Nokia Corporation v. Apple Inc. ' Doc. 12 Att. 5

EXHIBIT H

Dockets.Justia.com

http://dockets.justia.com/docket/delaware/dedce/1:2009cv01002/43423/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2009cv01002/43423/12/5.html
http://dockets.justia.com/

(12)

United States Patent
Matheny et al.

T

(10) Patent No.:
45) Date of Patent:

US 6,424,354 B1
Jul. 23, 2002

(54)

(75)

(73)

(*)

21
(22)

(63)

(51)
(52)
(>8)

(36)

EP
EP
EP
EP
EP
EP
EP

OBJECT-ORIENTED EVENT NOTIFICATION
SYSTEM WITH LISTENER REGISTRATION
OF BOTH INTERESTS AND METHODS

Inventors: John R. Matheny; Christopher White,
botih of Mountain View; David R.
Anderson, Cupertino; Arn J.
Schaeffer, Belmont, all of CA (US)

Assignee: Object Technology Licensing

Corporation, Cupertino, CA (US)

Notice: Subject 10 any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154{b) by 0 days.

Appl. No.: 09/287,172
Filed: Apr 1, 1999

Related U.S. Application Data

Continuation of applicalion No. 07/996,775, filed on Dec.
23, 1992, now Pat. No. 6,259,446.

Int. C17 . GUBE 13/00
US. Clo .. 3457619, 345/700, 345/764
Field of Search ... 345/619, 621,

345/623, 624, 625, 700, 716, 764

References Cited

U.S. PATENT DOCUMENTS

3658427 A
3881605 A

471972 DeCou
5/1975 Grossman

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

0150 273
150 273 A
3529008 A

0 352 908
398 646 A
499 404 A

0 506 102

8/1985
871985
1/1990
1/1990
11/1990
8/1992
9/1992

EP 506 102 A 9/1992
EP 520770 A 3/1993
EP 0529 770 3/1993
WO WO 92/15934 5/1972
WO WO 92/15934 A 9/1992

OTHER PUBLICATIONS

IBM Programming Guide, Sep., 1989, First Edition, “Oper-
ating System/2 Prograraming Tools and Informaton” Ver-
sion 1.2, pp. 3-7 through 318 and 7-1 through 7-28.
Schumaker, Kurt J., “Object-Oriented Languages:
MACAPP: An Application Framework™, Byte, Aug., 1986,
pp- 189-193.

(List continued on next page.)

Primary Examiner—Matthew Luu
(74) Antorney, Agent, or Firm—Morgan & Finoegan, LLP

(57) ABSTRACT

An event notification system for propagating object-change
information. The notification system supports change noti-
fication without queues in an object-based application or
operating system and can be scaled to propagate larpe
numbers of evenls among a large plurality of objects. The
event notification system Interconnects a plurality of event
source and event receiver objecls. Any object, such as a
command object, may operate as either an event receiver
object, an event source object or both. A notificalion object
is created by a source object to transport, from a source to
a receiver, descriptive informatien about a change, which
includes a particular receiver object method and a poinier to
the source cbject that sent the nolification, A receiver object
must register with a connection object its “inlerest” in
receiving notification of changes; specifying both the event
type and the particular source object of inlerest. Adfier
establishing such connections, the receiver object receives
only the events of the specified type for the source objects
“of interest” and no others. This delegation of event sclec-
tion avoids central event queuing altogether and so limits
receiver object evenl processing that the inveniion can be
scaled to large systems operaling large numbers of objecls.

59 Claims, 15 Drawing Sheets

1z
IFY STATE

- 1280

US 6,424,354 B1

Page 2
U.S. PATENT DOCUMENTS 5325524 A 6/1994 Black et al. 395/600
) 5,325,533 A 6/1994 Mclnerney et al. 39577000

4,082,188 A 4{1978 Grimmell et al. 5327529 A 7/1994 Fulis et al.
4,635.208 A 171987 Coleby ef al. 5329446 A 7/1994 Kugimiya et al. ... 364/419.04
4,677.576 A 6/1987 Berlin, Ir. et al. 5339433 A #1994 Frid-Nielsen 3957700
4,679,137 A 7/1987 Lane ef al. 364/188 5345550 A 9/1994 Bloomfeld 3957156
4,686,522 A 8/1987 Hernandez et al. 5347626 A 9/1994 Hoeber et al, 395/156
4704694 A 11/1987 Czernicjewski 5367,633 A 11/1994 Matheny et al.
4,742,356 A, 5/1988 Ruipers 5371,846 A 12/1994 Bates _................... 395/157
4,760,386 A 7/1988 Heathetal. ..ooooennn. 340/709 5371,851 A 12/1994 Pieper et al. ... 395/164
4,821,220 A 471989 Duisberg 5371,886 A 12/1994 Britton et al. 305/600
4,823,283 A 4/1989 Dichm et al. 364/518 5,375,164 A 12/1994 Jennings 379/88
4831654 A 5/198% Dick ... 381/51 5,386,556 A 1/1995 Hedin et al. 395/600
4835685 A 5/1989 Kun ... 364/200 5390314 A 2/1995 Swapson ... - 395/500
4843538 A 6/1989 Lane et al. 364/188 5414812 A 541995 Filip et al. ... 3957200
4853843 A 8/198% Ecklund 364/200 5,416,903 A 5/1995 Malcolm 395/155
4868744 A 9/198% Reinscheta 364/280.3 5434065 A 7/1995 Matheny et al. 395/150
4,885,717 A 12/1989 Beck et al. 5446502 A 8/1995 Islam
4,891,630 A 1/1990 Friedman et al. 5479601 A 121995 Matheny et al. ..oco.c.ee 305/155
4,931,783 A 6/1990 Altkinson 340/710 5497310 A 3/1996 Chong et al. .. 364/419.02
4,939,648 A 7/1990 O'Neill et al. 5,517,606 A 5/1996 Matheny et al. .. 305/156
4943032 A 771990 Lak et al. 364/513 5,530,864 A 6/1996 Matheny et al. 395700
4,953,080 A 8/1990 Dysarl et al. 5,550,563 A 8/1996 Matheny et al. 345/168
4982344 A 1/1991 Jordan - 364/521 5551055 A 81996 Matheny et al ..o......... 395/882
5008810 A 4/1991 Kessel et al. - 364/200 5583982 A 12/1996 Matheny et al. ... 395/326
5,040,131 A 8/1991 Tomes ...ovcvveeevenencnnn.n. 3647521 5717877 A 2/1998 Orton et al. ..., ... 393/326
5,041,992 A 8/1991 Cunningham el al.
5,050,090 A 9/1991 Golub et al. OTHER PUBLICATIONS
5,060,276 A 10/1991 Morms et al.
5,075,848 A 12/1991 Lai et al ‘Wang et al., “An Event—Object Recovery Model For Objec-
5,083,262 A 1/1992 Hafl, & covvveveenne, 395/500 t—Oriented User Interfaces™, Fourth Annual Symposium on
5,093,914 A 3/1992 Coplien et al. User Inleface Software and Technology: Proceedings of the
5119475 A 6/1992 Smith et al ACM Symposium on User Interface Software and Technol-
5,125,001 A 6/1992 Staas, It et al. ogy, Nov. 11, 1991, pp. 107-115.
g’gg’g% i ;ﬁggg g:i etal vy -+ 3954650 Microsoft Systems Journal, Jan., 1990, vol. 5. No. 1, “Soft-
5136705 A 8/1992 Stubbs et al. ware Architecture Objeci-Oriented Programming Design”,
5140677 A §1992 Fleming etal 3550 P14 (3).
5,151,087 A 9/1992 Abraham et al. Coop—Berre, “An Object Oriented Framework for Systems
5,163,130 A 11/1992 Hullot 395/148 Integration™, pp. 104-107.
5168411 A 12/1992 Pujii Microsoft Corp., Windows User’s Guide for Version 3.1,
5168441 A 12/1992 Onarheim et al. 364/146 1990-1992, pp. 52, 83-85.
3,177,685 A 171993 Da‘f‘ls et al. Microsoft Corp., “A Presentation Manager Primer,”
5,181,162 A 1/1993 Smith el al. Mi T 1] 1960, v5. ol 14-17
5198802 A 3/1993 Bertram et al. 340/709 icrosoft Systems Journal, Jan. 1990, v5, nl, pp :
5206951 A 4/1993 Khoyietal 395/650 ~ Berrs, AmeJorgen, “COOP—An Object Oriented Frame-
5208123 A 741093 Heckel 395/155 work for Systems [ntegration,” JCSI°92 Proc. 2 Int’t Conf.
5,230,063 A 7/1993 Hoeber et al. .. 395/156 On Systems Integration, Jun. 15, 1992, Morristown, NI, pp.
5,237,654 A 81993 Shakelford et al .. 395/160 104-113.
5,239,287 A 8/1993 Siio et al. - 340/706 Hirakawa et al, “A Framework for Construclion of Icon
5,241,655 A 8/1993 Mineki et al. 395/156 Systems,” IEEE, 1998, pp. 70-77.
5,265,206 A 11/1993 - Shackelford et al. IBM Corp., “Systems Application Architecture, Common
5276775 A 1/1994 Mengooocooveei . 39555 o Al 1 Tutorface Desion Guide.” Tu. 1989
5,276,816 A 1/1994 Cavendish et al. 395/275 ser Access, Advanced lnlerface Liesign Lywde, ™ .Jun. ,
57280610 A 1/1994 Travis et al. 395600 Pp. 5581, 97-99
5287448 A 2/1994 Nicol etal. .corerrre. 395/15¢ Apple Computer, Inc.,, “System 7-Macintosh Reference
5201587 A 3/1994 Eodosky et al. Guide,” 1992, Cupertino, CA, pp. 30, 70, 72, 75.
5,205,222 A 3/1994 Wadhwa ef al. Booch, Grady, “Object Oriented Design with Applications,”
5,295,256 A 3/1994 Bapatoor .. 395/500 1991, pp. 45-6, 65 & 494.
§,2 97253 A 31994 Meisel oovvvviniinnnns 395/160 Campbell et al., “Choices, Frameworks and Refinement,”
297284 A 3/1994 Jones et al. 395/700 B . . L .
5301301 A 4/1994 Kodosky et al. o 305/500 Proc Int’l Workshop on Object Orientation in Operating
5301336 A 4/1994 Kodosky et al. 395m00 Systems, Oct. 17,1991, Palo Alto, CA, pp. 9-15.
5,309,566 A 5/1994 Larson 395/275 Cobb et al, “Examning NewWave, Hewlett-Yackard’s
5,313,629 A 5/1994 Abraham el al. .- 395/600 Graphical Object—Oriented Environment,” Microsaft Sys-
5,313,636 A 5/1994 Noble et al. ... TS 395/700 tems Journal, Nov. 1989, pp. 1-18 and Exhibils A-B.
5315708 A 51994 Matheny el al. Embry et al., “An Open Network Management Archilecture:
5315,708 A 5/1994 Alston et al. 395/600 OSI/NM T Architectn d Co ts.” IEEE Network
5317741 A 5/1994 Schwanke 3957700 ¥! torum Archifeciure and Loncepts, o
5321841 A 6/1994 Easl et al. 305725 Magazine, Jul. 1990, pp. 14-22.
5325481 A 6/1994 Huntooooo... .. 395/159 Franz, Marty, “Object—Oriented Programming Featuring
5325522 A 6/1994 Vaughnoeo.. 395600 ACTOR,” 1990, Chaplers 1-2 & 19-22.

US 6,424,354 Bl
Page 3

IBM Corp., “Dynamic Icon Presentation,” IBM Technical
Disclosure Bulletin, V.35, N.AB, Sep. 1992, Armonk NY, pp
227-232

IBM Corp., “Pause Review: a Technique for Improving the
Interactivity of Direct Mampulation,” IBM Technical Dis-
closure Bulletin, V34, N.7A, Dec. 1991, Armonk, NY, pp.
20-25.

IBM Corp., “ Auto Scroll During Direct Manipulation,” [BM
Technical Disclosure Bulletin, V.33, N.11, Apr. 1991,
Armonk NY, p. 312.

IBM Corp., “Volume 3: Presentation Manager and Work-
place Shell,” 0/S/2 Version 2.0, Apr. 1992, IBM Corporation
International Technical Support Center, Boca Raton, FL, p.
53.

IBM Corp., “Presentation Manager Programming Refer-
ence,” Volume III, OS/2 Technical Library, Mar. 1992.
IBM Corp., “Programming Guide,” COperating System/2
Programming Tools and Information Version 1.2, Sep. 1989,
pp. 3-7 to 3-18 and 7-1 to 7-28.

IBM Corp., “Gelting Started: Using IBM Risc System/
6000, Jan. 1992.

Khashafian, Setrag, “Intelligent Offices, Object—Oriented
Multi-Media Information Management in Client/Server
Archilectures,” 1992, Chapter 8, pp. 235-304.

Meyrowitz, Norman, “Intermedia: The Archilecture and
Construction of an Object-Orented Hypermedia System
and Applications Framework,” QOPSLA ’86 Conference
Proceedings, Sep. 29-Oct 2, 1986, Portland, OR, pp
186-201.

Microsoft Corp., “Window User’s Guide for Version 3.0,”
1990, pp. 128-133.

Microsoft Corp., “MS-D0OS User’s Guide,” 1988, pp.
21-25, T7-80 & 165-170.

Miyauchi et al., “An Implementation of Management Infor-
mation Base,” [EEE, 1991, pp. 318-321.

Myers et al, “Environment for Rapidly Creating Inleractive
Design Tools,” The Visual Computer, v.8, No. 2, Feb. 1992,
Berlin, DE, pp. 94-116.

Myers, Brad, “Creating Interaction Techmiques by Demon-
stration,” IEEE Computer Graphics and Applications, V.7,
N.9, Sep. 1987, New York, US, pp. 55-61.

Reiss, Steven P, “Connecting Tools Using Message Passing
in the Field Environment,” IEEE Sofrware, Jul. 1990, pp.
57-66.

Schmucker, Kurt, “MACAPP: An Application Framework,”
Byte Magazine, Aug. 1986, pp. 189-193.

Smith, R.B., “The Alternate Reality Kit,” IEEE, Proceed-
ings of Workshop on Visual Languages, Jun. 25, 1986,
Dallas, TX, pp. 99-106.

Microsoft Corp., Windows User Guide for Version 3.1,
1990~1992, pp. 52, 83-85.

Microsoft Corp., “A Presentation Manager Primer”,
Microsoft Systems Journal, Jan. 1990, v5, nl, pp. 14-17.
Apple Computer, Inc., “System 7-Macintosh Reference
Guide, ” 1992, Cupertino, CA, pp. 30, 70, 72, 75.

Booch, Grady, “Object Oriented Design with Applications”,
1991, pp. 45-6, 65 and 494.

Campbell et al., “Choices, Frameworks and Refinement,
Proc. Int’l Workshop on Objecl Orientation in Operating
Systems, Oct. 17, 1991, Palo Alto, CA. pp. 9-15.

Cobb et al., “Examining NewWave, Hewlett-Packard’s
Graphical Object—Oriented Environment, ” Microsoft Sys-
termns Journal, Nov. 1989, pp. 1-18 and Exhibits A-B.
Dodani et al., “Separation of Powers, ” Byte Magazine, v
143, Mar. 1989, pp. 255-271.

Embry et al., “An Open Network Management Architecture:
OSI/NM Forum Archilecture and Concepts,” IEEE Network
Magazine, Jul. 1990, pp. 14-22,

IBM Corp., “Dynamic Icon Presentation, ” IBM Technical
Disclosure Buletin, ¥35, no4B, Sep. 1992, Armonk, NY, pp.
227-232.

1IBM Corp., “Pause Review. A Technique for Improving the
Interactivity of Direct Manipulation, ” IBM Technical Dis-
closure Buletin, v34, n7A, Dec. 1991, Armonk, NY, pp.
20-25.

IBM Corp., “Auto Scroll During Direct Manipulation,
IBM Technical Disclosure Buletin, ¥33, nll, Apr. 1991,
Armonk, NY, p. 312.

IBM Corp., “vol. 3: Presentation Manager and Workplace
Shell, 7 0/5/2 Version 2.0, Apr. 1992, 1BM Corporation
Interpalional Technical Support Center, Bocal Raton, FL, p.
53.

IBM Corp., “Prescntation Manager Programming Refer-
ence, ™ vol. 11, OS/2 Technical Library, Mar. 1992,

IBM Corp., “Getting Started: Using [BM RISC System/
60007, Jan. 1992.

Microsoft Corp., “Window User’s Guide for Version 3.0”
1990, pp. 128-133.

Microsoft Corp., “MS-DOS User’s Guide”, 1988, pp.
21-25, 77-80 and 165-170.

Miyauchi et al,, “An Implementation of Management Infor-
mation Base, ” IEEE, 1991, pp. 318-321.

Reiss, Steven P., “Connectling Tools Using Message Passing
in the Field Environment, ” IEEE Software, Jul. 1990, pp.
57-66.

Smith, R.B., “Ibe Aliernate Reality Kit, ” IEEE, Proceed-
ings of Workshop on Visual Languages, Jun. 25, 1986,
Dallas, TX, pp. 99-106.

Williams, Greg, “Sofiware Frameworks, ™ Byte Magazine,
Dec. 1984, pp. 124-127 and 394—410.

U.S. Patent

Jul. 23, 2002

[18

/20

170

Sheet 1 of 15

o

COMM

US 6,424,354 B1

DISPLAY
ADAPTER

=TI
.
=
=1
o
[{u]
\
ha sl
=
o
T
[}
\
-
T
O

12/

INTERFACE
ADAPTER

22\

24 .,

\ 36 38
32
05 28 FIG. 1A

U.S. Patent Jul. 23, 2002 Sheet 2 of 15 US 6,424,354 Bl

40 _ 41

Move Notes \Format famt $Size Style JglaUIE=
= : Jues: n — Bring to Front
Send to Back

Foun Questions Intro

— ————

I BV S - Broup
Bngroup
Lock
Inlpck
ng 5ystems pr i A Align...
ns. Their prograrBare ¥ ey IMEgRED TD WE 0VE ...
Forexample, in the DOS wotld,
as the uyser is conceined, thefapplication is the opermting 5y Rotate
42
FIG. 1B
210 220
200 230
s i
FIG. 2
CONNECTION
L,_J BOLD
/ T INTERESTS
300 310
' A\
320

FIG. 3

U.S. Patent Jul. 23, 2002 Sheet 3 of 15 US 6,424,354 B1

NOTIFICATION

r’d

5] BOLD

400

FIG. 4

oy Gl

? VALUE 520

FIG. 5

VALUE

BOLD VALUE» VALUE A -

AN

600 610 | 620

FIG. 6

U.S. Patent Jul. 23, 2002 Sheet 4 of 15 US 6,424,354 B1

NOTIFICATION
VALUE
VALUE
l' ’
BE BOLD VALUE VALUE /)
T VALUE

FIG. 7

0 SOUND CONTROLLER

8agm—~[J-K
/ \

800" \
802 804 806
FIG. 8
° COLOR EDITOR 00
/

GREEN 0 c—AF— 255

830

BLUE 0 {} 1 255
/ G
/
920
FIG. 9

U.S. Patent Jul. 23, 2002 Sheet 5 of 15 US 6,424,354 B1

1000\
— l
RED 0] 255 1040
TFloatControlGommand 4
1010\ float ---oemmereemmmrms s 1
GREEN 0 —} - 255 TSetColor
TFloatControlCommand e red -
L0 Qreen -----m--wse-r "COLOR"
e blue -
BLUE 0 1 255
\ TFloatControlCommand 1050
1020 flogt ---remmmemmemmmee e
FI1G. 10

1100
" T_® PAPER
/O PLASTIC

1110

FIG. 11

U.S. Patent

Jul. 23,2002 Sheet 6 of 15 US 6,424,354 B1
1200
[START j/
1210
UPDATEMENU
JV 1220
QUERY OBJECTS
T
" QUERY COMMAND
1250
1240
HIGHLIGHT
ENAELED SEND

/
/ INVOKE

GREYOUT 1260
MENU

ACTION 1270
1280
MODIFY STATE
l' 1290
NOTIFY MENU

FIG. 12

AT e

\

2 ///
m OO
Z

7
A

L

U.S. Patent Jul. 23, 2002 Sheet 8 of 15 US 6,424,354 B1

1400
[START)/

1410
ACTIVATE —
DIALOG BOX

r

MANIPULATE
CONTROL

>£ 1430
L

CHANGE
VALUE

1420

¢ 1440

RECORD
COMMAND

CONTROL
CHANGED

/,1 470

RE-RECORD
COMMAND FlG. 14

U.S. Patent Jul. 23, 2002 Sheet 9 of 15 US 6,424,354 B1

1500
START

INTITIALIZE
LABEL

.l 1520

DRAW LABEL

'

TOGGLE LABEL

l 1540

/1510

| _—1530

TOGGLE CONTROL

1550

CONTROL

SELECTED
?

1560

FIG. 15

U.S. Patent Jul. 23,2002 Sheet 10 of 15 US 6,424,354 B1

1610

INITIALIZE e

TITLE
1620
DRAW TITLE

l 1630

/

TOGGLE TITLE

FIG. 16

U.S. Patent Jul. 23, 2002 Sheet 11 of 15 US 6,424,354 B1

1700
(: START i)/’/ﬁ
I o

.//
BUTTON
DETECTED

'

INTERACTOR T
CREATED

!

1730
INTERACTOR |-
STARTED

¢ 1740
DELAY Q—

YES

FIG. 17

U.S. Patent Jul. 23,2002 Sheet 12 of 15

1800 START

1810 | CREATE CONNECTION
1820 DEFINE INTERESTS
1830 | CONNECT SOURCES
1840 | REGISTER CONNECTIONS
* AWAIT
1845 CHANGE
1850 CHANGE
DESCRIPTION
1860 | DISPATCH
NOTIFICATION
1870 SEND
NOTIFICATION
1880 | RECEIVE
NOTIFICATON
NO ANOTHER
et

US 6,424,354 B1

FIGURE 18

CONNECTION?

YES

1885

U.S. Patent Jul. 23, 2002 Sheet 13 of 15 US 6,424,354 Bl

1900 (START)

1910 | REQUEST PRESENTATION

Y

CREATE
1920 PRESENTATION

l

1930 [BUILD PRESENTATION

I

FIGURE 19

U.S. Patent Jul. 23, 2002 Sheet 14 of 15 US 6,424,354 Bl

(; START)
2000

f ~

INITIALIZE
SCROLL

2010

THUMB

SELECTED? 2020

THUMB
MOVED?

Yes

SET
POSITION

THUMB
RELEASED?

2040

Y

COMPLETE 2060
SCROLL

* FIGURE 20

2070 (STOP

U.S. Patent Jul. 23,2002 Sheet 15 of 15

ZE= Files =33

FIGURE 21A

SE= Files =5
Name

[) file 4
[fies

[jfﬂes f%
.ﬁ R ;;é* E
FIGURE 21B

=H= Files ==3

FIGURE 21C

US 6,424,354 B1

2110

2122

2120

2142

US 6,424,354 B1

1

OBJECT-ORIENTED EVENT NOTIFICATION
SYSTEM WITH LISTENER REGISTRATION
OF BOTH INTERESTS AND METHODS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This is a 37 CER. §1.53(b)continuation of U.S. patent
applicalion Ser. No. 07/996,775 filed on Dec. 23, 1992, now
U.S. Pat. No. 6,259,446

FIELD OF THE INVENTION

This invention generally relales to improvements n dis-
play systems and more particularly to a globally scalable
method for notification of change events arising in an
object-oriented environmenl such as an automated menu
state processing by integrating menu processing operations
mto the operating system.

BACKGROUND OF THE INVENTION

Among developers of workstation software, it is increas-
ingly impoertani e provide a flexible software environment
while maintaining counsistency in the user’s interface. An
carly attempt at providing this type of an operating envi-
ronment is disclosed 1n U.S. Pat. No. 4,686,522 to Hernan-
dez et al. This patent discusses a combined graphic and text
processing system in which a user can invoke a dynamic
menu at the location of the cursor and invoke any of a variety
of functions from the menu. This type of natural interactior
with a user improves the user interface and makes the
application much more ntuitive.

Menu selection should also reflect a consistent interface
with the user regardless of what application is currently
active. None of the prior art references applicant is aware of
provides the innovative hardware and software systern fea-
tures which enable all applicalion menus lo function i a
consistent manner.

SUMMARY OF THE INVENTION

Accordingly, it is a primary objective of the present
invention to provide a scalable method for notification of
change events ansing in an objecl-oriented environment
such as an automated menu-based system containing size,
stafe, status and location information. For example, a pre-
ferred embodiment of a menu contains a list of menu ilems
containing a command and variables that reflect the com-
mand’s current appearance. This includes status information
determinative of the menu item’s state (enabled/disabled),
its name, its associated graphic, and whether its appearance
is currently valid. Each of these are initialized when the
menu ilem was created. The exemplary embodiment creates
a menu item from a command, where a menu ifem is another
object data structure containing a command sequence. The
ment itemn is added to a list of menu items, and initialized
as an invalid appearance. Later when the menu item is
selected from a pull down menu, the appearance siate is
recomputed and validated based on the system state and its
status information.

Next, the invention queries 2 command object for notifi-
cation. In an exemplary embodiment, each command object
has four methods to connect for different types of notifica-
tions:

i) notifications that affect 11’s name,

ii) notifications that affect is graphic,

iif) nolifications that affect whether it’s active, and
iv) notifications that affect any data it provides.

10

15

20

25

30

as

40

45

50

55

60

65

2

In this exemplary embodiment, the menu ilem just created
for the command connects for active notification. It does this
by passing a conpection object to the event notification
system. The command is then responsible for connecting the
connection object to notifiers affecting whether the com-
mand is active.

Then, the exemplary menu system queries the command
for the enabled slate before presenting the menu item on the
display. This processing is accomplished by examining the
current syslem state to ascertain if the function is active in
the current context. Then, the internal state of the menu ilem
is updated and the menu item 15 displayed based on the
appropriate appearance siate (grayed out or normal).

When a user invokes a command from a memu item, a
conirol or though the direct manipulation of an object, a
document state is modified and notification of the event is
sent Lo the system. This event antomatically informs any
active menu ilems 2nd assures current status information is
consistent across the operafing environment. The notifica-
tion message includes the name of the change and a poinier
to the object that senl the notification message.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1Ais a block diagram of a personal compuler system
in accordance with the subject invention;

FIG. 1B is a display in accordance with the subject
invention;

FIG. 2 illusirates the tools used to create an epplication in
accordance with the subject invention;

FIG. 3 is a flow diagram of a command process in
accaordance with the subject invention;

FIG. 4 15 a checkbox control in accordance with the
subject invention;

FIG. 51s a checkbox control activation in accordance with
the subject invention;

FIG. 6 is 2 checkbox update in accordance wilh the
subject invention;

FIG. 7 is a summary of checkbox control processing in
accordance with the subject invention;

FIG. 8 is an illustration of a control panel in accordance
with the subject invention;

FIG. 9 15 an illustration of a dialeg box in accordance with
the subject invention;

FIG. 10 is an illustration of a dialog box color controller
in accordance with the subject invention;

FIG. 11 is an illustration of a radio button in accordance
with the subject invention;

FIG. 12 is a detailed flowchart of menu stale processing
in accordance with the subject invention;

FIG. 13 is a picture of a display in accordance with the
subject invention;

FIG. 14 illustrates the detailed logic of alomic execution
in accordance with the subject invention;

FIG. 15 sets forth the detailed logic associated with smart
label processing in accordance with the subject invention;

FIG. 16 presents the detailed logic of smart window label
processing in accordance with the subject invention;

FIG. 17 illustrates how objects are created and how the
objects communicate with each other during a typical inter-
action with an object that can be moved and selecied in
accordance with the subject invention;

FIG. 18 is an object generating notification flowchart for
a notification source object in accordance with the subject
invention;

US 6,424,354 B1

3

FIG. 19 presents a flowchart illustrating the detailed logic
associated with selecting the proper user interface element in
accordance with the subject invention;

FIG. 20 is a flowchart illustraling the detailed logic
associated with scrolling in accordance with the subject
invention; and

FIGS. 214, 21B and 21C illustrate window scrolling in
accordance with the subject invention.

DETAILED DESCRIPTION OF THE
INVENTION

The invention is preferably practiced in the conlext of an
operating system resident on a personal computer such as
the IBM® PS/2® or Apple® Macintosh® computer. A
representative hardware environment is depicted in FIG. 1A,
which illustrates a typical hardware configuration of a
workstation in accordance with the subject invention having
a central processing unit 10, such as a conventional
microprocessar, and a number of other units interconnected
via a system bus 12. The workstation shown in FIG. 1A
includes a Random Access Memory (RAM) 14, Read Only
Memory (ROM) 16, an I/O adapter 18 for connecting
peripheral devices such as disk units 20 to the bus, a user
mierface adapter 22 for connecling a keyboard 24, a mouse
26, a speaker 28, a microphone 32, and/or other user
interface devices such as a touch screen device (not shown)
to the bus, a communication adapter 34 for connecting the
workstation to a data processing network and a display
adapter 36 for cannecting the bus o a display device 38. The
workstation has resident thereon an operating system such as
the IBM OS/2® operating system or the Apple System/7®
operating system

The subjecl invention is a new object-oriented system
software platform comprised of an operating system and
development environment designed to revolutionize per-
sonal computing for end-users, developers, and system
vendors. The system is a complele, siandalone, native oper-
aling system and development environment architected from
the ground up for high-performance personal computing.
The invention is a fully object-oriented system including a
wealth of frameworks, class libraries, and a new generation
object programming environment, intended te improve fun-
damentally the cconomics of third panly application software
developmeni. The subject invention is a fully portable
operating system.

Traditional operating systems provide a set of services
which. software developers can use 1o create their software.
Their programs are very loosely integrated into the overall
operating sysiem environment. For example, DOS applica-
tions take over lhe entire machine. This means that as far as
the user is concerned, the application is the operating
system. In Macintosh® and Windows operating syslemns,
applications feel and look similar and they typically support
cutting and pasting between applications. This commonalty
makes il easier for users to use multiple applications in a
single environment. However, because the commonally is
not factored inta a set of services and frameworks, it is still
very difficult to develop software.

In the subject invention, wriling an “application™ means
creating a sel of objects that integrate into the operating
system environment. Software developers rely on the oper-
ating system. for both a sophisticated set of services and a
framework to develop software. The frameworks in the
subject invention provide powerful abstractions which allow
software developers fo concenirale on (heir problem rather
than on building up infrastructure. Furthermore, the funda-

35

45

55

4

rocnlal abstractions for the software developer are very close
to the fundamental concepts that a user must understand to
operale her software. This architeciure results in easier
development of sophisticated applications.

This section describes four steps to wriling software
employing lhe subject invention. A user contemplating the
development of an applicaticn is typically concerned with
the following questions:

‘What am 1 modeling?

For a word processor, this is the text I am entering; for a
spreadsheet, it is the values and formulas in the cells.
How is the data presented?

Apain, for a word processor, the characters are typically
displayed in a what-you-see-is-whal-you-get {(wysiwyg) for-
mat on the screen with appropriate line and page breaks; in
a spreadsheet it is displayed as a table or a graph; and in a
structured graphics program (e.g. MacDraw), it is displayed
as a set of graphics objects
What can be selected?

In a word processing application, a selection is typically
a range of characiers; in a structured graphics program it is
a sel of graphic objects.

What are the commands that can operate on this selection?

A command in a word processor mighl be to change the
style of 2 set of characters to bold A command in a
structured graphic program might be to rotate a graphic
object. FIG. 1B is an illustration of a display in accordance
with (he subject invention. A command is illustrated at 41 for
bringing a picture to the front of a display. A presentation of
graphic information is illustrated at 40. Finally, a selection
of a particular graphic object, a circle, is shown at 42.

A developer must znswer the same four questions asked
by the user. Fortunalely, the subjecl invenilion provides
frameworks and services for addressing each of these four
questions. The first question that must be answered is: What
am [modeling? In a word processing program, the data
includes the characters that make up a document. The data
in a spreadsheet includes the values and formulas in the
cells. In a calendar program, the data includes Lhe times and
appoiniments associaled with a given day. The invention
provides facilities that help to model data. There are classes
for modeling specific data types including: texl, struclured
graphics, sound and video. In addition 1o these specific
classes, the invention provides a mumber of other abstrac-
tions that support problem modeling, including: collection
classes, concurrency control, recovery framework, and the
C++ language. The class thal encapsulales the dala model
for a particular data type provides a specific protocol for
accessing and modifying the data contained in the data
encapsulator, supporl for overriding a generic protocol for
embedding other data encapsulators and for being embedded
in other data encapsulators, generating nolification to all
registered objecis when the data changes, and overriding a
generic protocol for crealing presentations of the data.

The next question that must be answered is: how is the
data presented? In a structured graphic program, the set of
praphic objects are typically rendered on a canvas. In a
spreadsheet, it is iypically a table of cells or a graph; and in
a presenlation program it is a set of slides or an outline. The
subject invention provides a “view” of the data confained in
a data encapsulalor. The view is created using a “view
system” and graphic system calls. However, playing a sound
or video clip is also considered a presentation of the data.

Next: what can be selected? In a word processing
program, a seleclion is a range of characters; in a structured
graphics program, it is a sel of graphics objects; and in a
spreadsheet it is a range of cells. The invenfion provides

US 6,424,354 Bl

5

selection classes for all of the fundamental data types that
the system supports. The abstract baseclass that represents a
selection made by a user provides an address space inde-
pendent specification of the data selected. For text, this
would be a pumeric range of characters rather than a pair of
pointers to the characters. This distinction is important
because selections are exchanged between other machines
when collaborating (in real-time) with other users. The
baseclass also overnides a generic protocol for creating a
persistent selection corresponding 1o this selection. Persis-
lent selections are subclasses of an anchor object and may be
heavier weight than their corresponding ephemeral selec-
Hons because persistent selections must survive editing
changes. For examyple, a persisient lext selection must adjust
itself when text is inserted before or after il. Anchors are
used in the implementation of hypermedia linking, dataflow
linking and annotatiops.

The baseclass also provides an override generic protocol
for absorbing, embedding and exporting data contained in a
data encapsulator. Baseclasses are independent of the user
interface techmique used lo create them. Selections are
typically created via direcl manipulation by a user (e.g.
tracking out a range of text or cells) but can be crealed via
a script or as a result of a command. This orthogonality with
the user interface is very important. Baseclasses also provide
specific protocol for accessing the data encapsulator. There
is a very strong relationship between a particular subclass of
the encapsulator class and its subclass of a model selection
class.

Finally: what are the commands that can operate on this
selection? In a word processing program, a command might
change the style of a selected range of characters and in a
structured graphics program, a command might rotale a
graphic object. The subject invention provides a large num-
ber of built-in command objects for all of the built-in data
types as well as providing generic commands for Cut, Copy,
Paste, Starting HyperMedia Links, Completing Links, Navi-
gating Links, Pushing Data on Links, Pulling Data on Links,
as well as many user interface commands. The abstract
baseclass that represents a command made by the user is
responsible for capluring the semantics of a user action,
determining if (he command can be done, undone, and
redone. Command objects are responsible for encapsulating
all of the nformation necessary to undo a command after a
command is done. Before a command is done, command
objects are very compact representations of a user action.
The baseclass 1s independent of the user interface technique
vsed to create them. Commands are typically created from
menus or via direct manipulation by the vser (¢.g. moving a
graphic object) but could be created via a script. This
orthogonality with the user interface 1s very important.

Bepefits Of Frameworks

The benefits of plugging into the abstractions in the
invention are greater than providing a conceptual model.
Plugging into the framework provides many sophisticated
features architected into the base operating systemn. This
means that the framework implemenis major user features
by calling relatively small methods, The result is thal an
investment in coding for the framework is leveraged over
several fealures.

Multiple Dala Types

Once a pew kind of dala is implemented, the new data
type becomes a part of the system. Existing software that can
handle daia encapsulators can handle your new data type

20

30

40

45

50

55

60

65

6

without modification. This differs from current computer
systems, such as the Macintosh computer system. For
cxample, a scrapbook desk accessory can store any kind of
data, but it can only display data that has a fext or quickdraw
picture component. In contrast, the subject invenfion’s
scrapbook displays any kind of data, because it deals with
the data in the form of an object. Any new data type that is
created behaves exactly like the system-provided data types.
In addition, the dala in the scrapboak is editable since an
abject provides standard protocol for editing dala.

The scrapbook example highlights the advantages of data
encapsulators. If software is developed such that it can
handle data encapsulators, an application can be designed to
simply handie a new daia type. A new application can
display and edit the new kind of data withoul modification.

Multi-level Undo

The invention is designed to support multi-level undo.
Implementing this fealure, however, requires no extra effort
on the part of a developer. The system simply remembers all
the command objects that are crealed. As long as the
corresponding command object exist, a user can undo a
particular change to the data. Because the system takes care
of saving the commands and deciding which command to
undo of redo, a user does not implement an undo procedure.

Document Saving, Reliability, and Versioning

A portion of the data encapsulator protocol deals with
filing the data inlo a stream and recreating the data at another
place and/or time. The system uses this protocol to imple-
ment document saving. By defaull, a user’s data objects are
streamed to a file when saved. When the document is
opened, the daia objecls are recreated. The system uses a
data management framework Lo ensure the data wrillen to
disk is in a consistent stale. Users tend to save a file often so
that their data will be preserved on disk if the sysiem
crashes. The subject invention does not require this type of
saving, because the sysiem keeps all the command objects.
The state of the document can be reconstructed by starting
from the last disk version of the document and replaying the
command objects since that point in time. For reliability, the
system automatically iogs command objects o the disk as
they occur, so that if the system crashes the user would not
lose more than the last comrmand.

The 1nvention also supports document versioning. A user
can create a draft from the current stale of a document. A
draft is an immutable “snapshot” of the document at a
particular point in time. {One reasen to create a draft is to
circulate it to other users for comments.) The system aulo-
matically takes care of the details involved with creating a
new draft.

Collaboration

As mentioned above, a document can be reconsiructed by
starting with ils state at some past time and applying the
sequence of command objects performed since that time.
This feature allows users to recover their work in the case of
a crash, and it can also be used to support real-time col-
laboration. Command objects operate on selections, which
are address-space independent. Therefore, a selection object
can be sent to a collaborator over the network and used on
a remote machine. The same is true of cammand objects. A
command performed by one collaborator can be sent (o the
others and performed on their machines as well. If the
collaboralors start with identical copies of the data, then
their copics will be remain “in sync” as they make changes.

US 6,424,354 Bl

7

Creating a selection is done using a command object, so that
all collaboraters have the same current selection.

The system uses a feature known as “model based irack-
ing” to perform mouse fracking on each collaborator’s
machine. The tracker object created to handle a mouse press
creates and performs a series of incremental commands as a
user moves the mouse. These commands are sent to col-
laboralors and performed by each collaborator. The resuli is
that each collaborator sees the tracking feedback as it occurs.
The system also establishes a collaboration policy. A col-
laboration policy decides whether users are forced to take
turns when changing data or can make changes freely. The
invention handles the mechanics of collaboralion which
removes the responsibility from an application developer.

Scripling
Designing 2 system to manage the sequence of command

objects also makes it possible to implement a systemwide
scripting facility. The sequence of command objects is

equivalent to a script of the local actions. The scripting :

feature simply keeps track of command objects appled 10
any documeni. The scripling facility also uses selection
objects in scripts. This feature provides customization of a
script by changing the seleclion to which the script applies.
Since command objects inciude a protocol for indicating
whether Lhey can apply to a particular selection, the system
ensures that a user’s script changes are valid.

Hypermedia Linking

Persislent sclections, also known as anchors, can be
connected by link objects. A link objecl conlains references
to the twa anchors that form its endpoints. To the systern, the
link is bidirecticnal, both ends have equal capabilities.
Certain bigher-level uses of links may impose a direction on
the Iink. The single link objecl supports two standard
features: navigation and data How. Auser can navigale from
one end of the link to the other. Normally, this will involve
opening the decnment containing the destination anchor and
highlighting the persistent selection. The exact behavior is
determined by the anchor object at the destination end. For
example, a link to an animation may play the animation. A
link to a database query may perform the query.

Links also facilitate data How. The selecled data at one
end of the link can be transferred to the other end to replace
the selection there. In most cases, the effect is the same as
if the user copied the sclection at one end, used the link 1o
navigale lo the other end, and pasted the data. The system
takes care of the details involved with navigating from one
end of a link to the other (e.g., locating the destination
document, opering it, scrolling the destination ancher into
view, cic.). Similarly, the system handles the details of
transferring data across the link. The latter is done using the
selection’s protocol for accessing and modifying the data to
which it refers.

Annotations

The invention supports a system-wide annotation facility.
This facility allows an author to distribute 2 document drafi
for review. Reviewers can attach posted notes to the
document, and when donoe, return the documeni lo the
author. The author can then examine the posted notes and
take action on each. (An author can also creale posted notes
in the document) A reviewer nced not have the same
software as the author. lnstead, the reviewer can use a
standard annotation application. This application reads the
data from the auwthor’s draft, and creates an annotatable

10

15

25

30

35

40

45

55

65

8

preseniation of the data. (Creating such a presentation is part
of the standard data encapsulator protocol.)

The reviewer can create selections in the docnment, and
Link posled notes to the selection. The link between the
posted nole and selection allows the system to position the
posted note “near” the selection to which it refers. The links
also make the annotation structure cxplicif, so that the
system can implement standard commands to manipulate
ennotations. The contents of the posted note can be any data
type implemented in the system, not simply text or graphics.
The confents of a note is implemented using a data
encapsulator, and opemng a nole results in creating an
editable presentation on that data.

Data Representation

Data representation is concerned with answering the
question of what is the data that I am modeling? The subject
invention provides facilities that help to model data. There
are classes for modeling specific data types, including: text,
structured graphics, sound and video. In addition to these
specific classes, the invention provides a number of other
abstraclions thatl help to model a problem: the collection
classes, the concurrency control and recovery framework,
and the C++ language itself. In the subject invention, the
class that encapsulates the data model for a particular data
type is a subclass of the encapsulater class.

The Encapsulator Class

A developer creates a conlainer for a particular type of
data represeniation by creating a derived class of the encap-
sulator class. For each type of dala in the system, (e.g.
graphic objects, styled text, spreadsheet cells) a different
derived class musi exist which acls as the container for a
type’s data. Each class of encapsulator provides a type
specific protocol for accessing and modifying the data
contained therein. This protocol is typically used by presen-
tations for displaying the data and by commands for modi-
fying the data. In addition to type specific proiocol, the
encapsulator class provides generic protocol that supports
the embedding of data encapsulalors as “black-boxes™ into
other alien types. This protocol must be implemented in the
derived class to support the creation of presentations, editors
and sclections for the encapsulated data. A contaiper need
only understand this generic protocol to support (he embed-
ding of any alien data 1ype.

Choosing A Representation For Data

The data type designer has both the C++ object model,
and a rich set of standard classes lo choose from when
designing a representation for a particular iype of data. The
classes provided by the invention should always be consid-
ered before desigming unique classes to represent the data.
This minimizes any duplicaiion of effort which may occur
by crealing new classes which provide similar or identical
function to classes already existing in the system. The most
basic of these is the C++ object model. A designer can create
a class or classes which closely match the mental model of
the user to represent (he classes the user deals with.

The invention’s foundation classes provide many stan-
dard ways to represenl dafa. Collection classes provide a
number of wiys for collecling together related objects in
memory, ranging from simple sets o dictionaries. Disk-
based collections, providing persistent, uncorrupted collec-
ions of objects, are also available. A data lype requiring two
(2D) and three dimensional (3D) graphic modeling, such as
a graphical editor, is also supported. Numerous ZD and 3D

US 6,424,354 B1

9

modeling objects are provided along with transformation,
matrix classes and 3D cameras. Similarly, the invention
provides a sophisticated text data type that supports full
international text, aesthetic typography, and an extensible
style mechanism. The invention also provides support for
time based media such as sound and video. Sophisticated
time control mechanisms are available to provide synchro-
nization between various types of fime based media.

Presenlation Protocol

The encapsulator class provides a protocol for the creation
of various classes of presentations on the data confained
within the encapsulator. The presentations include a thumb-
nail presentation, a browse-only presentation, a selectable
presentation, and an editable presentation. There is also a
protocol for negotiating sizes for the presentations and
fitting the data into the chosen size. Subclasses of Lhe
encapselator class are responsible for overniding and imple-
menting this protocol 10 support the embedding of the data
in other encapsulators. The presentations currently sup-
ported include:

Thumbnail—This presentation is intended to give the user a
“peek” at what is contaired m the encapsulator. If is
typically small in size and may scale-down and/or clip the
data lo fit the size.

Browse-only—This presentation allows the user to view the
data in its normal size but the user is unable to select or
modify any of the data.

Selectable—This presentation adds the ability to select data
to the capabilities provided by the browse-only presenta-
tion. [t is used in annotating to allow annotations to be tied
to selections in the data without allowing modification o
the data itself The selectable presentation is typically
implemented as a subclass of the browse-only presenta-
tion.

Editable—This presentation adds the ability to modify data
to the capabilities provided by the selectable presentation.
This is the presentation that allows the user to create new
data and edit existing data. Currently, this presentation
provides its own window for editing. It is likely that in the
fufure support will be added for presentations which allow
editing in place. The editable presentation Is typically
implemented as a subclass of the selectable presenlation.

Change Notification

When the data contained in an encapsulator class is
changed, it is necessary to provide clients (e.g. a view on the
data) with notificalion of the change. Encapsulators rely on
a built-in class for standard notification support to allow the
encapsulator to nolify clicnts of changes to the data repre-
sentation. A client can connect 1o an encapsulator for noti-
fication on specific chanpges or for all changes. When a
change occurs the encapsulalor asks the model e propagate
notification aboult the change to all interested clients.

Data Presentation

This section addresses how the system presents data to a
user. Once the data bas been represented 1o the system, il is
the role of the user interface to present the data in an
appropriate and meaningful way to a user. The user interface
eslablishes a dialogue between the user and the model data.
This dialogue permits a user lo view or otherwise perceive
data and gives a vser the opportunity to modify or manipu-
late data. This section focuses on dala presentation.

The User Interface

A developer creates a class to facilitate the presentation of
data to interact with a data encapsulator. By separating the

10

15

20

35

40

45

55

65

10

data model] from the presentation, the invention facilitates
multiple presentations of the same data. Some applications,
like the Apple® Macintosh Finder, already support a limiled
form of multiple presentations of the same data. Sometimes
il is useful to be able to display different views of the same
data at the same tmme. These different views might be
instances of the same class-—as in a 3D CAD program which
shows four different view of the same data. For each kind of
presentation, a user was previcusly required {o write a view
which can display the model and a set of trackers and
tracking commands which can select and modify the model.

Static Presentations

The simplest presentation type is the name of the data.
The name is a tex! siring thal indicates the data content or
type. Examples include “Chapler 47, “1990 Federal Income
Taxes”, “To Do”. Another simple presentation type, an icon,
is a small graphical representation of the data. It usually
indicales the data type. Examples are a book, a report, a
financial model, a sound or video recording, a drawing
However, they may also display stalus, such as a printer that
is printing, or indicate content, such as a reduced view of a
drawing, Finally, the thumbnail, is 2 small view of the model
data. This view may show only a portion of the data in order
to fit the available space. Examples are a shrunken drawing,
a book’s table of contents, a shrunken letter, or the shrunken
first page of a long document. A browse-only presentation
allows a user 1o view the data in its normal size but the user
is unable to select or modify any of the data.

Seleclable Presentations

Selectable presentations allow a user to view, explere, and
extract information from the dala. These presenlations pro-
vide context: what the data is, where the dala is, when lhe
data was. It may help to present the data in a structured way,
such as a list, a grid, as an outline, or spatially. It is also
useful to display the relationships among the data elemenis,
the data’s relationship to its conlainer or siblings, and any
other dependencies.

Selectable presentations may also display meta data. An
example is the current selection, which indicates the data
elements a user is curently manipulating. Ancther type of
meta data is a hypermedia link between data elemenis. The
view may also indicate other users who are collaborating on
the data.

Selectable presentations are usually very specific to the
type of the data. They are made up of windows, views, and
other user interface objects which may be customized to best
reflect the dala type. Some examples are:

Sound recording—A control panel would facilitate an
audible presentation. Views would display the sound as a
musical score or as a series of waveforms. Views may
include 2 sample number or time indications.

Financial model —The model could be viewed as the set of
formulas and other parameters. It could display values
from the model at a particular instance of time or with
specific input values as a spreadsheet or in various graphi-
cal forms.

Book.—The model could be viewed as a table of contenis,
an index, a list of illustrations. It could be viewed as a
series of pages, a series of chaplers, or a continuous text
flow.

Video recording—The model could be viewed as a series of
individual frames or as a continuous presentation. Views
may include track marks, frame number, and time indi-
cations.

US 6,424,354 B1

11

Container conlaining other objects—The objects could be
displayed alphabetically by name, by type or other
attribute, as a set of icons, as a set of thumbnails.

Editable Presentations

Editable presentations are sirmiar to interactive presenta-
tions except that they also facililate dala modification. They
do this by allowing direct manipulation of the data with the
mouse or other poinler. They also allow the data to be
manipulated symbaolically through mepu items and otber
controls.

Data Access

Presentations interact with data encapsulators in order (o
determine the data and other information to present. Pre-
sentalions query the model for the dala that is required. The
presentation may present all or only part of the data that is
contzined or can be denved from the dala in the data
encapsulator.

Change Notification

Because there can be many presentations of a single
model active al once, the data can be changed from many
sources, including collaborators. Each presentalion is
responsible for keeping itself up 1o date with respect 1o the
model data. This is accomplished by registering for notifi-

" cation when all or a portion of a model changes. When a
change occurs to data in which the presentation is interested,
the presentation receives notification and updates its view
accordingly. Change notification can be geperated in any of
the ways listed below. Firsi, change notification can be
generated from the methed in the data encapsulator which
actually changes the model data. Second, change notification
can be geperated from the command which caused the
change. As mentioned earlier, there are benefits to these Lwo
approaches. Generaling the notification from within the data
encapsulator guarantees that clients will be notified when-
ever the dala changes. Generating the notification from the
command allows “higher-level” notification, and reduces the
Burry of nolifications produced by a complicated change.

Notification Framework Overview

The Notification framework provides a mechanism for
propagating change information between objects. The
framework allows objects to express interest in, and receive
notification about changes in objects on which they depend
A standard interface is provided for classes that provide
notification (o clients. Notifier classes provide notification
source objects with the means to manage lists of clients and
dispatch notifications to those clients. Nolifier objects
require no special knowledge of the class of objects receiv-
ing nolifications. Connection objects provide the dispatch of
notifications from the notifier to specific notification receiver
objects. These connection objects allow specialization of
how notifications are delivered to different classes of receiv-
ers. Finally, Notification objects transport descriptive infor-
mation about a change, and interesis describe a specific
notification from a notification source object.

Nolification Propagation Flow Chart

FIG. 18 is an object generating notification fHowchart for
a notification source objecl. Processing commences at ter-
minal 1800 and immediately passes io function block 1810
where a notification receiver object creates a connection to
itself. Then, al function block 1820 the notification receiver

15

20

30

40

45

60

12

object adds appropriate interests for one or more notifica-
tions from one or mere notification source objects. These
interests are defined by the notification source object(s).

The client object asks the conneclion object to connect to
the notification source(s) for nolifications specified by the
interests in the connection in function block 1830. Then, in
function block 1840, for each interest in conneclion, the
connection is registered as interested in the not:fication with
the notifier in the interest. Next, at function block 1845, the
system enters a wait state until a change 1s delected. When
a system change occurs, control immediately passes 1o 1850
where a notification source object changes and calls notify
on its notifier with a notification describing the change.

For each connection registered with the notifier as inter-
ested in the notification, at function block 1860, the con-
nection is asked lo dispalch the nofificalion. In iumn, at
funciion block 1870, the connection dispalches ihe notifi-
cation to the appropriate method of the notification recerver.
Finally, at function block 1880, ihe notification receiver
takes the appropriate action for the notification, and a test is
performed at decision block 1885 {o determine if another
connection is registered with the nolifier as interested in
notification. If there is anather connection, then control
passes to 1850. If there is net another connection to service,
then control passes to function block 1845 to await the next
change.

Data Specification

Data specification addresses the seleclion issue of data
processing. If a user must manipulate data contained in a
represenlation, the data must be able to specify subsets of
that data. The user typically calls this specification a
“selection,” and the system provides a base class from which
all selection classes descend. The invention also provides
selection classes for all of the fundamental data types that
the sysiem supports.

Model Selection

The object which conlains the specification of a subset of
data in a representation is a model selection class. In the case
of a text representation, ane possible selection specification.
is a pair of character offsets. In a structured graphics model,
cach shape musl be assigned a unique id, and the selection
specification is a set of unique ids. Neither of the specifi-
cations point directly at the selection data and they can be
applied across multiple copies of the data.

Accessing Specified Data

A selection understands the representation protocol for
accessing and modifying data and knows how to find data in
2 Jocal address space. Command objects access 2 represen-
tation’s data through data selection, and therefore require no
knowledge of converting from specification to the real data
in the local model It is the job of the selection object to
provide access to the real data from the address space
independent specification. In 2 text encapsulator, this pro-
cessing may require querymg the encapsulator for the actual
characters contained in a range. In a base model such as a
graphical editor the selection will typically held surrogates
for the real objects. The encapsulator must provide a lookup
facility for converting the surrogate to ibe real object.

Standard Ediling Protocal

The model selection class provides a protocol for the
exchange of dala between selections. By implementing the

US 6,424,354 B1

13

protocol for type negotialicn, absorbing, embedding and
exporting data, derived classes provide support for mwost of
the standard ediling commands. This means that the editing
commands (Cut, Copy, Paste, Push Data, etc.) provided by
the system will function for the represented data type and
will not require reimplementation for each application. The
model selection class also provides support directly for the
exchange of anchors and links but relies on the derived
class’s implemeniation of several key methods to support
the exchange of the representation’s dala:

CopyData must be implemented by the derived class to
export a copy of the specified data. The implementation
creales and refurns a new data eacapsulator of the requested
Lype containing a copy of the specified data.

AdoptData must be implemented by the derived class to
support absorbing or embedding data into the specificalion’s
associated representation. If the data is to be absorbed it
must be of a type which can be incorporated directly into the
receiver’s representation. The absorbed data is added to the
represeniation as defined by the specification. It is common
for many data types to replace the currently specified data
with the newly absorbed data. Any replaced data is returned
in a data encapsulaior to supporl Undo. If the data is fo be
embedded, the encapsulator is incorporaied as a black box
and added as a child of the representation.

ClearData must be implemented by the derived class to
delete the specified data from the associaled representation.
An encapsulator of the representation’s native type contain-
ing the deleted data must be returned.

User Interface

The user interface for creating specifications is typically
the responsibility of a presentation on the data. A number of
mechanism are available depending on daia type and pre-
sentation style. The most favored user interface for creaiing
a selection is direct manipulation. In a simple graphics
model, objects may be selected by clicking directly on the
object with the mouse or dragging a selection box across
several objects using a mouse tracker. In text, a selection
may be created by as the result of a find command. Another
common way that selections are created is as a result of a
menu command such as “find.” After the command 1s issued,
the document is screlled to the appropriate place and the text
that was searched for is selected.

Finally, seleclions can come from a script (or program-
matically generated) and the result would be the same as if
a user created the selection direcily. “Naming” selections for
scripts involve creating a language for describing the selec-
tion. For example, in lext, a selection could be “the second
word of the fourth parapraph on page two.” The invention’s
archifecture provides suppori for scripting.

Data Modification

Data Modifications addresses the guestion: whal are the
commands that can operate on this selection? If a user is (o
modify the data confained in a representation, the system
must be able to specify exactly the type of modification to
be made. For example, in a word processing program, a user
may want to change the style of a selected range of char-
acters. Or, in a structured graphics program, a user may
desire rotation of a graphic object. All user actions thal
modify the data contained in a data encapsulalor are repre-
sented by “command objects.”

The Model Command Object

The abstract base class thai represents a command made
by the user is the model command object. Subclasses of the

10

25

30

35

40

45

50

65

14

model command object capture the semantics of user
actions, such as: can be done, undone, and redone. These
subclasses are independent of the user interface technique
used to create thera. Unlike MacApp, as soon as the seman-
tics of a user action 1s known, device events are translated
inte command objecls by the system.

HandleDo, HandleUndo, and HandleRedo

Creatling a new class of command invelves overriding a
number of methods. The most importani three methods to
override are: HandleDo, HandleUndo and HandleRedo. The
HandleDo method is responsible for changing the data
encapsulator appropriately based on the type of command
that it is and the selection the command 15 applied to. For
example, if the command involves a style change to a range
of characters in 2 word processor, the HandleDo method
would call a method {or set of methods) in the data encap-
sulator to specify a character range and siyle to change. A
more difficult responsibility of the HandleDo method is
saving all of the information pecessary 1o “undo” this
command later. In the style change example, saving undo
information involves recording the old style of the character
range. The undo information for most commands is very
simple lo save. However, some commands, like find and
change may involve recording a preat deal of information to
undo the command at a later time. Finally, the HandleDo
method is responsible for issning change notification
describing the changes it made to the data encapsulator.

The HandleUndo method is responsible for reverting a
document back to the state il was in before the command
was “done.” The steps that must be applied are analogous 1o
the steps that were done in the HandleDo method described
above. The HandleRedo method is responsible for “redoing™
the command afier it had been done and undone. Users ofien
toggle between two states of a document comparing a result
of a command using the undo/redo combination. Typically,
the HandleRedo method is very similar to the HandleDo
method except that in the Redo method, the information that
was derived the last time can be reused when this command
is completed (the information doesn’t need to be recalcu-
lated since it is guaranteed to be the same)

User Interface

Command objects capture the semantics of a user action.
In fact, a command represents a “work request” that is most
often crealed by a user {using a variety of user interface
techniques) but could be created (and applied) in other ways
as well. The important concepi is that command objects
represent the only means for modifying the data contained in
a dala encapsolaior. All changes o the data encapsulater
must be processed by a command object if the benefits of
infinite undo, save-less model, and other features of the
invention are o be realized.

The most favored user interface for issuing commands
involves some sort of direct manipulation. An object respon-
sible for translating device events into commands and “driv-
ing” the user feedback process is known as a (racker. The
invention provides a rich set of “tracking commands™ for
manipulating the built-in data types. For example, there are
tracking commands for rotating, scaling and moving all the
2D objects in Pink such as lines, curves, polygons, etc.

A common user interface for issuing commands is via
controls or the menu sysiem. Menus are created and a sel of
rclated commands are added to the menu. When the user
chooses an item in the menu, the appropriate command is
“cloned” and the Do method of the command is called. The

US 6,424,354 B1

15

programmer is never involved with device events at all
Furthermore, because commands know what lypes of selec-
tions they can be applied to, menu items are automatically
dimmed when they are not appropriate.

Finally, commands can be issued from a seript (or pro-
grammatically generaled) and (he result would be the same
as if a user issued the command directly. The Pink archi-
tecture provides support for scripting; owever, at this time,
there is no user interface available for creating these scripts.

Built-in Commands

The invention provides a large number of built-in com-
mand objects for all of the buill-in data types as well as
providing generic commands for Cut, Copy, Paste, Starting

HyperMedia Links, Compleling Links, Navigating Links, -

Pushing Data on Links, Pulling Data on Links, as well as
many user interface commands. One of the advantages of
using the frameworks is thal these built-in command objects
can be used with any data encapsulators.

More Features

The previous sections of this document concentrated on
the foundational features of the invention. There are many
additional facilities in the invention that implement
advanced features. Specifically, these facilities include:
model-based tracking, filing, anchors, and collaboration.

Model Based Tracking

Tracking is the hearl of 2 direct-manipulation nser inter-
face. Tracking allows users to select ranges of text, drag
objecls, resize objects, and sketch objects. The invention
extends tracking to function across multiple views and
omultiple machines by aciually modifying the model. The
tracker issues commands to the model, which posts change
notifications to all interested views.

Model based traclang is the best solution for tracking in
docurnents, but it does have the drawbacks that: (1) the
model’s views must be oplimized to provide quick response
to change evenls and (2) the model must be capable of
expressing the intermediate track stales.

Anchors

Persistent selections or “anchors” are very similar to
selections in that they arc specificalions of data in a repre-
sentation. The difference is thal anchors must survive editing
changes since by definition anchors persist across changes 1o
the data. The implementalion of graphics selections
described earlier in the document is persistent. The imple-
mentation of text selections, however, is not. If a user inserts
or deletes text before a selection, then the character offsets
must be adjusied. There are a couple of approaches for
implementing text anchors. First, the text representation
maintains a colleclion of markers thal poinl within the lext,
similar to the way siyles are maintained. The anchors
include an unique id that refers to a marker. When the texi
is changed, the appropriate markers are updated, bul the
anchors remain the same. Another approach is to maintain an
editing history for the text. The anchor could contain a pair
of characler positions, as well as a time stamp. Each time the
text was edited, the history would be updated to record the
change (e g., 5 characters deleted Erom position X at time T)
When the anchor is used, the system would have to comrect
its character positions based on editing changes that hap-
pened since the last time it was used. Al convenient times,
the hislory can be condensed and the anchors permanently
updated.

10

20

25

30

35

43

50

55

60

65

16

The system provides a large number of features for “frec”
through the anchor facility. All of the HyperMedia com-
mands (CreateLink, PushData, PullData, and Follow) all use
anchors in their implementation. The implementation of the
systern wide annotalion facility uses anchors in iis imple-
mentation. The base data encapsulator provides services for
keeping track of anchors apd links. However, the user is
responsible for making anchors visible to the user via
presenlations. The apphication must also issue the proper
command object when a user selects an anchor. Afler a user
interface for anchors and links is natled down, the document
framework provides additional support to simplify process-
ing.

Filing

Filing is the process of saving and restoring data 1o and
from permanent storage. All a user must do to make filing
work is to implement the streaming operators for a data
encapsulator. The invention’s default filing is “image”
based. When a user opens a documnent, the entire conlents of
the documeni are read into memory. When a user closes a
document, the entire contents of the document are wrillen
back 1o disk. This approach was selecled because it is
simple, flexible, and easy to understand. To store data in a
different format, perhaps for compatibility with a preexisting
standard file format, two approaches are possible, First, an
encapsulator class can stream a reference 1o the actal data,
then use the reference 1o find the actual data, or a new
subclass can be defined to create and return a file subclass.

The advantage of the first approach is a data encapsulator
can be encapsulated in other documents. The advantage of
the second approach is the complete freedom afforded to
exactly match an existing file format for the complete
document.

Callaboration

Same-time network collaboration means that two or more
people edit the same document at the same time. The system
also establishes the collaboration policy; that is, whether
users are forced to take turns when changing the data or can
make changes freely. A developer does not have to worry
about lhe mechanics of collaboration or the collaboration
policy.

Supperting Collaborator Selection Styles

To assist in the reduction of confusion and enhance model
selection, the document architecture provides a collaborator
class which contalps information about the collaborator’s
initials and preferred highlight bundle.

Supporting Multiple Selections

To support multiple selections a user must modify pre-
senlation views because each collaborator has a selection.
When the active collaborator’s selection changes the stan-
dard change notification is sent. When a passive collabora-
tor’s selection changes a different notification event is sent.
A view should register for both events. Since the action
taken to respond to either event is usually the same,
economy can be realized by registering the same handler
method for both events.

User Interface In Accordance With The Invention

This portion of the invention is primarily focused on
moovative aspeclts of the user inlerface building upon the
foundation of the operating svstem framework previously

US 6,424,354 B1

17

discussed. The first aspect of the user interface is a mecha-
nism allowing a user to manage interaclions with various
objects or data referred to as controls.

Conlrol

The object with which users interact to manipulate other
objecis or data is called a control. Controls use a command
to determine the current state of the object or dala. Follow-
ing appropriate inleractions with the user, the control
updates the command’s parameters and causes it o be
executed. Example controls are menus, buttons, check boxes
and radio buttons.

Controls use a command to determine the current slate of
the object or data. Following appropriate interactions with
the user, the control updates the command’s parameters and
causes il lo be executed. For example, a checkbox sets a
command parameter to on or off and then execules the
command 1o change a data value,

Many controls display the current value of the data they
manipulate. For example, a check box displays a check only
when a Boolean data value ts TRUE. As the dala changes,
the conirol’s appearance is kept up ta date using a notifica-
tion system described here. The process is similar to the
process used to enable/disable menu items.

‘When a control is created a command must be specified.
The control makes a copy of this command and stores it tn
field {Command. If the command supplies any data values,
a pointer lo appropriate Get and Set methods of the com-
mand must also be specified. The control stores these
method pointers in fields fGetMethod and fSetMelhod,
respectively. Then, the conlrel connects for notifications that
indicale ifs data value may be out of date. Each command
provides a method called ConnectData for this purpose.

Each control contains a connection object called fData-
Connection indicating the object and method to receive the
notification. This connection abject passed as an argument o
the command. The command object calls the connection
object’s Connect method to add each notifier and interest
that may affect its data value. When complete, the control
calls the connection object’s Connect method to establish
the connections as shown in FIG. 3. The control updates its
data value from ils command. It does this by calling the Get
method of the command (fCommand->(*fGetMethod)()).
The control stores this value in an appropriate field (e.g. a
checkbox siores it n a Boolean field named fChecked) as
depicted in FIG. 5. Then, (he control updates its appearance.
It performs this action by calling the view system’s invali-
date method, indicating which portion of the screen needs
updating. .

Finally, the data changes and notification is sent. At some
point, a command is executed which changes the value of
the data being reflected by the control. This command could
be exccuted from a control, menu item, or through direct
manipulation. The control receives the notification as shown
in FIG. 4, and control is passed to awail the next user
selection.

Conire! Panel

One collection of controls is called a coniro! panel. The
controls in a control panel typically operate upon actual data
(this is the defaunlt, not a requirement). Their actions are
usually immediate and are independent from one another.
Comnirol panels manage the progression of the input focus
among its controls as necessary. 1L is likely that conirol
panels will be shared across all user interfaces in the system.

15

20

30

35

40

45

50

55

60

18
Dialog Box

Another collection of controls is called a dialog box. The
contrals in a dialog box typically operate vwpon projotypical
data (this is the default, not a requirement). Their actions are
usually collected together into a group and then performed
together when (he user presses an Apply button. Dialog
boxes manage the progression of the input focus among its
controls as necessary.

A Control 1n Action

We would now like to present a play in three acls 1o
Hlustrate a control in action. FIG. 2 illustrates the various
controls. A play example will be used by way of analogy to
illustrate a control (in this case a checkbox), a command, a
selection, and a data encapsulator.

Checkbox 200 The role of the checkbox is to display a
Boolean vafue stored in the data encapsulator and to facili-
tale its change. The value is represented by the presence or
absence of a check.

Command 210 The role of the command is to obtain the
value from the data encapsulator and change it upon direc-
tion from the checkbox.

Selection 220 The role of the selection is to be an interface
between the command and the data.

Data 230 Data is employed as a target for actions.

Getting to Know You

Everyone geis to know each other a little beiier as shown
in FIG. 3. The command 310 tells the checkbox 300 which
notifications the data may send in which the control is
certain to be interested (how the command 310 knows is
none of anyone else’s business). The checkbox 300, in turn,
connects to the data 320 for the notifications.

Unknown to anyone else, the director told the checkbox
300 the best way 10 interacl with the command 310.
Specificaily, it was told aboul the command’s get value
method and a sel value method. The checkbox will take
advaniage of this a little bit later.

Reflecting the Data

Something happens to the data—it sends nolifications as
depicted in FIG. 4. The checkbox 400 hears about those for
which it has expressed an interest. In FIG. 4, the notification
from the data expresses to beld the information which is
reflected by placing an X in the checkbox.

The checkbox 510 received notification from the data, and
the processing to display the checkbox 510 correctly is
depicied in FIG. 5. It does this by using the command’s 520
pef value method it happens to know about. Before lelling
(he checkbox 510 whal the correct value is, the command
520 goes through the selection to the dala to make sure it
really knows the correct value. The checkbox 510 updates
itself as necessary.

Changing the Data

The user now enters the scene and gives the checkbox 600
a nudge as shown in FIG. 6. The checkbax 600 uses the
command’s 610 set value method to set the data’s 620 value
through the selection. The entire process is reviewed in FIG,
7.

A Control Panel in Action

A control panel is nothing more than a simple window that
contains a set of controls as shown in FIG. 8. These controls

US 6,424,354 B1

19

contain a command that operates upon the current selection.
The control is enabled if ithe command is active. Following
appropriaie interaction with the uvser, the control execuies
the command, causing the data to change.

A Sound Conlrol Panel

As an example control panel, consider the sound control-
ler ilfustrated in FIG. 8. This control panel contains four
buttons 800, 802, 804 and 806 for controlling sound play-
back. Each button performs as described in the “A Control
in Action” section above.

Play 800 This control contains a TPlay command. This
command is active only under certain conditions, making
the conirol enabled only under those conditions. First, a
sound must be selected in the appropriate data encapsu-
lator. Next, it must not be playing already. Finally, the
current sound position must be somewhere before the end.
When pressed, the Play button execules the TPlay
command, causing the selecled sound to come out of the
speaker.

Step 802 This control contains a TPlay command, too. How
is this, you ask? Well, since I am making this up, we can
pretend that the TPlay command takes a parameter indi-
cating the duration it is to play. For the purposes of the
step button, it is set to a single sample. The Step button is
enabled only under the same conditions as described for
the Play buiton. When pressed, the Step button execules
the TPlay command, causing the selected sound to come
out of the speaker.

Stop 804 This control contains a TStop command. The Stop
button is enabled only if the selected sound is currently
playing. When pressed, the Stop bulton executes the
TStop command, causing the selected sound to stop
playing and to set the current sound position to the
beginning.

Pause 806 This control contzins a TStop command, too.
Unlike the Stop button, however, this TStop command is
set 10 not rewind the sound 10 the beginning. Pressing the
Play or Step bultons continue from where the playback

left off.

A Dialog Box in Aclion

A dialog box is similar to a control panel, in thal il is a
simple window containing a set of controls. However,
instead of the conirols operating upon the selected data, they
operate upon parameters of another command. Only until
the Apply button is pressed is the real data modified.

A Color Editor

As an example dialog box, consider the color edilor set
forth in FIG. 9. It contains three sliders, one for the red 900,
blue 910, and green 920 components of the color. After
adjusting the sliders to the desired values, the user presses
Apply 930 1o change the color of ihe selection.

Red 900, Green 910, Blue 920 To the user, these sliders are
identical, excepi for their label. As with all controls, cach
slider contains a command that is executed following user
interaction. Unlike many controls, especially those in a
control panel that immediately affect the selected data, the
command contained by these sliders displays and modi-
fies the value of a parameter of another command. In this
case, it is one of the red, green, or blue parameters of the
command contained within the Apply button.

Apply 930 The Apply button contains a TSelColor command
that changes the celor of the selection when executed. It
has three parameters, one for each of the red, green, and

15

20

25

30

35

40

45

50

55

20

blue components of the color. These parameters are
displayed and set by the shiders in response to user
interaction. When the Apply bution is pressed, this com-
mand is execuled and the new color is sel. The inilernal
actions accompanying the color editor example, are
depicted in FIG. 10. The Red 1000, Green 1010, and Blue

1020 slides contain 2 TFloatControlCommand. These

commands contain a single Acating point value which the

confrol displays. As the user adjusts the slider, it updates
this value and execuvies the command.

The selection for the TFloatControlCommand specifies
the TSetColor command within the Apply 1040 button, One
of its paramelers 18 set when each TFloalControlCommand
is executed. Finally, when the user presses the Apply 1040
button, the TSelColor command is exccuted and the selected
color 1050 is changed.

Classes

The following section describes the classes of the controls
and dialog areas and their primary methods

Control

A control is the vser interface lo one or more commands.
The control displays information about a command, such as
its name and whether it is active in the current context.
Following appropriate user interaction, the control causes a
command to be executed. When appropriale, the control
obtains the current value of data the command modifies and
displays it to the user. It may set a command parameter that
indicales a new value of this data before executing ihe
command.

Methods to create a selection on the control, with addi-
tional specification of a command within the control as an
option. Lookup command is a pure virtual function in order
to give subclasses fexibilily in how many commands they
confain and how they are stored.

Methods that are called when the presentation is opened
and closed. When the presentation is opened the control
connects for notifications thal may affect its slate. When the
presentation is closed these connections are broken.

Methods that are called when the presentation is activated

and deactivated. When the presentation is activated, some
conirols connecl for notifications that are valid only when
active. Deaclivating the presentation breaks these connec-
Licns .
Methods that control uses to connect to and disconnect
from notifiers Lhat affect whether the control is enabled.
ComnectEnabledNotifiers connects to the notifiers specified
by commands when the control is opened. Disconnecl-
EnabledNotifiers breaks these connections when the control
is closed.

Methods that receive nolifications indicaling that some-
thing happened affecting the control’s presentation of a data
value. This method does nothing by defaull.

Methods for notification. Create interest creates an inter-
est specialized by the control instance. Notify is overloaded
to send a notification and swallow the interest.

The Control Interest

A single notifier is shared among many subclasses of
controls. In order to express interest in a particular control
inslance, the interest musl be specialized. A control interest
is an interest that contains a pointer to a specific control. This
class 15 an internal class thal is usually esed as is, without
subclassing.

US 6,424,354 B1

21
The Control Nolification

A single notifier is shared among many subclasses of
controls. In order to distinguish which control sent the
notification, the nolification must be specialized. A confrol
notification is a noiification containing a poinier to ihe
control that sent the notification. This class is usually used
as-is, without subclassing.

The Conirol Presenter

A control presenter wraps up a control so it can be
contained by a presentalion data encapsulator. It implements
standard behaviors that all presenter objecis implement. This
class is usually used as-is, without subclassing.

Methods that are called when the presentation is opened
and closed. They do nothing by defanlt. A subclass must
implement these methods for the object it wraps. For
controls, these methods are delegated direcily to the conlrol.
When the presentation is opened, the control connects for

notifications that may affect ils siate. When closed, the ,

connections are broken.

Methods that are called when the presentation is activated
and deactivated. They do nothing by default. A subclass
must implement these methods for the object it wraps. For
controls, these methods are delegated directly to the control.
When the presentation is activaled, some controls connect
for nouficalrons that are valid only when active. When
deactivated, the connections are broken.

TConirolSeleclion

A control seleclion specifies a single control, and oplion-
ally a command within it, thai is wrapped in a control
presenter and slored in a presentation.

Methods to access a command within the control. These
may return an iovalid value if no command was specified.

TUniControl

A unicontrol is the abstraci base class for controls that
present a single command and cawpses it to be executed
following appropriate user interaction. Examples of this type
of control are buttons and checkboxes.

Methods to specify the command that is presented and
executed by the confrol. Nolification is sent to registered
connections when the command is changed.

Methods the control uses to connect lo and disconnect
from nolifiers that affect whether the control is enabled.
ConnectEnabledNotifiers connects to the notifiers specified
by commands when the control is opened. Disconnect-
EnabledNotifiers breaks (hese connections when the control
is closed.

Method that receives nolifications indicating that some-
thing happened affecting whether the control should be
cnabled. UpdateEnabled checks whether the command is
active and calls Enable and Disable as appropriate.

Methods that control uses to connect to and disconnecl
from notifiers that affect the control’s presentation of a data
value. ConnectDataNotifiers connects to the notifiers speci-
fied by commands when the control is opened. Disconnect-
DataNotifiers breaks these connections when the control is
closed. Controls (hal do not display a data value (e.g. button)
may override connecl dala nolifiers to do nothing,

TButton

A button is a unicontrol that executes iis command when
pressed. This class is normally used without subclassing;
just set the command and away you go.

10

15

30

35

45

50

55

60

65

22

Methods that are called when the presentation is activated
and deactivaled. When the prese¢ntation is activated, some
controls connect for notifications that are valid only when
active. When deactivated, these conneclions arc broken.
When the presentation is actlivated, buttons register for key
equivalent notification. This connection is broken when the
presenlation is deactivated.

Methods that control users connecling to and discommect-
ing from notifiers that affect the control’s presentation of a
data value, Connecl dala nolifiers connects o the notifiers
specified by commands when the control is opened. Dis-
connect data notifiers breaks these connections when the
control 1s closed. Conirols that do oot display a data value
(e.z. button) may override connect data notifiers to do
nathig.

The Checkbox

A, checkbox is the user interface 1o a command that sets
a Boolean value. Following appropriate user inleraction, the
checkbox calls a command method to change the value and
execufcs the command. This class is normally used without
subclassing; just set the command, its value getler and setles,
and away you go.

The Slider

Aslider is a unicontrol that displays a single floating point
value and allows il to be changed following appropriate user
interaction. Examples of sliders were presented in FIGS. 9
and 10.

TMultiConltrol

A multicontrol is the abstract base class for controls that
present several commands and causes them to be executed
following appropriate user interaction. Examples of this type
of conlrol are radio bullons and menus.

TRadioBution

Aradio butlon is a rnulticontrol that displays two or more
Boolean values and allows them to be changed following
appropriate user inleraction. The radio button enforces the
constraint that exactly one button is selected as shown in
FIG. 11. If Paper is selected, then the circle at 1100 is
blackened. If Plastic is selecled, then the circle at 1110 is
selected. Both cannot be selected.

TCommand

A command encapsulates a request to an object or set of
objects to perform a particular action. Commands are usu-
ally executed in response to an end-user action, such as
pressing a button, selecting a menu ilem, or by direct
manipulation. Commands are able o provide various pieces
of infonmation about themselves (e.g. name, graphic, key
equivalent, whether they are active) that may be used by a
control 1o delermine its appearance. Subclasses must imple-
ment a method to examine the current selection, active user
interface element, or other parameters in order to decide
whether the command is active. Subclasses must override
get active interest list 1o return notification interests that may
affect whether this command is active.

FIG. 12 is a flowchart depicting the detailed logic in
accordance with the subject invention. The flowchart logic
commences al 1200 and control passes directly to funciion
block 1210 where a command objects are added io a menu.
The steps carried oul by this function block are: 1) create
menu item from a command, where a menu ilern 1s another

US 6,424,354 B1

23

object data structure containing a command, 2) add 2 menu
iem to a list of menu items, and 3) mark the menw’s
appearance is invalid in data structure fValid. Then, later
when the menu is pulled down, the appearance is recom-
puted based on the system states

Each menu is a view. Views confzin size and location
information. Each menu contains a list of menu items. Each
menu item conlains a command and variables that reflect its
current appearance. This includes whether the menu item is
enabled (Boolean fEnabled), its name (TTextLabel fName),
its graphic {TGraphicLabel fGraphic), and whether its
appearance is currently valid (Boolean fValid). Each of these
variables are determined by asking the command when the
menu item was created.

Next, & query is sent to the command object for notifi-
cation interests as depicted in function block 1220. Each
command has four methods to connect for different types of
notifications: i) notifications that affect it’s name, ii) notifi-
cations that affect a graphic, iii) notifications that affect
whether the command is active, and iv) notifications that
affect any data. In this case, the menu item just created for
the command connects for active notification. It does this by
passing a connrection object to ConnectActive, The com-
mand is then responsible for connecting the connection
object Lo notifiers affecting whether the command 15 active,
Then conitrol is passed to function block 1230 10 query a
command for the enabled slale when it is necessary to draw
a menu item. To draw a menu item, menu item calls method
“IsActive” for ils command. The command looks at what-
eveT Syslem state it wants to and returns whether it is active
as depicled in decision block 1240 in the current context
{e.g. some commands only are active when a particular type
of window Is in front, or when a particular type of object is
selected). Then, a menu itern updates its internal state (a
Boclean value in each menu item) and appearance as shown
in function block 1250 and 1260 to maich the value returned
by the command.

Whenever a user aclion invokes any command as shown
in inpul block 1270, a user causes a command to be
executed. This could be from a menu item, confrol, or
through direct manipulation of an object. This action causes
a document state (o be modified as shown in function block
1280, and a document sends notification as shown in func-
tion block 1290, When a document sends notification, the
following steps are executed: 1) any menu item (or other
control) connected for the notification sent by the document
recerves a notification message, This message includes the
name of the change as well as a pointer 1o the object that sent
the notification) a menu item then updates ifs state, and
control is passed back to function block 1230 for further
processing.

FIG. 13 is an illustration of a display in accordance with
the subject invention. The menu item is Edit 1300 and has
a pumber of sub-menu items associated with it. Undo 1310
i$ an active menu itern and can thus be selected to carry out
the associated functions. Redo1320 is inactive and is thus
presented in a greyed cul fashion and cannot be selected at
this time. A checkbox is also shown ai 1360 as part of the
debugging conirol panel 1350.

Presentation Templales and Persisience

Data presentations are created from templates and saved
across sessions in a user inlerface object. The container for
all data in the system is a model. A model contains and
facilitates the manipulation of data. Data exchange is facili-
tated through cut, copy, and paste operations. Data reference

55

60

24

is provided by sclections, anchors, and links. Data models
may be embedded inlo any other Users interact with models
through presentations (¢.g. icon, thumbnail, frame, window,
dialog, control panel) thal are provided by an assoctated uscr
interface. Data models delegate all presentation creation and
access methods to another object, called the user interface.

A user inlerface is 2 madel containing a set of presenta-
tions {e.g. icon, thumbnail, frame, window) for a particular
model. When required, presenlations are selected from those
already created based on the type of presentation desired, the
user's name, locale, and other crlena. If the desired pre-
senfation is not found, a new presentation is created and
added fe the user interface by copying one from an associ-
ated archive. Presentations may be deleted when persistent
presentation information (e.g. window size and location,
scroll positions) is no longer required.

A presentation contains a set of presentable objects that
wrap user interface elements (e.g. menus, windows, tools)
used to view and manipulale data. Presentations provide a
reference 1o the data these objects present. Presentations
install or activate presentable objects when the presentation
is activated. Similarly, these objects are removed or deacti-
vated when the presentation is deactivated. Presentations are
identificd according to their purpose (e.g. icon, thumbnail,
frame, window) and retain yet-to-be-determined criteria
(c.g. user identity) for later selection.

A presentation is made up of a collection of presentable
objects {e.g. user interface elements) that are displayed on
the screen or are otherwise available when the presentation
is open or active.

Presentations are created from templale presentations
conlained in an archive. These are made up of objects such
as user interface elements, which are, in tum, made up of
smaller objects such as graphics and text strings.

An archive is a model containing a set of template objects,
including user interface elements (e.g. windows, menus,
controls, tools) and presentalions {e.g. icon, thumbnail,
frame, window).

Dialog Boxes & Control Panels

By using command objects in different ways, we can
control two mndependent behaviors of a group of controls.
The first is whether they affect the data immediately, or
whether the user must press OK before the settings take
effect. The second is whether they are independent from one
another, or whether the settings represent an atomic opera-
tion.

Controls contain commands. As the user manipulates the
control, the control sets paramelers in the commands and
cause it to be executed. Commands operate on model data
specified by a selection.

Immediate

Controls that affect ihe data immediately contain a com-
mand that contains a selection that specifies real model data.
As the user manipulates the contrel, the command causes
this data to change. As the data changes, it sends change
notification so that views and controls depending on the state
of the data can accurately reflect the current state.

Delayed

Controls that are designed to not change the real data must
operale on prototypical data, instead. The real model data is
not changed until the user performs another action, such as
pressing (he OK button. This is accomplisbed in two ways:

US 6,424,354 B1

25

The control contains a command that contains a selection
that specifies the control itself. As the user manipulates the
control, the command causes the control’s value to change,
but no other model data. When the user presses OK, a
command in the OK button changes the real model data to
match the values in each control the user may have manipu-
lated.

The control contains a command thal contains a selection
that specifies a parameter of the command centained by the
OK button. As the user manipulaies the control, the com-
mand causes the OK button’s command to change. When the
user presses OK button, the OK. bullon®s command changes
the real model data to match the values contained in itself.

Independent

Controls that act independently from one another require
represent actions that can be individually undone after the.
coniro]l panel or dialog session is complete. This is the
normal behavior of commands once they are execuled by
controls.

Atomic

Other sets of controls are designed to work together and
should be undone and redone as an alomic operation. This is
accomplished by putting a mark on the undo stack when the
dialog box or control is started. When finished, either by
dismissing the control panel or when the user presses an OK
button (as in Il B above), all of the commands executed since
the mark was placed on the undo stack are collected together
into a single command group. This group can then be undone
or redone as a single group.

Cancel

Control panels containing a CANCEL bulton (usually
accompanied by an OX button, as in IT B above) us a
technique similar to that described LIl B above. A mark is pui
on the undo stack when the dialog box or control panel is
started. If the user presses the CANCEL buiton, all com-
mands placed on the undo stack since the mark are undone.
This technique works rcgardless of whether the contrels
affect the data immediately or not.

Atomic Command Execution in Dialog Boxes

The object with which users interact fo manipuiate other
objects or data is called a control. Example controls are
menus, butlons, check boxes, and radio buttons. Each con-
trol contains a command, which implements an end35 user
action. Commands operate on data that is specified by a
selection object. As the user manipulates the conirol it sets
paramelers in the command and causes it to be execuled,
thus changing the data value.

Controls that act independently from one another require
represent actions that can be individually undone afier the
control panel or dialog session is complete. This is the
normal behavior of commands once they are executed by
controls. Other sets of controls are designed lo work together
and should be undone and redone as an afomic operation.
This is the subject of this patent.

The detailed logic of the alomic execution is set forth in
the Aowchart presented in FIG. 14. Processing commences
at terminal 1400 where control is immediately passed lo
function block 1410 where a dialog box is activated. When
the dialog box is activated, a mark is placed on the undo
stack. The undo stack is a list of all commands the user has
executed. When undo is pressed, the command on the top of

15

20

25

40

45

50

55

60

65

26

the slack is undone. If not immediately redone, it is thrown
away. Then, at function block 1410, a user manipulation of
2 control is detected. The manipulation of a conirol changes
the command’s dala value, as appropriate as set forth in
function block 1430, and executes the control. For example,
a checkbox topgles the command’s fChecked field between
0 and 1. Finally, the command 1s recorded on the undo stack
50 it can be subsequently undone as shown in function block
1440.

As a user subsequently manipulates each centrol in the
dialog box, as detected in decision block 1450, then conirol
passes to function block 1430. However, if a uscr presses
OX as detected in decision block 1460, then control passes
to function block 1420. Finally, when each control in the
dialog box is set fo the user’s satisfaction, the user presses
the OK buiton. All of the commands execufed since the mark
was placed on the undo stack in function block 1440 are
collected together into a single command group and placed
back onio the undo stack as depicted in function block 1470.
A command group is a command that collects many com-
mands together. When executed, undone, or redone, the
command group executes, undoes, or redoes each command
in sequence. The command group is then placed back onto
the undo stack where il can be undone or redone as a single
atomic operation.

Delayed Command Execution in Dialog Boxes

The object with which vsers interact to manipulate other
objects or data is called a conlrol. Example controls are
menus, buitons, check boxes, and radio buttons. Each con-
trol contains a command, which implements an end-user
action. Commands operate on data that is specified by a
selection object. As the user manipulates the control it sets
parameters in the command and causes it to be execuled,
thus changing the data value. Delaying changing of data
until the wser performs another aciion is one aspect of the
subject invention. For example, controls in a dialog box may
not want (o change any data values until the user presses Lhe
OK button.

When a control is created a command musl be specified.
The conirol makes a copy of this command and stores it in
field fCommard. If the command supplies any data values,
a pointer 1o appropriate Get and Set methods of the com-
mand must also be specified. The control stores these
method pointers in fields fGetMethod and [SetMethod,
respectively. The data that is modified by a command is
specified by a selection object. Normally, this selection
object specifies real model data. Insiead, a selection object
that specifies the data value within the command of the OK
button.

When a user manipulates the control, the control’s com-
mand is execuied and a data value within the command of
the OK button is changed. As the user manipulaies each
contral in the dialog box, the control’s command is executed
and a data value within the command of the QK button is
changed. Thus, when a user presses the OK bufton, the
command in the OK button updates the real model data 1o
match the data values contained within itself as manipulated
by the control’s commands. This processing is repeated untzl
control processing is completed.

Labels

Labels are graphical objects that contain a graphic or text
string. They are used 1o idenlify windows, menus, buttons,
and other controls. Labels are able to alter their appearance
according to the slate of their container. They are drawn on

US 6,424,354 B1

27

a medium-gray background and appear naturally only when
no special state must be indicated. Labels modify their
appearance when inactive, disabled, or selecled.

Inactive

Window titles are set to be inactive when lhe window 1s
not front-most. Similarly, control labels are set to be mactive
when the control is not in the front-most window or other
container. Graphic labels are blended with 55% white when
inactive, in order to appear dimmed. For text labels, the
inactive paint is derived from the natural paint by manipu-
lating the saturation component of the HSV color model.
The saturation is multiplied by 0.45 when inaciive.

Disabled

Control labels are dimmed when the centrol does not
apply in a particular context. Graphic labels are blended with
46% white when inactive, in order to appear dimmed. For
text labels, the disabled paint is derived from the natural
paint by manipulating the saturation component of the HSV
color model. The saturation is multiplied by 0.54 when
disabled.

Selected

Control labels are highlighted as the control is being
manipulated. Graphics and text are drawn in their natural
state, but on a white background, when highlighted.

Smart Conirol Labels

Controls use a command to delermine the current state of
the object or data. Following appropriaie interactions with
the user, the control updates the command’s parameters and
causes it 1o be execuled. For example, a checkbox sets a
command parameter (0 on or off and then executes the
command fo change a data value. Controls display a label io
indicate its function. This label is a graphicai object con-
taining a graphic or a text string. As the control changes
state, the label automatically adjusts its appearance, withoult
requiring the developer to write additional code. These states
include activefinaclive, enabled/disabled, and selected/
unselected.

FIG. 15 sets forth the detailed logic associated with smart
label processing which commences at the start terminal 1500
where conirol is immediately passed to 1510 for smart label
initialization. When the control is crealed, its label is ini-
tialized with a text string or graphic provided by ils asso-
ciated command. Each command provides methods called
GetGraphic and GetName for (his purpose. The control tells
the label whether it is currently active or inactive by calling
method SetActive. Similarly, the control calls method Set-
Enabled to tell ihe label whether it is enabled, and SetSe-
lected to tell ihe Iabel whether it is currently being selected
by a user.

The next step in smart label processing occurs at function,
block 1520 when the label is drawn. When the control is
activated, it calls the Draw method of ils label, causing the
label to appear on the screen. If inactive, the label is drawn
more dimly than normal. This is done by manipulating ihe
saturation components of the HSV celor model. The satu-
ration is multiplied by 0.45 when inactive. If disabled, the
label is drawn more dimly than nozxmal. This is done by
manipulating the saturation components of the HSV color
model. The saturation is multiplied by 0.54 when (he label
is disabled. If selecled, the label on a highlighted back-
ground. Labels are nornally drawm on a medinm-gray

10

15

20

25

30

35

45

50

55

60

65

28

background. When highlighted, labels are drawn oo a white
background. Otherwise, the label is drawn normally.

The next processing occurs when a label is activaled/
deactivated as shown in function block 1530 When the
conlrol is activated or deactivated, it tells the label by calling
the SetAclive method. The control then indicales its appear-
ance needs updating by calling Invalidate with an argument
indicating the portion of the screen that needs to be redrawn.
Then, at function block 1540, precessing occurs when a
control is enabled/disabled. When the control is enabled or
disabled, it tells the label by calling the SetEnabled method.
The control then indicates its appearance needs updating by
calling Invalidate with 2n argument indicating the portion of
the screen that needs to be redrawn.

A test is then performed at decision block 1550 to
determine if a control is selected or unselected. When the
control is selected or unselected, it tells the label by calling
the SetSelected method. The control then indicates its
appearance nccds updating by calling Invalidate with an
argument indicating the portien of the screen that needs to
be redrawn, and control is passed to function block 1520 for
further processing.

Smart Window Labels

A title is displayed in a window in order to indicate its
purpose. For example, the title for a window lo edil a
document is usually the name of the documenl. A label
object is used to keep track of the title. This label is a
graphical object containing 2 graphic or a lext siring. As the
window changes slale, the label automatically adjusts its
appearance, without requiring the developer to wrile addi-
tional code. Windows can be either aclive or inactive. Smart
Window label processing is flowcharted in FIG. 16 and the
delailed Jogic is explained with reference thereto.

Processing commences in FIG. 16 at terminal 1600 where
control is immediately passed to function block 1610 for the
title to be initialized A window ftitle 1s specified by a
developer when a window is created. This title is stored in
2 TLabel object called fTitle. The control tells the Eifle
whelber it is currently active or inactive by calling method
SetActive, Then, the at function block 1620. When 2 win-
dow is drawn, it calls the Draw method of its fTitle object,
causing the title to appear on the screen. If inactive, the title
is drawn dimmer than normal. This is done by manipulating
the saturation components of the HSV color model. The
safuration is multiplied by (.45 when inactive. Otherwise,
the title is drawn normally.

The next step is processed at function block 1630 when
the title is activated/deactivated. When a window is acli-
vated or deactivated, it tells its fTitle object by calling the
SetActive method. The window then indicates ils appear-
ance needs updating by calling Invalidate with an argument
indicating the portion of the screen that needs to be redrawn.
Then, control is passed back to function bleck 1620 for
redrawing the title to reflect ils new state.

Decorations”

Many ol the visual aspects of user interface elements are
common among many elements. Examples are shadows,
borders, and labels. The individual visual features are
referred to as decorations. Decorations can be combined
with other graphics to form Lhe visual appearance of specific
user interface elements, such as windows and conltrols. The
subject invention supports many different types of decora-
tions.

Backgrounds

A decoration that is drawn behind another cbject is called
a background. One type of background is drawn so as to

US 6,424,354 B1

29

appear flush with the surrounding drawing surface. It may be
drawn with or without a frame. Another type of background
is drawn with highlighting and shadow so it appears to be
raised above the surrounding drawing surface. The final type
of background is drawn with highlighting and shadow so it
appears to be recessed benealh (he surrounding drawing
surface.

An example use of these backgrounds is a button. Nor-
mally the text or graphic that describes the button is drawn
on a raised background. When pressed by the user, the text
or graphic is redrawn on 2 recessed background. If the
button is inactive, such as when another window is active,
the text or graphic of the button could be drawn dimly on a
flush background.

Borders

A decoration that surrounds another object or area is
called a border. Example borders are frames and shadows. A
frame is a border that surrounds another graphic, much like
a frame encloses a painting in the real world. Like
backgrounds, frames can be drawn Lo appear recessed below,
flush with, or raised above a surrounding drawing surface. A
shadow is a special type of border that adds a shadow around
ap object to make it appear as if it foats above the sur-
rounding surface.

Decoration Colors

Many of the visual aspects of user interface clements are
common among many elements. Examples are shadows,
borders, and labels. Each of these individueal visual features
are referred to as a decoration. Decorations can be combined
with other graphics to form the visual appearance of specific
user interface elements, such as windows and controls.
Some decorations use highlighting and shadows to appear as
if they are above or below the surrounding drawing surface.
Decarations are able to derive anlomatically these highlight-
mg and shadow paints.

Fill Paint

The fill paint represents the decoration’s primary color.
All other painls are derived from the fill paini. The fill paint
15 slored by the directoration in a TColor field called
fFillPaint. The fill paint is normally specified by the devel-
oper when the decoration is created. However, if no color is
specified, a medium gray is selected.

Frame Paint

The frame paint 15 used to draw a line around ithe
decoraton to provide visual contrast. The frame paint is
stored by the decoration in a TColor field called fFrame-
Paint. The frame paint may be specified by the developer
when the decoration is created. However, if no frame paint
is specified, it is computed awtomatically from the fill paint.
This is accomplished by manipulating the saturalion and
value components of the HSV color model. The saturation is
multiplied by four, with a maximum value of 1. The value
is divided by four.

Highlight Paint

The highlight paint is used to draw lines where light
would hit the objec if it were an actal three-dimensional
object. The highlight paint is stored by the decoration in a
TColor field called fHighlightPaint. The highlight paint may
be specified by the developer when the decoration is created.
However, if no highlight paint is specified, it is compuled

10

15

20

25

30

35

40

60

30

automatically from the fill paint. This is accomplished by
manipulating (he saturation and value components of the
HSV color model. The saturation is multiplied by 0.8, The
value i1s multiplied by 1.25, with a maximum value of 1.

Shadow Paint

The shadow paint can be used lo draw lincs where the
object would be shaded if it were an actual three-
dimensional object. The shadow paint is stored by the
decoration in a TColor field called fShadowPaint. The
shadow paint may be specified by the developer when the
decoration is created. However, if no shadow paint is
specified, it is computed automatically from the fill paint.
This 18 accomplished by manipulating the saturation and
value components of the HSV color model. The saturation is
rmuitiplied by 2 with a maximum value of 1. The value is
divided by 2.

Separating Input Syntax From Semantics

A graphical user inlerface is manipulated by moving a
mouse, clicking on objects to select them, dragging objects
to move or copy then, and double-clicking 10 open them.
These operalions are called direct manipulations, or inler-
actions. The sequence of events corresponding (o a user
pressing, moving, and releasing a mouse is called an input
syntax. Certain sequences of evenls are used 1o indicate
particular actiops, called semantic operalions.

The separation of the code that undersiands the inpul
syntax from the code that implements semantic operations is
the subject of this patent. This processing is embodied in
objects called Interacts and Intractable, respectively. FIG. 17
illustrates how these objecls are created and how the objects
communicate with each other during a typical interaction
with an object that can be moved and selected.

Processing commences al terminal 1700 where control 1s
passed immediately to function block 1710 to determine if
the mouse button has been pressed. An event is sent to the
object responsible for the portion of the screen at the
location where the mouse buiton was pressed. This object is
called a View, Then, at function block 1720 the Interactor is
created to parse the input syntax. This is done by calling the
Createlnteractor method of the view. When the Interactor is
created, pointers 10 objects thal implement possible user
aclions are passed as paramelters.

For the purposes of this discussion, assume the user
pressed the mouse button down on an ebject that can be
selected and moved. In this case, an object that implements
selection and an object that implements movement for the
target object are passed as parameters to the Interactor. The
initial View could implement both of these behaviors, or
they could be implemented by one or two separale objects.
The object or abjects are referred to collectively as the
Interactable.

The Interactor is started at function block 1730. This
processing returns ihe Interaclor to the View and com-
mences processing of the Interactor, This is accomplished by
calling the Interactor’s Start method and passing the initial
mouse event as a parameter. The Start method saves the
initial mouse event in ficld fnitialEvent. Since only one
mouse event has been processed thus far, the only action
possible is sclecting. The Interactor enfers select mode by
setting variable flateractionType to constant kSelecl. It asks
the Interactable to begin the selection operation by calling its
SelectBegin method.

Then, the Interactor waits for a short time to pass as
shown in function block 1740. A new mouse event is sent 1o

US 6,424,354 B1

31

the Interactor when the time is up which indicates the current
state of the mouse. Then, if the system delects thal lthe mouse
is still down at decision block 1750, control is passed fo
function block 1740. Otherwise, contrel is passed to termi-
nal 1760. If the mouse bullon 1s still down, the interactor
makes sure it ts still in the correct state and asks the
Interaclable lo implement the commect operation. The Inter-
actor is Selecting if flnleractionType is kSelecling. Il is
Moving if the finteractionType is kMoving.

If selecting, the Interactor compares Lhe current mouse
location with the 1nitial mouse location. The current mouse
location is obtained by calling the GetCurrenllLocation
method. The initial mouse location is oblained by calling the
Getlnitiall ocation method. If the two are the same or differ
by only 2 small amound, the user 1s still seleciing the objecl.
The Interactor then asks the Interactable to continue the
seleclion operalion by calling its SelectRepeat method.
However, if the two points differ beyond a predelermined
threshold, the user has begun moving the object. In this case,
the Interactor asks the Interactable to terminale the selection
operation by calling its SelectEnd method. It then asks the
Interactable to begin the move operation by callings its
MoveBegin meihod. In each case, the current mouse loca-
tion is passed as an argument. If Moving, the Interactor asks
the Interactable fo continue the move operation by calling its
MoveRepeat method. It passes the current meuse location as
an argument.

When the user releases the mouse button, it signals the
end of the current operation. If Selecting, the Interactor asks
the Inleractable to lerminate the selection operation by
calling its SelectEnd method. If moving, the Interaclors asks
the Interactable 10 terminate the move operation by calling
its MoveEnd method.

Localized Presentations

Localization is the process of updaling an applicatien fo
conform o unique requirements of a specific locale. It may
involve language translation, graphic substitution, and inter-
face element reorientation. For example, the text used in
[abels, utles, and messages depends upon the selected lan-
guage. Its direction and orientation may affect the placement
and orienfation of a menun, menubar, tille, scrollbar, or
toolbar. Similarly, the selection of icons and other graphical
symbols may be culturally dependeni. Unfortunately, having
many localized versions of user interface elemenis in
memory is very ¢xpensive. Instead, localized versions of
user interface elements are kept on disk until required in
memory.

Further, it is very error-prone and expensive to keep track
of all of the user interface elements and decide which
version to use. Instead, when a user interface element is
required, the appropriate one is selected automatically by the
system, according lo the current language and other cultural
paramelers, and read intc memory. '

Once localized, user interface elemenis are stored in a
disk dictionary. A disk dictionary is an object that, when
given a key, returns a value after reading it in from disk. This
disk dictionary is managed by an object called an archive.
An archive is responsible for putting logether the individual
user interface elements that make up a particular presenta-
tion. The process of selecting the proper user interface
element is presented in FIG. 19.

Processing commences at terminal 1900 and immediately
passes to function block 1910 when a user requests a
presentation. A TOpenPresentation Command is sent 1o the
data model, indicating that the user wanis to view or edit this

20

25

30

35

45

55

32

data. A command is sent to the data model to indicate that
the user wants to view or edil the data. This command is
called a TOpenPresentationCommand. A presentation is a
set of user interface elements that, logether, allow the user to
view or edit some data. Presentations are stored across
sessions in User Interface object, thus mainiaining continu-
ity for the user. User inlerface elements are stored on disk
unlil needed in memory. They may be required as part of a
data presentation the user has requested, or they may be
nceded for translation or another localization process. Each
user interface element contains an ID which uniguely ref-
erences Lhat element. However, all localized versions of the
same user interface element share a single 1D.

In order to differentiate the localized versions, the par-
ticular language, wriling direclion, and other cultural param-
elers are stored with each localized user interface element.
Together, these paramelers are referred to as the locale. All
of the user interface elements are stored in a file. This file is
organized like a dictionary, with one or more key/value
pairs. The key is an object which combines the ID and the
locale. The value is ihe user inlerface element Hself.

A new preseniation must be created next at function block
1920. If an appropriate presentation does not already exist,
a new one must be created from a lemplale by the user
interface Archive. A new presentation is created from a
template stored in the archive by calling ils CreatePresen-
tation method. A presentation type is passed to this method
as a parameler. This type includes such information as the
iype of dala ko be displayed, whether it is to be in 1ls own
window or part of another presentaticn, and so on. Finally,
at function block 1930, an Archive builds the presentation,
selecting user inlerface elements according 4o locale. If the
Archive is able to build a presenlation of the specified type,
il collects together each user interface element that makes up
the presentation and returns this to the user inlerface object.

For cach presentation the archive is able to make, it has
a list of user interface element IDs thal together make up the
presentation. The user interface elements are stored on disk
maintained by a disk dictionary object called. Given a key,
the disk dictionary will return the corresponding user inter-
face element. The user interface element 1D makes up the
primary component of this key. A secondary component of
the key is the desired locale. A locale is an object that
specifies the natural language and other culiural atiributes of
the user. The locale obtained auiomatically by the Archive
from a Preferences Server. This server contains all of the
individual preferences associated with the user.

The locale, as obtained from the preferences server, is
combined with the I} inlo a single object called a TUse-
rlnlerfaceElementKey. This key passed as a parameter to the
GetValue methed of the disk dictionary. If a user inlerface
element with a matching ID and locale is found, it is returned
and included as part of the presentation. Otherwise, the
locale parameter must be omitled from the key, or another
locale must be specified until an appropriate user interface
element is found.

Interaction Framework System

Users of an object oriented operating system’s graphical
user interface often move a mouse, click on objects 1o select
them, drag objects to move or copy then, and double-click
lo open an objecl. These operations are called direct
manipulations, or interactions. The sequence of events cor-
responding to a user pressing, moving, and releasing the
mouse is called the inpul syntax. Cerlain sequences of events
are used to indicate particular actions, called semantic

US 6,424,354 B1

33

operations. This invention discloses the method and appa-

ratus for translating inpul syntax into semantic operations

for an object that supports Select, Peck, Move, AuloScroll,
and Drag/Drop (Copy).

The invention detecls 2 mouse button depression and then
employs the following logic:

(a) If an Option key was depressed when the user pressed the
mouse butlon, the syslem enters drag mode by setting
variable fInteractionType to constant kDrag. The system
then commences a drag operation using the selected
objecl as the target of the operalion; o r

(b) if the Option key was not depressed, then ihe system
enters selection mode by selling variable fInteractionType
to constant kSelect. Then, the select operation is com-
menced.

If a uvser already had the mouse bufton depresses and
continues to hold the mouse button down, then the following
logic 1s engaged. If the system is in select mode, then the
system first determines whether the user has moved the
mouse beyond a certain threshold, called the move (hresh-
old. This is done by comparing the initial mouse location,
returned by the GetInitiall.ocation method, with the current
mouse location, returned by the GetCurrentlocation
method, If the monse has moved beyond the move threshold,
the system ends select mode and enters move mode. It does
this by setting variable flnteractionType to constant kMove.
The system then queries the object to terminate the select
operation by calling its SelectEnd method. The system then
initiates a move operation by calling its MoveBegin method.

Otherwise, if the mouse has not moved, the sysiem checks
how long the mouse has been down. It does this by com-
paring the initial mouse down time, returned by the Getlni-
tialTime method, with the current time, returned by the
GelCurrentTime method. If (he mouse has been down
beyond a certain threshold, called the peek threshold, the
system ends select mode and enters peck mode. It does this
by selling variable flnleractionType 1o conslant kPeek. It
asks the object to end the sclect operation by callings its
SelectEnd method, and begins a peck operation by calling its
PeekBegin method. Otherwise, if the mouse has not moved,
or it has nol been down beyond the peek (hreshold, the
system continues the select operation by calling the object’s
SelectRepeat method. If the system detects that a user is in
Move mode, the system first determines whether the user has
moved the mouse within the window, on the border of the
window, or outside the window. It does this by comparing
the current mouse location, returned by the
GetCurrentl ocationMethod, with the bounds of the object’s
container, refwrned by GeotContainerBounds.

If the mouse is still within the bounds of the window, the
system conlioues lhe mave operation by calling the object’s
MoveRepeat method. If the mouse is on the border of the
window, Lhis indicates an AuloScroll vperation. The system
asks the object’s container to scroll in the direction indicated
by the mouse location. This is done by calling the contain-
er's AutoScroll method and passing the current mouse
location as a parameter. Once complete, the system contin-
ues the move operation by calling the object’s MoveRepeat
method.

If the mouse has moved ontside the window, the system
ends move mode and enters drag mode. It does this by
setting variable finteractionType 1o conslant kDrag. It asks
the object to end the move operation by calling its MoveEnd
method. It asks the object to begin (be drag operation by
calling its DragBegin method. If the system is in drag mode,
the system continues the drag operation by calling the
object’s DragRepeat method. If the system is in peek mode,

15

20

30

35

45

50

55

60

65

34

the system first delermines whether the user has moved the
mouse beyond a certain threshold, called the move 1hresh-
old. This is done by comparing the initial mouse location,
returned by the Getlnitiall.ocation method, with the current
mouse location, returned by the GeiCurrenilocation
method.

If the mouse has moved beyond the move threshold, the
system ends peek mode and enters move mode. It does this
by settipg variable flnteractionType to conslant kMove. It
asks the object to end the peek operation by calling its
PeekEnd method. It asks the object to begin the move
operation by calling its MoveBegin method. Otherwise, if
the mouse has not moved, the system contimues the peek
operalion by calling the abject’s PeckRepeal method.

If the system detects that a user releases the mouse button,
then if the system is in selecl mode, the system ends select
mode. It does this by setting variable fnteractionType to
constant kNone. The system queries the object to end the
select operation by calling its SelectEnd method. If the
system is in move mode, the sysiem ends move mode. It
does this by selling vanable flnteractionType to constant
kNoene. Then, the system queries the object to end the move
operation by calling its Movelind method and ends drag
mode by setting wvariable fInteractionType fo constant
kNone. It asks the object to end the drag operation by calling
its Dragfnd method. If the system is in peek mode, the
system ends peek mode. It does this by sclling vanable
flnteractionType {o constanl kNone. It asks the object to end
the peek operation by calling its PeckEnd mcthod.

Accordingly, it is a primary objective of the present
invention to provide an innovalive hardware and software
system which enables the contents of a window to update
dynamically as a uscr moves a scrollbar thumb. The system
detects when a user presses down on a scrollbar thumb.
When the user presses down on the scrollbar thumb, the
system begins initiation of a scroll command to change the
portion of the data that is exposed in the window. A
command is an object that implements an end-user action,
such as scrolling. A scroll command has one parameter, the
position to which the content view should be scrolled. The
system sets this position to the current scroll position. This
1s accomplished by calling the command’s SetScrollPosition
and setting the scroll to position to the value returned by the
scrollbar’s method GetScrollPosition.

‘When a user moves the mouse within the scrollbar, the
system conlinues the execution of the scroll command o
dynamically change the porlion of the data exposed in the
window. The system sets (be scroll position of the command
to the new scroll position. This is accomplished by calling
the command’s SelScrollPositton and setting the value equal
to the value returned by the scrollbar’s method GetScroll-
Position. The execution of the command is then repealed by
calling its DoRepeat method. This causes the content view
to scroll o the new position. This processing is continued
while a user continues to hold the mouse button down.

When a user releases ihe mouse bullon, the system ends
the execution of the scroll command to dynamically change
the portion of the data exposed in the window. The system
sets the scroll position of the command to the final scroll
position. This processing is accomplished by calling the
command’s SetScrollPosition and setting it equal to the
value returned by the serollbar’s method GetScrollPosition.

FIG. 20 is a Howchart illustrating the detailed logic
associaled with scrolling in accordance with the subject
inveniion. Processing commences at terminal block 2400
and immediately passes to function block 2010 where the
current seroll position is initialized based on the current

US 6,424,354 B1

35

cursor location. Then, at decision block 2020, a test is
performed o detect if the scrollbar thumb has been selected.
An example of a scrollbar thumb is shown in FIG. 21A at
label 2110. If the scrollbar thumb has been selected, then
contrcl passes 1o decision block 2030 to determine if the
scrollbar thumb has been moved. If so, then the scroll
position is set Lo the new position of the scrollbar thumb and
the display is reformatted to reflect the immediate scroll
operation and displayed for the user, If the scrollbar thumb
has nol moved, another test is performed at decision block
2050 1o delermine if the scrollbar thumb has been released.
If not, then control is returned 1o decision block 2030. If the
scrollbar thumb has been released, then conirol passes lo
function block 2060 to end the scroll operation and return
the system to a nonscroll operational status and processing
is completed at terminal 2070,

FIGS. 21A, 21B and 21C illustrate window scrolling in
accordance with the subject invenlion. In FIG. 21A, the
scrollbar thumb 2110 is located at the top of the window
2112. FIG. 21B shows the scrollbar thumb 2120 moved to
the middle of the windew and the window’s contenis 2122
updated accordingly. FIG. 21C shows the scrollbar thumb
2140 moved 1o the bottom of the window and the bettom
most portion of the window 2142 displayed.

While the iavention has been described in terms of a
preferred embodiment in a specific system environment,
those skilled in the art recognize that the invention can be
practiced, with modification, in other and different hardware
and software environments within the spirit and scope af the
appended claims.

Having thus described our invention, what we claim as
new, and desire to secure by Letters Patent is:

1. A method for operating 2 compuler-implemenied event
notification system for propagating, among a plurality of
objects, evenis representing changes in the objects, the
operating method comprising the steps of:

(2) crealing, on behalf of a first object, connection infor-
mation representing the first object’s interest in, and an
associated object method for, receiving notification of
a change to a second object;

(b) registering the connection information with a connec-
tion object;

(c) crealing an event representing a change in the second
object, responsive to the change in the second object;
and

(d) notifying the first object of the event by invoking the
associated object method for recetving notification reg-
istered with the connection object only if the event
information corresponds to an mterest registered on
behalf of ihe first object.

2. The operating method of claim 1, wherein the connec-
tion object is associated with status information, the oper-
ating method further comprising the step of:

(b. 1) using the connection information in the connection
object to configure the status information to represent
whether the notifying step (d) is activated or inacti-
vated.

3. The operating method of claim 1, wherein the connec-
tion informaticn s associated with a notification type cor-
responding to a connection object method, the operating
method further comprising the step of:

(<. 1) invoking the connection object method correspond-
ing to the notification type specified by the connection
information in the connection object.

4. The operating method of claim 3 wherein:

each of a notification type plurality corresponds to a
umique connection object method different from the

15

20

30

as

45

50

55

60

65

36

connection object method corresponding 1o another of
the notification type plurality.

5. The operating method of claim 3 further comprising the
step oft

(c. 1.1y invoking a connection object method responsible
for using the connection information in the connection
object to modify a name associated with the first object.

&. The operating method of claim 3 further comprising the
step of:

(c. 1.1) invoking a connection object method responsible
for using the connection informalion in the connection
object to modify a graphic asscciated with the first
object.

7. The operaling method of claim 3 further comprising the

step of:

(c. 1.1) invoking a conpection cbject method responsible
for using the connection information in the connection
object to create or modify data associated wilth the first
object.

8. The operating method of claim 3 further comprising the

step of:

(C 11) invoking a connection object method responsible
for vsing the connection information in the connection
object to read data associated with the firsi object.

9. The operating method of ¢laim 8 further comprising the

step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute an undo function associated with the
first object.

10. The operating method of claim 8 further comprising

the step of:

(c. 1.2) invoking a conneclion object method responsible
for using the connection information in the connection
objecl to execule an redo function associated with the
first object.

11. A method for operating a computer-implemented
event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps ol:

{a) creating, on behalf of an event lislener object, con-
nection information representing the evenl listener
object’s interest in, and an associated objecl method
for, receiving nolification of a change to an event
source object;

() registering the connection infermation with a connec-
tion object,

(c) creating an event representing a change in the event
source object, responsive Lo the change in the evenl
source object; and

(d) notifying the event listener object of the event by
invoking the associaled object method for receiving
notification registered with the connection object only
if the event information corresponds fo an interest
registered on behalf of the event listener object.

12, The operating method of claim 11, wherein the
connection object is associated with status information, the
operating method further comprising the step of:

(b 1) using the connection information in the connection
object to configure the status information to enable or
disable the notifying step (d).

13. The operating method of claim 11 wherein the con-
pection information is associate with a notification type
corresponding to a connection abject method, the aperating
method further comprising the step of:

US 6,424,354 B1

37

(c. 1) invoking the connection object method correspond-
ing to the notification 1ype specified by the connection
information in the connection object.

14. The operating method of claim 13, wherein each of a
notification type plurality corresponds te the same single
connection objeclt method, the operating method further
comprising the step of:

(c. 1.1) transferring notification type information between

two objects.

15. The operating method of ¢laim 13 further comprising
the step of:

{c. 1.1) invoking a comnection object method responsible
for using the connection information in the connection
object to modify a name associated with the evenlt
listener object.

16. The operating method of claim 13 further comprising

the step of:

(c. 1 1) invoking a connection cbject method responsible
for using the connection information in the connection
object to modify a graphic icon associated with the
event listener object.

17. The operating method af claim 13 further comprising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
vbject to read data associated wilh the event listemer
object.

18. The operaling meihod of claim 13 further comprising

the siep of:

(c. 1.1) invoking a connection object method responsible
for vsing the connection information in the connection
object to create or modify data associated with the
event listener object.

19 The operating method of claim 18 wherein the data
associated with the event listener object inclides descriptive
textual data.

20. The operating method of claim 18 further comprising
the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object (o execule an undo function associated with the
event listener object.

21. The operating method of claim 18 further comprising

the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute an rede function associated with the
event listener object.

22. A method for operating a computer-implemented
event nolification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operaling melhod comprising the steps of:

(a) creating, on behalf of a consumer object, connection
information representing the consumer object’s interest
in, and an associated object method for, receiving
potification of a change to a supplier object;

(b) registering the connection information with a channel
object;

(c) creating an event representing a change in the supplier
object, responsive to the change in the supplier object;
and

(d) notifying the consumer object of the event by invoking
the associated object method for receiving notification
registered with the channel object only if (he event
information corresponds to an interest registered on
behalf of the consumer object.

W

15

20

25

30

as

45

50

55

60

65

38

23, The operating method of claim 22, wherein the
channel object is associated with status information, the
operaling method further comprising the step of:

{b. 1} using the connection information in the channel
object to configure the status information to make the
notifying step (d) active or passive.

24. The operating method of claim 22, wherein the
conneclion informalion is associated with a notification type
corresponding 1o a chanpel object method, the operating
method fusther comprising the step of:

(c.]) invoking the channel object method corresponding
1o the notification type specified by the comnection
information in the channel object.

25. The operating method of claim 24, wherein a notifi-
cation type plurality all comespond to the same single
channe] object method, the operating method further com-
prising the step of:

transferring notification type information-between two
objects.

26. The operating method of claim 24 further comprising

the step of:

(c. 1.1) invoking a channel abject method responsible for
using the connection information in the channet object
1o create or modify data assaciated with the consumer
object.

27. The operating method of claim 24 further comprising

the step of:

(c. 1.1) invoking a channel object method responsible for
using the connection information in the channel object
to read data associated with the consumer object.

28. The operating method of ciaim 24 wherein the event

has an associated Cype atiribute.

29. The operating method of claim 22 wherein the creat-
ing step (c) is initiated by the channel objectl.

30. The operating method of claim 22 wherein the creat-
ing step {c) is initiated by the supplier object.

31. A method for operating a computer-implemented
evenl notification sysiem for propagating, among a plurality
of objecls, events represenling changes in the objecls, the
operating method comprising the steps of:

(2) creating, on behalf of a receiver object, connection
information representing the receiver object’s interest
in, and an associated object method for, receiving
notification of a change to a source object;

(b) registering the connection information using a con-
nection cbject;

(c) creating an event representing a change in the source
abject, responsive Lo the change in the source object;
and

(d) notifying the receiver object of the event by invoking
the associated object method for receiving nolification
registered using the connection object only if the event
information corresponds to an interest registered on
behalf of the receiver object.

32. The operating method of claim 31, wherein the
connection object is associated with status information, the
operating method further comprising the step oft

(b. 1) using the connection information in the connection
object to configure the status information lo represent
whether the notifying step (d) is activated or inacti-
vajed.

33. The operating method of claim 31, wherein the
connection information is asseciated with a notification type
corresponding to a connection cbject method, the operating
method further comprising the step of:

US 6,424,354 B1

39

(c. 1) invoking the connection object method correspond-
ing to the notification type specified by the conmection
information in the connection object.

34. The operating method of claim 33 wherein:

cach of a notification type plurality correspends to a
unique counnection object method different from the
connection object method corresponding to another of
the notification type plurality.

35. The operating method of claim 33 furiher comprising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the conneclion
object to modify a name associated wilh the receiver
object.

36. The operating method of claim 33 further comprising

the step of:

(c. 1.1} invoking a connection object meihod responsible
for using the connection information in the connection
object to modify a graphic associated with the receiver
object.

37. The operating method of claim 33 further compnising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to create or modify data associated with the
receiver object.

38. The operating method of claim 33 further comprising

the step of:

{c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to read data associated with the receiver object

39. The operating method of claim 38 further comprising
the step of:

(c. 1.2) mvoking a connection object method responsible
for using the connection informatior in the connection
ohject to execule an unde function associated with the
receiver object.

40. The operating method of claim 38 further comprising

the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object 10 execule a redo function associaled with the
receiver object.

41. A method for operating a computer-implemented
event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(2) creating, on behalf of a receiver object, conneclion
information representing the receiver object’s inierest
in, and an associated object method for, receiving
notification of a change io a source object:

(b) regislering the connection information using a con-
nection objecl;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
registered using the connection object only if the event
information corresponds o an interesl registered on
behalf of the receiver object; and

(¢) using the connection information in the connection
object to configure status information to enable Lhe
notifying step (d).

42. A method for operating a computer-implemented

event nolification system for propagating, among a plurality

K

15

20

30

35

40

45

60

65

40

of abjects, evenls representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a receiver object, connection
information representing the receiver object’s interesi
in, and an associated objecl method for, receiving
notification of a change to a source object;

(b) registering the comnection information using a con-
nection object;

(c) crealing an event representing a change in the source
objeci, responsive to the change in the source object;

(d) notifying the receiver object of the evenl by invoking
the associaled objeci method for receiving notification
regisiered using the connection object only if the event
information corresponds to an inlerest registered on
behalf of (he receiver object; and

(e) using the connection information in the conneclion
object to configure status information to disable the
nolifying step (d).

43. A method for operating a computer-implemented
event notification sysiem for propagating, among a plurality
of objects, evenis representing changes in the objecls, the
operating method comprising the steps of:

(a) creating, on behalf of a receiver object, connection
information representing Lthe receiver object’s interest
in, and an associated object method for, receiving
notification of a change to a source object;

(b) registering the connection information using a con-
nection object;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
regisicred using the conneciion object only if the event
information corresponds Lo an interest registcred on
behalf of the receiver object;

said connection informalion being associated with a noti-
fication type corresponding 10 a connection object
method;

(e) invoking the connection object method corresponding
to the notification type specified by the connecticn
information in the conpection object;

each of a notification type plurality corresponding to the
same single connection object method; and

(f) transferring notification type information between two
cbjects.

44. The operating method of claim 43 further comprising

the step of;

(c. 1.1} invoking a connection object method responsible
for using the connection information in the connection
object to modify a pame associated with the receiver
cbject.

45, The operating method of claim 43 further comprising

the step of:

{c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a graphic icon associated with the
receiver object.

46. The operating method of claim 43 further comprising

the step of:

{c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object 1o read dala associaled with the receiver object.

47. The operating method of claim 43 further comprising

the step of:

US 6,424,354 B1

41

{c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to create or modify data associated with the
receiver object.

48. The operating method of claim 47 wherein the data
associated with the receiver object includes descriptive
textual data.

49, The operating method of claim 47 further comprising
the step of:

(c. 1.2) invoking a connection abject method responsible
for using the connecticn information in the connection
obyect 10 execute an undo function associated with the
receiver object.

50. The operating method of claim 47 further comprising

the step of:

(c. 1.2} invoking a connection object method responsible
for using the connection information in the connection
object to execule a redo function associated with the
receiver object.

51. A method for operating a compuler-implemented
event nolification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(2) creating, on behalf of a receiver object, connection
information representing the receiver object’s inierest
in, and an associated object method for, receiving
notification of a change io a source objeck;

{b) registering the connection information with a notifier
objoct;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;
and

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
registered with the notifier object only if ihe event
information comesponds to an interest registered on
behalf of the receiver object.

10

15

20

25

30

35

42

52. The operating method of claim 51, wherein the notifier
object 1s associated with status information, the operating
method further comprising the slep of:

(b. 1) using the connection information in the notifier
object to configure the statns information to make the
nolifying step (d) active or passive.

53. The operating method of claim 51, wherein lhe
connection information is associated with a notification type
corresponding 1o a notifier object method, the operating
method further comprising the step of:

(c. 1) invoking the notifier object method corresponding
to the notification type specified by the comnection
information in the notifier object.

54. The operating method of claim 53, wherein a nofifi-
calion type plurality all correspond to the same single
notifier object method, the operating method further com-
prising the step of:

transferring notification Llype information between two
objects.

55. The operating method of claim 53 further comprising

the step of:

(c. 1.1) invoking a notifier object method responsible for
vsing the connection information in the notifier object
to creale or modify data associated with the receiver
object.

56. The operating method of claim 53 furiher comprising

the step of:

(c. 1.1) invoking 2 notifier object method responsible for
using the connection information in the notifier object
lo read data associated with the receiver object.

57. The operaling method of claim 53 wherein the cvent

has an assoclaied type atiribute.

58. The operating method of claim 51 wherein the creat-
ing slep {(c) is initiated by the notifier objecl.

59. The operating method of claim 51 wherein the creat-
ing step (c) is initiated by the source objcct.

* % E . T

EXHIBIT I

asy United States

a2 Reissued Patent
Cleron et al.

A

(10) Patent Number:
{45) Date of Reissued Patent:

US RE39,486 E
Feb. 6, 2007

(54) EXTENSIBLE, REPLACEABLE NETWORK
COMPONENT SYSTEM
(75) Inventors: Michael A. Cleron, Menlo Park, CA
(US); Stephen Fisher, Menlo Park, CA
(US); Timoe Bruck, Mouniaim View, CA
{US)
(73) Assignee: Apple Computer, Inc., Cupertino, CA
s)
(21) Appl. No.: 10/408,789
(22) Filed: Apr. 3, 2003
(Under 37 CFR 1.47) .
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,212,575
Issued: Apr. 3, 2001
Appl. No.: 08/435,377
Filed: May 5, 1995
(51) Imt. Cl
GOGE 908 (2006.01)
GO6F 9/46 (2006.01)
(52) US.CL oo 719/328; 719/329; 709/201;
709/202; 709/203
(58) Field of Classification Search 719/328-329;
708/200-203
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,634,129 A *
5,669,005 A *

5/1997 Dickiason
9/1997 Curbow

FOREIGN PATENT DOCUMENTS

0 631 456 A2 * 12/1994
2242 293 * /1990

OTHER PUBLICATIONS

Reinhardt, Andy, “The Network with Smarts™ BYTE, Oct.
1994, pp. 51-64.*%

Lippman, Stanley B., “C++ Primer” 2nd edition, Addison—
Wesley, 1991, pp. 394-397.*

Paotel et al; The Architecture of the Taligent System; Dr.
Dobbs Journal on CD-ROM, SP 94.*

Rush, Jefl; OpenDoc; Dr. Dobb’s Journal on CD-ROM, SP
94.*

Piersol, Kurt; A Close-Up of OpenDoc, AlXpert, Jun.
1994 *

EP
GB

(Continued)

Primary Examiner—William Thomson
(74) Attorney, Agent, or Firm—Fenwick & West LLP

57 ABSTRACT

An extensible and replaceable network-oriented component
systemn provides a platform for developing networking navi-
gation components that operate on a variety of hardware and
software computer systems. These navigation components
include key integrating components along with components
cenfigured to deliver conventional services directed to com-
puter networks, such as Gopher-specific and Web-specific
cemponents. Communication among these components is
achieved through novel application programming interfaces
(APIs) to facilitate integration with an underlying software
component architecture. Such a high-modular cooperating

5297249 A * 3/1994 Bermnstein ef al. layered-arrangement between the network component sys-
5339430 A * 81994 Lundin et al. tem and the component architecture allows any existing
5,481,666 A : 1/1996 Npguyen et al. component to be replaced, and allows new components to be
5,530,852 A 61996 Meske, Jr. f al added, without affecting operation of the network compo-
5,537,526 A * 7/1996 Anderson nent system.
5,548,722 A * 81996 IJalalian ¥ ’
5,581,686 A * 12/1996 Koppolu et al
5,584,035 A * [2/1996 Duggan et al 20 Claims, 8 Drawing Sheets
ana
780 450 P
K HETWORK NETWORK 4
ngﬂgt?lgﬂ c?)nEnrwopoNEHMI compoNenT]| |couporent] | OOMF-J | SOM | |APPUC. I APRLIC.
. i llT
l i
NETWORK
450\ COMPONENT
LAYER
| _ GOMPONENT ARGHITECTURE LAYER ml
[OPERATING SYSTEM 420 I

| . HARDWARE 110 l

US RE39,486 E
Page 2

OTHER PUBLICATIONS

Schmidt et al; “An ohject—oriented framework for develop-
ing network server daemons”, C+++ World Conference, pp.
1-15, Oct. 1993 *

“Leveraging object—oriented frameworks™, Taligent white
paper, 1993.*

Axndert, Glerk;, “Object-Frameworks in the Taligent 0S”,
IEEE electronic Library, pp. 112-121, 1994.*

Helm et al, “Integrating information retrieval and domain
specific approaches for browsing and retrieval in object—o-
riented class libraries”, ACM Digital Library, 1991.*
Monnard et al; An object-oriented scripting environment for
the WEBSs electronic book system’ ACM Digital Library,
1992.*

Notr, Henry. “Cyberdog, could be a breakthrough if it’s Kept

on a leash”, MacWeek, Nov. 14, 1994, v8, nd5, p. 50.*
Hess, Robert, “Cyberdog to fetch Internet Resources for
Open Doc apps.” MacWeek, Nov. 7, 1994, v8, nd4d, p. 44.%
Harkey et al, “Object component suites”, Datamation, Feb.
15, 1995, v41, n3, p. 44.*

Prosise, Jeff, “Much ade about object”, PC Magazine, Feb.
7, 1995, v14, n3, p. 257.%

Bonver, Paul, “Component software: putting the pieces
together”, Computer Shopper, Sep. 1994, v14, n9, p. 532.*
Gruman, Galen, “OpenDoc & OLE 2.07, MacWorld, Nov.
’94, v11, nll, p. 96.*

Spiegel, Leo “OLE promises barrier-{ree computing”, Info-
World, Mar. 6, °95, vi7, nl0, p. 53.%

Develop, The Apple Technical Journal, “Building an Open-
Doc Part Handler”, Issue 19, Sep. 1994, pp. 6-16.%

S.H. Goldberg and J.A. Mounton, }r. A Base for Portable
Communications Software, IBM Systems Journal, vol. 30
(1991) No. 3, Armonk, NY, pp. 259-279 %

E.C. Arnold and D.W, Brown, Object Oriented Software
Technologies Applied to Switching System Architecture and
Software Development Processes, AT&T Bell Laboratories,
Naperville, IL, vol. IT, pp. 57-106.%

* cited by examiner

US RE39,486 E

Sheet 1 of 8

Feb. 6, 2007

U.S. Patent

I B4

IN3I70
H3AH3S

002

(0] 00e

H3AH3S | H3AHIS
0t OLE

00g
A AININD
IN3D 002 002

00c
002

00t
HIAH3S H3AHI3S
OLHI Ot

00E . J.
00!

US RE39,486 E

Sheet 2 0of 8

Feb. 6, 2007

U.S. Patent

m/. vee

=

GIPRCLLD0CE S

=1 ._umau.i.w.m.m m

¢ Old

— AHOW3WN _

AHLINDYID ON

HHOMLIN
H3.1NdNOD

0se

1 8ee

US RE39,486 E

Sheet 3 of 8

Feb. 6, 2007

- U.S. Patent

£ 'Ol

_ AHOW3N _

_ WHOMLIN
ALINOHIO O | 5] uainawoo
gie” 1 \
/. oSt

(s1q)
AHOWIN SSVYIN

02€
/ 00€

US RE39,486 E

Sheet 4 of B

Feb. 6, 2007

U.S. Patent

b "ol

0¥ 3HYMAUVYH

02F W3LSAS ONLLYHALO

®F HIAYT SHALOILHOHY ININOJWOD -
¥ [T3

HIAVI
ININCJWNOD
MHOMLIN

) J

sy

. . | . 1NaNoawoo] finanodwoo] finanodwoo] Finanodnwoo
ONddv| | ‘ONddV]| §'dW00 | |§'dW0O MHOMLIN HHOMLIN HHOMLIN MHOMLIN.
N osp - ogp~" | ey 7

US RE39.,486 E

Sheet 5 of §

Feb. 6, 2007

U.S. Patent

S 'Ol
055 535 09%
MHOMLIN H3ldvay ¥344n8
d43LNdWNOD HMHOMULIN MHOMLAN
895 295
956
2E9 []E
W31SAS DNLLYHILO

¥I5 0%
_.._m._...._<c< mmn_mnm mm DVYNYW JOV4HALNI
AvdSsia- N33HOS MOONIM SMHOMIL3N
g’ oLS m ~

805

805
HIAY 205

ININOJWOD LININOLWOD

v0S

A

059

103rao
JOVAHILINI
OlHdYHD

K= :
o 8o
o0
4.1
=)
e
= 73
= HIDVNYIN

MOGNIM
o0
3
k=
g
@ L]

103rao

- H3HOLVdSIa
miss |
M., ONLLYH3JO 309 WIAVT LNINODWOD
7]
=

HOLvdl1!gdy

093

HO41d3
ONIMIIA

U.S. Patent

ININOJWOD

L a9

U.S. Patent Feb. 6, 2007 Sheet 7 of 8 US RE39,486 E

r 702 s 700
| - CYBERITEM
704 ;‘ios
GOPHERITEM } l WEBITEM >
ARTICLE —s EWSGROUPITEM
710 708
FIG. 7

/-800

CYBERSTREAM
) 802

GOPHERSTREAM WEBSTHREAM

804 . B06

FIG. 8

US RE39,486 E

Sheet 8 of 8

Feb. 6, 2007

U.S. Patent

6 'Did

NOISNILXT3SvYH

HIMIIATHNLDI] . HASMOHEdNOHE)SMIN
028 , pi6
HIMIIALX3] BISMOUGTIM
818 _
ZL6
916 H3ISMOHE3101LHY H3ISMOHEHIHL0Y)
016

LININOINODIASYY 808

NOISNILXIHIEAD

ININOJWOD 906
208

.

US RE39,486 E

1

EXTENSIBLE, REPLACEABLE NETWORK
COMPONENT SYSTEM

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

CROSS REFERENCE TO RELATED
APPLICATIONS

This invention is related to the following copending 1J.5.
Patent Applications:

U.S. patent application Ser. No. 08/435,374, titled
REPLACEABLE AND EXTENSIBLE NOTEBOOK
COMPONENT OF A NETWORK COMPONENT SYS-
TEM.

U.S. patent application Ser. No. 08/435862, titled
REPLACEABLE AND EXTENSIBLE LOG COMPO-
NENT OF A NETWORK COMPONENT SYSTEM;

U.S. patent application Ser. No. 08/435,213, titled
REPLACEABLE AND EXTENSIBLE CONNECTION
DIALOG COMPONENT OF A NETWORK COMPO-
NENT SYSTEM,;

U.S. patent application Ser. No. 08/435,671, titled
EMBEDDING INTERNET BROWSER/BUTTONS
WITHIN COMPONENTS OF A NETWORK COMPO-
NENT SYSTEM; and

U. S. patent application Ser. No. 08/435,880, tilted
ENCAPSULATED NETWORK ENTITY REFERENCE
OF ANETWORK COMPONENT SYSTEM, each of which
was filed on May 5, 1995 and assigned to (he assignee of the
present invention.

FIELD OF THE INVENTION

This invention relates generally to computer networks
and, more particularly, to an architecture for building
Internet-specific services.

BACKGROUND OF THE INVENTION

The TInternet is a system of geographically distributed
computer networks interconnected by computers executing
networking protocols that allow users to interact and share
information over the networks. Because of such wide-spread
information sharing, the Internet has generally evolved into
an “open” system for which developers can design software
for performing specialized operations, or services, essen-
tially without restriction. These services are typically imple-
mented in accordance with a client/server architecture,
wherein the clients, e.g., perscnal computers or
workstations, are responsible for interacting with the users
and the servers are computers configured to perform the
services as directed by the clients.

Not surprisingly, each of the services available over the
Internet is generally defined by its own networking protecol.
A protocol is a set of rules governing the format and
meaning of messages or “packets” exchanged over the
networks. By implementing services in accordance with the
protocols, computers cooperate to perform various
operations, or similar operations in various ways, for users
wishing to “interact” with the networks. The services typi-
cally range from browsing or searching the information-
having a particular data format using a particular protocol to
actually acquiring information of a different format in accor-
dance with a different protocol.

For example, the file transfer protocol (FTP) service
facilitates the transfer and sharing of files across the Internet.

10

20

30

35

45

50

60

65

2

The Telnet service allows users to log onto computers
coupled to the networks, while the network protocol pro-
vides a bulletin-board service to its subscribers.
Furthermore, the various data formats of the information
available on the Internet include JPEG images, MPEG
movies and ji-law sound files.

Coincided with the design of these services has been the
development of applications for implementing the services
on the client/server architecture. Accordingly, applications
are available for users te obtain files from computers con-
nected to the Intemet using the FTP protocol. Similarly,
individual applications allow users to log into remote com-
puters {as though they were logging in from terminals
attached to those computers) using the Telnet protocol and,
further, to view JPEG images and MPEG movies. As a
resuli, there exists a proliferation of applications directed to
user activity on the Iniemet.

A problem with this vast collection of application-specific
protocols is that these applications are generally
uporganized, thus requiring users to plod through them in
order to satisfyingly, and profitably, utilize the Internet. Such
lack of uniformity is time consuming and disorenting to
users that want to access particular types of informaticn but
are forced to use unfamiliar applications. Because of the
enormous amount of different types of information available
on the Internet and the variety of applications needed to
access those mnformation types, the expenence of using the
Internet may be burdensome to these users.

An alternative to the assortment of open applications for
accessing information on the Internet is a “‘closed” applica-
tion system, such as Prodigy, CompuServe or America
Online. Each of these systems provide a fill range of
well-organized services to their subscribers; however, they
also impose restrictions on the services developers can offer
for their systems. Such constraint of “new” service devel-
opment may be an unreasonable alternative for many users.

Two fashionable services for accessing information over
the Internet are Gopher and the World-Wide Web (“Web™).
Gopher consists of a series of Internet servers that provide
a “list-oriented” mterface to information available on the
netwaorks, the information is displayed as menu items in a
hierarchical manner. Inclnded in the hierarchy of menus are
documents, which can be displayed or saved, and searchable
indexes, which allow users to type keywords and perform
searches.

Some of the menu items displayed by Gopher are links to
mformation available on other servers located on the net-
works. In this case, the user is presented with a list of
available information documents that can be opened. The
opened documents may display additional lists or they may
contain various data-types, such as pictures or text,
occasionally, (he opened documents may “transport” the
user to another computer cn the Intemet.

The other popular information services on the Internet is
the Web. Instead of providing a user with a hierarchical
list-oriented view of information, the Web provides the user
with a “linked-hypertext” view. Metaphorically, the Web
perceives the Internet as a vast book of pages, cach of which
may contain pictures, text, sound, movies or various other
types of data in the form of documents. Web documents are
written in HyperText Markup Langnage (HTML) and Web
servers transfer HTML documents to each other through the
HyperText Transfer Protocol (HTTP).

The Web service is essentially a means for naming
sources of information on the Internet. Armed with such a
peneral naming convention that spans the entire network

US RE39,486 E

3

system, developers are able to build information servers that
potentially any user can access. Accordingly, Gopher
servers, HTTP servers, FTP servers, and E-mail servers have
been developed for the Web. Moreover, the naming conven-
tion enables users to identify resources (such as directories
and documents) on any of these servers connected to the
Internet and allow access to those resources.

As an example, a user “traverses” the Web by following
hot items of a page displayed on a graphical Web browser.
These hot items are hypertext links whose presence are
indicated on the page by visual cues, ¢.g., underlined words,
icons or buttons. When a user follows a link (usually by
clicking on the cue with a mouse), the browser displays the
target pointed to by the link which, in some cases, may be
another HTML document.

The Gopher and Web information services represent
entirely different approaches to interacting with information
on the Internet. One follows a list-approach to information
that “looks™ like a telephone directory service, while the
other assumes a page-approach analogous to a tabloid news-
paper. However, both of these approaches include applica-
tions for enabling userts to browse information available on
Internet servers. Additionally, each of these applications has
a unique way of viewing and accessing the information on
the servers.

Netscape Navigator™ (“Netscape™)s an example of a
monalithic Web browser application that is configured to
interact with many of the previously-described protocols,
including HTFF, Gopher and FTP. When instructed to
invoke an application that uses one of these protocols,
Netscape “translates™ the protocol to hypertext. This trans-
lation places the user farther away from the protocol
designed to run the application and, in some cases, actually
thwarts the user’s Internet experience. For example, a dis-
cussion system requiring an interactive exchange between
participants may be bogged down by hypertext translations.

The Gopher and Web services may further require addi-
tional applications to perform specific functions, such as
playing sound or viewing movies, with respect 1o the data
types contained in the documents. For example, Netscape
employs helper applications for executing applications hav-
ing data formats it does not “onderstand”. Execution of these
functions on a computer requires interruption of processing
and context switching (i.e., saving of state) prior to invoking
the appropriate applications. Thus, if a user operating within
the Netscape application “opens” an MPEG movie, that
browsing application number must be saved (e.g., to disk)
prier to opening an apprepriate MPEG application, e.g.,
Sparkle, to view the image. Such an arrangement is ineffi-
cient and rather disriptive to processing operations of the
computer.

Typically, a computer includes an operating system and
application software which, collectively, control the opera-
tions of the computer. The applications are preferably task-
specific and independent, e.g., a word processor application
edits text, a drawing application edits drawings and a
database application interacts with information stored on a
database storage umt. Although a user can move data from
one application to the other, such as by copying a drawing
into a word processing file, the independent applications
must be invoked to thereafter manipulate that data.

Generally, the application program presents information
to a user through a window of a graphical user interface by
drawing images, graphics or text within the window region.
The user, in turn, communicates with the application by
“pointing” at graphical objects in the window with a pointer

10

15

20

25

45

60

65

4

that is controlled by a hand-operated pointing device, such
as a mouse, or by pressing keys of a keyboard.

The praphical objects typically included with each win-
dow region are sizing boxes, buttons and scroll bars. These
objects represent user interface elements that the user can
point at with the pointer (or a cursor) to select or manipulate.
For example, the user may manipulate these elements to
move the windows around on the display screen, and change
their sizes and appearances so as to arrange the window in,
a convenient maoner. When the elements are selected or
manipulated, the underlying application program is
informed, via the window environment, that control has
heen appropriated by the user.

A menu bar is a further example of a user interface
element that provides a list of menus available to a user.
Each menu, in turn, provides a list of command options that
can be selected merely by pointing to them with the mouse-
controlled pointer. That is, the commands may be issued by
actuating the mouse to move the pointer onto or near the
command selection, and pressing and quickly releasing, i.e.,
“clicking” a button on the mouse.

In contrast to this typical application-based computing
environment, a software component architecture provides a
modunlar document-based computing arrangement using
tools such as viewing editors. The key to document-based
computing is the compound document, ie., a document
composed of many different types of data sharing the same
file. The types of data contained in a compound document
may range from text, tables and graphics to video and sound.
Several editors, each designed to handle a particular data
type of format, can work on the contents of the document at
the same time, unlike the application-based computing envi-
ronment.

Since many editors may work together on the same
document, the compound document is apportioned into
individual modules of context for manipulation by the
editors. The compound-nature of the document is realized by
embedding these modules within each other to create a
document having a mixture of data types. The software
component architecture provides the foundation for assem-
bling documents of differing contents and the present inven-
tion is directed to a system for extending this capability to
network-oriented services.

Therefore, it is among the objects of the present invention
to simplify a user’s experience on computer networks with-
out sacrificing the flexibility afforded the user by employing
existing protocols and data types available on those net-
works.

Another object of the invention is to provide a system for
users 0 search and access information on the Internet
without extensive understanding or knowledge of the under-
lying protocols and data formats needed to access that
information.

Still another object of the invention is to provide a
document-based computing system that enables users to
develop modules for services directed to information avail-
able on computer networks.

Still yet another object of the invention is to provide a
platform that allows third-party developers to extend a
layered network component system by building new com-
ponents that seamlessly interact with the system compo-
nents.

SUMMARY OF THE INVENTION

Briefly, the invention comprises an extensible and
replaceable network-oriented component system that pro-

US RE39,486 E

5

vides a platform. for developing network navigation com-
ponenls that operate on a variety of hardware and software
computer systen. These navigation components include key
integrating components along with components, such as
Gopher-specific and Web-specific components, configured
o deliver conventional services directed to computer net-
works, Communication among these components is
achieved through novel application programming interfaces
(APIs) to facilitaie integration with an underlying sofiware
component architecture. Such a highly-modular cooperating
layered-arrangement between the network component sys-
tem and the component architecture allows any existing
component to be replaced, and allows new companents to be
added, without affecting operation of the novel network
component system.

According to one aspect of the present invention, the
novel system provides a network navigating service for
browsing and accessing information available on the com-
puter networks. The information may inchide various data
types available from a vamety of sources coupled to the
computer netwarks. Upon accessing the desired
information, component viewing editors are provided io
modify or display, either visually or acoustically, the con-
tents of the data types regardless of the source of the
underlying data. Additional components and component
viewing editors may be created in copnection with the
underlying software component architecture to allow inte-
gration of different data types and protocols needed ta
interact with information on the Internet.

In accordance with another aspect of the invention, the
component system is preferably embodied as a customized
framework baving a set of interconnected abstract classes
for defining network-oriented gbjects. These abstract classes
include CyberItem, CyberStream and CyberExtension, and
the objects they define are used to build the novel navigation
components. Interactions among these latter components
and existing companents of the underlying software archi-
tecture provide the basis for the extensibility and replace-
ability features of the network component systern.

Specifically, Cyberltem is an object abstraction which
represents a “resource on a computer-network™, but which
may be further expanded to include resources available at
any accessible location. CyberStream is an object abstrac-
tion representing a method for downloading information
from a remote location on the computer network, while
CyhberExtension represents additional behaviors provided to
the existing components for integration with the network
component syster.

The novel network system captures the essence of a
“component-based” approach to browsing and retrieving
network-oriented information as opposed to the monolithic
application-based approach of prior browsing systems. Such
a component-based system has a number of advantages.
First, if a user does not like the way a particular component
operates, that component can be replaced with a different
component provided by another developer. In contrast, if a
user does not like the way a monolithic application handles
certain protocols, the only resource is to use another service
because the user cannet modify the application to perform
the protocol function in a different manner. Clearly, the
replaceability feature of the novel network component sys-
tem provides a flexible alternative to the user.

Second, the use of components is substantially less dis-
ruptive than using helper applications in situations where a
monclithic application confronts differing data types and
formats. Instead of “switching” application layers, the novel

20

25

30

35

40

45

50

55

60

65

6

network system merely invokes the appropriate component
and component viewing editor configured to operate with
the data type and format. Such “seamless” integration
among components is a significant feature of the modular
cooperating architecture described herein.

A third advantage of the novel network system is directed
to the cooperating relationship between the system and the
underlying software computer architecture. Specifically, the
novel network components are based on the component
architecture technology to therefore ensure cooperation
between all components in an integrated manner. The soft-
ware component architecture is configured to operate on a
plurality of computers, and is preferably implemented as a
sofiware layer adjoining the operating systen.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the inventien may be
better understood by referring to the following description in
conjunction with the accompanying drawings in which:

FIG. 1 is a block diagram of a network system including
a collection of computer networks interconnected by client
and server computers;

FIG. 2 is a block diagram of a client component, such as
a personal computer, on which the invention may advanta-
geously operate;

FIG. 3 1s a block diagram of a server computer of FIG. 1;

FIG. 4 is a highly schematized block diagram of a layered
component computing arrangement in accordance with the
invention,

FIG. 5 is a schematic illustration of the interaction of a
component, a software component layer and an operating
system of the computer of FIG. 2;

FIG. 6 is a schematic illustration of the interaction
between a component, a component layer and a window
mapager in accordance with the invention;

FIG. 7 is a simplified class hierarchy diagram illustrating
a base class Cyberltem, and its associated subclasses, nsed
to construct network component objects in accordance with
the invention;

FIG. 8 is a simplified class hierarchy diagram tllustrating
a base class CyberSiream, and its associated subclasses, m
accordance with the invention; and

FIG. 9 is a simplified class hierarchy diagram illustrating
a base class CyberExtension, and its associated subclasses,
in accordance with the present invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT

FIG. 1 is a block diagram of a network system 100
comprising a collection of computer networks 110 intercon-
nected by client computers (“clients™) 200, e.g., worksta-
tions or personal computers, and server computers
(“servers™) 300. The servers are typically computers having,
hardware and software elements that provide resources or
services for use by the clients 200 to increase the efficiency
of their operations. It will be undersiood to those skilled in
the art that, in an alternate embodiment, the client and server
may exist on the same computer; however, for the illustra-
tive embodiment described herein, the client and server are
separate computers.

Several types of computer networks 110, including local
area networks (LANs) and wide area networks (WANs),
may be employed in the system 100. A LAN is a limited arca
network that typically consists of a transmission medium,

US RE39,486 E

7

such as coaxial cable or twisted pair, while a WAN may be
a public or private telecommunications facility that inter-
connects computers widely dispersed. In the illustrative
embodiment, the network system 100 is the Internet system
of geographically distributed computer networks.

Computers coupled to the Internet typically communicate
by exchanging discrete packets of information according to
predefined networking proiocols. Execution of these net-
worling protocols allow users to interact and share infor-
mation across the networks. As an illustration, in response to
a nser’s request for a particular setvice, the client 200 sends
an appropriate information packet to the server 300, which
performs the service and returns a result back to the client
200.

FIG. 2 illustrates a typical hardware configuration of a
client 200 comprising a central processing unit (CPU) 210
coupled between a memory 214 and input/output (L/Q)
circuitry 218 by bidirectional buses 212 and 216. The
memory 214 typically comprises random access memory
(RAM) for temporary storage of information and read only
memory (ROM) for penmanent storage of the computer’s
configuration and basic operating commands, such as por-
tions of an operating system (not shown). As described
further herein, the operating system controls the operations
of the CPU 210 and client computer 200.

The 1/Q circuitry 218, in turn, connects the computer to
computer networks, such as the Internet computer networks
250, via a bidirectional bus 222 and to cursor/pointer control
devices, such as keyboard 224 (via cable 226) and a mouse
230 (via cable 228). The mouse 230 typically contains at
least one button 234 operated by 2 user of the computer. A
conventional display monitor 232 having a display screen
235 is also connected to I/O circuitry 218 via cable 238. A
pointer (cursor) 240 is displayed on windows 244 of the
screen 235 and its position is controflable via the mouse 230
or the keyboard 224, as is well-known. Typically, the 1/O
circnitry 218 receives information, such as control and data
signals, from the mouse 230 and keyboard 224, and provides
that information to the CPU 210 for display on the screen
235 or, as described further herein, for transfer over the
Internet 250.

FIG. 3 illustrates a typical hardware configuration of a
server 300 of the network systemn 100. The server 300 has
many of the same units as employed in the client 200,
including a CPU 310, a memory 314, and I/O circuitry 318,
each of which are interconnected by bidirectional buses 312
and 316. Also, the /O circuitry connects the computer to
computer networks 350 via a bidirectional bus 322. These
units are configured to perform functions similar te those
provided by their corresponding units in the computer 200.
In addition, the server typically includes a mass storage unit
320, such as a disk drive, conpected to the /O circuitry 318
via bidirectional bus 324.

It is to be understood that the /O circuits within the
computers 200 and 300 contain the necessary hardware, e.g.,
buffers and adapters, needed to interface with the control
devices, the display monitor, the mass storage unit and the
networks. Moreover, the operating system includes the nec-
essary software drvers to control, e.g., network adapters
within the 1/0) circuits when performing /O operations, such
as the fransfer of data packets between the client 200 and
server 300.

The computers are preferably persenal computers of the
Macintosh® series of computers sold by Apple Computer
Inc., although the invention may also be practiced in the
context of other types of computers, including the IBM®G)

20

25

30

as

40

45

50

55

&0

65

8

series of computers sold by International Business Machines
Corp. These computers have resident thereon, and are con-
trolled and coordinated by, operaiing system software, such
as the Apple® System 7®, IBM OS2®, or the Microsoft®
Windows® operating systems.

As noted, the present invention is based on a modular
document computing arrangement as provided by an under-
lying software components architecture, rather than the
typical application-based environment of prior computing
systems. FIG. 4 is a highly schematized diagram of the
hardware and software elements of a layered component
computing arrangement 400 that includes the novel
network-oriented component system of the invention. At the
lowest level there is the computer hardware, shown as layer
410. Interfacing with the hardware is a conventional oper-
ating system layer 420 that includes a window manager, a
graphic system, a file system and network-specific
mterfacing, such as a TCP/IP protocol stack and an Apple-
talk protocol stack.

The software component architecture is preferably imple-
mented as a component architecture layer 430. Although it
is shown as overlaying the operating system 420, the com-
ponent architecture layer 430 is actually independent of the
operating system and, more precisely, resides side-by-side
with the opemting system. This relationship allows the
component architecture to exist on multiple platforms that
employ different operating systems.

In accordance with the present invention, a novel net-
waork:onented component layer 450 contains the underlying
technology for implementing the extensible and replaceable
network component system that delivers services and facili-
tates development of navigation components directed to
compuler networks, such as the Internet. As described
further herein, this technology includes novel application
programming interfaces (APIs) that facilitate communica-
tion among components to ensure integration with the
underlying component architecture layer 430. These novel
APIs are preferably delivered in the form of objects in a
class hierarchy.

It should be noted that the network compoenent layer 450
may operate with any existing system-wide component
architecture, such as the Object Linking and Embedding
(OLE) architecture developed by the Micrasoft Corporation;
however, in the illustrative embodiment, the component
architecture is preferably OpenDoc, the vendor-neutral,
open. standard for compound documents developed by,
among others, Apple Computer, Inc.

Using tools such as viewing editors, the component
architecture layer 430 creates a compound document com-
posed of data having different types and formats. Each
differing data type and format is contained in a findamental
unit called a computing part or, mere generally, a “compo-
nent” 460 comprised of a viewing editor along with the data
content. An example of the computing component 460 may
include a MacDraw component. The editor, on the other
hand, 1s analogous to an application program in a conven-
tional compuier. That is, the editor is a software component
which provides the necessary functionality to display a
component’s contents and, where appropriate, present a user
interface for modifying those contents. Additionally, the
editor may melude menus, controls and other user interface
elements.

According to the invention, the network component layer
450 extends the functionality of the underlying component
architecture layer 430 by defining network-oriented compo-
nents 480. Included among these components are key inte-

US RE39,486 E

9

grating components (such as notebook, log and connection
dialog components) along with components configured to
deliver conventional services directed to computer
networks, such as Gopher-specific and Web-specific com-
ponents. Moreover, the components may include FTP-
specific components for transferring files across the net-
works. Telnet-specific components for remotely logging
onto other computers, and JPEG-specific and MPEG-
specific components for viewing image and movie data
types and formats.

A feature of the invention is the ability to easily extend,
or replace, any of the components of the layered computing
arrangement 400 with a different component to provide a
user with customized network-related services. As described
herein, this feature is made possible by the cooperating
relationship between the network component layer 450 and
its underlying component architecture layer 430. The inte-
grating components communicate and interact with these
various components of the system in a “seamlessly inte-
grated” manner to provide basic tools for navigating the
Internet computer networks.

FIG. 4 also illustrates the relationship of applications 490
to the elements of the layered computing arrangement 400.
Although they reside in the same “user space” as the
components 460 and network components 480, the applica-
tions 490 do not interact with these elements and, thus,
interface directly to the operating system layer 420. Because
they are designed as monolithic, autoncmous modules,
applications (such as previous Internet browsers) often do
not even interact among themselves. In contrast, the com-
ponents of the arrangement 400 are designed to work
tagether via the common component architecture layer 430
or, in the case of the network components, via the novel
network component layer 450,

Specifically, the invention features the provision of the
extensible and replaceable network-criented component sys-
tem which, when invoked, causes actions to take place that
enhance the ability of a user to interact with the computer to
search for, and obtain, information available over computer
networks such as the Internet. The information is manifested
to a wser via a window environment, such as the graphical
user interface provide by System 7 or Windows, that is
preferably displayed on the screen 235 (FIG. 2) as a graphi-
cal display to facilitate interactions between the user and the
computer, such as the client 200. This behavior of the system
is brought about by the interaction of (be network compo-
nents with a seres of systemn software routines associated
with the operating system 420. These system routines, in
turn, interact with the components architecture layer 430 to
create the windows and graphical user interface elements, as
described further herein.

The window environment is generally part of the operat-
ing system software 420 that includes a collection of utility
programs for controlling the operation of the computer 200.
The aperating system, in turn, interacts with the components
to provide higher levels functionality, including a direct
interface with the user. A component makes use of operating
gystem functions by issuing a series of task commands to the
operating system via the network component layer 450 or, as
is typically the case, through the component architecture
layer 430. The operaiing system 420 then performs the
requested task. For example, the component may request
that a software driver of the operating system initiate trans-
fer of a data packet over the networks 250 or that the
operating system display certain information on a window
for presentation to the user.

FIG. 5 is a schematic illustration of the interaction of a
component 502, software compconent layer 506 and an

10

15

20

25

30

40

45

30

55

60

65

10

operating system 510 of a computer 500, which is similar to,
and has equivalent elements of, the client computer 200 of
FIG. 2. As noted, the network component layer 450 (FIG. 4)
is integrated with the computer architecture layer 430 to
provide a cooperaling architecture that allows any compo-
nent to be replaced or extended, and allows new components
to be added, without affecting operation of the network
component system, accordingly, for purposes of the present
discussion, the layers 430 and 450 may be treated as a single
software component layer 506.

The compenent 502, component layer 506 and operating
system 510 interact to control and coordinate the operations
of the computer 500 and their interaction is illustrated
schematically by arrows 504 and 508. In order to display
information on a screen display 535, the component 502 and
component layer 506 cooperate 1o generate and send display
commands to a window manager 514 of the operating
system 510. The window manager 514 stores information
directly (via arrow 516) into a screen buffer 520.

The window manager 514 is a system sofiware routine
that is generally responsible for managing windows 544 that
the user views during operation of the network component
system. That is, it is generally the task of the window
manager to keep track of the location and size of the window
and window areas which must be drawn and redrawn in
connection with the network component system of the
present invention.

Under confrol of various hardware and software in the
system, the contents of the screen buffer 52¢ are read out of
the buffer and provided, as indicated schematically by arrow
522, to a display adapter 526. The display adapter contains
hardware and software (sometimes in the form of firnware)
which converts the information in the screen buffer 520 to a
form which can be used to drive a display screen 535 of a
momnitor 532. The monitor 532 is connected to display
adapter 526 by cable 528

Similarly, in order to transfer information as a packet over
the computer networks, the component 502 and component
layer 506 cooperate to generate and send network
commands, such as remote procedure calls, to a network-
specific interface 540 of the operating system 510. The
netwark interface comprises system software routines, such
as “stub” procedure software and protocol stacks, that are
generally responsible for forming the information into a
predetermined packet format according to the specific net-
work protocol used, e.g., TCP/IP or Apple-talk protocol.

Specifically, the network interface 540 stores the packet
directly (via amrow 556) info a network buffer 560. Under
contrel of the hardware and sofiware in the system, the
contents of the network buffer 560 are provided, as indicated
schematically by arrow 562, to a network adapter 566. The
network adapter incorporates the software and hardware,
ie., electrical and mechanical interchange circuits and
characteristics, needed to interface with the particular com-
puter networks 550. The adapter 566 is connccted to the
computer networks 550 by cable 568.

In a preferred embodiment, the invention described herein
is implemented in an object-oriented programming (OOP)
language, such as C++, using System Object Model (SOM)
technology and OOP techniques. The C++ and SOM lan-
guages are well-known and many articles and texts. are
available which describe the languages in detail. In addition,
C++ and SOM compilers are commercially available from
several vendors. Accordingly, for reasons of brevity, the
details of the C++ and SOM languages and the operations of
their compilers will not be discussed further in detail herein.

US RE39,486 E

11

As will be understood by those skilled in the art, OOP
techniques involve the definition, creation, use and destruc-
tion of “objects™. These objects are software entities com-
prising data elements and routines, or functions, which
manipulate the data elements. The data and related functions
are treated by the software as an entity that can be created,
used and deleted as if it were a single item. Together, the data
and funciions enable objects to model virtually any real-
world entity in terms of its characteristics, which can be
represented by the data elements, and its behavior, which
can be represented by its data manipulation functions. In this
way, cbjects can model concrete things like computers,
while also modeling abstract concepts like mumbers or
geometrical designs.

Objects are defined by creating “classes™ which are not
objects themselves, but which act as templates that instruct
the compiler how to construct an actual object. A class may,
for example, specify the number and type of data variables
and the steps involved in the functions which manipulate the
data. An object is actually created in the program by means
of a special Tunction called a “constructor” which uses the
corresponding class definition and additional information,
such as arguments provided during object creation, to con-
struct the object. Likewise objects are destroyed by a special
function called a “destructor”. Objects may be used by
manipulating their data and invoking their functions.

The principle benefits of OOP techniques arise out of
three basic principles encapsulation, polymorphism and
inheritance. Specifically, objects can be designed to hide, or
encapsulate all, or a portion of, its internal data structure and
internal functions. More specifically, during program design,
a program developer can define objects in which all or some
of the data variables and all er some of the related functions
are considered “private” or for use only by the object itself.
Other data or functions can be declared “public” or available
for use by other programs. Access to the private variables by
other programs can be controlled by defining public func-
tions for an object which access the object’s private data.
The public functions form a controlled and consistent inter-
face between the private data and the “outside” world. Any
altempt to write program code which directly accesses the
private vanables causes the compiler to generate an error
during program compilation which error stops the compifa-
tion process and prevents the program from being run.

Polymorphism is a concept which allows cobjects and
functions that have the same overall format, but that work
with different data, to function differently in order to pro-
duce consistent results. Inheritance, on the other hand,
allows program developers to easily reuse pre-existing pro-
grams and o avoid creating software from scratch. The
principle of inhentance allows a software developer to
declare classes (and the objects which are later created from
them) as related. Specifically, classes may be designated as
subclasses of other base classes. A subclass “inherits” and
has access to all of the public functions of its base classes
just as if these functions appeared in the subclass.
Altematively, a subclass can override some or all of its
inherited functions or may modify some or all of its inherited
functions merely by defining a new function with the same
form (overriding or modification does not alter the function
in the base class, but merely modifies the use of the function
in the subclass). The creation of a new subclass which has
some of the functionality (with selective modification) of
another class allows software developers to easily customize
existing code to meet their particular needs.

In accordance with the present invention, the component
502 and windows 544 are “objects™ created by the compo-

20

25

40

45

30

65

12

nent layer 506 and the window manager 514, respectively,
the latter of which may be an object-oriented program.
Interaction between a component, component layer and a
window manager is illustrative in greater detail in FIG. 6.

In general, the component layer 606 interfaces with the
window manager 614 by creating and manipulating objecis.
The window manger itself may be an object which is created
when the operating system is started. Specifically, the com-
ponent layer creates window objects 630 that create the
window manager to create associated windows on the dis-
play screen. This is shown schematically by an arrow 608.
In addition, the component layer 606 creates individual
graphic interface objects 650 that are stored in each window
object 630, as shown schematically by arrows 612 and 652.
Since many graphic interface objects may be created in
order to display many interface elements on the display
screen, the window object 630 communicates with the
window manager by means of a sequence of drawing
commands issued from the window object to the window
manager 614, as illustrated by arrow 632.

As noted, the component layer 606 functions 1o embed
cocmponents within one another to form 2 component docu-
ment having mixed data types and formats. Many different
viewing editors may work together to display, or modify, the
data contents of the documents. In order to direct keystrokes
and mouse events initiated by a user to the proper compo-
nents and editors, the component layer 606 includes an
arbitrator 616 and a dispatcher 626,

The dispatcher is an object that communicates with the
operating system 610 to identify the correct viewing editor
660, while the arbitrator is an object that informs the
dispatcher as to which editor “owns” the stream of key-
strokes or mouse events. Specifically, the dispatcher 626
receives these “human-interface” events from the operating
systern 610 (as shown schematically by arrow 628) and
delivers them to the correct viewing editor 660 via arrow
662. The viewing editor 660 then modifies or displays, either
visually or acoustically, the contents of the data types.

Although OOP offers significant improvements over other
programming concepts, software development still requires
significant outlays of time and effort, especially if no pre-
existing software 15 available for modulation. Consequently,
a prior art approach has been to provide a developer with a
set of preferred, interconnected classes which create a set of
objects and additional miscellaneous routines that are ajl
directed to performing commonly-encountered tasks in a
particular environment. Such predefined classes and librar-
ies are typically called “frameworks™ and essentially provide
a pre-fabricated structure for a working document.

For example, a framework for a user interface might
provide a set of predefined graphic interface objects which
create windows, scroll bars, menus, etc. and provide the
support and “default” behavior for these interface objects.
Since frameworks are based on object-criented techniques,
the predefined classes can be used as base classes and the
built-in. default behavior can be inherited by developer-
defined subclasses and either modified or overridden to
allow developers to extend the framework and create cus-
tomized solutions in a particular area of expertise. This
object-oriented approach provides a major advantage over
traditional programming since the programmer is not chang-
ing the original program, but rather extending the capabili-
ties of that original program. In addition, developers are not
blindly working through layers of code because the frame-
work providers architectural guidance and modeling and, at
the same time, frees the developers to supply specific actions
unique to the problem domain.

US RE39,486 E

13

There are many kinds of framework available, depending
on the level of the system involved and the kind of problem
to be solved. The types of frameworks range from high-level
frameworks that assist in developing a user interface, to
lower-level frameworks that provide basic system software
services such as communications, printing, file systems
support, graphics, etc. Commercial examples of application-
type frameworks include MacApp (Apple), Bedrock
(Symantec), OWL (Borland), NeXT Step App Kit (NeXT)
and Smalltalk-80 MVC (ParcPlace).

While the framework approach utilizes all the principles
of encapsulation, polymorphism, and inhertance in the
object layer, and is a substantial improvement over other
programming techniques, there are difficulties which arise.
These difficulties are caused by the fact that it is easy for
developers to reuse their own cbjects, but it is difficult for
the developers to use objects generated by other programs.
Further, frameworks generally consist of one or more ohject
“layers™ on top of a monolithic operating system and even
with the flexibility of the object layer, it is still often
necessary 1o directly interact with the underlying system by
means of awkward procedure calls.

In the same way that a framework provides the developer
with prefab functionality for a document, a system
framework, such as that included in the preferred
embadiment, can provide a prefab functionality for system
level services which developers can modify or override to
create customized solutions, thereby avoiding the awlkward
procedural calls necessary with the prior art framework. For
example, consider a customizable network interface frame-
work which can provide the foundation for browsing and
accessing information over a computer network. A software
developer who needed these capabilities would ordinarily
have to write specific routines to provide them. To do this
with a framework, the developer only needs to supply the
characteristic and behavior of the finished output, while the
framework provides the actual routines which perform the
tasks.

A preferred embodiment takes the concept of frameworks
and applies it throughout the entire system, including the
document, component, component layer and the operating
system. For the commercial or corporate develeper, systems
integrator, or OEM, this means all of the advantapes that
have been illustrated for a framework, such as MacApp, can
be leveraged not only at the application level for things such
as text and graphical user interfaces, but also at the system
leve] for such services as printing, graphics, multi-media,
file systems and, as described herein, petwork-specific
operations,

Referring again to FIG. 6, the window object 630 and the
graphic interface object 650 are elements of a graphical user
interface of a network component system having a customi-
zable framework for greater enhancing the ability of a user
to navigate or browse through information stored on servers
coupled to the network. Moreover, the novel netwark system
provides a platform for developing network navigation
components for operation on a varety of hardware and
software computer systems.

As noted, the network components are preferably imple-
mented as objects and communication among the network
component abjects is effected through novel application
programiming interfaces (APIs). These APIs are preferably
delivered in the form of objects in a class hierarchy that is
extensible so that developers can create new components
and editors. From an implementation viewpoint, the objects
can be subclassed and can inherit from base classes to build

10

15

20

40

45

50

55

14

customized components allow users to see different kinds of
data using different kinds of protocols, or to create compo-
nents that function differently from existing components.

In accordance with the invention, the customized frame-
work has a set of interconnected abstract classes for defining
network-oriented objects used to build these customized
network components. These abstract classes include
Cyberltem, CyberStream and CyberExtension and the
objects they define are used to build the novel network
components. Interactions among these latter components
and existing components of the underlying software archi-
tecture provide the basis for the extensibility and replace-
ability features of the network component system.

In order to further understand the operations of these
network component objects, it may be useful to examine
their construction together with the major function routines
that comprise the behavior of the objects. In examining the
objects, it i5 also uselul to examine the classes that are used
to construct the objects (as previously mentioned the classes
serve as ternplates for the construction of objects). Thus, the
relation of the classes and the functions inherent in each
class can be used to predict the behavior of an object once
it is constructed.

FIG. 7 illustrates a simplified class hierarchy diagram 700
of the base class Cyberltem 702 used to construct the
network component object 602, In general, Cyberltem is an
abstraction that may represent resources available at any
location accessible from the client 200. However, in accor-
dance with the illustrative embodiment, a Cyberliem is
preferably a small, self-contained object that represents a
resource, such as a service, available on the Internet and
subclasses of the Cyberltem base class are used to construct
various netwark component objects configured to provide
such services for the novel network-orented component
system.

For example, the class Gopherltem 704 may be used to
construct a network component obpect representing a “thing
in Gopher space’”, such as a Gopher directory, while the
subclass Webltem 706 is denved from Cyberltem and
encapsulates 2 network component object representing a
“thing in Web space, e.g. a Web page. Similarly, the subclass
NewsGroupltem 708 may be used to construct a network
object representing a newsgroup and the class Article 710 1s
configured fo encapsulate a network component object rep-
resenting an article resource on an Interpet server.

Since each of the classes used to construct these network
component objects are subclasses of the Cyberltem base
class, each class inherits the functional operators and meth-
ods that are available from that base class. For example,
methods associated with the Cyberltem base class for return-
ing an icon family and a name are assumed by the subclasses
to allow the network components to display Cyberltem
objects in a consistent manner. The methods associated with
the Cyberltem base class include (the arguments have been
omutted for simplicity):

GetRefCount ();

IncrementRefCount ();

Release ();

SetUpFromURL ();

ExternalizeContent ();

StreamToStoragelUnit ();

StreamFromStorageUnit ();

Clone ();

Compare ();

GetStringProperty ();

US RE39,486 E

15

SetDefaultName ();

GetURL (),

GetleonSuite ();

CreateCyberStream ();

Open ();

OpenlnFrame ();

FindWindow ().

In some instances, a Cyberltem object may need to spawn
a CyberStream object in order to obtain the actual data for
the object it represents. FIG. 8 illustrates a simplified class
hierarchy diagram 800 of the base class CyberStream 802.
As noted, CyberStream is an abstraction that serves as an
API between a component configured to display a particular
data format and the method for obtaining the actual data.
This allows developers to design viewing editors that can
display the content of data regardless of the protocol
required to obtain that data.

For example, a developer may design a picture viewing
editor that uses the CyberStream API to obtain data bytes
describing a picture. The actual data bytes are obtained by a
subclass of CyberStream configured to construct a compo-
nent object that implements a particular protocol, such as
Gopher and HT'TP. That 15, the CyberStream object contains
the software commands necessary to create a “data stream”
for transferring information from one object to another.
According to the invention, a GopherStream subclass 804 is
derived from the CyberStream base class and encapsulates a
network object that implements the Gopher protocel, while
the class WebStream 806 may be used to construct a network
component configured to operate in accordance with the
HTTP protocol.

The methods associated with the CyberStream class, and
which are contained in the objects constructed from the
subclasses, include (the arguments have been omitted for
simplicity):

GetStreamStatus ();

GetTotalDataSize ();

GetStreamError ();

GetStatusString ();

OpenWithCallback ();

Open ()

GetBuifer ();

ReleaseBuffer ();

Abort ()

FIG. 9 is a simplified class hierarchy diagram of the base
class CyberExtension 902 which represents additional
behaviors provided to components of the underlying sofi-
ware component architecture. Specifically, CyberExtension
are the mechanisms for adding functionality to, and extend-
ing the APIs of, existing components so that they may
communicate with the novel network components. As a
result, the CyberExtension base class 902 operates in con-
nection with a Component base class 906 throvgh their
respective subclasses BaseExtension 904 and BaseCompo-
nent 208,

The CyberExtension base class provides an API for
accessing other network-specific components, such as note-
books and logs, and for supporting graphical user interface
elements, such as menus. CyberExtension objects are used
by components that display the contents of Cyterltem
objects. This includes browser-like components such as a
Gopher browser or Web browser, as well as JPEG-specific
components which display particular types of data such as
pictures. The CyberExtension objects also keep track of the
Cyberltem chjects which these components are responsible
for displaying,.

10

15

20

25

30

35

40

45

50

55

60

65

16

In accordance with the invention, the class Gopher-
Browser 910 may be used to construct a Gopher-like net-
work browsing component and the class WebBrowser 912
may be able to construct a Web-like network browsing
component. Likewise, a TextViewer subclass 918 may
encapsulate a network component configured to display text
and a PictureViewer subclass 920 may construct a compo-
nent for displaying pictures. The methods associated with
the CyberExtension class include (the arguments have been
omitted for simplicity):

ICyberExtension ();
Components displaying the contents of Cyberltem object

SetCyberltem ();
GetCyberltem ();
GetCyberltemWindow ();
IsCyberltemSelected ();
GetSclectedCyberltems {);
Notebook and Log Tools

AddCyberItemToLog ();
ShowLogWindow {);
IsLogWindowShown ();
AddCyberltemToNotebook {);
AddCyberltemsToNotebaok {);
ShowNatebookWindow ();
IsNotebookWindowShown ();
SetLogFinger ();

ClearLogFinger ();

Notebook and Log Menu Handlers

InstallServicesMenu ();
AdjustMenus ();
DoCommand ().

In summary, the novel network system described herein
captures, the essence of a “comprehensive-based™ approach
to browsing and retrieving network-oriented information as
opposed to the monolithic application-based approach of
prior browsing systems. Advantages of such a component-
based system include the ability to easily replace and extend
components because of the cooperating relationship
between the novel network-oriented component system and
the underlying component architecture. This relationship
also facilitates “seamless” integration and cooperation
between components and component viewing editors when
confronted with differing data types and formats.

While there has been shown and described an illustrative
embodiment for implementing an extensible and replaceable
network component system, it is to be understoed that
various other adaptations and modifications may be made
within the spirit and scope of the invention. For example,
additional system software routines may be used when
implementing the invention in various applications. These
additional system routines include dynamic link libraries
(DLL), which are program files containing collections of
window environment and networking functions designed to
perform specific classes of operations. These functions are
invoked as needed by the software component layer to
perform the desired operations. Specifically, DLLs, which
are generally well-known, may be used to interact with the
component layer and window manager to provide network-
specific components and finctions.

The foregoing description has been directed to specific
embodiments of this invention. It will be apparent, however,
that other variations and modifications may be made to the
described embodiments, with the attainment of some ar all
of their advantages. Therefor, it is the cbject of the appended
claims fo cover all such varations and modifications as
come within the true spirit and scope of the invention.

US RE39,486 E

17

‘What is claimed is:

1. An extensible and replaceable layered component com-
puting arrangement residing on a computer coupled to a
computer network, the layered arrangement comprising:

a software component architecture layer interfacing with
an operating system to confrol the operations of the
computer, the software component architecture layer
defining a plurality of computing components; and

a network component layer for developing network navi-
gation components that provide services directed to the
computer network, the network component layer
includes application programming interfaces, and

a first class included in the application programming
interfaces to construct a first network navigation object
that represents different network resources available on
the computer network, wherein the network component
layer coupled to the software component architecture
layer in mtegrating relation to facilitate communication
among the computing and network navigation compo-
nents.

2. The computing arrangement of claim 1 wherein the

network navigation components are objects,

3. The computing arrangement of claim 1 wherein the
application programming interfaces further comprise a sec-
ond class for constructing a second network navigation
object representing a data stream for transferring informa-
tion among objects of the arrangement.

4. The computing arrangement of claim 3 wherein the first
network navigation object is an Jtem object and the second
network navigation object is a Stream object, and wherein
the Item object spawns the Stream object to obtain infor-
mation from the network resource that the Jtem object
represents.

5. The computing arrangement of claim 3 wherein the
application programming interfaces further comprise a third
class for constructing a third network navigation object
representing additional behaviors provided to computing
components of the software component architectire layer to
thereby enable communication between the computing com-
peuents and the network navigation components.

fr. An extensible and replaceable layered component com-
puting arrangement for providing services directed to infor-
mation available on computer networks, the computing
arrangement comprising:

a processor;

an operating system;

a software component architecture layer coupled to the
operating system to control the operations of the
processor, the software component architecture layer
defining a plurality of computing components; and

a network component layer for creating network naviga-
tion components configured to search and obtain infor-
mation available on the computer networks, the net-
work component layer includes application
programming interfaces; and

means for constructing a network navigation component
that represents different resources available on the
computer network, wherein the network component
layer is integrally coupled to the software component
architecture layer to ensure communication among the
computing, and network navigation components.

7. The computing arrangement of claim 6 wherein the
network compenent layer and software component architec-
ture layer comprise means for embedding components
within one another to form a compound document having
mixed data types and formats.

8. The computing arrangement of claim 6 wherein the
application programming interfaces comprise means for

2

10

20

25

30

40

45

30

5

n

60

45

18

constructing a network navigation component that imple-
ments a protocol.

9. The compuling arrangement of claim 6 wherein the
application programming interfaces comprise means for
constructing a network navigation compenent that provides
additional functionality to existing computing components
to enable communication among the components.

10. The computing arrangement of claim 9 wherein the
computing component comprises a computing part having a
viewing editor and data content.

11. The computing arrangement of claim 10 wherein the
computing component functions to one of transfer files over
the networks, remotely log onto another computer coupled
to the networks and view images on a screen of the com-
puting arrangement.

12. The computing arrangement of claim 10 wherein the
network navigation compenent comprises a browsing com-
ponent.

13. The computing arrangement of claim 10 wherein the
netwark navigation component comprises a component for
one of displaying text and displaying movies on a screen of
the computing arrmangement.

14. An extensible and replaceable layered component
computing arrangement residing on a computer adapted to
be coupled on a computer network, the layered arrangement
comprising:

a software component architecture layer interfacing with
an operating system to comtrol the operations of the
computer, the software component architecture layer
defining a plurality of computing components;

a network component layer adapted 1o be coupled to at
least one network navigation component that provides
a service directed to the computer network, the network
component layer including an application program-
ming interface; and

a minmber of interconnected absiract classes included in
the application programming interface, at least on
abstract class for defining a network navigation object
that represents a resource available on the computer
network, the network component layer coupled to the
software component architecture layer to facilitate
communication among the network navigation compo-
nent and at least one computing component,

I35, The layered arrangement of claim 14, wherein the
abstract class defines a network navigation object that
represents a method of downloading information from a
remote location on the computer network

16. The layered arrangement of claim 14, wherein the
abstract class defines a network navigaiion object that
represents additional behaviors provided to the computing
components of the software component architecture layer for
integrating with the network component layer

17. The layered arrangement of claim 14, wherein the
network navigation object is adapted to browse the com-
puier network.

18 The layered arrangement of claim 14, wherein the
retwork navigation object is adapted to display text on a
computer dispiay.

19. The lavered arrangement of claim 14, wherein the
network navigation object is adapted to display images on a
compuiter display.

20. The lgyered arrangement of claim 14, wherein the
network navigation object includes softwave commands for
creating a datostream for transferring information between
objects in the layered component computing arrangement.

= & & &%

