Nokia Corporation v. Apple Inc. ' Doc. 12 Att. 3

EXHIBIT D

Dockets.Justia.com

http://dockets.justia.com/docket/delaware/dedce/1:2009cv01002/43423/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2009cv01002/43423/12/3.html
http://dockets.justia.com/

US005915131A

United States Patent [11 Patent Number: 5,915,131
Knight et al. 1451 Date of Patent: Jun, 22,1999
[54] METHOD AND APPARATUS FOR 5,553,245 0/1996 S1 2f Al womrroersrssr e, 3957284

HANDLING I/O REQUESTS UTILIZING 5,572,675 11/1996 Bergler 305/200.2

SEPARATE PROGRAMMING INTERFACES
TO ACCESS SEPARATE I/O SERVICES

OTHER PUBLICATIONS
Forin, A., et al. entitled “An I/O System for Mach 3.0,”

[75] Inventors: Holly N. Knight, La Honda; Carl D. Proceedings of (he Usenix Mach Symposium 20-22, Nov.
Sutton, Palo Alto; Wayne N. 1991, Monterey, CA, US, 20-22 Nov. 1991, pp. 163-176.
Meretsky, Los Altos; Alan B. Mimms, Steve Lemon and Kennan Rossi, eatitled “An Object Oni-
San Jose, all of Calif. epled Device Driver Model,” Digest of Papers Compcon
*95, Technologies for the Information Supethighway 5-9,
[73] Assignee: Apple Computer, Inc., Cupertino, Mar, 1995, San Francisco, CA, USA pp. 360-3066.
Calif. Glenn Andert, entitled “Object Frameworks in the Taligent
08,7 Intellecmal Leverage: Digest of Papers of the Spring
[21] Appl. No.: 08/435,677 Computer SOCI International Conference (Compcon), San
] Francisco, Feb. 28—Mar. 4, 1994, Feb. 24, 1994, Institule of
[22] Filed: May 5, 1995 Electrical and Electronics Engineers, pp. 112-121.
[51] Int. CL GOGF 9/40; GOGF 13/14 Hu, ‘Interconnecting electronic mail networks: Gateways
[52] US.CL ... 395892 305/682; 305/828, 2nd translation siralegies are proposed for backboue nel-
305/702; 707/104; 345/333 Wc)rl__s 1o inferchange incompatible e]cc_tronllc documents on
- \ ? I multivendor networks’, Data Communications, p. 128, vol.
[58] Field of Search395/828, 702, 17, No. 10, Sep. 1988
395/834, 200.2, 892, 682, 309; 3;;5431"”34 Knibbe, ‘IETF’s Resource Reservalion Protocal to facilitate
/ mixed voice, data, and video nets’, Netwark World, p. 51,
[56] References Cited Apr. 24, 1995.
Primary Examiner—Thomas C. Lee
U.S. PATENT DOCUMENTS Assistant Examiner—Rehana Perveen
4,503,352 6/1986 Castel et al. .oooervveeeeenrenaenne 364/200 Arntorney, Agens, or Firm—3Blakely, Sokoloff, Taylor &
4,727,537 2/1988 Nichols 370/85 Zafman
4,908,859 3/1990 Bennett et al. .. 380/10
4982325 1/1991 Tignor et al. .. seapoo 157) ABSTRACT
g’iﬁ’ggg ;ﬁgg% g’zg:;’;r;t Al s gg;’gaﬁo A computer system handling multiple applications wherein
5107143 3 /1993 Lary o al T mmm— 395425 groups of 1/0 services are accessible through separate appli-
5430845 7/1995 Rimmer ct el. . 395075 cation programming interfaces. Each application has mul-
5,491,813 2/1996 Bondy et al. .. 395/500 tiple application programming interfaces by which to access
5,513,365 4/1996 Cook et al. 395/800 different families of I/0 services, such as /O devices.
5,535,416 7/1996 Fecney et al. 3957834
5,537,466 771996 Taylor et al. ...coccocoiuereencen. 379/201 20 Claims, 8 Drawing Sheets
APPLICATION 201 J
FILE —{ BLOCK | SCS1
MANAGER STORAGE MANAGER
APl APl APl
~ ~ 2‘104
ﬂ 202 203 ﬂ USER MODE WORLD
J I KERNEL WORLD
205 206
< ; 1 27
FILE BLOCK SCSI
MANAGER STORAGE MANAGER
FPl SERVER FPI SERVER FPl SERVER
FILE BLOCK Scsl
MANAGER STORAGE MANAGER
FAMILY FAMILY FAMILY
208
DISK
DRIVER Sim

5,915,131

Sheet 1 of 8

Jun. 22, 1999

U.S. Patent

1 'Old

09l €21 q0u1NOD ezl
YOLVHINID 319 HOSHND aHVOaAI
2012 1 7 33 121
OvL HOSNIS | 9zl AVIdSIa
30V4 . | 9¢! anmg
O WOH. _.ﬁ , dW3L Pid} oel MSIA AddOTd
viZl HITIOHLINOD K> HITI0HYLNOD
901 oo on | %t dimo Y8l oinaa
AHOWIW [(——— 09 aNnos AdOO QHVH
“NO b
FLVIOA-NON -
MO0 obL
ol LINN 601
voi . V8L | zovduzini |, NV
AHOWAW] MOLVISNYHL K
NIV ~ . sng) ~
goLsngd - < LOL
1vo01 g S Sn8 o/l
80
140, col Z81 TVYNDIS P —s_mno_z
_ p—— P~ YIMOd
HOSSIOOHd | T 181 L A
Z £81 TYNDIS
1 NOLLYOIONI LOH =
¥StL g5l
Ha00oa || Houms < S
_> 25k ATddNnS
SININOdWOD HIMOd
HIHIO OL €

U.S. Patent Jun. 22, 1999 Sheet 2 of 8 5,915,131

L APPLICATION 201 J
FLe || BLOCK SCSI
MANAGER STORAGE MANAGER
APl APl API
) 1 x 204
ﬂ 202 T 203 ﬂ USER MODE WORLD
f %l | KERNEL WORLD
2_(35 U 2006 2_/07
" FILE BLOCK | scsl
MANAGER STORAGE MANAGER
FPI SERVER| | | |[FPI SERVER| | | |FPI SERVER
(1 FALE BLOCK scsl
MANAGER STORAGE MANAGER
FAMILY FAMILY FAMILY
208« <5 5 ¢ 5
wrs [([} oisk |]]]]] |
FILE DRIVER SiM
L |SYSTEM

FIG. 2

U.S. Patent Jun. 22,1999 Sheet 3 of 8 5,915,131

APPLICATION 302

PROCEDURE CALL l FAMILY
PROGRAMMING
FPI LIBRARY INTERFACE
301
303
KERNEL MESSAGE USER MODE WORLD
KERNEL MESSAGE KERNEL WORLD
FPI SERVER
304
PROCEDURE CALL l
FAMILY:
305
PROCEDURE CALLl PLUG-IN
_______________________ Y PROGRAMMING
<> INTERFACE
PLUG-IN 306
307

FIG. 3

U.S. Patent Jun. 22,1999 Sheet 4 of 8 5,915,131

. . 405

Xliby |4 Zliby
ﬂ ﬂ USER MODE WORLD
U KERNEL WORLD

1
- D
X Y yd)

FPI FPI FPI

SERVER SERVER SERVER
408 409 410

X Y z
401+ 411 412 413 | | 40
X FAMILY Y FAMILY Z FAMILY
IMPLEMEN- IMPLEMEN- IMPLEMEN-

TATION TATION TATION
414 415 416
2_S ?_S 2 S

PLUG IN PLUG IN < PLUG IN
417 a8 |, 419

406 407
y \, v
Ylib, Zliby,

U.S. Patent Jun. 22, 1999 Sheet 5 of 8 5,915,131

Dlib ,
503
IAD
USER MODE WORLD
KERNEL WORLD
Z
FPI
SERVER
Z 502
Z FAM".Y N 504
_—C{—L_F 0
PLUG IN 505]
501 [

FIG. 5

U.S. Patent Jun. 22,1999 Sheet 6 of 8 5,915,131
FAMILY FAMILY
A B
2_S)
SHARED CODE
— PLUG-IN AND/OR DATA — PLUG-IN |-
A B
/
e - 4
601 602

FIG. 6

U.S. Patent Jun. 22,1999 Sheet 7 of 8 5,915,131

APPLICATION 710

711

APls -

/]

USER MODE WORLD
KERNEL WORLD

701 A4

e ACCEP1
N
FPI SERVER EUNCTION

0 STREAMS

Y WORLD
PROTOCOL SINGLE

PROTOCOL]| | (TASK

PROTOCOL
>
NETWORK
—| DEVICE [~
DRIVER

FIG. 7

U.S. Patent Jun. 22,1999 Sheet 8 of 8 5,915,131

APPLICATION 801

API A

802

ﬂ USER MODE WORLD
H KERNEL WORLD

803

FPI SERVER

FAMILY
| so0a
WRAPPER
L 1asK
2_5S ‘
GENERIC

DRIVER
805

FIG. 8

5,915,131

1

METHOD AND APPARATUS FOR
HANDLING YO REQUESTS UTILIZING
SEPARATE PROGRAMMING INTERFACES
TO ACCESS SEPARATE 1/O SERVICES

FIELD OF THE INVENTION

The invenlion relates to the field of computer systems;
particularly, the present invention relates (o handling service
requests gencrated by application programs.

BACKGROUND OF THE INVENTION

Application programs running in computer systems often
access system resources, such as input/ouiput (1/0) devices.
These system resources are often referred 1o as services.
Certain sels of services (e.g., devices) have similar charac-
teristics. For instance, all display devices or all ADB devices
have similar interface requiremenis.

To gain access to I/O resources, applicalions generate
service requests to which are sent through an application
programming interface (API). The service requests are con-
veried by the API to a common set of functions that are
forwarded to the operating system to be serviced. The
operating system then sees that service requests are
responded to by the appropriate resources (e.g., device). For
instance, the operating system may direct a request fo a
device driver.

One problem in the prior art is thal service requeslts are not
sent directly to the I/0 device or resource. All service
requests from all applications are typically sent through (he
same API Because of this, all of the requests are converted
into a common set of functions. These common sel of
functions do not have meaning for all the various Lypes of
I/0 devices. For inslance, a high level request lo play a
sound may be converted into a write function to 4 sound
device. However, the write function is not the best method
of communicating sound data 1o the sound device. Thus,
another conversion of write data to a sound data format may
be required. Also, some functions do nol have a one-to-one
correspondence with the function set of some /O devices.
Thus, it would be desirable to avoid this added complexity
and fo take advantage of the similar characteristics of classes
of /O devices when handling I/O requests, while providing
services and an environment in which to run those services
that is tuned to the specific device needs and requirements.

SUMMARY OF THE INVENTION

A method and apparatus for handiing I/O requests is
described. In the present invention, the I/O requesis are
handled by the computer system having a bus and a memory
coupled to the bus that stores data and programming instruc-
tions. The programming instructlions inchide application
programs and an operaling system. A processing unil is
coupled 1o the bus and runs the operaling system and
application programs by executing programming instruc-
tions. Each application programs bhave multiple separale
programming interfaces available to access multiple sets of
I/O services provided through the operaling system via
SETvice requests.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be undersiood more fully from
the detailed description given below and from the accom-
panying drawings of various embodiments of the invention,
which, however, should not be taken to limit the invention
to the specific embodiments, bul are for explanation and
understanding only.

10

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 a block diagram of one embodiment in the com-
puter system of the present invention.

FIG. 2 is an overview of the I/O architecture of the present
invention.

FIG. 3 illustrates a flow diagram of I/O service request
handling according to the teachings of the present invention.

FIG. 4 illustrates an overview of the I/0 architecture of
the present invention having selected families accessing
other families.

FIG. § illustrates extended programming family interface
of the present invention.

FIG. 6 illustrates plug-in modules of different families
that share code and/or data.

FIG. 7 illustrates a single iask activalion model according
to the teachings of the present invention.

F1G. 8 illustrates a task-per-plug-in model used as an
activation model according to the teachings of ihe present
mvention.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

A method and apparatus handling service requests is
described. In the following delailed description of the
presen! invention numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. However, it will be apparent (o one skilled in the
art that the present invention may be practiced without these
specific details. In other instances, well-known structures
and devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the preseni invention.

Some portions of the detailed descriptions which follow
are presented in lerms of algorithms and symbolic repre-
sentations of operations on data bifs within a compuler
memory. These algorithmic descriptions and represenlations
are the means used by those skilled in the data processing
arts to most effectively convey the substance of their work
to others skilled in the art. An algorihm is here, and
generally, conceived to be a self-consistent sequence of steps
leading to a desired result. The sieps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantitics take the form of
electrical or magnetic signals capable of being siored,
transferred, combined, compared, and otherwise manipu-
lated. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bifs,
values, elements, symbols, characters, terms, nurmbers, or
the Like.

It should be bome in mind, however, that all of these and
similar lerms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated
that throughout the present invention, discussions utilizing
terms such as “processing” or “computing” or “calculating”
or “determining” or “displaying” or the like, refer to the
action and processes of a compuler system, or similar
electronic computing device, that manipulales and trans-
forms data represented as physical (elecironic) quantities
within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, iransmission or display devices.

The present invention also relates to apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may

5,915,131

3

comprise a general purpose compuler selectively activated
or reconfigured by a computer program stored 1o the com-
puter. The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose machines may be used with
programs in accordance with the teachings herein, or it may
prove convenient (o construct more specialized apparatus io
perform the required method steps. The required structure
for a variety of these machines will appear from the descrip-
ton below. In addition, the present iovention is not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be vsed to implement the teachings of
the invention as described herein.

Qverview of the Computer Sysiem of the Present Invention

Referring to FIG. 1, an overview of a compuler system of
the present invention is shown in block diagram form. The
present invenlion may be implemented on a general purpose
microcompuler, such as one of the members of the Apple
family of personal computers, one of the members of the
IBM personal computer family, or one of several other
computer devices which are presenlly commercially avail-
able. Of course, the present invention may also be imple-
mented on a multi-user system while encountering all of the
costs, speed, and function advanlages and disadvantages
available with these machines.

As illustrated in FIG. 1, the computer system of the
present invenlion generally comprises a local bus or other
communication means 100 for communicating information,
a processor 103 coupled with local bus 100 for processing
information, a random access memory {(RAM) or other
dynamic storage device 104 (commonly referred to as a
main memory) coupled with local bus 100 for storing
information and instructions for processor 103, and a read-
only memory (ROM) ar other non-volatile storage device
106 coupled with local bus 100 for storing mon-volatile
information and instructions for processor 103.

The computer system of the present invention also
includes an input/cutput (I/0) bus or other communication
means 101 for communication infermation in Lhe computer
system. A data storage device 107, such as a magnelic lape
and disk drive, including ifs associaled controller circuitry,
is coupled to I/O bus 101 for storing information and
instructions. A display device 121, such as a cathode ray
tube, liquid crystal display, etc., including its associated
controller circuitry, is also coupled to I/O bus 101 for
displaying information to the compuler user, as well as a
hard copy device 124, such as a plotter or printer, including
its associated controller circuitry for providing a visual
representation of the compuler images. Hard copy device
124 is coupled with processor 103, main memory 104,
non-volatile memory 106 and mass slorage device 107
through I/0 bus 101 and bus translator/interface unit 140. A,
modem 108 and an ethernct local area netwark 109 are also
coupled to 1/O bus 101.

Bus interface unit 14 is coupled to local bus 100 and I/O
bus 101 and acts as a gateway between processor 103 and
the [0 subsystem. Bus interface unit 140 may also provide
translation between signals being sent from units on one of
the buses to units on the other bus to allow [ocal bus 104 and
1/0 bus 101 to co-operate as a single bus.

An [/O controller 130 is coupled to /O bus 101 and
contrels access to certain I/O peripherals in the compuler
system. For instance, I/O controller 130 is coupled to
controller device 127 thal controls access to an alpha-
numeric input device 122 including alpha-numeric and other
keys, ete., for communicating information and command

20

25

as

40

15

50

55

60

65

4

selections to processor 103, and a cursor control 123, such
as a trackball, stylus, mouse, or trackpad, etc., for control-
ling cursor movement. The sysiem also includes a sound
chip 125 coupled 1o I/0 controller 130 for providing audio
recording and play back. Sound chip 125 may include a
sound circuit and ils dover which are used to generate
various audio signals from the computer system. I/O con-
troller 130 may also provide access to a floppy disk and
driver 126. The processor 103 controls 1/0 controller 130
with ils peripherals by sending commands to I/O controller
130 via local bus 100, inlerface unit 140 and 1/0 bus 101.

Batteries or other power supply 152 may also be included
lo provide power necessary to run the various peripherals
and integrated circuits in the computer syslem. Power sup-
ply 152 is typically a DC power source thal provides a
consiant DC power (o various units, particularly processor
103. Various unils such as processor 103, display 121, elc.,
also receive clocking signals (o synchronize operations
within the computer systems. These clocking signals may be
provided by a global clock generator or multiple clock
gonerators, cach dedicated to a portion of the compuler
system. Such a clock generator is shown as clock generator
160. In one embodiment, clock generator 160 comprise a
phase-locked loop (PLL) that provides clocking signals to
processor 103,

1/O controller 140 includes control logic (0 coordinate the
thermal management. Several additional devices are
included within the computer syslem to operate with the
control logic within I/O controller 140. A timer 150, a switch
153 and a decoder 154 are included to function in connection
with the control logic. In one embodiment, decoder 154 is
included within bus interface unit 140 and timer 150 is
included in [/O controller 130.

Switch 153 is a p-channel power MOSFEET, which has its
gale connected to the power signal 182, its source to the
power supply and ifs drain to processor’s Vo, pin.

In one embodiment, processor 103 is a member of the
PowerPC™ family of processors, such as (hose manufac-
tured by Motorola Corporation of Schaumberg, Ill. The
memeory in the computer system is initialized to store the
operaling system as well as other programs, such as file
directory routines and applicalton programs, and data input-
ted from I/O controller 130. In one embodiment, the aper-
ating, system is stored in ROM 106, while RAM 104 is
uhilized as the nternal memory for the compuler system for
accessing Jdata and application programs. Processor 103
accesses memory in the computer system via an address bus
within bus 100. Commands in connection with the operation
of memory in the compuler system are also sent from the
processor o the memory using bus 100. Bus 100 also
includes a bi-directional data bus to communicate data 1n
response to the commands provided by processor 103 under
the control of the operating system runping on it.

Of course, certain implementations and uses of the
present invention may neither require por include all of the
above components. For example, in cerlain implementations
& keyboard or cursor control device for inputting informa-
tion Lo the system may not be required. In other
implementations, it may not be required to provide a display
device displaying information. Furthermore, the computer
system may include additional processing wnits.

The operating system running on processor 103 takes care
of basic tasks such as starting the system, handling
nterrupts, moving data o and from memory 104 and
peripheral devices via inpulfoutput interface unit 140, and
managing the memory space in memory 104. In order to take
care of such operations, the operating system provides

5,915,131

5

multiple execution environments at different levels (¢.g.,
task level, interrupt level, ele). Tasks and execution envi-
ronmendis are known in the art.

Overview of the Present Invention

In one cmbodiment, the computer system runs a kernel-
based, preemptive, muliilasking operation system in which
applications and I/O services, such as drivers, operate in
separate prolection domains (¢.g., the user and kemel
domains, respectively). The user domam does not have
direct access 1o data of the kernel domain, while the kernel
domain can access dala in the user domain.

The computer system of the presenl invention uses one or
more separate families to provide I/0 services to the system.
Each /0 family provides a set of I/O services to the syslem.
For instance, 2 SCSI family and its SCSI interface modules
(SIMs) provide SCSI based services, while a file syslems
family and its installable file systems provide file manage-
ment services. In one embodiment, an /0 family is imple-
mented by multiple modules and software routines.

Each family defines a family programming interface (FPI)
designed to meet the particular needs of that family. An FPI
provides access to a given family’s plug-ins, which are
dynamically loaded pieces of software that each provide an
instance of the service provided by a family. For example,
within the file systems family (File Manager), a plug-in
implements file-system-specific services. In one
embodimenl, plug-ins are a superset of device drivers, such
that all drivers are plug-ins, but not atl plug-ins are drivers

Access to services is available only through an I/O
family’s programming interface. In one embodiment, hard-
ware is not directly accessible to application software, nor is
it vulnerable 10 application error. Applications have access
to hardware services only through an 1/0 family’s program-
ming interface. Also, the context within which an I/O service
runs and the method by which it interacts with the system is
defined by the I/O family to which it belongs.

FIG. 2 illustrates the relationship between an application,
several /O families, and their plug-ins. Referring to FIG. 2,
an application 201 requesis services through one or more
family FPlIs, shown in FIG. 2 as File Manager API 202,
Block Storage API 203, and SCSI Manager API 204, The

File Manager API 202, Block Storage AP1 203, and SCSI-

Manager API 204 are available to one or more applications
in the user domain.

In one embodiment, the service requests {rom application
201 (and other applications) are sent through File Manager
API 202, Block Storage API 203, and/or SCSI Manager AP1
204, eic., and flow as messages to family FPI servers
205-207, which reside in the kernel domain. Im one
embodiment, the messages are delivered using a kemnel-
supplied messaging service.

Any communijcation method may be used to commumni-
cate service requesls to J/O fumilies. In one embodiment,
kernel messaging is vsed between the FPI librares and the
FPI server for a given family, between different families, and
between plug-ins of ope family and another family. The
communication method used should be completely opaque
to a client requesting a family service.

Each of the FPI servers 205-207 permit access to a
distinct set of services. For example, File Manager FFPI
server 205 handles service for the file manager family of
services. Similarly, the Block Storage FPI server 206
bandles service requests for the block storage family of
Services

Note that FIG. 2 shows three families linked by kernel
messages. Messages flow from application level through a
family to another family, and so on. For instance, a service

20

25

30

40

45

50

55

60

65

6

request may be communicated from application level to the
file syslem family, resulting in one or more requests to the
block storage family, and finally one or more to the SCSI
family to complete a service request. Note that in one
embodiment, there is no hierarchical relationship among
families; all families are peers of each other.

Families in the Present Invention

A family provides a distinct set of services (o the system.
For example, one family may provide network services,
while another provides access to a variety of block storage
mediums. A family is associated with a set of devices that
have similar characteristics, such as all display devices or ail
ADB devices.

In one embodiment, ¢ach family is implemented in soft-
ware that runs in the computer system with applications. A
family comprises software that includes a family program-
ming interface and its associaled FPI library or librasies for
its clients, an FPI server, an activation model, a family
expert, a plug-in programming interface for its plug-ios, and
a family services library for its plug-ins.

FIG. 3 jllustrates the interaction between these compo-
nents. Referring to FIG. 3, a family programming inlerface
(FPI) 301 provides access to the family’s services to one ar
more applications, such as applicalion 302. The FPI 301 also
provides access to plug-ins from other families and to
syslem software. That is, an FPI is designed to provide
callers wiith services appropriate to a particular family,
whether those calls originale from in the user domain or the
operating system domain.

For example, when an application generzles dala for a
video device, a display FPI tailored to the needs of video
devices is used to gain access o display services. Likewise,
when an application desires to input or output sound data,
the application gains access to a sound family of services
through an FPI. Therefore, the present invention provides
family programming interfaces tailored 1o the meeds of
specific device families.

Service requests from application 302 (or other
applications) are made through an FPI library 303. In one
embodiment, the FPI library 303 contains code that passes
requests for service to the family FPI server 304. In one
embodiment, the FPI library 303 maps FPI function calls
into messages (e.g., kernel messages) and sends them 1o Lhe
FPI server 304 of the family for servicing. In one
embodiment, a family 305 may provide two versions of its
FPI library 303, one that runs in ¢he user domain and one that
muns in the operating system kernel domain,

In one embodiment, FPI server 304 runs i ihe kemel
domain and responds to service requests from family clients
(e.g., applications, other families, eic.). FPI server 304
responds (o a request according to the activation model (not
shown) of the family 305. In one embodiment, the activation
model comprises code that provides the runtime environ-
ment of the family and its plug-ins. For instance, FPI server
304 may pul a request in a queue or may call a plug-in
directly 10 service the request. As shown, the FPI server 304
forwards a request o the family 305 using a procedure call.
Note that if FPI library 303 and the FPI server 304 use kemmnel
messaging to communicate, the FPI server 304 provides a
message porl.

Each family 305 includes an expert (not shown) fo
maintain knowledge of the set of family devices. In one
embodiment, the expert comprises code within a family 305
that maintains knowledge of the set of family plug-ins
within the system. Al sysiem startup and each time a change
occurs, the expert is notified.

In ane embodiment, the expert may maintain the set of
family services using a central device regisiry in the system.

5,915,131

7

The expert scans the device regisiry for plug-ins that belong
to its family. For example, a display family expert locks for
display device entries. When a family expert finds an entry
for a family plug-in, it instantiates the plug-in, making it
available to clients of the family. In one embodiment, the
system notifies the family expert on an ongoing basis aboul
new and deleled plug-ins in the device regisiry. As a resuli,
the sel of plug-ins known to and available through the family
remains current with changes in system configuration.

Note that family experts do not add or alter informaltion in
the device registry nor do they scan hardware. In one
embodiment, the present invention includes ancther level of
families (i.e., low-level families) whose responsibility 1s lo
discover devices by scanning hardware and inslalling and
removing, information for the device registry. These low-
level families are the same as the families previously dis-
cussed above (i€, high level family) in other ways, i.e. they
have experts, services, an FPI, a library, an activation model
and plug-ins The low-level families” clients are usually
other families rather than applications. In one embodiment,
families are insulated from knowledge of physical connec-
tivity. Experis and the device regisiry are discussed in more
detatl below.

A plug-in programming interface (PPI) 306 provides a
family-to-plug-in interface that defines the eniry points a
plug-in supports so that it can be called and a plug-in-to-
family interface that defines the routines plug-ins call when
certain events, such as an I/0 completion, occur. In addition,
PPI 306 defines the path through which the family and its
plug-in exchange data.

A family services library (nol shown) is a collection of
routines that provide services to the plug-ins of a family. The
services are specilic to a given family and they may be
layered on top of services provided by the kernel. Within a
family, the methods by which data is communicated,
memory is allocated, interrupls are registered and Uming
services are provided may be implemenied in the family
services library. Family services libraries may also maintain
state information needed by a family to dispatch and manage
requests,

For example, a display family services library provides
routines that deal with vertical blanking (which is a concern
of display devices). Likewise, SCSI device drivers manipu-
late command blocks, so the SCSI family services library
contains routines that allow block manipulation. A family
services library that provides commonly needed routines
simplifies the development of that family’s plug-ins.

Through the PPI 306, a call is made to a plug-in 307. In
one embodiment, a plug-in, such as plug-in 307, comprises
dynamically loaded code that runs in the kernel’s address
space to provide an instance of Lhe service provided by a
family. For example, within the file syslems family, a plug-in
implements file-system-specific services. The plug-ins
understand how dala is formatted in a particular file sysiem
such as HES or DOS-FAT. On the other hand, it is not the
responsibility of file systems family plug-ins o obtain dala
from a physical device. In order o obtain data from a
physical device, a file system family plug-in communicates
ta, for instance, a block storage family. In one embodiment,
block storage plug-ins provide both media-specific drivers,
such as a tape driver, a CD-ROM driver, or hard disk driver,
and volume plug-ins that represent parfitions on a given
physical disk. Block storage plug-ins in turn may make SCSI
family APIL calls to access data across the SCSI bus on a
physical disk. Note that in the present invention, plug-ins are
a superset of device drivers. For instance, plug-ins may
include code that does not use hardware. For instance, file

10

15

20

25

30

33

40

45

50

55

60

65

8
system and block storage plug-ins are not drivers (in that
drivers back hardware).

Applications, plug-ins from other I/O families, and other
system software can request the services provided by a
family’s plug-ins through the family’s FPI. Note also that
plug-ios are designed to operate in the environmenl set forth
by their family activation model.

In one embodiment, a plug-in may compnses two code
sections, a main code section that runs in a task in the kernel
domain and an interrupi level code section that services
hardware interrupts if the plug-in 1s, for inslance, a device
dover. In one embodiment, only work (hat cannot be done at
task level in the main code section should be done at
mterrupt level. In one embodiment, all plug-ins have a main
code section, but not all have inlerrupl level code sections.

The main code section executes and responds to client
service requests made through the FPI. For example, sound
family plug-ins respond to sound family specific requests
such as sound playback mode setting (stereo, mono, sample
size and rate), sound play requests, sound play cancellation,
etc. The interrupt level code seclion executes and responds
to interrupls from a physical device. In one embodiment, the
interrupt level code section performs only essential
functions, deferring all other work to a higher execution
levels.

Also because all of the services associated with a par-
ticular family are tuned to the same needs and requirements,
the drivers or plug-ins for a given family may be as simple
as possible.

Family Programining Interfaces

In the present invention, a family provides either a user-
mode or a kernel-mode FPI library, or both, to support the
family’s FPIL. FIG. 4 illustrates one embodiment of the I/O
architecture of the present invention. Referring to FIG. 4,
three instances of families 401--403 are shown operating in
the kernel environment. Although three families are shown,
the present invention may have any number of familics.

In the user mode, two user-mode FPI libraries, Xlib,, 404
and Zlib, 405, are shown that support the FPIs for families
X and Z, respectively. In the kernel environment, two
kernel-mode FPI libraries, Ylib, 406 and Zlib,, 407, lor
families Y and Z, respectively, are shown.

Both the user-mode and the kermel-mode FPI libraries
present the same FPI to clients. In other words, a single FPI
is (he only way family services can be accessed. In one
embodiment, the user-mode and kernel mode libraries are
not the same. This may occur when certain operations have
meaning in one mode and nol the other. For example,
operations that are implermented in the user-mode library,
such as copying dala acress address-space boundaries, may
be unnecessary in the kernel library.

In response 1o service requests, FPI libraries 404 and 405
map FPI functions into messages for communicalion from
the user mode 1o the kernel mode. In one embodiment, the
messages are kernel messages.

‘The service requests from other families are generated by
plug-ins thal make calls on libraries, such as FPI libraries
406 and 407. In one embodiment, FP1 Libraries 406 and 407
map FPI functions inlo kernel messages and communicate
those messages to FPI servers such as Y FPI server 409 and
Z FPI server 410 respectively. Other embodiments may use
mechanisms other than kernel messaging to communicate
information.

In the example, the Z family 403 has both a user-mode
library 405 and a kernel-mode library 407. Therefore, the
services of the Z family may be accessed from both the user
mode and the kernel mode.

5,915,131

9

In response to service request messages, X FPI server
408, Y FPI server 409 and Z FPL server 410 dispatch
requests for services to their families In one embodiment,
each of FPI servers 408410 receives a kernel message,
maps the message into a FPI function called by the client,
and then calls the function in the family implementation
(414-416).

In on¢ embodiment, there is a one-to-cae correspondence
between the FPI functions called by clients and the function
called by FPI servers 408410 as a result. The calls from FPI
serves 408410 are transferred via interfaces 411-413. For
instance, X interface 411 represents the interface presented
to the FPI server 408 by the X family 414 It is exacily the
same as the FPI available to applications or other system
software. The same is true of Y interface 412 and Z interface
413.

The X family implementation 414 represents the family
activation model that defines how requests communicated
from server 408 are serviced by the family and plug-in(s). In
one embodiment, X family implementation 414 comprises
family code interfacing to plug-in code that completes the
service requests from application 400 via server 408.
Similarly, the Y family implementation 415 and Z family
implementation 416 define their family’s plug-in activation
models.

X plug-in 417, Y plug-in 418 and Z plug-in 419 operate
within the activation model mandated by the family and
provide code and data exports. The required code and data
exports and the activation model for each family of drivers
is family specific and different.

Extending Family Programming Interfaces

A plug-in may provide a plug-in-specific interface that
extends its functionality beyond that provided by its family.
This is vseful n a number of situations. For example, a block
storage plug-in for a CD-ROM device may provide a block
storage plug-in interface required of the CD-ROM device as
well as an inierface that allows knowledgeable application
software to control audio volume and to play, pause, stop,
and so forth. Such added capabilities require 2 plug-in-
specific APL

If a device wishes to export extended functionality outside
the family framework, a separale message port is provided
by the device and an interface library for that portion of the
device drver. FIG. 5 illustrates the extension of a family
programming interface.

Referning to FIG. 5, a plug-in module, Z plug-in 501,
extends beyond the Z family boundary o nterface ic family
implementation D 502 as well A plug-in that has an
extended API offers features in addition to those available to
clients through it’s family’s FPI In order to provide extra
services, the plug-in provides additional sofiware shown in
FIG. 5 as an interface libcary Dlib, 503, the message porl
code D FPI server 504, and the code that implements the
extra features D 505,

Sharing Code and Data Between Plug-ins

In one embodiment, two or more plug-ins can share dala
or code or both, regardless of whether the plug-ins belong to
the sarmme family or to different families. Sharing code or data
is desirable when a single device is controlled by two or
more families. Such a device needs a plug-in for each family.
These plug-ins can share libraries that contain information
about the device state and common code. FIG. 6 illustrates
two plug-ins that belong to separate families and that share
code and data.

Plug-ins can share code and data through shared libraries.
Using shared libraries for plug-ins that share code or data
allows ihe plug-ins o be instantiated independently without

20

25

30

as

45

55

60

63

10

encountering problems related to simullaneous instantiation.
Referring to FIG. 6, the first plug-in 601 to be opened and
initialized oblains access lo the shared libraries. At this
point, the first ptug-in 601 does not share access. When the
second plug-in 602 is opened and initialized, a new connec-
tion to the shared libraries is created. From (hat point, the
two plug-ins contend with each other for access io the shared
librares.

Sharing code or data may also be desirable 1o certain
special cases. For instance, two or more separate device
drivers may share data as a way lo arbilrate access (o a
shared device. An example of this is a single device that
provides network capabilities and real time clock. Each of
these functions belong to a distinct family but may originate
in a single physical device.

Activation Models in the Present Invention

An activation moedel defines how the family is imple-
mented and the environment within which plug-ins of the
family execute. In one embodiment, the activation model of
the family defines the tasking model a family uses, the
opportunities the family plug-ins have to execule and the
context of those opportunities (for instance, are the plug-ins
called al task time, during privileged mode interrupt
handling, and so forth), the knowledge aboul stales and
processes that a family and its plug-ins are expected to have,
and the portion of the service requested by the client thai is
performed by the family and the portion that is performed by
the plug-ins

Each model provides a distinctly different environment
for the plug-ins to the family, and different implementation
options for the family software. Examples of activation
models include the single-task model, the task-per-plug-in
model, and the task-per-request model. Each is described in
further detail below. Note that although three activation
models are discussed, the choice of activation model is a
design choice and different models may be used based on the
needs and requirements of the family.

In one embodiment, the activation model uses kernel
messaging as the interface between the FFI libraries that
family clients link lo and the FPI servers in order to provide
the asynchronous or syochronous behavior desired by the
family client. Within the activation model, asynchronous 1/0
requesls are provided with a task context. In all cases, the
implementation of the FPI server depends on the family
activation model.

The choice of aclivation model limits the plug-in imple-
mentation choices. For example, the activation model
defines the interaction between a driver’s hardware interrupt
level and the family environment in which the main driver
runs. Therefore, plug-ins conform fo the activation model
employed by its family.

Singie-Task WModel

One of the activalion models that may be employed by a
family is referred to herein as the single-task activation
madel. In the single-task activation model, the family runs
as a single monolithic task which is fed from a request queue
and from interrupts delivered by plug-ins. Requests are
delivered from the FPI [ibrary to an accepl function that
enqueues the request for processing by the family’s process-
ing task and wakes the task if it is sleeping. Quewng,
syochronization, and communication mechanism within the
family follow a set of rules specified by the family.

The interface between the FPI Server and a family imple-
mentation using the single-task model is asynchronous.
Regardless of whether the family client called a function
synchronously or asynchronously, the FPI server calls the
family code asynchronously. The FPI server maintains a set

5,915,131

11

of kernel message IDs that correspond to messages to which
the FPI server huas not yet replied. The concept of maintain-
ing kernel message IDs corresponding o pending I/0 server
requesl messages is well-known in the art,

Consider as an example family 700, which uses the
single-task activalion model, shown in FIG. 7. Referring to
FIG. 7, an application 710 is shown generating a service
request Lo the family’s APlIs 711. APIs 711 contain at least
one library in which service requests are mapped to FP1
functions. Fhe FPI functions are forwarded to the family’s
FPI server 701. FPI server 701 dispatches the FPI function
to family implementation 703, which includes vanous pro-
tocols and a nelwork device driver thal operale as a single
task. Each protocol layer provides a different level of
service.

The FPI server 701 is an accept function that executes in
response to the calling client via the FPI library (not shown).
An accept function, unlike a message-receive-based kernel
task, is able to access data within the user and kernel bands
directly. The accepl funclion messaging model requires that
FPI server 701 be re-enirant because the calling client task
may be precmpted by another chent task making service
requests.

When an /O request completes within the family’s
environment, a completion notification is sent back ta the
FPI server 701, which converts the completion notification
into the appropriate kernel message ID reply. The kernel
message [reply is then forwarded to the application that
generated the service request.

With a single-task model, the family implementation is
insulated from the kernel in that the implementation does il
not have kernel structeres, [Ds, or tasking knowledge. On
the other hand, the relationship between FPI server 701 and
family code 702 is asynchronous, and has inlernal knowl-
edge of data structures and communication mechanisms of
the family.

The single-task model may be advantageously employed
for families of devices that have one of several character-
istics: (1) each 1/O request requires little effort of the
processing unit. This applies not only to keyboard or mouse
devices but also to DMA devices (o the extent that the
processing unif need ‘only set up the transfer, (2) no more
than ome I/O request is handled at once, such that, for
instance, the family does mot allow interleaving of /O
requests. This might apply to sound, for example, or to any
device for which exclusive reservation is required (ie.,
where only one client can use a device al a time). The
opposite of a shared resource. Little cffort for the processor
exists where the processor initiates an I/O request and then
is not involved until the request completes, or (3) the family
Io be implemenied provides its own scheduling mechanisms
independent of the underlying kernel scheduling. This
applies 1o the Unix™ stream programming model.
Task-Per-Plug-In Model

For each plug-in instantiated by the family, the family
creales a task that provides the context within which Lhe
plug-in operaies.

FIG. 8 illustrates the task-per-plug-in model. Referring to
FIG. B, an application 801 generates service requests for the
family, which are sent to FPI 802. Using an FPI library, the
FPI 802 generates a kernel message according to the family
activation model 804 and a driver, such as plug-in deiver
805.

In one embodiment, the FPl server 803 is a simple
task-based message-receive loop or an accept function. FPI
server 803 receives requests from calling clients and passes
those requests to the family code 804, The FPI server 803 is

10

15

20

25

30

35

40

45

50

55

a0

a5

12

responsible for making the data associated with a request
available to the family, which in turn makes it available to
the plug-in that services the request. In some instances, this
responsibility inchides copying or mapping buffers associ-
ated with the original request message to move the data from
user address space to the kernel level area.

The family code 804 consists in part of one or more tasks,
one for each family plug-in. The tasks act as a wrapper for
the family plug-ins such that all tasking koowledge is
located in the family code. A wrapper is a piece of code that
insulates called code from the original calling code. The
wrapper provides services (o the called code that the cailed
code is not aware of.

When a plug-in’s task receives a service request (by
whatever mechanisms the family implementation uscs), the
task calls its plug-in’s enfry poiats, waits for the plug-in’s
response, and then responds to the service request.

The plug-in performs the work lo actually service the
request. Each plug-in does mol peed to know about the
Lasking model used by the family or how 1o respond to event
qucues and ather family mechanisms; it only needs to know
how to perform its particular function.

For concurrenl drivers, all queuing and state information
describing an I/O request is contained within the plug-in
code and data and within any queved requests. The FPI
lLibrary forwards all requesis regardless of the status of
outstanding I/G requests to the plug-in. When the client
makes a synchronous service request, the FPI library sends
a synchronous kernel message. This blocks the requesting
client, but the plug-in’s task continues to run within its own
task context. This permits clients 1o make requests of this
plug-in even while another client’s synchronous requesl is
being processed.

In some cases of a family, a driver (e.g., 805) can be either
concurrent or nonconcurrent. Nevertheless, clients of the
family may make synchronous and asynchronous requests,
even though the nonconcurrent drivers can handle only one
request at a time. The device manager FPI server 803 koows
that concurrenl drivers cannot handle multiple requests
concurrenily. Therefore, FPI server 803 provides a mecha-
nism to queue client requesis and makes no subsequent
requests to a task until the task signals completion of an
earlier I/O request.

When a client calls a family function asynchronously, the
FP1 library sends an asynchronous kernel message to the FPI
server and relums Lo the caller. When a client calls a family
funciion synchronously, the FPI library sends a synchronous
kernel message to the FPI server and does not retum to the
caller until the FPI server replies to the message, thus
blocking the caller’s execution until the I/0 request is
complete.

In either case, the behaviors of the device manager FPI
server 803 is exactly the same: for all incoming requests, it
either queues the request or passes it to the family task,
depending on whelher the targel plug-in is busy. When the
plug-in signals that the J/O operation is complete, the FPL
server 803 replies to the kernel message. When the FPI
library receives the reply, it either returns to the synchronous
client, unblocking its execution or it notifies the asynchro-
nous client about the I/0 completion.

The task-per-plug-in model is intermediate between Lhe
sipgle-task and task-per-requesi models in terms of the
number of tasks it typically uses. The task-per-plug-in model
is advantageously used where the processing of I/O requests
varies widely among the plug-ins.

Task-Per-Request Model

The task-per-request model shares the following charac-

teristics with the two activation models already discussed:

5,915,131

13

(1) the FPI library to FPI server communication provides the
synchronous or asynchronous calling behavior requesled by
family clients, and (2) the FPI library and FPI server use
kernel messages to communicate I/O requests between
themseives. However, in the task-per-request model, the FPI
server’s interface to the family implementation is com-
pletely synchronous.

In one embodiment, one or more inlernal family request
server tasks, and, opiionally, an accept function, wait for
messages on lhe family message port. An arriving message
containing information describing an I/0 request awakens
one of the request server tasks, which calls a family function
lo service the requesl. All slate information necessary to
handle the request is maintained in local variables. The
request server lask is blocked until the 1/O request
completes, at which time it replies to the kermel message
from the FPI library to indicate the result of the operation.
After replying, the request server task waits for more mes-
sages from the FPI library.

As a consequence of the synchrenous nature of the
interface between the FPI server and the family
implementation, code calling through this interface remains
running as a blockable task. This calling code is either the
request server task provided by the family o service the I/O
(for asynchronous I/O requests) or the task of the requester
of the [/O (for cerlain optimized synchronous requests).

The task-per-request model is advanlageously employed
for a family where an [/O request can require continuous
attention from the processor and multiple I/O requests can
be in progress simullaneously. A family that supports dumb,
high bandwidth devices is a good candidate for this model.
In one embodiment, the file manager family wses the task-
per-request model. This programming model requires the
family plug-in code to have tasking knowledge and to use
kernel facilities o synchronize multiple threads of execution
contending for family and system resources.

Unless there are multiple task switches within a family,
the tasking overhead is identical within all of the activation
models. The shortest task path from application to [/O is
completely synchronous because all code mns on the call-
er’s lask thread.

Providing at least one level of asynchronous call between
an application and an /O request results in better latency
resulis from the user perspective. Within the file system, a
task switch at a file manager API level allows a user-visible
application, such as the Finder™, Lo continue. The file
manager creates an I/O tasks to handle the I/O request, and
that task is used via synchronous calls by the block storage
and SCSI families to complete their part in /0 transaction
processing.

The Device Registry of the Present Invention

The device registry of the present invention comprises an
operating system naming scrvice that stores system infor-
mation. In one embodiment, the device registry is respon-
sible for driver replacement and overloading capability so
that drivers may be updated, as well as for supporting
dynamic driver loading and unloading,.

In one embodiment, the device registry of the present
invention is a iree-structured collection of entries, each of
which can contain an arbitrary number of name-value pairs
called properties. Family experts examine the device regis-
try to locate devices or plug-ins available 1o the family.
Low-level experts, discussed below, describe platform hard-
ware by populating the device regisiry with device nodes for
insertion of devices that will be available for use by appli-
cations.

In one embodiment, the device registry conlains a device
subtree pertinent to the I/0 architecture of the present
invention. The device tree describes the configuration and
conneclivity of the hardware in the system. Each entry in the
device tree has properties thal describe the hardware repre-

20

25

30

35

45

50

55

65

14

sented by the entry and that contain a reference to the driver
in control of the device.

Multiple low-level experts are used, where each such
expert is aware of the connection scheme of physical devices
to the system and installs and removes thal information in
the device tree portion of the device regisiry. For example a
low-level expert, referred to herein as a bus expert or a
motherboard expert, has specific knowledge of a piece of
hardware such as a bus or a motherboard. Also, a SCSI bus
expert scans a SCSI bus for devices, and installs an entry
into the device tree for each device that il finds. The SCSI
bus expert knows nolhing about a particular device for
which it installs an entry. As part of the installation, a driver
gets associated with the entry by the SCSI bus expert. The
driver knows the capabilities of the device and specifies that
the device belongs lo a given family. This information 1s
provided as part of the driver or plug-in descriptive siruciure
required of all plug-ins as part of their PPI implementation.

Low-level experls and family experts use a device registry
notification mechanism to recogmze changes in the system
configuration and 1o lake family-specific aclion 1o response
to those changes.

An example of how family experts, low-level experts, and
the device registry service operaie together to slay aware of
dynamic changes in system configuration follows: Suppose
a molherboard expert nctices thal a new bus, a new network
interface and new videc device have appeared within the
system. The motherboard expert adds a bus node, a network
node, and a video node to the device tree portion of the
device registry. The device registry service notifies all
software that registered 1o receive notifications of these
evenls.

Once notified that changes have occurred in the device
regisiry, the networking and video family experts scan the
device registry and notice the new eniry belonging to their
famnily type. Each of the experts adds an entry in the family
subtree portion of the device registry.

The SCSI bus expert notices an additional bus, and probes
for SCSI devices. It adds a node to the device registry for
each SCSI device that it finds. New SCSI devices in the
device registry result in perusal of the device registry by the
block storape family expert. The block storage expert
notices the mew SCSI devices and loads the appropriate
dnvers, and creates the appropriate device registry entries, to
make these volumes available to the file manager. The file
manager receives neiification of changes to the block slor-
age family portion of the device registry, and nofifies the
Finder™ that velumes are available. These volumes then
appear on Lhe user’s desktop.

Whereas, many alterations and modifications of the
present invention will no doubt become apparent to a person
of ordinary skill in the art after having read the foregoing
descriplion, it is (o be understood that the particular embodi-
ment shown and described by way of illustration are in no
way to be copsidered limiting. Therefore, reference o the
details of the vanious embodiments are not intended to limit
the scope of the claims which themselves recite only those
features regarded as essential to the invention.

Thus, a method and apparatus for handling 1/0 requesis in
a computer system has been described.

We claim:

1. A compuler sysiem comprising:

a bus;

al Teast one memory coupled to the bus for storing data

and programming instructions that include applications
and an cperaling syslem; and

a processing unit coupled to the bus and runming the

operating system and applications by execuling pro-
gramming instruclions, wherein an application has a
first plurality of tailored distinct programming inter-

5,915,131

15

faces available to access a pluralily of separate sets of
computer system services provided through ihe oper-
ating system of the computer sysiem via service
requesis,

2. The compuler system defined in claim 3 wherein cach
of the first plurality of (ailored distinct programming inter-
faces are (ailored to a type of I/O service provided by each
set of I/0 services

3. A computer system comprising:

a bus;

al least one memory coupled 1o the bus for stonng dala
and programming instructions that include applications
and an operating sysiem, wherein the operating sysiem
comprises a plurality of servers, and each of the first
plurality of programming interfaces transfer service
requests to one of the plurality of servers, wherein each
of the plurality of servers responds to service requests
from clients of the separate sets of 1/0 services; and

a processing unit coupled to the bus and running the
operating system and applications by executing pro-
graming instructions, wherein an application has a first
plurality of tailored distinct programming interfaces
available lo access a plurality of separate sets of I/O
services provided through the operating system via
service requests,

4. The computer system defined in claim 3 wherein
service requests are transferred as messages in a messaging
system.

5. The compuier sysicm defined in claim 4 wherein each
of the plurality of servers supports a message port.

6. The compuler system defined in ¢laim 3 wherein at
Ieast one of the plurality of servers is responsive o service
requests from applications and from at Jcast one other set of
I/O services.

7. The computer system defined in claim 3 wherein the
operating system further comprises a plurality of activation
models, wherein each of the plurality of activation medels is
associated with one of the plurality of servers to provide a
runtime environment for the set of 1/O services to which
access 1s provided by said one of the plurality of servers.

8. The compuier system defined in claim 7 wherein at
least one instance of a service is called by one of the plurality
of servers for execution in an environment set forith by one
of the plurality of activation models.

9. A computer system comprising:

a bus,

at least one memory coupled to the bus for storing data
and programming instructions that comprise applica-
tions and an operaling system;

a processing unit coupled to the bus and running the
operating system and applications by executing pro-
gramming instructions, wherein the operating system
provides computer syslem services through a tailored
distinct one of a pluralily of program struchures, each
tarlored distinct program structure comprising:

a first programming interface for receiving service
requests for a sel of computer system 1/0 services of
a first type,

a first server coupled lo receive service requests and to
dispatch service requests to the computer system [/O
services,

an aclivation model to define an operating environment
in which a service request is to be serviced by the set
of computer systemn 1/0 services, and

at least one specific instance of the set of computer
system I/O services that operate within the activation
model.

10

25

30

40

45

55

16

10. The computer system defined in claim 9 wherein the
first programming interface is responsive lo request from
applications and from other program structures.

11. The computer system defined in claim 9 wherein the
first programming inlerface comprises al least one library for
converting functions into messages.

1Z%. The computer system defined in claim 9 wherein the
first server receives a message corresponding a service
request from the first programming interface, maps the
message into a function called by the client, and then calls
the function.

13. The computer system defined in claim 9 wherein the
message comprises a kernel message.

14. A compuler syslem comprising:

a bus;

at teast one memory coupled to the bus for storing data
and programming instructions that comprise applica-
tions and an operating syslem;

a processing unit coupled (o the bus and running the
operating system and applicalions by execuling pro-
gramming instructions, wherein the operation system
provides input/output (I/Q) services through a tailored
distinct one of plurality of program structures, cach
tailored distinet program structure comprising:

a first programming interface for receiving service
requests for a set of I/O services of a first type,

a firsl server coupled to receive service requests and to
dispalch service requests to the [/O services,

an activation model to define operating environment in
which a service request is to be serviced by the sel of
1/O services, and

at least one specific instance of the set of IA) services
that operate within the activation model, wherein one
of the said at least one specific instances comprises
a service that accesses amother program structure,
and further wherein said one of said al least one
specific instances compunicates 1o said another pro-
gram structure of a second fype using a message
created using a library sent to the server of said
another program struciure.

15. The compuier system defined in claim 9 wherein two
or more I/O services share code or data.

16. The computer system defined in ¢laim 15 wherein said
two or more 1/Q services are different types

17. The compuler system defined in claim 9 wherein the
program structure further comprises a storage mechanism 1o
mainfain identification of available services to which access
is provided via the firsl server.

18. A computer implemented method of accessing 1/0
services of a first type, said computer implemented method
comprising the steps of:

generating a service request for a first type of I/0 services;

a tailored distinct family server, operaling in an operating
system environment and dedicated to providing access
lo service requests for the first type of 1/0 service,
receiving and responding to the service request based
on an activation model specific to the first type of [JO
services; and

a processor running 2n instance of the first type of I/O
services that is interfaces to the file server to satisfy the
service request.

19. The method defined in claim 18 wherein the service

requesl is generated by an application.

20. The method defined in claim 18 wherein the service
request is generated by an instance of an I/0 service running
in the operating syslem environment.

E I 3 LI

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NQ. : 5,915,131
DATED : June 22, 1999

INVENTOR(S) : Knight, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is heraby
corracted as shown below:

In column 15 at line 14 delete “the” and insert -- a
In column 15 at line 54 delete “” and insert -- ;-

In column 16 at line 20 delete “operation” and
insert - operating -- |

In column 16 at line 58 delete “interfaces” and
insert -- interfaced —

Signed and Sealed this
Eighteenth Day of January, 2000

Q. TODD DICKINSON

Cammissioner of Patents and Frademarks

Attesting Officer

EXHIBIT E

US005920726A

United States Patent (9 11 Patent Number: 5,920,726
Anderson [45] Date of Patent: Jul. 6, 1999
[54] SYSTEM AND METHOD FOR MANAGING 5477,264 12/1995 Sarbadhikari el al.o......... 348/231
POWER CONDITIONS WITHIN A DIGITAL 5,493,335 2/1996 Parulski et al.coeeverereenen. 3487233
CAMERA DEVICE 5,560,022 9/1996 Dunstan et al. ...ocoeeecmeeees 395/750.01
5634000 5/1997 WIChE voronsoeovereerrsrsoss e 395/182.08
[75] Inventor: Eric C. Anderson, San Jose, Calif OTHER PUBLICATIONS
[73] Assignee: Apple Computer, Inc., Cupertino, Martyn Williams, Review—NEC PC-DC401 Digital Stll
Calif. Camera, AppleLink Newbyles, Mar. 15, 1996, pp. 1-3.
. Primary Examiner—Ayaz R. Sheikh
[21] Appl No.: 08/873,412 Assistant Examiner-—Xuan M. Thai
[22] Filed: Jun. 12, 1997 Attorney, Agent, or Firm—Carr & Ferrell LLP; Gregory 1.
Koemer
[51] Int CL® s GO6F 1/30
1521 US.Cl oo 395775001 [57] ABSTRACT
[58] Field of Sear(jh -~ 395/750.01, 750.02, A system and method for recovering from a power fatlure in
395/750.03, 750.04, 750.05, 750.06, 182.22, a2 digital camera comprises a power mapager for defecting
182.2,182.12, 737, 575 and handling power failures, an interrupt handler for respon-
. sively incrementing a counter device, service routines which
[56] References Cited register to receive nolification of the power failure, and a
U.S. PATENT DOCUMENTS processor for evaluating the counter and providing notifica-
5283792 21994 Davies, Jr. ot al —— tion of the power failure 1o the service roulines which may
S AVIES, JL BLAL e 0 then assist the digital camera to recover from the power
5,359,728 10/1994 Rusmack et al. 395/575 failure.
5,386,552 1/1995 - 395/575
5,475,428 12/1995 . . 348263
5.475,441 12/1995 Paruleki et al. oooooieeemoeeeeeeeee 348/552 18 Claims, 11 Drawing Sheets

COMPUTER i bt :
| L8 s
: 11O :
116 : :
r‘“J ' Removable !
I I‘ I ! Memory :
: 344 i : :
349" ™ | G RAM HY T '
342 ' Power o D e : y L :
i | Manager Powerfail (| : N 352 354
E 34? b Counter . 35(1/?,\ E
[Sensarp. 339
366 ™ N Y2
Main
Pawer Baiteries
Supply ~_360
BB;ackap Secondary
J |_ atteries Pcwer Bus Imaging Dsvice
356
j Main Power Bus
362
1185 5

114

5,920,726

Sheet 1 of 11

Jul. 6,1999

U.S. Patent

911
Bur8ewy
31 pII

] 1

] 1

1 1

1 1

" :

] 1

" "

1 1

1 . 1

| m 301AS(] ‘\“\
" 1amnduon , ‘I"

1 /
1

“

i

&
o3
Lol
-
L |
Y
un

Sheet 2 of 11

Jul. 6, 1999

U.S. Patent

10§BIaUan
> Bururr
9cc H
9¢T
10853001]
IDJIBAUIOD) 108U3
ERIRETIV G e asv l— [eudis et wmmﬁm
Soeuy
S
(434 0gT
gzc N m * N
vee T m 0ZT
p| s1020]4
vez

(418

5,920,726

Sheet 3 of 11

Jul. 6,1999

U.S. Patent

£ Ol

ﬂw‘: ﬂmﬂ
Z29¢
sng lamod Ul ﬂ.
v
9q¢
aoinag BuiBewi sSng 1smod selioneq | m.
Alepuosag dnyoeg
09¢ ™~ Addng
soatialleg - Jomod
wmm\/\ uleiy
- PN e B e
: ,\m\)omm I31uno) \J!.mw‘m 5 m
" zce ! t || nepemog JobeuEN | |
;e ﬁ WO ! ~ NdO emod ||
" P 9%E NYHd A — ANTE
: ' i a7 :
fowa T R RS
: s|qesoway ! —
; m 911
m 0/l m
O ECECICTTEDREEEPEEEE T LIS ELE R . HALNANOD

U.S. Patent Jul. 6,1999 Sheet 4 of 11 5,920,726

CONTROL APPLICATION 400
N\
TOOLBOX
402
Vi
410~ Memory Manager
DRIVERS
_\}404
412\f First Level Interrupt Handler (FLIH)
414 LA Interrupt Service Routines (ISRs)-
KERNEL 406
SYSTEM CONFIGURATION ~ 108

Pl FIG. 4

350

U.S. Patent Jul. 6, 1999 Sheet 5 of 11 5,920,726

WORKING MEMORY
530
Y,
34z/ Powerfail Counter
53U Frame Buffers
5351/' IP Buffers
532
RAM DISK Y
SYSTEM AREA ’\1534

346 FIG. 5

o
N
=
S
N
)
T

Shect 6 of 11

Jul. 6,1999

U.S. Patent

9 Old

/

YADVNVIA 4IMOd

sindu] snoucIyouAsy P
<9
sﬂ ™~
smdinQ AD1 ¢ I0JRIAUDD) (1] \mow
059 049
A1D 0%9
QWL -feay] \ « / \
Y
B899 .
[OTIUCT) I9MO] -« \ BUNPRIN 91815 513315183y 3deLIa1U sng
99¢ /
sidniraju] -« J 9%9 099
¥99

]

\ sng walsAg
911

U.S. Patent

646

Jul. 6,1999 Sheet 7 of 11 5,920,726
REGISTERS
. 730
Power And Clock Control Register aw
(PCCR)
Power Manager Control Register I~/ 32
{PMCR)
Power System Condition Register 734
(PSCR) N
Power Manager Interrupt Register 736
(PMIR) ~

FIG. 7

U.S. Patent

Jul. 6, 1999

Sheet 8 of 11

SHIP State
(Without Power)

fsm

|

Backup And/Or Main Batteries Installed

IS'IZ

818

N

|

INIT State

814
f

A 4

User Or 1/0 Startup

816
f

-
o)

820

y

RUN State

832

4

A

User Or Timer Shutdown
Without Images In DRAM

User Or Timer Shutdown
with images In DRAM

Battery Failure Or
Instant-On Shutdown

r

5,920,726

| CLEAR State SAVEState | | RESUME State |
822 828 y y 834
User Or [/0 Startup Wake Up CPU
836
824 User Or |/0 Startup »
830 —__| Power-On Reset \838

To CPU

FIG. 8

U.S. Patent Jul. 6,1999 Sheet 9 of 11 5,920,726

940
(Apply Power To Camera)f

v

942
Set Powerfail Counter To Zero f

I

044
Register For Power Failure Notification S

¥

946
Run Control Application e
¢ f948
Sense Main Battery Voltage

Main Battery
Voltage Greater Than Threshold
Voltage?

YES

: 952
Generate Powerfail Interrupt f

v f954
Perform Powerfail Powerdown Sequence

v _f—955
Replace Batteries/Powerup Camera

l_ - 956
Perform Restart/Resume Sequence

v

958
Increment Powerfail Counter —f_

v

Notify Registrants About Power Failure Restart

I
FIG. 9

U.S. Patent Jul. 6,1999 Sheet 10 of 11 5,920,726

1010
Set PFAIL Bit In Power Manager S
Turn Off Non-Critical Subsystems

i : 1014

Signal CPU With An Interrupt e
l 1016

Stop Current Process —f—
! 1018

Set RESUME Bit In Power Manager f
J' 1020

Force Full DRAM Refresh e

v

1022
Force DRAM Into Self-Refresh Mode f

l 1024
Signal Power Manager To Shut Down

¢ ‘ 1026
Halt. CPU —f—
v

1028
Remo_ve Power From Main Power Bus -f-

End

FI1G. 10

U.S. Patent Jul. 6, 1999 Sheet 11 of 11 5,920,726

1128
Wake Up Sighal?

Encugh
Power To Start?

| Start Main Power Supply |-—f_1 132

1134

1144 1138 ?
\i Restart CPU | | restartcpu |J_
l 1136 _i
1146 1140
-\-i Issue CPL) Reset | | Resume Normal DRAM Operation]f
1148 l
r
\I Resume Normal DRAM Operation I !
Resume f'l 142 ;
i Current i
1150 Process
\-l Boot System I
1152 @ YES
NO
1154 ™ Format New Recover RAM Disk f1 156
RAM Disk And Mount

v :
1158 —/—{ Run Control Applicati?‘__@

FIG. 11

1

SYSTEM AND METHOD FOR MANAGING
POWER CONDITIONS WITHIN A DIGITAL
CAMERA DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application relates to co-pending U.S. patent appli-
cation Ser. No. 08/702,246, entitled “System And Method
For Recovering From A Power Failure Within A Digilal
Camera Device,” filed on Aug. 23, 1996, and to co-pending
U.S. patent application Ser. No. 08/719,264, entitled “Sys-
lem And Method For Conserving Power Within A Backup
Battery Device,” filed on Sep. 24, 1996, and to copending
U.S. patent application Ser. No. 08/628,549, entitled “Sys-
term And Method Using An LCD Indicator To Provide Status
Of A Digital Camera Storage Device,” filed on Apr. 10,
1996, which are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to digital cameras and
more particularly to a sysiem and method for managing
power conditions within a digital camera device.

2. Description of the Background Art

Current photographic technologies include various digital
camera devices which capture image data by elecironically
scanning selected target objects. Digilal camera devices
typically process and compress the captured image data
before storing the processed image data inio inlemal or
exlernal memory devices. Furthermore, these digilal camera
devices may ulilize multiple software roulines running
within a multi-threading environment to perform the various
steps of capluring, processing, compressing and storing the
image data.

Protecting the caplured image dala during the processing
and compression stages (prior (o final storage in non-volatile
memory) is an important consideration of both camera
manufacturers and camera users. Camera designers must
therefore anticipate the occurrence of any events which
might endanger the integrity of the caplured image data.

A power failure in a digilal camera device is one example
of an event which might sericusly jeopardize unprotected
image data within the digital camera. For example, the
digital camera ypay be performing a eritical process al the
time a power failure occurs. The intervening power failure
may desiroy the effect of the eritical process and thus
damage the image data or cause the digital camera [o
malfunction.

Furthermore, a power failure may interrupt various cam-
era functions which typically resume their respeciive lasks
whenever power is restored to the digital camera. The
interrupted functions, however, would be unaware thal a
power failure had intervenmed. The interrupted functions
would thus be unaware of the hardware reset which results
[rom reapplying power after the power failure. This confu-
sion between lhe system software and hardware would
potentially endanger camera operations

For the foregoing reasons, and because of other serious
consequences of power failures in digital cameras, an
improved syslem and method is needed for managing power
conditions within a digital camera device, according lo the
present invention.

SUMMARY OF THE INVENTION

In accordance with the present invention, a syslem and
method are disclosed for recovering from a power failure

5,920,726

10

15

30

35

40

45

50

55

60

65

2

within a digilal camera device. The preferred embodiment of
the present invention includes central processing unil, a
powerfail counter, a first-level interrupt handier, various
Interrupt service routines, a power manager and a vollage
S60S0T

In the preferred embodiment, the first-level interrupt
handler initially sets the powerfail counter to a value of zero.
Various inferrupt service routines (each corresponding to a
specific camera function or operation) may regisier them-
selves with the first-level interrupt handler (which coordi-
nates all interrupts within the digital camera) to receive
notification of an inlervening power failure.

The power rmanager monilors the voltage sensor lo delect
a power failure within the digital camera. After detecting a
power failure in which the camera operating power is less
than a specified threshold value, the power manager gener-
atcs a powerfail interrupt. The central processing unit
responsively performs a powerfail powerdown sequence to
preserve image data contained within the digitz] camera at
the time of the mtervening power failure. The power man-
ager removes operating power from all non-critical sub-
systems and switches the critical subsystems to a backup
power supply. The central processing unit and the camera’s
volatile memory are thus maintained in a static low-power
mode, with all states preserved intact.

In the preferred embodiment, the first-level interrupt
handler increments the powerfail counter to record the
intervening power failure. The first level interrupt handler
then notifies the registered interrupt service routines about
the power failure restart and corresponding hardware reset.

After the power failure is remedied, the ceniral processing
unit performs a restart sequence lo preserve any stored
image data and to return the digital camera to a nommal
operational mode. The camera powerup sequence is per-
formed in response to the contents of registers in the power
manager. The power manager registers advantapeously con-
lain corresponding bits which indicate the conditions present
in the camera at the time that the camera shutdown occurred.
The present invention thus preserves the inlegrity of cap-
tured image dala and effectively assists the digrtal camera to
recover from an iotervening power failure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a digital camera according to
the present invention; ‘

FIG. 2 is ablock diagram of the preferred embodiment for
the imaging device of FIG. 1,

FIG. 3 is a block diagram of the preferred embodiment for
the computer of FIG. 1;

FIG. 4 is a memory map showing the preferred embodi-
ment of the Read-Only Memory of FIG. 3;

FIG. 5 is a memory map showing the preferred embedi-
ment of the Dynamic Random-Access Memory of FIG. 3;

FIG. 6 is a block diagram of the preferred embodiment of
the power manager of FIG. 3,

FIG. 7 is a block diagram of the preferred embodiment of
the registers of FIG. 6;

FIG. 8 1s a flowchart of the preferred power states for the
power manager of FIG. 3;

FIG. 9 is a flowchart of preferred general method steps for
recovering from a power failure according (o the present
invention;

FIG. 10 is a Howcharl of preferred method steps for
performing a powerfail powerdown sequence according fo
the present invention; and

5,920,726

3

FIG. 11 is a flowchart of preferred method steps for
performing a powerup sequence according to the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention discloses a sysiem and method for
managing power conditions within a digital camera device
and comprises a power manager for detecting and handling
power failures, an interrupt handler for providing notice of
power failures, service routines which register to receive
notification of the power failure, and a processor for respon-
sively controlling the digital camera during recovery from
the power failure.

Relernng now lo FIG. 1, a block diagram of a camera 110
is shown according to the present invention. Camera 110
preferably comprises an imaging device 114, a sysiem bus
116 and a computer 118. Imaging device 114 is optically
coupled fo an object 112 and electrically coupled via systemn
bus 116 to computer 118. Once a photographer has focused
imaging device 114 on object 112 and, using a capture
button or some other means, insirucled camera 110 to
capture an image of object 112, computer 118 commands
imaging device 114 via systerm bus 116 fo caplure raw image
data representing object 112. The captured raw image dala is
transferred over system bus 116 to compuier 118 which
performs various image processing functions on the image
data before storing it in its inlemal memory. System bus 126
also passes various stalus and control signals between imag-
ing device 114 and computer 118.

Referring now to FIG. 2, a block diagram of the preferred
embodiment of imaging device 114 is shown. Imaging
device 114 preferably comprises a lens 220 having an iris, a
filter 222, an image sensor 224, a timing generator 226, an
analog signal processor (ASP) 228, an analog-to-digilal
(A/D) converter 230, an inlerface 232, and one or more
motors 234.

U.S. patent application Ser. No. 08/355,031, entitled “A
Systern and Method For Generating a Contrast Overlay as a
Focus Assist for an Imaging Device,” filed on Dec. 13, 1994
is incorporated herein by reference and provides a detailed
discussion of the preferred elements of imaging device 114
Briefly, imaging device 114 captures an image of object 112
via reflected light impacting image sensor 224 along optical
path 236. Image sensor 224 responsively generates a set of
raw image dala represcnting the caplured image 112. The
raw image data is then routed through ASP 228, A/D
converler 230 and inlerface 232. Interface 232 has outputs
for controlling ASP 228, molors 234 and timing generator
226. From interface 232, the raw image data passes over
system bus 116 1o computer 118.

Referring now to FIG. 3, a block diagram of the preferred
embodiment for computer 118 is shown. System bus 116
provides conneclion paths between imaging device 114,
power manager 342, central processing unit (CPU) 344,
dynamic random-access memory (DRAM) 346, input/
output interface (I/0) 348, read-only memory (ROM) 350,
and connector 352. In the preferred emboediment, removable
memory 354 may also connect lo systerm bus 116 via
connector 352.

Power manager 342 communicales via line 366 with
power supply 356 and coordinates power management
operaticns for camera 110 as discussed below in conjunction
with FIGS. 6-11. CPU 344 typically includes a conventional
processor device for controlling the operation of camera 110.
In the preferred embodiment, CPU 344 is capable of con-

5

30

40

45

&0

65

4

currently running multiple soltware roulines to control the
various processes of camera 118 within a multi-threading
environment. DRAM 346 is a contiguous block of dynamic
memory which may be sclectively allocated to various
storage functions by computer 118. DRAM 346 includes a
powerfail counter 347 which is incremented each time a
power failure occurs in power supply 356. DRAM 346 and
powerfail counter 347 are further discussed below in con-
junction with FIGS. 9-11

1/0 348 is an interface device allowing communications
to and from computer 118 For example, I/O 348 permits an
external host computer (not shown) to connect to and
communicate with computer 118. I/0 348 also permits a
camera 110 user to communicate with camera 110 via a set
of externally-mounted user contrels and via an external LCD
display panel. ROM 350 typically comprises a conventional
nonvolatile read-only memory which slores a set of
compuler-readable program instructions to control the
operation of camera 110. ROM 350 is further discussed
below in conjunction with FIG. 4. Removable memory 354
serves as an additional image data storage area and is
preferably a non-volatile device, readily removable and
replaceable by a camera 110 user via connector 352. Thus,
a user who possesses several removable memories 354 may
replace a full removable memory 354 with an empty remov-
able memory 354 to cffectively expand the picture-taking
capacity of camera 110. In the preferred embodiment of the
present invention, removable memory 354 is- typically
implemented using a flash disk.

Power supply 356 supplies operaling power Lo the various
components of camera 110. In the preferred embodiment,
power supply 356 provides operating power Lc 2 main power
bus 362 and also to a secondary power bus 364. The main
power bus 362 provides power lo imaging device 114, 1/O
348, ROM 350 and removable memory 354. The secondary
power bus 364 provides power to power manager 342, CPU
344 and DRAM 346.

Power supply 356 15 connected (o main batteries 358 and
also to backup batteries 360. In the preferred embodiment,
a camera 110 user may also connect power supply 356 to an
external power source. During normal operation of power
supply 356, the main batteries 358 provide operating power
to power supply 356 which then provides the operating
power to camera 110 via both main power bus 362 and
secondary power bus 364,

During a power failure mode in which the main batteries
358 have failed (when their output voltage has fallen below
a minimum operational voltage level) the backup batteries
360 provide operating power to power supply 356 which
then provides lhe operaling power only to the secondary
power bus 364 of camera 110¢. Selected components of
camera 110 (including DRAM 346) are thus protecied
against a power failure in the main batteries 358.

Power supply 356 preferably also includes a flywheel
capacitor connected to the power Ime coming from the main
batteries 358. If the main batleries 358 suddenly fail, the
flywheel capacitor temporarily maintains the voltage from
the main batteries 358 at a sufficient level, so that computer
118 can protect any image dala currently being processed by
camera 110 before shutdown occurs.

Voltage sensor 359 detects the voltage supplied by main
balteries 358 and responsively provides the detected voltage
reading to power manager 342. The operation of power
manager 342, power supply 356 and voltage sensor 359 are
further discussed below in conjupction with FIGS. 6-11.

Referrimg now to FIG. 4, a memory map showing the
preferred embodiment of read-only memory (ROM) 350 is

5,920,726

5

shown. In the preferred embodiment, ROM 350 includes
control application 400, ivolbox 402, drivers 404, kernel 406
and system configuration 408. Control application 400 com-
prises program instruciions for controlling and coordinating
the various functions of camera 110. Toolbox 402 contains
selected function modules including memory manager 410
which 1s controlled by control application 400 and respon-
sively allocates DRAM 346 siorage locations depending
upon ibe needs of computer 118 and the sets of received
image data.

Drivers 404 control various components of camera 110
and include a first level interrupt handler (FLIH) 412 and
various interrupt service routines (ISRs) 414. In the pre-
ferred embodiment, FLIH 412 is a software routine which
coordinates all interrupts within camera (110. FLIH 412
typically handles ordinary non-critical inferrupts and also
handles non-maskable crilical interrupts such as a power
failure in main batleries 358. FLIH 412 preferably commu-
nicales with the various ISRs 414 which are each designed
1o handle a specific corresponding inlerrupt within camera
110. FLIH 412 notifies the appropriate ISRs 414 via a
“signal” when the interrupts occur. A signal is a mechanism
used by multi-tasking operating systems for interprocess
communications and synchronization.

For example, a camera 110 user may request zoom motor
234 to perform a zoom operation using lens 220. When the
requested zoom process is complete, an interrupt is gener-
ated 1o indicale that zoom molor 234 and lens 220 have
reached their destination positions. The particular ISR 414
which coresponds to the foregoing zoom process then
responsively handles the generated interrupl and provides a
status updale lo higher-level routines, if necessary. In pre-
ferred embodiment, kemel 406 provides a range of basic
underlying services for the camera 110 operating system.
System configuration 408 performs inilial start-up routines
for camera 110, including the boot routine and initial system
diagnostics.

Referring now to FIG. 5, 2 memory map showing the
preferred embodiment of dynamic random-access memory
(DRAM) 346 is shown. In the preferred embodiment,
DRAM 346 includes working memory 530, RAM disk 532
and system area 534. Working memory 530 includes a
powerfail counter 347, frame buffers 536 (for initially stor-
ing sels of raw image data received from imaging device
114) and image processing (IP) buffers 538 (for temporarily
storing image data during the image processing and com-
pression 420 process). In the preferred embodiment, power
fail counter 347 stores a value which first-level interrupt
handler 412 preferably increments each time vollage sensor
359 detects a power failure in main batteries 358. Powerfail
counter 347 is further discussed below in conjunction with
FIGS. 9-11. Working memory 530 mav also contain various
stacks, data structures and variables used by CPU 344 while
executing the software routines used within compuier 118.

RAM disk 532 is a memory area used for storing raw and
compressed image dala and Lypically is organized in a
“sectored” format similar to that of conventional hard disk
drives. In the preferred embodiment, RAM disk 532 uses a
well-known and standardized file system to permit exlernal
host computer sysiems, via I/0 348, to readily recognize and
access the data stored on RAM disk 532. System area 534
typically stores data regarding sysiem errors {for example,
why a system shutdown occurred) for use by CPU 344 upon
a restart of compuler 118.

Referring now lo FIG. 6, a block diagram of the preferred
embodiment of power manager 342 (FIG. 3) is shown.

10

15

20

30

40

45

50

55

60

65

6

Power manager 342 includes bus interface 640, registers
046, state machine 650 and LCD generator 654. Bus infer-
face 640 is connscted, via line 660, 10 system bus 116 and
may thus handle slave access of registers 646 within power
manager 342 (1ypically by CPFU 344).

Registers 646 include a PCCR register, a PMCR regisler,
a PSCR register and a PMIR register each described below
in conjunction with FIG. 7. Registers 646 also include
external input pins (not shown) that asynchronously affect
selecled bit transitions within registers 646. These input pins
include PMRST_, MBFAIL._, MBALERT_, PWRSW_,
IOSYS_ , and USRRST_ . The effect of these pin transitions
is also dependent on the current state of power manager 342.
The following discussion describes the above-referenced
register 646 input pins and the resulls of asserling each of
these input pins via line 662.

A logic level of value “0” on the PMRST__ pin causes all
bits in the PCCR, PMIR and PMCR registers to be cleared
to their inactive slaies. This action occurs regardless of the
current state of power manager 342. In response, power
manager 342 will then transition to the IDLE__OFF siate
(described below). A “1 to 0" transition on the MBFAIL pin
causes all bits in the PCCR register 1o be immediately
deasserted if power manager 342 is in the IDLE_ON slate
(described below). This transition will also set the PwrFail
bit to 1 in the PMCR register, the MBFail bit to 1 in the
PMIR register, and assert the IRQO__ pin. If power manager
342 is in any other state than IDLE__ON, any transition on
this pin will be ignored. A “1 to 0 (ransition cn the
MBALERT pin will cause the Strobe power and control bits
in the PCCR to be immediately deasserted if power manager
342 is in the IDLE_ ON state, This iransition will also sct the
MBAlert bil in the PMIR register to 1 and activate the
IRQ1_ power alert interrupt. If power manager 342 is in any
other state than IDLE__ON, any transition on this pin will be
ignored.

In the preferred embodiment, 2 momentary switch may be
used 1o cause 2 “1 to 07 transition on the PWRSW__pin. The
momentary “1 1o 07 transition on the PWRSW__ pin will
immediately set the UscPwr bit to 1 in the PMCR register if
power manager 342 is in the IDLE_ OFF state. It will also
mitiate the PowerUp state sequencing. Furthermore, the
momentary “1 to 07 transition on the PWRSW__ pin will
immediately set the PDReq bil in the PMIR register if power
manager 342 is in the IDLE__ON state. It will also cause Lhe
assertion of the IRO2__ pin. If power manager 342 is in any
ather state than IDLE__ ON or IDLE_ OFF, the momenlary
transition on this pin will be ignored.

In an alternate embodiment without the above-mentioned
momentary switch, a “1 to 0” transition on the PWRSW__
pin will immediately set the UstPwr bit to 1 in the PMCR
register if power manager 342 i s in the IDLE_ OFF state.
It will also initiate the PowerUp state sequencing. If power
manager 342 is in any other state than IDLE_ OFF, the “1 to
07 transition on this pin will be ignored.

A “0 to 17 transition on the PWRSW__ pin will immedi-
ately set the PDReq bit in the PMIR register if power
manager 342 is in the IDLE__ON state. It will also cause the
assertion of the IRQ2__ pin. If power manager 342 is in any
other state than IDLE_ ON, the “0 to 1” transition on this pin
will be ignored.

A“1 to 0” transition on the IOSYS__ pin will immediately
set the TOPwr bit to 1 in the PMCR register if power
manager 342 1s in the IDLE_ OFF state. I will also initiate
the PowerUp state sequencing, A “1 to ("’ transition on the
1I0SYS__ pin will immediately set the IOReq bit in the PMIR

5,920,726

7

register if power manager 342 is in the IDLE_ON state.
This transition will also cause the assertion of the IRQ3__
pin. A “1 to 07 trapsition oo the USRRST_ pin will
immediately set the USRRST bit to 1 in the PMCR register
if power manager 342 is in the IDLE_ON state. This
transition will also cause power manager 342 to issue a CPU
344 soft reset (SRST) for 30 us (one clock pulse of the 32
KHz real-time clock), starting at the next rise of PMCLK.
CPU 344 will then hold SRST low for 16 ms. The PCCR and
PMIR registers are also clearsd. Additionally, all bits in the
PMCR are cleared except for the USRRST bit. If power
manager 342 is in any other state than IDLE_ON, any
trapsition on this pin will be ignored. Power manager 342
will remain in the IDLE_ ON state.

Registers 646 generale a series of inlermupts onio line 664
in response [0 various condilions and states in camera 110.
Registers 646 and the generated interrupls are further dis-
cussed below in conjunction with FIGS. 7 and 8. Registers
646 also provide signals to LCD generalor 654 via line 670.
LCD generalor 654 responsively generates and provides
LCD outputs to an LCD display unit (not shown) via line
672. The LCD display unit is preferably mounted on the
exterior surface of camera 110 and forms parl of a user
interface for camera 110.

In ihe preferred embodiment, power manager 342 has
three main transition events called PowerUp, PowerDown
and PowerDown w/Save. The PowerlUp event occurs when
power manager 342 is in the IDLLE__OFF state and one of
three external events occur. These external events occur
when the user tums on the camera (PWRSW_low), when a
timer wakeup (TEXP high) is signaled, and when the hosl
attempts 10 connect to the camera (IOSYS_low). The Pow-
erDown event occurs when power manager 342 is in the
IDLE__ON slate and Lhe software wriles a 1 Lo the PwrDwn
bit in the PMCR and the MemSave bit in the PMCR is sel
to 0. The PowerDown w/Save occurs when power manager
342 is in the IDLE_ ON state and the software writes a 1 1o
the Pwrdwn bit in the PMCR and the MemSave bit in the
FMCR is sel to 1.

Power manager 342 includes state machine 650 which
preferably has eight main synchronous states. The following
is a description of the main stales and the events that trigger
a Lransition into the particular state. The [DLEE_ OFF state is
the initial state after PMRST__is released. For the PowerUp
sequence, power manager 342 starts from IDLE__OFF,
moves through two more states and ends with the IDLE_
ON state.

The IDLE__OFF_ SAVE state is entered from the IDLE_
ON state when the MemSave option is specified. For the
PowerUp sequence, power manager 342 starts from IDLE
OFF_SAVE, maves through two more states and ends with
the IDLE__ON stale. The IDLE__ON is the end state for a
PowerUp sequence. In the PowerDown sequence, power
manager 342 starts from IDLE. ON and ends in IDLE__
OFF or IDLE_ OFF__SAVE.

In the preferred embodiment, there are two types of
PowerDown sequences called PWRDWN_NORM and
PWRDWN_SAVE. The PWRDWN_NORM sequence
executes varous steps lo PowerDown camera 110 before
entering an idle stale. This sequence is execuled if the
software writes a 1 to the PwrDwn bit in the PMCR when
power manager 342 is in the IDLE_ON siate and the
MemSave bit in the PMCR is programed to 0. The
PWRDWN_ SAVE sequence executes varicus steps to Pow-
erDown camera 110 before enlering an idle stafe. This
sequence is entered if the sofiware writes a 1 to the PwrDwn

20

a5

30

40

45

55

8
bit in the PMCR when power manager 342 is 1o the
IDLE_ON slale and the MemSave bit in the PMCR is
programmed to 1.

The CNT__PRE_ WAIT state is used o wait for voltage
sensor 359 to start operation. When the desired time has
passed, power manager 342 will continue the PowerUp
sequence and move io the CNT_ WAIT state which is used
to wail for the test of main batteries 358 to complete. When
the desired time has passed, power manager 342 will con-
tinue the PowerUp sequence and move to the POR_IRQ__
WAIT stale.

The CNT_PRE_WAIT SAVE is also used to wait for
vaoltage sensor 359 to siart operation. When the specified
time has passed, power manager 342 continues the
(PowerUp sequence and also switches to the CNT_WAIT__
SAVE state. The CNT_WAIT_SAVE state is used to wait
for testing of main bateries 358 to complete while the
MemSave is specified. When the desired time has passed,
power manager 342 will continve the PowerlUp sequence
and move to the POR__IRQ_ WAIT state. The POR_JRQ__
WAIT state is used to wait one PMCLK cyele for power
manager 342 lo drive the POR__ signal or to deassert lhe
IRQO__ interrupt before transilioning to the IDLE_ON
state.

State machine 650 receives, via line 668, a real-time clock
which preferably operates at a 32 KHz rate. In the preferred
cmbodiment, slate.machine 650 also gencrales a power
contrel signal which is supplied to power supply 356 via line
366 to advantageously control the operation of power supply
356 according to the present invention.

Referring now to FIG. 7, a block diagram of the preferred
embodiment of registers 646 is shown. In the preferred
embodiment, registers 646 include power and clock control
register (PCCR) 730, power manager control register
(PMCR) 732, power system condition register (PSCR) 734
and power manager interrupt register (PMIR) 736.

PCCR 730 1s an 8-bil read/wrile register which includes
the following binary fields. Bits 67 of PCCR 730 corre-
spond to a field named 1/O. The 10 field is an I/O Enable and
these bits control which I/0 system is engaged and in full
power mode. If the 1/0 field is 00, then no I/O is enabled and
if the I/O field 1s 01, then the serial port is enabled. If the 1/O
ficld is 10, then USB 1s cnabled and if the 1/O field is 11, then
IRDA is enabled.

Bit 5 of PCCR 730 corresponds to a field named LCD Cixl.
The LCDCrtl field is a L.CD and backlight power coatrol. Bit
4 of PCCR 730 corresponds (o a field named AuvdicEn. The
AudioEn field is an audio system clock and power enable.
Bit 3 of PCCR 730 comresponds to a field named ICHC1k.
The ICHCIk field is an ingage capture head clock enable. Bit
2 of PCCR 730 corresponds to a field named ICHPwr. The
ICHPwr field is an image capture head power control {and
also controls LED power). Bits 0-1 of PCCR 730 corre-
spond te a field named ICHSub. The ICHStD field is an
image capture head strobe power control and level. Both bits
are cleared by the Power Alert condition.

All bits of PCCR 730 are placed in their deasserted stale
by the Power Fail condition. The ICHstrh bits are cleared by
the Power Alert condition. All bits correspond to pins on the
power manager 342 ASIC. Software controls the setting or
clearing of the biis lo power down subsystems. All bits are
placed in their deasserted state during PMRST .

PMCR 732 is an 8-bit read/write register which is the
main control center of power manager 342, All bits are
cleared to zera during PMRST_. PMCR 732 preferably
includes the following binary fields. Bit 7 of PMCR 732

5,920,726

9

corresponds to a field named RESUME. The RESUME field
is set and cleared by software and is set for power failure
shutdown or “instant-on shutdown”. RESUME prevents
reset of CPU 344 ¢n start-up. Bit 6 of PMCR 732 corre-
sponds to a field named MSAVE. The MSAVE field is sel
and cleared by software and is sel to maintain power Lo
DRAM 346 and CPU 344 in Shut Down mode. MSAVE is
also used to generate an LCD status indication during main
power offfon.

Bit 5 of PMCR 732 corresponds to a field named DiskIU.
The DnskIU field is sel and cleared by software and is sct
when the DiskInUse indicator on the status LCD 15 required.
The status LCIY mainiains this display with main power
off/on. Bit 4 of PMCR 732 corresponds 1o a field named
PwiDwn. The PwrDwn field is set by software to iniliate
power down from power manager 342. CPU 344 enters
Power Down Mode or Deep Steep Mode 1 PMCLX cycle
following the next rising edge of PMCLK after setting this
bit. This bit is cleared on Power Up sequence by power
manager 342. While power manager 342 is clearing this bii
during the PowerOn sequence, writes o this bit will be
disabled.

Bit 3 of PMCR 732 corresponds to a field named User-
Pwr. The UserPwr field is set during the normal power up
sequence if initialed by a user pressing the main power
switch (PWRSW input). UserPwr is cleared by software
writing a 1 to this bit. Bit 2 of PMCR 732 correspends to a
field named IOPwr. The IOPwr field is set during the normal
power up sequence if initiated by the external communica-
tions port 348 (IOSYS__ input). If neither UserPwr, IOPwr,
or UserRst is set, software will assume a timer initiated
restart has occurred. Bit 1 of PMCR 732 corresponds to a
field named UserRst. The UserRst field is set by the user
pressing lhe RESET bufton (USERRST_ input) and is
cleared by software by writing a 1 to this bit during boot. If
neither PwrFail or UserIist is sel, software assumes a normal
power up. Bit 0 of PMCR 732 corresponds to a field named
Pwr¥Fail. The PwrFail feld 1s set at the “0 to 1* transition of
the MBFail bit in PSCR 734 The PwrFail field is cleared by
software writing a 1 to this bit after restart.

PSCR 734 is an 8-bit read-only register with the following
fields. Bit 7 of PSCR 734 corresponds to a field named
BBOK. The BBOK field indicates the backup batteries 360
contain sufficient operating power (above 4.5 volis). Bit 6 of
PSCR 734 comesponds to a field named MBStart. The
MRBStart field corresponds to the main batteries 358 START
level (above 6.0 volts). MBStart indicales that there is
enough energy to do a camera 110 startup. Bit 5 of PSCR
734 corresponds (o a field named MBLow. The MBLow
field indicates that main batteries 358 are above 6.4 volts. Bil
4 of PSCR 734 corresponds 10 a field named MBGood. The
MBGoced field indicaies that main batteries 358 are above
6.9 volts. Bit 3 of PSCR 734 corresponds to a field named
MBFull. The MBFull field indicates that main batleries 358
are above 7.4 volts. Bit 2 of PSCR 734 corresponds to a field
pamed ACPwr. The ACPwr field indicates thai external AC
power is being supplied to the camera via an external power
adapter. Bit 1 of PSCR 734 corresponds to a field named
MBAlert. MBAlert indicates an ALERT condition for main
batteries 358 (below 5.4 volts). This bit reflects the current
level of the MBALERT__ input. A “1 to 0" transition on the
MBAELERT__ pin generates an alert interrupt (IRQL_
output), sets the Pfail bit in PMIR 736 to 1, and clears two
bits in PCCR 730. Bit 0 of PSCR 734 corresponds to a field
named MBFail. The MBFail field indicales a PwrFail in
main batterics 358 (below 5.2 volts) and reflects the current
level of the MBFAIL__ input. A “1 to 0” transition on the

20

25

30

35

45

65

10
MBFAIL.__ pin generates a power failure interrupt (IRQQ__
output), sets the MBALERT bit in PMIR 736, deasserts all
bits in PCCR 730, and sets the PwrFail bit in PMCR 732.
PSCR 734 thus indicates the state of eighl power sysiem
conditions.

PMIR 736 is an 8-bil read/write register with the follow-
ing fields. Bits 4-7 of PMIR 736 corespond to a field named
Reserved. The Reserved field always reads 0 and is reserved
for potential future functionality in camera 110. Bit 3 of
PMIR 736 corresponds {o a field named [OReq. The IOReq
field s a request from the exiernal communications port 348
of camera 110. A “1 to 0” transition on the [OSYS_ pin
while power manager 342 is iz the IDLE__ON slate gener-
ates an IOReq interrupt (TRQ3_ output). A wrile of 1 1o this
bit will immediaiely clear the inlerrupt.

Bit2 of PMIR 736 comesponds to a field pamed PwiDwn.
The PwrDwn field is a power down request generated by a
camera 110 user (PWRSW pin). A “0 (o 17 transition on the
PWRSW__ pin generates a PwrDwn interrupt (IRQZ_
output). A wrile of 1 to this bit will immediately clear the
mterrupt. Bit 1 of PMIR 736 corresponds to a field named
MBAlert. The MBAlert field indicates an ALERT condition
(below 5.4 volis) for main batteries 358. A1 to 0 transition
on the MBALERT _ pio immediately generates an ALERT
interropt (IRQ1__ outpuf) and clears two bils in the PCCR
730. A write of 1 to this bit will immediately clear the
interrupt. Bit 0 of PMIR 736 corresponds to a field named
MBFail. The MBFail field indicates a power failure condi-
tion (below 5.2 volts) in main batteries 358. A “1 to 0¥
trapsition on the MBFail__ pin generales a PwrFail interrupt
(IRQO__ output), deasserts all bits in the PCCR 730, and sels
the PwrFail bit in the PMCR 732. A writc of 1 to this bit will
immediately clear the intercupt. PMIR 736 thus indicates the
interrupt status of camera 110 and is also used to clear the
interrupts. All bits are cleared during PMRST__.

Referring now to FIG. 8, a flowchart of the preferred
power siales for power manager 342 is shown. Inilially, in
step 810, camera 110 is in the SHIP state with neither main
batteries 358 nor backup batteries 360 installed. In steps 812
and 814, the SHIP to INIT transition occurs when power Is
first applied to the camera 110, ¢ither from backup batteries
360, main batleries 358, or via external power.

In sleps 816 and 8§18, the INIT (o RUN transilion occurs
when (he user turns on camera 110 (PWRSW low transition)
or when the host compuler attempts to connect to camera
110 (IOSYS low transition). CPU 344 is in POWER DOWN
MODE prior to this transition. Following step 818, the FIG.
8 sequence proceeds either to step 820, 826 or 832, depend-
ing on the type of shutdown occurring in camera 110.

In steps 820 and 822, a CLEAR state may be entered if a
shutdown occurs without images in IYRAM 346. The RUN
to CLEAR transition occurs when a user turns off camera
110 (PWRSW high transition), a host or seript command to
shut down camera 110 occurs, camera 110 times oul afler no
activity, or camera ¥10 enters a timed shuldown. In the
CLEAR state, the MSAVE bil in PMCR 732 is sel to zero
and the RESUME bit in PMCR 732 is also set lo zero.

In steps 826 and 828, a SAVE slate may be entered if a
shutdown occurs with images in DRAM 346. The RUN to
SAVE transition occurs when a user lurns off camera 110
(PWRSW high transition, followed by software response to
interrupt), 2 host or script command to shut down camera
110 occurs, camera 110 times out after no activity, or camera
110 enters a timed shutdown. In the SAVE state, the MSAVE
bit in PMCR 732 is set to one and the RESUME bit in
PMCR 732 is set to zero. In steps 832 and 834, a RESUME

5,920,726

1

stale may be entered if a shutdown occurs due (o a power
failure in main batteries 358 or instanl-on shutdown. In the
RESUME slate, the MSAVE bit in PMCR 732 is set to one
and the RESUME bit in PMCR 732 is also set to one.

In steps 824, 830 and 818, a CLEAR to RUN transition
may occur if a wser turns on camera 110 (PWRSW low
transition), a timer wakeup (TEXP) is signaled or 1f the hosi
computer atlempts to connect 1o camera 110 (JOSYS low
transition). CPU 344 is in POWER DOWN MODE prior o
this transition. In steps 824, 830 and 818, a SAVE to RUN
transition may occur if a user turns on camera 110 (PWRSW
low transition), a timer wakeup (TEXP) is signaled or when
the host compufer atlempis to comnect fo camera 110
(I0SYS low transition). CPU 344 1s in DEEP SLEEP
MODE prior to this transition. In sieps 834, 836 and 838, a
RESUME to RUN fransition may occur if a wake up of CPU
344 is signaled and a user tums on camera 110 (PWRSW
low transilion), a timer wakeup (TEXP) is signaled or the
hosl computer attempts to connect to camera 110 (JIOSYS
low (ransition).

In FIG. 8, power manager 342 thus sequentially enters the
SHIP state, the INIT state and the RUN state. Power
manager 342 then may enter either the CLEAR state, the
SAVE state or the RESUME state, depending on the par-
ticular shutdown conditions. Finally, power manager 342
typically transitions back 1o the RUN slate io recommence
normal operalion, in accordance with the present invention

Referring now to FI1G. 9, a flowchart of preferred general
method steps for recovering from a power failure is shown.
Initially, a user applies 940 power to camera 11{ by install-
ing main batteries 358 and backup batteries 360, and then
aclivating an externally-mounted power on-off switch. First-
level interrupt handler (FLIH) 412 then sets 942 powerfail
counter 347 to a value of zero. Nexl, vanious interrupt
service routines 414 register 944 with the first level interrupt
kandler 412 to request notification in the evenl of a power
failure in main baiteries 358.

CPU 344 tken runs 946 control application 4(M to operate
camera 110 in normal operation mode which captures,
processes, compresses and slores sequential sets of image
data. In normal operation mode, CPU 344 periodically
requests the execation of various critical processes. In the
preferred embodiment, CPU 344 repealedly checks power-
fail counter 347 to deternyine whether a critical process has
been interrupted by an intervening power failure.

Next, voltage sensor 359 senses 948 the voltage level of
main batteries 358 and provides power manager 342 with
the sensed voltage level. Power manager 342 then deter-
mines 950 whether the voliage level of main balteries 358 is
greater (han a predetermined threshold voltage level The
threshold value is typically selected o be ncrementally
higher than the minimum operating voltage (to permit
orderly shutdown of the camera 110 processes). If the
voltage of main batteries 358 is greater than the selected
threshold value, then the FIG. 9 process repezts the steps
946, 948 and 950.

However, if the voltage of main batieries 358 is not
greater 950 than the predetermined threshold value, then
power manager 342 generates 952 a powerlail interrupl. In
the preferred embodiment, the powerfail inlerrupt may be
disabled in rare cases in which a sequence of CPU 344
instructions musl never be inlerrupted by a power failure.
Any disabling of the powerfail interrupt, however, is
resiricied 1o a very short period of time. Next, CPU 344
receives the generated powerfail interrupt and responsively
performs 954 a powerfail powerdown sequence to protect

20

40

45

50

60

65

12

the image data cwrrently within camera 110. The powerfail
powerdown sequence is further discussed below in conjunc-
tion with FIG. 10,

The camera 110 user may then replace 655 the main
balteries 358 and activate the camera 110 power on/off
switch. CPU 344 then performs 956 a powerup sequence 1o
bring camera 110 back to normal operating mode while also
preserving any existing image data. FLIH 412 then incre-
menls 958 powerfail counter 347 to indicale the occurrence
of a power failure in main batteries 358. Alternalely, pow-
erfail counter 347 may be a hardware register which is
incremented in power manager 342.

The first level interrupt handler 412 then notifies 960 any
registered interrupt service routines 414 about the power
failure restart so that the interrupt service roulines 414 are
aware that their corresponding hardware components have
been reset by the power failure and the subsequent camera
110 powerup. The power failure notification allows the
registered interrupt service routines 414 to run depending
upon Lheir relative task priority. Typically, this nolification is
accomplished through the use of a signal or semaphorc
which wakes up the interrupt service rcutine.

In alternate embodiments, the interrupt service routines
may operate in cooperation with various other system rou-
tines. These cooperaling routines thus may form various
hierarchical networks which operale in synchronous or
asynchronons modes. For example, a particular interrupt
service routine may function in response [o a device driver.
The device driver, in turn, may funciion in response fe an
application program. In such cases, the interrupt service
routines typically propagate their received power failure
notification to any relaled routines in the network which
require notification of the power failure restari. Finally, the
FIG. 9 process then returns to step 946 and CPU 344 runs
control application 400 to operale camera 110 in normal
operation mode, as discussed above.

Referring now to FIG. 10, a flowchart of preferred method
steps for performing a powerfail powerdown sequence
according to the present invention is shown. Initially, power
manager 342 sets 1010 a PFAIL bit which records the
occurrence of a power failure so that computer 118 software
routines may subsequently access Lhis information when
needed. Nexi, power manager 342 (urns off 1012 all non-
critical subsystems. Power manager 342 then signals 1014
CPU 344 with an interrupt and CPU 344 responsively stops
1016 the current process.

Next, CPU 344 sets 1018 the RESUME bit in power
manager 342 to indicate that CPU 344 should not be reset in
a subsequent powerup of camera 110. CPU 344 ihen forces
1020 a full refresh of DRAM 346 and then forces 1022
DRAM 346 into a self-refresh mode. Next, CPU 344 signals
1024 power manager 342 to shut down and then CPU 344
halts 1026 operation After halting, CPU 344 siill receives
operating power from backup batteries 360 and is essentially
stopped “in place ™ In this static mode, sysiem, bus 116 is in
a tri-state condition and the CPU 344 clock is stopped. All
CPU 344 states, however, are still intact (for example, the
registers, program counter, cache and stack are preserved
intact) and image data in DRAM 346 is also preserved
intact. Next, power manager 342 removes 1028 operating
power from main power bus 362. The FIG. 10 powerfail
powerdown sequence is then complete,

Referring now to FIG. 11, a flowchart of preferred method
steps for performing a powerup sequence according to the
present invention is shown. Initially, CPU 344 waits 1128
for a “wake up” signal which is typically generated in

5,920,726

13

response to the aclivation of a camera 110 power on-off
switch. After the “wake up” signal is generated, power
manager 342 determines 1130 whether power supply 356 is
generating enough operating power to start camera 110. If
sufficient operating power is present, power manager 342
starts 1132 power supply 356 in normal mode with the main
balteries 358 providing operaling power to power supply
356 which then responsively provides the operating power
to main power bus 362 and also to secondary power bus 364.
Next, power manager 342 determines 1134 whether the
generaled operating power is maintaining a sufficient volt-
age level.

If operating power is sufficient in camera 110, power
manager 342 then delermines 1136 whether a RESUME bit
has been set. In the preferred embodiment, CPU 344 sets the
RESUME bit in response lo a power failure in order to
indicate thai CPU 344 should not be reset in a subsequent
powerup of camera 110 If the RESUME bit has been set,
power manager 342 restarts 838 the CPU 344. The CPU 344
then resumes 1140 normal operation of DRAM 346 and also
resumes 1142 the camera 110 process which was intermupted
by the inlervening power failure.

If the RESUME bit has not been set, then power manager
342 restarts 1144 the CPU 344 and issuss 1146 a CPU 344
reset. CPU 344 then resumes 1148 normal operation of
DRAM 346 and boots 1150 the computer 110 system using
the system configuration 408 routine. Next, CPU 344 deter-
mrines 1152 whether a MSAVE bit has been set in power
manager 342. In the preferred embodiment, CPU 344 sets
the MSAVE bit to specify that RAM disk 532 contains
image data that should be saved upon restart of computer
118. If the MSAVE bit has not been sef, computer 118
formats 1154 a new RAM disk §32. CPU 344 then runs 1158
contral application 400 for nermal operation of camera 110,
In step 1152, if the MSAVE bit has been set, ther CPU 344
recovers and mounts 1156 RAM disk 532. CPU 344 then
runs 1158 control application 40 for normal operation of
camera 110. The powerup process of FIG. 11 then ends.

The invention has been explained above with reference (o
a preferred embodiment. Other embodiments will be appar-
ent to those skilled in the art in light of this disclosure. For
example, power manager 342 may contain various registers
646 other than those discussed above in the preferred
embodiment. Therefore, these and other variations vwpon the
preferred embodiment are intended to be covered by the
present invention, which is limited oaly by the appended
claims.

What is claimed is:

1. A system for managing power conditions in a digital
camera device, comprising:

a processor coupled to said digital camera device for
controlling said digital camera device; and
a power manager coupled to said processor, said power
manager including registers for containing status
information, interrupt infermation, and control infor-
mation;
said power manager providing said status information,
said interrupt information, and said control information
to said processor for controlling said digital carnera
device.
2. The system of claim 1 wherein said conditions include
a low power level condition to which said processor respon-
sively performs a powerdown sequence and a powerup
sequence to protect data including captured image data in
said digital camera device.

25

30

35

45

85

14

3. The system of claim 1 wherein said power manager
uses a sensor device to obtain said power state information
from a power source coupled to said digital camera device.

4. The system of claim 1 wherein said power manager
further comprises a control register for storing said control
information, an interrupt register for storing said interrupt
information, and a condition register for storing said status
information.

5. The system of claim 1 wherein said contrel information
indicates he contents of memory devices coupled to said
digital camera device.

6. The system of claim 5 wherein said controf information
includes a RESUME bit and a MSAVE bit which said power
manager uses to indicate shutdown states for said digitzl
camera device.

7. The system of claim 1 wherein said power manager
further comprises a state machine, a LCD generator and a
bus imterface.

8. The system of claim 1 wherein said processor generates
sclected interrupts to control said digital camera device 1n
response 1o said interrupt information from said power
MANAager.

9. A method for managing power conditions in a digital
camera device, comprising the steps of:

controlling said digital camera device with a processor

coupled to said digital camera device;

storing status information, interrupl information, and con-

trol information in a power manager coupled to said
processor; and

providing said status information, said interrupt

information, and said conirol information to said pro-
cessor for controlling said digital camera device.

10. The method of claim 9 wherein said conditions
include a low power level condition lo which said processor
responsively performs a powerdown sequence and a pow-
erup sequence Lo protect data including captured image data
in said digital camera device.

11. The method af claim % wherein said power manager
uses a sensor device to oblain said power slate informalion
from a power souice coupled to said digital camera device.

12. The method of claim 9 wherein said power manager
further comprises a control register for storing said control
information, an interrupt register for storing said interrupt
information, and a condition register for sioring said status
information.

13. The method of claim 9 wherein said control informa-
tion indicates the contents of memory devices coupled to
said digital camera device.

14. The method of claim 13 wherein said control infor-
mation includes a RESUME bit and a MSAVE bit which
said power manager uses to indicate shutdown states for said
digital camera device.

15. The method of claim 9 wherein said power manager
further comprises a stale machine, a LCD generator and a
bus interface.

16. The method of claim 9 wherein said processor gen-
erates selected interrupts to control said digital camera
device in response to said interrupt information from said
POWET mAanager.

17. A computer-readable medium comprising program
instructions for managing power conditions in a digital
camera device by performing the steps of:

controlling said digital camera device with a processor

coupled 1o said digital camera device;

storing status information, interrupt information, and con-

trol information in a power manager coupled to said
processor; and

5,920,726

15

providing said status information, said interrupt
information, and said control information Lo said pro-
cessor for controiling said digital camera device.
18. A system for managing power conditions in a digital
camera device, comprising;

means for controlling said digital camera device with a
processor coupled 1o said digital camera device,

16

means for storing status information, interrupt
information, and control inforration in a power man-
ager coupled to said processor; and

means for providing said status information, said interrupt
information, and said control information to said pro-
cessor for controlling said digital camera device.

