Apple Inc. v. High Tech Computer Corp. et al Doc. 38 Att. 6

EXHIBIT G

Dockets.Justia.com

http://dockets.justia.com/docket/delaware/dedce/1:2010cv00167/43754/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2010cv00167/43754/38/6.html
http://dockets.justia.com/

AR 00

United States Patent 9 111 Patent Number: 5,455,599
Cabral et al. {451 Date of Patent: Oct. 3, 1995
[54] OBJECT-ORIENTED GRAPHIC SYSTEM 0603095 6/1994 European Pat. Off. .
91/20032 12/1991 WIPO .
[75] Inventors: Arthur W. Cabral; Rajiv Jain, both of
Sunnyvale; Maire L. Howard, San OTHER PUBLICATIONS
Jose; John Peterson, Menlo Park; “Object Oriented Approach to Design of Interactive Intelli-
le:hard D. Webb, Sunny\{ale; Robert gent Instrumentation User Interface”, Nikola Bogunovic,
Seidl, Palo Alto, all of Calif. Automatika vol. 34, No. 3—4, May-Dec. 1993, pp. 143-146.

“Object—oriented versus bit~-mapped graphics interfaces:
performance and preference differences for typical applica-
tions”, Michael Mohageg, Behaviour & Inforamtion Tech-

[73] Assignee: Taligent Inc., Cupertino, Calif.

[21] Appl. No.: 416,949 nology, vol. 10, No. 2, Mar.—Apr. 1991 pp. 121-147.
[22] Filed: Apr. 4, 1995 “Porting Apple©® Macintosh© Applications to the
’ Microsoft© Windows Environment”, Schulman et al,
Related U.S. Application Data Microsoft System Journal, vol. 4, No. 1, Jan. 1989, pp.
11-40.
[63] Continuation of Ser. No. 145,840, Nov. 2, 1993, abandoned. Computer, vol. 22(10), Dec. 1989, Long Beach, US, pp.
(5] Int CL® GOSG 5/00 43-54, Goodmz_m Knowledg'e—Based Computer Vision™.
[52] US.Cl 345/133: 395/118 Software-Practice and Experience, vol. 19(10), Oct. 1989,
e ’ Chicester UK, pp. 979-1013, Dietrich, “TGMS: A
[58] Field of Search 345/112, 132, ceser kP werie 1

Object—Oriented System for Programming Geometry”.

345133, 133, 154, 155, 395/118, 275 pricedings of the SPIE, vol. 1659, Feb. 12, 1992, US, pp.

[56] References Cited SI?I;}:?IZ, Haralick et al. “The Image Understanding Envi-
U.S. PATENT DOCUMENTS Intelligent CAD Oct. 6, 1987, NL, pp. 159-168, Woodbury
4,821,220 4/1989 DUSDELE eoroverrrmeeoeresersoee 364578 ¢ 3l» "An Approach to Geometric Reasoning”.

364900 Computer, vol. 22(10), Dec. 1989.

.. 340/706 .
.. 364/200 Primary Examiner—Jeffery Brier
5,041,992 8/1991 Cunningham et al. . 364/518 Attorney, Agent, or Firm—Keith Stephens
5,050,090 971991 Golub et al. 364/478

5,060,276 10/1991 MOIES €t &l. wvrrevrevrrcrsevrneeen g8 [57] ABSTRACT

5,075,848 12/1992 Lai et al. 395/425 . . . s . . .
5,093,914 3/1992 Coplien et al. 395/700 An object-oriented graphic system is disclosed including a

5.119.475 . 6/1992 Smith et al. " 3957156 Processor with an attached display, storage and object-
5,125,091 6/1992 Staas, JT. et al. woeuerreerrrnrrns 395/650 ~ oriented operating system. The graphic system builds a
5,133,075 7/1992 Risch 395/800 component object in the storage of the processor for man-
5,136,705 8/1992 Stubbs et al. ..ococereerrerrererrenns 395/575 aging graphic processing. The processor includes an object
5,151,987 9/1992 Abraham et al. . . 395/575 for connecting one or more graphic devices to various
5,181,162 1/1993 Smithet al. ... -- 364/419 gbjects responsible for tasks such as graphic accelerators,
5241,625 8/1993 Epardetal. ... - 395163 g buffers, page description languages and vector
5,265,206 11/1993 Shackelford et al. .. 395200 : : : :

engines. The system is fully extensible and includes poly-
5,297,279 3/1994 Bannon et al.cccoenenrrrennne 395/600 . R i, s .

morphic processing built into each of the support objects.

4,885,717 12/1989 Beck et al.
4,891,630 1/1990 Friedman et al. ...
4,953,080 8/1990 Dysart et al.

FOREIGN PATENT DOCUMENTS
0459683 12/1991 - European Pat. Off. . 26 Claims, 16 Drawing Sheets

MODELING
LAYER 1700

AN

GEOMETRIC GRAFPHIC 1720
OBJECTS ATTRIBUTES

1730 g
GRAFPORT
OBJECT

1740

POLYMORPHIC GRAPHIC
1750 DEVICE OBJECTS

el L O

VECTOR GRAPHIC FRAME
DESCRI
EANCUAON ENGINE ACCELERATOR|| BUFFER

1760 1770 1780 1790

5,455,599

Sheet 1 of 16

Oct. 3, 1995

U.S. Patent

82 92
V1 J4N9I4 2€
o 9¢
¥31dvav ¥31dvav
AV1dSIa JOVIYILNI
22
¢ | wwood -
/
8l
€2 |
0/1 WvY WOY Ndd
—
/ bl 91 0l /
Ll
12
02

-

U.S. Patent Oct. 3, 1995 Sheet 2 of 16 5,455,599

GetDrawOperation
GetFillPaint
GetFramePaint
GetFillTransferMode
GetFrameTransferMode
GetPenStyle
-GetAntialiasing

GetDevice
.. GetCache

GetBundle

. ..GetCoordinateSyste
-GetClipBoundary

GetSceneBundle

. GetGeometryMatrix
. GetPenMatrix
- GetGeometryMatrix3D

TGrafPort

= GetClipArea
~GetClipAreaMinusChildren

: GetlmageSampling

-+ GetLightlterator
GetCamera

: GetAtmosphereShader

FIGURE 1B

U.S. Patent

280

Oct. 3, 1995 Sheet 3 of 16 5,455,599
(Optional) Modeling Layer
State Storage at GrafPort Level 54g
POLYMORPHIC DEVICE Caclgz%
FIGURE 2
230
Captured
State
CONTRACT——}-» POLYMORPHIC GRAPHIC
250 DEVICEOBJECTS 240
PAGE
VECTOR GRAPHIC FRAME
foﬁg{m;%“ ENGINE ACCELERATOR BUFFER
260 270 290

U.S. Patent Oct. 3, 1995 Sheet 4 of 16 5,455,599

THouse TArrow TGraphicFolder

FIGURE3

5,455,599

Sheet 5 of 16

Oct. 3, 1995

U.S. Patent

asdiizoL aullAjodoL dooT]
A

uobAjody L
AHLINO3Y 1H3IATV
NOILV.IN3IS3Hd3H JIHdVHON YHNODOIA
asdijjgL aullAjodL dooL anng L uobBAjodL
N
\
4
A _
[]
n I Y
] n - .
1 1/ >
| &]

¥

U.S. Patent Oct. 3, 1995 Sheet 6 of 16 5,455,599

MCollectible 500

m 510

MGraphic

520 530

TGrafBundle

FIGURES

U.S. Patent Oct. 3, 1995 Sheet 7 of 16 5,455,599

FIGURE 7

Center of Center of
Rotation Rotation

”~
.~ Rotation
degrees

—— -

Center of
Rotation

FIGURE 8

°9]ed§ JO Ioluvd)

5,455,599

d6 HANDIA
=
e
o
-
N '« XpO ——p V6 TINOI

I

" m i Oﬁ.ﬂum .HO Jojua)) arens .HO I21Ud)
=)
" " -~ XMOU —
o _ ! I X P[0 —p!
=)

U.S. Patent

U.S. Patent Oct. 3, 1995 Sheet 9 of 16 5,455,599

Center of Scale

FIGURE 10

U.S. Patent Oct. 3, 1995 Sheet 10 of 16 5,455,599

MDrawable >
i

MGraphic TGrafBundie
_ J

< TBaseGraphicGroup >
L)

TGraphicGroup$— 0 MGraphic

TGrafMatrix

|

FIGURE 11

U.S. Patent Oct. 3, 1995 Sheet 11 of 16 | 5,455,599

O OF O g
(TGraphicGroup)

@ @ O Simple MGraphic

FIGURE 12

U.S. Patent Oct. 3, 1995 Sheet 12 of 16 5,455,599

Bolt Diameter

Outer Radius

FIGURE 13

5,455,599

Sheet 13 of 16

Oct. 3, 1995

U.S. Patent

7L HAdNODIA

5,455,599

Sheet 14 of 16

Oct. 3, 1995

U.S. Patent

1 HU4NODId

U.S. Patent Oct. 3, 1995 Sheet 15 of 16 5,455,599

w
L
GrafBundie

Graphic B

B
GrafBundle

W
H
GrafBundle

FIGURE 16

U.S. Patent

Oct. 3, 1995

Sheet 16 of 16

MODELING
LAYER

1700

L

GEOMETRIC
OBJECTS

1730 N\

N

GRAPHIC

ATTRIBUTES

pd

OBJECT

GRAFPORT

1740

5,455,599

1720

1750

POLYMORPHIC GRAPHIC
DEVICE OBJECTS

/

/

\

DESCPQ%ION VECTOR GRAPHIC FRAME
LANGUAGE ENGINE ACCELERATOR BUFFER
1760 1770 1780 1790

FIGURE 17

5,455,599-

1
OBJECT-ORIENTED GRAPHIC SYSTEM

This is a continuation, of application Ser. No. 08/145,
840, filed Nov. 2, 1993, abandoned.

COPYRIGHT NOTIFICATION

Portions of this patent application contain materials that
are subject to copyright protection. The copyright owner has
no objection to the facsimile reproduction by anyone of the
patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

1. Field of the Invention

This invention generally relates to improvements in com-
puter systems and more particularly to a system for enabling
graphic applications using an object-oriented operating sys-
tem.

2. Background of the Invention

Computer pictures or images drawn on a computer screen
are called computer graphics. Computer graphic systems
store graphics internally in digital form. The picture is
broken up into tiny picture elements or pixels. Thus, a
computer picture or graphic is actually an aggregation of
individual picture elements or pixels. Internally, in the
digital world of the computer, each pixel is assigned a set of
digital values which represent the pixel’s attributes. A pix-
el’s attributes may describe its color, intensity and location,
for example. Thus to change the color, intensity or location
of a pixel, one simply changes the digital value for that
particular attribute.

Conventional computer graphic systems utilize primitives
known as images, bitmaps or pixel maps to represent com-
puter imagery as an aggregation of pixels. These primitives
represent a Two Dimensional (2D) array of pixel attributes
and their respective digital values. Typically, such a primi-
tive is expressed as a “struct” (data structure) that contains
a pointer to pixel data, a pixel size, scanline size, bounds,
and possibly a reference to a color table. Quite often, the
pixels are assumed to represent Red, Green, and Blue (RGB)
color, luminance, or indices into a color table. Thus, the
primitive serves double duty as a framebuffer and as a frame
storage specification.

The burgeoning computer graphics industry has settled on
a defacto standard for pixel representation. All forms of
images that do not fit into this standard are forced into
second class citizenship. Conventional graphics systems,
however, are nonextendable. They are usuaily dedicated to
a particular application operating on a specific class of
images. This is unacceptable in today’s rapidly changing
environment of digital technology. Every day a new appli-
cation, and with it the need to process and manipulate new
image types in new ways. Thus, the use of a graphics system
with a nonextensible graphic specification is not only short
sighted, it is in a word, obsolete. Graphical applications,
aftributes, and organizational requirements for computer
output media are diverse and expanding. Thus, dedicated,
single-purpose graphic systems fail to meet current appli-
cation requirements. There is a need for a robust, graphic
system that provides a dynamic environment and an exten-
sible graphic specification that can expand to include new
applications, new image types and provide for new pixel
manipulations.

For example, two applications rarely require the same set
of pixel attributes. Three Dimensional (3D) applications
store z values (depth ordering), while animation and paint

10

20

25

35

40

45

50

55

60

65

2

systems store alpha values. Interactive material editors and
3D paint programs store 3D shading information, while
video production systems may require YUV 4:2:2 pixel
arrays. Hardware clippers store layer tags, and sophisticated
systems may store object IDs for hit detection. Moreover,
graphical attributes such as color spaces are amassing con-
stant additions, such as PhotoYCC™., Color matching tech-
nology is still evolving and it is yet unclear which quantized
color space is best for recording the visible spectrum as
pixels. Thus, there are a variety of data types in the graphics
world. There are also a variety of storage organization
techniques. To make matters even worse, it seems that every
new application requires a different organization for the
pixel memory. For example, Component Interleaved or
“Chunky” scanline orientations are the prevailing organiza-
tion in Macintosh ® video cards, but Component Interleaved
banked switched memory is the trend in video cards targeted
for hosts with small address spaces. Component planar tiles
and component interleaved tiles are the trend in prepress and
electronic paint applications, but output and input devices

" which print or scan in multiple passes prefer a component

planar format. Multiresolution or pyramid formats are com-
mon for static images that require real-time resampling.
Moreover, images that consume large amounts of memory
may be represented as compressed pixel data which can be
encoded in a multitude of ways.

The variety and growth of graphic applications, data types
and pixel memory manipulations is very large. There is a
requirement for a multipurpose system that can handle all
the known applications and expand to handle those appli-
cations that are yet unknown. A single solution is imprac-
tical. Although it may handle every known requirement, it
would be huge and unwieldy. However, if such an applica-
tion is downsized, it can no longer handle every application.
Thus, there is a need for a general graphic framework that
suits the needs of many users, but allows the individual user
to customize the general purpose graphic framework.

SUMMARY OF THE INVENTION

An object-oriented system is well suited to address the
shortcomings of traditional graphic applications. Object-
oriented designs can provide a general purpose framework
that suits the needs of many users, but allows the individual
user to customize and add to the general purpose framework
to address a particular set of requirements. In general, an
object may be characterized by a number of operations and
a state which remembers the effect of these operations.

Thus it is a goal of the present invention to provide a
method and apparatus which facilitates an object-oriented
graphic system. A processor with an attached display, stor-
age and object-oriented operating system builds a compo-
nent object in the storage of the processor for managing
graphic processing. The processor includes an object for
connecting one or more graphic devices to various objects
responsible for tasks such as graphic accelerators, frame
buffers, page description languages and vector engines. The
system is fully extensible and includes polymorphic pro-
cessing built into each of the support objects.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a block diagram of a personal computer system
in accordance with a preferred embodiment;

FIG. 1B is a hierarchical layout of a graphic port in
accordance with a preferred embodiment;

FIG. 2 is a block diagram of the architecture in accor-
dance with a preferred embodiment;

5,455,599

3

FIG. 3 illustrates examples of graphic extensions of
MGraphic in accordance with a preferred embodiment;

FIG. 4 illustrates MGraphics and their corresponding
geometries in accordance with a preferred embodiment;

FIG. 5 is a booch diagram setting forth the flow of control
of the graphic system in accordance with a preferred
embodiment;

FIG. 6 illustrates a star graphic object undergoing various
transformations in accordance with a preferred embodiment;

FIG. 7 depicts a star moved by an amount in accordance
with a preferred embodiment;

FIG. 8 illustrates rotating-the star about various centers of
rotation in accordance with a preferred embodiment;

FIG. 9 illustrates scaling a star about different centers of
scale in accordance with a preferred embodiment;

FIG. 10 shows the effects of scaling an asymmetric star by
(-1.0, 1.0) in accordance with a preferred embodiment;

FIG. 11 illustrates a hierarchical graphic in accordance
with a preferred embodiment;

FIG. 12 illustrates a bike graphic in accordance with a
preferred embodiment;

FIG. 13 illustrates a bolt object in accordance with a
preferred embodiment;

FIG. 14 illustrates a hierarchical graphic in accordance
with a preferred embodiment;

FIG. 15 illustrates an object that exists inside the TPoly-
gon’s Draw call in accordance with a preferred embodiment;

FIG. 16 illustrates a graphic hierarchy that supports
sharing of two or more graphics in accordance with a
preferred embodiment; and

FIG. 17 is a flowchart setting forth the detailed logic in
accordance with a preferred embodiment.

DETAILED DESCRIPTION OF THE
INVENTION

The invention is preferably practiced in the context of an
operating system resident on a personal computer such as
the IBM® PS/2® or Apple® Macintosh® computer. A
representative hardware environment is depicted in FIG. 1,
which illustrates a typical hardware configuration of a
workstation in accordance with the subject invention having
a central processing unit 10, such as a conventional micro-
processor, and a number of other units interconnected via a
system bus 12. The workstation shown in FIG. 1 includes a
Random Access Memory (RAM) 14, Read Only Memory
(ROM) 16, an I/O adapter 18 for connecting peripheral
devices such as disk units 20 to the bus, a user interface
adapter 22 for connecting a keyboard 24, a mouse 26, a
speaker 28, a microphone 32, and/or other user interface
devices such as a touch screen device (not shown) to the bus,
a communication adapter 34 for connecting the workstation
to a data processing network and a display adapter 36 for
connecting the bus to a display device 38. The workstation
has resident thereon an operating system such as the Apple
System/7® operating system.

In a preferred embodiment, the invention is implemented
in the C++ programming language using object oriented
programming techniques. As will be understood by those
skilled in the art, Object-Oriented Programming (OOP)
objects are software entities comprising data structures and
operations on the data. Together, these elements enable
objects to model virtually any real-world entity in terms of
its characteristics, represented by its data elements, and its

10

20

25

35

40

45

50

55

60

4

behavior, represented by its data manipulation functions. In
this way, objects can model concrete things like people and
computers, and they can model abstract concepts like num-
bers or geometrical concepts. The benefits of object tech-
nology arise out of three basic principles: encapsulation,
polymorphism and inheritance.

Objects hide, or encapsulate, the internal structure of their
data and the algorithms by which their functions work.
Instead of exposing these implementation details, objects
present interfaces that represent their abstractions cleanly
with no extraneous information. Polymorphism takes encap-
sulation a step further. The idea is many shapes, one inter-
face. A software component can make a request of another
component without knowing exactly what that component
is. The component that receives the request interprets it and
determines, according to its variables and data, how to
execute the request. The third principle is inheritance, which
allows developers to reuse pre-existing design and code.
This capability allows developers to avoid creating software
from scratch. Rather, through inheritance, developers derive
subclasses that inherit behaviors, which the developer then
customizes to meet their particular needs.

A prior art approach is to layer objects and class libraries
in a procedural environment. Many application frameworks
on the market take this design approach. In this design, there
are one or more object layers on top of a monolithic
operating system. While this approach utilizes all the prin-
ciples of encapsulation, polymorphism, and inheritance in
the object layer, and is a substantial improvement over
procedural programming techniques, there are limitations to
this approach. These difficuities arise from the fact that
while it is easy for a developer to reuse their own objects, it
is difficult to use objects from other systems and the devel-
oper still needs to reach into the lower, non-object layers
with procedural Operating System (OS) calls.

Another aspect of object oriented programming is a
framework approach to application development. One of the
most rational definitions of frameworks came from Ralph E.
Johnson of the University of Illinois and Vincent F. Russo of
Purdue. In their 1991 paper, Reusing Object-Oriented
Designs, University of Illinois tech report UIUCDCS91-
1696 they offer the following definition: “An abstract class
is a design of a set of objects that collaborate to carry out a
set of responsibilities. Thus, a framework is a set of object
classes that collaborate to execute defined sets of computing
responsibilities.” From a programming standpoint, frame-
works are essentially groups of interconnected object classes
that provide a pre-fabricated structure of a working appli-
cation. For example, a user interface framework might
provide the support and “default” behavior of drawing
windows, scrollbars, menus, eic. Since frameworks are
based on object technology, this behavior can be inherited
and overridden to allow developers to extend the framework
and create customized solutions in a particular area of
expertise. This is a major advantage over traditional pro-
gramming since the programmer is not changing the original
code, but rather extending the software. In addition, devel-
opers are not blindly working through layers of code
because the framework provides architectural guidance and
modeling but at the same time frees them to then supply the
specific actions unique to the problem domain.

From a business perspective, frameworks can be viewed

. as a way to encapsulate or embody expertise in a particular

65

knowledge area. Corporate development organizations,
Independent Software Vendors (ISV)s and systems integra-
tors have acquired expertise in particular areas, such as
manufacturing, accounting, or currency transactions. This

5,455,599

5

expertise is embodied in their code. Frameworks allow
organizations to capture and package the common charac-
teristics of that expertise by embodying it in the organiza-
tion’s code. First, this allows developers to create or extend
an application that utilizes the expertise, thus the problem
gets solved once and the business rules and design are
enforced and used consistently. Also, frameworks and the
embodied expertise behind the frameworks, have a strategic
asset implication for those organizations who have acquired
expertise in vertical markets such as manufacturing,
accounting, or bio-technology, and provide a distribution
mechanism for packaging, reselling, and deploying their
expertise, and furthering the progress and dissemination of
technology.

Historically, frameworks have only recently emerged as a
mainstream concept on personal computing platforms. This
migration has been assisted by the availability of object-
oriented languages, such as C++. Traditionally, C++ was
found mostly on UNIX systems and researcher’s worksta-
tions, rather than on computers in commercial settings. It is
languages such as C++ and other object-oriented languages,
such as Smalltalk and others, that enabled a number of
university and research projects to produce the precursors to
today’s commercial frameworks and class libraries. Some
examples of these are InterViews from Stanford University,
the Andrew toolkit from Carnegie-Mellon University and
University of Zurich’s ET++ framework. Types of frame-
works range from application frameworks that assist in
developing the user interface, to lower level frameworks that
provide basic system software services such as communi-
cations, printing, file systems support, graphics, etc. Com-
mercial examples of application frameworks are MacApp
(Apple), Bedrock (Symantec), OWL (Borland), NeXTStep
App Kit (NeXT), and Smalltalk-80 MVC (ParcPlace).

Programming with frameworks requires a new way of
thinking for developers accustomed to other kinds of sys-
tems. In fact, it is not like “programming” at all in the
traditiopal sense. In old-style operating systems such as
DOS or UNIX, the developer’s own program provides all of
the structure. The operating system provides services
through system calls-the developer’s program makes the
calls when it needs the service and control returns when the
service has been provided. The program structure is based
on the flow-of-control, which is embodied in the code the
developer writes. When frameworks are used, this is
reversed. The developer is no longer responsible for the
flow-of-control. The developer must forego the tendency to
understand programming tasks in term of flow of execution.
Rather, the thinking must be in terms of the responsibilities
of the objects, which must rely on the framework to deter-
mine when the tasks should execute. Routines written by the
developer are activated by code the developer did not write
and that the developer never even sees. This flip-flop in
control flow can be a significant psychological barrier for
developers experienced only in procedural programming.
Once this is understood, however, framework programming
requires much less work than other types of programming.

In the same way that an application framework provides
the developer with prefab functionality, system frameworks,
such as those included in a preferred embodiment, leverage
the same concept by providing system level services, which
developers, such as system programmers, use to subclass/
override to create customized solutions. For example, con-
sider a multimedia framework which could provide the
foundation for supporting new and diverse devices such as
audio, video, MIDI, animation, etc. The developer that
needed to support a new kind of device would have to write

15

25

30

35

40

45

50

55

60

65

6

a device driver. To do this with a framework, the developer
only needs to supply the characteristics and behaviors that
are specific to that new device.

The developer in this case supplies an implementation for
certain member functions that will be called by the multi-
media framework. An immediate benefit to the developer is
that the generic code needed for each category of device is
already provided by the multimedia framework. This means
less code for the device driver developer to write, test, and
debug. Another example of using system frameworks would
be to have separate I/O frameworks for SCSI devices,
NuBus cards, and graphics devices. Because there is inher-
ited functionality, each framework provides support for
common functionality found in its device category. Other
developers could then depend on these consistent interfaces
for implementing other kinds of devices.

A preferred embodiment takes the concept of frameworks
and applies it throughout the entire system. For the com-
mercial or corporate developer, systems integrator, or OEM,
this means all the advantages that have been illustrated for
a framework such as MacApp can be leveraged not only at
the application level for such things as text and user inter-
faces, but also at the system level, for services such as
graphics, multimedia, file systems, I/, testing, etc. Appli-
cation creation in the architecture of a preferred embodiment
will essentially be like writing domain-specific pieces that
adhere to the framework protocol. In this manner, the whole
concept of programming changes. Instead of writing line
after line of code that calls multiple API hierarchies, soft-
ware will be developed by deriving classes from the preex-
isting frameworks within this environment, and then adding
new behavior and/or overriding inherited behavior as
desired. Thus, the developer’s application becomes the
collection of code that is written and shared with all the other
framework applications. This is a powerful concept because
developers will be able to build on each other’s work. This
also provides the developer the flexibility to customize as
much or as little as needed. Some frameworks will be used
just as they are. In some cases, the amount of customization
will be minimal, so the piece the developer plugs in will be
small. In other cases, the developer may make very exten-
sive modifications and create something completely new.

In a preferred embodiment, as shown in FIG. 1, a multi-
media data routing system manages the movement of mul-
timedia information through the computer system, while
multiple media components resident in the RAM 14, and
under the control of the CPU 10, or externally attached via
the bus 12 or communication adapter 34, are responsible for
presenting multimedia information. No central player is
necessary to coordinate or manage the overall processing of
the system. This architecture provides fiexibility and pro-
vides for increased extensibility as new media types are
added. A preferred embodiment provides an object-oriented
graphic system. The object-oriented operating system com-
prises a number of objects that are clearly delimited parts or
functions of the system. Each object contains information
about itself and a set of operations that it can perform on its
information or information passed to it. For example, an
object could be named WOMAN. The information con-
tained in the object WOMAN, or its attributes, might be age,
address, and occupation. These attributes describe the object
WOMAN. The object also contains a set of operations that
it can perform on the information it contains. Thus,
WOMAN might be able to perform an operation to change
occupations from a doctor to a lawyer.

Objects interact by sending messages to each other. These
messages stimulate the receiving object to take some action,

5,455,599

7

that is, perform one or more operations. In the present
invention there are many communicating objects. Some of
the objects have common characteristics and are grouped
together into a class. A class is a template that enables the
creation of new objects that contain the same information
and operations as other members of the same class. An
object created from a certain class is called an instance of
that class. The class defines the operations and information
initially contained in an instance, while the current state of
the instance is defined by the operations performed on the
instance. Thus, while all instances of a given class are
created equal, subsequent operations can make each instance
a unique object.

Polymorphism refers to object-oriented processing in
which a sender of a stimulus or message is not required to
know the receiving instance’s class. The sender need only
know that the receiver can perform a certain operation,
without regard to which object performs the operation or
what class to which it belongs. Instances inherit the
attributes of their class. Thus, by modifying the attribute of
a parent class, the attributes of the various instances are
modified as well, and the changes are inherited by the
subclasses. New classes can be created by describing modi-
fications to existing classes. The new class inherits the
attributes of its class and the user can add anything which is
unique to the new class. Thus, one can define a class by
simply stating how the new class or object differs from its
parent class or object. Classes that fall below another class
in the inheritance hierarchy are called descendants or chil-
dren of the parent class from which they descend and inherit.
In this polymorphic environment, the receiving object is
responsible for determining which operation to perform
upon receiving a stimulus message. An operation is a
function or transformation that may be applied to or by
objects in a class. The stimulating object needs to know very
little about the receiving object which simplifies execution
of operations. Each object need only know how to perform
its own operations, and the appropriate call for performing
those operations a particular object cannot perform.

‘When the same operation may apply to many different
classes, it is a polymorphic operation. The same operation
takes on a different form in a variety of different classes. A
method is the implementation of a particular operation for a
given class. For example, the class Document may contain
an operation called Read. Depending on the data type of the
document, for example, ASCII versus BINARY, a different
method might be used to perform the Read operation. Thus
while both methods logically perform the same task; Read,
and are thus called by the same name, Read, they may in fact
be different methods implemented by a different piece of
executable code. While the operation Read may have meth-
ods in several classes, it maintains the same number and
types of arguments, that is, its signature remains the same.
Subclasses allow a user to tailor the general purpose frame-
work. It allows for different quantization tradeoffs, sets of
pixel attributes, and different pixel memory organizations.
Each subclass can encapsulate the knowledge of how to
allocate, manage, stream, translate, and modify its own class
of pixel data. All subsystems of a preferred embodiment use
polymorphic access mechanisms, which enable a user to
extend buffer types that can be rendered to or copied.

Fortunately, some commonalty exists among the various
types of buffers. As it turns out, there are eight basic
functions or categories that are necessary to satisfy the
majority of client needs. Most clients want polymorphic
management and the ability to specify the relationship
between discrete and continuous space. Clients want to

20

25

35

40

45

50

55

60

65

8

characterize color capabilities for use in accurate color
reproduction. Clients want mechanisms for pixel memory
alteration in the form of Get and SetPixel, specialized “blit
loops” tailored for scan converting clients, BitBit, and
CopyImage. Clients want mechanisms to supply clients with
variants which match a key formed from the combination of
client supplied attributes. Clients desire the ability to per-
form polymorphic queries regarding traits or stored
attributes. Clients require mechanisms allowing clients to
polymorphically create, maintain, and query buffer caches.
And finally, clients require mechanisms which allow them to
polymorphically create, and maintain correlated back-
buffers.

Graphic Application Programming Interface (API)

The basic components of a graphic system include a fixed
set of Geometric Primitives: Point, Rectangle, Line, Curve,
Polygon, Polyline, Area in 2D, Line, Polyline, Curve and
Surface in 3D. This set of geometry is not intend to be user
extensible. This limits the complexity of the lower level
graphic devices, and provides a “contract” between the
user-level API and the low level device for consistent data.
Discretized data sets: which include 2D raster images with
a number of possible components and triangulated 3D
datasets. High level modeling tools: that can express hier-
archical groups of graphic objects. Transforms: these objects
represent the operations available with a traditional 3x3 (in
2D) or 4x4 (in 3D) matrices to rotate, scale, translate, etc.
objects. Bundles: these objects encapsulate the appearance
of the geometry. Standard attributes include (2D & 3D)
frame and/or fill color, pen thickness, dash patterns, etc. In
3D, bundles also define shading attributes. Custom attributes
may be specified via a keyword/value pair. All numeric
values are expressed in IEEE standard double precision
floating point in the graphic system. Graphic Ports: a graphic
port is an application-level view that encapsulates the state
of the application. The graphic port re-routes any draw calls
to an appropriate one of a number of possible devices
(monitors, off screen frame buffers, PostScriptPrinter on a
network, a window, etc.). Graphical “state” (current trans-
form, bundle, clipping region, etc) is managed at the port
level. However, at the device level the system is “stateless”.
In other words, the complete state for a particular rendering
operation is presented to the device when that rendering
occurs. Note that a device may turn around and invoke other
devices. For example, a device for the entire desktop may
first decide which screen the geometry falls on, and then
invoke the render call for that particular screen.

Architectural Introduction

In past graphics architectures, a graphic typically stores its
state (such as color, transfer mode, clip area, etc.) privately.
When asked to draw, the graphic procedurally copies these
state variables into a graphic port, where they are accessed
by the rendering code. Thus, the graphic’s state is available
only during this explicit drawing operation. This is not
object-oriented, and is a restriction 2 modern graphic system
cannot afford to make. A preferred embodiment provides a
framework for a graphic to store its state. The framework
supports a “don’t call us, we’ll call you” architecture in
which clients can get access to the graphic state outside the
context of any particular function. This is the purpose of the
graphic port class. It is an abstract class that defines the
interface for accessing the state variables. Concrete sub-
classes define the actual storage and concatenation behavior
of the state variables.

5,455,599

9
Graphic Port Class

A design employing graphic port classes groups the
graphic states into four different groups, which then are
grouped into a single class called graphic port. The four
“sub-states” are TGrafBundle, TCoordinateSystem, TClip-
Boundary, and TSceneBundle. A graphic port object can be
referenced by other classes that need access to the full
graphic state. Additionally, a child’s graphic state can be
concatenated to its parent’s graphic port object, producing a
new graphic port object. FIG. 1B is a hierarchical layout of
a graphic port in accordance with a preferred embodiment.
A graphic port class also contains methods to access a device
and a device cache. GetDevice returns a pointer to the device
to which rendering is done. Typically, this device is inherited
from the parent graphic port. GetCache returns a pointer to
the cache used by the device to cache devicedependent
objects. This cache must have been created by the device at
an earlier time. The main purpose for subclassing graphic
port and the four sub-states is to define how storage and
concatenation of the graphic state, device, and device cache
is done. A simpler, flat group of state variables would not be
flexible enough to support customization of state concatena-
tion for a subset of the state variables. Also, the sub-states
assist in splitting the state variables into commonly used
groups. For instance, a simple graphic typically needs only
a TGrafBundle; more complex graphic objects may need a
atrix and possibly a clip area.

A graphic class, such as MGraphic, must describe itself to
a TGrafPortDevice in terms of the basic set of geometries,
and each geometry must have a graphic port object associ-
ated with the geometry. The graphic port allows a graphic
object to conveniently “dump” its contents into a TGrafDe-
vice object. This is accomplished by supplying a set of draw

10

15

20

25

10
Modeling Layer

Above the graphic port and geometry layers there is an
optional modeling layer. A preferred embodiment provides a
modeling layer, but an application can override the defautt.
The default modeling layer is called a “MGraphic” layer. An
MGraphic object encapsulates both geometry and appear-
ance (a bundle). To render an MGraphic, a draw method is
used. This method takes the graphic port the MGraphic is
drawn into as an argument. The MGraphic draw method
turns this information into a graphic port call. The goal
behind separating the MGraphic layer from-the graphic port
/ geometry layer is to avoid a rigid structure suited to only
one type of database. If the structure provided by the
MGraphic objects does not satisfy the client’s requirements,
the architecture still permits a different data structure to be
used, as long as it can be expressed in terms of primitive
geometries, bundles, and transforms.

MGRAPHIC LAYER

The graphic system provides two distinct ways of ren-
dering geometries on a device. An application can draw the
geometry directly to the device. The class graphic port
supports a well defined, but fixed set of 2D geometries. It
supports these by a set of overloaded draw methods. When
using this approach, attributes and transformation matrices
are not associated with geometry, making it suitable for
immediate mode rendering only. The following pseudo code
is an example of how an application may use this approach
to create a red line.

create a displayPort an instance of TGrafPort

TGLine line(TGPoint(0.0, 0.0 , TGPoint(1.0, 1.0));
TGrafBundle redColor(TRGBColor(1.0, 0.0, 0.0));
displayPort->Draw(line, redColor);

//Creates a line
//Creates a red color bundle
//Render the line on to the GrafPort

functions in the graphic port class that mirrors a set of render
functions in the TGrafDevice class. Each draw function
takes a geometry and passes the geometry and the contained
graphic state to the appropriate render call in the device. For
convenience, an overriding bundle and model matrix are
also passed.

FIG. 2 is a block diagram of the architecture in accor-
dance with a preferred embodiment. In the preferred
embodiment, a modeling layer 200 generates calls to a
Graphic port 210 using the APT 210 described above. This
GraphPort interface accepts only a specific, fixed set of
primitives forming a “contract” 250 between the user level
API and the device level API 240. The graphic port captures
state information including transform, appearance
(“bundle™), and clipping into a polymorphic cache 220 that
is used across multiple types of devices. For each render call,
the geometry and all relevant accumulated state information
230 is presented to the device via a polymorphic graphic
device object 240. A device managed by the graphic device
object 240 may take the form of a page description language
260 (such as postscript), a vector plotting device 270, a
device with custom electronic hardware for rendering geo-
metric primitives 280, a traditional framebuffer 290, or any
other graphic device such as a display, printer or plotter.

45

50

55

60

65

Alternatively, an application can draw the geometry via a
higher level abstraction called MGraphic. This is a retained
mode approach to rendering of graphical primitives.
MGraphic is an abstract base class for representing the 2D
primitives of the graphic system. It is a higher level mani-
festation of graphical objects which can be held in a col-
lection, be transformed and rendered to a graphic device
(TGrafDevice). Each MGraphic object holds a set of its own
attributes and provides streaming capability (with some
restrictions on some of its subclasses). Hit testing methods
provide a mechanism for direct manipulation of MGraphic
objects such as picking. MGraphic provides extensibility
through subclassing that is one of the key features of
MGraphics. A particular subclass of MGraphic also creates
hierarchies of MGraphic objects and provides the capability
to extend the graphic system. FIG. 3 illustrates some
examples of graphic extensions of MGraphic in accordance
with a preferred embodiment.

MGraphic is a utility class for applications to hold geom-
etry related data that includes geometry definition, graf-
bundle (set of graphical attributes defining the representation
of the geometry) and a set of transformation methods.
MGraphic objects also hold any other information required
by a user and will copy and stream this user specific data to
an application. This class may not be needed for applications

5,455,599

11

interested in pure immediate mode rendering. For immediate
mode rendering of the primitives the applications render
geometry by passing an appropriate geometry object, a
grafbundle and a transformation matrix to the graphic port.
FIG. 4 illustrates MGraphics and their corresponding geom-
etries in accordance with a preferred embodiment. FIG. 5 is
a Booch diagram setting forth the fiow of control of the
graphic system in accordance with a preferred embodiment.
In the Booch diagram of FIG. 5, “clouds” depicted with
dashed lines indicate classes or aggregations of classes (e.g.
application 500). Arrows connecting classes are directed
from subclass to superclass and indicate a hierarchy includ-
ing the properties of encapsulation, inheritance and poly-
morphism as is well understood in object technology and
graphic notations accepted in the art which are illustrative
thereof. Double lines indicate use of the class in the imple-
mentation or interface. A circle at one end of a line segment
indicates containment or use in the class with the circle on
the end of the line segment. For a more complete description
of this notation, reference can be made to “Object Oriented
Design” by Grady Booch, published by the Benjamin/
Cummings Publishing Co., Copyright 1991. The current
MGraphic 520 inherits from MDrawable 510 which inherits
from MCollectible 500 to inherit the streaming, versioning
and other behaviors of MCollectible 500. Each MGraphic
520 also has a bundle, TGrafBundle 530, which holds a set
of attributes. These attributes are used by the MGraphic at
rendering time.

The MGraphic abstract base class represents only 2D
graphical primitives. In general it has been observed that 2D
and 3D primitives do not belong to a common set ‘unless
users clear the 3D plane on which 2D primitives lie. 2D and
3D primitives have different coordinate systems and mixing
them would confuse users. Clients can mix the two sets
based upon their specific application requirements. The class
MDrawable 510 is the abstract base class common to both
MGraphic 520 and MGraphic3D abstracting the common
drawing behavior of the two classes. This class is useful for
clients interested only in the draw method and do not require
overloaded functionality for both 2D and 3D.

MDrawable Drawing Protocol

All MGraphics (2D and 3D) draw onto the graphic port
which is passed to the MGraphic as a parameter. Besides the
state information, which is encapsulated by the GrafPort, all
other information is contained in the MGraphic object. This
information includes the geometry, attribute bundle and any
transformation information. All MGraphics draw synchro-
nously and do not handle updating or animating require-
ments. It is up to the client to create subclasses. When
drawing 2D and 3D primitives as a collection, such as in a
list of MDrawable objects, the drawing sequence is the same
as it would be when 2D and 3D draw calls are made on the
graphic port. Thus, drawing a 2D polygon, a 3D box and a
2D ellipse will render differently depending upon the order
in which they are rendered. The graphic port passed to this
method is a passive iterator which is acted upon by the
MGraphic to which it is passed.

MGraphic Transformations

FIG. 6 illustrates a star undergoing various transforma-
tions in accordance with a preferred embodiment. Transfor-
mations can alter an MGraphic’s shape, by scaling or
perspective transformation, and position, by rotating and
moving. The transformation methods allow applications to
change an existing MGraphic’s shape and location without

10

15

20

25

30

35

40

45

50

60

65

12

having to recreate the MGraphic. All transformation meth-
ods apply only relative transformation to the MGraphic.
Methods ScaleBy, MoveBy and RotateBy are special cases
of the more general method TransformBy. Subclasses apply
the transform directly to the geometry they own to directly
change the geometry.

All MGraphic subclasses are closed to arbitrary transfor-
mations i.e. a TGPolygon when transformed by an arbitrary
transformation will still be a TGPolygon. However, certain
geometries do not possess this closure property. For
example, a rectangle, when transformed by a perspective
matrix, is no longer a rectangle and has no definition for
either width or height. The original specification of the
rectangle is insufficient to describe the transformed version
of the rectangle. All MGraphic subclasses must be closed to
arbitrary transformations. Since all transformations are rela-
tive, a transformed MGraphic cannot be “untransformed” by
passing an identity matrix to the MGraphic method Trans-
formBy().

FIG. 7 depicts a star moved by an amount in accordance
with a preferred embodiment. This method moves the
MGraphic by an amount relative to its current position. FIG.
8 illustrates rotating the star about various centers of rotation
in accordance with a preferred embodiment. The amount of
rotation is specified in degrees and is always clockwise.
However, subclasses can override the default and optimize
for a specific geometry and usage. FIG. 9 illustrates scaling
a star about different centers of scale in accordance with a
preferred embodiment. The factor is a vector which allows
non-uniform scaling namely in X and Y. In FIG. 9 the X
coordinate of the parameter amount will be (new x/old x)
and the Y coordinate will be (new y/old y). In case of
uniform scaling both the X and the Y coordinate will be the
same. FIG. 9 also shows scaling about different centers of
scale.

Negative scale factors are allowed, and the effects of
negative scale factors is the same as mirroring. Scaling by
—1.0 in the X direction is the same as mirroring about the Y
axis while a negative scale factor in the Y direction is the
same as mirroring about the X axis. FIG. 10 shows the
effects of scaling an asymmetric star by (-1.0, 1.0) in
accordance with a preferred embodiment. Like RotateBy()
and TranslateBy(), the effect of this transform is the same as
creating a scaling matrix and passing it to TransformBy()
and this is the default implementation. Subclasses can over-
ride this default implementation and optimize for a specific
geometry and usage. TransformBy is a pure virtual member
function that transforms the MGraphic by matrix. All con-
crete subclasses of MGraphics must define this member
function. Subclasses that own a TGrafMatrix for manipula-
tion must post multiply the parameter matrix with the local
matrix for proper effect.

MGraphic Attribute Bundles

Asseen in FIG. 5, all MGraphic objects have an associ-
ated attribute bundle, TGrafBundle. This bundle holds the
attribute information for the graphic object such as its color,
pens, filled or framed. When an MGraphic is created, by
default, the GrafBundle object is set to NIL. If GrafBundle
is equal to a NIL, then the geometry is rendered by a default
mechanism. When used in a hierarchy, the parent bundle
must be concatenated with the child’s bundle before ren-
dering the child. If a child’s bundle is NIL, then the child
uses the parent’s bundle for rendering. For example, in the
hierarchy in FIG. 12, object E will inherit the attributes of

5,455,599

13
both A, C and E before it is rendered, and a change of
attribute in A will trickle down to all its children namely B,
CD,E,GandD.

It is important to note that a bundle has a significant
amount of information associated with it. Thus, copying of
the bundle is generally avoided. Once the bundle is adopted,
MGraphic object will take full responsibility to properly
destroy the bundle when the MGraphic object is destroyed.
When a client wishes to modify an attribute of an MGraphic
object, they do so by orphaning the bundle, changing the
aftribute, and then having the MGraphic adopt the bundle.
Also, all caches that depend upon bundles must be invali-
dated when the bundle is adopted or orphaned. When an
object orphans data, it returns a pointer to the data and takes
no further data management responsibility for the data.
When an object adopts data, it takes in the pointer to the
storage and assumes full responsibility for the storage.
Default implementations of all bundle related member func-
tions has been provided in the base MGraphic class and
subclasses need not override this functionality, unless the
subclasses have an attribute based cache which needs to be
invalidated or updated whenever the bundle is adopted and
orphaned. For example, the loose fit bounds, when cached,
need to be invalidated (or reevaluated) when the attributes
change.

C++ Application Program Interfaces (API) for Bundle
Management

virtual void AdoptBundle(TGrafBundle *bundle)

MGraphic adopts the bundle.

If an MGraphic object already holds a bundle, it is
deleted, and the new bundle is attached. As pointers are
passed, it is important for the clients not to keep references
to the bundle passed as the parameter. The MGraphic object
will delete the bundle when it gets destroyed.
virtual const TGrafBundle* GetBundle() const

This method allows users to inquire a bundle and then
subsequently inquire its attributes by iterating through them.
This method provides an alias to the bundle stored in the
MGraphic object.
virtual TGrafBundle* OrphanBundle()

This method returns a bundle to a calling application for
its use. Once this method is called, it is the calling applica-
tion’s responsibility to delete the bundle unless it is adopted
again by an MGraphic object. When orphaned, the
MGraphic bundle is set to NIL, and when the graphic is
subsequently drawn, the MGraphic uses the default mecha-
nism of attributes/bundles for its parent’s bundle. This kind
of MGraphic subclass references other MGraphic objects.
Although all manipulative behavior of complex MGraphic
objects is similar to a MGraphic object, these objects do not
completely encapsulate MGraphic objects they refer to. Of
the subclasses supported by a preferred embodiment, the one
that falls in this category is TGraphicGroup. TGraphicGroup
descends from the abstract base class TBaseGraphicGroup

which makes available polymorphically the methods to

create iterators for traversing groups. It is important for
clients creating groups or hierarchies to descend from the
base class TBaseGraphicGroup for making available the
iterator polymorphically. FIG. 1 illustrates the class hier-
archy in accordance with a preferred embodiment.

TBaseGraphicGroup Iterator Support

Since GraphicGroup facilitates creation of hierarchies,
support for iterating the hierarchy is built into this base class
and is available polymorphically. This method is virmal in
the abstract base class TBaseGraphicGroup and all sub-

25

30

35

40

45

50

55

60

65

14

classes provide an implementation. Subclasses which desire
a shield for their children may return an empty iterator when
this member function is invoked.
Protocol: TGraphiclterator*
const=0

This method creates a Graphic iterator which iterates
through the first level of a hierarchy. For example in FIG. 12,
the graphic iterator created a concrete subclass to iterate
over B, C and E. To iterate further, iterators must be created
for both B and C as these are TBaseGraphicGroups. All
subclasses creating hierarchies must provide a concrete
implementation.

TGraphiclterator is an active iterator that facilitates the
iteration over the children of a TBaseGraphicGroup.

TGraphiclterator methods include:

const MGraphic *TGraphiclterator::First()
const MGraphic *TGraphiclterator::Next()
const MGraphic *TGraphiclterator::Last()

CreateGraphiclterator()

TGraphicGroup

The graphic system provides a concrete subclass of
TBaseGraphicGroup, namely TGraphicGroup, which sup-
ports creation of trees. TGraphicGroup creates a collection
of MGraphic objects forming a group. As each of the
MGraphic objects can be a TGraphicGroup, clients can
create a hierarchy of objects. FIG. 12 is an example of a
hierarchy created by TGraphicGroup. FIG. 12 contains
TGraphicGroups A, B and C. D, E, F and G are different
simple MGraphics encapsulating more than one geometry. A
has references to B, C and F. B refers to D while C refers to
G. Group C also refers to the MGraphic E. FIG. 12 can be
considered as an over simplified bike, where A refers to
MGraphic F-the body of bike, and groups B and C which
refer to the transformations associated with the rear and the
front wheel respectively. The two wheels are represented by
the primitive geometries D and G. E represents the handle-
bar of the bike. Moving node C will move both the front
wheel and the handle-bar, and moving node A will move the
entire bike.

While applying a transformation matrix to the children at
the time of rendering, the group creates a temporary Graf-
Port object and concatenates its matrix with that stored in the
GrafPort. This new GrafPort is used to render its children
and is destroyed once the child is completely rendered. The
GrafPort objects are created on the stack. TGraphicGroup
does not allow its children to have more than one parent in
a team. TGraphicGroup inherits directly from MGraphic and
thus each of the nodes own its own grafbundle and can affect
its own side of the hierarchy. The destructor of TGraphic-
Group destroys itself and does not destroy its children. It is
up to an application to keep track of references and destroy
MGraphic objects when they are not referenced.

GraphicGroup Iterator

Graphic Group provides a concrete implementation for
iterating its children. The Graphic Iterator created iterates
only one level. Clients interested in iterating more than one
level deep can do so by creating iterators on subsequent
TGraphicGroups.

Attribute and Transformation Hierarchy

Each TGraphicGroup, if it so chooses, defines its own
attributes and transformation. By default, an attribute bundle
is NIL and the transformation matrix is set to the identity
matrix. As TGraphicGroup is a complex MGraphic, it has

5,455,599

15

references to other MGraphics, and its children. By defini-
tion, each of the children must inherit the attribute traits and
transformations of its parent. However, since each child can
contain multiple references, it inherits these attributes by
concatenating the parents information, without modifying its
own, at the time of rendering. The concatenation of these
attributes is achieved at the time of the Draw call. Both the
attribute and the matrix are concatenated with the TGrafPort
object which is passed as a parameter to the Draw call. In
FIG. 12, attributes and transformations of object A (body of
bike) are concatenated with the GrafPort object passed to A
(as parameter to member function Draw) and a new GrafPort
object, APortObject, is created on the stack. APortObject is
passed to object C which concatenates its state and creates
a new port object, CPortObject. The new CPortObject is

10

16

passed to object E to be rendered. Object E concatenates its
state with CPortObject and renders itself using the new state.

MGRAPHIC EXAMPLE

As an example, a graphic is subclassed from MGraphic to
create a special 2D primitive which corresponds to a top
view of a bolt. This class stores a transformation matrix for
a local coordinate system, and is a very simple example
without taking into account performance and efficiency.
FIG. 13 illustrates a bolt object in accordance with a
preferred embodiment. The code below is a C++ source
listing that completely defines the bolt object in accordance
with a preferred embodiment.

class TBoltTop : public MGraphic {

public:

TBoltTop(GCoord BoltDiameter, GCoord outerradius, TGPoint center);
TBoltTop(const TBoltTop&);

TBoltTop& operator= (const TBoltTop&);

virtual void Draw(TGrafPort&) const;

virtual TGPoint GetAlignmentBasePoint() const;

virtual TGRect GetLooseFitBounds() const;

virtual TGRect GetGeometricBounds() const;

virtual void TransformBy(const TGrafmatrix& matrix);

virtual Boolean Find(TGrafSearcher& searcher) const;

private:
TBoltTop(); / [For streaming purposes only.
TGrafMatrix fMatrix;
TGPolygon fPolygon; / / This is the outer polygon
TGEllipse fCircle; // This is the inner circle

void ComputePolygon(GCoord outerRad, int numOfSides);

b

TBoltTop::TBoltTop()

{

}
TBoltTop:; TBoltTop(GCoord boltDia, GCoord outerDia, TGPoint center)

{

: fCircle(boltDia, center)

calculate the hexagon polygon from these paramters
The side of the polygon = outerDiameter / 2.0
TGPointArray polygonPoints(6);

TGPoint tmpPoint;

for (unsigned long i = 0, theta = 0.0;i < 6;1 -++,

theta += kPi/6) {

tmpPoint.fX = center.fX + outerDia * sin(theta);
tmpPoint.fY = center.fY + outerDia * cos(theta);
polygonPoints.SetPoint(i, tmpPoint);

1

1
void TBoltTop::Draw(TGrafPort &port) const

{

/*

* draw the geometry with the Grafflundle and the matris
* associated with this primitive

*/

port.Draw(fPolygon, fGrafBundle, fMatrix);
port.Draw(fCircle, fGrafBundle, fMatrix),

1* ’
* If there are a large number of primitives with same attributes
* it is efficient to construct a local port and then render

* geometries into this local port.

* The semantics will be as:

*

* TConcatenatedGrafPort newPort(port, f{GrafBundle, fMatrix);
* TConcatenatedGrafPort is a port that concatenates bundle and
* matrix with the state information of the old port.

*

* pewPort. Draw(fPolygon);

* pewPort.Draw(fCircle);

*/

}
TGPoint TBoltTop::GetAlignmentBasePoint() const
{

/1 The alignment point is the center of the circle.

5,455,599

17

-continued

18

TGPoint point;

point.x = fCircle.GetCenterX();
point.y = fCircle.GetCenter Y();
return point;

}

TGRect TBoltTop::GetLooseFitBounds() const

{
TGRect bounds;
/ / Get bounds of the polygon
/ I pass the bounds to the bundle for altering.
GetGeometricBounds(bounds);
fGrafBundle->AlterBounds(bounds);
return bounds;

}
TGRect TBoltTop::GetGeometricBounds() const

/ / Get bounds of the polygon
/ / pass the bounds to the bundle for altering.
bounds = fPolygon.GetBounds();

1
void TBoltTop:: TransformBy(const TGrafMatrix& matrix)
{

fMatrix. ConcatWith(matrix);

}
void TGrafSearch::EFindResult TBoltTop::Find(TGrafSearch& search) const

{
if (search.find(fPolygon, fgrafBundle, fMatrix)) {
return search.find(fCircle, fGrafBundle, fMatrix);

}
retum TGrafSearch::kDoneSearching;

The Device Cache

The device cache can potentially be a large object, so care
must be taken to ensure that device caches do not proliferate
throughout the system unexpectedly. If the same base,
GrafPort, is utilized for a number of hierarchies, the hier-
archies would automatically share the cache in the base
GrafPort.

Graphic State Concatenation

FIG. 14 illustrates a hierarchical graphic in accordance
with a preferred embodiment. The graphic consists of a
polygon and an ellipse in a group. Each graphic in the
hierarchy can store a graphic state. For instance, the polygon
and the ellipse each have a TGrafBundle, while the TGroup
stores no graphic state. This architecture is easily understood
until hierarchical states for matrices are considered. To
produce the correct geometry matrix, a graphic’s local view
matrix must be concatenated with the view matrix of its
parent. This concatenated matrix may then be cached by the
graphic that provided it. A graphic’s state must be “concat-
enated” to that of its parent graphic, producing a new, full set
of states that applies to the graphic. When TGroup::Draw is
called, its parent’s graphic port object is passed in. Since the
TGroup has no state of its own, it doesn’t perform any
concatenation. It simply passes its parent’s graphic port
object to the polygon’s Draw call and then to the ellipse’s
Draw call.

The polygon has a TGrafBundle object that must be
concatenated to its parent’s graphic port object. This is
facilitated by creating a local graphic port subclass that can
perform this concatenation. It then makes a call to
TBundleConcatenator::Draw. FIG. 15 illustrates an object
that exists inside the TPolygon’s Draw call in accordance
with a preferred embodiment. Because the TBundleConcat-
enator object is created locally to a TPolygon’s Draw call,
this type of concatenation is transient in nature. This pro-

30

35

40

45

50

55

60

65

cessing is required for particular types of graphic hierar-
chies. For instance, a graphic hierarchy that allows a par-
ticular graphic to be shared by two or more other graphics
must implement transient concatenation because the shared
graphic has multiple parents. FIG. 16 illustrates a graphic
hierarchy that supports sharing of two or more graphics in
accordance with a preferred embodiment. The curve object
in this example is shared by graphics B and C. Thus, the
concatenation must be transient because the results of the
concatenation will be different depending on the branch
taken (B or C).

Graphic objects in a persistent hierarchy require knowl-
edge of parental information, allowing a graphic to be drawn
using its parent’s state without drawing its parent. A graphic
in the hierarchy cannot be shared by multiple parents. Extra
semantics, such as a ConcatenateWithParent call and a Draw
call with no parameters, must be added to the graphic classes
used in the hierarchy. A graphic may use a graphic port
subclass that stores more state, such as a coordinate system
and clip boundary. Thus, each graphic may also want to keep,
its own private device cache.

FIG. 17 is a flowchart of the detailed logic in accordance
with a preferred embodiment. Processing commences at
function block 1700 where a modeling layer object com-
municates with the grafport object 1740 with a fixed set of
geometric objects 1730 and an extensible set of graphic
attribute objects 1720. The grafport object 1740 passes the
geometric object 1730 and graphic attributes 1720 to a
polymorphic graphic device object 1750 which manages
devices (hardware and software) such as a page description
language object 1760, a vector engine object 1770, a graphic
accelerator object 1780, a frame buffer object 1790; or more
traditional graphic devices such as displays, printers or
plotters as depicted in FIG. 1.

While the invention has been described in terms of a
single preferred embodiment, those skilled in the art will
recognize that the invention can be practiced with modifi-

5,455,599

19

cation within the spirit and scope of the appended claims.
Having thus described our invention, what we claim as
new, and desire to secure by Letters Patent is:
1. An object-oriented graphic system, comprising:
(a) a processor;
(b) a storage under the control of and attached to the
Processor;

(c) one or more graphic devices under the control of and
attached to the processor;

(d) a grafport object in the storage of the processor;

(e) a graphic device object in the storage of the processor

for managing one of the one or more graphic devices;

(f) a graphic object in the storage of the processor for

managing graphic processing; and

(g) means for connecting the graphic device object to the

grafport object to output graphic information on the one
of the one or more graphic devices under the control of
the graphic object.

2. A system as recited in claim 1, including a graphic
accelerator graphic device object.

3. A system as recited in claim 1, including a frame buffer
graphic device object.

4. A system as recited in claim 1, including a page
description language graphic device object.

5. A system as recited in claim 1, including a vector
engine graphic device object.

6. A system as recited in claim 1, wherein the grafport
object, the graphic device object and the graphic object are
polymorphic. , ,

7. A system as recited in claim 1, wherein the grafport
object, the graphic device object and the graphic object are
fully extensible.

8. A system as recited in claim 1, including a modeling
layer in the graphic object.

9. A system as recited in cldim 8, including a geometric
object and a graphic attribute object in the modeling layer.

10. A system as recited in claim 1, wherein the geometric
object includes geometry for the graphic information.

11. A system as recited in claim 1, wherein the graphic
device objects include displays, printers and plotters.

12. A method for graphic processing in an object-oriented
operating system resident on a computer with a processor, a
storage attached to and under the control of the processor
and a graphic device attached to and under the control of the
processor, comprising the steps of: '

(2) building a modeling layer object in the storage;

(b) generating calls from the modeling layer object to
grafport object using a predefined set of graphic primi-
tives;

(c) capturing state information and rendering information
at the grafport object; and

5

10

15

20

25

40

45

50

55

60

65

20

(d) passing the state information and the rendering infor-
mation to a graphic device object for output on the
graphic device.

13. The method as recited in claim 12, including state
information with transform, appearance and clipping infor-
mation.

14. The method as recited in claim 12, wherein the
graphic device is a software or a hardware graphic processor.

15. An apparatus for graphic processing, comprising:

(a) a processor,

(b) a storage attached to and under the control of the
processor;

(c) a graphic device attached to and under the control of
the processor;

(d) a modeling layer object in the storage;

(e) a grafport object in the storage;

(f) means for generating calls from the modeling layer
object to the grafport object using a predefined set of
graphic primitives;

(g) means for capturing state information and rendering
information at the grafport object; and

(h) means for passing the state information and the
rendering information to a graphic device object for
output on the graphic device.

16. The apparatus as recited in claim 15, wherein the state
information includes transform, appearance and clipping
information.

17. The apparatus as recited in claim 15,
graphic device is a vector engine.

18. The apparatus as recited in claim 15,
graphic device is a graphic accelerator.

19. The apparatus as recited in claim 15,
graphic device is a frame buffer.

20. The apparatus as recited in claim 15,
graphic device is a plotter.

21. The apparatus as recited in claim 185,
graphic device is a printer.

22. The apparatus as recited in claim 15,
graphic device is a display.

23. The apparatus as recited in claim 15,
graphic device is a postscript processor.

24. The apparatus as recited in claim 15, wherein the
modeling layer object includes at least one geometric object
and at least one graphic attribute object.

25. The apparatus as recited in claim 15, wherein an
object includes a method and data.

26 The apparatus as recited in claim 25, wherein the
object is polymorphic and extensible.

wherein the
wherein the
wherein the
wherein the
wherein the
wherein the

wherein the

L T T S

EXHIBIT H

(12)

US006424354B1

United States Patent
Matheny et al.

(10) Patent No.:
5) Date of Patent:

US 6,424,354 B1
Jul. 23, 2002

(54

(75)

(73)

*)

@D
(22

(63)

D
(52)
(58)

(56)

EP
EP
EP
EP
EP
EP
EP

OBJECT-ORIENTED EVENT NOTIFICATION
SYSTEM WITH LISTENER REGISTRATION
OF BOTH INTERESTS AND METHODS

Inventors: John R. Matheny; Christopher White,
both of Mountain View; David R.
Anderson, Cupertino; Arn J.
Schaeffer, Belmont, all of CA (US)

Assignee: Object Technology Licensing

Corporation, Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
Appl. No.:
Filed:

09/287,172
Apr. 1, 1999

Related U.S. Application Data

Continuation of application No. 07/996,775, filed on Dec.

23, 1992, now Pat. No. 6,259,446.

Int. CL7 oo GO6F 13/00

US.Cl . 345/619; 345/700; 345/764

Field of Search 345/619, 621,
345/623, 624, 625, 700, 716, 764

References Cited

U.S. PATENT DOCUMENTS

3,658,427 A
3,881,605 A

4/1972 DeCou
5/1975 Grossman

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0150 273
150273 A
352908 A

0 352 908
398 646 A
499 404 A

0 506 102

8/1985
8/1985
1/1990
1/1990
11/1990
8/1992
9/1992

UPDATE MENU

EP 506 102 A 9/1992
EP 529 770 A 3/1993
EP 0529 770 3/1993
WO WO 92/15934 9/1972
WO WO 92/15934 A 9/1992

OTHER PUBLICATIONS

IBM Programming Guide, Sep., 1989, First Edition, “Oper-
ating System/2 Programming Tools and Information” Ver-
sion 1.2, pp. 3-7 through 3-18 and 7-1 through 7-28.
Schumaker, Kurt J, “Object—Oriented Languages:
MACAPP: An Application Framework”, Byte, Aug., 1986,
pp. 189-193.

(List continued on next page.)

Primary Examiner—Matthew Luu
(74) Antorney, Agent, or Firm—Morgan & Finnegan, LLP

(7) ABSTRACT

An event notification system for propagating object-change
information. The notification system supports change noti-
fication without queues in an object-based application or
operating system and can be scaled to propagate large
numbers of events among a large plurality of objects. The
event notification system interconnects a plurality of event
source and event receiver objects. Any object, such as a
command object, may operate as either an event receiver
object, an event source object or both. A notification object
is created by a source object to transport, from a source to
a receiver, descriptive information about a change, which
includes a particular receiver object method and a pointer to
the source object that sent the notification. A receiver object
must register with a connection object its “interest” in
receiving notification of changes; specifying both the event
type and the particular source object of interest. After
establishing such connections, the receiver object receives
only the events of the specified type for the source objects
“of interest” and no others. This delegation of event selec-
tion avoids central event queuing altogether and so limits
receiver object event processing that the invention can be
scaled to large systems operating large numbers of objects.

59 Claims, 15 Drawing Sheets

————\ - 120
START

n 1230

o 1220

| QUERY OBJECTS

INVOKE

MODIFY STATE

1280
NOTIFY MENU

- 1230

GUERY COMMAND

~1250

HIGHLIGHT
MENU

ACTION /=~

n 1280

US 6,424,354 Bl

Page 2
U.S. PATENT DOCUMENTS 5,325,524 A 6/1994 Black et al. 395/600
5,325,533 A 6/1994 Mclnerney et al. 395/700

4,082,188 A 4/1978 Grimmell et al. 5,327,529 A 7/1994 Fults et al.
4,635,208 A 1/1987 Coleby et al. 5,329,446 A 7/1994 Kugimiya et al. 364/419.04
4,677,576 A 6/1987 Berlin, Jr. et al. 5339433 A 81994 Frid-Nielsen 395/700
4,679,137 A 7/1987 Lane et al. 364/188 5,345,550 A 9/1994 Bloomfield ... 395/156
4,686,522 A 8/1987 Hernandez et al. 5347626 A 9/1994 Hoeber et al. 395/156
4,704,694 A 11/1987 Czemniejewski 5367633 A 11/1994 Matheny et al.
4,742,356 A 5/1988 Kuipers 5371,846 A 12/1994 Bates ..oooorvrenrennnn. 395/157
4,760,386 A 7/1988 Heath et al.coceoeev. 340/709 5371851 A 12/1994 Pieper et al. 395/164
4,821,220 A 4/1989 Duisberg 5371,886 A 12/1994 Britton et al. 395/600
4,823,283 A 4/1989 Diehm et al. 364/518 5,375,164 A 12/1994 Jennings 379/88
4,831,654 A 5/1989 Dick ..ooviiiiniiiiii. 381/51 5,386,556 A 1/1995 Hedin et al. ... 395/600
4,835,685 A 5/1989 Kun ... v 364/200 5390314 A 2/1995 Swanson 395/500
4,843,538 A 6/1989 Lane et al. 364/188 5,414,812 A 5/1995 Filip et al. ... 395/200
4,853,843 A 8/1989 Ecklund 364/200 5,416,903 A 5/1995 Malcolm 395/155
4,868,744 A 9/1989 Reinsch et al. 364/280.3 5,434,965 A 7/1995 Matheny et al. 395/159
4,885,717 A 12/1989 Beck et al. 5,446,902 A 8/1995 Islam
4,891,630 A 1/1990 Friedman et al. 5479601 A 12/1995 Matheny et al. 395/155
4,931,783 A 6/1990 Atkinson 340/710 5,497,319 A 3/1996 Chong et al. . 364/419.02
4,939,648 A 7/1990 O’Neill et al. 5,517,606 A 5/1996 Matheny et al. 395/156
4943932 A 7/1990 Lark et al.cconnenes 364/513 5,530,864 A 6/1996 Matheny et al. 395/700
4,953,080 A 8/1990 Dysart et al. 5,550,563 A 8/1996 Matheny et al. 345/168
4,982344 A 1/1991 Jordanccccoeveneeneee 364/521 5,551,055 A 8/1996 Matheny et al. 395/882
5,008,810 A 4/1991 Kessel et al. 364/200 5583982 A 12/1996 Matheny et al. 395/326
5,040,131 A 8/1991 Torresccovvvevrenee. 364/521 5,717,877 A 2/1998 Orton et al. .oooeveern.... 395/326
5,041,992 A 8/1991 Cunningham et al.
5,050,090 A 9/1991 Golub et al. OTHER PUBLICATIONS
5,060,276 A 10/1991 Morris et al.
5075848 A 12/1991 Lai et al. Wang et al., “An Event—Object Recovery Model For Objec-
5,083,262 A 1/1992 Haff, Ir. oooovvenrenne. 395/500 t—Oriented User Interfaces”, Fourth Annual Symposium on
5,093,914 A 3/1992 Coplien et al. User Inteface Software and Technology: Proceedings of the
5,119,475 A 6/1992 Smith et al. ACM Symposium on User Interface Software and Technol-
5,125,091 A 6/1992 Staas, Ir. et al. ogy, Nov. 11, 1991, pp. 107-115.
5,129,084 A 71992 K.elly etal s 395/650 Microsoft Systems Journal, Jan., 1990, vol. 5. No. 1, “Soft-
5133075 A 7/1992 Risch) 5 !) SO
5136705 A 8/1992 Stubbs et al. ware Architecture Object—Oriented Programming Design”,
5,140,677 A 8§/1992 Fleming et al. 3057150 Pp- 14 (3).
5,151,987 A 9/1992 Abraham et al. Coop—Berre, “An Object Oriented Framework for Systems
5,163,130 A 11/1992 Hullot .ccooeevveeerenneeennne 395/148 Integration”, pp. 104-107.
5168411 A 12/1992 Fujii Microsoft Corp., Windows User’s Guide for Version 3.1,
5168441 A 12/1992 Onarheim et al. 364/146 1990-1992, pp. 52, 83-85.
5,177,685 A 171993 DaYls et al. Microsoft Corp., “A Presentation Manager Primer,”
3,181,162 A 171993 Smith et al. Microsoft Systems Journal, Jan. 1990, v5, nl 14-17
5198802 A 3/1993 Bertram et al. 340/709 Y urnar, Jam. > V2, 0L, pp. :
5206951 A 4/1993 Khoyi et al. 395/650 Berre, Arne—Jgrgen, “COOP—An Object Oriented Frame-
5228123 A 7/1993 Heckel 395/155 work for Systems Integration,” ICSI’92 Proc. 2™ Int’l Conf.
5,230,063 A 7/1993 Hoeber et al. 395/156 On Systems Integration, Jun. 15, 1992, Morristown, NJ, pp.
5,237,654 A 8/1993 Shakelford et al. 395/160 104-113.
5,239,287 A 8/1993 SIIO et.al. 340/706 Hirakawa et al, “A Framework for Construction of Icon
5241655 A 81993 Mincki et al. ...cooveeeee. 395156 Systems,” IEEE, 1998, pp. 70-77.
5,265,206 A 11/1993 Shackelford et al. IBM Corp., “Systems Application Architecture, Common
5,276,775 A 1/1994 395/55 > S
5276816 A 1/1994) 305275 User Access, Advanced Interface Design Guide,” Jun. 1989,
5,280,610 A 1/1994 Travis et al. 395/600 PP- 55-81, 97-99.
5,287,448 A 2/1994 Nicol et al. we.oeveevnnn.... 395/159 Apple Computer, Inc., “System 7-Macintosh Reference
5,291,587 A 3/1994 Kodosky et al. 395/500 Guide,” 1992, Cupertino, CA, pp. 30, 70, 72, 75.
5295222 A 3/1994 Wadhwa et al. 395/1 Booch, Grady, “Object Oriented Design with Applications,”
5,295,256 A 3/1994 Bapat 395/500 1991, pp. 45-6, 65 & 494.
g’gg;’ggz 2 ;/ 1994 Meisel ... e 395/160 Campbell et al., “Choices, Frameworks and Refinement,”
297, /1994 Jones et al. 395/700 s X X X R .
5301301 A 4/1994 Kodosky et al. 395/500 Proc. Int’l Workshop on Object Orientation in Operating
5,301,336 A 4/1994 Kodosky et al. 395/800 Systems, Oct. 17, 1991, Palo Alto, CA, pp. 9-15.
5,309,566 A 5/1994 Larsonc..ec..... 395/275 Cobb et al, “Examining NewWave, Hewlett—Packard’s
5,313,629 A 5/1994 Abraham et al. 395/600 Graphical Object—Oriented Environment,” Microsoft Sys-
5,313,636 A 5/1994 Noble et al.coeeveee.. 395/700 tems Journal, Nov. 1989, pp- 1-18 and Exhibits A-B.
5,315,703 A 5/1994 Matheny et al. Embry et al., “An Open Network Management Architecture:
5,315,709 A 5/1994 Alston et al. 395/600 OSI/NM F Architect dC ts.” IEEE Network
5317,741 A 5/1994 Schwanke 3957700 Vi borum Architecture and Loncepts, erwor
5321841 A 6/1994 Eastetal. wooooee......... 305725 Magazine, Jul. 1990, pp. 14-22.
5,325,481 A 6/1994 HUDt ...cocoovervirrreann, 395/159 Franz, Marty, “Object-Oriented Programming Featuring
5,325,522 A 6/1994 Vaughnc.ccceeee. 395/600 ACTOR,” 1990, Chapters 1-2 & 19-22.

US 6,424,354 B1
Page 3

IBM Corp., “Dynamic Icon Presentation,” IBM Technical
Disclosure Bulletin, V.35, N.4B, Sep. 1992, Armonk NY, pp.
227-232.

IBM Corp., “Pause Review: a Technique for Improving the
Interactivity of Direct Manipulation,” IBM Technical Dis-
closure Bulletin, V.34, N.7A, Dec. 1991, Armonk, NY, pp.
20-25.

IBM Corp., “Auto Scroll During Direct Manipulation,” IBM
Technical Disclosure Bulletin, V.33, N.11, Apr. 1991,
Armonk NY, p. 312.

IBM Corp., “Volume 3: Presentation Manager and Work-
place Shell,” O/S/2 Version 2.0, Apr. 1992, IBM Corporation
International Technical Support Center, Boca Raton, FL, p.
53.

IBM Corp., “Presentation Manager Programming Refer-
ence,” Volume III, OS/2 Technical Library, Mar. 1992.
IBM Corp., “Programming Guide,” Operating System/2
Programming Tools and Information Version 1.2, Sep. 1989,
pp- 3-7 to 3-18 and 7-1 to 7-28.

IBM Corp., “Getting Started: Using IBM Risc System/
6000,” Jan. 1992.

Khoshafian, Setrag, “Intelligent Offices, Object—Oriented
Multi-Media Information Management in Client/Server
Architectures,” 1992, Chapter 8, pp. 235-304.

Meyrowitz, Norman, “Intermedia: The Architecture and
Construction of an Object—Oriented Hypermedia System
and Applications Framework,” OOPSLA °86 Conference
Proceedings, Sep. 29-Oct. 2, 1986, Portland, OR, pp.
186-201.

Microsoft Corp., “Window User’s Guide for Version 3.0,”
1990, pp. 128-133.

Microsoft Corp., “MS-DOS User’s Guide,” 1988, pp.
21-25, 77-80 & 165-170.

Miyauchi et al., “An Implementation of Management Infor-
mation Base,” I[EEE, 1991, pp. 318-321.

Myers et al, “Environment for Rapidly Creating Interactive
Design Tools,” The Visual Computer, v.8, No. 2, Feb. 1992,
Berlin, DE, pp. 94-116.

Myers, Brad, “Creating Interaction Techniques by Demon-
stration,” IEEE Computer Graphics and Applications, V.7,
N.9, Sep. 1987, New York, US, pp. 55-61.

Reiss, Steven P., “Connecting Tools Using Message Passing
in the Field Environment,” IEEE Software, Jul. 1990, pp.
57-66.

Schmucker, Kurt, “MACAPP: An Application Framework,”
Byte Magazine, Aug. 1986, pp. 189-193.

Smith, R.B., “The Alternate Reality Kit,” IFEE, Proceed-
ings of Workshop on Visual Languages, Jun. 25, 1986,
Dallas, TX, pp. 99-106.

Microsoft Corp., Windows User Guide for Version 3.1,
1990-1992, pp. 52, 83-85.

Microsoft Corp., “A Presentation Manager Primer”,
Microsoft Systems Journal, Jan. 1990, v5, nl, pp. 14-17.
Apple Computer, Inc., “System 7-Macintosh Reference
Guide, ” 1992, Cupertino, CA, pp. 30, 70, 72, 75.

Booch, Grady, “Object Oriented Design with Applications”,
1991, pp. 45-6, 65 and 494.

Campbell et al., “Choices, Frameworks and Refinement, ”
Proc. Int’l Workshop on Object Orientation in Operating
Systems, Oct. 17, 1991, Palo Alto, CA. pp. 9-15.

Cobb et al., “Examining NewWave, Hewlett—Packard’s
Graphical Object—Oriented Environment, * Microsoft Sys-
tems Journal, Nov. 1989, pp. 1-18 and Exhibits A-B.
Dodani et al., “Separation of Powers, ” Byte Magazine, v.
143, Mar. 1989, pp. 255-271.

Embry et al., “An Open Network Management Architecture:
OSI/NM Forum Architecture and Concepts,” IEEE Network
Magazine, Jul. 1990, pp. 14-22.

IBM Corp., “Dynamic Icon Presentation, ” IBM Technical
Disclosure Buletin, V35, no4B, Sep. 1992, Armonk, NY, pp.
227-232.

IBM Corp., “Pause Review: A Technique for Improving the
Interactivity of Direct Manipulation, ” IBM Technical Dis-
closure Buletin, v34, n7A, Dec. 1991, Armonk, NY, pp.
20-25.

IBM Corp., “Auto Scroll During Direct Manipulation,
IBM Technical Disclosure Buletin, v33, nll, Apr. 1991,
Armonk, NY, p. 312.

IBM Corp., “vol. 3: Presentation Manager and Workplace
Shell, ” O/S/2 Version 2.0, Apr. 1992, IBM Corporation
International Technical Support Center, Bocal Raton, FL, p.
53.

IBM Corp., “Presentation Manager Programming Refer-
ence, ” vol. ITI, OS/2 Technical Library, Mar. 1992.

IBM Corp., “Getting Started: Using IBM RISC System/
60007, Jan. 1992.

Microsoft Corp., “Window User’s Guide for Version 3.0”
1990, pp. 128-133.

Microsoft Corp., “MS-DOS User’s Guide”, 1988, pp.
21-25, 77-80 and 165-170.

Miyauchi et al., “An Implementation of Management Infor-
mation Base, ” IEEE, 1991, pp. 318-321.

Reiss, Steven P, “Connecting Tools Using Message Passing
in the Field Environment, ” IEEE Software, Jul. 1990, pp.
57-66.

Smith, R.B., “The Alternate Reality Kit, ” IEEE, Proceed-
ings of Workshop on Visual Languages, Jun. 25, 1986,
Dallas, TX, pp. 99-106.

Williams, Greg, “Software Frameworks, ” Byte Magazine,
Dec. 1984, pp. 124-127 and 394-410.

2

U.S. Patent

Jul. 23, 2002

Sheet 1 of 15

[/34

//18

/20

1/0

COMM

US 6,424,354 Bl

38

FIG. 1A

DISPLAY
ADAPTER

\\36

~28

-
N
=
=<
o
«©
\\
=
)
s
=
N
-
o
S

12’//

INTERFACE
ADAPTER

22\\

LR

24 .

U.S. Patent Jul. 23, 2002 Sheet 2 of 15 US 6,424,354 B1

40 41

Moue Notes tarmat tant Size Style QgAY
______________ T =———— ging to Front

Send to Back

ou l]uestlonlntr

... brote
Hoagroup
Lock
nloek
Align...
Rotate
42
- 220
o p 230
g BOLD @/
FIG. 2
CONNECTION
[g BOLD VALUE
/ T INTERESTS \‘
200 310
\
320

FIG. 3

U.S. Patent Jul. 23, 2002 Sheet 3 of 15 US 6,424,354 B1

NOTIFICATION

r’d

}] BOLD

400
FIG. 4

sy el C

T VALUE 590

FIG. 5

VALUE

BOLD VALUE » VALUE A >

/

610 620

600

FIG. 6

U.S. Patent Jul. 23, 2002 Sheet 4 of 15 US 6,424,354 B1

NOTIFICATION
VALUE /
‘ VALUE
: ! ’
52 BOLD VALUE Y VALUE /)
T VALUE

FIG. 7

0 SOUND CONTROLLER

>] [>] [2] [*@—’[Q
PLAY /STEP STOINPAUSE

800~ 7 v
802 804 806
FIG. 8
m]
COLOR EDITOR 900
//
GREEN 0 m/
BLUE 0 ——] 255
/ G
930

/
920

FIG. 9

U.S. Patent Jul. 23, 2002 Sheet 5 of 15 US 6,424,354 B1

1000
\
A\
RED 0 ¢ g 1 255
1040
TFloatControlCommand /
09 ;
GREEN 0 1 . 255 | TSetColor
TFloatControlCommand e red -
flogt ---oeeommemmmemrses e green ----eeeeees "COLOR"
e blue - \
BLUE 0 1 255 |
\ TFloatControlCommand 1050
1020 110 | B '
FIG. 10
1100
\\© PAPER
//O PLASTIC
1110

FIG. 11

U.S. Patent

Jul. 23, 2002 Sheet 6 of 15 US 6,424,354 B1
1200
[START j/
L 1210
UPDATEMENU
‘ 1220
QUERY OBJECTS
>l 1230
QUERY COMMAND
1250
1240 '
HIGHLIGHT

ENA?LED MENU

/
/ INVOKE

ACTION 1270
1280
MODIFY STATE
‘ 1290
NOTIFY MENU

FIG. 12

/ OO
O
AARAARAREEEREN .

N\

NN

SRR

L 15

U.S. Patent

Jul. 23, 2002

Sheet 8 of 15

US 6,424,354 Bl

1400
C START)/

1410
ACTIVATE —
DIALOG BOX
1420
MANIPULATE
CONTROL

>¢ 1430
/

CHANGE
VALUE

y

1440

RECORD
COMMAND

1450

CONTROL
CHANGED
2

RE-RECORD
COMMAND

///1470

FIG. 14

U.S. Patent

Jul. 23, 2002

Sheet 9 of 15

US 6,424,354 Bl

1500
START

'

YES?

1510
INTITIALIZE -
LABEL
1520
DRAW LABEL
1530
TOGGLE LABEL

l 1540

TOGGLE CONTROL

1550

CONTROL

\\\\\ffiECTED
?

NO?

FIG. 15

1560

U.S. Patent Jul. 23, 2002 Sheet 10 of 15 US 6,424,354 B1

1610
INITIALIZE -
TITLE
>l P 1620
DRAW TITLE
l 1
1630
TOGGLE TITLE

FIG. 16

U.S. Patent Jul. 23, 2002 Sheet 11 of 15 US 6,424,354 B1

1700
(: START j)///
L 1710

/
BUTTON
DETECTED

'

INTERACTOR T
CREATED

!

17
INTERACTOR 1730
STARTED

¢ 1740

DELAY

YES

FIG. 17

U.S. Patent

Jul. 23, 2002

Sheet 12 of 15

1800 (START)
Y

US 6,424,354 Bl

1810 | CREATE CONNECTION
1820 DEFINE INTERESTS
1830 | CONNECT SOURCES
1840 | REGISTER CONNECTIONS FIGURE 18
4 AWAIT
1845 CHANGE
1850 CHANGE
DESCRIPTION
1860 DISPATCH
NOTIFICATION
1870 SEND
NOTIFICATION
1880 | RECEIVE
NOTIFICATON
NO ANOTHER
-t}

CONNECTION?

1885

U.S. Patent Jul. 23, 2002 Sheet 13 of 15 US 6,424,354 B1

1900 C START)

19710 | REQUEST PRESENTATION

Y

CREATE
1920 PRESENTATION

l

1930 [BUILD PRESENTATION

- __!

FIGURE 19

U.S. Patent Jul. 23, 2002 Sheet 14 of 15

[AR) 2000
f ~

INITIALIZE
SCROLL

2010

THUMB
SELECTED?

2020

US 6,424,354 Bl

THUMB
MOVED?

Yes

SET
POSITION

THUMB
RELEASED?

2040

Y

COMPLETE 2060
SCROLL

* FIGURE 20
2070 C STOP

U.S. Patent Jul. 23, 2002 Sheet 15 of 15 US 6,424,354 B1

EE= Files =@
L Name
[Nrer 8 2112
[fite 2
[fite 3 :é: 2110
@i s
FIGURE 21A

=EH= Files =E
Name 2122

2120

2142

2140

FIGURE 21C

US 6,424,354 B1

1

OBJECT-ORIENTED EVENT NOTIFICATION
SYSTEM WITH LISTENER REGISTRATION
OF BOTH INTERESTS AND METHODS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This is a 37 C.FR. §1.53(b)continuation of U.S. patent
application Ser. No. 07/996,775 filed on Dec. 23, 1992, now
U.S. Pat. No. 6,259,446.

FIELD OF THE INVENTION

This invention generally relates to improvements in dis-
play systems and more particularly to a globally scalable
method for notification of change events arising in an
object-oriented environment such as an automated menu
state processing by integrating menu processing operations
into the operating system.

BACKGROUND OF THE INVENTION

Among developers of workstation software, it is increas-
ingly important to provide a flexible software environment
while maintaining consistency in the user’s interface. An
early attempt at providing this type of an operating envi-
ronment is disclosed in U.S. Pat. No. 4,686,522 to Hernan-
dez et al. This patent discusses a combined graphic and text
processing system in which a user can invoke a dynamic
menu at the location of the cursor and invoke any of a variety
of functions from the menu. This type of natural interaction
with a user improves the user interface and makes the
application much more intuitive.

Menu selection should also reflect a consistent interface
with the user regardless of what application is currently
active. None of the prior art references applicant is aware of
provides the innovative hardware and software system fea-
tures which enable all application menus to function in a
consistent manner.

SUMMARY OF THE INVENTION

Accordingly, it is a primary objective of the present
invention to provide a scalable method for notification of
change events arising in an object-oriented environment
such as an automated menu-based system containing size,
state, status and location information. For example, a pre-
ferred embodiment of a menu contains a list of menu items
containing a command and variables that reflect the com-
mand’s current appearance. This includes status information
determinative of the menu item’s state (enabled/disabled),
its name, its associated graphic, and whether its appearance
is currently valid. Each of these are initialized when the
menu item was created. The exemplary embodiment creates
a menu item from a command, where a menu item is another
object data structure containing a command sequence. The
menu item is added to a list of menu items, and initialized
as an invalid appearance. Later when the menu item is
selected from a pull down menu, the appearance state is
recomputed and validated based on the system state and its
status information.

Next, the invention queries a command object for notifi-
cation. In an exemplary embodiment, each command object
has four methods to connect for different types of notifica-
tions:

i) notifications that affect it’s name,

ii) notifications that affect is graphic,

iii) notifications that affect whether it’s active, and
iv) notifications that affect any data it provides.

10

15

20

25

35

40

45

50

55

60

65

2

In this exemplary embodiment, the menu item just created
for the command connects for active notification. It does this
by passing a connection object to the event notification
system. The command is then responsible for connecting the
connection object to notifiers affecting whether the com-
mand is active.

Then, the exemplary menu system queries the command
for the enabled state before presenting the menu item on the
display. This processing is accomplished by examining the
current system state to ascertain if the function is active in
the current context. Then, the internal state of the menu item
is updated and the menu item is displayed based on the
appropriate appearance state (grayed out or normal).

When a user invokes a command from a menu item, a
control or though the direct manipulation of an object, a
document state is modified and notification of the event is
sent to the system. This event automatically informs any
active menu items and assures current status information is
consistent across the operating environment. The notifica-
tion message includes the name of the change and a pointer
to the object that sent the notification message.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A s a block diagram of a personal computer system
in accordance with the subject invention;

FIG. 1B is a display in accordance with the subject
invention;

FIG. 2 illustrates the tools used to create an application in
accordance with the subject invention;

FIG. 3 is a flow diagram of a command process in
accordance with the subject invention;

FIG. 4 is a checkbox control in accordance with the
subject invention;

FIG. 5 is a checkbox control activation in accordance with
the subject invention;

FIG. 6 is a checkbox update in accordance with the
subject invention;

FIG. 7 is a summary of checkbox control processing in
accordance with the subject invention;

FIG. 8 is an illustration of a control panel in accordance
with the subject invention;

FIG. 9 is an illustration of a dialog box in accordance with
the subject invention;

FIG. 10 is an illustration of a dialog box color controller
in accordance with the subject invention;

FIG. 11 is an illustration of a radio button in accordance
with the subject invention;

FIG. 12 is a detailed flowchart of menu state processing
in accordance with the subject invention;

FIG. 13 is a picture of a display in accordance with the
subject invention;

FIG. 14 illustrates the detailed logic of atomic execution
in accordance with the subject invention;

FIG. 15 sets forth the detailed logic associated with smart
label processing in accordance with the subject invention;

FIG. 16 presents the detailed logic of smart window label
processing in accordance with the subject invention;

FIG. 17 illustrates how objects are created and how the
objects communicate with each other during a typical inter-
action with an object that can be moved and selected in
accordance with the subject invention;

FIG. 18 is an object generating notification flowchart for
a notification source object in accordance with the subject
invention;

US 6,424,354 B1

3

FIG. 19 presents a flowchart illustrating the detailed logic
associated with selecting the proper user interface element in
accordance with the subject invention;

FIG. 20 is a flowchart illustrating the detailed logic
associated with scrolling in accordance with the subject
invention; and

FIGS. 21A, 21B and 21C illustrate window scrolling in
accordance with the subject invention.

DETAILED DESCRIPTION OF THE
INVENTION

The invention is preferably practiced in the context of an
operating system resident on a personal computer such as
the IBM® PS/2® or Apple® Macintosh® computer. A
representative hardware environment is depicted in FIG. 1A,
which illustrates a typical hardware configuration of a
workstation in accordance with the subject invention having
a central processing unit 10, such as a conventional
microprocessor, and a number of other units interconnected
via a system bus 12. The workstation shown in FIG. 1A
includes a Random Access Memory (RAM) 14, Read Only
Memory (ROM) 16, an I/O adapter 18 for connecting
peripheral devices such as disk units 20 to the bus, a user
interface adapter 22 for connecting a keyboard 24, a mouse
26, a speaker 28, a microphone 32, and/or other user
interface devices such as a touch screen device (not shown)
to the bus, a communication adapter 34 for connecting the
workstation to a data processing network and a display
adapter 36 for connecting the bus to a display device 38. The
workstation has resident thereon an operating system such as
the IBM OS/2® operating system or the Apple System/7®
operating system.

The subject invention is a new object-oriented system
software platform comprised of an operating system and
development environment designed to revolutionize per-
sonal computing for end-users, developers, and system
vendors. The system is a complete, standalone, native oper-
ating system and development environment architected from
the ground up for high-performance personal computing.
The invention is a fully object-oriented system including a
wealth of frameworks, class libraries, and a new generation
object programming environment, intended to improve fun-
damentally the economics of third party application software
development. The subject invention is a fully portable
operating system.

Traditional operating systems provide a set of services
which software developers can use to create their software.
Their programs are very loosely integrated into the overall
operating system environment. For example, DOS applica-
tions take over the entire machine. This means that as far as
the user is concerned, the application is the operating
system. In Macintosh® and Windows operating systems,
applications feel and look similar and they typically support
cutting and pasting between applications. This commonalty
makes it easier for users to use multiple applications in a
single environment. However, because the commonalty is
not factored into a set of services and frameworks, it is still
very difficult to develop software.

In the subject invention, writing an “application” means
creating a set of objects that integrate into the operating
system environment. Software developers rely on the oper-
ating system for both a sophisticated set of services and a
framework to develop software. The frameworks in the
subject invention provide powerful abstractions which allow
software developers to concentrate on their problem rather
than on building up infrastructure. Furthermore, the funda-

10

15

20

30

35

40

45

50

55

60

65

4

mental abstractions for the software developer are very close
to the fundamental concepts that a user must understand to
operate her software. This architecture results in easier
development of sophisticated applications.

This section describes four steps to writing software
employing the subject invention. A user contemplating the
development of an application is typically concerned with
the following questions:

What am I modeling?

For a word processor, this is the text I am entering; for a
spreadsheet, it is the values and formulas in the cells.
How is the data presented?

Again, for a word processor, the characters are typically
displayed in a what-you-see-is-what-you-get (wysiwyg) for-
mat on the screen with appropriate line and page breaks; in
a spreadsheet it is displayed as a table or a graph; and in a
structured graphics program (e.g. MacDraw), it is displayed
as a set of graphics objects.

What can be selected?

In a word processing application, a selection is typically
a range of characters; in a structured graphics program it is
a set of graphic objects.

What are the commands that can operate on this selection?

A command in a word processor might be to change the
style of a set of characters to bold. A command in a
structured graphic program might be to rotate a graphic
object. FIG. 1B is an illustration of a display in accordance
with the subject invention. A command is illustrated at 41 for
bringing a picture to the front of a display. A presentation of
graphic information is illustrated at 40. Finally, a selection
of a particular graphic object, a circle, is shown at 42.

A developer must answer the same four questions asked
by the user. Fortunately, the subject invention provides
frameworks and services for addressing each of these four
questions. The first question that must be answered is: What
am I modeling? In a word processing program, the data
includes the characters that make up a document. The data
in a spreadsheet includes the values and formulas in the
cells. In a calendar program, the data includes the times and
appointments associated with a given day. The invention
provides facilities that help to model data. There are classes
for modeling specific data types including: text, structured
graphics, sound and video. In addition to these specific
classes, the invention provides a number of other abstrac-
tions that support problem modeling, including: collection
classes, concurrency control, recovery framework, and the
C++ language. The class that encapsulates the data model
for a particular data type provides a specific protocol for
accessing and modifying the data contained in the data
encapsulator, support for overriding a generic protocol for
embedding other data encapsulators and for being embedded
in other data encapsulators, generating notification to all
registered objects when the data changes, and overriding a
generic protocol for creating presentations of the data.

The next question that must be answered is: how is the
data presented? In a structured graphic program, the set of
graphic objects are typically rendered on a canvas. In a
spreadsheet, it is typically a table of cells or a graph; and in
a presentation program it is a set of slides or an outline. The
subject invention provides a “view” of the data contained in
a data encapsulator. The view is created using a “view
system” and graphic system calls. However, playing a sound
or video clip is also considered a presentation of the data.

Next: what can be selected? In a word processing
program, a selection is a range of characters; in a structured
graphics program, it is a set of graphics objects; and in a
spreadsheet it is a range of cells. The invention provides

US 6,424,354 B1

5

selection classes for all of the fundamental data types that
the system supports. The abstract baseclass that represents a
selection made by a user provides an address space inde-
pendent specification of the data selected. For text, this
would be a numeric range of characters rather than a pair of
pointers to the characters. This distinction is important
because selections are exchanged between other machines
when collaborating (in real-time) with other users. The
baseclass also overrides a generic protocol for creating a
persistent selection corresponding to this selection. Persis-
tent selections are subclasses of an anchor object and may be
heavier weight than their corresponding ephemeral selec-
tions because persistent selections must survive editing
changes. For example, a persistent text selection must adjust
itself when text is inserted before or after it. Anchors are
used in the implementation of hypermedia linking, dataflow
linking and annotations.

The baseclass also provides an override generic protocol
for absorbing, embedding and exporting data contained in a
data encapsulator. Baseclasses are independent of the user
interface technique used to create them. Selections are
typically created via direct manipulation by a user (e.g.
tracking out a range of text or cells) but can be created via
a script or as a result of a command. This orthogonality with
the user interface is very important. Baseclasses also provide
specific protocol for accessing the data encapsulator. There
is a very strong relationship between a particular subclass of
the encapsulator class and its subclass of a model selection
class.

Finally: what are the commands that can operate on this
selection? In a word processing program, a command might
change the style of a selected range of characters and in a
structured graphics program, a command might rotate a
graphic object. The subject invention provides a large num-
ber of built-in command objects for all of the built-in data
types as well as providing generic commands for Cut, Copy,
Paste, Starting HyperMedia Links, Completing Links, Navi-
gating Links, Pushing Data on Links, Pulling Data on Links,
as well as many user interface commands. The abstract
baseclass that represents a command made by the user is
responsible for capturing the semantics of a user action,
determining if the command can be done, undone, and
redone. Command objects are responsible for encapsulating
all of the information necessary to undo a command after a
command is done. Before a command is done, command
objects are very compact representations of a user action.
The baseclass is independent of the user interface technique
used to create them. Commands are typically created from
menus or via direct manipulation by the user (e.g. moving a
graphic object) but could be created via a script. This
orthogonality with the user interface is very important.

Benefits Of Frameworks

The benefits of plugging into the abstractions in the
invention are greater than providing a conceptual model.
Plugging into the framework provides many sophisticated
features architected into the base operating system. This
means that the framework implements major user features
by calling relatively small methods. The result is that an
investment in coding for the framework is leveraged over
several features.

Multiple Data Types

Once a new kind of data is implemented, the new data
type becomes a part of the system. Existing software that can
handle data encapsulators can handle your new data type

5

10

15

20

25

30

35

40

45

50

55

60

65

6

without modification. This differs from current computer
systems, such as the Macintosh computer system. For
example, a scrapbook desk accessory can store any kind of
data, but it can only display data that has a text or quickdraw
picture component. In contrast, the subject invention’s
scrapbook displays any kind of data, because it deals with
the data in the form of an object. Any new data type that is
created behaves exactly like the system-provided data types.
In addition, the data in the scrapbook is editable since an
object provides standard protocol for editing data.

The scrapbook example highlights the advantages of data
encapsulators. If software is developed such that it can
handle data encapsulators, an application can be designed to
simply handle a new data type. A new application can
display and edit the new kind of data without modification.

Multi-level Undo

The invention is designed to support multi-level undo.
Implementing this feature, however, requires no extra effort
on the part of a developer. The system simply remembers all
the command objects that are created. As long as the
corresponding command object exist, a user can undo a
particular change to the data. Because the system takes care
of saving the commands and deciding which command to
undo or redo, a user does not implement an undo procedure.

Document Saving, Reliability, and Versioning

A portion of the data encapsulator protocol deals with
filing the data into a stream and recreating the data at another
place and/or time. The system uses this protocol to imple-
ment document saving. By default, a user’s data objects are
streamed to a file when saved. When the document is
opened, the data objects are recreated. The system uses a
data management framework to ensure the data written to
disk is in a consistent state. Users tend to save a file often so
that their data will be preserved on disk if the system
crashes. The subject invention does not require this type of
saving, because the system keeps all the command objects.
The state of the document can be reconstructed by starting
from the last disk version of the document and replaying the
command objects since that point in time. For reliability, the
system automatically logs command objects to the disk as
they occur, so that if the system crashes the user would not
lose more than the last command.

The invention also supports document versioning. A user
can create a draft from the current state of a document. A
draft is an immutable “snapshot” of the document at a
particular point in time. (One reason to create a draft is to
circulate it to other users for comments.) The system auto-
matically takes care of the details involved with creating a
new draft.

Collaboration

As mentioned above, a document can be reconstructed by
starting with its state at some past time and applying the
sequence of command objects performed since that time.
This feature allows users to recover their work in the case of
a crash, and it can also be used to support real-time col-
laboration. Command objects operate on selections, which
are address-space independent. Therefore, a selection object
can be sent to a collaborator over the network and used on
a remote machine. The same is true of command objects. A
command performed by one collaborator can be sent to the
others and performed on their machines as well. If the
collaborators start with identical copies of the data, then
their copies will be remain “in sync” as they make changes.

US 6,424,354 B1

7

Creating a selection is done using a command object, so that
all collaborators have the same current selection.

The system uses a feature known as “model based track-
ing” to perform mouse tracking on each collaborator’s
machine. The tracker object created to handle a mouse press
creates and performs a series of incremental commands as a
user moves the mouse. These commands are sent to col-
laborators and performed by each collaborator. The result is
that each collaborator sees the tracking feedback as it occurs.
The system also establishes a collaboration policy. A col-
laboration policy decides whether users are forced to take
turns when changing data or can make changes freely. The
invention handles the mechanics of collaboration which
removes the responsibility from an application developer.

Scripting

Designing a system to manage the sequence of command
objects also makes it possible to implement a systemwide
scripting facility. The sequence of command objects is
equivalent to a script of the local actions. The scripting
feature simply keeps track of command objects applied to
any document. The scripting facility also uses selection
objects in scripts. This feature provides customization of a
script by changing the selection to which the script applies.
Since command objects include a protocol for indicating
whether they can apply to a particular selection, the system
ensures that a user’s script changes are valid.

Hypermedia Linking

Persistent selections, also known as anchors, can be
connected by link objects. A link object contains references
to the two anchors that form its endpoints. To the system, the
link is bidirectional; both ends have equal capabilities.
Certain higher-level uses of links may impose a direction on
the link. The single link object supports two standard
features: navigation and data flow. A user can navigate from
one end of the link to the other. Normally, this will involve
opening the document containing the destination anchor and
highlighting the persistent selection. The exact behavior is
determined by the anchor object at the destination end. For
example, a link to an animation may play the animation. A
link to a database query may perform the query.

Links also facilitate data flow. The selected data at one
end of the link can be transferred to the other end to replace
the selection there. In most cases, the effect is the same as
if the user copied the selection at one end, used the link to
navigate to the other end, and pasted the data. The system
takes care of the details involved with navigating from one
end of a link to the other (e.g., locating the destination
document, opening it, scrolling the destination anchor into
view, etc.). Similarly, the system handles the details of
transferring data across the link. The latter is done using the
selection’s protocol for accessing and modifying the data to
which it refers.

Annotations

The invention supports a system-wide annotation facility.
This facility allows an author to distribute a document draft
for review. Reviewers can attach posted notes to the
document, and when done, return the document to the
author. The author can then examine the posted notes and
take action on each. (An author can also create posted notes
in the document.) A reviewer need not have the same
software as the author. Instead, the reviewer can use a
standard annotation application. This application reads the
data from the author’s draft, and creates an annotatable

10

15

20

25

30

35

40

45

50

55

60

65

8

presentation of the data. (Creating such a presentation is part
of the standard data encapsulator protocol.)

The reviewer can create selections in the document, and
link posted notes to the selection. The link between the
posted note and selection allows the system to position the
posted note “near” the selection to which it refers. The links
also make the annotation structure explicit, so that the
system can implement standard commands to manipulate
annotations. The contents of the posted note can be any data
type implemented in the system, not simply text or graphics.
The contents of a note is implemented using a data
encapsulator, and opening a note results in creating an
editable presentation on that data.

Data Representation

Data representation is concerned with answering the
question of what is the data that [am modeling? The subject
invention provides facilities that help to model data. There
are classes for modeling specific data types, including: text,
structured graphics, sound and video. In addition to these
specific classes, the invention provides a number of other
abstractions that help to model a problem: the collection
classes, the concurrency control and recovery framework,
and the C++ language itself. In the subject invention, the
class that encapsulates the data model for a particular data
type is a subclass of the encapsulator class.

The Encapsulator Class

A developer creates a container for a particular type of
data representation by creating a derived class of the encap-
sulator class. For each type of data in the system, (e.g.
graphic objects, styled text, spreadsheet cells) a different
derived class must exist which acts as the container for a
type’s data. Each class of encapsulator provides a type
specific protocol for accessing and modifying the data
contained therein. This protocol is typically used by presen-
tations for displaying the data and by commands for modi-
fying the data. In addition to type specific protocol, the
encapsulator class provides generic protocol that supports
the embedding of data encapsulators as “black-boxes” into
other alien types. This protocol must be implemented in the
derived class to support the creation of presentations, editors
and selections for the encapsulated data. A container need
only understand this generic protocol to support the embed-
ding of any alien data type.

Choosing A Representation For Data

The data type designer has both the C++ object model,
and a rich set of standard classes to choose from when
designing a representation for a particular type of data. The
classes provided by the invention should always be consid-
ered before designing unique classes to represent the data.
This minimizes any duplication of effort which may occur
by creating new classes which provide similar or identical
function to classes already existing in the system. The most
basic of these is the C++ object model. A designer can create
a class or classes which closely match the mental model of
the user to represent the classes the user deals with.

The invention’s foundation classes provide many stan-
dard ways to represent data. Collection classes provide a
number of ways for collecting together related objects in
memory, ranging from simple sets to dictionaries. Disk-
based collections, providing persistent, uncorrupted collec-
tions of objects, are also available. A data type requiring two
(2D) and three dimensional (3D) graphic modeling, such as
a graphical editor, is also supported. Numerous 2D and 3D

US 6,424,354 B1

9

modeling objects are provided along with transformation,
matrix classes and 3D cameras. Similarly, the invention
provides a sophisticated text data type that supports full
international text, aesthetic typography, and an extensible
style mechanism. The invention also provides support for
time based media such as sound and video. Sophisticated
time control mechanisms are available to provide synchro-
nization between various types of time based media.

Presentation Protocol

The encapsulator class provides a protocol for the creation
of various classes of presentations on the data contained
within the encapsulator. The presentations include a thumb-
nail presentation, a browse-only presentation, a selectable
presentation, and an editable presentation. There is also a
protocol for negotiating sizes for the presentations and
fitting the data into the chosen size. Subclasses of the
encapsulator class are responsible for overriding and imple-
menting this protocol to support the embedding of the data
in other encapsulators. The presentations currently sup-
ported include:

Thumbnail—This presentation is intended to give the user a
“peek” at what is contained in the encapsulator. It is
typically small in size and may scale-down and/or clip the
data to fit the size.

Browse-only—This presentation allows the user to view the
data in its normal size but the user is unable to select or
modify any of the data.

Selectable—This presentation adds the ability to select data
to the capabilities provided by the browse-only presenta-
tion. It is used in annotating to allow annotations to be tied
to selections in the data without allowing modification to
the data itself. The selectable presentation is typically
implemented as a subclass of the browse-only presenta-
tion.

Editable—This presentation adds the ability to modify data
to the capabilities provided by the selectable presentation.
This is the presentation that allows the user to create new
data and edit existing data. Currently, this presentation
provides its own window for editing. It is likely that in the
future support will be added for presentations which allow
editing in place. The editable presentation is typically
implemented as a subclass of the selectable presentation.

Change Notification

When the data contained in an encapsulator class is
changed, it is necessary to provide clients (e.g. a view on the
data) with notification of the change. Encapsulators rely on
a built-in class for standard notification support to allow the
encapsulator to notify clients of changes to the data repre-
sentation. A client can connect to an encapsulator for noti-
fication on specific changes or for all changes. When a
change occurs the encapsulator asks the model to propagate
notification about the change to all interested clients.

Data Presentation

This section addresses how the system presents data to a
user. Once the data has been represented to the system, it is
the role of the user interface to present the data in an
appropriate and meaningful way to a user. The user interface
establishes a dialogue between the user and the model data.
This dialogue permits a user to view or otherwise perceive
data and gives a user the opportunity to modify or manipu-
late data. This section focuses on data presentation.

The User Interface

Adeveloper creates a class to facilitate the presentation of
data to interact with a data encapsulator. By separating the

10

15

20

25

30

35

40

45

50

55

60

10

data model from the presentation, the invention facilitates
multiple presentations of the same data. Some applications,
like the Apple® Macintosh Finder, already support a limited
form of multiple presentations of the same data. Sometimes
it is useful to be able to display different views of the same
data at the same time. These different views might be
instances of the same class—as in a 3D CAD program which
shows four different view of the same data. For each kind of
presentation, a user was previously required to write a view
which can display the model and a set of trackers and
tracking commands which can select and modify the model.

Static Presentations

The simplest presentation type is the name of the data.
The name is a text string that indicates the data content or
type. Examples include “Chapter 47, “1990 Federal Income
Taxes”, “To Do”. Another simple presentation type, an icon,
is a small graphical representation of the data. It usually
indicates the data type. Examples are a book, a report, a
financial model, a sound or video recording, a drawing.
However, they may also display status, such as a printer that
is printing, or indicate content, such as a reduced view of a
drawing. Finally, the thumbnail, is a small view of the model
data. This view may show only a portion of the data in order
to fit the available space. Examples are a shrunken drawing,
a book’s table of contents, a shrunken letter, or the shrunken
first page of a long document. A browse-only presentation
allows a user to view the data in its normal size but the user
is unable to select or modify any of the data.

Selectable Presentations

Selectable presentations allow a user to view, explore, and
extract information from the data. These presentations pro-
vide context: what the data is, where the data is, when the
data was. It may help to present the data in a structured way,
such as a list, a grid, as an outline, or spatially. It is also
useful to display the relationships among the data elements,
the data’s relationship to its container or siblings, and any
other dependencies.

Selectable presentations may also display meta data. An
example is the current selection, which indicates the data
elements a user is currently manipulating. Another type of
meta data is a hypermedia link between data elements. The
view may also indicate other users who are collaborating on
the data.

Selectable presentations are usually very specific to the
type of the data. They are made up of windows, views, and
other user interface objects which may be customized to best
reflect the data type. Some examples are:

Sound recording—A control panel would facilitate an
audible presentation. Views would display the sound as a
musical score or as a series of waveforms. Views may
include a sample number or time indications.

Financial model.—The model could be viewed as the set of
formulas and other parameters. It could display values
from the model at a particular instance of time or with
specific input values as a spreadsheet or in various graphi-
cal forms.

Book.—The model could be viewed as a table of contents,
an index, a list of illustrations. It could be viewed as a
series of pages, a series of chapters, or a continuous text
flow.

Video recording—The model could be viewed as a series of
individual frames or as a continuous presentation. Views
may include track marks, frame number, and time indi-
cations.

US 6,424,354 B1

11

Container containing other objects—The objects could be
displayed alphabetically by name, by type or other
attribute, as a set of icons, as a set of thumbnails.

Editable Presentations

Editable presentations are similar to interactive presenta-
tions except that they also facilitate data modification. They
do this by allowing direct manipulation of the data with the
mouse or other pointer. They also allow the data to be
manipulated symbolically through menu items and other
controls.

Data Access

Presentations interact with data encapsulators in order to
determine the data and other information to present. Pre-
sentations query the model for the data that is required. The
presentation may present all or only part of the data that is
contained or can be derived from the data in the data
encapsulator.

Change Notification

Because there can be many presentations of a single
model active at once, the data can be changed from many
sources, including collaborators. Each presentation is
responsible for keeping itself up to date with respect to the
model data. This is accomplished by registering for notifi-
cation when all or a portion of a model changes. When a
change occurs to data in which the presentation is interested,
the presentation receives notification and updates its view
accordingly. Change notification can be generated in any of
the ways listed below. First, change notification can be
generated from the method in the data encapsulator which
actually changes the model data. Second, change notification
can be generated from the command which caused the
change. As mentioned earlier, there are benefits to these two
approaches. Generating the notification from within the data
encapsulator guarantees that clients will be notified when-
ever the data changes. Generating the notification from the
command allows “higher-level” notification, and reduces the
flurry of notifications produced by a complicated change.

Notification Framework Overview

The Notification framework provides a mechanism for
propagating change information between objects. The
framework allows objects to express interest in, and receive
notification about changes in objects on which they depend.
A standard interface is provided for classes that provide
notification to clients. Notifier classes provide notification
source objects with the means to manage lists of clients and
dispatch notifications to those clients. Notifier objects
require no special knowledge of the class of objects receiv-
ing notifications. Connection objects provide the dispatch of
notifications from the notifier to specific notification receiver
objects. These connection objects allow specialization of
how notifications are delivered to different classes of receiv-
ers. Finally, Notification objects transport descriptive infor-
mation about a change, and interests describe a specific
notification from a notification source object.

Notification Propagation Flow Chart

FIG. 18 is an object generating notification flowchart for
a notification source object. Processing commences at ter-
minal 1800 and immediately passes to function block 1810
where a notification receiver object creates a connection to
itself. Then, at function block 1820 the notification receiver

10

15

20

25

30

35

40

45

50

55

60

65

12

object adds appropriate interests for one or more notifica-
tions from one or more notification source objects. These
interests are defined by the notification source object(s).

The client object asks the connection object to connect to
the notification source(s) for notifications specified by the
interests in the connection in function block 1830. Then, in
function block 1840, for each interest in connection, the
connection is registered as interested in the notification with
the notifier in the interest. Next, at function block 1845, the
system enters a wait state until a change is detected. When
a system change occurs, control immediately passes to 1850
where a notification source object changes and calls notify
on its notifier with a notification describing the change.

For each connection registered with the notifier as inter-
ested in the notification, at function block 1860, the con-
nection is asked to dispatch the notification. In turn, at
function block 1870, the connection dispatches the notifi-
cation to the appropriate method of the notification receiver.
Finally, at function block 1880, the notification receiver
takes the appropriate action for the notification, and a test is
performed at decision block 1885 to determine if another
connection is registered with the notifier as interested in
notification. If there is another connection, then control
passes to 1850. If there is not another connection to service,
then control passes to function block 1845 to await the next
change.

Data Specification

Data specification addresses the selection issue of data
processing. If a user must manipulate data contained in a
representation, the data must be able to specify subsets of
that data. The user typically calls this specification a
“selection,” and the system provides a base class from which
all selection classes descend. The invention also provides
selection classes for all of the fundamental data types that
the system supports.

Model Selection

The object which contains the specification of a subset of
data in a representation is a model selection class. In the case
of a text representation, one possible selection specification
is a pair of character offsets. In a structured graphics model,
each shape must be assigned a unique id, and the selection
specification is a set of unique ids. Neither of the specifi-
cations point directly at the selection data and they can be
applied across multiple copies of the data.

Accessing Specified Data

A selection understands the representation protocol for
accessing and modifying data and knows how to find data in
a local address space. Command objects access a represen-
tation’s data through data selection, and therefore require no
knowledge of converting from specification to the real data
in the local model. It is the job of the selection object to
provide access to the real data from the address space
independent specification. In a text encapsulator, this pro-
cessing may require querying the encapsulator for the actual
characters contained in a range. In a base model such as a
graphical editor the selection will typically hold surrogates
for the real objects. The encapsulator must provide a lookup
facility for converting the surrogate to the real object.

Standard Editing Protocol

The model selection class provides a protocol for the
exchange of data between selections. By implementing the

US 6,424,354 B1

13

protocol for type negotiation, absorbing, embedding and
exporting data, derived classes provide support for most of
the standard editing commands. This means that the editing
commands (Cut, Copy, Paste, Push Data, etc.) provided by
the system will function for the represented data type and
will not require reimplementation for each application. The
model selection class also provides support directly for the
exchange of anchors and links but relies on the derived
class’s implementation of several key methods to support
the exchange of the representation’s data:

CopyData must be implemented by the derived class to
export a copy of the specified data. The implementation
creates and returns a new data encapsulator of the requested
type containing a copy of the specified data.

AdoptData must be implemented by the derived class to
support absorbing or embedding data into the specification’s
associated representation. If the data is to be absorbed it
must be of a type which can be incorporated directly into the
receiver’s representation. The absorbed data is added to the
representation as defined by the specification. It is common
for many data types to replace the currently specified data
with the newly absorbed data. Any replaced data is returned
in a data encapsulator to support Undo. If the data is to be
embedded, the encapsulator is incorporated as a black box
and added as a child of the representation.

ClearData must be implemented by the derived class to
delete the specified data from the associated representation.
An encapsulator of the representation’s native type contain-
ing the deleted data must be returned.

User Interface

The user interface for creating specifications is typically
the responsibility of a presentation on the data. A number of
mechanism are available depending on data type and pre-
sentation style. The most favored user interface for creating
a selection is direct manipulation. In a simple graphics
model, objects may be selected by clicking directly on the
object with the mouse or dragging a selection box across
several objects using a mouse tracker. In text, a selection
may be created by as the result of a find command. Another
common way that selections are created is as a result of a
menu command such as “find.” After the command is issued,
the document is scrolled to the appropriate place and the text
that was searched for is selected.

Finally, selections can come from a script (or program-
matically generated) and the result would be the same as if
auser created the selection directly. “Naming” selections for
scripts involve creating a language for describing the selec-
tion. For example, in text, a selection could be “the second
word of the fourth paragraph on page two.” The invention’s
architecture provides support for scripting.

Data Modification

Data Modifications addresses the question: what are the
commands that can operate on this selection? If a user is to
modify the data contained in a representation, the system
must be able to specify exactly the type of modification to
be made. For example, in a word processing program, a user
may want to change the style of a selected range of char-
acters. Or, in a structured graphics program, a user may
desire rotation of a graphic object. All user actions that
modify the data contained in a data encapsulator are repre-
sented by “command objects.”

The Model Command Object

The abstract base class that represents a command made
by the user is the model command object. Subclasses of the

10

15

20

25

30

35

40

45

50

55

60

65

14

model command object capture the semantics of user
actions, such as: can be done, undone, and redone. These
subclasses are independent of the user interface technique
used to create them. Unlike MacApp, as soon as the seman-
tics of a user action is known, device events are translated
into command objects by the system.

HandleDo, HandleUndo, and HandleRedo

Creating a new class of command involves overriding a
number of methods. The most important three methods to
override are: HandleDo, HandleUndo and HandleRedo. The
HandleDo method is responsible for changing the data
encapsulator appropriately based on the type of command
that it is and the selection the command is applied to. For
example, if the command involves a style change to a range
of characters in a word processor, the HandleDo method
would call a method (or set of methods) in the data encap-
sulator to specify a character range and style to change. A
more difficult responsibility of the HandleDo method is
saving all of the information necessary to “undo” this
command later. In the style change example, saving undo
information involves recording the old style of the character
range. The undo information for most commands is very
simple to save. However, some commands, like find and
change may involve recording a great deal of information to
undo the command at a later time. Finally, the HandleDo
method is responsible for issuing change notification
describing the changes it made to the data encapsulator.

The HandleUndo method is responsible for reverting a
document back to the state it was in before the command
was “done.” The steps that must be applied are analogous to
the steps that were done in the HandleDo method described
above. The HandleRedo method is responsible for “redoing”
the command after it had been done and undone. Users often
toggle between two states of a document comparing a result
of a command using the undo/redo combination. Typically,
the HandleRedo method is very similar to the HandleDo
method except that in the Redo method, the information that
was derived the last time can be reused when this command
is completed (the information doesn’t need to be recalcu-
lated since it is guaranteed to be the same).

User Interface

Command objects capture the semantics of a user action.
In fact, a command represents a “work request” that is most
often created by a user (using a variety of user interface
techniques) but could be created (and applied) in other ways
as well. The important concept is that command objects
represent the only means for modifying the data contained in
a data encapsulator. All changes to the data encapsulator
must be processed by a command object if the benefits of
infinite undo, save-less model, and other features of the
invention are to be realized.

The most favored user interface for issuing commands
involves some sort of direct manipulation. An object respon-
sible for translating device events into commands and “driv-
ing” the user feedback process is known as a tracker. The
invention provides a rich set of “tracking commands™ for
manipulating the built-in data types. For example, there are
tracking commands for rotating, scaling and moving all the
2D objects in Pink such as lines, curves, polygons, etc.

A common user interface for issuing commands is via
controls or the menu system. Menus are created and a set of
related commands are added to the menu. When the user
chooses an item in the menu, the appropriate command is
“cloned” and the Do method of the command is called. The

US 6,424,354 B1

15

programmer is never involved with device events at all.
Furthermore, because commands know what types of selec-
tions they can be applied to, menu items are automatically
dimmed when they are not appropriate.

Finally, commands can be issued from a script (or pro-
grammatically generated) and the result would be the same
as if a user issued the command directly. The Pink archi-
tecture provides support for scripting; however, at this time,
there is no user interface available for creating these scripts.

Built-in Commands

The invention provides a large number of built-in com-
mand objects for all of the built-in data types as well as
providing generic commands for Cut, Copy, Paste, Starting
HyperMedia Links, Completing Links, Navigating Links,
Pushing Data on Links, Pulling Data on Links, as well as
many user interface commands. One of the advantages of
using the frameworks is that these built-in command objects
can be used with any data encapsulators.

More Features

The previous sections of this document concentrated on
the foundational features of the invention. There are many
additional facilities in the invention that implement
advanced features. Specifically, these facilities include:
model-based tracking, filing, anchors, and collaboration.

Model Based Tracking

Tracking is the heart of a direct-manipulation user inter-
face. Tracking allows users to select ranges of text, drag
objects, resize objects, and sketch objects. The invention
extends tracking to function across multiple views and
multiple machines by actually modifying the model. The
tracker issues commands to the model, which posts change
notifications to all interested views.

Model based tracking is the best solution for tracking in
documents, but it does have the drawbacks that: (1) the
model’s views must be optimized to provide quick response
to change events and (2) the model must be capable of
expressing the intermediate track states.

Anchors

Persistent selections or “anchors” are very similar to
selections in that they are specifications of data in a repre-
sentation. The difference is that anchors must survive editing
changes since by definition anchors persist across changes to
the data. The implementation of graphics selections
described earlier in the document is persistent. The imple-
mentation of text selections, however, is not. If a user inserts
or deletes text before a selection, then the character offsets
must be adjusted. There are a couple of approaches for
implementing text anchors. First, the text representation
maintains a collection of markers that point within the text,
similar to the way styles are maintained. The anchors
include an unique id that refers to a marker. When the text
is changed, the appropriate markers are updated, but the
anchors remain the same. Another approach is to maintain an
editing history for the text. The anchor could contain a pair
of character positions, as well as a time stamp. Each time the
text was edited, the history would be updated to record the
change (e.g., 5 characters deleted from position X at time T).
When the anchor is used, the system would have to correct
its character positions based on editing changes that hap-
pened since the last time it was used. At convenient times,
the history can be condensed and the anchors permanently
updated.

10

15

20

25

30

35

40

45

50

55

60

65

16

The system provides a large number of features for “free”
through the anchor facility. All of the HyperMedia com-
mands (CreateLink, PushData, PullData, and Follow) all use
anchors in their implementation. The implementation of the
system wide annotation facility uses anchors in its imple-
mentation. The base data encapsulator provides services for
keeping track of anchors and links. However, the user is
responsible for making anchors visible to the user via
presentations. The application must also issue the proper
command object when a user selects an anchor. After a user
interface for anchors and links is nailed down, the document
framework provides additional support to simplify process-
ing.

Filing

Filing is the process of saving and restoring data to and
from permanent storage. All a user must do to make filing
work is to implement the streaming operators for a data
encapsulator. The invention’s default filing is “image”
based. When a user opens a document, the entire contents of
the document are read into memory. When a user closes a
document, the entire contents of the document are written
back to disk. This approach was selected because it is
simple, flexible, and easy to understand. To store data in a
different format, perhaps for compatibility with a preexisting
standard file format, two approaches are possible. First, an
encapsulator class can stream a reference to the actual data,
then use the reference to find the actual data, or a new
subclass can be defined to create and return a file subclass.

The advantage of the first approach is a data encapsulator
can be encapsulated in other documents. The advantage of
the second approach is the complete freedom afforded to
exactly match an existing file format for the complete
document.

Collaboration

Same-time network collaboration means that two or more
people edit the same document at the same time. The system
also establishes the collaboration policy; that is, whether
users are forced to take turns when changing the data or can
make changes freely. A developer does not have to worry
about the mechanics of collaboration or the collaboration
policy.

Supporting Collaborator Selection Styles

To assist in the reduction of confusion and enhance model
selection, the document architecture provides a collaborator
class which contains information about the collaborator’s
initials and preferred highlight bundle.

Supporting Multiple Selections

To support multiple selections a user must modify pre-
sentation views because each collaborator has a selection.
When the active collaborator’s selection changes the stan-
dard change notification is sent. When a passive collabora-
tor’s selection changes a different notification event is sent.
A view should register for both events. Since the action
taken to respond to either event is usually the same,
economy can be realized by registering the same handler
method for both events.

User Interface In Accordance With The Invention

This portion of the invention is primarily focused on
innovative aspects of the user interface building upon the
foundation of the operating system framework previously

US 6,424,354 B1

17

discussed. The first aspect of the user interface is a mecha-
nism allowing a user to manage interactions with various
objects or data referred to as controls.

Control

The object with which users interact to manipulate other
objects or data is called a control. Controls use a command
to determine the current state of the object or data. Follow-
ing appropriate interactions with the user, the control
updates the command’s parameters and causes it to be
executed. Example controls are menus, buttons, check boxes
and radio buttons.

Controls use a command to determine the current state of
the object or data. Following appropriate interactions with
the user, the control updates the command’s parameters and
causes it to be executed. For example, a checkbox sets a
command parameter to on or off and then executes the
command to change a data value.

Many controls display the current value of the data they
manipulate. For example, a check box displays a check only
when a Boolean data value is TRUE. As the data changes,
the control’s appearance is kept up to date using a notifica-
tion system described here. The process is similar to the
process used to enable/disable menu items.

When a control is created a command must be specified.
The control makes a copy of this command and stores it in
field fCommand. If the command supplies any data values,
a pointer to appropriate Get and Set methods of the com-
mand must also be specified. The control stores these
method pointers in fields fGetMethod and fSetMethod,
respectively. Then, the control connects for notifications that
indicate its data value may be out of date. Each command
provides a method called ConnectData for this purpose.

Each control contains a connection object called fData-
Connection indicating the object and method to receive the
notification. This connection object passed as an argument to
the command. The command object calls the connection
object’s Connect method to add each notifier and interest
that may affect its data value. When complete, the control
calls the connection object’s Connect method to establish
the connections as shown in FIG. 3. The control updates its
data value from its command. It does this by calling the Get
method of the command (fCommand->(*fGetMethod)()).
The control stores this value in an appropriate field (e.g. a
checkbox stores it in a Boolean field named fChecked) as
depicted in FIG. 5. Then, the control updates its appearance.
It performs this action by calling the view system’s invali-
date method, indicating which portion of the screen needs
updating.

Finally, the data changes and notification is sent. At some
point, a command is executed which changes the value of
the data being reflected by the control. This command could
be executed from a control, menu item, or through direct
manipulation. The control receives the notification as shown
in FIG. 4, and control is passed to await the next user
selection.

Control Panel

One collection of controls is called a control panel. The
controls in a control panel typically operate upon actual data
(this is the default, not a requirement). Their actions are
usually immediate and are independent from one another.
Control panels manage the progression of the input focus
among its controls as necessary. It is likely that control
panels will be shared across all user interfaces in the system.

10

15

20

25

30

35

40

45

50

55

60

65

18
Dialog Box

Another collection of controls is called a dialog box. The
controls in a dialog box typically operate upon prototypical
data (this is the default, not a requirement). Their actions are
usually collected together into a group and then performed
together when the user presses an Apply button. Dialog
boxes manage the progression of the input focus among its
controls as necessary.

A Control in Action

We would now like to present a play in three acts to
illustrate a control in action. FIG. 2 illustrates the various
controls. A play example will be used by way of analogy to
illustrate a control (in this case a checkbox), a command, a
selection, and a data encapsulator.

Checkbox 200 The role of the checkbox is to display a
Boolean value stored in the data encapsulator and to facili-
tate its change. The value is represented by the presence or
absence of a check.

Command 210 The role of the command is to obtain the
value from the data encapsulator and change it upon direc-
tion from the checkbox.

Selection 220 The role of the selection is to be an interface
between the command and the data.

Data 230 Data is employed as a target for actions.

Getting to Know You

Everyone gets to know each other a little better as shown
in FIG. 3. The command 310 tells the checkbox 300 which
notifications the data may send in which the control is
certain to be interested (how the command 310 knows is
none of anyone else’s business). The checkbox 300, in turn,
connects to the data 320 for the notifications.

Unknown to anyone else, the director told the checkbox
300 the best way to interact with the command 310.
Specifically, it was told about the command’s get value
method and a set value method. The checkbox will take
advantage of this a little bit later.

Reflecting the Data

Something happens to the data—it sends notifications as
depicted in FIG. 4. The checkbox 400 hears about those for
which it has expressed an interest. In FIG. 4, the notification
from the data expresses to bold the information which is
reflected by placing an X in the checkbox.

The checkbox 510 received notification from the data, and
the processing to display the checkbox 510 correctly is
depicted in FIG. 5. It does this by using the command’s 520
get value method it happens to know about. Before telling
the checkbox 510 what the correct value is, the command
520 goes through the selection to the data to make sure it
really knows the correct value. The checkbox 510 updates
itself as necessary.

Changing the Data

The user now enters the scene and gives the checkbox 600
a nudge as shown in FIG. 6. The checkbox 600 uses the
command’s 610 set value method to set the data’s 620 value
through the selection. The entire process is reviewed in FIG.
7.

A Control Panel in Action

A control panel is nothing more than a simple window that
contains a set of controls as shown in FIG. 8. These controls

US 6,424,354 B1

19

contain a command that operates upon the current selection.
The control is enabled if the command is active. Following
appropriate interaction with the user, the control executes
the command, causing the data to change.

A Sound Control Panel

As an example control panel, consider the sound control-
ler illustrated in FIG. 8. This control panel contains four
buttons 800, 802, 804 and 806 for controlling sound play-
back. Each button performs as described in the “A Control
in Action” section above.

Play 800 This control contains a TPlay command. This
command is active only under certain conditions, making
the control enabled only under those conditions. First, a
sound must be selected in the appropriate data encapsu-
lator. Next, it must not be playing already. Finally, the
current sound position must be somewhere before the end.
When pressed, the Play button executes the TPlay
command, causing the selected sound to come out of the
speaker.

Step 802 This control contains a TPlay command, too. How
is this, you ask? Well, since I am making this up, we can
pretend that the TPlay command takes a parameter indi-
cating the duration it is to play. For the purposes of the
step button, it is set to a single sample. The Step button is
enabled only under the same conditions as described for
the Play button. When pressed, the Step button executes
the TPlay command, causing the selected sound to come
out of the speaker.

Stop 804 This control contains a TStop command. The Stop
button is enabled only if the selected sound is currently
playing. When pressed, the Stop button executes the
TStop command, causing the selected sound to stop
playing and to set the current sound position to the
beginning.

Pause 806 This control contains a TStop command, too.
Unlike the Stop button, however, this TStop command is
set to not rewind the sound to the beginning. Pressing the
Play or Step buttons continue from where the playback
left off.

A Dialog Box in Action

A dialog box is similar to a control panel, in that it is a
simple window containing a set of controls. However,
instead of the controls operating upon the selected data, they
operate upon parameters of another command. Only until
the Apply button is pressed is the real data modified.

A Color Editor

As an example dialog box, consider the color editor set
forth in FIG. 9. It contains three sliders, one for the red 900,
blue 910, and green 920 components of the color. After
adjusting the sliders to the desired values, the user presses
Apply 930 to change the color of the selection.

Red 900, Green 910, Blue 920 To the user, these sliders are
identical, except for their label. As with all controls, each
slider contains a command that is executed following user
interaction. Unlike many controls, especially those in a
control panel that immediately affect the selected data, the
command contained by these sliders displays and modi-
fies the value of a parameter of another command. In this
case, it is one of the red, green, or blue parameters of the
command contained within the Apply button.

Apply 930 The Apply button contains a TSetColor command
that changes the color of the selection when executed. It
has three parameters, one for each of the red, green, and

10

15

20

25

30

35

40

45

50

55

60

65

20

blue components of the color. These parameters are
displayed and set by the sliders in response to user
interaction. When the Apply button is pressed, this com-
mand is executed and the new color is set. The internal
actions accompanying the color editor example, are
depicted in FIG. 10. The Red 1000, Green 1010, and Blue

1020 slides contain a TFloatControlCommand. These

commands contain a single floating point value which the

control displays. As the user adjusts the slider, it updates
this value and executes the command.

The selection for the TFloatControlCommand specifies
the TSetColor command within the Apply 1040 button. One
of its parameters is set when each TFloatControlCommand
is executed. Finally, when the user presses the Apply 1040
button, the TSetColor command is executed and the selected
color 1050 is changed.

Classes

The following section describes the classes of the controls
and dialog areas and their primary methods.

Control

A control is the user interface to one or more commands.
The control displays information about a command, such as
its name and whether it is active in the current context.
Following appropriate user interaction, the control causes a
command to be executed. When appropriate, the control
obtains the current value of data the command modifies and
displays it to the user. It may set a command parameter that
indicates a new value of this data before executing the
command.

Methods to create a selection on the control, with addi-
tional specification of a command within the control as an
option. Lookup command is a pure virtual function in order
to give subclasses flexibility in how many commands they
contain and how they are stored.

Methods that are called when the presentation is opened
and closed. When the presentation is opened the control
connects for notifications that may affect its state. When the
presentation is closed these connections are broken.

Methods that are called when the presentation is activated
and deactivated. When the presentation is activated, some
controls connect for notifications that are valid only when
active. Deactivating the presentation breaks these connec-
tions.

Methods that control uses to connect to and disconnect
from notifiers that affect whether the control is enabled.
ConnectEnabledNotifiers connects to the notifiers specified
by commands when the control is opened. Disconnect-
EnabledNotifiers breaks these connections when the control
is closed.

Methods that receive notifications indicating that some-
thing happened affecting the control’s presentation of a data
value. This method does nothing by default.

Methods for notification. Create interest creates an inter-
est specialized by the control instance. Notify is overloaded
to send a notification and swallow the interest.

The Control Interest

A single notifier is shared among many subclasses of
controls. In order to express interest in a particular control
instance, the interest must be specialized. A control interest
is an interest that contains a pointer to a specific control. This
class is an internal class that is usually used as is, without
subclassing.

US 6,424,354 B1

21

The Control Notification

A single notifier is shared among many subclasses of
controls. In order to distinguish which control sent the
notification, the notification must be specialized. A control
notification is a notification containing a pointer to the
control that sent the notification. This class is usually used
as-is, without subclassing.

The Control Presenter

A control presenter wraps up a control so it can be
contained by a presentation data encapsulator. It implements
standard behaviors that all presenter objects implement. This
class is usually used as-is, without subclassing.

Methods that are called when the presentation is opened
and closed. They do nothing by default. A subclass must
implement these methods for the object it wraps. For
controls, these methods are delegated directly to the control.
When the presentation is opened, the control connects for
notifications that may affect its state. When closed, the
connections are broken.

Methods that are called when the presentation is activated
and deactivated. They do nothing by default. A subclass
must implement these methods for the object it wraps. For
controls, these methods are delegated directly to the control.
When the presentation is activated, some controls connect
for notifications that are valid only when active. When
deactivated, the connections are broken.

TControlSelection

A control selection specifies a single control, and option-
ally a command within it, that is wrapped in a control
presenter and stored in a presentation.

Methods to access a command within the control. These
may return an invalid value if no command was specified.

TUniControl

A unicontrol is the abstract base class for controls that
present a single command and causes it to be executed
following appropriate user interaction. Examples of this type
of control are buttons and checkboxes.

Methods to specify the command that is presented and
executed by the control. Notification is sent to registered
connections when the command is changed.

Methods the control uses to connect to and disconnect
from notifiers that affect whether the control is enabled.
ConnectEnabledNotifiers connects to the notifiers specified
by commands when the control is opened. Disconnect-
EnabledNotifiers breaks these connections when the control
is closed.

Method that receives notifications indicating that some-
thing happened affecting whether the control should be
enabled. UpdateEnabled checks whether the command is
active and calls Enable and Disable as appropriate.

Methods that control uses to connect to and disconnect
from notifiers that affect the control’s presentation of a data
value. ConnectDataNotifiers connects to the notifiers speci-
fied by commands when the control is opened. Disconnect-
DataNotifiers breaks these connections when the control is
closed. Controls that do not display a data value (e.g. button)
may override connect data notifiers to do nothing.

TButton

Abutton is a unicontrol that executes its command when
pressed. This class is normally used without subclassing;
just set the command and away you go.

10

15

20

25

30

35

40

45

50

55

60

65

22

Methods that are called when the presentation is activated
and deactivated. When the presentation is activated, some
controls connect for notifications that are valid only when
active. When deactivated, these connections are broken.
When the presentation is activated, buttons register for key
equivalent notification. This connection is broken when the
presentation is deactivated.

Methods that control users connecting to and disconnect-
ing from notifiers that affect the control’s presentation of a
data value. Connect data notifiers connects to the notifiers
specified by commands when the control is opened. Dis-
connect data notifiers breaks these connections when the
control is closed. Controls that do not display a data value
(e.g. button) may override connect data notifiers to do
nothing.

The Checkbox

A checkbox is the user interface to a command that sets
a Boolean value. Following appropriate user interaction, the
checkbox calls a command method to change the value and
executes the command. This class is normally used without
subclassing; just set the command, its value getter and setter,
and away you go.

The Slider

Aslider is a unicontrol that displays a single floating point
value and allows it to be changed following appropriate user
interaction. Examples of sliders were presented in FIGS. 9
and 10.

TMultiControl

A multicontrol is the abstract base class for controls that
present several commands and causes them to be executed
following appropriate user interaction. Examples of this type
of control are radio buttons and menus.

TRadioButton

A radio button is a multicontrol that displays two or more
Boolean values and allows them to be changed following
appropriate user interaction. The radio button enforces the
constraint that exactly one button is selected as shown in
FIG. 11. If Paper is selected, then the circle at 1100 is
blackened. If Plastic is selected, then the circle at 1110 is
selected. Both cannot be selected.

TCommand

A command encapsulates a request to an object or set of
objects to perform a particular action. Commands are usu-
ally executed in response to an end-user action, such as
pressing a button, selecting a menu item, or by direct
manipulation. Commands are able to provide various pieces
of information about themselves (e.g. name, graphic, key
equivalent, whether they are active) that may be used by a
control to determine its appearance. Subclasses must imple-
ment a method to examine the current selection, active user
interface element, or other parameters in order to decide
whether the command is active. Subclasses must override
get active interest list to return notification interests that may
affect whether this command is active.

FIG. 12 is a flowchart depicting the detailed logic in
accordance with the subject invention. The flowchart logic
commences at 1200 and control passes directly to function
block 1210 where a command objects are added to a menu.
The steps carried out by this function block are: 1) create
menu item from a command, where a menu item is another

US 6,424,354 B1

23

object data structure containing a command, 2) add a menu
item to a list of menu items, and 3) mark the menu’s
appearance is invalid in data structure fValid. Then, later
when the menu is pulled down, the appearance is recom-
puted based on the system states

Each menu is a view. Views contain size and location
information. Each menu contains a list of menu items. Each
menu item contains a command and variables that reflect its
current appearance. This includes whether the menu item is
enabled (Boolean fEnabled), its name (TTextLabel fName),
its graphic (TGraphicLabel fGraphic), and whether its
appearance is currently valid (Boolean fValid). Each of these
variables are determined by asking the command when the
menu item was created.

Next, a query is sent to the command object for notifi-
cation interests as depicted in function block 1220. Each
command has four methods to connect for different types of
notifications: i) notifications that affect it’s name, ii) notifi-
cations that affect a graphic, iii) notifications that affect
whether the command is active, and iv) notifications that
affect any data. In this case, the menu item just created for
the command connects for active notification. It does this by
passing a connection object to ConnectActive. The com-
mand is then responsible for connecting the connection
object to notifiers affecting whether the command is active.
Then control is passed to function block 1230 to query a
command for the enabled state when it is necessary to draw
a menu item. To draw a menu item, menu item calls method
“IsActive” for its command. The command looks at what-
ever system state it wants to and returns whether it is active
as depicted in decision block 1240 in the current context
(e.g. some commands only are active when a particular type
of window is in front, or when a particular type of object is
selected). Then, a menu item updates its internal state (a
Boolean value in each menu item) and appearance as shown
in function block 1250 and 1260 to match the value returned
by the command.

Whenever a user action invokes any command as shown
in input block 1270, a user causes a command to be
executed. This could be from a menu item, control, or
through direct manipulation of an object. This action causes
a document state to be modified as shown in function block
1280, and a document sends notification as shown in func-
tion block 1290. When a document sends notification, the
following steps are executed: 1) any menu item (or other
control) connected for the notification sent by the document
receives a notification message. This message includes the
name of the change as well as a pointer to the object that sent
the notification) a menu item then updates its state, and
control is passed back to function block 1230 for further
processing.

FIG. 13 is an illustration of a display in accordance with
the subject invention. The menu item is Edit 1300 and has
a number of sub-menu items associated with it. Undo 1310
is an active menu item and can thus be selected to carry out
the associated functions. Redo1320 is inactive and is thus
presented in a greyed out fashion and cannot be selected at
this time. A checkbox is also shown at 1360 as part of the
debugging control panel 1350.

Presentation Templates and Persistence

Data presentations are created from templates and saved
across sessions in a user interface object. The container for
all data in the system is a model. A model contains and
facilitates the manipulation of data. Data exchange is facili-
tated through cut, copy, and paste operations. Data reference

10

15

20

25

30

35

40

45

50

55

60

65

24

is provided by selections, anchors, and links. Data models
may be embedded into any other. Users interact with models
through presentations (e.g. icon, thumbnail, frame, window,
dialog, control panel) that are provided by an associated user
interface. Data models delegate all presentation creation and
access methods to another object, called the user interface.

A user interface is a model containing a set of presenta-
tions (e.g. icon, thumbnail, frame, window) for a particular
model. When required, presentations are selected from those
already created based on the type of presentation desired, the
user’s name, locale, and other criteria. If the desired pre-
sentation is not found, a new presentation is created and
added to the user interface by copying one from an associ-
ated archive. Presentations may be deleted when persistent
presentation information (e.g. window size and location,
scroll positions) is no longer required.

A presentation contains a set of presentable objects that
wrap user interface elements (e.g. menus, windows, tools)
used to view and manipulate data. Presentations provide a
reference to the data these objects present. Presentations
install or activate presentable objects when the presentation
is activated. Similarly, these objects are removed or deacti-
vated when the presentation is deactivated. Presentations are
identified according to their purpose (e.g. icon, thumbnail,
frame, window) and retain yet-to-be-determined criteria
(e.g. user identity) for later selection.

A presentation is made up of a collection of presentable
objects (e.g. user interface elements) that are displayed on
the screen or are otherwise available when the presentation
iS open or active.

Presentations are created from template presentations
contained in an archive. These are made up of objects such
as user interface elements, which are, in turn, made up of
smaller objects such as graphics and text strings.

An archive is a model containing a set of template objects,
including user interface elements (e.g. windows, menus,
controls, tools) and presentations (e.g. icon, thumbnail,
frame, window).

Dialog Boxes & Control Panels

By using command objects in different ways, we can
control two independent behaviors of a group of controls.
The first is whether they affect the data immediately, or
whether the user must press OK before the settings take
effect. The second is whether they are independent from one
another, or whether the settings represent an atomic opera-
tion.

Controls contain commands. As the user manipulates the
control, the control sets parameters in the commands and
cause it to be executed. Commands operate on model data
specified by a selection.

Immediate

Controls that affect the data immediately contain a com-
mand that contains a selection that specifies real model data.
As the user manipulates the control, the command causes
this data to change. As the data changes, it sends change
notification so that views and controls depending on the state
of the data can accurately reflect the current state.

Delayed

Controls that are designed to not change the real data must
operate on prototypical data, instead. The real model data is
not changed until the user performs another action, such as
pressing the OK button. This is accomplished in two ways:

US 6,424,354 B1

25

The control contains a command that contains a selection
that specifies the control itself. As the user manipulates the
control, the command causes the control’s value to change,
but no other model data. When the user presses OK, a
command in the OK button changes the real model data to
match the values in each control the user may have manipu-
lated.

The control contains a command that contains a selection
that specifies a parameter of the command contained by the
OK button. As the user manipulates the control, the com-
mand causes the OK button’s command to change. When the
user presses OK button, the OK button’s command changes
the real model data to match the values contained in itself.

Independent

Controls that act independently from one another require
represent actions that can be individually undone after the.
control panel or dialog session is complete. This is the
normal behavior of commands once they are executed by
controls.

Atomic

Other sets of controls are designed to work together and
should be undone and redone as an atomic operation. This is
accomplished by putting a mark on the undo stack when the
dialog box or control is started. When finished, either by
dismissing the control panel or when the user presses an OK
button (as in II B above), all of the commands executed since
the mark was placed on the undo stack are collected together
into a single command group. This group can then be undone
or redone as a single group.

Cancel

Control panels containing a CANCEL button (usually
accompanied by an OK button, as in II B above) us a
technique similar to that described III B above. A mark is put
on the undo stack when the dialog box or control panel is
started. If the user presses the CANCEL button, all com-
mands placed on the undo stack since the mark are undone.
This technique works regardless of whether the controls
affect the data immediately or not.

Atomic Command Execution in Dialog Boxes

The object with which users interact to manipulate other
objects or data is called a control. Example controls are
menus, buttons, check boxes, and radio buttons. Each con-
trol contains a command, which implements an end35 user
action. Commands operate on data that is specified by a
selection object. As the user manipulates the control it sets
parameters in the command and causes it to be executed,
thus changing the data value.

Controls that act independently from one another require
represent actions that can be individually undone after the
control panel or dialog session is complete. This is the
normal behavior of commands once they are executed by
controls. Other sets of controls are designed to work together
and should be undone and redone as an atomic operation.
This is the subject of this patent.

The detailed logic of the atomic execution is set forth in
the flowchart presented in FIG. 14. Processing commences
at terminal 1400 where control is immediately passed to
function block 1410 where a dialog box is activated. When
the dialog box is activated, a mark is placed on the undo
stack. The undo stack is a list of all commands the user has
executed. When undo is pressed, the command on the top of

10

15

20

25

30

35

40

45

50

55

60

65

26

the stack is undone. If not immediately redone, it is thrown
away. Then, at function block 1410, a user manipulation of
a control is detected. The manipulation of a control changes
the command’s data value, as appropriate as set forth in
function block 1430, and executes the control. For example,
a checkbox toggles the command’s fChecked field between
0 and 1. Finally, the command is recorded on the undo stack
so it can be subsequently undone as shown in function block
1440.

As a user subsequently manipulates each control in the
dialog box, as detected in decision block 1450, then control
passes to function block 1430. However, if a user presses
OK as detected in decision block 1460, then control passes
to function block 1420. Finally, when each control in the
dialog box is set to the user’s satisfaction, the user presses
the OK button. All of the commands executed since the mark
was placed on the undo stack in function block 1440 are
collected together into a single command group and placed
back onto the undo stack as depicted in function block 1470.
A command group is a command that collects many com-
mands together. When executed, undone, or redone, the
command group executes, undoes, or redoes each command
in sequence. The command group is then placed back onto
the undo stack where it can be undone or redone as a single
atomic operation.

Delayed Command Execution in Dialog Boxes

The object with which users interact to manipulate other
objects or data is called a control. Example controls are
menus, buttons, check boxes, and radio buttons. Each con-
trol contains a command, which implements an end-user
action. Commands operate on data that is specified by a
selection object. As the user manipulates the control it sets
parameters in the command and causes it to be executed,
thus changing the data value. Delaying changing of data
until the user performs another action is one aspect of the
subject invention. For example, controls in a dialog box may
not want to change any data values until the user presses the
OK button.

When a control is created a command must be specified.
The control makes a copy of this command and stores it in
field fCommand. If the command supplies any data values,
a pointer to appropriate Get and Set methods of the com-
mand must also be specified. The control stores these
method pointers in fields fGetMethod and fSetMethod,
respectively. The data that is modified by a command is
specified by a selection object. Normally, this selection
object specifies real model data. Instead, a selection object
that specifies the data value within the command of the OK
button.

When a user manipulates the control, the control’s com-
mand is executed and a data value within the command of
the OK button is changed. As the user manipulates each
control in the dialog box, the control’s command is executed
and a data value within the command of the OK button is
changed. Thus, when a user presses the OK button, the
command in the OK button updates the real model data to
match the data values contained within itself as manipulated
by the control’s commands. This processing is repeated until
control processing is completed.

Labels

Labels are graphical objects that contain a graphic or text
string. They are used to identify windows, menus, buttons,
and other controls. Labels are able to alter their appearance
according to the state of their container. They are drawn on

US 6,424,354 B1

27

a medium-gray background and appear naturally only when
no special state must be indicated. Labels modify their
appearance when inactive, disabled, or selected.

Inactive

Window titles are set to be inactive when the window is
not front-most. Similarly, control labels are set to be inactive
when the control is not in the front-most window or other
container. Graphic labels are blended with 55% white when
inactive, in order to appear dimmed. For text labels, the
inactive paint is derived from the natural paint by manipu-
lating the saturation component of the HSV color model.
The saturation is multiplied by 0.45 when inactive.

Disabled

Control labels are dimmed when the control does not
apply in a particular context. Graphic labels are blended with
46% white when inactive, in order to appear dimmed. For
text labels, the disabled paint is derived from the natural
paint by manipulating the saturation component of the HSV
color model. The saturation is multiplied by 0.54 when
disabled.

Selected

Control labels are highlighted as the control is being
manipulated. Graphics and text are drawn in their natural
state, but on a white background, when highlighted.

Smart Control Labels

Controls use a command to determine the current state of
the object or data. Following appropriate interactions with
the user, the control updates the command’s parameters and
causes it to be executed. For example, a checkbox sets a
command parameter to on or off and then executes the
command to change a data value. Controls display a label to
indicate its function. This label is a graphical object con-
taining a graphic or a text string. As the control changes
state, the label automatically adjusts its appearance, without
requiring the developer to write additional code. These states
include active/inactive, enabled/disabled, and selected/
unselected.

FIG. 15 sets forth the detailed logic associated with smart
label processing which commences at the start terminal 1500
where control is immediately passed to 1510 for smart label
initialization. When the control is created, its label is ini-
tialized with a text string or graphic provided by its asso-
ciated command. Each command provides methods called
GetGraphic and GetName for this purpose. The control tells
the label whether it is currently active or inactive by calling
method SetActive. Similarly, the control calls method Set-
Enabled to tell the label whether it is enabled, and SetSe-
lected to tell the label whether it is currently being selected
by a user.

The next step in smart label processing occurs at function
block 1520 when the label is drawn. When the control is
activated, it calls the Draw method of its label, causing the
label to appear on the screen. If inactive, the label is drawn
more dimly than normal. This is done by manipulating the
saturation components of the HSV color model. The satu-
ration is multiplied by 0.45 when inactive. If disabled, the
label is drawn more dimly than normal. This is done by
manipulating the saturation components of the HSV color
model. The saturation is multiplied by 0.54 when the label
is disabled. If selected, the label on a highlighted back-
ground. Labels are normally drawn on a medium-gray

15

20

25

30

35

40

45

50

55

60

65

28

background. When highlighted, labels are drawn on a white
background. Otherwise, the label is drawn normally.

The next processing occurs when a label is activated/
deactivated as shown in function block 1530. When the
control is activated or deactivated, it tells the label by calling
the SetActive method. The control then indicates its appear-
ance needs updating by calling Invalidate with an argument
indicating the portion of the screen that needs to be redrawn.
Then, at function block 1540, processing occurs when a
control is enabled/disabled. When the control is enabled or
disabled, it tells the label by calling the SetEnabled method.
The control then indicates its appearance needs updating by
calling Invalidate with an argument indicating the portion of
the screen that needs to be redrawn.

A test is then performed at decision block 1550 to
determine if a control is selected or unselected. When the
control is selected or unselected, it tells the label by calling
the SetSelected method. The control then indicates its
appearance needs updating by calling Invalidate with an
argument indicating the portion of the screen that needs to
be redrawn, and control is passed to function block 1520 for
further processing.

Smart Window Labels

A title is displayed in a window in order to indicate its
purpose. For example, the title for a window to edit a
document is usually the name of the document. A label
object is used to keep track of the title. This label is a
graphical object containing a graphic or a text string. As the
window changes state, the label automatically adjusts its
appearance, without requiring the developer to write addi-
tional code. Windows can be either active or inactive. Smart
Window label processing is flowcharted in FIG. 16 and the
detailed logic is explained with reference thereto.

Processing commences in FIG. 16 at terminal 1600 where
control is immediately passed to function block 1610 for the
title to be initialized. A window title is specified by a
developer when a window is created. This title is stored in
a TLabel object called fTitle. The control tells the title
whether it is currently active or inactive by calling method
SetActive. Then, the at function block 1620. When a win-
dow is drawn, it calls the Draw method of its fTitle object,
causing the title to appear on the screen. If inactive, the title
is drawn dimmer than normal. This is done by manipulating
the saturation components of the HSV color model. The
saturation is multiplied by 0.45 when inactive. Otherwise,
the title is drawn normally.

The next step is processed at function block 1630 when
the title is activated/deactivated. When a window is acti-
vated or deactivated, it tells its fTitle object by calling the
SetActive method. The window then indicates its appear-
ance needs updating by calling Invalidate with an argument
indicating the portion of the screen that needs to be redrawn.
Then, control is passed back to function block 1620 for
redrawing the title to reflect its new state.

Decorations

Many of the visual aspects of user interface elements are
common among many elements. Examples are shadows,
borders, and labels. The individual visual features are
referred to as decorations. Decorations can be combined
with other graphics to form the visual appearance of specific
user interface elements, such as windows and controls. The
subject invention supports many different types of decora-
tions.

Backgrounds

A decoration that is drawn behind another object is called
a background. One type of background is drawn so as to

US 6,424,354 B1

29

appear flush with the surrounding drawing surface. It may be
drawn with or without a frame. Another type of background
is drawn with highlighting and shadow so it appears to be
raised above the surrounding drawing surface. The final type
of background is drawn with highlighting and shadow so it
appears to be recessed beneath the surrounding drawing
surface.

An example use of these backgrounds is a button. Nor-
mally the text or graphic that describes the button is drawn
on a raised background. When pressed by the user, the text
or graphic is redrawn on a recessed background. If the
button is inactive, such as when another window is active,
the text or graphic of the button could be drawn dimly on a
flush background.

Borders

A decoration that surrounds another object or area is
called a border. Example borders are frames and shadows. A
frame is a border that surrounds another graphic, much like
a frame encloses a painting in the real world. Like
backgrounds, frames can be drawn to appear recessed below,
flush with, or raised above a surrounding drawing surface. A
shadow is a special type of border that adds a shadow around
an object to make it appear as if it floats above the sur-
rounding surface.

Decoration Colors

Many of the visual aspects of user interface elements are
common among many elements. Examples are shadows,
borders, and labels. Each of these individual visual features
are referred to as a decoration. Decorations can be combined
with other graphics to form the visual appearance of specific
user interface elements, such as windows and controls.
Some decorations use highlighting and shadows to appear as
if they are above or below the surrounding drawing surface.
Decorations are able to derive automatically these highlight-
ing and shadow paints.

Fill Paint

The fill paint represents the decoration’s primary color.
All other paints are derived from the fill paint. The fill paint
is stored by the directoration in a TColor field called
fFillPaint. The fill paint is normally specified by the devel-
oper when the decoration is created. However, if no color is
specified, a medium gray is selected.

Frame Paint

The frame paint is used to draw a line around the
decoration to provide visual contrast. The frame paint is
stored by the decoration in a TColor field called fFrame-
Paint. The frame paint may be specified by the developer
when the decoration is created. However, if no frame paint
is specified, it is computed automatically from the fill paint.
This is accomplished by manipulating the saturation and
value components of the HSV color model. The saturation is
multiplied by four, with a maximum value of 1. The value
is divided by four.

Highlight Paint

The highlight paint is used to draw lines where light
would hit the object if it were an actual three-dimensional
object. The highlight paint is stored by the decoration in a
TColor field called fHighlightPaint. The highlight paint may
be specified by the developer when the decoration is created.
However, if no highlight paint is specified, it is computed

10

15

20

25

30

35

40

50

55

60

65

30

automatically from the fill paint. This is accomplished by
manipulating the saturation and value components of the
HSV color model. The saturation is multiplied by 0.8. The
value is multiplied by 1.25, with a maximum value of 1.

Shadow Paint

The shadow paint can be used to draw lines where the
object would be shaded if it were an actual three-
dimensional object. The shadow paint is stored by the
decoration in a TColor field called fShadowPaint. The
shadow paint may be specified by the developer when the
decoration is created. However, if no shadow paint is
specified, it is computed automatically from the fill paint.
This is accomplished by manipulating the saturation and
value components of the HSV color model. The saturation is
multiplied by 2 with a maximum value of 1. The value is
divided by 2.

Separating Input Syntax From Semantics

A graphical user interface is manipulated by moving a
mouse, clicking on objects to select them, dragging objects
to move or copy then, and double-clicking to open them.
These operations are called direct manipulations, or inter-
actions. The sequence of events corresponding to a user
pressing, moving, and releasing a mouse is called an input
syntax. Certain sequences of events are used to indicate
particular actions, called semantic operations.

The separation of the code that understands the input
syntax from the code that implements semantic operations is
the subject of this patent. This processing is embodied in
objects called Interacts and Intractable, respectively. FIG. 17
illustrates how these objects are created and how the objects
communicate with each other during a typical interaction
with an object that can be moved and selected.

Processing commences at terminal 1700 where control is
passed immediately to function block 1710 to determine if
the mouse button has been pressed. An event is sent to the
object responsible for the portion of the screen at the
location where the mouse button was pressed. This object is
called a View. Then, at function block 1720 the Interactor is
created to parse the input syntax. This is done by calling the
Createlnteractor method of the view. When the Interactor is
created, pointers to objects that implement possible user
actions are passed as parameters.

For the purposes of this discussion, assume the user
pressed the mouse button down on an object that can be
selected and moved. In this case, an object that implements
selection and an object that implements movement for the
target object are passed as parameters to the Interactor. The
initial View could implement both of these behaviors, or
they could be implemented by one or two separate objects.
The object or objects are referred to collectively as the
Interactable.

The Interactor is started at function block 1730. This
processing returns the Interactor to the View and com-
mences processing of the Interactor. This is accomplished by
calling the Interactor’s Start method and passing the initial
mouse event as a parameter. The Start method saves the
initial mouse event in field flnitialEvent. Since only one
mouse event has been processed thus far, the only action
possible is selecting. The Interactor enters select mode by
setting variable fInteractionType to constant kSelect. It asks
the Interactable to begin the selection operation by calling its
SelectBegin method.

Then, the Interactor waits for a short time to pass as
shown in function block 1740. A new mouse event is sent to

US 6,424,354 B1

31

the Interactor when the time is up which indicates the current
state of the mouse. Then, if the system detects that the mouse
is still down at decision block 1750, control is passed to
function block 1740. Otherwise, control is passed to termi-
nal 1760. If the mouse button is still down, the interactor
makes sure it is still in the correct state and asks the
Interactable to implement the correct operation. The Inter-
actor is Selecting if fInteractionType is kSelecting. It is
Moving if the fInteractionType is kMoving.

If selecting, the Interactor compares the current mouse
location with the initial mouse location. The current mouse
location is obtained by calling the GetCurrentlocation
method. The initial mouse location is obtained by calling the
GetlnitialLocation method. If the two are the same or differ
by only a small amount, the user is still selecting the object.
The Interactor then asks the Interactable to continue the
selection operation by calling its SelectRepeat method.
However, if the two points differ beyond a predetermined
threshold, the user has begun moving the object. In this case,
the Interactor asks the Interactable to terminate the selection
operation by calling its SelectEnd method. It then asks the
Interactable to begin the move operation by callings its
MoveBegin method. In each case, the current mouse loca-
tion is passed as an argument. If Moving, the Interactor asks
the Interactable to continue the move operation by calling its
MoveRepeat method. It passes the current mouse location as
an argument.

When the user releases the mouse button, it signals the
end of the current operation. If Selecting, the Interactor asks
the Interactable to terminate the selection operation by
calling its SelectEnd method. If moving, the Interactors asks
the Interactable to terminate the move operation by calling
its MoveEnd method.

Localized Presentations

Localization is the process of updating an application to
conform to unique requirements of a specific locale. It may
involve language translation, graphic substitution, and inter-
face element reorientation. For example, the text used in
labels, titles, and messages depends upon the selected lan-
guage. Its direction and orientation may affect the placement
and orientation of a menu, menubar, title, scrollbar, or
toolbar. Similarly, the selection of icons and other graphical
symbols may be culturally dependent. Unfortunately, having
many localized versions of user interface elements in
memory is very expensive. Instead, localized versions of
user interface elements are kept on disk until required in
memory.

Further, it is very error-prone and expensive to keep track
of all of the user interface elements and decide which
version to use. Instead, when a user interface eclement is
required, the appropriate one is selected automatically by the
system, according to the current language and other cultural
parameters, and read into memory.

Once localized, user interface elements are stored in a
disk dictionary. A disk dictionary is an object that, when
given a key, returns a value after reading it in from disk. This
disk dictionary is managed by an object called an archive.
An archive is responsible for putting together the individual
user interface elements that make up a particular presenta-
tion. The process of selecting the proper user interface
element is presented in FIG. 19.

Processing commences at terminal 1900 and immediately
passes to function block 1910 when a user requests a
presentation. A TOpenPresentation Command is sent to the
data model, indicating that the user wants to view or edit this

10

15

20

25

30

35

40

50

55

60

65

32

data. A command is sent to the data model to indicate that
the user wants to view or edit the data. This command is
called a TOpenPresentationCommand. A presentation is a
set of user interface elements that, together, allow the user to
view or edit some data. Presentations are stored across
sessions in User Interface object, thus maintaining continu-
ity for the user. User interface elements are stored on disk
until needed in memory. They may be required as part of a
data presentation the user has requested, or they may be
needed for translation or another localization process. Each
user interface element contains an ID which uniquely ref-
erences that element. However, all localized versions of the
same user interface element share a single ID.

In order to differentiate the localized versions, the par-
ticular language, writing direction, and other cultural param-
eters are stored with each localized user interface element.
Together, these parameters are referred to as the locale. All
of the user interface elements are stored in a file. This file is
organized like a dictionary, with one or more key/value
pairs. The key is an object which combines the ID and the
locale. The value is the user interface element itself.

A new presentation must be created next at function block
1920. If an appropriate presentation does not already exist,
a new one must be created from a template by the user
interface Archive. A new presentation is created from a
template stored in the archive by calling its CreatePresen-
tation method. A presentation type is passed to this method
as a parameter. This type includes such information as the
type of data to be displayed, whether it is to be in its own
window or part of another presentation, and so on. Finally,
at function block 1930, an Archive builds the presentation,
selecting user interface elements according to locale. If the
Archive is able to build a presentation of the specified type,
it collects together each user interface element that makes up
the presentation and returns this to the user interface object.

For each presentation the archive is able to make, it has
a list of user interface element IDs that together make up the
presentation. The user interface elements are stored on disk
maintained by a disk dictionary object called. Given a key,
the disk dictionary will return the corresponding user inter-
face element. The user interface element ID makes up the
primary component of this key. A secondary component of
the key is the desired locale. A locale is an object that
specifies the natural language and other cultural attributes of
the user. The locale obtained automatically by the Archive
from a Preferences Server. This server contains all of the
individual preferences associated with the user.

The locale, as obtained from the preferences server, is
combined with the ID into a single object called a TUse-
rInterfaceElementKey. This key passed as a parameter to the
GetValue method of the disk dictionary. If a user interface
element with a matching ID and locale is found, it is returned
and included as part of the presentation. Otherwise, the
locale parameter must be omitted from the key, or another
locale must be specified until an appropriate user interface
element is found.

Interaction Framework System

Users of an object oriented operating system’s graphical
user interface often move a mouse, click on objects to select
them, drag objects to move or copy then, and double-click
to open an object. These operations are called direct
manipulations, or interactions. The sequence of events cor-
responding to a user pressing, moving, and releasing the
mouse is called the input syntax. Certain sequences of events
are used to indicate particular actions, called semantic

US 6,424,354 B1

33

operations. This invention discloses the method and appa-

ratus for translating input syntax into semantic operations

for an object that supports Select, Peek, Move, AutoScroll,
and Drag/Drop (Copy).

The invention detects a mouse button depression and then
employs the following logic:

(a) If an Option key was depressed when the user pressed the
mouse button, the system enters drag mode by setting
variable flnteractionType to constant kDrag. The system
then commences a drag operation using the selected
object as the target of the operation; o r

(b) if the Option key was not depressed, then the system
enters selection mode by setting variable fInteractionType
to constant kSelect. Then, the select operation is com-
menced.

If a user already had the mouse button depresses and
continues to hold the mouse button down, then the following
logic is engaged. If the system is in select mode, then the
system first determines whether the user has moved the
mouse beyond a certain threshold, called the move thresh-
old. This is done by comparing the initial mouse location,
returned by the Getlnitiall.ocation method, with the current
mouse location, returned by the GetCurrentlocation
method. If the mouse has moved beyond the move threshold,
the system ends select mode and enters move mode. It does
this by setting variable fInteractionType to constant kMove.
The system then queries the object to terminate the select
operation by calling its SelectEnd method. The system then
initiates a move operation by calling its Move Begin method.

Otherwise, if the mouse has not moved, the system checks
how long the mouse has been down. It does this by com-
paring the initial mouse down time, returned by the Getlni-
tialTime method, with the current time, returned by the
GetCurrentTime method. If the mouse has been down
beyond a certain threshold, called the peek threshold, the
system ends select mode and enters peek mode. It does this
by setting variable fInteractionType to constant kPeek. It
asks the object to end the select operation by callings its
SelectEnd method, and begins a peek operation by calling its
PeekBegin method. Otherwise, if the mouse has not moved,
or it has not been down beyond the peek threshold, the
system continues the select operation by calling the object’s
SelectRepeat method. If the system detects that a user is in
Move mode, the system first determines whether the user has
moved the mouse within the window, on the border of the
window, or outside the window. It does this by comparing
the current mouse location, returned by the
GetCurrentLocationMethod, with the bounds of the object’s
container, returned by GetContainerBounds.

If the mouse is still within the bounds of the window, the
system continues the move operation by calling the object’s
MoveRepeat method. If the mouse is on the border of the
window, this indicates an AutoScroll operation. The system
asks the object’s container to scroll in the direction indicated
by the mouse location. This is done by calling the contain-
er’s AutoScroll method and passing the current mouse
location as a parameter. Once complete, the system contin-
ues the move operation by calling the object’s MoveRepeat
method.

If the mouse has moved outside the window, the system
ends move mode and enters drag mode. It does this by
setting variable fInteractionType to constant kDrag. It asks
the object to end the move operation by calling its MoveEnd
method. It asks the object to begin the drag operation by
calling its DragBegin method. If the system is in drag mode,
the system continues the drag operation by calling the
object’s DragRepeat method. If the system is in peek mode,

10

15

20

25

30

35

40

45

50

55

60

65

34

the system first determines whether the user has moved the
mouse beyond a certain threshold, called the move thresh-
old. This is done by comparing the initial mouse location,
returned by the Getlnitiall.ocation method, with the current
mouse location, returned by the GetCurrentLocation
method.

If the mouse has moved beyond the move threshold, the
system ends peek mode and enters move mode. It does this
by setting variable fInteractionType to constant kMove. It
asks the object to end the peek operation by calling its
PeckEnd method. It asks the object to begin the move
operation by calling its MoveBegin method. Otherwise, if
the mouse has not moved, the system continues the peck
operation by calling the object’s PeekRepeat method.

If the system detects that a user releases the mouse button,
then if the system is in select mode, the system ends select
mode. It does this by setting variable fInteractionType to
constant kNone. The system queries the object to end the
select operation by calling its SelectEnd method. If the
system is in move mode, the system ends move mode. It
does this by setting variable flnteractionType to constant
kNone. Then, the system queries the object to end the move
operation by calling its MoveEnd method and ends drag
mode by setting variable fInteractionType to constant
kNone. It asks the object to end the drag operation by calling
its DragEnd method. If the system is in peek mode, the
system ends peek mode. It does this by setting variable
fInteractionType to constant kNone. It asks the object to end
the peek operation by calling its PeekEnd method.

Accordingly, it is a primary objective of the present
invention to provide an innovative hardware and software
system which enables the contents of a window to update
dynamically as a user moves a scrollbar thumb. The system
detects when a user presses down on a scrollbar thumb.
When the user presses down on the scrollbar thumb, the
system begins initiation of a scroll command to change the
portion of the data that is exposed in the window. A
command is an object that implements an end-user action,
such as scrolling. A scroll command has one parameter, the
position to which the content view should be scrolled. The
system sets this position to the current scroll position. This
is accomplished by calling the command’s SetScrollPosition
and setting the scroll to position to the value returned by the
scrollbar’s method GetScrollPosition.

When a user moves the mouse within the scrollbar, the
system continues the execution of the scroll command to
dynamically change the portion of the data exposed in the
window. The system sets the scroll position of the command
to the new scroll position. This is accomplished by calling
the command’s SetScrollPosition and setting the value equal
to the value returned by the scrollbar’s method GetScroll-
Position. The execution of the command is then repeated by
calling its DoRepeat method. This causes the content view
to scroll to the new position. This processing is continued
while a user continues to hold the mouse button down.

When a user releases the mouse button, the system ends
the execution of the scroll command to dynamically change
the portion of the data exposed in the window. The system
sets the scroll position of the command to the final scroll
position. This processing is accomplished by calling the
command’s SetScrollPosition and setting it equal to the
value returned by the scrollbar’s method GetScrollPosition.

FIG. 20 is a flowchart illustrating the detailed logic
associated with scrolling in accordance with the subject
invention. Processing commences at terminal block 2000
and immediately passes to function block 2010 where the
current scroll position is initialized based on the current

US 6,424,354 B1

35

cursor location. Then, at decision block 2020, a test is
performed to detect if the scrollbar thumb has been selected.
An example of a scrollbar thumb is shown in FIG. 21A at
label 2110. If the scrollbar thumb has been selected, then
control passes to decision block 2030 to determine if the
scrollbar thumb has been moved. If so, then the scroll
position is set to the new position of the scrollbar thumb and
the display is reformatted to reflect the immediate scroll
operation and displayed for the user. If the scrollbar thumb
has not moved, another test is performed at decision block
2050 to determine if the scrollbar thumb has been released.
If not, then control is returned to decision block 2030. If the
scrollbar thumb has been released, then control passes to
function block 2060 to end the scroll operation and return
the system to a nonscroll operational status and processing
is completed at terminal 2070.

FIGS. 21A, 21B and 21C illustrate window scrolling in
accordance with the subject invention. In FIG. 21A, the
scrollbar thumb 2110 is located at the top of the window
2112. FIG. 21B shows the scrollbar thumb 2120 moved to
the middle of the window and the window’s contents 2122
updated accordingly. FIG. 21C shows the scrollbar thumb
2140 moved to the bottom of the window and the bottom
most portion of the window 2142 displayed.

While the invention has been described in terms of a
preferred embodiment in a specific system environment,
those skilled in the art recognize that the invention can be
practiced, with modification, in other and different hardware
and software environments within the spirit and scope of the
appended claims.

Having thus described our invention, what we claim as
new, and desire to secure by Letters Patent is:

1. A method for operating a computer-implemented event
notification system for propagating, among a plurality of
objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a first object, connection infor-
mation representing the first object’s interest in, and an
associated object method for, receiving notification of
a change to a second object;

(b) registering the connection information with a connec-
tion object;

(c) creating an event representing a change in the second
object, responsive to the change in the second object;
and

(d) notifying the first object of the event by invoking the
associated object method for receiving notification reg-
istered with the connection object only if the event
information corresponds to an interest registered on
behalf of the first object.

2. The operating method of claim 1, wherein the connec-
tion object is associated with status information, the oper-
ating method further comprising the step of:

(b. 1) using the connection information in the connection
object to configure the status information to represent
whether the notifying step (d) is activated or inacti-
vated.

3. The operating method of claim 1, wherein the connec-
tion information is associated with a notification type cor-
responding to a connection object method, the operating
method further comprising the step of:

(c. 1) invoking the connection object method correspond-
ing to the notification type specified by the connection
information in the connection object.

4. The operating method of claim 3 wherein:

each of a notification type plurality corresponds to a
unique connection object method different from the

10

15

20

25

30

35

40

45

50

55

60

65

36

connection object method corresponding to another of
the notification type plurality.
5. The operating method of claim 3 further comprising the
step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a name associated with the first object.

6. The operating method of claim 3 further comprising the

step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a graphic associated with the first
object.

7. The operating method of claim 3 further comprising the

step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to create or modify data associated with the first
object.

8. The operating method of claim 3 further comprising the

step of:

(C. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to read data associated with the first object.

9. The operating method of claim 8 further comprising the

step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute an undo function associated with the
first object.

10. The operating method of claim 8 further comprising

the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute an redo function associated with the
first object.

11. A method for operating a computer-implemented
event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of an event listener object, con-
nection information representing the event listener
object’s interest in, and an associated object method
for, receiving notification of a change to an event
source object;

(b) registering the connection information with a connec-
tion object;

(c) creating an event representing a change in the event
source object, responsive to the change in the event
source object; and

(d) notifying the event listener object of the event by
invoking the associated object method for receiving
notification registered with the connection object only
if the event information corresponds to an interest
registered on behalf of the event listener object.

12. The operating method of claim 11, wherein the
connection object is associated with status information, the
operating method further comprising the step of:

(b. 1) using the connection information in the connection
object to configure the status information to enable or
disable the notifying step (d).

13. The operating method of claim 11 wherein the con-
nection information is associate with a notification type
corresponding to a connection object method, the operating
method further comprising the step of:

US 6,424,354 B1

37

(c. 1) invoking the connection object method correspond-
ing to the notification type specified by the connection
information in the connection object.

14. The operating method of claim 13, wherein each of a
notification type plurality corresponds to the same single
connection object method, the operating method further
comprising the step of:

(c. 1.1) transferring notification type information between

two objects.

15. The operating method of claim 13 further comprising
the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a name associated with the event
listener object.

16. The operating method of claim 13 further comprising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a graphic icon associated with the
event listener object.

17. The operating method of claim 13 further comprising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to read data associated with the event listener
object.

18. The operating method of claim 13 further comprising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to create or modify data associated with the
event listener object.

19. The operating method of claim 18 wherein the data
associated with the event listener object includes descriptive
textual data.

20. The operating method of claim 18 further comprising
the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute an undo function associated with the
event listener object.

21. The operating method of claim 18 further comprising

the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute an redo function associated with the
event listener object.

22. A method for operating a computer-implemented
event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a consumer object, connection
information representing the consumer object’s interest
in, and an associated object method for, receiving
notification of a change to a supplier object;

(b) registering the connection information with a channel
object;

(c) creating an event representing a change in the supplier
object, responsive to the change in the supplier object;
and

(d) notifying the consumer object of the event by invoking
the associated object method for receiving notification
registered with the channel object only if the event
information corresponds to an interest registered on
behalf of the consumer object.

10

15

20

25

30

35

40

45

50

55

60

65

38

23. The operating method of claim 22, wherein the
channel object is associated with status information, the
operating method further comprising the step of:

(b. 1) using the connection information in the channel
object to configure the status information to make the
notifying step (d) active or passive.

24. The operating method of claim 22, wherein the
connection information is associated with a notification type
corresponding to a channel object method, the operating
method further comprising the step of:

(c.1) invoking the channel object method corresponding
to the notification type specified by the connection
information in the channel object.

25. The operating method of claim 24, wherein a notifi-
cation type plurality all correspond to the same single
channel object method, the operating method further com-
prising the step of:

transferring notification type information-between two
objects.

26. The operating method of claim 24 further comprising

the step of:

(c. 1.1) invoking a channel object method responsible for
using the connection information in the channel object
to create or modify data associated with the consumer
object.

27. The operating method of claim 24 further comprising

the step of:

(c. 1.1) invoking a channel object method responsible for
using the connection information in the channel object
to read data associated with the consumer object.

28. The operating method of claim 24 wherein the event

has an associated type attribute.

29. The operating method of claim 22 wherein the creat-
ing step (c) is initiated by the channel object.

30. The operating method of claim 22 wherein the creat-
ing step (¢) is initiated by the supplier object.

31. A method for operating a computer-implemented
event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a receiver object, connection
information representing the receiver object’s interest
in, and an associated object method for, receiving
notification of a change to a source object;

(b) registering the connection information using a con-
nection object;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;
and

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
registered using the connection object only if the event
information corresponds to an interest registered on
behalf of the receiver object.

32. The operating method of claim 31, wherein the

connection object is associated with status information, the
operating method further comprising the step of:

(b. 1) using the connection information in the connection
object to configure the status information to represent
whether the notifying step (d) is activated or inacti-
vated.

33. The operating method of claim 31, wherein the
connection information is associated with a notification type
corresponding to a connection object method, the operating
method further comprising the step of:

US 6,424,354 B1

39

(c. 1) invoking the connection object method correspond-
ing to the notification type specified by the connection
information in the connection object.

34. The operating method of claim 33 wherein:

each of a notification type plurality corresponds to a
unique connection object method different from the
connection object method corresponding to another of
the notification type plurality.

35. The operating method of claim 33 further comprising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a name associated with the receiver
object.

36. The operating method of claim 33 further comprising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a graphic associated with the receiver
object.

37. The operating method of claim 33 further comprising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to create or modify data associated with the
receiver object.

38. The operating method of claim 33 further comprising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to read data associated with the receiver object.

39. The operating method of claim 38 further comprising
the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute an undo function associated with the
receiver object.

40. The operating method of claim 38 further comprising

the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute a redo function associated with the
receiver object.

41. A method for operating a computer-implemented
event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a receiver object, connection
information representing the receiver object’s interest
in, and an associated object method for, receiving
notification of a change to a source object:

(b) registering the connection information using a con-
nection object;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
registered using the connection object only if the event
information corresponds to an interest registered on
behalf of the receiver object; and

(e) using the connection information in the connection
object to configure status information to enable the
notifying step (d).

42. A method for operating a computer-implemented

event notification system for propagating, among a plurality

40

of objects, events representing changes in the objects, the
operating method comprising the steps of:
(a) creating, on behalf of a receiver object, connection
information representing the receiver object’s interest
5 in, and an associated object method for, receiving
notification of a change to a source object;
(b) registering the connection information using a con-
nection object;
(c) creating an event representing a change in the source

10
object, responsive to the change in the source object;

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
registered using the connection object only if the event
information corresponds to an interest registered on
behalf of the receiver object; and

15

(e) using the connection information in the connection
object to configure status information to disable the
notifying step (d).

43. A method for operating a computer-implemented
event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

20

(a) creating, on behalf of a receiver object, connection
information representing the receiver object’s interest
in, and an associated object method for, receiving
notification of a change to a source object;

25

(b) registering the connection information using a con-
nection object;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;

30

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
registered using the connection object only if the event
information corresponds to an interest registered on
behalf of the receiver object;

35

said connection information being associated with a noti-
fication type corresponding to a connection object
method;

(e) invoking the connection object method corresponding
to the notification type specified by the connection
information in the connection object;

40

each of a notification type plurality corresponding to the
same single connection object method; and

(f) transferring notification type information between two
objects.

44. The operating method of claim 43 further comprising

the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a name associated with the receiver
object.

s5s 45. The operating method of claim 43 further comprising
the step of:

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to modify a graphic icon associated with the
receiver object.

45

60
46. The operating method of claim 43 further comprising
the step of:
(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
65 object to read data associated with the receiver object.

47. The operating method of claim 43 further comprising
the step of:

US 6,424,354 B1

41

(c. 1.1) invoking a connection object method responsible
for using the connection information in the connection
object to create or modify data associated with the
receiver object.

48. The operating method of claim 47 wherein the data
associated with the receiver object includes descriptive
textual data.

49. The operating method of claim 47 further comprising
the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute an undo function associated with the
receiver object.

50. The operating method of claim 47 further comprising

the step of:

(c. 1.2) invoking a connection object method responsible
for using the connection information in the connection
object to execute a redo function associated with the
receiver object.

51. A method for operating a computer-implemented
event notification system for propagating, among a plurality
of objects, events representing changes in the objects, the
operating method comprising the steps of:

(a) creating, on behalf of a receiver object, connection
information representing the receiver object’s interest
in, and an associated object method for, receiving
notification of a change to a source object;

(b) registering the connection information with a notifier
object;

(c) creating an event representing a change in the source
object, responsive to the change in the source object;
and

(d) notifying the receiver object of the event by invoking
the associated object method for receiving notification
registered with the notifier object only if the event
information corresponds to an interest registered on
behalf of the receiver object.

10

15

20

25

30

35

42

52. The operating method of claim 51, wherein the notifier
object is associated with status information, the operating
method further comprising the step of:

(b. 1) using the connection information in the notifier
object to configure the status information to make the
notifying step (d) active or passive.

53. The operating method of claim 51, wherein the
connection information is associated with a notification type
corresponding to a notifier object method, the operating
method further comprising the step of:

(c. 1) invoking the notifier object method corresponding
to the notification type specified by the connection
information in the notifier object.

54. The operating method of claim 53, wherein a notifi-
cation type plurality all correspond to the same single
notifier object method, the operating method further com-
prising the step of:

transferring notification type information between two
objects.

55. The operating method of claim 53 further comprising

the step of:

(c. 1.1) invoking a notifier object method responsible for
using the connection information in the notifier object
to create or modify data associated with the receiver
object.

56. The operating method of claim 53 further comprising

the step of:

(c. 1.1) invoking a notifier object method responsible for
using the connection information in the notifier object
to read data associated with the receiver object.

57. The operating method of claim 53 wherein the event

has an associated type attribute.

58. The operating method of claim 51 wherein the creat-
ing step (c) is initiated by the notifier object.

59. The operating method of claim 51 wherein the creat-
ing step (c) is initiated by the source object.

#* #* #* #* #*

	Exhibit G
	Exhibit H

