticate.confirm
 (MacAddr,AuthType,MlmeStatus),
 MlmeAuthenticate.indication(MacAddr,AuthType),
 MlmeAuthenticate.request(MacAddr,AuthType,TU),
 MlmeDeauthenticate.confirm(MacAddr,MlmeStatus),
 MlmeDeauthenticate.indication(MacAddr,ReasonCode),
 MlmeDeauthenticate.request(MacAddr,ReasonCode),
 MlmeDisassociate.confirm(MlmeStatus),
 MlmeDisassociate.indication(MacAddr,ReasonCode),
 MlmeDisassociate.request(MacAddr,ReasonCode),
 MlmeGet.confirm(MibStatus,MibAtrib,MibValue),
 MlmeGet.request(MibAtrib),
 MlmeJoin.confirm(MlmeStatus),
 MlmeJoin.request(BssDscr,Integer,Usec,Ratestring),
 MlmePowermgt.confirm(MlmeStatus),
 MlmePowermgt.request(PwrSave,Boolean,Boolean),
 MlmeReassociate.confirm(MlmeStatus),
 MlmeReassociate.indication(MacAddr),
 MlmeReassociate.request(MacAddr,TU,Capability,Integer),
 MlmeReset.confirm(MlmeStatus),
 MlmeReset.request,
 MlmeScan.confirm(BssDscrSet,MlmeStatus),
 MlmeScan.request(BssTypeSet,MacAddr,Octetstring,
 ScanType,Usec,Intstring,TU,TU),
 MlmeSet.confirm(MibStatus,MibAtrib),
 MlmeSet.request(MibAtrib,MibValue),
 MlmeStart.confirm(MlmeStatus),
 MlmeStart.request(Octetstring,BssType,TU,
 Integer,CfParms,PhyParms,IbssParms,Usec,
 Capability,Ratestring,Ratestring) ;

Copyright © 1997 IEEE. All rights reserved. 417

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

use macsorts ;
use macmib ;

System Access_Point AP_signallists_3a(3)

signallist
MlmeRequestSignals=
 MlmeAssociate.request,
 MlmeAuthenticate.request,
 MlmeDeauthenticate.request,
 MlmeDisassociate.request,
 MlmeGet.request,
 MlmeJoin.request,
 MlmePowermgt.request,
 MlmeReassociate.request,
 MlmeReset.request,
 MlmeScan.request,
 MlmeSet.request,
 MlmeStart.request ;

signallist
MlmeConfirmSignals=
 MlmeAssociate.confirm,
 MlmeAuthenticate.confirm,
 MlmeDeauthenticate.confirm,
 MlmeDisassociate.confirm,
 MlmeGet.confirm,
 MlmeJoin.confirm,
 MlmePowermgt.confirm,
 MlmeReassociate.confirm,
 MlmeReset.confirm,
 MlmeScan.confirm,
 MlmeSet.confirm,
 MlmeStart.confirm ;

signallist
MlmeIndicationSignals=
 MlmeAuthenticate.indication,
 MlmeDeauthenticate.indication,
 MlmeDisassociate.indication,
 MlmeAssociate.indication,
 MlmeReassociate.indication ;

signallist
SmtRequestSignals=
 MlmeAssociate.request,
 MlmeAuthenticate.request,
 MlmeDeauthenticate.request,
 MlmeDisassociate.request,
 MlmeJoin.request,
 MlmeReassociate.request,
 MlmeScan.request,
 MlmeStart.request ;

signallist
SmtConfirmSignals=
 MlmeAssociate.confirm,
 MlmeAuthenticate.confirm,
 MlmeDeauthenticate.confirm,
 MlmeDisassociate.confirm,
 MlmeJoin.confirm,
 MlmeReassociate.confirm,
 MlmeScan.confirm,
 MlmeStart.confirm ;

signallist
SmtIndicationSignals=
 MlmeAuthenticate.indication,
 MlmeDeauthenticate.indication,
 MlmeDisassociate.indication,
 MlmeAssociate.indication,
 MlmeReassociate.indication ;

signallist
PhyTxRequestSignals=
 PhyTxStart.request,
 PhyTxEnd.request,
 PhyData.request ;

signallist
PhyTxConfirmSignals=
 PhyTxStart.confirm,
 PhyTxEnd.confirm,
 PhyData.confirm ;

signallist
PhyRxSignals=
 PhyRxStart.indication,
 PhyRxEnd.indication,
 PhyData.indication
 PhyCca.indication,
 PhyCcarst.confirm ;

signallist
PlmeRequestSignals=
 PlmeGet.request,
 PlmeSet.request,
 PlmeReset.request ;

signallist
PlmeConfirmSignals=
 PlmeGet.confirm,
 PlmeSet.confirm,
 PlmeReset.confirm ;

418 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Block Distribution_Service Dist_Service_1a(1)

/* This block interfaces
 between the AP function
 and the Distribution
 System Medium, hence is
 only present at APs.

 In order to permit an LLC
 entity colocated with an
 AP to communicate via
 both the WM and the DSM,
 MAC_Data_Service at the
 AP interacts with this
 block. This causes frames
 originating at the station
 containing the AP to be
 treated equivalently to
 frames originating at any
 of the other stations
 associated with that AP. */

DSM_Interface
(1,1)

/* only at AP */

DSM RSDU TSDU

DsDsm

ToDsm

FromDsm

DsMd

Msdu_
Indicate

MdDs

Msdu_
Confirm

Msdu_
Request

DsBss

MsduRequestMsduConfirm

FR

MlmeDs

DsResponse

DsInquiry,
DsNotify

BssDs

Msdu_
Indicate

TODS MMDS

Copyright © 1997 IEEE. All rights reserved. 419

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process DSM_Interface DSM_data_1a(2)

dcl da, sa, wdsAddr MacAddr ;
dcl dsmData Octetstring ;
dcl dss DsStatus ;
dcl rpri, tpri CfPriority ;
dcl rsdu, tsdu Frame ;
dcl trsl TxResult ;

DS_Idle State continues
on next page.

FromDsm
(da, sa,
dsmData)

MSDU
in from
DSM.

MsduIndicate
(rsdu,rpri)

MSDU
in from
WM.

MsduRequest
(rsdu,tpri)

MSDU in
from local
LLC entity

'to Bss ?'
True if da is
addr of asoc
sta or any
group addr.

'to Bss ?'
True if da is
addr of asoc
sta or any
group addr.

'to Bss ?'
True if da is
addr of asoc
sta or any
group addr.

tsdu:=
mkFrame

(data,

da, sa,
DsmData),
tsdu:=setFrDs
 (tsdu,1)

tsdu:=
mkFrame

(data,

addr3(rsdu),
addr2(rsdu),
substr(rsdu,
sMacHdrLng,
length(rsdu) -
sMacHdrLng)),
tsdu:=setFrDs
 (tsdu,1)

tsdu:=
mkFrame

(data,

addr2(rsdu),
addr3(rsdu),
substr(rsdu,
sMacHdrLng,
length(rsdu) -
sMacHdrLng)),
tsdu:=setFrDs
 (tsdu,1)

MsduRequest
(tsdu,
contention)

MsduRequest
(tsdu,
contention)

MsduRequest
(tsdu,
contention)

'to local
LLC ?'

True if da is
addr of this
sta or active
group addr.

'to local
LLC ?' 'to Dsm ?'

rsdu:=
mkFrame

(data,

da, sa,
DsmData),
rsdu:=setFrDs
 (rsdu,1)

MsduIndicate
(rsdu,
contention)

True if da is
addr of this
sta or active
group addr.

True if da is
any group addr
or addr of sta
not asoc here.

MsduIndicate
(rsdu,
contention)

'to Dsm ?'
True if da is
any group addr
or addr of sta
not asoc here.

ToDsm
(addr1
(rsdu),

addr2(rsdu),
substr(rsdu,
sMacHdrLng,
length(rsdu) -
sMacHdrLng))

'to Wds ?'
True if da
reached via
{one or more}
AP(wdsAddr).

ToDsm
(addr3
(rsdu),

addr2(rsdu),
substr(rsdu,
sMacHdrLng,
length(rsdu) -
sMacHdrLng))

'to Wds ?'

tsdu:=
mkFrame

(data,

wdsAddr,
da, DsmData),
tsdu:=
 insAddr4(sa),
tsdu:=setFrDs
 (tsdu,1),
tsdu:=setToDs
 (tsdu,1)

'to Wds ?'
tsdu:=

mkFrame
(data,

wdsAddr,
addr1(rsdu),
substr(rsdu,
sMacHdrLng,
length(rsdu) -
sMacHdrLng)),
tsdu:=
 insAddr4
 (addr2(rsdu)),
tsdu:=setFrDs
 (tsdu,1),
tsdu:=setToDs
 (tsdu,1)

MsduRequest
(tsdu,
contention)

tsdu:=
mkFrame

(data,

wdsAddr,
addr3(rsdu),
substr(rsdu,
sMacHdrLng,
length(rsdu) -
sMacHdrLng)),
tsdu:=
 insAddr4
 (addr2(rsdu)),
tsdu:=setFrDs
 (tsdu,1),
tsdu:=setToDs
 (tsdu,1)

MsduRequest
(tsdu,
contention)

DS_Idle
MsduRequest
(tsdu,
contention)

DS_Idle

True if da
reached via
{one or more}
AP(wdsAddr).

DS_Idle
True if da
reached via
{one or more}
AP(wdsAddr).

 (true) (false) (true) (false) (true) (false)

 (true) (false) (true) (false)
 (true) (false)

 (true)

 (false)
 (true) (false) (true) (false)

 (true) (false)

420 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process DSM_Interface DSM_management_2a(2)

DS_Idle State continued
from previous page.

MsduCon_
firm(tsdu,
tpri,trsl)

Response
to prior
MsduRequest

DsNotify
(da, dss)

Notification
of asoc, reasoc,
or disasoc
from Mlme.

DsInquiry
(da, sa)

Inquiry about
existing asoc
status. Sent
by Mlme when
validating
new asoc
or reasoc
requests.

addr3
(tsdu) =

import
(aStationId)

'update info
about sta[da]

with status dss'

'dss:=
ds status of
station[da]'

MsduCon_
firm(tsdu,
tpri,trsl)

Pass confirm
of LLC request
to Mac_Data_
Service.

DS_Idle
'sa:= ap

addr where
da is asoc'

DS_Idle DsResponse
(da, sa, dss)

DS_Idle

 (true) (false)

Copyright © 1997 IEEE. All rights reserved. 421

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Block MLME_AP ap_MLME_1a(1)

Signal
 StaState
 (MacAddr,StationState) ;

/* In this block are the handlers
 for Mlme operation requests,
 the responders for incoming
 management frames, and the
 time synchronization function
 for the AP, as well as
 contention free period timing
 if this AP includes a PCF.
 This block also contains the
 process which maintains
 record of power save mode
 and station state for access
 by other processes. */

Mlme_AP_
_Services (1,1)

/* AP version */

This process assumes
that the Mlme request
signals have been
validated by MAC
Management service,
and are restricted
to those appropriate
for use at AP.

Power_Save_
_Monitor(1,1)

/* for STA & AP */

Records power
save mode and
station state.

MMGT

Mop

MlmeDeauthenticate.confirm,
MlmeDisassociate.confirm,
MlmeStart.confirm,
MlmeAssociate.indication,
MlmeAuthenticate.indication,
MlmeDeauthenticate.indication,
MlmeDisassociate.indication,
MlmeReassociate.indication

MlmeDeauthenticate.request,
MlmeDisassociate.request,
MlmeStart.request

MMTX

To_Mtx

AsChange,
MmRequest MmConfirm

To_Mct

MmCancel,
SwChnl

MmIndicate

To_DsDsInquiry,
DsNotify

DsResponse

Ssu

StaState

ToRx

ChangeNav

MMDS

Psm

PsChange,
PsResponse

PsInquiry

MCTL
Sst

SsResponse SsInquiry

FromRx

PsIndicate

PS

422 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Mlme_AP_Services ap_Mm_svc_1a(1)

/* Each of these ovals represents a
SERVICE. Each service contains
the state transitions to handle a
DISJOINT SUBSET of the input
signal set of this process. Services
share local variables and the input
queue. At any instant, a state
transition can occur in, at most, one
service -- the service which handles
the kind of signal at the head of the
process input queue. */

/* Intra-MAC remote variables */
dcl exported
mAssoc Boolean:= true,
mBrates Octetstring:=mkOS(10,1),
mBssId MacAddr:= aMacAddress,
mCap Octetstring:= O2,
mCfp Boolean:= false,
mDisable Boolean:= true,
mDtimCount Integer:= 0,
mDtimPeriod Integer:= 1,
mIbss Boolean:= false,
mNextBdry Time:= 0,
mNextTbtt Time:= 0,
mOrates Octetstring:=mkOS(10,1),
mPcAvail Boolean:= sCfPollable,
mPcPoll Boolean:= false,
mPsm PwrSave:= sta_active,
mPss PsState:= awake,
mSsId Octetstring:= null ;

Signal
 AsocReq(Frame),
 AsocRsp(Frame),
 AuthOdd(Frame),
 Beacon(Frame,
 Time,Time),
 Cls2err(MacAddr),
 Cls3err(MacAddr),
 Deauth(Frame),
 Disasoc(Frame),
 ProbeReq(Frame),
 ProbeRsp(Frame,
 Time,Time),
 ReasocReq(Frame),
 ReasocRsp(Frame),
 Send(Frame,Imed),
 Sent(Frame,TxStatus),
 Sst(MacAddr,
 StationState),
 Xport ;

Timer Tauth,
 Tchal, Tbcn ;

Distribute_
_Mmpdus

AuthReq_
Service_AP

AsocService_AP

AuthRspService

Synchronization_
_AP

ResetMAC
handled by
Sync service.

Mop

To_
Mtx

Ssu

To_
Ds

To_
Mct

DsRx

Mm_
Indicate

ArqDs

Cls2err

Sst,
Send,
Xport

ArqMop

MlmeDeauthenticate.confirm

MlmeDeauthenticate._
 request

AsDs
Sst,
Send,
Xport

AsocReq, ReasocReq,
AsocRsp, ReasocRsp,
Disasoc, Cls3err

AsMop

MlmeAssociate.indication,
MlmeDisassociate.confirm,
MlmeDisassociate.indication,
MlmeReassociate.indication

MlmeDisassociate.request

AsCtAsChange

DsDsDsInquiry,
DsNotify

DsResponse

DsTx

MmRequest

MmConfirm

ArsDs

AuthOdd,
Deauth

Sst,
Send,
Xport

ArsInd

MlmeAuthenticate.indication,
MlmeDeauthenticate.indication

DsSs

StaState

SyDs

ProbeReq,
ProbeRsp,
Beacon,
Sent

Send,
Xport

SyCtl

MmCancel,
SwChnl

SwDone

SyMop

MlmeStart.confirm

MlmeStart.request

SyRx

ChangeNav

ToRx

Copyright © 1997 IEEE. All rights reserved. 423

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Service AsocService_AP ap_disasoc_1b(2)

/* This service responds to
incoming Associate, and
Reassociate at the AP, and
handles Disassociate requests
from Mlme and WM. This
service also generates
responses for class 3 errors. */

dcl asCap Capability ;
dcl asRsn ReasonCode ;
dcl asSta MacAddr ;
dcl asSts TxResult ;
dcl asStat DsStatus ;
dcl asRdu, asSdu Frame ;

asoc_
err

reset(Tasoc)

Asoc_Idle
On this page are Disassociate request,
incoming Disassociation frame, and
class 3 error. More on next page.

Disasoc
(asRdu)

Cls3err
(asSta)

MlmeDis_
associate._
request

asRsn:=
class3_err

(asSta,
asRsn)

addr1(asRdu)
= mBssid

asSdu:=
mkFrame
(disasoc,

asSta,
mBssid,
asRsn)

-
Send
(asSdu,
norm)

MlmeDis_
associate._
indication

(addr2(asRdu),
reason(asRdu))

Sst(asSta,
dis_asoc)

Local station state
updated even if
notification frame
is undeliverable.

Sst(asSta,
dis_asoc)

Update station
state regarding
this association.

asRsn=
class3_err

Don't confirm
class 3 error
notifications.

AsChange
(asRdu,
disasoc)

Remove association
data recorded for
this station.

MlmeDis_
associate._
confirm

(successful)

Xport -

-

 (false) (true)

 (false) (true)

424 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Service AsocService_AP ap_asoc_reasoc_2a(2)

Asoc_Idle
On this page are responses to
associate and reassociate requests.
More of this state on previous page.

AsocReq
(asRdu)

ReasocReq
(asRdu)

DsInquiry
(addr2(asRdu),
mBssId)

DsInquiry
(addr2(asRdu),
mBssId)

Wait_Asoc_
_Status

Wait_Reasoc_
_Status

DsResponse
(, ,asStat)

DsResponse
(, ,asStat)

asStat asStat

'assign
AId'

'assign
AId'

'save
request

info(AId)'

'save
request

info(AId)'

'make
asoc_rsp
(success)'

'make
asoc_rsp

(fail)'

'make
reasoc_rsp
(success)'

'make
reasoc_rsp

(fail)'

DsNotify
(addr2(asRdu),
asStat)

DsNotify
(addr2(asRdu),
reasoc)

AsChange
(asRdu,
asStat)

AsChange
(asRdu,
asStat)

Send
(asSdu,
norm)

Send
(asSdu,
norm)

Asoc_Idle Asoc_Idle

 (disasoc,
 unknown)

 else (asoc) else

Copyright © 1997 IEEE. All rights reserved. 425

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Service AuthReqService_AP ap_auth_req_1a(1)

dcl auAlg AuthType ;
dcl auCap Capability ;
dcl auRdu, auSdu Frame ;
dcl auRsn ReasonCode ;
dcl auSta MacAddr ;
dcl auSts TxResult ;
dcl auTmot TU ;

/* This service handles
DeAuthenticate requests.
This service also handles
incoming the generation of
responses for class 2 errors.

This service does not
do authenticate requests
because APs never
initiate authentication. */

Auth_Req_
Idle

Cls2err
(auSta)

MlmeDeau_
thenticate._
request

(auSta,
auRsn)

asRsn:=
class2_err

auSdu:=
mkFrame
(deauth,

auSta,
mBssid,
auRsn)

Send
(auSdu,
norm)

Send notification,
do not wait for
delivery confirmation.

Sst(asSta,
de_auth)

Update local stations state
records. Sending deauth also
clears asoc state if present.

If deauthenticating
the current AP, or
deauthenticating
everyone, end the
association (if
any) by clearing
mBssid and mAssoc.

auSta=
mBssId

or
isGroup
(auSta)

mAssoc:=false
mBssid:=
nullAddr

Xport

auRsn=
class2_err

Don't confirm
class 2 error
notifications.

MlmeDis_
associate._
confirm

(successful)

-

 (true) (false)

 (false) (true)

426 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Service Synchronization_AP ap_Init_1a(3)

dcl yAtimRx, yPsm, yRdtim, yWake Boolean ;
dcl yAtw, yBcn, yMocp Time ;
dcl yBcnPeriod, ycmax, ycmin TU ;
dcl ybd BssDscr ;
dcl ybdset BssDscrSet ;
dcl ybtp BssType ;
dcl ybsid MacAddr ;
dcl yclist Intstring ;
dcl ycx, yJto, ytemp Integer ;
dcl yDspm DsParms ;
dcl yFhpm FhParms ;
dcl yIbpm IbssParms ;
dcl ypdly Usec ;

dcl yPhpm PhyParms ;
dcl yRdu, yTdu Frame ;
dcl yssid Octetstring ;
dcl ystp ScanType ;
dcl ytrsl TxResult ;

timer Tscan,
 Tmocp ;

*

ResetMAC

variables
to default
values'

'reset all
intra-MAC

remote

Set TSF
time to
zero.

ytemp:=
call TSF
(0, true)

Xport

Setting these
timers to now
causes events
in each of the
multistate
services of the
process, forcing
each service to
its idle state.

reset(Tbcn),
set(now,Tauth),
set(now,Tchal)

No_BSS

Copyright © 1997 IEEE. All rights reserved. 427

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Service Synchronization_AP ap_Start_Bss_2a(3)

No_BSS
Start IBSS on
this page, join
on next page.

bss_
init

Activate
Station
state
machine.

MlmeStart._
request
(mSsid, yBtp,

yBcnPeriod,
mDtimPeriod,
yCfpm,
yPhpm,
/* ibpm */
mCap,
mBrates,
mOrates)

'using
FH phy'

yBytp
yMocp:=tTU

(import(aMedium
OccupancyLimit))

yMocp:=tTU
(dwellTime
(yFhpm))

Sta_Active 'parameters
valid'

mNextBdry:=
now+(yMocp

- (call TSF
(0,false)
mod yMocp))

mPsm:=
station_active,
mPss:=awake

set
(mNextBdry,

Tmocp)
Initialize
dwell timer.

MlmeStart._
confirm
(invalid)

yBcn:=
tTU

(yBcnPeriod)

'yChan:=
first (or only)

channel'

Set starting
channel (FH)
or operating
channel (DS),
null for IR.

No_Bss
mCfAvail:=

if dtim_
Period

(yCfpm) /= 0
then true
else false fi

SwChnl
(yChan,true)

'set mCfPoll
and mCap for

operating state'

mNextTbtt:=
now+(yBcn
- (call TSF

(0,false)
mod yBcn))

'set aCfPeriod and
aCfMaxDuration

from yCfpm'

set
(mNextBdry,

Tbcn)
Initialize
beacon timer.

'set actual
phy parameters

from phpm'
Xport

Xport
MlmeStart._
confirm
(success)

bss_
init Bss

 (false) (true)

 (indep_
 endent) (infra_

 structure)

 (true) (false)

428 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Service Synchronization_AP ap_TSF_bss_3a(3)

Bss

Tbcn ProbeReq
(yRdu) Tmocp

set
(now+yBcn,

Tbcn)

ytdu:=
mkFrame
(probe_rsp

bcstAddr,
mBssId,
O8 /* timestamp
 inserted by tx */
// mk2octets
 (yBcnPeriod)
// mCap
// mkElem
 (eSsId,mSsId)
// mkElem
 (eCfp,yCfpm)
// mkElem
 (eSupRates,
 mOrates)
// mkElem
 (ePhpm,yPhpm))

mNextBdry:=
mNextBdry +

yMocp

ytdu:=
mkFrame
(beacon,

bcstAddr,
mBssId,
O8 /* timestamp
 inserted by tx */
// mk2octets
 (yBcnPeriod)
// mCap
// mkElem
 (eSsId,mSsId)
// mkElem
 (eSupRates,
 mOrates)

Send
(ytdu,norm)

set
(mNextBdry,

Tmocp)

mDtimCount:=
mDtimCount-1 - 'using

FH phy'

mPcAvail
'yChan:=

next channel
in hop seq'

ytdu:=
ytdu //

mkElem
 (eCfp,yCfpm)

SwChnl
(,false)

SwChnl
(yChan,true)

yCfpm:=
setCfpCount

(yCfpm,

if yCfCnt=0
then import (aCfpPeriod)-1
else yCfCnt-1 fi)

Wait_Hop_
Bss

yCfpm:=
setCfpPeriod

(yCfpm,
import
(aCfpPeriod)) * SwDone

yCfpm:=
setCfpMaxDur

(yCfpm,
import
(aCfpMaxDuration)) Bss

'update
cfDurRem
and mCfp'

'add proper
phy parameter
set element'

Xport,
Send
(ytdu,imed)

TIM element
gets added by
PM_Filter_AP.

-

 (true) (false)

 (true) (false)

Copyright © 1997 IEEE. All rights reserved. 429

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Block MPDU_Generation_AP ap_MPDU_gen_1a(1)

signal
 FragConfirm(FragSdu,TxResult),
 FragRequest(FragSdu) ;

/* This block converts
 outgoing Msdus and Mmpdus
 into Mpdus, fragmenting
 and encrypting as necessary.

 The PM_Filter_AP process
 queues frames needing
 announcement in a TIM,
 and frames to be sent
 during the CF period
 at an AP with an active
 point coordinator. This
 process also adds the
 TIM element to outgoing
 Beacon frames. */

Includes encryption if
aPrivacyOptionImplemented
=true. This is a typical
location, but implementors
may use other locations
between the MAC_SAP
and PHY_SAP_TX as
long as they provide
the specified behavior
as observed at LLC,
MLME and the WM.

Prepare_MPDU
(1,1)

/* for STA and AP */

PM_Filter_AP
(1,1)

/* AP version */

FRDS

Msdu

MsduConfirm

MsduRequest

Mmpdu

MmConfirm

MmRequest

FragMsdu

FragRequest

FragConfirm

MMTX

PwrMgt

PsInquiry

AsChange,
PsResponse,
PsChange

Mpdu

PduRequest

PduConfirm,
PsPolled

TPDU

430 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process PM_Filter_AP ap_PM_Bss_1b(4)

dcl asTbl AIdTable ;
dcl atPend, fsPend, sentBcn Boolean:= false ;
dcl cfQ, psQ, txQ SduQueue:= emptyQ ;
dcl dpsm PsMode ;
dcl fsdu, rsdu FragSdu ;
dcl k, n Integer ;
dcl resl TxResult ;
dcl rpdu Frame ;
dcl rxAid, psx, asx, tlo, thi AsocId ;
dcl sta MacAddr ;
dcl statAs DsStatus ; dcl statPs PsMode ;
dcl tmap TrafficMap ;

imported
 mDtimPeriod,
 mDtimCount Integer

*

ResetMAC import
(mDisable)

anQ:=emptyQ,
cfQ:=emptyQ,

psQ:=emptyQ,
txQ:=emptyQ

'initialize
all entries
in asTbl'

*

PM_Bss
PsChange
ignored when
assoc w/BSS.

Frag_
Request
(fsdu)

import
(mCfp)

Pdu_
Confirm
(fsdu,resl)

(not fsPend)
and (length
(txQ) /= 0)

bss_
imed

ftype(fsdu!
pdus(1))

Bss_Cfp fsPend:=
false

fsdu:=
first(txQ),

txQ:=tail(txQ)
PsInquiry
(fsdu!dst)

bcn_
in

Cfp handling
is on next
page.

resl
Pdu_
Request
(fsdu)

Wait_Ps_
Response

txQ:= qfirst
(txQ, fsdu)

fsPend:=
true

PsResponse
(sta, dpsm) *

Frag_
Confirm
(fsdu,resl)

- -
(dpsm=

power_save)
or

(isGroup
(fsdu!dst)
= true))

- psQ:= qlast
(psQ, fsdu) fsdu!cf bcn_

out

tmap(AId_
Lookup(asTbl,

addr1(fsdu))):=1
cfQ:= qlast
(cfQ, fsdu)

txQ:= qlast
(txQ, fsdu) mCfp

mCfp txQ:= qfirst
(txQ, fsdu)

cfQ:= qfirst
(cfQ, fsdu)

PM_Bss Bss_Cfp bss_
imed

cfp_
imed

 (beacon)
 else

 (partial) else

 (true) (false)

 (contention_
 Free) (contention) (imed)

 (false) (true)

 (false) (true)

Copyright © 1997 IEEE. All rights reserved. 431

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process PM_Filter_AP ap_PM_Cfp_2b(4)

Bss_Cfp

not import
(mCfp)

PM_Bss

Pdu_
Confirm
(fsdu,resl)

fsPend:=
false

resl

fsdu!cf

txQ:= qfirst
(txQ, fsdu)

-

cfQ:= qfirst
(cfQ, fsdu)

fsPend:=
false

-

Frag_
Confirm
(fsdu,resl)

-

(not fsPend)
and ((length
(cfQ) /= 0)

or (length(txQ)
/= 0))

length
(cfQ)

fsdu:=
first(cfQ),

cfQ:=tail(cfQ)

length
(cfQ) + length(txQ)

'set moreData
bit in each

fsdu fragment'

Pdu_
Request
(fsdu)

fsPend:=
true

-

length
(txQ)

fsdu:=
first(txQ),

txQ:=tail(txQ)

length
(txQ)

'set moreData
bit in each

fsdu fragment'

Pdu_
Request
(fsdu)

fsPend:=
true

-

Pdu_
Request
(nullSdu)

Send null SDU if
CFqueue empty. TxCtl
then responds with
CfAck or Null rather
than Data or DataAck.

-

cfp_
imed

 (partial)

 (con_
 tention)

 (con_
 tention_
 _free)

 else

 (>0)

 (>0) (=0)

 (=0)

 (>0)

 (>0) (=0)

 (=0)

432 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process PM_Filter_AP ap_PM_Asoc_3b(4)

*

AsChange
(rpdu,
statAs)

AsChange sent by
AsocService_AP to
indicate changes in
association status.

'asx:=
AsocId of sta

at addr1(rpdu)'

statAs

asTbl(asx)!
adAddr:=

addr1(rpdu)

'update
asTbl(asx) with

info in rpdu'

asTbl(asx)!
adAge:=

now

Age-related processing
of association records
is allowed, but no such
processing is required.

asTbl(asx)!
adAddr:=
nullAddr

'clear other
values in

asTbl(asx)'

'drop frames
for this sta
from psQ'

tmap(asx):=0

PsChange
(sta, statPs)

PsChange sent by
Power_Save_Monitor to
indicate a change of power
save mode by a station.

asx:=
AIdLookup
(asTbl, sta)

statPs

asTbl(asx)
!adPsm:=

power_save

-

asTbl(asx)
!adPsm

asTbl(asx)
!adPsm:=

station_active

tmap(asx):=0

asx:=
qSearch

(psQ, sta)

asx

txQ:=qlast
(txQ,extract!
(psQ,asx)),

psQ:= if asx=0
 then tail(psQ)
 else subQ(psQ, 0, asx-1)
 // if asx=length(psQ-1)
 then emptyQ
 else subQ(psQ, asx+1,
 length(psQ)-asx-1) Transfer any

queued fsdus
from psQ to txQ
when power save
station indicates
change to active.

-

 (asoc,
 reasoc)

 (disasoc,
 unknown)

 (power_
 _save)

 (station_
 _active)

 (power_
 _save)

 (>=0) (<0)

 (station_
 active)

Copyright © 1997 IEEE. All rights reserved. 433

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process PM_Filter_AP ap_PM_PsPoll_4b(4)

PM_Bss
This page handles only PsPoll response
selection. Other transitions from
PM_Bss state appear on other pages.

PsPolled
(,rxAid)

sta:=
asocTbl(rxAid)

!adAddr

psx:=
qSearch

(psQ, sta)

psx

-

No response if
nothing queued
for sta. Causes
Tx_Coord to
send Ack frame.

fsdu:=
extract!

(psQ, psx),

psQ:= if psx=0
 then tail(psQ)
 else subQ(psQ, 0, psx-1)
 // if psx=length(psQ-1)
 then emptyQ
 else subQ(psQ, psx+1,
 length(psQ)-psx-1)psx:=

qSearch
(psQ, sta)

psx

'set moreData
bit in each

fsdu fragment'

Pdu_
Request
(fsdu)

fsPend:=
true

-

tmap(psx):=0
Tmap bits also are
cleared when the
last fsdu for an AId
is removed from
the psQ due to
TxLifetime expiring.

bcn_
in

Add Tim element
to outgoing
beacon frames.

'set tlo and thi
to range of AIds

for this Tim'

Normally these cover
the range of AId values
in use, but subsets
are permitted.

fsdu!
(pdus(1)):=

fsdu!(pdus(1)) //
mkTim(tmap,
 import(mDtimCount),
 import(mDtimPeriod),
 tlo, thi,
 if qSearch(psQ,
 bcstAddr)<0
 then false
 else true)

bcn_
out

 (<0) (>=0)

 (>=0) (<0)

434 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Block Protocol_Control_AP ap_CTL_1b(1)

signal
 Ack(Time,Rate),
 CfRsp(Time,Rate),
 Cts(Time,Rate),
 PsPoll(Frame,Time,Rate),
 TxCfAck(Time,Rate) ;

/* This block performs the
DCF functions, as well as
serving as Point Coordinator
if the AP provides a PCF.
Tx_Coord_AP includes the
PC, RTS generation and
(non-Ack) PS-Poll response.
Rx_Coord_AP generates
acknowledgements, routes
management frames to MLME,
routes data frames to MAC
Data Service, and signals
Ack, Cts, and PS-Poll frames
to Tx_Coord_AP. */

Includes point
coordinator
for use with
optional PCF.

Tx_Coordination_AP
(1,1)

/* AP version */

Rx_Coordination
(1,1)

/* for STA & AP */

RSDU TPDU

Tdat

PduConfirm,
PsPolled

PduRequest

Tmgt SwDone

MmCancel,
SwChnl,
Tbtt

 MCTL

TxO

Backoff,
Cancel,
TxRequest

Done,
TxConfirm

Pctl

PlmeGet_
 .request,
PlmeSet_
 .request,
PlmeReset_
 .request

PlmeGet_
 .confirm,
PlmeSet_
 .confirm,
Plme_
 Reset_
 .confirm

Rctl

ChangeNav

Rdat

MsduIndicate

BcMgt
MmIndicate,
SsInquiry

SsResponse

TxRx

Ack,
CfRsp
Cts,
PsPoll,
TxCfAck

TX
Trsp

TxRequest TxConfirm

MLME_PLME_SAP

RxI

RxIndicate,
NeedAck,
RxCfAck

RX

Copyright © 1997 IEEE. All rights reserved. 435

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Tx_Coordination_AP ap_tx_init_1b(7)

dcl bstat, chan Integer ;
dcl ccw Integer:= aCwMin ;
dcl curPm Bit ;
dcl doHop, psmChg, cont Boolean:= false ;
dcl dSifsDelay, endRx Time ;
dcl fsdu FragSdu ;
dcl rtype Ftype ;
dcl rxAid AssocId ;
dcl rxrate Rate ;
dcl seqnum, ssrc, slrc, n Integer:= 0;
dcl tpdu, rpdu, rspdu Frame ;
dcl txrate Rate ;
dcl cont Boolean ;

timer Tifs, Trsp ;

Imported aRtsThreshld,
aShortRetryLimit,
aLongRetryLimit,
aFragmentationThreshold,
aMaxTransmitMsduLifetime Integer ;

/* RANDOM NUMBER FUNCTION */
imported procedure Random ;
 fpar limit Integer ; returns Integer ;

dcl exported FxIP Boolean:= false ;
dcl cTfrg exported as
 aTransmittedFragmentCount,
 cTmcfrg exported as
 aMulticastTransmittedFrameCount,
 cFail exported as aFailedCount,
 cRtry exported as aRetryCount,
 cMrtry exported as aMultipleRetryCount,
 cCts exported as aRtsSuccessCount,
 cNcts exported as aRtsFailureCount,
 cNack exported as aAckFailureCount
 Counter32:= 0 ;

PlmeReset._
Request

dSifsDelay:=
dUsec

(aSifsTime -
aRxTxTurn_
aroundTime)

'mmrate:=
rate to send
mmpdus'

Mmrate must be
selected from
mBrates. Other
selection criteria
are not specified.

ssrc:= 0,
slrc:= 0

ccw:=
import

(aCWmin),

Backoff
(ccw,-1)

TxC_Idle

*

ResetMAC

tx_
sifs

Send frame
at Sifs

set(endRx
+dSifsDelay,

Tifs)

Wait_Sifs

Tifs

TxRequest
(tpdu,trate)

Wait_Tx_
Done

TxConfirm

TxC_Idle

*

*

tx_
wait

436 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Tx_Coordination_AP ap_tx_idle_2c(7)

TxC_Idle
Ack, Cfend, Cts, Wake
and MmCancel ignored
in TxC_Idle state.

These transitions are
only present at APs
with point coordinator.

Pdu_
Request
(fsdu)

Entry when
station wakes
up to transmit.

PsPoll
(rpdu,
endRx, rxrate)

import
(mCfp)

TxCfAck
(endRx,)

txc_
req

PsPolled
(addr2(rpdu),
AId(rpdu))

TxC_Cfp
tpdu:=

mkFrame(
Cfack,

tpdu:=
fdsu!pdus

(fsdu!fCur)

set(endRx
+dSifsDelay,

Tifs)
tx_
sifs

fsdu!eol
Test if fsdu
sequence number
and tx lifetime
have been set.

AP responds
to PsPoll after
Sifs with Ack
or data. Basis
for choice of
response is
unspecified.

'respond
with data?'

PsPoll_
_Sifs

import(mBssId),
import(mBssId),
)

fsdu!sqf:=
seqnum,

seqnum:=
 if seqnum=4095
 then 0 else
 seqnum+1 fi,
fsdu!eol:=
 now + import
 (aMaxTransmit_
 MsduLifetime)

Tifs
Pdu_
Request
(fsdu)

*

tpdu:=
setSeq(tpdu,

fsdu!sqf)

rspdu:=
mkCtl(ack,O2,
addr2(rpdu))

addr1
(fsdu!pdus(1))

addr2
(rpdu)=

PduRe_
quest(fsdu)
to self

send_
frag

TxRequest
(rspdu,rxrate)

Sifs_Data_
_Response -

'txrate:=
selected tx
data rate'

See 9.6 for rules
about selecting
transmit data rate.

tx_
wait Tifs *

tpdu:=
setDurId

(tpdu,

(aSifsTime + (calcDur(txrate,stuff(aMpdu_
 DurationFactor,sAckCtsLng)) + aPlcp_
 HeaderLength + aPreambleLength) +
if (fsdu!fTot = (fsdu!fCur+1)) then 0 else
 ((2*aSifsTime) + (calcDur(txrate,stuff
 (aMpduDurationFactor, sAckCtsLng)) +
 aPlcpHeaderLength + aPreambleLength)
 + stuff(aMpduDurationFactor,((length
 (fsdu!pdus(fsdu!fCur+1)) + sCrcLng)*8)) +
 aPlcpHeaderLength+aPreambleLength))))

txc_
req

tpdu:=set_
PwrMgt(tpdu,
import(mPsm))

See corresponding
page of station version
for comments on use
with FH & IR PHYs.

next_
frag

fsdu!eol
< now

((length
(tpdu) +

sCrcLng) > import(aRtsThreshold)) and
(not fsdu!grpa) and ((fsdu!fCur=0) or retry(tpdu)
or fsdu!resume) and (not import(mCfp))

fsdu!fCur:=
 fsdu!fCur+1

PduConfirm
(fsdu,
txLife)rtsdu:=

mkctl(rts,
stuff(aMpduDurationFactor,
 ((length(tpdu)+sCrcLng)*8))
 + aPlcpHeaderLength
 + aPreambleLength +
 (3*aSifsTime) + (2*calcDur
 (txrate, stuff(aMpduDuration_
 Factor,sAckCtsLng)) + aPlcp_
 HeaderLength+aPreambleLength))

send_
mpdu

send_
frag TxC_Idle

send_
rts

 (=0) else

(true)

 (false)

(false)

 (true)

 (false)

 (true)
 (false)

 (true)

Copyright © 1997 IEEE. All rights reserved. 437

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Tx_Coordination_AP ap_tx_dcf_3c(7)

send_
mpdu

Wait_Mpdu_
_Backoff

* not import
(mBkIP)

TxRequest
(tpdu,txrate)

fsdu!grpamFxIP:=false

export
(mFxIP)

ccw:=
aCWmin

slrc:=0,
ssrc:=0,

fsdu!lrc:=0,
fsdu!src:=0

fsdu!fTot=
fsdu!fCur+1

next_
frag

PduConfirm
(fsdu,
success)

import
(mCfp)

TxC_Idle Backoff
(ccw,-1)

TxC_Backoff

Wait_Pdu_
_Sent

TxConfirm

set(now+dUsec
(aSifsTime +

calcDur(txrate,

stuff(aMpduDur_
ationFactor,sAck
CtsLng))+aPlcp_
HeaderLength+
aPreambleLength
+aSlotTime), Trsp)

Wait_Ack

Ack signal is
generated
when Ack,
CfAck, or
Data+CfAck
received.

*
Ack
(endRx,
txrate)

end_
fx

Trsp

cNack:=
inc(cNack)

export(cNack)

ack_
fail

*

rx_
cts

cCts:=
inc(cCts)

export(cCts)

set(endRx
+dSifsDelay,

Tifs)

tpdu:=
setDurId

(tpdu,

(aSifsTime + (calcDur
 (txrate,stuff(aMpdu_
 DurationFactor,sAck_
 CtsLng))+aPlcpHeader_
 Length + aPreambleLength)
 + if (fsdu!fTot = (fsdu!
 fCur+1)) then 0 else
 ((2*aSifsTime)+(calcDur
 (txrate,stuff(aMpdu_
 DurationFactor,sAck_
 CtsLng)) + aPlcpHeader_
 Length + aPreambleLen_
 gth)+stuff(aMpduDuration_
 Factor,((length(fsdu!pdus
 (fsdu!fCur+1))+sCrcLng)
 *8)) + aPlcpHeaderLength
 + aPreambleLength))))

Wait_Cts_
_Sifs

Tifs

*

send_
rts

Wait_Rts_
_Backoff

not import
(mBkIP)

mFxIP:=true,
cTfrg:=

inc(cTfrg)

export
(mFxIP,
cTfrg)

TxRequest
(rtsdu,txrate)

Wait_Rts_
_Sent

TxConfirm

set(now+dUsec
(aSifsTime +

calcDur(txrate,

stuff(aMpduD_
urationFactor,
sAckCtsLng))+
aPlcpHeaderL_
ength+aPream_
bleLength+aSl_
otTime), Trsp)Wait_Cts

Trsp

cNcts:=
inc(cNcts)

export(cNcts) cts_
fail

*
Cts
(endRx,
txrate)

reset
(Trsp)

ssrc:=0,
fsdu!src:=0

rx_
cts

*

* end_
fx

 (true)

 (false)
 (true)

 (true) (false)

 (false)

438 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Tx_Coordination_AP ap_retry_4c(7)

cts_
fail

mFxIP:=false

export
(mFxIP)

ccw:= if
ccw = aCWmax

then aCWmax
else (2*ccw)+1
fi

Backoff
(ccw, -1)

slrc:=
slrc+1,

fsdu!lrc:=
 fsdu!lrc+1

slrc =import(aLong_
 RetryLimit)

ccw:=
aCwMin

fsdu!lrc =import(aLong_
 RetryLimit)

PduConfirm
(fsdu,
retryLimit)

cFail:=
inc(cFail),
cont:= false

export(cFail)

TxC_Backoff

cont:= true
This shows the case where the
same pdu is retried after the
backoff. It is also allowable to
return this fsdu to PM_Filter with
status=partial, and to go to
TxC_Backoff state with cont=false.
This will allow a different pdu
(if available) to be sent as the
next transmission.

ack_
fail

mFxIP:=false

export
(mFxIP)

ccw:= if
ccw = aCWmax

then aCWmax
else (2*ccw)+1
fi

Backoff
(ccw, -1)

tpdu:=
setRetry
(tpdu,1),

fsdu!pdus
 (fsdu!fCur):=
setRetry
 (fsdu!pdus
 (fsdu!fCur),1)

((length
(tpdu) +

sCrcLng) >
import(aRts_
Threshold))

ssrc:=
ssrc+1,

fsdu!src:=
 fsdu!src+1

ssrc = import(aShort_
 RetryLimit)

ccw:=
aCwMin

fsdu!src = import(aShort_
 RetryLimit)

 (true)

 (true)
 (false)

 (false)

 (true)
 (false)

 (true)

 (true)
(false)

 (false)

Copyright © 1997 IEEE. All rights reserved. 439

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Tx_Coordination_AP ap_dwell_5c(7)

TxC_Backoff

Done
(bstat)

cont

TxC_Idle cont:= false

send_
frag

*

*

SwChnl
(chan,
doBkoff)

ChangeNav
(0,cswitch)

'channel
change is

Phy-specific'

'PlmeSet._
request
(chan stuff)'

Wait_
_Channel

'PlmeSet.
confirm
(status stuff)'

SwDone

doBkoff

Backoff
(ccw,-1)

SwChnl_
_Backoff

Done
(bstat)

TxC_Idle

*

*

 (false) (true)

 (true) (false)

440 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Process Tx_Coordination_AP ap_pcf_6a(7)

TxC_Cfp
Transitions on this
page are only present
for point coordinator.

Pdu_
Request
(fsdu)

Attach CfPoll
and/or generate
CfPoll without
data based on
polling list if
mCfPoll=true.

pack:=
ftype(tpdu)

tpdu:=
fdsu!pdus

(fsdu!fCur)

fsdu!eol

fsdu!sqf:=
seqnum,

seqnum:=
 seqnum+1,
fsdu!eol:=
 now + import
 (aMaxTransmit_
 MsduLifetime)tpdu:=

setSeq(tpdu,
fsdu!sqf)

tpdu:=
setFtype
(tpdu,

Change data to
data+cfAck if
appropriate.

ftype(tpdu)
or pack)

'txrate:=
selected tx
data rate'

See 9.6 for rules
about selecting
transmit data rate.

Wait_Cfp_
Sifs

not import
(mCfp)

tpdu
mkFrame
(cfend,

import(mBssId),
import(mBssId),
)

tx_
sifs

TxCfAck
(endRx)

rtype:=
cfAck

tpdu:=
mkFrame(

rtype,

import(mBssId),
import(mBssId),
)

tx_
sifs

*

Wait_Cfp_
Sifs

Trsp

TxRequest
(tpdu,
txrate)

cTfrg:=
inc(cTfrg),

cTmcfrg:=
if fsdu!grpa
then inc(cTmcfrg)
else cTmcfrg fi

export
(cTfrg,

cTmcfrg)

Wait_Cfp_
TxDone

TxConfirm

set(now+
aSifsTime,

Trsp)

Wait_CfAck

*

* TxCfAck
(,)

tpdu:=
setFtype

(tpdu,data_ack)

-

 (=0) else

Copyright © 1997 IEEE. All rights reserved. 441

IEEE
WIRELESS MEDIUM ACCESS CONTROL (MAC) AND PHYSICAL (PHY) SPECIFICATIONS Std 802.11-1997

Process Tx_Coordination_AP ap_cf_retry_7a(7)

Wait_CfAck

Ack
(endRx,)

TxC_Cfp

Trsp

cNack:=
inc(cNack),

export
(cNack)

tpdu:=
setRetry
(tpdu,1),

fsdu!pdus
 (fsdu!fCur):=
setRetry
 (fsdu!pdus
 (fsdu!fCur),1)

fsdu!src:=
fsdu!src+1

fsdu!src = import(aLong_
 RetryLimit))

PduConfirm
(fsdu,
retryLimit)

cFail:=
inc(cFail)

export(cFail)

set(now+
aSifsTime,

Trsp)

TxC_Wait_
Pifs

Trsp

TxC_Cfp

*

PduConfirm
(fsdu,
partial)

This returns the fsdu
to the queue. At the
next cf-poll, either
the same fsdu or a
different fsdu may
be selected for
transmission.cRtry:=

inc(cRtry)

export(cRtry)

*

 (true)
 (false)

442 Copyright © 1997 IEEE. All rights reserved.

IEEE
Std 802.11-1997 LOCAL AND METROPOLITAN AREA NETWORKS:

Copyright © 1997 IEEE. All rights reserved. 443

IEEE
Std 802.11-1997

Annex D

(normative)

ASN.1 encoding of the MAC and PHY MIB

PublisherÕs note:

It has come to our attention that the deÞnition of the Management Information Base (MIB) in the approved
draft standard contains inconsistencies between the deÞnitions in Clause 11, Clause 13, and Annex D.
Because the deÞnitions in Annex D are not correct, Annex D is not being published in this Þrst edition.

The Working Group is planning to submit a PAR for the revision of the standard to make Annex D consistent
with Clauses 11 and 13. They are also writing an interpretation of the Annex D material, which will be made
available in December 1997 at no cost to all purchasers of the published standard. This information will also
be posted on our web site at standards.ieee.org/reading/index.html.

IEEE
Std 802.11-1997

444 Copyright © 1997 IEEE. All rights reserved.

Copyright © 1997 IEEE. All rights reserved. 445

IEEE
Std 802.11-1997

Annex E

(informative)

Bibliography

E.1 General

[B1] ANSI Z136.1-1993, American National Standard for the Safe Use of Lasers.

[B2] IEC 60825-1 (1993), Safety of laser productsÑPart 1: Equipment classiÞcation, requirements and
userÕs guide.

[B3] IEEE Std 802.10-1992, IEEE Standards for Local and Metropolitan Area Networks: Interoperable
LAN/MAN Security (SILS) (ANSI).

[B4] Schneier, Bruce, ÒApplied Cryptography, Protocols, Algorithms and Source Code in C,Ó New York:
Wiley: 1994.

E.2 SpeciÞcation and description language (SDL) documentation

[B5] Belina, Ferenc, Dieter Hogrefe, and Amardeo Sarma, SDL with Applications from Protocol SpeciÞca-
tion. Prentice Hall Europe, Hertfordshire, UK, 1991.

An introductory text on SDL, also useful as a language reference (for SDL-88).

[B6] Ellsberger, Jan, Dieter Hogrefe, and Amardeo Sarma, SDL, Formal Object-Oriented Language for
Communicating Systems; (Prentice Hall Europe, Hertfordshire, UK, 1997.

A recently published book, which appears to be the most comprehensive single-volume introduction
and reference for SDL-92, including its object-oriented extensions.

[B7] Faergemand, Ove and Anders Olsen, New Features in SDL-92; SDL Newsletter (ISSN 1023-7151), no.
16 (May, 1993), pp. 10Ð29. Also available online at http://www.tdr.dk/public/SDL/SDL.html.

This provides a summary of the changes from SDL-88 to SDL-92.

[B8] Olsen, Anders, Ove Faergemand, Birger Moller-Pedersen, Rick Reed, and T. R. W. Smith, Systems
Engineering Using SDL-92. Elsevier Science B.V., Amsterdam, the Netherlands, 1994.

A detailed guide to using SDL-92, including a thorough explanation of abstract data type mecha-
nism and SDL combined with ASN.1 (Z.105).

Copyright © 1997 IEEE. All rights reserved. 446

IEEE
Std 802.11-1997

