Motorola Mobility Inc. v. Apple Inc. et al Doc. 1 Att. 1

EXHIBIT 1

Dockets.Justia.com

http://dockets.justia.com/docket/delaware/dedce/1:2010cv00867/45020/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2010cv00867/45020/1/1.html
http://dockets.justia.com/

RO A O O
US005455599A

United States Patent 9 111 Patent Number: 5,455,599
Cabral et al. 451 Date of Patent: Oct. 3, 1995
[54] OBJECT-ORIENTED GRAPHIC SYSTEM 0603095 6/1994 European Pat. Off. .

91/20032 12/1991 WIPO .

[75] Inventors: Arthur W. Cabral; Rajiv Jain, both of
Sunnyvale; Maire L. Howard, San

Jose; John Peterson, Menlo Park; “Object Oriented Approach to Design of Interactive Intelli-
Richard D. Webb, Sunnyvale; Robert gent Instrumentation User Interface”, Nikola Bogunovic,
Seidl, Palo Alto, all of Calif. Automatika vol. 34, No. 3-4, May-Dec. 1993, pp. 143-146.
“Object—oriented versus bit~mapped graphics interfaces:
performance and preference differences for typical applica-
tions”, Michael Mohageg, Behaviour & Inforamtion Tech-

OTHER PUBLICATIONS

[73] Assignee: Taligent Inc., Cupertino, Calif.

[21] Appl. No.: 416,949 nology, vol. 10, No. 2, Mar.—Apr. 1991 pp. 121-147.
[22] Filed: Apr. 4, 1995 “Porting Apple©® Macintosh© Applications to the
’ Microsoft© Windows Environment”, Schulman et al,
Related U.S. Application Data Microsoft System Journal, vol. 4, No. 1, Jan. 1989, pp.
11-40.
[63] Continuation of Ser. No. 145,840, Nov. 2, 1993, abandoned. Computer, vol. 22(10), Dec. 1989, Long Beach, US, pp.
[51] Int CL GO9G 5/00 43-54, Goodm;.m Knowledg'e—Based Computer Vision”.
[52] US.CL M5/133; 305/118 canreictractice and Baperence, yol. 13(10). Oct. 1985,
[58] Field of Search 345/112, 132, Loester - PP IR0, eHich, , A

Object—Oriented System for Programming Geometry”.

345133, 133, 154, 155, 395/118, 275 proceedings of the SPIE, vol. 1659, Feb. 12, 1992, US, pp.

[56] References Cited rlsr?x:]lef)z: Haralick et al. “The Image Understanding Envi-
U.S. PATENT DOCUMENTS Intelligent CAD Oct. 6, 1987, NL, pp. 159-168, Woodbury
4,821,220 4/1989 DUSDELE orovorsrmeeormresrrromene 36457 Ct Al» "An Approach to Geometric Reasoning”.

. 364/900 Computer, vol. 22(10), Dec. 1989.

- 340/706 .
. 364200 Primary Examiner—Jeffery Brier

5,041,992 8/1991 Cunningham et al. .. 364/518 Attorney, Agent, or Firm—Keith Stephens
5,050,090 9/1991 Golub et al. 364/478
5,060,276 10/1991 MOITS €t al. w.ooeeoeoremcmeeensmmcnrecenee 3828 [57] ABSTRACT

5,075,848 12/1992 Lai et al. 395/425 . . . s . .
5,093,914 3/1992 Coplien et al. 395/700 An object-oriented graphic system is disclosed including a

5.119.475 . 6/1992 Smith et al. " 305/156 Drocessor with an attached display, storage and object-
5125091 6/1992 Staas, Jr. et al. .oooweerrersserrrnes 395/650 oriented operating system. The graphic system builds a
5,133,075 7/1992 Risch 395/800 component object in the storage of the processor for man-
5,136,705 8/1992 Stubbs et al. ..ceverrrerrnrrenns 395/575 aging graphic processing. The processor includes an object
5,151,987 9/1992 Abraham et al. . - 395/575 for connecting one or more graphic devices to various
5181,162 1/1993 Smithetal. - 364/419 ohjects responsible for tasks such as graphic accelerators,
5,241,625 /1993 Epardetal. ... ~ 395/163 frame buffers, page description languages and vector
5,265,206 11/1993 Shackelford et al. .. 395/200 : : : .

engines. The system is fully extensible and includes poly-
5,297,279 3/1994 Bannon et al.ccooeeeerrrecnnne 395/600 . R . .

morphic processing built into each of the support objects.

4,885,717 12/1989 Beck et al.
4,891,630 1/1990 Friedman et al.
4,953,080 8/1990 Dysart et al.

FOREIGN PATENT DOCUMENTS
0459683 12/1991 - European Pat. Off. . 26 Claims, 16 Drawing Sheets

MODELING
LAYER 1700

AN

GEOMETRIC GRAFPHIC 1720
OBJECTS ATTRIBUTES

1730 g
GRAFPORT
OBJECT

1740

POLYMORPHIC GRAPHIC
1750 DEVICE OBJECTS

L LN N

VECTOR GRAPHIC FRAME
DESCRI N
LAN! GII;A{KC?E ENGINE ACCELERATOR BUFFER

1760 1770 1780 1790

5,455,599

Sheet 1 of 16

Oct. 3, 1995

U.S. Patent

82 92
V1 J4N9I4 2€
o 9¢
¥31dvav ¥31dvav
AV1dSIa JOVIYILNI
22
¢ | wwoo -
/
8l
€2 |
0/1 WvY WOY Ndd
—
/ bl 91 0l /
Ll
12
02

-

U.S. Patent Oct. 3, 1995 Sheet 2 of 16 5,455,599

GetDrawOperation
GetFillPaint
GetFramePaint
GetFillTransferMode
GetFrameTransferMode
GetPenStyle
-GetAntialiasing

GetDevice
.. GetCache

GetBundle

. ..GetCoordinateSyste
-GetClipBoundary

GetSceneBundle

. GetGeometryMatrix
. GetPenMatrix
- GetGeometryMatrix3D

TGrafPort

= GetClipArea
~GetClipAreaMinusChildren

: GetlmageSampling

-+ GetLightlterator
GetCamera

: GetAtmosphereShader

FIGURE 1B

U.S. Patent Oct. 3, 1995 Sheet 3 of 16 5,455,599

(Optional) Modeling Layer
200

State Storage at GrafPort Level 54g

POLYMORPHIC DEVICE Caclgz%

FIGURE 2

230

Captured
State

CONTRACT.
250

_» POLYMORPHIC GRAPHIC
DEVICEOBIJECTS 240

DESgétﬁEFION VECTOR GRAPHIC FRAME
LANGUAGE ENGINE ACCELERATOR BUFFER

260 270 280 290

U.S. Patent Oct. 3, 1995 Sheet 4 of 16 5,455,599

7/ I

THouse TArrow TGraphicFolder

FIGURE3

5,455,599

Sheet 5 of 16

Oct. 3, 1995

U.S. Patent

asdiizoL aulifjodL dooTs]
A

uobAjodo L
AHLINOAY LHITY
NOILV.INISIHdIH JIHdVHON $TANOIA
asdijj3L aunfjodL dooL 8Ny uoBAjodl
N
N\
| 4
A _
[]
n 1 ! '
[] m - .
1 / >
| §]|

¥

U.S. Patent Oct. 3, 1995 Sheet 6 of 16 5,455,599

MCollectible 500

<:i§:£;;;ii;>51o

MGraphic

520 530

TGrafBundle

FIGURES

FIGURE6

U.S. Patent Oct. 3, 1995 Sheet 7 of 16 5,455,599

FIGURE 7

Center of Center of
Rotation Rotation

”~
.~ Rotation
degrees

—— -

Center of
Rotation

FIGURE 8

5,455,599

Sheet. 8 of 16

Oct. 3, 1995

U.S. Patent

°9]eds JO Ioluvd)

d6 HINDIA

«——— XP[0 ——— i V6TdNDIA
1 9[ed3§ JO ISjud) a[eds JO Iud)

————— XMOU —

| I~— X pP|0 —p!

U.S. Patent Oct. 3, 1995 Sheet 9 of 16 5,455,599

Center of Scale

FIGURE 10

U.S. Patent Oct. 3, 1995 Sheet 10 of 16 5,455,599

MDrawable >
i

MGraphic TGrafBundie
_ J

<.TBaseGraphicGroup >
L _J

TGraphicGroup $5— f MGraphic

TGrafMatrix

|

FIGURE 11

U.S. Patent Oct. 3, 1995 Sheet 11 of 16 | 5,455,599

O OF O s
(TGraphicGroup)

@ @ O Simple MGraphic

FIGURE 12

U.S. Patent Oct. 3, 1995 Sheet 12 of 16 5,455,599

Bolt Diameter

Outer Radius

FIGURE 13

5,455,599

Sheet 13 of 16

Oct. 3, 1995

U.S. Patent

7L HAdNODIA

5,455,599

Sheet 14 of 16

Oct. 3, 1995

U.S. Patent

ST HANOII

U.S. Patent Oct. 3, 1995 Sheet 15 of 16 5,455,599

w
L
GrafBundie

Graphic B

B
GrafBundle

W
H
GrafBundle

FIGURE 16

U.S. Patent

Oct. 3, 1995 Sheet 16 of 16 5,455,599
MODELING
LAYER 1700
GEOMETRIC GRAPHIC | 1720
OBJECTS ATTRIBUTES
730 N rd
GRAFPORT
OBJECT
1740
POLYMORPHIC GRAPHIC
1750 DEVICE OBJECTS
DES(I:’Q%ION VECTOR GRAPHIC FRAME
LANGUAGE ENGINE ACCELERATOR|| BUFFER
1760 1770 1780 1790

FIGURE 17

5,455,599

1
OBJECT-ORIENTED GRAPHIC SYSTEM

This is a continuation, of application Ser. No. 08/145,
840, filed Nov. 2, 1993, abandoned.

COPYRIGHT NOTIFICATION

Portions of this patent application contain materials that
are subject to copyright protection. The copyright owner has
no objection to the facsimile reproduction by anyone of the
patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

1. Field of the Invention

This invention generally relates to improvements in com-
puter systems and more particularly to a system for enabling
graphic applications using an object-oriented operating sys-
tem.

2. Background of the Invention

Computer pictures or images drawn on a computer screen
are called computer graphics. Computer graphic systems
store graphics internally in digital form. The picture is
broken up into tiny picture elements or pixels. Thus, a
computer picture or graphic is actually an aggregation of
individual picture elements or pixels. Internally, in the
digital world of the computer, each pixel is assigned a set of
digital values which represent the pixel’s attributes. A pix-
el’s attributes may describe its color, intensity and location,
for example. Thus to change the color, intensity or location
of a pixel, one simply changes the digital value for that
particular attribute.

Conventional computer graphic systems utilize primitives
known as images, bitmaps or pixel maps to represent com-
puter imagery as an aggregation of pixels. These primitives
represent a Two Dimensional (2D) array of pixel attributes
and their respective digital values. Typically, such a primi-
tive is expressed as a “struct” (data structure) that contains
a pointer to pixel data, a pixel size, scanline size, bounds,
and possibly a reference to a color table. Quite often, the
pixels are assumed to represent Red, Green, and Blue (RGB)
color, luminance, or indices into a color table. Thus, the
primitive serves double duty as a framebuffer and as a frame
storage specification.

The burgeoning computer graphics industry has settled on
a defacto standard for pixel representation. All forms of
images that do not fit into this standard are forced into
second class citizenship. Conventional graphics systems,
however, are nonextendable. They are usually dedicated to
a particular application operating on a specific class of
images. This is unacceptable in today’s rapidly changing
environment of digital technology. Every day a new appli-
cation, and with it the need to process and manipulate new
image types in new ways. Thus, the use of a graphics system
with a nonextensible graphic specification is not only short
sighted, it is in a word, obsolete. Graphical applications,
attributes, and organizational requirements for computer
output media are diverse and expanding. Thus, dedicated,
single-purpose graphic systems fail to meet current appli-
cation requirements. There is a need for a robust, graphic
system that provides a dynamic environment and an exten-
sible graphic specification that can expand to include new
applications, new image types and provide for new pixel
manipulations.

For example, two applications rarely require the same set
of pixel attributes. Three Dimensional (3D) applications
store z values (depth ordering), while animation and paint

10

20

25

35

45

50

55

60

65

2

systems store alpha values. Interactive material editors and
3D paint programs store 3D shading information, while
video production systems may require YUV 4:2:2 pixel
arrays. Hardware clippers store layer tags, and sophisticated
systems may store object IDs for hit detection. Moreover,
graphical attributes such as color spaces are amassing con-
stant additions, such as PhotoYCC™, Color matching tech-
nology is still evolving and it is yet unclear which quantized
color space is best for recording the visible spectrum as
pixels. Thus, there are a variety of data types in the graphics
world. There are also a variety of storage organization
techniques. To make matters even worse, it seems that every
new application requires a different organization for the
pixel memory. For example, Component Interleaved or
“Chunky” scanline orientations are the prevailing organiza-
tion in Macintosh ® video cards, but Component Interleaved
banked switched memory is the trend in video cards targeted
for hosts with small address spaces. Component planar tiles
and component interleaved tiles are the trend in prepress and
electronic paint applications, but output and input devices

" which print or scan in multiple passes prefer a component

planar format. Multiresolution or pyramid formats are com-
mon for static images that require real-time resampling.
Moreover, images that consume large amounts of memory
may be represented as compressed pixel data which can be
encoded in a multitude of ways.

The variety and growth of graphic applications, data types
and pixel memory manipulations is very large. There is a
requirement for a multipurpose system that can handle all
the known applications and expand to handle those appli-
cations that are yet unknown. A single solution is imprac-
tical. Although it may handle every known requirement, it
would be huge and unwieldy. However, if such an applica-
tion is downsized, it can no longer handle every application.
Thus, there is a need for a general graphic framework that
suits the needs of many users, but allows the individual user
to customize the general purpose graphic framework.

SUMMARY OF THE INVENTION

An object-oriented system is well suited to address the
shortcomings of traditional graphic applications. Object-
oriented designs can provide a general purpose framework
that suits the needs of many users, but allows the individual
user to customize and add to the general purpose framework
to address a particular set of requirements. In general, an
object may be characterized by a number of operations and
a state which remembers the effect of these operations.

Thus it is a goal of the present invention to provide a
method and apparatus which facilitates an object-oriented
graphic system. A processor with an attached display, stor-
age and object-oriented operating system builds a compo-
nent object in the storage of the processor for managing
graphic processing. The processor includes an object for
connecting one or more graphic devices to various objects
responsible for tasks such as graphic accelerators, frame
buffers, page description languages and vector engines. The
system is fully extensible and includes polymorphic pro-
cessing built into each of the support objects.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a block diagram of a personal computer system
in accordance with a preferred embodiment;

FIG. 1B is a hierarchical layout of a graphic port in
accordance with a preferred embodiment;

FIG. 2 is a block diagram of the architecture in accor-
dance with a preferred embodiment;

5,455,599

3

FIG. 3 illustrates examples of graphic extensions of
MGraphic in accordance with a preferred embodiment;

FIG. 4 illustrates MGraphics and their corresponding
geometries in accordance with a preferred embodiment;

FIG. 5 is a booch diagram setting forth the flow of control
of the graphic system in accordance with a preferred
embodiment;

FIG. 6 illustrates a star graphic object undergoing various
transformations in accordance with a preferred embodiment;

FIG. 7 depicts a star moved by an amount in accordance
with a preferred embodiment;

FIG. 8 illustrates rotating-the star about various centers of
rotation in accordance with a preferred embodiment;

FIG. 9 illustrates scaling a star about different centers of
scale in accordance with a preferred embodiment;

FIG. 10 shows the effects of scaling an asymmelric star by
(-1.0, 1.0) in accordance with a preferred embodiment;

FIG. 11 illustrates a hierarchical graphic in accordance
with a preferred embodiment;

FIG. 12 illustrates a bike graphic in accordance with a
preferred embodiment;

FIG. 13 illustrates a bolt object in accordance with a
preferred embodiment;

FIG. 14 illustrates a hierarchical graphic in accordance
with a preferred embodiment;

FIG. 15 illustrates an object that exists inside the TPoly-
gon’s Draw call in accordance with a preferred embodiment;

FIG. 16 illustrates a graphic hierarchy that supports
sharing of two or more graphics in accordance with a
preferred embodiment; and

FIG. 17 is a flowchart setting forth the detailed logic in
accordance with a preferred embodiment.

DETAILED DESCRIPTION OF THE
INVENTION

The invention is preferably practiced in the context of an
operating system resident on a personal computer such as
the IBM® PS/2® or Apple® Macintosh® computer. A
representative hardware environment is depicted in FIG. 1,
which illustrates a typical hardware configuration of a
workstation in accordance with the subject invention having
a central processing unit 10, such as a conventional micro-
processor, and a number of other units interconnected via a
system bus 12. The workstation shown in FIG. 1 includes a
Random Access Memory (RAM) 14, Read Only Memory
(ROM) 16, an /O adapter 18 for connecting peripheral
devices such as disk units 20 to the bus, a user interface
adapter 22 for connecting a keyboard 24, a mouse 26, a
speaker 28, a microphone 32, and/or other user interface
devices such as a touch screen device (not shown) to the bus,
a communication adapter 34 for connecting the workstation
to a data processing network and a display adapter 36 for
connecting the bus to a display device 38. The workstation
has resident thereon an operating system such as the Apple
System/7® operating system.

In a preferred embodiment, the invention is implemented
in the C++ programming language using object oriented
programming techniques. As will be understood by those
skilled in the art, Object-Oriented Programming (OOP)
objects are software entities comprising data structures and
operations on the data. Together, these elements enable
objects to model virtually any real-world entity in terms of
its characteristics, represented by its data elements, and its

10

15

20

25

35

40

45

50

55

60

4

behavior, represented by its data manipulation functions. In
this way, objects can model concrete things like people and
computers, and they can model abstract concepts like num-
bers or geometrical concepts. The benefits of object tech-
nology arise out of three basic principles: encapsulation,
polymorphism and inheritance.

Objects hide, or encapsulate, the internal structure of their
data and the algorithms by which their functions work.
Instead of exposing these implementation details, objects
present interfaces that represent their abstractions cleanly
with no extraneous information. Polymorphism takes encap-
sulation a step further. The idea is many shapes, one inter-
face. A software component can make a request of another
component without knowing exactly what that component
is. The component that receives the request interprets it and
determines, according to its variables and data, how to
execute the request. The third principle is inheritance, which
allows developers to reuse pre-existing design and code.
This capability allows developers to avoid creating software
from scratch. Rather, through inheritance, developers derive
subclasses that inherit behaviors, which the developer then
customizes to meet their particular needs.

A prior art approach is to layer objects and class libraries
in a procedural environment. Many application frameworks
on the market take this design approach. In this design, there
are one or more object layers on top of a monolithic
operating system. While this approach utilizes all the prin-
ciples of encapsulation, polymorphism, and inheritance in
the object layer, and is a substantial improvement over
procedural programming techniques, there are limitations to
this approach. These difficulties arise from the fact that
while it is easy for a developer to reuse their own objects, it
is difficult to use objects from other systems and the devel-
oper still needs to reach into the lower, non-object layers
with procedural Operating System (OS) calls.

Another aspect of object oriented programming is a
framework approach to application development. One of the
most rational definitions of frameworks came from Ralph E.
Johnson of the University of lllinois and Vincent F. Russo of
Purdue. In their 1991 paper, Reusing Object-Oriented
Designs, University -of Illinois tech report UITUCDCS91-
1696 they offer the following definition: “An abstract class
is a design of a set of objects that collaborate to carry out a
set of responsibilities. Thus, a framework is a set of object
classes that collaborate to execute defined sets of compuiting
responsibilities.” From a programming standpoint, frame-
works are essentially groups of interconnected object classes
that provide a pre-fabricated structure of a working appli-
cation. For example, a user interface framework might
provide the support and “default” behavior of drawing
windows, scrollbars, menus, etc. Since frameworks are
based on object technology, this behavior can be inherited
and overridden to allow developers to extend the framework
and create customized solutions in a particular area of
expertise. This is a major advantage over traditional pro-
gramming since the programmer is not changing the original
code, but rather extending the software. In addition, devel-
opers are not blindly working through layers of code
because the framework provides architectural guidance and
modeling but at the same time frees them to then supply the
specific actions unique to the problem domain.

From a business perspective, frameworks can be viewed

. as a way to encapsulate or embody expertise in a particular

65

knowledge area. Corporate development organizations,
Independent Software Vendors (ISV)s and systems integra-
tors have acquired expertise in particular areas, such as
manufacturing, accounting, or currency transactions. This

5,455,599

5

expertise is embodied in their code. Frameworks allow
organizations to capture and package the common charac-
teristics of that expertise by embodying it in the organiza-
tion’s code. First, this allows developers to create or extend
an application that utilizes the expertise, thus the problem
gets solved once and the business rules and design are
enforced and used consistently. Also, frameworks and the
embodied expertise behind the frameworks, have a strategic
asset implication for those organizations who have acquired
expertise in vertical markets such as manufacturing,
accounting, or bio-technology, and provide a distribution
mechanism for packaging, reselling, and deploying their
expertise, and furthering the progress and dissemination of
technology.

Historically, frameworks have only recently emerged as a
mainstream concept on personal computing platforms. This
migration has been assisted by the availability of object-
oriented languages, such as C++. Traditionally, C++ was
found mostly on UNIX systems and researcher’s worksta-
tions, rather than on computers in commercial settings. It is
languages such as C++ and other object-oriented languages,
such as Smalltalk and others, that enabled 2 number of
university and research projects to produce the precursors to
today’s commercial frameworks and class libraries. Some
examples of these are InterViews from Stanford University,
the Andrew toolkit from Carnegie-Mellon University and
University of Zurich’s ET++ framework. Types of frame-
works range from application frameworks that assist in
developing the user interface, to lower level frameworks that
provide basic system software services such as communi-
cations, printing, file systems support, graphics, etc. Com-
mercial examples of application frameworks are MacApp
(Apple), Bedrock (Symantec), OWL (Borland), NeXTStep
App Kit (NeXT), and Smalltalk-80 MVC (ParcPlace).

Programming with frameworks requires a new way of
thinking for developers accustomed to other kinds of sys-
tems. In fact, it is not like “programming” at all in the
traditional sense. In old-style operating systems such as
DOS or UNIX, the developer’s own program provides all of
the structure. The operating system provides services
through system calls-the developer’s program makes the
calls when it needs the service and control returns when the
service has been provided. The program structure is based
on the flow-of-control, which is embodied in the code the
developer writes. When frameworks are used, this is
reversed. The developer is no longer responsible for the
flow-of-control. The developer must forego the tendency to
understand programming tasks in term of flow of execution.
Rather, the thinking must be in terms of the responsibilities
of the objects, which must rely on the framework to deter-
mine when the tasks should execute. Routines written by the
developer are activated by code the developer did not write
and that the developer never even sees. This flip-flop in
control flow can be a significant psychological barrier for
developers experienced only in procedural programming.
Once this is understood, however, framework programming
requires much less work than other types of programming.

In the same way that an application framework provides
the developer with prefab functionality, system frameworks,
such as those included in a preferred embodiment, leverage
the same concept by providing system level services, which
developers, such as system programmers, use to subclass/
override to create customized solutions. For example, con-
sider a multimedia framework which could provide the
foundation for supporting new and diverse devices such as
audio, video, MIDI, animation, etc. The developer that
needed to support a new kind of device would have to write

25

30

35

40

45

50

55

60

65

6

a device driver. To do this with a framework, the developer
only needs to supply the characteristics and behaviors that
are specific to that new device.

The developer in this case supplies an implementation for
certain member functions that will be called by the multi-
media framework. An immediate benefit to the developer is
that the generic code needed for each category of device is
already provided by the multimedia framework. This means
less code for the device driver developer to write, test, and
debug. Another example of using system frameworks would
be to have separate /O frameworks for SCSI devices,
NuBus cards, and graphics devices. Because there is inher-
ited functionality, each framework provides support for
common functionality found in its device category. Other
developers could then depend on these consistent interfaces
for implementing other kinds of devices.

A preferred embodiment takes the concept of frameworks
and applies it throughout the entire system. For the com-
mercial or corporate developer, systems integrator, or OEM,
this means all the advantages that have been illustrated for
a framework such as MacApp can be leveraged not only at
the application level for such things as text and user inter-
faces, but also at the system level, for services such as
graphics, multimedia, file systems, I/O, testing, etc. Appli-
cation creation in the architecture of a preferred embodiment
will essentially be like writing domain-specific pieces that
adhere to the framework protocol. In this manner, the whole
concept of programming changes. Instead of writing line
after line of code that calls multiple API hierarchies, soft-
ware will be developed by deriving classes from the preex-
isting frameworks within this environment, and then adding
new behavior and/or overriding inherited behavior as
desired. Thus, the developer’s application becomes the
collection of code that is written and shared with all the other
framework applications. This is a powerful concept because
developers will be able to build on each other’s work. This
also provides the developer the flexibility to customize as
much or as little as needed. Some frameworks will be used
just as they are. In some cases, the amount of customization
will be minimal, so the piece the developer plugs in will be
small. In other cases, the developer may make very exten-
sive modifications and create something completely new.

In a preferred embodiment, as shown in FIG. 1, a multi-
media data routing system manages the movement of mul-
timedia information through the computer system, while
multiple media components resident in the RAM 14, and
under the control of the CPU 10, or externally attached via
the bus 12 or communication adapter 34, are responsible for
presenting multimedia information. No central player is
necessary to coordinate or manage the overall processing of
the system. This architecture provides flexibility and pro-
vides for increased extensibility as new media types are
added. A preferred embodiment provides an object-oriented
graphic system. The object-oriented operating system com-
prises a number of objects that are clearly delimited parts or
functions of the system. Each object contains information
about itself and a set of operations that it can perform on its
information or information passed to it. For example, an
object could be named WOMAN. The information con-
tained in the object WOMAN, or its attributes, might be age,
address, and occupation. These attributes describe the object
WOMAN. The object also contains a set of operations that
it can perform on the information it contains. Thus,
WOMAN might be able to perform an operation to change
occupations from a doctor to a lawyer.

Objects interact by sending messages to each other. These
messages stimulate the receiving object to take some action,

5,455,599

7

that is, perform one or more operations. In the present
invention there are many communicating objects. Some of
the objects have common characteristics and are grouped
together into a class. A class is a template that enables the
creation of new objects that contain the same information
and operations as other members of the same class. An
object created from a certain class is called an instance of
that class. The class defines the operations and information
initially contained in an instance, while the current state of
the instance is defined by the operations performed on the
instance. Thus, while all instances of a given class are
created equal, subsequent operations can make each instance
a unique object.

Polymorphism refers to object-oriented processing in
which a sender of a stimulus or message is not required to
know the receiving instance’s class. The sender need only
know that the receiver can perform a certain operation,
without regard to which object performs the operation or
what class to which it belongs. Instances inherit the
attributes of their class. Thus, by modifying the aitribute of
a parent class, the attributes of the various instances are
modified as well, and the changes are inherited by the
subclasses. New classes can be created by describing modi-
fications to existing classes. The new class inherits the
atributes of its class and the user can add anything which is
unique to the new class. Thus, one can define a class by
simply stating how the new class or object differs from its
parent class or object. Classes that fall below another class
in the inheritance hierarchy are called descendants or chil-
dren of the parent class from which they descend and inberit.
In this polymorphic environment, the receiving object is
responsible for determining which operation to perform
upon receiving a stimulus ‘message. An operation is a
function or transformation that may be applied to or by
objects in a class. The stimulating object needs to know very
little about the receiving object which simplifies execution
of operations. Each object need only know how to perform
its own operations, and the appropriate call for performing
those operations a particular object cannot perform.

When the same operation may apply to many different
classes, it is a polymorphic operation. The same operation
takes on a different form in a variety of different classes. A
method is the implementation of a particular operation for a
given class. For example, the class Document may contain
an operation called Read. Depending on the data type of the
document, for example, ASCII versus BINARY, a different
method might be used to perform the Read operation. Thus
while both methods logically perform the same task, Read,
and are thus called by the same name, Read, they may in fact
be different methods implemented by a different piece of
executable code. While the operation Read may have meth-
ods ‘in several classes, it maintains the same number and
types of arguments, that is, its signature remains the same.
Subclasses allow a user to tailor the general purpose frame-
work. It allows for different quantization tradeoffs, sets of
pixel attributes, and different pixel memory organizations.
Each subclass can encapsulate the knowledge of how to
allocate, manage, stream, translate, and modify its own class
of pixel data. All subsystems of a preferred embodiment use
polymorphic access mechanisms, which enable a user to
extend buffer types that can be rendered to or copied.

Fortunately, some commonalty exists among the various
types of buffers. As it turns out, there are eight basic
functions or categories that are necessary to satisfy the
majority of client needs. Most clients want polymorphic
management and the ability to specify the relationship
between discrete and continuous space. Clients want to

20

25

35

40

45

50

55

60

65

8

characterize color capabilities for use in accurate color
reproduction. Clients want mechanisms for pixel memory
alteration in the form of Get and SetPixel, specialized “blit
loops” tailored for scan converting clients, BitBit, and
CopyImage. Clients want mechanisms to supply clients with
variants which match a key formed from the combination of
client supplied attributes. Clients desire the ability to per-
form polymorphic queries regarding traits or stored
attributes. Clients require mechanisms allowing clients to
polymorphically create, maintain, and query buffer caches.
And finally, clients require mechanisms which allow them to
polymorphically create, and maintain correlated back-
buffers.

Graphic Application Programming Interface (API)

The basic components of a graphic system include a fixed
set of Geometric Primitives: Point, Rectangle, Line, Curve,
Polygon, Polyline, Area in 2D, Line, Polyline, Curve .and
Surface in 3D. This set of geometry is not intend to be user
extensible. This limits the complexity of the lower level
graphic devices, and provides a “contract” between the
user-level API and the low level device for consistent data.
Discretized data sets: which include 2D raster images with
a number of possible components and triangulated 3D
datasets. High level modeling tools: that can express hier-
archical groups of graphic objects. Transforms: these objects
represent the operations available with a traditional 3x3 (in
2D) or 4x4 (in 3D) matrices to rotate, scale, translate, etc.
objects. Bundles: these objects encapsulate the appearance
of the geometry. Standard attributes include (2D & 3D)
frame and/or fill color, pen thickness, dash patterns, etc. In
3D, bundles also define shading attributes. Custom attributes
may be specified via a keyword/value pair. All numeric
values are expressed in IEEE standard double precision
floating point in the graphic system. Graphic Ports: a graphic
port is an application-leve] view that encapsulates the state
of the application. The graphic port re-routes any draw calls
to an appropriate one of a number of possible devices
(monitors, off screen frame buffers, PostScriptPrinter on a
network, a window, etc.). Graphical “state” (current trans-
form, bundle, clipping region, etc) is managed at the port
level. However, at the device level the system is “stateless”.
In other words, the complete state for a particular rendering
operation is presented to the device when that rendering
occurs. Note that a device may turn around and invoke other
devices. For example, a device for the entire desktop may
first decide which screen the geometry falls on, and then
invoke the render call for that particular screen.

Architectural Introduction

In past graphics architectures, a graphic typically stores its
state (such as color, transfer mode, clip area, etc.) privately.
When asked to draw, the graphic procedurally copies these
state variables into a graphic port, where they are accessed
by the rendering code. Thus, the graphic’s state is available
only during this explicit drawing operation. This is not
object-oriented, and is a restriction a modern graphic system
cannot afford to make. A preferred embodiment provides a
framework for a graphic to store its state. The framework
supports a “don’t call us, we’ll call you” architecture in
which clients can get access to the graphic state outside the
context of any particular function. This is the purpose of the
graphic port class. It is an abstract class that defines the
interface for accessing the state variables. Concrete sub-
classes define the actual storage and concatenation behavior
of the state variables.

5,455,599

9
Graphic Port Class

A design employing graphic port classes groups the
graphic states into four different groups, which then are
grouped into a single class called graphic port. The four
“sub-states” are TGrafBundle, TCoordinateSystem, TClip-
Boundary, and TSceneBundle. A graphic port object can be
referenced by other classes that need access to the full
graphic state. Additionally, a child’s graphic state can be
concatenated to its parent’s graphic port object, producing a
new graphic port object. FIG. 1B is a hierarchical layout of
a graphic port in accordance with a preferred embodiment.
A graphic port class also contains methods to access a device
and a device cache. GetDevice returns a pointer to the device
to which rendering is done. Typically, this device is inherited
from the parent graphic port. GetCache returns a pointer to
the cache used by the device to cache devicedependent
objects. This cache must have been created by the device at
an earlier time. The main purpose for subclassing graphic
port and the four sub-states is to define how storage and
concatenation of the graphic state, device, and device cache
is done. A simpler, flat group of state variables would not be
flexible enough to support customization of state concatena-
tion for a subset of the state variables. Also, the sub-states
assist in splitting the state variables into commonly used
groups. For instance, a simple graphic typically needs only
a TGrafBundle; more complex graphic objects may need a
matrix and possibly a clip area.

A graphic class, such as MGraphic, must describe itself to
a TGrafPortDevice in terms of the basic set of geometries,
and each geometry must have a graphic port object associ-
ated with the geometry. The graphic port allows a graphic
object to conveniently “dump” its contents into a TGrafDe-
vice object. This is accomplished by supplying a set of draw

10

15

20

25

10
Modeling Layer

Above the graphic port and geometry layers there is an
optional modeling layer. A preferred embodiment provides a
modeling layer, but an application can override the default.
The default modeling layer is called a “MGraphic” layer. An
MGraphic object encapsulates both geometry and appear-
ance (a bundle). To render an MGraphic, a draw method is
used. This method takes the graphic port the MGraphic is
drawn into as an argument. The MGraphic draw method
turns this information into a graphic port call. The goal
behind separating the MGraphic layer from-the graphic port
/ geometry layer is to avoid a rigid structure suited to only
one type of database. If the structure provided by the
MGraphic objects does not satisfy the client’s requirements,
the architecture still permits a different data structure to be
used, as long as it can be expressed in terms of primitive
geometries, bundles, and transforms.

MGRAPHIC LAYER

The graphic system provides two distinct ways of ren-
dering geometries on a device. An application can draw the
geometry directly to the device. The class graphic port
supports a well defined, but fixed set of 2D geometries. It
supports these by a set of overloaded draw methods. When
using this approach, attributes and transformation matrices
are not associated with geometry, making it suitable for
immediate mode rendering only. The following pseudo code
is an example of how an application may use this approach
to create a red line.

create a displayPort an instance of TGrafPort

TGLine line(TGPoint(0.0, 0.0 , TGPoint(1.0, 1.0));
TGrafBundle redColor(TRGBColor(1.0, 0.0, 0.0));
displayPort->Draw(line, redColor);

//Creates a line
//Creates a red color bundle
//Render the line on to the GrafPort

functions in the graphic port class that mirrors a set of render
functions in the TGrafDevice class. Each draw function
takes a geometry and passes the geometry and the contained
graphic state to the appropriate render call in the device. For
convenience, an overriding bundle and model matrix are
also passed.

FIG. 2 is a block diagram of the architecture in accor-
dance with a preferred embodiment. In the preferred
embodiment, a modeling layer 200 generates calls to a
Graphic port 210 using the API 210 described above. This
GraphPort interface accepts only a specific, fixed set of
primitives forming a “contract” 250 between the user level
API and the device level API 240. The graphic port captures
state information including transform, appearance
(“bundle”), and clipping into a polymorphic cache 220 that
is used across multiple types of devices. For each render call,
the geometry and all relevant accumulated state information
230 is presented to the device via a polymorphic graphic
device object 240. A device managed by the graphic device
object 240 may take the form of a page description language
260 (such as postscript), a vector plotting device 270, a
device with custom electronic hardware for rendering geo-
metric primitives 280, a traditional framebuffer 290, or any
other graphic device such as a display, printer or plotter.

45

50

55

60

65

Alternatively, an application can draw the geometry via a
higher level abstraction called MGraphic. This is a retained
mode approach to rendering of graphical primitives.
MGraphic is an abstract base class for representing the 2D
primitives of the graphic system. It is a higher level mani-
festation of graphical objects which can be held in a col-
lection, be transformed and rendered to a graphic device
(TGrafDevice). Each MGraphic object holds a set of its own
attributes and provides streaming capability (with some
restrictions on some of its subclasses). Hit testing methods
provide a mechanism for direct manipulation of MGraphic
objects such as picking. MGraphic provides extensibility
through subclassing that is one of the key features of
MGraphics. A particular subclass of MGraphic also creates
hierarchies of MGraphic objects and provides the capability
to extend the graphic system. FIG. 3 illustrates some
examples of graphic extensions of MGraphic in accordance
with a preferred embodiment.

MGraphic is a utility class for applications to hold geom-
etry related data that includes geometry definition, graf-
bundle (set of graphical attributes defining the representation
of the geometry) and a set of transformation methods.
MGraphic objects also hold any other information required
by a user and will copy and stream this user specific data to
an application. This class may not be needed for applications

5,455,599

11

interested in pure immediate mode rendering. For immediate
mode rendering of the primitives the applications render
geometry by passing an appropriate geometry object, a
grafbundle and a transformation matrix to the graphic port.
FIG. 4 illustrates MGraphics and their corresponding geom-
etries in accordance with a preferred embodiment. FIG. 5 is
a Booch diagram setting forth the flow of control of the
graphic system in accordance with a preferred embodiment.
In the Booch diagram of FIG. 5, “clouds” depicted with
dashed lines indicate classes or aggregations of classes (e.g.
application 500). Arrows connecting classes are directed
from subclass to superclass and indicate a hierarchy includ-
ing the properties of encapsulation, inheritance and poly-
morphism as is well understood in object technology and
graphic notations accepted in the art which are illustrative
thereof. Double lines indicate use of the class in the imple-
mentation or interface. A circle at one end of a line segment
indicates containment or use in the class with the circle on
the end of the line segment. For a more complete description
of this notation, reference can be made to “Object Oriented
Design” by Grady Booch, published by the Benjamin/
Cummings Publishing Co., Copyright 1991. The current
MGraphic 520 inherits from MDrawable 510 which inherits
from MCollectible 500 to inherit the streaming, versioning
and other behaviors of MCollectible 500. Each MGraphic
520 also has a bundle, TGrafBundle 530, which holds a set
of attributes. These attributes are used by the MGraphic at
rendering time.

The MGraphic abstract base class represents only 2D
graphical primitives. In general it has been observed that 2D
and 3D primitives do not belong to a common set unless
users clear the 3D plane on which 2D primitives lie. 2D and
3D primitives have different coordinate systems and mixing
them would confuse users. Clients can mix the two sets
based upon their specific application requirements. The class
MDrawable 510 is the abstract base class common to both
MGraphic 520 and MGraphic3D abstracting the common
drawing behavior of the two classes. This class is useful for
clients interested only in the draw method and do not require
overloaded functionality for both 2D and 3D.

MDrawable Drawing Protocol

All MGraphics (2D and 3D) draw onto the graphic port
which is passed to the MGraphic as a parameter. Besides the
state information, which is encapsulated by the GrafPort, all
other information is contained in the MGraphic object. This
information includes the geometry, attribute bundle and any
transformation information. All MGraphics draw synchro-
nously and do not handle updating or animating require-
ments. It is up to the client to create subclasses. When
drawing 2D and 3D primitives as a collection, such as in a
list of MDrawable objects, the drawing sequence is the same
as it would be when 2D and 3D draw calls are made on the
graphic port. Thus, drawing a 2D polygon, a 3D box and a
2D ellipse will render differently depending upon the order
in which they are rendered. The graphic port passed to this
method is a passive iterator which is acted upon by the
MGraphic to which it is passed.

MGraphic Transformations

FIG. 6 illustrates a star undergoing various transforma-
tions.in accordance with a preferred embodiment. Transfor-
mations can alter an MGraphic’s shape, by scaling or
perspective transformation, and position, by rotating and
moving. The transformation methods allow applications to
change an existing MGraphic’s shape .and location without

10

15

20

25

30

35

40

45

50

60

65

12

having to recreate the MGraphic. All transformation meth-
ods apply only relative transformation to the MGraphic.
Methods ScaleBy, MoveBy and RotateBy are special cases
of the more general method TransformBy. Subclasses apply
the transform directly to the geometry they own to directly
change the geometry.

All MGraphic subclasses are closed to arbitrary transfor-
mations i.e. a TGPolygon when transformed by an arbitrary
transformation will still be a TGPolygon. However, certain
geometries do not possess this closure property. For
example, a rectangle, when transformed by a perspective
matrix, is no longer a rectangle and has no definition for
either width or height. The original specification of the
rectangle is insufficient to describe the transformed version
of the rectangle. All MGraphic subclasses must be closed to
arbitrary transformations. Since all transformations are rela-
tive, a transformed MGraphic cannot be “untransformed” by
passing an identity matrix to the MGraphic method Trans-
formBy().

FIG. 7 depicts a star moved by an amount in accordance
with a preferred embodiment. This method moves the
MGraphic by an amount relative to its current position. FIG.
8 illustrates rotating the star about various centers of rotation
in accordance with a preferred embodiment. The amount of
rotation is specified in degrees and is always clockwise.
However, subclasses can override the default and optimize
for a specific geometry and usage. FIG. 9 illustrates scaling
a star about different centers of scale in accordance with a
preferred embodiment. The factor is a vector which allows
non-uniform scaling namely in X and Y. In FIG. 9 the X
coordinate of the parameter amount will be (new x/old x)
and the Y coordinate will be (new y/old y). In case of
uniform scaling both the X and the Y coordinate will be the
same. FIG. 9 also shows scaling about different centers of
scale.

Negative scale factors are allowed, and the effects of
negative scale factors is the same as mirroring. Scaling by
—1.0in the X direction is the same as mirroring about the Y
axis while a negative scale factor in the Y direction is the
same as mirroring about the X axis. FIG. 10 shows the
effects of scaling an asymmetric star by (-1.0, 1.0) in
accordance with a preferred embodiment. Like RotateBy()
and TranslateBy(), the effect of this transform is the same as
creating a scaling matrix and passing it to TransformBy()
and this is the default implementation. Subclasses can over-
ride this default implementation and optimize for a specific
geometry and usage. TransformBy is a pure virtual member
function that transforms the MGraphic by matrix. All con-
crete subclasses of MGraphics must define this member
function. Subclasses that own a TGrafMatrix for manipula-
tion must post multiply the parameter matrix with the local
matrix for proper effect.

MGraphic Attribute Bundles

As seen in FIG. 5, all MGraphic objects have an associ-
ated attribute bundle, TGrafBundle. This bundle holds the
attribute information for the graphic object such as its color,
pens, filled or framed. When an MGraphic is created, by
default, the GrafBundle object is set to NIL. If GrafBundle
is equal to a NIL, then the geometry is rendered by a default
mechanism. When used in a hierarchy, the parent bundle
must be concatenated with the child’s bundle before ren-
dering the child. If a child’s bundle is NIL, then the child
uses the parent’s bundle for rendering. For example, in the
hierarchy in FIG. 12, object E will inherit the attributes of

5,455,599

13
both A, C and E before it is rendered, and a change of
attribute in A will trickle down to all its children namely B,
CD,E,Gand D.

It is important to note that a bundle has a significant
amount of information associated with it. Thus, copying of
the bundle is generally avoided. Once the bundle is adopted,
MGraphic object will take full responsibility to properly
destroy the bundle when the MGraphic object is destroyed.
When a client wishes to modify an attribute of an MGraphic
object, they do so by orphaning the bundle, changing the
attribute, and then having the MGraphic adopt the bundle.
Also, all caches that depend upon bundles must be invali-
dated when the bundle is adopted or orphaned. When an
object orphans data, it returns a pointer to the data and takes
no further data management responsibility for the data.
When an object adopts data, it takes in the pointer to the
storage and assumes full responsibility for the storage.
Default implementations of all bundle related member func-
tions has been provided in the base MGraphic class and
subclasses need not override this functionality, unless the
subclasses have an attribute based cache which needs to be
invalidated or updated whenever the bundle is adopted and
orphaned. For example, the loose fit bounds, when cached,
need to be invalidated (or reevaluated) when the attributes
change.

C++ Application Program Interfaces (API) for Bundle
Management

virtual void AdoptBundle(TGrafBundle *bundle)

MGraphic adopts the bundle.

If an MGraphic object already holds a bundle, it is
deleted, and the new bundle is attached. As pointers are
passed, it is important for the clients not to keep references
to the bundle passed as the parameter. The MGraphic object
will delete the bundle when it gets destroyed.
virtual const TGrafBundle* GetBundle() const

This method allows users to inquire a bundle and then
subsequently inquire its attributes by iterating through them.
This method provides an alias to the bundle stored in the
MGraphic object.
virtual TGrafBundle* OrphanBundie()

This method returns a bundle to a calling application for
its use. Once this method is called, it is the calling applica-
tion’s responsibility to delete the bundle unless it is adopted
again by an MGraphic object. When orphaned, the
MGraphic bundle is set to NIL, and when the graphic is
subsequently drawn, the MGraphic uses the default mecha-
nism of attributes/bundles for its parent’s bundle. This kind
of MGraphic subclass references other MGraphic objects.
Although all manipulative behavior of complex MGraphic
objects is similar to a MGraphic object, these objects do not
completely encapsulate MGraphic objects they refer to. Of
the subclasses supported by a preferred embodiment, the one
that falls in this category is TGraphicGroup. TGraphicGroup
descends from the abstract base class TBaseGraphicGroup

which makes available polymorphically the methods to -

create iterators for traversing groups. It is important for
clients creating groups or hierarchies to descend from the
base class TBaseGraphicGroup for making available the
iterator polymorphically. FIG. 11 illustrates the class hier-
archy in accordance with a preferred embodiment.

TBaseGraphicGroup Iterator Support

Since GraphicGroup facilitates creation of hierarchies,
support for iterating the hierarchy is built into this base class
and is available polymorphically. This method is virtual in
the abstract base class TBaseGraphicGroup and all sub-

10

20

25

30

35

40

45

50

55

60

65

14

classes provide an implementation. Subclasses which desire
a shield for their children may return an empty iterator when
this member function is invoked.
Protocol: ~ TGraphiclterator*
const=0

This method creates a Graphic iterator which iterates
through the first level of a hierarchy. For example in FIG. 12,
the graphic iterator created a concrete subclass to iterate
over B, C and F. To iterate further, iterators must be created
for both B and C as these are TBaseGraphicGroups. All
subclasses creating hierarchies must provide a concrete
implementation.

TGraphiclterator is an active iterator that facilitates the
iteration over the children of a TBaseGraphicGroup.

TGraphiclterator methods include:

const MGraphic *TGraphiclterator::First()
const MGraphic *TGraphiclterator::Next()
const MGraphic *TGraphiclterator::Last()

CreateGraphiclterator()

TGraphicGroup

The graphic system provides a concrete subclass of
TBaseGraphicGroup, namely TGraphicGroup, which sup-
ports creation of trees. TGraphicGroup creates a collection
of MGraphic objects forming a group. As each of the
MGraphic objects can be a TGraphicGroup, clients can
create a hierarchy of objects. FIG. 12 is an example of a
hierarchy created by TGraphicGroup. FIG. 12 contains
TGraphicGroups A, B and C. D, E, F and G are different
simple MGraphics encapsulating more than one geometry. A
has references to B, C and F. B refers to D while C refers to
G. Group C also refers to the MGraphic E. FIG. 12 can be
considered as an over simplified bike, where A refers to
MGraphic F-the body of bike, and groups B and C which
refer to the transformations associated with the rear and the
front wheel respectively. The two wheels are represented by
the primitive geometries D and G. E represents the handle-
bar of the bike. Moving node C will move both the front
wheel and the handle-bar, and moving node A will move the
entire bike.

While applying a transformation matrix to the children at
the time of rendering, the group creates a temporary Graf-
Port object and concatenates its matrix with that stored in the
GrafPort. This new GrafPort is used to render its children
and is destroyed once the child is completely rendered. The
GrafPort objects are created on the stack. TGraphicGroup
does not allow its children to have more than one parent in
a team. TGraphicGroup inherits directly from MGraphic and
thus each of the nodes own its own grafbundle and can affect
its own side of the hierarchy. The destructor of TGraphic-
Group destroys itself and does not destroy its children. It is
up to an application to keep track of references and destroy
MGraphic objects when they are not referenced.

GraphicGroup Iterator

Graphic Group provides a concrete implementation for
iterating its children. The Graphic Iterator created iterates
only one level. Clients interested in iterating more than one
level deep can do so by creating iterators on subsequent
TGraphicGroups.

Attribute and Transformation Hierarchy

Each TGraphicGroup, if it so chooses, defines its own
attributes and transformation. By default, an attribute bundle
is NIL and the transformation matrix is set to the identity
matrix. As TGraphicGroup is a complex MGraphic, it has

5,455,599

15

references to other MGraphics, and its children. By defini-
tion, each of the children must inherit the attribute traits and
transformations of its parent. However, since each child can
contain multiple references, it inherits these attributes by
concatenating the parents information, without modifying its
own, at the time of rendering. The concatenation of these
attributes is achieved at the time of the Draw call. Both the
attribute and the matrix are concatenated with the TGrafPort
object which is passed as a parameter to the Draw call. In
FIG. 12, attributes and transformations of object A (body of
bike) are concatenated with the GrafPort object passed to A
(as parameter to member function Draw) and a new GrafPort
object, APortObject, is created on the stack. APortObject is
passed to object C which concatenates its state and creates
a new port object, CPortObject. The new CPortObject is

16

passed to object E to be rendered. Object E concatenates its
state with CPortObject and renders itself using the new state.

5 MGRAPHIC EXAMPLE
As an example, a graphic is subclassed from MGraphic to
create a special 2D primitive which corresponds to a top
view of a bolt. This class stores a transformation matrix for
0 2 local coordinate system, and is a very simple example

without taking into account performance and efficiency.
FIG. 13 illustrates a bolt object in accordance with a
preferred embodiment. The code below is a C++ source
listing that completely defines the bolt object in accordance
with a preferred embodiment.

class TBoltTop : public MGraphic {

public:

TBoltTop(GCoord BoltDiameter, GCoord outerradius, TGPoint center);
TBoltTop(const TBoltTop&);

TBoltTop& operator= (const TBoltTop&);

virtual void Draw(TGrafPort&) const;

virtual TGPoint GetAlignmentBasePoint() const;

virtual TGRect GetLooseFitBounds() const;

virtnal TGRect GetGeometricBounds() const;

virtual void TransformBy(const TGrafmatrix& matrix);

virtual Boolean Find(TGrafSearcher& searcher) const;

private:
TBoltTop(); / [For streaming purposes only.
TGrafMatrix fMatrix;
TGPolygon fPolygon; / 1 This is the outer polygon
TGEllipse fCircle; // This is the inner circle

void ComputePolygon(GCoord outerRad, int numOfSides);

b

TBoltTop::TBoltTop()

{

}
TBoltTop::TBoltTop(GCoord boltDia, GCoord outerDia, TGPoint center)

{

: fCircle(boltDia, center)

calculate the hexagon polygon from these paramters
The side of the polygon = outerDiameter / 2.0
TGPointArray polygonPoints(6);

TGPoint tmpPoint;

for (unsigned long i = 0, theta = 0.0;i < 6;i ++,

theta += kPi/6) {

tmpPoint.fX = center.fX + outerDia * sin(theta);
tmpPoint.fY = center.fY + outerDia * cos(theta);
polygonPoints.SetPoint(i, tmpPoint);

}
void TBoltTop::Draw(TGrafPort &port) const
{

/*

* draw the geometry with the Grafflundle and the matris
* associated with this primitive

*/

port.Draw(fPolygon, fGrafBundle, fMatrix);
port.Draw(fCircle, fGrafBundle, fMatrix);

/* ’
* If there are a large number of primitives with same attributes
* it is efficient to construct a local port and then render

* geometries into this local port.

* The semantics will be as:

*

* TConcatenatedGrafPort newPort(port, fGrafBundle, fMatrix);
* TConcatenatedGrafPort is a port that concatenates bundle and
* matrix with the state information of the old port.

*

* newPort.Draw(fPolygon);

* newPort.Draw(fCircle);

*/

}
TGPoint TBoltTop::GetAlignmentBasePoint() const

/1 The alignment point is the center of the circle.

5,455,599

17

-continued

18

TGPoint point;

point.x = fCircle.GetCenterX();
point.y = fCircle.GetCenterY();
return point;

}

TGRect TBoltTop::GetLooseFitBounds() const

{
TGRect bounds;
1/ Get bounds of the polygon
/ I pass the bounds to the bundle for altering.
GetGeometricBounds(bounds);
fGrafBundle->AlterBounds(bounds);
return bounds;

t
TGRect TBoltTop::GetGeometricBounds() const

1/ Get bounds of the polygon
1/ pass the bounds to the bundle for aitering.
bounds = fPolygon.GetBounds();

}
void TBoltTop:: TransformBy(const TGrafMatrix& matrix)
{

fMatrix.ConcatWith(matrix);

}
void TGrafSearch::EFindResult TBoltTop::Find(TGrafSearch& search) const

if (!search.find(fPolygon, fgrafBundle, Matrix)) {
return search.find(fCircle, fGrafBundle, fMatrix);

}
retum TGrafSearch::kDoneSearching;

The Device Cache

The device cache can potentially be a large object, so care
must be taken to ensure that device caches do not proliferate
throughout the system unexpectedly. If the same base,
GrafPort, is utilized for a number of hierarchies, the hier-
archies would automatically share the cache in the base
GrafPort.

Graphic State Concatenation

FIG. 14 illustrates a hierarchical graphic in accordance
with a preferred embodiment. The graphic consists of a
polygon and an ellipse in a group. Each graphic in the
hierarchy can store a graphic state. For instance, the polygon
and the ellipse each have a TGrafBundle, while the TGroup
stores no graphic state. This architecture is easily understood
until hierarchical states for matrices are considered. To
produce the correct geometry matrix, a graphic’s local view
matrix must be concatenated with the view matrix of its
parent. This concatenated matrix may then be cached by the
graphic that provided it. A graphic’s state must be “concat-
enated” to that of its parent graphic, producing a new, full set
of states that applies to the graphic. When TGroup::Draw is
called, its parent’s graphic port object is passed in. Since the
TGroup has no state of its own, it doesn’t perform any
concatenation. It simply passes its parent’s graphic port
object to the polygon’s Draw call and then to the ellipse’s
Draw call.

The polygon has a TGrafBundle object that must be
concatenated to its parent’s graphic port object. This is
facilitated by creating a local graphic port subclass that can
perform this concatenation. It then makes a call to
TBundleConcatenator::Draw. FIG. 15 illustrates an object
that exists inside the TPolygon’s Draw call in accordance
with a preferred embodiment. Because the TBundleConcat-
enator object is created locally to a TPolygon’s Draw call,
this type of concatenation is transient in nature. This pro-

30

35

40

45

50

55

60

65

cessing is required for particular types of graphic hierar-
chies. For instance, a graphic hierarchy that allows a par-
ticular graphic to be shared by two or more other graphics
must implement transient concatenation because the shared
graphic has multiple parents. FIG. 16 illustrates a graphic
hierarchy that supports sharing of two or more graphics in
accordance with a preferred embodiment. The curve object
in this example is shared by graphics B and C. Thus, the
concatenation must be transient because the results of the
concatenation will be different depending on the branch
taken (B or C).

Graphic objects in a persistent hierarchy require knowl-
edge of parental information, allowing a graphic to be drawn
using its parent’s state without drawing its parent. A graphic
in the hierarchy cannot be shared by multiple parents. Extra
semantics, such as a ConcatenateWithParent call and a Draw
call with no parameters, must be added to the graphic classes
used in the hierarchy. A graphic may use a graphic port
subclass that stores more state, such as a coordinate system
and clip boundary. Thus, each graphic may also want to keep,
its own private device cache.

FIG. 17 is a flowchart of the detailed logic in accordance
with a preferred embodiment. Processing commences at
function block 1700 where a modeling layer object com-
municates with the grafport object 1740 with a fixed set of
geometric objects 1730 and an extensible set of graphic
attribute objects 1720. The grafport object 1740 passes the
geometric object 1730 and graphic attributes 1720 to a
polymorphic graphic device object 1750 which manages
devices (hardware and software) such as a page description
language object 1760, a vector engine object 1770, a graphic
accelerator object 1780, a frame buffer object 1790; or more
traditional graphic devices such as displays, printers or
plotters as depicted in FIG. 1.

While the invention has been described in terms of a
single preferred embodiment, those skilled in the art will
recognize that the invention can be practiced with modifi-

5,455,599

19

cation within the spirit and scope of the appended claims.
Having thus described -our invention, what we claim as
new, and desire to secure by Letters Patent is:
1. An object-oriented graphic system, comprising:
(a) a processor;
(b) a storage under the control of and attached to the
processor;

(c) one or more graphic devices under the control of and
attached to the processor;

(d).a grafport object in the storage of the processor;

(e) a graphic device object in the storage of the processor

for managing one of the one or more graphic devices;

(f) a graphic object in the storage of the processor for

managing graphic processing; and

(g) means for connecting the graphic device object to the

grafport object to output graphic information on the one
of the one or more graphic devices under the control of
the graphic object.

2. A system as recited in claim 1, including a graphic
accelerator graphic device object.

3. A system as recited in claim 1, including a frame buffer
graphic device object.

4. A system as recited in claim 1, including a page
description language graphic device object.

5. A system as recited in claim 1, including a vector
engine graphic device object.

6. A system as recited in claim 1, wherein the grafport
object, the graphic device object and the graphic object are
polymorphic. . ,

7. A system as recited in claim 1, wherein the grafport
object, the graphic device object and the graphic object are
fully extensible.

8. A system as recited in claim 1, including a modeling
layer in the graphic object.

9. A system as recited in claim 8, including a geometric
object and a graphic attribute object in the modeling layer.

10. A system as recited in claim 1, wherein the geometric
object includes geometry for the graphic information.

11. A system as recited in claim 1, wherein the graphic
device objects include displays, printers and plotters.

12. A method for graphic processing in an object-oriented
operating system resident on a computer with a processor, a
storage attached to and under the control of the processor
and a graphic device attached to and under the control of the
processor, comprising the steps of: ’

(a) building a modeling layer object in the storage;

(b) generating calls from the modeling layer object to
grafport object using a predefined set of graphic primi-
tives;

(c) capturing state information and rendering information
at the grafport object; and

5

10

15

20

25

30

35

40

50

55

60

65

20

(d) passing the state information and the rendering infor-
mation to a graphic device object for output on the
graphic device.

13. The method as recited in claim 12, including state
information with transform, appearance and clipping infor-
mation.

14. The method as recited in claim 12, wherein the
graphic device is a software or a hardware graphic processor.

15. An apparatus for graphic processing, comprising:

(a) a processor,

(b) a storage attached to and under the control of the
processor;

(c) a graphic device attached to and under the control of
the processor;

(d) a modeling layer object in the storage;

(e) a grafport object in the storage;

(f) means for generating calls from the modeling layer
object to the grafport object using a predefined set of
graphic primitives;

(g) means for capturing state information and rendering
information at the grafport object; and

(h) means for passing the state information and the
rendering information to a graphic device object for
output on the graphic device.

16. The apparatus as recited in claim 15, wherein the state
information includes transform, appearance and clipping
information.

17. The apparatus as recited in claim 15,
graphic device is a vector engine.

18. The apparatus as recited in claim 15,
graphic device is a graphic accelerator.

19. The apparatus as recited in claim 15,
graphic device is a frame buffer.

20. The apparatus as recited in claim 15,
graphic device is a plotter.

21. The apparatus as recited in claim 15,
graphic device is a printer.

22. The apparatus as recited in claim 15,
graphic device is a display.

23. The apparatus as recited in claim 15,
graphic device is a postscript processor.

24. The apparatus as recited in claim 15, wherein the
modeling layer object includes at least one geometric object
and at least one graphic attribute object.

25. The apparatus as recited in claim 15, wherein an
object includes a method and data.

26. The apparatus as recited in claim 25, wherein the
object is polymorphic and extensible.

wherein the

wherein the

wherein the

wherein the

wherein the

wherein the

wherein the

¥ ok ok ok %k

EXHIBIT 2

000 0 00

United States Patent [[11] Patent Number: 5,519,867
Moeller et al. 451 Date of Patent: *May 21, 1996
{541 OBJECT-ORIENTED MULTITASKING 5,404,529 4/1995 Chemnihoff et al. ...ceecveeervennees 395/700
SYSTEM OTHER PUBLICATIONS
[75] Inventors: Christopher P. Moeller, Los Altos; Proc. of the Summer 1988 Usenix Conf. 20 Jun. 1988, San
Eugenie L. Bolton, Sunnyvale; Daniel Francisco, US, pp. 1-13 “Using the X Toolkit or How to
F. Chernikoff, Palo Alto; Russ.ell T. Write a Widget” by McCormack et al.
Nakano, Sunnyvale, all of Calif. New Directions for Unix. Proc. Autumn 1988 EUUG Conf.

Oct. 3, 1988, Cascais, Portugal, pp. 25-37, Berna-
beu-Auban et al. “Clouds—A Distributed Object—-Based
Operating System Architecture and Kernel Implementa-
tion”.

f73] Assignee: Taligent, Inc., Cupertino, Calif.

[*] Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.

5,379,432. Primary Examiner—Alvin E. Oberley
Assistant Examiner—John Q. Chavis
[21] Appl. No.: 94,673 Attorney, Agent, or Firm—Keith Stephens

[22] Filed: Jul. 19, 1993 [57] ABSTRACT
[51] Int. CL® GOGF 9/40 An apparatus for enabling an object-oriented application to
[52] U.S. CL 3957700 access in an object-oriented manner a procedural operating
[58] Field of Search 395/650, 700 system having a native procedural interface is disclosed. The
i apparatus includes a computer and a memory component in
[56] References Cited the computer. A code library is stored in the memory
U.S. PATENT DOCUMENTS component. The.code librgry inc'ludes computer program
logic implementing an object-oriented class library. The
4,821,220 4/1989 DUSDETE .ccovcereumeeenceerceeenecenens 364/578 object-oriented class library comprises related object-ori-

4,885,717 12/1989 Beck et al.
4,891,630 1/1990 Friedman et al.

.. 364/900 ented classes for enabling the application to access in an
- 340/706 ghject-oriented manner services provided by the operating

ggii’ggg Sﬁgg? gysaft e;al' o - ggjg‘l)g system. The object-oriented classes include methods for
i unmngham et al. ... " accessing the operating system services using procedural
5,050,090 9/1991- Golub et al. 364/478
5060276 10/1991 Mortis et al. . 382/ function calls compatible with the native procedural inter-
5075848 12/1992 Laietal. 39s/425 ~ face of the operating system. The computer processes
5,093,914 3/1992 Coplien et al. ..ooeeeerereeeerresren. 395700 Object-oriented statements contained in the application and
5,119,475 6/1992 Smith et al. ..evreerrrereeriennnne 395/156 defined by the class library by executing methods from the
5,125,091 6/1992 Staas, Jr. et al. ..ooecreenerecenee 395/650 class library corresponding to the object-oriented state-
5,133,075 7/1992 Risch 395/800 ments. The object-oriented application includes support for
5,136,705 8/1992 Stubbs et al. wueeereeverrrrrerrnen 395/575 multi-tasking,
5,151,987 9/1992 Abraham et al. . .. 395/575
5,181,162 1/1993 Smith et al. 364/419
5,379,432 1/1995 Orton et al.cveeeeerevrenerannes 395/700 53 Claims, 17 Drawing Sheets
CODE
o | [~ S8
8|3 g g
2| |2 3 z ’
%] 1% % % Ol
1147 OPERATING SYSTEM L‘DEVICEDRIVERS
L IPC CLASSES 10 CLASS
MICROINSTRUCTION CODE 112 \/ LIBRARY
402
po M L _ 108 | CS:YNCHRONIZATION 2
ey e SCHEDULING
CLASSES 14

2

I

w

(7]

m

[72]
@

18 t 120 t 2 t 126
DRiCE STORAGE ‘ DISPLAY | | PRINTER
DEVICE]
DATA STORAGE |~—122
MEDIUM

CODE
LIBRARY 110

FAULT CLASSES

MACHINE CLASSES 4

hre

8

SECURITY CLASSES 420

May 21, 1996 Sheet 1 of 17 5,519,867

U.S. Patent

_| Advaan
I JHNDI O~ "3a02
WNIQ3n
22l— 3OVHOLS Viva
HOVHDLS 301A30
HILNIHd AV1dSId vivad 1NdNI
7 7 7 >
9oL el 021 8Ll
-~ Advddall o1
on] AdveEl ~
€0l w01 " 901
2L~ 3009 NOILONHLSNIOHOIN
suana 3o3a L W31SAS BNILYHIO -
\ HIddVHM UIddVHM gzt
ol
% 2 6ct | &| | %
3 3 S HE:
per—d 5 = goei~ 5| |5
2 . VOEL
ot 3 3 AN E1 D
ol o ~—zel ol |3
= Z z 2

U.S. Patent May 21, 1996 Sheet 2 of 17 5,519,867

202

START 204

LOCATE IN PROGRAM
OBJECT-ORIENTED
STATEMENT ACCESSING
OPERATING SYSTEM

206

TRANSLATE OBJECT
ORIENTED STATEMENT

TO PROCEDURAL

FUNCTION CALL 208
COMPATIBLE WITH

PROCEDURAL INTERFACE

OF OPERATING SYSTEM

EXECUTE PROCEDURAL

FUNCTION CALL 210

‘ DONE ’. , 212

Figure 2

U.S. Patent May 21, 1996 Sheet 3 of 17 5,519,867

3%\
(smamT)V 304

METHOD CODE IN
TASK ADDRESS
SPACE?

312

LIBRARY SERVER FIND LIBRARY
KNOWN? SERVER

[~ ACCESS LIBRARY SERVER J— 314

AND COPY METHOD CODE
FROM CODE LIBRARY TO
TASK ADDRESS SPACE

EXECUTE METHOD CODE 316

< DONE ’ ., 318

Figure 3

- U.S. Patent May 21, 1996 Sheet 4 of 17 5,519,867

CODE

N\
THREAD CLASSES | _404 L'Bﬁ%m’

TASK CLASSES L _406
VIRTUAL MEMORY
CLASSES ~408
IPC CLASSES ~—410 CLASS
~ LiB:g;RY
SYNCHRONIZATION .
CLASSES A
SCHEDULING
CLASSES ~414

FAULT CLASSES 416

MACHINE CLASSES |_418

SECURITY CLASSES }-_420

FIGURE 4

5,519,867

Sheet 5 of 17

May 21, 1996

U.S. Patent

G ainbi4

Joyoreaghierqry, LA

U LL I~ 2cS
L~
A S[PUBHYSELADL)

02s—’

8¢S SIPURLDSeIZSOL

se|pueH
jsel 18yi0

weidorJpesiy L, 816G
7

8¢S

S[NPSYISPeAIYLL
91—

p1g S[pUEEsELL

¢lg

Sjpueypeal
A\ [PUBHPpRIYLL

Q)

¥0S

0] 8¢

spueHIYSRPIOLL S[PUBHIYSTYPUSSHIOL],

S

_ 1saxajuU]], 1
/ S
90S areSormnglioway I, c0S /

L0S

805

I[pUEHIYSRII0J0WNY .

5,519,867

Sheet 6 of 17

May 21, 1996

U.S. Patent

éc9

vmo\rA 109lqoows | _ ¢ s|pueHse] |

029

KoweAUNyOWAL 819 fiowapjunyodeaH

919 AowapAunyo)

g ainbi4

ojujuoibayioway |

rARe) weanghowspsnonbyuog | weansAyjunyn |

C Yibus
019 ssaippe uejs
uonisodsip

$09 AowsysurjoINOL

809 wes1gsseooywopuey |

yibus|
ssalppe uels

909 weang| 209 abueyliowsy L

5,519,867

Sheet 7 of 17

May 21, 1996

U.S. Patent

AYA

J 9inHi4

14 FA

“ybiguod |

abessapaaniwdodil

80/ abessaNIdIN

wealjgabessopNDdIL

weansHunyo L

¥0L

N\

¢0.

5,519,867

Sheet 8 of 17

May 21, 1996

U.S. Patent

g ainbi4

sreboungluows |
uosodsip

908 Lowspauloino L

Yibus|
- Ssalppe uels

yog—\ 81eboungliowsyy |

¢08

5,519,867

Sheet 9 of 17

May 21, 1996

U.S. Patent

() sipuenH () sipueH

8c6

a|pueHybIHaAIe0aHO8]qeeM L wealSloAleoayisanbay | 926

() wem »
vc6 dnoionemL a|qEIeMIN 0=() s|pueH
\
226
6 241nbi14
. a|pUBHIYBIHaAIB09HLOH | s|pueHiyBiHeouOPUaSUOd |
QL6 a|pueHlosuod L sjpueHYBiypussHod L
16
L6 9|pPUBHISAI200HLOd | s|pueHJepussHod L 016
s|pueHybiyUogetoway])~ Y06

806

AesyajpueHiybigiod L

ajpueHubiHuod L

/ 906

¢06

5,519,867

Sheet 10 of 17

May 21, 1996

U.S. Patent

0L ainbi4

UOIJIPUODIOHUON | ‘ AnuzJonuow L) ‘ 3OO TIONUO L)

e 7

1420) 2 clol

a|pueHaloydewags|qelonoday |

\k

8001

aloydewag|

r

0L0l

aloydewoas|eo0L

\k

9001

\k

voolL

o

¢001t

5,519,867

Sheet 11 of 17

May 21, 1996

U.S. Patent

L1 @inb14

OLLE

pLLL aInpayogaoepelUpeS L

8|NpayoSpeaIY | I9AIaS |

a|npayoguoddng |

9Ll
sinpayogpealy | sipiL

ajnpayoguoneo)iddy |

\ /wo:

a|npeyogeLi] jeayopnasdy

s|npayogpealy] |

YOLL a|pueHpesiyy |

coll1

U.S. Patent May 21, 1996 Sheet 12 of 17 5,519,867

1202
TFaultDesignation 1204
TTaskHandle
1206 TThreadHandle
n 1210
1208 FaultAssociation
(TPortSendRightHandle ’
1212 1212 TFaultTypeSet
TFaultType (EFaultMessageType)
1216 1218
1220
\\\ 1222
F
TFaultType 1230

TMC680X0FaultType etc. for all possible

68K faults

(TMC680X0AddressFault ' (TMC680X0BadAccessFault ’

1226 1228

Figure 12

5,519,867

Sheet 13 of 17

May 21, 1996

U.S. Patent

NNQ(A elpueHpEaIyL |)
A olpueHseL |)~ oec!

abessapine4Anusap|puysielsodiL

glEl

ojeigpeaiy] |

8IEL

abessapyyned8lelSOdIL

14393 ciel

€l ainbi4

alpueHpeay] | OlEL

veet
S|pueHse |

eleqgined L

ozel \‘ adAfineq V

abessapiine4Amusp|ndiL 80€1

abessapiine40diL

90€E1l

aBessapaaniwdieowa)OdlL 2061

5,519,867

Sheet 14 of 17

May 21, 1996

U.S. Patent

80v1

1 ainbi4

ole]ls pealy} ay; 0}
uonppe Ul elep suinjal Jeyl adA yne} yoes 1o}

eleqiinedl

elegssesoypeg]

o0V

covi

5,519,867

Sheet 15 of 17

May 21, 1996

U.S. Patent

EmT\q goWeIPORISOX0890NL U

Gl JHNODIH gest me
ﬁ oIPIOY0B9IONL m COWEIDOEISOX0890INL u v\:.#

m omEm._n_v_omﬁwoxOmoOs_.rU

ozat~(fsvgiseseonL) \\

vmmv)\m Asngoy0B9OINL v m S1eISHNEINO0X08ION.L U(LTI
0] 3=7
02S _.\)\m 81e1SNd40X0890W m 81e1SNdO0X0890N.L u
80G1
7
ommv\(m v si9isibayNdd m sioisiberNdD u
2€s t(ﬁ ajeigpERIL198E L U 91elSPEaIY LOX08IOWL U(so51

~ \
~
~
wn
$0S1)\q ajeigpealyll u /

20s1

5,519,867

Sheet 16 of 17

May 21, 1996

U.S. Patent

gL ® ..:m_ 4 vl
L
clol ; \ a|pueHISOH L
® _
I () 9IpueH}esI0ssad0id] u
alpueH19S10sS8001dpabalinldL 8091

o
ajpueHisoHpabajiad L

" 0L9l Pc\ 1

ajpueH¥se] |

9191

I
9091

8191 o|pueHpeaIyL L a|pUBHI0SS8001d L

eInpayogpealy L |

091

c091

5,519,867

Sheet 17 of 17

May 21, 1996

U.S. Patent

L1 ainbi4

(edA; a1quedwod) spieyut

(uonejuswaidwy 10)) sesn

(eoepua)ul 10}) sesn

- -
1995 0LLL
‘AJ
@) AJ
X 19q8l - x 20L}

5,519,867

1

OBJECT-ORIENTED MULTITASKING
SYSTEM

A portion of the disclosure of this patent application
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as it
appears in the Patent and Trademark Office patent files or
records, but otherwise reserves all copyright rights whatso-
ever.

1. Field Of The Invention

The present invention relates generally to object-oriented
computing environments, and more particularly to a system
and method for providing an object-oriented interface for a
procedural operating system.

2. Background Of the Invention

Object-oriented technology (OOT), which generally
includes object-oriented analysis (OOA), object-oriented
design (OOD), and object-oriented programming (OOP), is
earning its place as one of the most important new tech-
nologies in sofiware development. OOT has already begun
to prove its ability to create significant increases in pro-
grammer productivity and in program maintainability. By
engendering an environment in which data and the proce-
dures that operate on the data are combined into packages
called objects, and by adopting a rule that demands that
objects communicate with one another only through well-
defined messaging paths, OOT removes much of the com-
plexity of traditional, procedure-oriented programming.

The following paragraphs present a brief overview of
some of the more important aspects of OOT. More detailed
discussions of OOT are available in many publicly available
documents, including Object Oriented Design With Appli-
cations by Grady Booch (Benjamin/Cummings Publishing
Company, 1991) and Object-Oriented Requirements Analy-
sis and Logical Design by Donald G. Firesmith (John Wiley
& Sons, Inc., 1993). The basic component of OOT is the
object. An object includes, and is characterized by, a set of
data (also called attributes) and a set of operations (called
methods) that can operate on the data. Generally, an object’s
data may change only through the operation of the object’s
methods.

A method in an object is invoked by passing a message
to the object (this process is called message passing). The
message specifies a method name and an argument list.
When the object receives the message, code associated with
the named method is executed with the formal parameters of
the method bound to the corresponding values in the argu-
ment list. Methods and message passing in OOT are analo-
gous to procedures and procedure calls in procedure-ori-
enied software environments. However, while procedures
operate to modify and return passed parameters, methods
operate to modify the internal state of the associated objects
(by modifying the data contained therein). The combination
of data and methods in objects is called encapsulation.
Perhaps the greatest single benefit of encapsulation is the
fact that the state of any object can only be changed by
well-defined methods associated with that object. When the
behavior of an object is confined to such well-defined
locations and interfaces, changes (that is, code modifica-
tions) in the object will have minimal impact on the other
objects and elements in the system. A second “fringe ben-
efit” of good encapsulation in object-oriented design and
programming is that the resulting code is more modular and
maintainable than code written using more traditional tech-
niques.

20

25

30

35

40

45

50

55

60

65

2

The fact that objects are encapsulated produces another
important fringe benefit that is sometimes referred to as data
abstraction. Abstraction is the process by which complex
ideas and structures are made more understandable by the
removal of detail and the generalization of their behavior.
From a software perspective, abstraction is in many ways the
antithesis of hard-coding. Consider a software windowing
example: if every detail of every window that appears on a
user’s screen in a graphical user interface (GUI)-based
program had to have all of its state and behavior hard-coded
into a program, then both the program and the windows it
contains would lose almost all of their flexibility. By
abstracting the concept of a window into a window object,
object-oriented systems permit the programmer to think only
about the specific aspects that make a particular window
unique. Behavior shared by all windows, such as the ability
to be dragged and moved, can be shared by all window
objects.

This leads to another basic component of OOT, which is
the class. A class includes a set of data attributes plus a set
of allowable operations (that is, methods) on the data
attributes. Each object is an instance of some class. As a
natural outgrowth of encapsulation and abstraction, OOT
supports inheritance. A class (called a subclass) may be
derived from another class (called a base class, a parent
class, etc.) wherein the subclass inherits the data attributes
and methods of the base class. The subclass may specialize
the base class by adding code which overrides the data
and/or methods of the base class, or which adds new data
attributes and methods. Thus, inheritance represents a
mechanism by which abstractions are made increasingly
concrete as subclasses are created for greater levels of
specialization. Inheritance is a primary contributor to the
increased programmer efficiency provided by OOP. Inherit-
ance makes it possible for developers to minimize the
amount of new code they have to write to create applica-
tions. By providing a significant portion of the functionality
needed for a particular task, classes in the inheritance
hierarchy give the programmer a head start to program
design and creation. One potential drawback to an object-
oriented environment lies in the proliferation of objects that
must exhibit behavior which is similar and which one would
like to use as a single message name to describe. Consider,
for example, an object-oriented graphical environment: if a
Draw message is sent to a Rectangle object, the Rectangle
object responds by drawing a shape with four sides. A
Triangle object, on the other hand, responds by drawing a
shape with three sides. Ideally, the object that sends the
Draw message remains unaware of either the type of object
to which the message is addressed or of how that object that
receives the message will draw itself in response. If this
ideal can be achieved, then it will be relatively simple to add
anew kind of shape later (for example, a hexagon) and leave
the code sending the Draw message completely unchanged.

In conventional procedure-oriented languages, such a
linguistic approach would wreak havoc. In OOT environ-
ments, the concept of polymorphism enables this to be done
with impunity. As one consequence, methods can be written
that generically tell other objects to do something without
requiring the sending object to have any knowledge at all
about the way the receiving object will understand the
message. Software programs, be they object-oriented, pro-
cedure-oriented, rule based, etc., almost always interact with
the operating system to access the services provided by the
operating system. For example, a software program may
interact with the operating system in order to access data in
memory, to receive information relating to processor faults,

5,519,867

3

to communicate with other processes, or to schedule the
execution of a process.

Most conventional operating systems are procedure-
oriented and include native procedural interfaces. Conse-
quently, the services provided by these operating systems
can only be accessed by using the procedures defined by
their respective procedural interfaces. If a program needs to
access a service provided by one of these procedural oper-
ating systems, then the program must include a statement to
make the appropriate operating system procedure call. This
is the case, whether the software program is object-oriented,
procedure-oriented, rule based, etc. Thus, conventional
operating systems provide procedure-oriented environments
in which to develop and execute software. Some of the
advantages of OOT are lost when an object-oriented pro-
gram is developed and executed in a procedure-oriented
environment. This is true, since all accesses to the proce-
dural operating system must be implemented using proce-
dure calls defined by the operating system’s native proce-
dural interface. Consequently, some of the modularity,
maintainability, and reusability advantages associated with
object-oriented programs are lost since it is not possible to
utilize classes, objects, and other OOT features to their
fullest extent possible.

One solution to this problem is to develop object-ori-
ented operating systems having native object-oriented inter-
faces. While this ultimately may be the best solution, it
currently is not a practical solution since the resources
required to modify all of the major, procedural operating
systems would be enormous. Also, such a modification of
these procedural operating systems would render useless
thousands of procedure-oriented software programs. There-
fore, what is needed is a mechanism for enabling an object-
oriented application to interact in an object-oriented manner
with a procedural operating system having a native proce-
dural interface.

SUMMARY OF THE INVENTION

The present invention is directed to a system and method
of enabling an object-oriented application to access in an
object-oriented manner a procedural operating system hav-
ing a native procedural interface. The system includes a
computer and a memory component in the computer. A code
library is stored in the memory component. The code library
includes computer program logic implementing an object-
oriented class library. The object-oriented class library com-
prises related object-oriented classes for enabling the appli-
cation to access in an object-oriented manner services
provided by the operating system. The object-oriented
classes include methods for accessing the operating system
services using procedural function calls compatible with the
native procedural interface of the operating system. The
system also includes means for processing object-oriented
statements contained in the application and defined by the
class library by executing methods from the class library
corresponding to the object-oriented statements.

Preferably, the class library includes:

(1) thread classes for enabling an application to access in
an object-oriented manner operating system services to
spawn, control, and obtain information relating to threads;

(2) task classes for enabling an application to access in an
object-oriented manner operating system services to refer-
ence and control tasks, wherein the tasks each represents an
execution environment for threads respectively associated
with the tasks;

10

15

20

25

35

40

50

55

60

65

4

(3) virtual memory classes for enabling an application to
access in an object-oriented manner operating system ser-
vices to access and manipulate virtual memory in a com-
puter;

(4) interprocess communication (IPC) classes for
enabling an application to access in an object-oriented
manner operating system services to communicate with
other threads during run-time execution of the application in
a computer;

(5) synchronization classes for enabling an application to
access in an object-oriented manner operating system ser-
vices to synchronize execution of threads;

(6) scheduling classes for enabling an application to
access in an object-oriented manner operating system ser-
vices to schedule execution of threads;

(7) fault classes for enabling an application to access in an
object-oriented manner operating system services to process
system and user-defined processor faults; and

(8) machine classes for enabling an application to access
in an object-oriented manner operating system services to
define and modify a host and processor sets.

Further features and advantages of the present invention,
as well as the structure and operation of various embodi-
ments of the present invention, are described in detail below
with reference to the accompanying drawings, and in the
claims. In the drawings, identical reference numbers indicate
identical or functionally similar elements.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described with reference to
the accompanying drawings, wherein:

FIG. 1 illustrates a block diagram of a computer platform
in which a wrapper of the present invention operates;

FIG. 2 is a high-level flow chart illustrating the operation
of the present invention;

FIG. 3 is a more detailed flowchart illustrating the opera-
tion of the present invention;

FIG. 4 is a block diagram of a code library containing an
object-oriented class library of the present invention;

FIG. 5 is a class diagram of thread and task classes of the
present invention;

FIG. 6 is a class diagram of virtual memory classes of the
present invention;

FIGS. 7-9 are class diagrams of interprocess communi-
cation classes of the present invention;

FIG. 10 is a class diagram of synchronization classes of
the present invention;

FIG. 11 is a class diagram of scheduling classes of the
present invention;

FIGS. 12-15 are class diagrams of fault classes of the
present invention;

FIG. 16 is a class diagram of host and processor set
(machine) classes of the present invention; and

FIG. 17 illustrates well-known icons for representing
class relationships and cardinality in class diagrams.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Computing Environment

The present invention is directed to a system and method
for providing an object-oriented interface to a procedural
operating system having a native procedural interface. The

5,519,867

5

present invention emulates an object-oriented software envi-
ronment on a computer platform having a procedural oper-
ating system. More particularly, the present invention is
directed to a system and method of enabling an object-
oriented application to access in an object-oriented manner
a procedural operating system having a native procedural
interface during run-time execution of the application in a
computer. The present invention is preferably a part of the
run-time environment of the computer in which the appli-
cation executes. In this patent application, the present inven-
tion is sometimes called an object-oriented wrapper since it
operates to wrap a procedural operating system with an
object-oriented software layer such that an object-oriented
application can access the operating system in an object-
oriented manner.

FIG. 1 illustrates a block diagram of a computer platform
102 in which a wrapper 128, 129 of the present invention
operates. It should be noted that the present invention
alternatively encompasses the wrapper 128, 129 in combi-
nation with the computer platform 102. The computer plat-
form 102 includes hardware components 103, such as a
random access memory (RAM) 108 and a central processing
unit (CPU) 106. It should be noted that the CPU 106 may
represent a single processor, but preferably represents mul-
tiple processors operating in parallel. The computer platform
102 also includes peripheral devices which are connected to
the hardware components 103. These peripheral devices
include an input device or devices (such as a keyboard, a
mouse, a light pen, etc.), a data storage device 120 (such as
a hard disk or floppy disk), a display 124, and a printer 126.
The data storage device 120 may interact with a removable
data storage medium 122 (such as a removable hard disk, a
magnetic tape cartridge, or a floppy disk), depending on the
type of data storage device used. The computer platform 102
also includes a procedural operating system 114 having a
native procedural interface (not shown). The procedural
interface includes procedural functions which are called to
access services provided by the operating system 102.

The computer platform 102 further includes device driv-
ers 116, and may include microinstruction code 112 (also
called firmware). As indicated in FIG. 1, in performing their
required functions the device drivers 116 may interact with
the operating system 114. Application programs 130, 132,
134 (described further below) preferably interact with the
device drivers 116 via the operating system 114, but may
alternatively interact directly with the device drivers 116. It
should be noted that the operating system 114 may represent
a substantially full-function operating system, such as the
Disk Operating System (DOS) and the UNIX operating
system. However, the operating system 114 may represent
other types of operating systems. For purposes of the present
invention, the only requirement is that the operating system
114 be a procedural operating system having a native
procedural interface. Preferably, the operating system 114
represents a limited functionality procedural operating sys-
tem, such as the Mach micro-kernel developed by CMU,
which is well-known to those skilled in the relevant art. For
illustrative purposes only, the present invention shall be
described herein with reference to the Mach micro-kernel. In
a preferred embodiment of the present invention, the com-
puter platform 102 is an International Business Machines
(IBM) computer or an IBM-compatible computer. In an
alternate embodiment of the present invention, the computer
platform 102 is an Apple computer.

Overview of a Wrapper

Various application programs 130, 132, 134 preferably
operate in parallel on the computer platform 102. Preferably,

15

20

25

30

35

40

45

50

55

60

65

6

the application programs 130, 132, 134 are adapted to
execute in different operating environments. For example,
the application programs 130A and 130B may be adapted to
operate in an object-oriented environment. The application
program 132 may be adapted to operate in a Microsoft
Windows environment, an IBM PS/2 environment, or a Unix
environment. As will be appreciated by those skilled in the
relevant art, the application programs 130A, 130B, and 132
cannot interact directly with the operating system 114 unless
the operating system 114 implements an environment in
which the application programs 130A, 130B, and 132 are
adapted to operate. For example, if the application 132 is
adapted to operate in the IBM PS/2 environment, then the
application 132 cannot directly interact with the operating
system 114 unless the operating system 114 is the IBM PS/2
operating system (or compatible). If the application pro-
grams 130A and 130B are adapted to operate in an object-
oriented environment, then the applications 130A, 130B
cannot directly interact with the operating system 114 since
the operating system 114 has a procedural interface. In the
example shown in FIG. 1, the application 134 is adapted to
operate in the computing environment created by the oper-
ating system 114, and therefore the application 134 is shown
as being connected directly to the operating system 114.

The wrapper 128 is directed to a mechanism for providing
the operating system 114 with an object-oriented interface.
The wrapper 128 enables the object-oriented applications
130A, 130B to directly access in an object-oriented manner
the procedural operating system 114 during run-time execu-
tion of the applications 130A, 130B on the computer plat-
form 102. The wrapper 129 is conceptually similar to the
wrapper 128. The wrapper 129 provides an IBM PS/2
interface for the operating system 114, such that the appli-
cation 132 can directly access in a PS/2 manner the proce-
dural operating system 114 (assuming that the application
132 is adapted to operate in the IBM PS/2 environment). The
discussion of the present invention shall be limited herein to
the wrapper 128, which provides an object-oriented inter-
face to a procedural operating system having a native
procedural interface.

The wrapper 128 is preferably implemented as a code
library 110 which is stored in the RAM 108. The code library
110 may also be stored in the data storage device 120 and/or
the data storage medium 122. The code library 110 imple-
ments an object-oriented class library 402 (see FIG. 4). In
accordance with the present invention, the object-oriented
class library 402 includes related object-oriented classes for
enabling an object-oriented application (such as the appli-
cations 130A and 130B) to access in an object-oriented
manner services provided by the operating system 114. The
object-oriented classes comprise methods which include
procedural function calls compatible with the native proce-
dural interface of the operating system 114. Object-oriented
statements defined by the object-oriented class library 402
(such as object-oriented statements which invoke one or
more of the methods of the class library 402) are insertable
into the application 130 to enable the application 130 to
access in an object-oriented manner the operating system
services during run-time execution of the application 130 on
the computer platform 102. The object-oriented class library
402 is further described in sections below.

The code library 110 preferably includes compiled,
executable computer program logic which implements the
object-oriented class library 402. The computer program
logic of the code library 110 is not linked to application
programs. Instead, relevant portions of the code library 110
are copied into the executable address spaces of processes

5,519,867

7

during run-time. This is explained in greater detail below.
Since the computer program logic of the code library 110 is
not linked to application programs, the computer program
logic can be modified at any time without having to modify,
recompile and/or relink the application programs (as long as
the interface to the code library 110 does not change). As
noted above, the present invention shall be described herein
with reference to the Mach micro-kernel, although the use of
the present invention to wrap other operating systems falls
within the scope of the present invention.

The Mach micro-kernel provides users with a number of
services with are grouped into the following categories:
threads, tasks, virtual memory, interprocess communication
(IPC), scheduling, synchronization, fault processing, and
host/processor set processing. The class library 402 of the
present invention includes a set of related classes for each of
the Mach service categories. Referring to FIG. 4, the class
library 402 includes:

(1) thread classes 404 for enabling an application to
access in an object-oriented manner operating system ser-
vices to spawn, control, and obtain information relating to
threads;

(2) task classes 406 for enabling an application to access
in an object-oriented manner operating system services to
reference and control tasks, wherein the tasks each repre-
sents an execution environment for threads respectively
associated with the tasks;

(3) virtual memory classes 408 for enabling an application
to access in an object-oriented manner operating system
services to access and manipulate virtual memory in a
computer;

(4) IPC classes 410 for enabling an application to access
in an object-oriented manner operating system services to
communicate with other processes during run-time execu-
tion of the application in a computer;

(5) synchronization classes 412 for enabling an applica-
tion to access in an object-oriented manner operating system
services to synchronize execution of threads;

(6) scheduling classes 414 for enabling an application to
access in an object-oriented manner operating system ser-
vices to schedule execution of threads;

(7) fault classes 416 for enabling an application to access
in an object-oriented manner operating system services to
process system and user-defined processor faults; and

(8) machine classes 418 for enabling an application to
access in an object-oriented manner operating system ser-
vices to define and modify a host and processor sets.

The class library 402 may include additional classes for
other service categories that are offered by Mach in the
future. For example, security services are currently being
developed for Mach. Accordingly, the class library 402 may
also include security classes 420 for enabling an application
to access in an object-oriented manner operating system
security services. As will be appreciated, the exact number
and type of classes included in the class library 402 depends
on the implementation of the underlying operating system.

Operational Overview of a Preferred Embodiment

The operation of the present invention shall now be
generally described with reference to FIG. 2, which illus-
trates a high-level operational flow chart 202 of the present
invention. The present invention is described in the context
of executing the object-oriented application 130A on the
computer platform 102. In step 206, which is the first

10

15

25

30

35

40

45

50

55

60

65

8

substantive step of the flow chart 202, an object-oriented
statement which accesses a service provided by the operat-
ing system 114 is located in the application 130A during the
execution of the application 130A on the computer platform
102. The object-oriented statement is defined by the object-
oriented class library 402. For example, the object-oriented
statement may reference a method defined by one of the
classes of the class library 402. The following steps describe
the manner in which the statement is executed by the
computer platform 102.

In step 208, the object-oriented statement is translated to
a procedural function call compatible with the native pro-
cedural interface of the operating system 114 and corre-
sponding to the object-oriented statement. In performing
step 208, the statement is translated to the computer program
logic from the code library 110 which implements the
method referenced in the statement. As noted above, the
method includes at least one procedural function call which
is compatible with the native procedural interface of the
operating system 114. In step 210, the procedural function
call from step 208 is executed in the computer platform 102
to thereby cause the operating system 114 to provide the
service on behalf of the application 130A. Step 210 is
performed by executing the method discussed in step 208,
thereby causing the procedural function call to be invoked.

The operation of a preferred embodiment shall now be
described in more detail with reference to FIG. 3, which
illustrates a detailed operational flow chart 302 of the
present invention. Again, the present invention is described
in the context of executing the object-oriented application
130A on the computer platform 102. More particularly, the
present invention is described in the context of executing a
single object-oriented statement of the object-oriented appli-
cation 130A on the computer platform 102. The application
130A includes statements which access services provided by
the operating system 114, and it is assumed that such
statements are defined by the class library 402 (in other
words, the programmer created the application 130A with
reference to the class library 402). As will be discussed in
greater detail below, the executable entity in the Mach
micro-kernel is called a thread. The processing organization
entity in the Mach micro-kernel is called a task. A task
includes one or more threads (which may execute in paral-
lel), and an address space which represents a block of virtual
memory in which the task’s threads can execute. At any
time, there may be multiple tasks active on the computer
platform 102. When executing on the computer platform
102, the application 130A could represent an entire task
(having one or more threads), or could represent a few
threads which are part of a task (in this case, the task would
have other threads which may or may not be related to the
operation of the application 130A). The scope of the present
invention encompasses the case when the application 130A
is an entire task, or just a few threads of a task.

Referring now to FIG. 3, in step 308, it is determined
whether the computer program logic (also called computer
code) from the code library 110 which implements the
method referenced in the statement is present in the task
address space associated with the application 130A. If the
computer program logic is present in the task address space,
then step 316 is processed (described below). If the com-
puter program logic is not present in the task address space,
then the computer program logic is transferred to the task
address space in steps 310, 312, and 314. In step 310, it is
determined whether the library server (not shown) associ-
ated with the code library 110 is known. The code library
110 may represent multiple code libraries (not shown)

5,519,867

9

related to the wrapper 128, wherein each of the code
libraries include the computer program logic for one of the
object-oriented classes of the class library 402. As those
skilled in the relevant art will appreciate, there may also be
other code libraries (not shown) completely unrelated to the
wrapper 128.

Associated with the code libraries are library servers, each
of which manages the resources of a designated code library.
A processing entity which desires access to the computer
program logic of a code library makes a request to the code
library’s library server. The request may include, for
example, a description of the desired computer program
logic and a destination address to which the computer
program logic should be sent. The library server processes
the request by accessing the desired computer program logic
from the code library and sending the desired computer
program logic to the area of memory designated by the
destination address. The structure and operation of library
servers are well known to those skilled in the relevant art.
Thus, in step 310 it is determined whether the library server
associated with the code library 110 which contains the
relevant computer program logic is known. Step 310 is
performed, for example, by referencing a library server table
which identifies the known library servers and the code
libraries which they service. If the library server is known,
then step 314 is processed (discussed below). Otherwise,
step 312 is processed. In step 312, the library server asso-
ciated with the code library 110 is identified. The identity of
the library server may be apparent, for example, from the
content of the object-oriented statement which is being
processed.

After the library server associated with the code library
110 is identified, or if the Library server was already known,
then step 314 is processed. In step 314, a request is sent to
the library server asking the library server to copy the
computer program logic associated with the method refer-
ence in the statement to the task address space. Upon
completion of step 314, the library server has copied the
requested computer program logic to the task address space.
Preferably, the code library 110 is a shared library. That is,
the code library 110 may be simultaneously accessed by
multiple threads. However, preferably the computer pro-
gram logic of the code library 110 is physically stored in
only one physical memory area. The library server virtually
copies computer program logic from the code library 110 to
task address spaces. That is, instead of physically copying
computer program logic from one part of physical memory
to another, the library server places in the task address space
a pointer to the physical memory area containing the rel-
evant computer program logic. In step 316, the computer
program logic associated with the object-oriented statement
is executed on the computer platform 102. As noted above,
in the case where the object-oriented statement accesses the
operating system 114, the computer program logic associ-
ated with the method contains at least one procedural
function call which is compatible with the native procedural
interface of the operating system 114. Thus, by executing the
method’s computer program logic, the procedural function
call is invoked and executed, thereby causing the operating
system 114 to provide the service on behalf of the applica-
tion 130A.

The above-described performance in the computer plat-
form 102 of steps 306, 308, 310, 312, and 314 is due, in large
part, to the run-time environment established in the com-
puter platform 102. As will be appreciated by those skilled
in the relevant art, the run-time environment of the computer
platform 102 is defined by the run-time conventions of the

10

20

25

30

35

40

45

50

55

60

65

10

particular compiler which compiles the application program
130A. For example, the run-time conventions may specify
that when an instruction accessing an operating system
service is encountered, corresponding code from the code
library 110 should be transferred to the task address space
(via the associated library server) and executed. Compiler
run-time conventions are generally well known. As will be
appreciated, run-time conventions are specific to the par-
ticular compilers used. The run-time conventions for use
with the present invention and with a particular compiler
would be apparent to one skilled in the art based on the
disclosure of the present invention contained herein, par-
ticularly to the disclosure associated with the flow chart 302
in FIG. 3. As described above, the wrapper 128 of the
present invention is implemented as a code library 110
which includes computer program logic implementing the
object-oriented class library 402. Alternatively, the wrapper
128 may be implemented as a hardware mechanism which
essentially operates in accordance with the flow chart 302 of
FIG. 3 to translate object-oriented statements (defined by the
class library 402) in application programs to procedural
function calls compatible with the procedural interface of
the operating system 114. Or, the wrapper 128 may be
implemented as a background software process operating on
the computer platform 102 which captures all accesses to the
operating system 114 (made by object-oriented statements
defined by the class library 402) and which translates the
accesses to procedural function calls compatible with the
procedural interface of the operating system 114. Other
implementations of the wrapper 128 will be apparent to
those skilled in the relevant art based on the disclosure of the
present invention contained herein.

Mach Services

This section provides an overview of the abstractions and
services provided by the Mach micro-kemel. The services
are described for each of the major areas of the Mach
micro-kernel. As noted above, these include: threads, tasks,
virtual memory, IPC, scheduling, synchronization services,
hardware faults, and host/privilege services (also called
machine services). The Mach micro-kernel is further dis-
cussed in many publicly available documents, including: K.
Loepere, editor, “Mach 3 Kernel Principles”, Open Software
Foundation and Carnegie Mellon University, Draft Indus-
trial Specification, September 1992 and November 1992; K.
Loepere, editor, “Mach 3 Kemel Interfaces”, Open Software
Foundation and Carnegie Mellon University, Draft Indus-
trial Specification, September 1992 and November 1992; K.
Loepere, editor, “Mach 3 Server Writer's Guide”, Open
Software Foundation and Carnegie Mellon University, Draft
Industrial Specification, September 1992 and November
1992; K. Loepere, editor, “Mach 3 Server Writer’s Inter-
faces”, Open Software Foundation and Carnegie Mellon
University, Draft Industrial Specification, September 1992
and November 1992; A. Silberschatz, J. Peterson, P. Galvin,
Operating System Concepts, Addison-Wesley, July 1992;
and A. Tanenbaum, Modern Operating Systems, Prentice
Hall, 1992.

Threads

The executable entity in Mach is known as a thread.
Threads have several aspects that enable them to execute in
the system. A thread is always contained in a task, which
represents most of the major resources (e.g., address space)
of which the thread can make use. A thread has an execution
state, which is basically the set of machine registers and

5,519,867

1

other data that make up its context. A thread is always in one
of several scheduling states: executing, ready to execute, or
blocked for some reason. Threads are intended to be light-
weight execution entities. This is to encourage the program-
mer to make use of multiple threads in applications, thus
introducing more concurrency into the system than has been
found in traditional operating systems. Although threads are
not without some cost, they really are fairly minimal and the
typical application or server in a Mach environment can take
advantage of this capability.

Threads do have some elements associated with them,
however. The containing task and address space, as well as
the execution state, have already been discussed. Each
thread has a scheduling policy, which determines when and
how often the thread will be given a processor on which to
run. The scheduling services are discussed in more detail in
a later section. Closely tied to the scheduling policy of a
thread is the optional processor set designation, which can
be used in systems with multiple processors to more closely
control the assignment of threads to processors for poten-
tially greater application performance. As indicated before,
an address space (task) can contain zero or more threads,
which execute concurrently. The kernel makes no assump-
tions about the relationship of the threads in an address space
or, indeed, in the entire system. Rather, it schedules and
executes the threads according to the scheduling parameters
associated with them and the available processor resources
in the system. In particular, there is no arrangement (e.g.,
hierarchical) of threads in an address space and no assump-
tions about how they are to interact with each other. In order
to control the order of execution and the coordination of
threads to some useful end, Mach provides several synchro-
nization mechanisms. The simplest (and coarsest) mecha-
nism is thread-level suspend and resume operations. Each
thread has a suspend count, which is incremented and
decremented by these operations. A thread whose suspend
count is positive remains blocked until the count goes to
Zero.

Finer synchronization can be obtained through the use of
synchronization objects (semaphores or monitors and con-
ditions), which allow a variety of different synchronization
styles to be used. Threads can also interact via inter-process
communication (IPC). Each of these services is described in
more detail in later sections. Basic operations exist to
support creation, termination, and getting and setting
attributes for threads. Several other control operations exist
on threads that can be performed by any thread that has a
send right to the intended thread’s control port. Threads can
be terminated explicitly. They can also be interrupted from
the various possible wait situations and caused to resume
execution with an indication that they were interrupted.
Threads can also be “wired”, which means that they are
marked as privileged with respect to kernel resources, i.e.,
they can consume physical memory when free memory is
scarce. This is used for threads in the default page-out path.
Finally, threads also have several important IPC ports (more
precisely, the send or receive rights to these ports), which are
used for certain functions. In particular, each thread has a
thread self port, which can be used to perform certain
operations on the thread by itself. A thread also has a set of
fault ports which is used when the thread encounters a
processor fault during its execution. There is also a distin-
guished port that can be used for gathering samples of the
thread’s execution state for monitoring by other threads such
as debuggers or program profilers.

10

20

25

30

35

40

45

50

55

60

65

12
Tasks

The basic organizational entity in Mach for which
resources are managed is known as a task. Tasks have many
objects and attributes associated with them. A task funda-
mentally comprises three things. A task contains multiple
threads, which are the executable entities in the system. A
task also has an address space, which represents virtual
memory in which its threads can execute. And a task has a
port name space, which represents the valid IPC ports
through which threads can communicate with other threads
in the system. Each of these fundamental objects in a task is
discussed in greater detail in the following sections. Note
that a task is not, of itself, an executable entity in Mach.
However, tasks can contain threads, which are the execution
entities. A task has a number of other entities associated with
it besides the fundamental ones noted above. Several of
these entities have to do with scheduling decisions the kernel
needs to make for the threads contained by the task. The
scheduling parameters, processor set designation, and host
information all contribute to the scheduling of the task’s
threads. A task also has a number of distinguished interpro-
cess communication ports that serve certain pre-defined
functions. Ports and other aspects of interprocess commu-
nication are discussed at length in a later section. For now,
it is sufficient to know that port resources are accumulated
over time in a task. Most of these are managed explicitly by
the programmer. The distinguished ports mentioned above
generally have to do with establishing connections to several
important functions in the system. Mach supplies three
“special” ports with each task. The first is the task self port,
which can be used to ask the kernel to perform certain
operations on the task. The second special port is the
bootstrap port, which can be used for anything (it’s OS
environment-specific) but generally serves to locate other
services. The third special port that each task has is the host
name port, which allows the task to obtain certain informa-
tion about the machine on which it is running. Additionally,
Mach supplies several “registered” ports with each task that
allow the threads contained in the task to communicate with
certain higher-level servers in the system (e.g., the Network
Name Server, the “Service” Server, and the Environment
Server).

Two other useful sets of ports exist for each task that
allow fault processing and program state sampling to be
performed. The fault ports of a task provide a common place
for processor faults encountered by threads in the task to be
processed. Fault processing is described more fully in a later
section. The PC sample port allows profiling tools to repeat-
edly monitor the execution state of the threads in the task.
Many operations are possible for tasks. Tasks can be created
and terminated. Creation of a new task involves specifying
some existing task as a prototype for the initial contents of
the address space of the new task. A task can also be
terminated, which causes all of the contained threads to be
terminated as well. The threads contained in a task can be
enumerated and information about the threads can be
extracted. Coarse-grain execution of a task (more precisely,
the threads in the task) can be controlled through suspend
and resume operations. Each task has a suspend count that
is incremented and decremented by the suspend and resume
operations. The threads in the task can execute as long as the
suspend count for the containing task is zero. When the
suspend count is positive, all threads in the task will be
blocked until the task is subsequently resumed. Finally, the
various parameters and attributes associated with a task
(e.g., scheduling priority) can be queried and set as desired.

5,519,867

13
Virtual Memory

Mach supports several features in its virtual memory
(VM) subsystem. Both the external client interfaces as well
as the internal implementation offer features that are not
found in many other operating systems. In broadest terms,
the Mach virtual memory system supports a large sparsely
populated virtual address space for each of the tasks running
in the system. Clients are provided with general services for
managing the composition of the address space. Some
aspects of the VM system are actually implemented by
components that are outside of the micro-kernel, which
allows great flexibility in tailoring certain policy functions to
different system environments. The internal architecture of
the Mach VM system has been divided into machine-
independent and machine-dependent modules for maximum
portability. Porting to a new processor/MMU architecture is
generally a small matter of implementing a number of
functions that manipulate the basic hardware MMU struc-
tures. Mach has been ported to a number of different
processor architectures attesting to the portability of the
overall kernel and the virtual memory system in particular.
The address space of a Mach task contains a number of
virtual memory regions. These regions are pieces of virtual
address space that have been allocated in various ways for
use by the task. They are the only locations where memory
can be legitimately accessed. All references to addresses
outside of the defined regions in the address space will result
in an improper memory reference fault. A virtual memory
region has several interesting attributes. It has a page-
aligned starting address and a size, which must be a multiple
of the system page size. The pages in the region all have the
same access protections; these access protections can be
read-only, read-write, or execute. The pages in a region also
have the same inheritance characteristic, which may be used
when a new task is created from the current task. The
inheritance characteristic for pages in a region can be set to
indicate that a new task should inherit a read-write copy of
the region, that it should inherit a virtual copy of the region,
or that it should inherit no copy of the region. A read-write
copy of a region in a new address space provides a fully
shared mapping of the region between the tasks, while a
virtual copy provides a copy-on-write mapping that essen-
tially gives each task its own copy of the region but with
efficient copy-on-write sharing of the pages constituting the
region.

Every virtual memory region is really a mapping of an
abstract entity known as a memory object. A memory object
is simply a collection of data that can be addressed in some
byte-wise fashion and about which the kernel makes no
assumptions. It is best thought of as some pure piece of data
that can either be explicitly stored some place or can be
produced in some fashion as needed. Many different things
can serve as memory objects. Some familiar examples
include files, ROMs, disk partitions, or fonts. Memory
objects have no pre-defined operations or protocol that they
are expected to follow. The data contained in a memory
object can only be accessed when it has been tied to a VM
region through mapping. After a memory object has been
mapped to a region, the data can be accessed via normal
memory read and write (load and store) operations. A
memory object is generally managed by a special task
known as an external memory manager or pager. A pager is
a task that executes outside of the micro-kemel much like
any other task in the system. It is a user-mode entity whose
job is to handle certain requests for the data of the memory
objects it supports. As threads in a client task reference the
pages in a given region, the kernel logically fills the pages

10

15

20

25

30

35

40

45

50

55

65

14

with the data from the corresponding byte addresses in the
associated memory object. To accomplish this the kernel
actually engages in a well-defined (and onerous) protocol
with the pager whenever it needs to get data for page faults
or when it needs to page-out data due to page replacements.
This protocol, which is known as the External Memory
Management Interface (or EMMI), also handles the initial-
ization sequences for memory objects when they are mapped
by client tasks and the termination sequences when any
associated memory regions are deallocated by client tasks.

There can be any number of pagers running in the system
depending on which memory objects are in use by the
various client tasks. Pagers will typically be associated with
the various file systems that are mounted at a given time, for
example. Pagers could also exist to support certain database
applications, which might have needs for operations beyond
what is supported by the file system. Pagers could also exist
for certain servers that wish to supply data to their clients in
non-standard ways (e.g., generating the data computation-
ally rather than retrieving it from a storage subsystem). The
micro-kernel always expects to have a certain distinguished
pager known as the default pager running in the system. The
default pager is responsible for managing the memory
objects associated with anonymous virtual memory such
stacks, heaps, etc. Such memory is temporary and only of
use while a client task is running. As described above, the
main entities in the Mach VM system are regions, memory
objects, and pagers. Most clients, however, will deal with
virtual memory through operations on ranges of memory. A
range can be a portion of a region or it could span multiple
contiguous regions in the address space. Operations are
provided by Mach that allow users to allocate new ranges of
virtual memory in the address space and deallocate ranges as
desired. Another important operation allows a memory
object to be mapped into a range of virtual memory as
described above. Operations are also available to change the
protections on ranges of memory, change the inheritance
characteristics, and wire (or lock) the pages of a range into
physical memory. It is also possible to read ranges of
memory from another task or write into ranges in another
task provided that the control port for the task is available.
Additional services are available that allow the user to
specify the expected reference pattern for a range of
memory. This can be used by the kernel as advice on ways
to adapt the page replacement policy to different situations.
Yet another service is available to synchronize (or flush) the
contents of a range of memory with the memory object(s)
backing it. Finally services are available to obtain informa-
tion about regions and to enumerate the contents of a task’s
address space described in terms of the regions it contains.

Interprocess Communication

Mach has four concepts that are central to its interprocess
communications facilities: Ports, Port Sets, Port Rights, and
Messages. One of these concepts, Port Rights, is also used
by Mach as a means to identify certain common resources in
the system (such as threads, tasks, memory objects, etc.).

Ports

Threads use ports to communicate with each other. A port
is basically a message queue inside the kemel that threads
can add messages to or remove message from, if they have
the proper permissions to do so. These “permissions” are
called port rights. Other attributes associated with a port,
besides port rights, include a limit on the number of mes-

5,519,867

15

sages that can be enqueued on the port, a limit on the
maximum size of a message that can be sent to a port, and
a count of how many rights to the port are in existence. Ports
exist solely in the kernel and can only be manipulated via
port rights.

Port Rights

A thread can add a message to a port’s message queue if
it has a send right to that port. Likewise, it can remove a
message from a port’s message queue if it has a receive right
to that port. Port rights are considered to be resources of a
task, not an individual thread. There can be many send rights
to a port (held by many different tasks); however, there can
only be one receive right to a port. In fact, a port is created
by allocating a receive right and a port is destroyed only
when the receive right is deallocated (either explicitly or
implicitly when the task dies). In addition, the attributes of
a port are manipulated through the receive right. Multiple
threads (on the same or different tasks) can send to a port at
the same time, and multiple threads (on the same task) can
receive from a port at the same time. Port rights act as a
permission or capability to send messages to or receive
messages from a port, and thus they implement a low-level
form of security for the system. The “owner” of a port is the
task that holds the receive right. The only way for another
task to get a send right for a port is if it is explicitly given
the right—either by the owner or by any task that holds a
valid send right for the port. This is primarily done by
including the right in a message and sending the message to
another task. Giving a task a send right grants it permission
to send as many messages to the port as it wants. There is
another kind of port right called a send-once right that only
allows the holder to send one message to the port, at which
time the send-once right become invalid and can’t be used
again. Note that ownership of a port can be transferred by
sending the port’s receive right in a message to another task.

Tasks acquire port rights either by creating them or
receiving them in a message. Receive rights can only be
created explicitly (by doing a port allocate, as described
above); send rights can be created either explicitly from an
existing send or receive right or implicitly while being
transmitted in a message. A send-once right can be created
explicitly or implicitly from a receive right only. When a
right is sent in a message the sender can specify that the right
is either copied, moved, or a new right created by the send
operation. (Receive rights can only be moved, of course.)
When a right is moved, the sender looses the right and the
receiver gains it. When copied, the sender retains the right
but a copy of the right is created and given to the receiver.
When created, the sender provides a receive right and a new
send or send-once right is created and given to the receiver.
When a task acquires a port right, by whatever means, Mach
assigns it a name. Note that ports themselves are not named,
but their port rights are. (Despite this fact, the creators of
Mach decided to refer to the name of a port right with the
term port name, instead of the obvious port right name). This
name is a scalar value (32-bits on Intel machines) that is
guaranteed unique only within a task (which means that
several tasks could each have a port name with the same
numeric value but that represent port rights to totally dif-
ferent ports) and is chosen at random. Each distinct right
held by a task does not necessarily have a distinct port name
assigned to it. Send-once rights always have a separate name
for each right. Receive and send rights that refer to the same
port, however, will have the same name.

10

15

20

25

30

35

40

45

50

55

60

65

16

Port rights have several attributes associated with them:
the type of the right (send, send-once, receive, port set, or
dead name), and a reference count for each of the above
types of rights. When a task acquires a right for a port to
which it already has send or receive rights, the correspond-
ing reference count for the associated port name is incre-
mented. A port name becomes a dead name when its
associated port is destroyed. That is, all port names repre-
senting send or send-once rights for a port whose receive
right is deallocated become dead names. A task can request
notification when one of its rights becomes dead. The kernel
keeps a system-wide count of the number of send and
send-once rights for each port. Any task that holds a receive
right (such as a server) can request a notification message be
sent when this number goes to zero, indicating that there are
no more senders (clients) for the port. This is called a no
more senders notification. The request must include a send
right for a port to which the netification should be sent.

Port Sets

Port sets provide the ability to receive from a collection of
ports simultaneously. That is, receive rights can be added to
a port set such that when a receive is done on the port set,
a message will be received from one of the ports in the set.
The name of the receive right whose port provided the
message is reported by the receive operation.

Messages

A Mach IPC message comprises a header and an in-line
data portion, and optionally some out-of-line memory
regions and port rights. If the message contains neither port
rights nor out-of-line memory, then it is said to be a simple
message; otherwise it is a complex message. A simple
message contains the message header directly followed by
the in-line data portion. The message header contains a
destination port send right, an optional send right to which
a reply may be sent (usually a send-once right), and the
length of the data portion of the message. The in-line data is
of variable length (subject to a maximum specified on a
per-port basis) and is copied without interpretation. A com-
plex message consists of a message header (with the same
format as for a simple message), followed by: a count of the
number of out-of-line memory regions and ports, disposition
arrays describing the kernel’s processing of these regions
and ports, and arrays containing the out-of-line descriptors
and the port rights.

The port right disposition array contains the desired
processing of the right, i.e., whether it should be copied,
made, or moved to the target task. The out-of-line memory
disposition array specifies for each memory range whether
or not it should be de-allocated when the message is queued,
and whether the memory should be copied into the receiving
task’s address space or mapped into the receiving address
space via a virtual memory copy-on-right mechanism. The
out-of-line descriptors specify the size, address, and align-
ment of the out-of-line memory region. When a task rececives
a message, the header, in-line data, and descriptor arrays are
copied into the addresses designated in the parameters to the
receive call. If the message contains out-of-line data, then
virtual memory in the receiving task’s address space is
automatically allocated by the kernel to hold the out-of-line
data. It is the responsibility of the receiving task to deallo-
cate these memory regions when they are done with the data.

5,519,867

17

Message Transmission Semantics

Mach IPC is basically asynchronous in nature. A thread
sends a message to a port, and once the message is queued
on the port the sending thread continues execution. A receive
on a port will block if there are no messages queued on the
port. For efficiency there is a combined send/receive call that
will send a message and immediately block waiting for a
message on a specified reply port (providing a synchronous
model). A timeout can be set on all message operations
which will abort the operation if the message is unable to be
sent (or if no message is available to be received) within the
specified time period. A send call will block if it uses a
send-right whose corresponding port has reached its maxi-
mum number of messages. If a send uses a send-once right,
the message is guaranteed to be queued even if the port is
full. Message delivery is reliable, and messages are guar-
anteed to be received in the order they are sent. Note that
there is special-case code in Mach which optimizes for the
synchronous model over the asynchronous model; the fastest
IPC round-trip time is achieved by a server doing a receive
followed by repeated send/receive’s in a loop and the client
doing corresponding send/receive’s in a loop on its side.

Port Rights as Identifiers

Because the kernel guarantees both that port rights cannot
be counterfeited and that messages cannot be misdirected or
falsified, port rights provide a very reliable and secure
identifier. Mach takes advantage of this by using port rights
to represent almost everything in the system, including
tasks, threads, memory objects, external memory managers,
permissions to do system-privileged operations, processor
allocations, and so on. In addition, since the kernel can send
and receive messages itself (it represents itself as a “special”
task), the majority of the kernel services are accessed via
IPC messages instead of system-call traps. This has allowed
services to be migrated out of the kernel fairly easily where
appropriate.

Synchronization

Currently, Mach provides no direct support for synchro-
nization capabilities. However, conventional operating sys-
tems routinely provide synchronization services. Such syn-
chronization services employ many well-known
mechanisms, such as semaphores and monitors and condi-
tions, which are described below. Semaphores are a syn-
chronization mechanism which allows both exclusive and
shared access to a resource. Semaphores can be acquired and
released (in either an exclusive or shared mode), and they
can optionally specify time-out periods on the acquire
operations. Semaphores are optionally recoverable in the
sense that when a thread that is holding a semaphore
terminates prematurely, the counters associated with the
semaphore are adjusted and waiting threads are unblocked
as appropriate.

Monitors and conditions are a synchronization mecha-
nism which implements a relatively more disciplined (and
safer) style of synchronization than simple semaphores. A
monitor lock (also called a mutex) is essentially a binary
semaphore that enables mutually exclusive access to some
data. Condition variables can be used to wait for and signify
the truth of certain programmer-defined Boolean expres-
sions within the context of the monitor. When a thread that
holds a monitor lock needs to wait for a condition, the
monitor lock is relinquished and the thread is blocked. Later,
when a another thread that holds the lock notifies that the

20

25

30

35

40

45

50

55

60

65

18

condition is true, a waiting thread is unblocked and then
re-acquires the lock before continuing execution. A thread
can also perform a broadcast operation on a condition, which
unblocks all of the threads waiting for that condition.
Optional time-outs can also be set on the condition wait
operations to limit the time a thread will wait for the
condition.

Scheduling

Since Mach is multiprocessor capable, it provides for the
scheduling of threads in a multiprocessor environment.
Mach defines processor sets to group processors and it
defines scheduling policies that can be associated with them.
Mach provides two scheduling policies: timeshare and fixed
priority. The timeshare policy is based on the exponential
average of the threads’ usage of the CPU. This policy also
attempts to optimize the time quantum based on the number
of threads and processors. The fixed priority policy does not
alter the priority but does round-robin scheduling on the
threads that are at the same priority. A thread can use the
default scheduling policy of its processor set or explicitly
use any one of the scheduling policies enabled for its
processor set. A maximum priority can be set for a processor
set and thread. In Mach the lower the priority value, the
greater the urgency.

Faults

The Mach fault handling services are intended to provide
a flexible mechanism for handling both standard and user-
defined processor faults. The standard kernel facilities of
threads, messages, and ports are used to provide the fault
handling mechanism. (This document uses the word “fault”
where the Mach documentation uses the word “exception”.
Such terminology has been changed herein to distinguish
hardware faults from the exception mechanism of the C++
language). Threads and task have fault port(s). They differ in
their inheritance rules and are expected to be used in slightly
different ways. Error handling is expected to be done on a
per-thread basis and debugging is expected to be handled on
a per-task basis. Task fault ports are inherited from parent to
child tasks, while thread fault ports are not inherited and
default to no handler. Thread fault handlers take precedence -
over task fault handlers. When a thread causes a fault the
kemel blocks the thread and sends a fault message to the
thread’s fauit handler via the fault port. A handler is a task
that receives a message from the fault port. The message
contains information about the fault, the thread, and the task
causing the fault. The handler performs its function accord-
ing to the type of the fault. If appropriate, the handler can get
and modify the execution state of the thread that caused the
fault. Possible actions are to clear the fault, to terminate the
thread, or to pass the fault on to the task-level handler. Faults
are identified by types and data. Mach defines some
machine-independent fault types that are supported for all
Mach implementations (e.g., bad access, bad instruction,
breakpoint, etc.). Other fault types can be implementation
dependent (e.g., f-line, co-processor violation, etc.).

Host and Processor Sets

Mach exports the notion of the host, which is essentially
an abstraction for the computer on which it is executing.
Various operations can be performed on the host depending
on the specific port rights that a task has for the host.
Information that is not sensitive can be obtained by any task
that holds a send right to the host name port. Examples of

5,519,867

19

such information include the version of the kernel or the
right to gain access to the value of the system clock. Almost
all other information is considered sensitive, and a higher
degree of privilege is required to get or manipulate the
information. This added level of privilege is implied when a
task holds a send right to the host control port (also known
as the host privilege port). This right must be given out very
carefully and selectively to tasks, because having this right
enables a task to do virtually everything possible to the
kernel, thus by-passing the security aspects of the system
supported by the IPC services. Various operations can be
performed with this added privilege, including altering the
system’s clock setting, obtaining overall performance and
resource usage statistics for the system, and causing the
machine to re-boot.

Mach also exports the notions of processors and processor
sets, which allow tasks to more carefully specify when and
on what processors its threads should execute. Processors
and processor sets can be enumerated and controlled with
the host privilege port. A processor represents a particular
processor in the system, and a processor set represents a
collection of processors. Services exist to create new pro-
cessor sets and to add processors to a set or remove them as
desired. Services also exist to assign entire tasks or particu-
lar threads to a set. Through these services a programmer can
control (on a coarse grain) when the threads and tasks that
constitute an application actually get to execute. This allows
a programmer to specify when certain threads should be
executed in parallel in a processor set. The default assign-
ment for tasks and threads that do not explicitly use these
capabilities is to the system default processor set, which
generally contains any processors in the system that aren’t
being used in other sets.

Security

Mach may include other categories of services in addition
to those described above. For example, Mach may include
services relating to security. In accordance with the Mach
security services, every task carries a security token, which
is a scalar value that is uninterpreted by Mach. There is a
port called the host security port that is given to the bootstrap
task and passed on to the trusted security sever. A task’s
security token can be set or changed by any task that holds
a send right to the host security port, while no special
permissions are needed to determine the value of a tasks
security token (other than holding the task’s control port, of
course). At the time a Mach IPC message is received, the
security token of the sender of the message is returned as one
of the output parameters to the receive function. Tasks that
hold the host security port can send a message and assign a
different security token to that message, so that it appears to
have come from another task. These services can be used by
upper layers of the system to implement various degrees of
security.

Wrapper Class Library

This section provides an area-by-area description of the
object-oriented interface for the services provided by the
Mach micro-kernel. This object-oriented interface to the
Mach services represents the wrapper class library 402 as
implemented by the code library 110. The wrapper class
library 402 includes thread classes 404, task classes 406,
virtual memory classes 408, IPC classes 410, synchroniza-
tion classes 412, scheduling classes 414, fault classes 416,
and machine classes 418 are discussed. The wrapper class

20

25

35

40

45

55

60

65

20

library 402 may include additional classes, such as security
classes 420, depending on the services provided by the
underlying operating system 114. Each area is described
with a class diagram and text detailing the purpose and
function of each class. Selected methods are presented and
defined (where appropriate, the parameter list of a method is
also provided). Thus, this section provides a complete opera-
tional definition and description of the wrapper class library
402. The implementation of the methods of the wrapper
class library 402 is discussed in a later section.

The class diagrams are presented using the well-known
Booch icons for representing class relationships and cardi-
nality. These Booch icons are presented in FIG. 17 for
convenience purposes. The Booch icons are discussed in
Object Oriented Design With Applications by Grady Booch,
referenced above. The wrapper class library 402 is prefer-
ably implemented using the well-known C-4+ computer
programming language. However, other programming lan-
guages could alternatively be used. Preferably, the class
descriptions are grouped into SPI (System Programming
Interface), API (Application Programming Interface), Inter-
nal, and “Noose” methods—indicated by #ifndef statements
bracketing the code in question (or by comments for Noose
methods). SPI interfaces are specific to the particular com-
puter platform being used. For illustrative purposes, the
wrapper class library 402 is presented and described herein
with respect to a computer platform operating in accordance
with the IBM MicroKernel (which is based on Mach Version
3.0) or compatible. Persons skilled in the relevant art will
find it apparent to modify the SPI classes to accommodate
other computer platforms based on the teachings contained
herein.

API interfaces are included in the wrapper class library
402 regardless of the platform the system is running on. The
Internal interfaces are intended for use only by low-level
implementors. The Noose methods are provided solely to
enable an application 130 operating with the wrapper 128 to
communicate with an application 134 (or server) that was
written to run on Mach 114 directly. They provide access to
the raw Mach facilities in such a way that they fall outside
of the intended object-oriented programming model estab-
lished by the wrapper 128. Use of Noose methods is highly
discouraged. The SPI and API (and perhaps the Internal)
classes and methods are sufficient to implement any appli-
cation, component, or subsystem.

Thread Classes

FIG. 5 is a class diagram 501 of the thread classes 404 and
the task classes 406. The thread classes 404 provide an
object-oriented interface to the tasking and threading func-
tionality of Mach 114. A number of the thread classes 404
are handle classes (so noted by their name), which means
that they represent a reference to the corresponding kernel
entity. The null constructors on the handle classes create an
empty handle object. An empty handle object does not
initially correspond to any kernel entity—it must be initial-
ized via streaming, an assignment, or a copy operation.
Calling methods on an empty handle will cause an exception
to be thrown. Multiple copies of a handle object can be
made, each of which point to the same kernel entity. The
handle objects are internally reference-counted so that the
kernel entity can be deleted when the last object representing
it is destroyed.

TThreadHandle is a concrete class that represents a thread
entity in the system. It provides the methods for controlling
and determining information about the thread. It also pro-

5,519,867

21

vides the mechanism for spawning new threads in the
system. Control operations include killing, suspending/re-
suming, and doing a death watch on it. Constructing a
TThreadHandle and passing in a TThreadProgram object
causes a new thread to be constructed on the current task.
The first code run in the new thread are the Prepare() and
Run() methods of the TThreadProgram object. Destroying a
TThreadHandle does not destroy the thread it represents.
There may also be a cancel operation on the TThreadHandle
object. Note that each TThreadHandle object contains a send
right to the control port for the thread. This information is
not exported by the interface, in general, but because it does
contain a port right the only stream object a TThreadPro-
gram can be streamed into is a TIPCMessageStream.
Attempting to stream into other TStream objects will cause
an exception to be thrown.

TThreadHandle provides a number of methods for use by
debuggers and the runtime environment, and for supporting
interactions with Mach tasks running outside of the envi-
ronment established by the wrapper 128. These methods
include getting and setting the state of a thread, spawning an
“empty” thread in another task, geiting the thread’s fault
ports, returning a right to the thread’s control port, and
creating a TThreadHandle handle from a thread control port
send right.

As noted above, the wrapper 128 establishes a computing
environment in which the applications 130 operate. For
brevity, this computing environment established by the
wrapper 128 shall be called CE. With regard to the wrapper
128, TThreadHandle spawns a CE runtime thread on the
current task. A thread can also be spawned on another task,
instead of on the current task, by using the CreateThread
methods in the TTaskHandle class and in subclasses of
TTaskHandle. (Creating a thread on another task is not
recommended as a general programming model, however.)
To spawn a CE thread on another CE task, the TCETaskHan-
dle::CreateThread method is used by passing it a TThread-
Program describing the thread to be run. To spawn a non-CE
thread (that is, a thread which does not operate in the
computing environment established by the wrapper 128), the
CreateThread method is used on the appropriate subclass of
TTaskHandle (that is, the subclass of TTaskHandle that has
been created to operate with the other, non-CE computing
environment). For example, to spawn an IBM OS2 thread on
an 082 task, you might use a
TOS2TaskHandle::CreateThread method. It is not possible
to run a CE thread on a non-CE task, nor is it possible to run
a non-CE thread on a CE task.

TThreadHandle includes the following methods:

TThreadHandle (const TThreadProgram& copyThread-
Code): creates a new thread in the calling task—makes an
internal COPY of the TThreadProgram, which is deleted
upon termination of the thread.

TThreadHandle (TThreadProgram* adoptThreadCode):
creates a new thread in the calling task—ADOPTSs adopt-
ThreadCode which is deleted upon termination of the thread.
The resources owned by the thread are also discarded. A
copy of the TThreadProgram is NOT made.

TThreadHandle (EExecution yourself) creates a thead
handle for the calling thread.

TStream streams in a TThreadHandle object to a TIPC-
MessageStream.

CopyThreadSchedule () returns a pointer to the Schedul-
ing object (e.g., TServerSchedule, TUISchedule etc) that is
used to schedule the object. Allocates memory for the
TThreadSchedule object which has to be disposed of by the
caller.

15

20

25

30

35

40

45

50

60

65

22

SetThreadSchedule (const TThreadSchedule& newS-
chedule) sets the scheduling object in the thread to the
newSchedule object. This allows one to control the way a
thread is scheduled.

GetScheduleState (TThreadHandle& theBlocke-
dOnThread) allows one to query the current state of the
thread (theBlockedOnThread) on which this thread is
blocked.

CancelWaitAndPostException () const causes a blocking
kernel call to be unblocked and a TKernelException to be
thrown in the thread (*this).

WaitForDeathOf () const performs death watch on the
thread—blocks calling thread until the thread (*this) termi-
nates. CreateDeathInterest () creates a notification interest
for the death of the thread (*this). When the thread termi-
nates the specified TInterest gets a notification.

TThreadProgram is an abstract base class that encapsu-
lates all the information required to create a new thread. This
includes the code to be executed, scheduling information,
and the thread’s stack. To use, it must be subclassed and the
Begin and Run methods overridden, and then an instantia-
tion of the object passed into the constructor for TThread-
Handle to spawn a thread. The Begin routine is provided to
aid startup synchronization; Begin is executed in the new
thread before the TThreadHandle constructor completes,
and the Run routine is executed after the TThreadHandle
constructor completes. The methods CopyThreadSchedule
and GetStackSize return the default thread schedule and
stack size. To provide values different from the default, these
methods should be overridden to return the desired thread
schedule and/or stack size. TThreadProgram includes the
following methods:

TThreadProgram (const TText& taskDescription): Task-
Description provides a text description of a task that can be
access via the TTaskHandle::GetTaskDescription method.
Only in effect if the object is passed a TTaskHandle con-
structor. If default constructor is used instead, the interface
will synthesize a unique name for TTaskHandle: :GetTask-
Description to return.

GetStackSize () returns the size of the stack to be set up
for the thread. Override this method if you don’t want the
“default” stack size.

GetStack (): Used to set up the thread’s stack. Override
this method if you want to provide your own stack.

Run () represents the entry point for the code to be run in
the thread. OVERRIDE THIS METHOD to provide the
code the thread is to execute.

Task Classes

See FIG. 5 for a class diagram of the task classes 406.

TTaskHandle is a concrete base class that encapsulates all
the attributes and operations of a basic Mach task. It can be
used to refer to and control any task on the system.
TTaskHandle cannot be used directly to create a task,
however, because it doesn’t have any knowledge about any
runtime environment. It does provide sufficient protocol, via
protected methods, for subclasses with specific runtime
knowledge - to be created that can spawn tasks
(TCETaskHandle, below, is an example of such a class).
TTaskHandle objects can only be streamed into and out of
TIPCMessageStreams and sent via IPC to other tasks, and
they are returned in a collection associated with
TCETaskHandle. The task control operations associated
with a TTaskHandle include killing the task, suspending and

5,519,867

23

resuming the task, and doing a deathwatch on the task. The
informational methods include getting its host, getting and
setting its registered ports, enumerating its ports or virtual
memory regions, getting its fault ports, enumerating its
threads, etc. TTaskHandle includes the following methods:

TTaskHandle (EExecutionThread) creates a task handle
for the specified thread.

Suspend () suspends the task (i.e., all threads contained by
the task). Resume () resumes the task (i.e., all threads
contained by the task).

Kill () terminates the task—all threads contained by the
task are terminated.

WaitForDeathOf () performs death watch on the task—
The calling thread blocks until the task (*this) terminates.
CreateDeathInterest () creates a notification interest for the
death of the task. The thread specified in the TInterest object
gets a notification when the task (*this) terminates.

AllocateMemory (size_t howManyBytes, TMemorySur-
rogate& newRange) allocates a range of (anonymous) vir-
tual memory anywhere in the task’s address space. The
desired size in bytes is specified in howManyBytes. The
starting address (after page alignment) and actual size of the
newly allocated memory are returned in newRange.

AllocateReservedAddressMemory (const TMemorySur-
rogate& range, TMemorySurrogate& newRange) allocates a
range of (anonymous) virtual memory at a specified reserved
address in the task’s address space. The range argument
specifies the address and size of the request. The newRange
returns the page aligned address and size of the allocated
memory.

GetRemotePorts
(TCollection<TRemotePortRightHandle>& thePortSet) gets
list of ports on *this task. The caller is responsible for
de-allocating the memory in the returned Collection.

virtual void CreateFaultAssociationCollection
(TCollection<FaultAssociation>& where) return Fault Ports
registered for this Task.

TCETaskHandle is a subclass of TTaskHandle that rep-
resents a Mach task executing with the CE runtime system
(recall that that CE represents the computing environment
established by the wrapper 128), and embodies all the
knowledge required to set up the CE object environment. It
can be used to spawn a new task by passing a TThreadPro-
gram into its constructor. The new task is created with a
single thread, which is described by the TThreadProgram
object passed into the TCETaskHandle constructor. There is
also a constructor that will allow a TCETaskHandle to be
constructed from a TTaskHandle. To insure that a non-CE-
runtime task is not wrapped with a TCETaskHandle, the
constructor consults the CE loader/library server (that is, the
loader/library server operating in the CE environment) to
make sure the task being wrapped has been registered with
it. This is done automatically (without any user interven-
tion). TCETaskHandle includes the following methods:

TCETaskHandle (const TThreadProgram& whatToRun)
creates a new task and a thread to execute specified code.
The new thread executes the code in ‘whatToRun’.

TCETaskHandle (EExecutionTask) wraps task of cur-
rently executing thread.

TCETaskHandle (const TThreadProgramé& whatToRun,
const TOrderedCollection<TLibrarySearcher>& library-
Searchers) creates a new task and a thread to execute
specified code with specified ibrary search. The library-
searchers specifies the list of libraries to be used for resolv-
ing names.

10

15

20

25

30

35

40

45

50

55

60

65

24
TCETaskHandle (const TTaskHandle& aTask) creates a
CE task object from a generic task object.

AddLibrarySearcher (const TLibrarySearcher& newLib-
Searcher) adds a library searcher for the task—Iloader uses
newLibrarySearcher first to resolve lib referneces i.e. the
newLibrarySearcher is put on the top of the collection used
to resolve references.

GetTaskDescription (TText& description) const returns a
string description of the task—gets the string from the
associated TThreadProgram of the root thread (passed to
constructor). The string is guaranteed to be unique, and a
string will be synthesized by the interface if no description
is passed to the TThreadProgram constructor.

NotifyUponCreation (TInterest* notifyMe) synchro-
nously notifies the caller of every new task creation in the
system. There is no (*this) task object involved. The task
from which this call originates is the receiver of the notifi-
cation.

Virtual Memory Classes

FIG. 6 is a class diagram 601 for the virtual memory
classes 408. Note that TTaskHandle is a class that represents
a task. TTaskHandle has already been discussed under the
Task classes 406 section. For virtual memory operations,
objects of type TTaskHandle serve to specify the address
space in which the operation is to occur. Most of the virtual
memory operations that can be performed in Mach are
represented as methods of TTaskHandle. The various meth-
ods of TTaskHandle that operate on virtual memory take
TMemorySurrogate objects as parameters. See the various
methods under the TTaskHandle description for further
details. A number of the memory classes have copy con-
structors and/or assignment operators. It should be noted
that the memory classes contain references to the memory
and not the actual memory itself. Therefore when memory
class objects are copied or streamed, only the references
within them are copied and not the actual memory. The
TMemorySurrogate class contains explicit methods for
doing copies of the memory it references.

TMemorySurrogate is a class that represents a contiguous
range of memory in the virtual address space. It has a
starting address and a size (in bytes). TMemorySurrogates
can be used to specify ranges of memory on which certain
operations are to be performed. They are typically supplied
as arguments to methods of TTaskHandle that manipulate
the virtual memory in the address space associated with the
task. This class is used to specify/supply a region of memory
with a specific size. The class itself does not allocate any
memory. It just encapsulates existing memory. It is the
responsibility of the caller to provide the actual memory
specified in this class (the argument to the constructor). This
class is NOT subclassable.

TChunkyMemory is an abstract base class that manages
memory in chunks of a specified size. Memory is allocated
in chunks (of the specified chunkSize), but the user still
views the memory as a series of bytes. TChunkyMemory
includes the following methods:

LocateChunk (size t where, TMemorySurrogate&
theContainingRange) looks up in the collection of chunks
and returns in theContainingRange the address of the
memory and the chunksize.

CutBackTo (size_t where) cuts back to the chunk con-
taining “where” i.e. the chunk at the offset where will
become the last chunk in the list.

5,519,867

25
AllocateMemoryChunk (TMemorySurrogate& theAllo-
catedRange) is called by clients to allocate new chunks of
memory as needed. Returns the allocated range.

THeapChunkyMemory is a concrete class that manages
chunky memory on a heap.

TVMChunkymemory is a concrete class that manages
chunky memory using virtual memory.

TMemoryRegionInfo is a class used with virtnal memory
regions in a task’s address space. It provides memory
attribute information (like Inheritance, Protection etc.). It
also provides access to the memory object associated with
the region of memory and to the actual memory range
encapsulated in the memory region. Nested inside TMemo-
ryRegionInfo is the TMemoryAttributeBundle class that
defines all the memory attributes of any memory region.
This is useful when one wants to get/set all the memory
attributes {(or to re-use memory attributes with minimal
changes). TMemoryAttributeBundle is also used in the class
TITaskHandle to deal with mapping memory objects into a
task’s address space. TMemoryRegionInfo includes the fol-
lowing methods:

EMemoryProtection { kReadOnly, kReadWrite, kEx-
ecute} specifies the protection for the memory.

EMemorylnheritance { kDontInherit, kRead Writelnherit,
kCopyInherit} specifies the inheritance attribute for the
memory.

EMemoryBehavior { kReferenceSequential, kRefer-
enceReverseSequential, kReferenceRandom} specifies how
memory might be referenced.

EMemoryAttribute { kCacheable, kMigrateable} speci-
fies how machine specific properties of memory might be
managed.

EMemoryAdvice { kWillUse, kWontUse} specifies how
memory will be used.

TMemoryObjectHandle is a base class that represents the
notion of a Mach memory object. It embodies the piece of
data that can be mapped into virtual memory. System servers
that provide TMemoryObjectHandles to clients will sub-
class from TMemoryObjectHandle in order to define spe-
cific types of memory objects such as files, device partitions,
etc. For the client of general virtual memory services, the
main use of TMemoryObjectHandle and the various sub-
classes is to provide a common type and protocol for data
that can be mapped into a task’s address space.

TChunkyStream is a concrete class (derived from TRan-
domAccessStream) that embodies a random access stream
backed by chunks of memory. The chunk size can be
specified or a default used. The chunks can be enumerated.
This class provides a common function of theTMemory
class without incurring the overhead of maintaining the
memory as contiguous. If the remaining functionality of
TMemory is required other classes could be defined.

TContiguousMemoryStream is a concrete class that uses
contiguous memory (supplied by the client). Since it is
derived from TRandomAccessStream, all random access
operations (like Seek()) are applicable to TContiguous-
MemoryStream objects.

InterProcess Communication (IPC) Classes

The IPC classes 410 represent the Mach TPC message
abstraction. Note that all messaging behavior is on the
message classes; the port right classes are basically for
addressing the message. The usage model is preferably as
follows: A TIPCMessageStream is instantiated, objects are

10

15

25

30

35

40

45

50

55

60

65

26

streamed into it, and the TIPCMessageStream::Send method
is called with an object representing a destination send-right
passed as an argument. To receive a message, a TIPCMes-
sageStream is instantiated and its Receive method called,
passing in a receive-right object as an argument. When the
Receive returns, objects can be streamed out of the TIPC-
MessageStream object. Note that the TIPCMessageStream
objects are reusable. A more detailed description of the IPC
classes 410 follow with reference to FIG. 7, which illustrates
a class diagram 702 of IPC message classes, FIG. 8 which
illustrates a class diagram 802 of IPC out-of-line memory
region classes, and FIG. 9 which illustrates a class diagram
902 of IPC port right classes.

Message Classes

MIPCMessage is an abstract base class that represents a
Mach IPC message. It provides all the methods for setting
tip the fields of the header, the disposition array, and the port
and out-of-line memory arrays. It also contains all the
protocol for message sending and receiving. It provides
rudimentary protocol (exported as a protected interface) to
child classes for setting tip the in-line message data. The
classes TIPCMessageStream and TIPCPrimitiveMessage
derive from this class, and provide the public methods for
adding data to the message. MIPCMessage includes the
following methods:

GetReplyPort (TPortSendSideHandle& replyPort) is
valid for receive side only. Returns a reply port object, if one
was sent with the message. Only returns it the first time this
is called after message is received. Otherwise returns false.

TSecurityToken GetSendersSecurityToken() is valid for
receive side only. Returns the security token of the task that
sent this message.

SetSendersSecurity Token(const TSecurityToken&
impostorSecurity Token,const TPortSendRight& hostSecuri-
tyPort) is valid for send side only. The next time the message
is sent, it will carry the specified security token instead of the
one for the task that actnally does the send. Takes effect
ONLY FOR THE NEXT SEND, and then reverts back to the
actual sender’s security token value.

Methods for sending/receiving IPC messages (Note that
all these methods have an optional TTime timeout value. If
you don’t want a timeout, specify kPositiveInfinity. All these
methods replace any existing value for reply port in msg
header. For those methods that allow specification of a reply
port, the disposition of the reply port right, as well as the port
right itself, is passed via a MIPCMessage:: TReplyPortDis-
position object. This is the only way to set the reply port,
since the disposition state is only valid for the duration of the
send. Objects for port rights whose dispositions are MOVE
become invalid once the send takes place.):

Send (const TPortSendSideHandle& destinationPort,
const TTime& timeout= kPositivelnfinity) is a one-way,
asynchronous send.

Send (const TPortSendSideHandle& destinationPort,
const TReplyPortDisposition& replyPort, const TTime&
timeout= kPositivelnfinity) is an asynchronous send, with
send (-once) reply port specified.

Receive (const TPortReceiveSideHandle& sourcePort,
const TTime& timeout= kPositivelnfinity) is a “blocking”
receive.

SendAndReceive (const TPortSendSideHandle& send-
Port, const TPortReceiveSideHandle& receivePort, const
TTime& timeout= kPositivelnfinity) sends a message,

5,519,867

27

blocks and receives a reply (reply port is a send-once right
constructed from receivePort).

SendAndReceive (const TPortSendSideHandle& send-
Port, const TPortReceiveSideHandle& receivePort, MIPC-
Message& receiveMsg, const TTime& timeout—kPosi-
tivelnfinity) send message, block and receive reply(reply
port is a send-once right constructed from receivePort).
Message is received into a new message object to avoid
overwrite.

ReplyAndReceive (const TPortSendSideHandle& reply-
ToPort, const TPortReceiveSideHandle& receivePort, const
TTime& timeout= kPositiveInfinity): sends back a reply,
blocks and receives a new message.

ReplyAndReceive (const TPortSendSideHandle& reply-
ToPort, const TPortReceiveSideHandle& receivePort,
MIPCMessage& receiveMsg, const TTime& timeout=
kPositivelnfinity) sends back a reply, blocks and receives a
new message.

Subclasses’ methods for getting/setting port right fields in
header (Remote and Local Ports: On SEND side, REMOTE
PORT specifies the destination port, and LOCAL PORT
specifies the reply port. On RECEIVE side, REMOTE
PORT specifies the reply port (port to be replied to) and
LOCAL PORT specifies the port received from. The way the
port was (or is to be) transmitted is returned in theDisposi-
tion. It can have values: MACH_MSG_TYPE__(MOVE __

RECEIVE, MOVE_SEND, MOVE_SEND_ONCE,
COPY__SEND, MAKE__SEND, MAKE__SEND__
ONCE}L):

GetRemotePort: pass in the remote port right, and specify
the disposition.

PORT RIGHT methods:

MovePortRightDescriptor: sender is giving away the port
right to the destination. Works on Send, SendOnce, and
Receive rights.

CopyPortSendRightDescriptor: sender is creating a copy
of the send right at the destination.

MakePortSendRightDescriptor: a new send right will be
created at the destination.

MakePortSendOnceRightDescriptor: a new send once
right will be created at the destination.

TIPCMessageStream is a concrete class that provides a
stream-based IPC messaging abstraction. This is the recom-
mended class to be used for IPC operations. It derives from
MIPCMessageDescriptor and from TStream. To send a
message, a user of TIPCMessageStream streams in the data
to be sent, including port-rights (TPortRightHandle deriva-
tives), out-of-line memory regions (TOutOfLineMemory-
Surrogate), port-right arrays (TPortRightHandleArray),
objects containing any or all of these, and any other object
or data type desired. TIPCMessageStream will automati-
cally set up the appropriate data structures for the port rights,
port right arrays, and out-of-line memory in the message
header, and put a place holder in the stream so that these
elements will be streamed out of the message in the appro-
priate place in the stream. Once the data has been streamed
in, the message is sent using the Send method, supplying the
appropriate destination port right (TPortSenderHandle) and
optionally a reply port. To receive a message, the Receive
method is called, supplying a receive right (TPortReceiver-
Handle) for the port to be received from. The data just
received can then streamed out of the TIPCMessageStream.

TIPCMessageStream also provides two methods for
doing a combined send and receive operation, designed to
provide commonly-used message transmission semantics
(and to take advantage of fast-paths in the Mach micro-
kernel). SendAndReceive does a client-side synchronous-

10

15

20

25

30

35

40

45

50

55

60

65

28

style send and then blocks in a receive to pick up the reply
message. ReplyAndReceive does a server-side send of (pre-
sumably) a reply message and then immediately blocks in a
receive awaiting the next request. Both calls require that a
destination port and a receive port be specified. Additionally,
the SendAndReceive method automatically creates the
appropriate send-once right from the supplied receive right
and passes it along as the reply port.
TIPCPrimitiveMessage is a concrete class that derives
from MIPCMessage and provides a more rudimentary, low
level interface to the Mach message system. Data is pro-
vided to and from the message header and body via get and
set calls. There is no streaming capability. This is a concrete
class that represents a Mach IPC message. In-line data is
added to the message by passing in a TMemorySurrogate.
Port rights, arrays, and OOLdata must be added and
extracted explicitly using the appropriate methods.
TOutOfLineMemorySurrogate represents an out-of-line
memory range that is to be included in an IPC message. It
uses TMemorySurrogate in its implementation, and only
adds disposition information to the startAddress and length
information already contained in TMemorySurrogate. This
class is the same as a TMemorySurrogate, except it includes
disposition information used when sending the message, and
may represent the storage associated with the range. This
class includes streaming operators, methods to set/get the
range, and methods to set/get disposition information.

Port Rights

The following classes represent all the valid types of
Mach port rights. These classes all share the following
general behaviors: In general, when a port right object is
instantiated it increments the kernel’s reference count for
that right, and when a port right object is destroyed it
decrements the kernel’s port right reference count. However,
note that port right objects are handles for the “real” kernel
port right entities. They can be copied, in which case there
may be two objects that refer to the same kemel port right
entity. These copies are reference counted internally so that
when all the objects that refer to a port right are deleted, the
kernel’s port right reference count is decremented. When a
port right becomes a dead name (i.e., when the port it
belonged to is destroyed), attempts to use methods on the
representative object will throw an exception (excluding
those operations, like setting the reference counts, that are
valid on dead names).

TPortRightHandle is an abstract base class that represents
the notion of a port right. It contains all the protocol common
to each type of port right, such as getting the port name,
requesting dead name notification, testing to see if the port
right is a dead name, etc. (The port name is returned as a
mach__port_name_t type, and is provided as a way to
interact with Mach servers not written using the object
wrappers.) It also serves as a common super class to allow
a generic type representing all types of ports to be passed
polymorphically. TPortSenderHandle and TPortReceiver-
Handle derive from these classes. This class includes meth-
ods for streaming support (This class and any classes that
contain it can only be streamed into or out of the TIPCMes-
sageStream class. Attempting to stream into any other
TStream will throw an exception at runtime.), Getters/
Setters, and methods for requesting notifications (Must
provide a send-once right that the notification is to be sent
to. MAKE a send-once right by passing (by reference) a
receive right. MOVE a send-once right by ADOPTING a
send-once right.)

5,519,867

29

TPortSenderHandle is an abstract class that represents any
port right that an IPC message can be sent to. E.g., this is the
type that MIPCMessage::Send takes as the destination and
reply ports. The classes TPortSendRightHandle and TPort-
SendOnceRightHandle derive from this class. This class
includes methods for streaming support, and Getters and
setters.

TPortSendRightHandle represents a port send right. It
supports all the typical operations that can be performed on
a send right. It is created by passing a valid TPortReceiv-
eRightHandle or TPortSendRightHandle into the construc-
tor, or by streaming it out of a TIPCMessageStream. This
class includes methods that create an empty TPortSend-
RightHandle object without affecting the kernel reference
counts, constructors that create a new Send Right in the
current task, methods for Streaming Support, and Getters
and setters.

TPortSendOnceRightHandle represents a port send-once
right. It supports all the typical operations that can be
performed on a send-once right. It is created by passing a
valid TPortRecieveRightHandle into the constructor, or by
streaming it out of a TIPCMessageStream. When a message
is sent to an object of this class, making the send-once right
invalid, all subsequent attempts to send to this object will
cause an exception to be thrown. In addition, the object will
be marked as invalid and attempts to use methods of the
object will also cause exceptions to be thrown (except for
methods for initializing the object, obviously). This class
includes Constructors that create a TPortSendOnceRight-
Handle object without, Constructors that create a new Send
Once right on the current task, methods for Streaming
Support, and Getters and setters.

TPortReceiverHandle is an abstract class that represents
any port right that an IPC message can be received from.
E.g., this is the type that MIPCMessage::Receive takes as
the port to receive from. The classes TPortRightReceive-
Handle and TPortSetHandle derive from this class. This
class includes methods for Streaming Support, and Getters
and setters.

TPortReceiveRightHandle represents a port receive right.
It supports all the typical operations that can be performed
on a receive right, such as requesting no-more-senders
notification, setting and getting the port’s maximum mes-
sage size and queue length, getting and setting its make-send
count, etc. If a TPortReceiveRightHandle is instantiated
(other than with the null or copy constructors) it causes a
port and receive right to be created. The copy constructor
creates another object (an alias) that references the same
receive right. These objects are internally reference counted,
such that when the last object referencing a particular
receive right is destroyed, it destroys the receive right (and
the port) it represents, causing all extant rights to that port
to become dead names. This class is a concrete class that
represents a port receive right. By definition, the actual
kemel port entity is created when a receive right is created,
and destroyed when a receive right is destroyed. Since this
class is a handle, creation and destruction of the receive right
is not necessarily tied to creation and deletion of a TPor-
tReceiveRightHandle. For example, the default constructor
does not actually create a receive right, but just an empty
object. This class includes Constructors that create a TPor-
tReceiveRightHandle object without creating a port or
affecting the kernel reference counts, Constructors that cre-
ate new Receive Rights and Ports, methods to make an
uninitialized object valid, creating a receive right (and
therefore a port) in the process, Streaming Support, Receive
Right/Port manipulation methods, Getters and setters, and
Methods for requesting notifications.

10

15

25

30

40

45

50

55

60

65

30

TPortSetHandle represents a port set. It has methods for
adding, removing, and enumerating the TPortReceiveRight-
Handle objects representing the receive rights contained in
the port set, methods for getting and setting its make send
count, etc. If a TPortSetHandle is instantiated with a default
constructor, it causes a port set to be created. If it is
instantiated using the copy constructor, an alias is created for
the same port set. When the last object representing a
particular port set is deleted, it destroys the port set. This
class cannot be streamed.

TPortRightHandleArray is a concrete class that represents
an array of port rights that can be sent as an out-of-line
descriptor in an IPC message. It can contain any kind of port
right, and the disposition of the port right (i.e., how it is to
be transferred to the target task) is specified for each port
right in the array. This class implements an array of port
rights that can be sent as an out-of-line descriptor in an IPC
message (along with port rights and out-of-line memory).
This class includes methods for Streaming Support, Meth-
ods to add elements to the array (SEND SIDE), and Methods
to remove elements from the array (RECEIVE SIDE).

TRemotePortRightHandle is a concrete class that is used
to refer to a port right in another task. It does not contain
most of the usual port right methods, since it is not intended
to be used to perform those types of functions but merely to
act as a name or handle for the remote port right. Construct-
ing this class DOES NOT create a port right—it only
represents a port right that already exists in another task.

Wait Groups

MWaitable and TWaitGroup are classes that provide for
message dispatching and the ability to wait for more than
one type of message source at the same time. TWaitGroup
is a class that provides the ability to set up a collection of
objects derived from MWaitable such that a thread can use
the Wait method to receive a message from any of the
MWaitable objects. It also provides for automatic dispatch-
ing of the received message. Multi-Wait Operations are
called repeatedly by a task to receive messages. They are
multi thread safe so there can be more than one thread
servicing messages. This class includes methods for
manipulating the members of the TWaitGroup. For example,
GetListOfWaitables returns a list of MWaitables in this
group. MWaitable is an abstract base class that associates a
port with an internal handler method (HandleIPCMessage).
It also provides a common base class for collecting together
via the TWaitGroup class Receive Rights and other classes
based on Receive Rights.

TWaitablePortReceiveRightHandle is a convenience class
that derives from both TPortReceiveRightHandle and
MMWaitable. It is an abstract base class whose subclasses can
be added to a TWaitGroup to provide for multi-wait/dis-
patching of Mach message IPC with other MWaitable sub-
classes.

Synchronization Classes

FIG. 10 is a class diagram 1002 of the synchronization
classes 412, which are used to invoke the synchronization
services of Mach. As discussed above, the synchronization
classes 412 employ semaphores and monitors and condi-
tions. TSemaphore is a class that provides the general
services of a counting semaphore. When acquiring a sema-
phore, if some other task already has acquired the sema-
phore, the calling thread blocks (no exception thrown). But
if the semaphore is invalid for some reason, an exception is
thrown. This class includes the following methods:

Acquire: acquire the semaphore in exclusive mode.

5,519,867

31

Acquire (const TTime& maximumWait): acquire the
semaphore in exclusive mode, with time-out.

AcquireShared (): acquire the semaphore in shared mode.

AcquireShared (const TTime& maximumWait): acquire
the semaphore in shared mode, with time-out.

Release (): release the previously acquired semaphore.

AnyThreadsWaiting (): returns true if the semaphore
currently has threads waiting to acquire it.

TLocalSemaphore is a class that represents a counting
semaphore that can be acquired in an exclusive or shared
mode. The major operations are acquire and release. An
optional time-out value can be specified on the acquire
operation to limit the time spent waiting if desired. This class
mplements ‘local’ semaphores, which may only be used
within a task (address space) and have no recovery seman-
tics.

TRecoverableSemaphoreHandle is a class that represents
a semaphore that behaves like a TLocalSemaphore with the
additional property that the semaphore is “recoverable’.
Recoverability means that when a thread holding the sema-
phore terminates abnormally, the counts are adjusted, and
any waiting threads are appropriately unblocked. An excep-
tion is raised in each such thread indicating that the sema-
phore was recovered and the integrity of any associated user
data may be suspect. Note that for abnormal termination of
a thread that had acquired the semaphore in a shared fashion,
no exceptions need be raised in other threads since the
associated data should only have been accessed in a read-
only fashion and should still be in a consistent state. This
class includes the following methods:

GetCurrentHolders: returns a collection of the current
threads holding the semaphore.

SetRecovered: sets state of the semaphore to ‘recovered’,
removing a previous ‘damaged’ state.

Destroy: removes the recoverable semaphore from the
system

TMonitorEntry is a class that represents the lock (some-
times called a mutex) associated with a monitor. The con-
structor for this class actually causes the monitor lock to be
acquired, and the act of exiting the local scope (which causes
the destructor to be called) causes the monitor lock to be
relinquished. If another task is already in the monitor, the
thread attempting to enter the monitor will be blocked in the
TMonitorEntry constructor until the preceding thread(s)
leave the monitor. This class includes operators new and
delete which are private so that TMonitorEntry’s can only be
allocated on the stack, thus providing automatic entry and
exit (and the associated monitor lock acquire and release)
with scope entry and exit.

TMonitorCondition is a class that represents a condition
variable that is associated with some monitor. The major
operations are wait, notify, and broadcast. The wait opera-
tion causes the current thread to wait for the condition to be
notified, and while the thread is blocked the monitor lock is
relinquished. Notify and broadcast are called by a thread
executing inside the monitor to indicate that either one or all
of the threads waiting on the condition should be unblocked
when the notifying (or broadcasting) thread exits the moni-
tor. When a waiting thread is unblocked, it attempts to
reaquire the monitor lock (one thread at a time in the case of
a broadcast), at which point it resumes executing in the
monitor. An optional time-out value can be specified to limit
the time spent waiting for a condition. Other than construc-
tion and destruction, all methods of TMonitorCondition
must be called only from within the monitor.

20

25

30

35

40

45

50

55

60

65

32

TMonitorLock is a class that represents a lock on a
monitor, It is passed into the constructors for TMonitorEntry
and TMonitorCondition to indicate which monitor is being
aquired or to which monitor a condition is to be associated.

Scheduling Classes

FIG. 11 is a class diagram 1102 of the scheduling classes
414, which are used to invoke the scheduling services of
Mach.

TThreadSchedule is a concrete base class that embodies
the scheduling behavior of a thread. It defines the thread’s
actual, default, and maximum priorities. The lower the
priority value, the greater the urgency. Each processor set
has a collection of enabled TThreadSchedules and a default
one. A thread may be assigned any TThreadSchedule that is
enabled on the processor set on which the thread is running.
The priority may be set up to the maximum value defined by
TThreadSchedule, but use of this feature is strongly dis-
couraged. Specific scheduling classes (TIdleSchedule,
TServerSchdule etc.) are made available using this class as
the base. However (since there are no pure virtual functions
in this class) derived classes are free to create objects of this
class if necessary (but it may not be required to do so).
TThreadSchedule objects (using polymorphism) are used to
specify scheduling policy for threads. The subclasses pre-
sented below should be used to determine the appropriate
priority and proper range.

TIdleThreadSchedule is a concrete subclass of TThread-
Schedule for those threads that are to run when the system
is idle. They only run when nothing else in the system can
run. This category, in general, would be used for idle timing,
maintenance, or diagnostic threads.

TServerSchedule is a concrete subclass of TThreadSched-
ule for server threads. Server threads must be very respon-
sive. They are expected to execute for a short time and then
block. For services that take an appreciable amount of time,
helper tasks with a different kind of TThreadSchedule
(TSupportSchedule) should be used.

TUserInterfaceSchedule is a concrete subclass of
TThreadSchedule for those application tasks that should be
responsive and handle the application’s human interface.
They typically run for a short time and then block until the
next interaction.

TApplicationSchedule is a class used with those threads
that support an application’s longer running parts. Such
threads run for appreciable amounts of time. When an
application or window is activated, the threads in the asso-
ciated task become more urgent so that the threads become
more responsive.

TPseudoRealTimeThreadSchedule is a class that allows
tasks to specify their relative urgency in the fixed priority
class by setting their level within its range. The task schedule
exports the number of levels that are allowable and the
default base level. If a level is requested that would cause the
value to be outside the class range an exception will be
thrown. This class includes the following methods:

SetLevel (PriorityLevels theLevel): Set the level of the
task. A lower number is more urgent.

ReturnNumberOfLevels (): Return the number of levels
of urgency for this scheduling object.

ReturnDefaultLevel (): Return the default level of
urgency for this scheduling object. The default level is
relative to the scheduling class’s most urgent priority.

Fault Classes

FIGS. 12, 13, 14, and 15 present class diagrams 1202,
1220, 1302, 1402, and 1502 of the fault classes 416, which

5,519,867

33

are used to invoke the fault services of Mach. For the classes
that represent fault messages (for example, TIPCIdentity-
FaultMessage, TIPCldentityFaultMessage, etc.), it is neces-
sary to dedicate a single port for each message type. That is,
the user should ensure that only one type of message will be
received on any given port that is used for fault handling.
Preferbly, the fault classes 416 include a processor-specific
set of classes for each processor 106 that the operating
system 114 runs on. Alternatively, the fault classes 414 may
include generally generic classes which apply to multiple
processors. The Motorola-68000-specific classes are pre-
sented herein for illustrative purposes, and is not limiting.
Persons skilled in the relevant art will find it apparent to
generate processor-specific classes for other processors
based on the teachings contained herein.

TFaultType is an abstract base class that represents a fault.
It is subclassed to provide the processor-unique fault values.
It identifies the fault by processor and fault id. The following
three classes are subclasses of TFaultType:

TMC680XOFaultType represents a fault type on a
Motorola 68K processor. It identifies the possible 68K type
values and CPU descriptor.

TMC680XOBadAccessFaultType represents a bad access
type on a Motorola 68K processor.

TMC680XOAddressFaultType represents an address
error type on a Motorola 68K processor.

TFaultDesignation is a class that encapsulates the desti-
nation, the format for a fault message, and the types of faults
for which the message should be sent for a task or thread.
This class allows you to specify on a task or thread basis that
the fault message of the requested type for the specified fault
types should be sent to the port indicated by the send right.

TFaultTypeSet encapsulates a set of fault types.

TFaultData is a class that encapsulates fault data provided
by the kernel in addition to the processor state. Not all faults
have fault data. The fault data is provided in the fault
message and is available from the thread state.

TIPCFaultMessage is a class that encapsulates the fault
message sent by the kernel on behalf of the thread that got
the Fault. It is used to receive and reply to the Fault. Three
subclasses (below) are provided for the three possibie kinds
of data that might be sent with the fault message. The
" message may include the identification of the faulting task
and thread, or the state of the faulting thread, or both sets of
information. TIPCIdentityFaultMessage encapsulates the
Fault message containing the identity of the thread that got
the Fault. It is used to receive and reply to the Fault.
TIPCStateFaultMessage encapsulates the Fault message
containing the thread state of the thread that got the Fault. It
is used to receive and reply to the Fault. TIPCStateAndl-
dentityFaultMessage encapsulates the Fault message con-
taining the thread state and identity of the thread that got the
Fault. It is used to receive and reply to the Fault.

TThreadState is an abstract class that represents the CPU
state of a thread. Subclasses actually define the processor
specific forms. There is no information in the class. All work
is done in the derived classes. All queries for CPU state will
return a TMC680XOState pointer which has to be cast at
runtime to the correct derived class object. Derived sub-
classes are specific to particular processors, such as many of
the subclasses shown in FIGS. 12, 13, 14, and 15 which are
dependent on the Motorola 68xxx line of processors. Such
subclasses include TMC680XOState, which is a concrete
class that represents the 680x0 CPU state of a thread. Other
examples include TMC680XOCPUState, which encapsu-
lates the CPU state available for all 68K states, and

1%

15

20

25

30

40

45

50

55

60

65

34
TMC680XOCPUFaultState, which encapsulates the 68K
fault state available for all 68K states.

Host and Processor Set Classes

FIG. 16 is a class diagram 1602 for the machine classes
418, which are also called herein the host and processor set
classes. The machine classes 418 are used to invoke the
services related to Mach’s machine and multiprocessor
support.

TPrivilegedHostHandle is a concrete class that embodies
the privileged port to the kernel’s host object. The privileged
host port is the root of Mach’s processor management. The
holder of the privileged host port can get access to any port
on the system. The basic privilege mechanism provided by
the kernel is restriction of privileged operations to tasks
holding control ports. Therefore, the integrity of the system
depends on the close holding of this privileged host port.
Objects of this class can: get boot information and host
statistics, reboot the system, enumerate the privileged pro-
cessor sets, communicate with non-CE entities, and enumer-
ate the processors.

THostHandle is a non-privileged concrete class that
embodies the name port to the kernel’s host object. Objects
of this class can return some host information, and return the
default processor set. Objects of this class are useful to get
information from the host (such as kernel version, maximum
number of CPUs, memory size, CPU type, etc.) but cannot
cause any damage to the host. Users should be provided
access to objects of this class rather than the highly privi-
leged TPrivilegedHostHandle objects.

TProcessorHandle is a concrete class representing a pro-
cessor. A processor can be started, exited, added to a
TPrivilegedProcessorSetHandle, return information, and be
sent implementation-dependent controls.

TPrivilegedProcessorSetHandle is a concrete class pro-
viding the protocol for a processor set control port. Objects
of this class can: enable and disable scheduling policies, set
the maximum priority for the processor set, return statistics
and information, enumerate the tasks and threads, and assign
threads and tasks to the processor set. Client access to
objects of this class should be highly restricted to protect the
individual processors and the processor set.

TProcessorSetHandle is a concrete class providing the
protocol for a processor set name port. Objects of this class
can return basic information about the processor set (the
number of processors in the processor set, etc.) but they
cannot cause any damage to the processor set.

Implementation of Wrapper Methods

As noted above, the Mach and the Mach procedural
interface are well-known. The wrapper class library 402, and
the operation of the methods of the wrapper class library
402, have been defined and described in detail above.
Implementation of the methods defined by the wrapper class
library 402 is described below by considering selected
methods from the wrapper class library 402. Persons skilled
in the relevant art will find it apparent to implement the other
methods of the wrapper class library 402 based on the
well-known specification of the Mach, the discussion above
regarding the wrapper class library 402, and the discussion
below regarding the implementation of the wrapper meth-
ods. The implementation of the kill() method from the
TThreadHandle class of the thread classes 404 is shown in
Code Example 2, below. A routine called “examplel” is
shown in Code Example 1, below. The “examplel” routine

5,519,867

35

includes a decomposition statement which causes the kill()
method to be executed.

© Copyright, Taligent Inc., 1993

void examplel(TThreadHandle& aThread) 5
{
TRY
aThread Kill(); // terminates aThread immediatly
}
CATCH(TKernelException) 10
(
printf(“Couldn’t kill thread\n™);
/I error occured trying to kill
}
ENDTRY;
.. 15

}

CODE EXAMPLE 1

void TThreadHandle::Kill()

{
kern__return__t error;
if((error = 0
thread__terminate(fThreadControlPort)) 1= KERN__SUCCESS)

THROW(TKernelException()); // Error indicator

}
CODE EXAMPLE 2

Where: 25

fThreadControlPort is an instance variable of the
TThreadHandle class that contains the Mach thread control
port for the thread the class represents.

TKemelException is the C++ exception class that is 4,
thrown when a kernel routine gets an error.

THROW, TRY, CATCH, and ENDTRY are part of the
C4~+ language that allow you to throw and catch C4+-
exceptions.

The implementation of the suspend() method from the 35
TTaskHandle class of the task classes 406 is shown in Code
Example 4, below. A routine called “example2” is shown in
Code Example 3, below. The “example2” routine includes a
decomposition statement which causes the suspend()
method to be executed. 40

void example2(TTaskHandle& aTask)

TRY
45
aTask.Suspend(); // suspend all threads on task aTask
t
CATCH(TKernelException)
(
printf(“Couldn’t suspend threads\n™); // error occured
i 50
ENDTRY;
1. ..

}
CODE EXAMPLE 3
void TTaskHandle::Suspend()
{ 55
kern__return__t error;
if((error =
task__suspend(fTaskControlPort)) != KERN__SUCCESS)
THROW (TKernelException()); // Error indicator

}
CODE EXAMPLE 4 60

Where:
fTaskControlPort is an instance variable of the
TTaskHandle class that contains the Mach thread control
port for the task the class represents. 65
TKemelException is the C4++ exception class that is
thrown when a kernel routine gets an error.

36

THROW, TRY, CATCH, and ENDTRY are part of the
C++ language that allow you to throw and catch C++
exceptions.

The implementation of the GetLevel() method from the
TPseudoRealTimeThreadSchedule class of the scheduling
classes 414 is shown in Code Example 6, below. A routine
called “example3” is shown in Code Example 5, below. The
“example3” routine includes a decomposition statement
which causes the Getl.evel() method to be executed.

void example3(TPscudoRealTimeThreadSchedule& aSchedule)

PriorityLevels curPriority;
curPriority = aSchedule.GetLevel ();
// Get thread’s current priority

...

}

CODE EXAMPLE 5

PriorityLevels TPseudoRealTimeThreadSchedule::GetLevel()

{
struct task__thread__sched_info schedInfo;
thread__sched__info schedInfoPtr = schedInfo;
mach__msg__type__number_t returnedSize;
returnedSize = sizeof (schedInfo);
void thread_ info (fThreadControlPort,
THREAD_ SCHED__INFO, schedInfoPtr,

&returnedSize);

return (schedInfo.cur_ priority);

1
CODE EXAMPLE 6

Where:

fThreadControiPort is an instance variable of the TPseu-
doRealTimeThreadSchedule class. It contains the Mach
thread control port of the thread for which the class is a
schedule.

The implementation of the GetKemelVersion() method
from the THostHandle class of the machine classes 418 is
shown in Code Example 8, below. A routine called
“example4” is shown in Code Example 7, below. The
“exampled” routine includes a decomposition statement
which causes the GetKernelVersion() method to be
executed.

void example4(THostHandle& aHost)

kernel__version__t version;
aHost.GetKernelVersion (&version);
/I get version of kernel currently running

...

}

CODE EXAMPLE 7

void

THostHandle::GetKernelVersion (kernel _version__t& theVersion)

{

void host__kernel__version(fHostPort, theVersion);

}
CODE EXAMPLE 8

Where:

fHostPortis an instance variable of the THostHandleclass
that contains the Mach host control port for the host the class
represents.

The implementation of the GetMakeSendCount() method
from the TPortReceiveRightHandle class of the IPC classes
410 is shown in Code Example 10, below. A routine called
“example5” is shown in Code Example 9, below. The
“example5” routine includes a decomposition statement
which causes the GetMakeSendCount() method to be
executed. As evident by its name, the GetMakeSendCount()
method accesses the Mach to retrieve a make send count
associated with a port. The GetMakeSendCount() method

5,519,867

37

includes a statement to call mach port_get attributes,
which is a Mach procedurally-oriented system call that
returns status information about a port. In GetMakeSend-
Count(), fTheTask is an instance variable of the TPortRe-
ceiveRightHandle object that contains the task control port
of the associated task, and fThePortName is an instance
variable of the TPortReceiveRightHandle object that con-
tains the port right name of the port represented by the
TPortReceiveRightHandle object.

void example5(TPortReceiveRightHandle& aReceiveRight)
{

unsigned long count;

count = aReceiveRight GetMakeSendCount();

n...

}
CODE EXAMPLE 9
unsigned long TPortReceiveRightHandle::GetMakeSendCount()
{
mach__port_status_t thelnfo; I/ port status info
returned by Mach
1l size of info
returned by
void mach_port_ get_ attributes(fTheTask, fThePortName,
MACH__PORT_RECEIVE_STATUS,
&thelnfo, &theSize);
return(thelnfo.mps__mscount);
}CODE EXAMPLE 10

mach_msg type_number_t theSize;

Variations on the present invention will be obvious to
persons skilled in the relevant art based on the discussion
contained herein. For example, the scope of the present
invention includes a system and method of enabling a
procedural application to access in a procedural manner an
object-oriented operating system having a native object
oriented interface during run-time execution of the applica-
tion in a computer. This embodiment of the present inven-
tion preferably operates by locating in the application a
procedural statement which accesses a service provided by
the operating system, and translating the procedural state-
ment to an object-oriented function call (i.e., method) com-
patible with the native object-oriented interface of the oper-
ating system and corresponding to the procedural statement.
The object-oriented function call is executed in the computer
to thereby cause the operating system to provide the service
on behalf of the application. While various embodiments of
the present invention have been described above, it should
be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and
scope of the present invention should not be limited by any
of the above-described exemplary embodiments, but should
be defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. An apparatus for enabling an object-oriented applica-
tion, said application including objeci-oriented statements,
to access in an object-oriented manner a procedural operat-
ing system by use of said object-oriented statements, said
system providing services, including procedural functions
saved as executable program logic that are called to access
said services, said apparatus comprising:

(a) a computer;

(b) a memory component in said computer;

(c) a code library, stored in said memory component,
comprising means for storing said executable program
logic in an object-oriented class library; and means for
interfacing said object-oriented application to said pro-
cedural operating system utilizing said executable pro-
gram logic;

(d) means, in said computer, for processing said object-
oriented statements by executing methods from said

10

15

25

30

40

45

50

60

65

38

object-oriented class library corresponding to said
object-oriented statements; and

(e) means, in said object-oriented class library, including

object-oriented thread classes, for enabling said object-
oriented application to access said services to spawn,
control, and obtain information relating to a thread of
execution.

2. The apparatus of claim 1, wherein said thread classes
comprise a first object-oriented class encapsulating infor-
mation necessary to create a new thread of execution, said
first class being an abstract base class, and a second object-
oriented class for enabling said application to spawn a new
thread of execution on a task by passing a subclass of said
first class to an instance of said second class, and for
enabling said application to terminate, suspend, resume, and
schedule an existing thread of execution, said second class
having instances, said instances representing run-time pro-
cessing entities in said computer.

3. The apparatus of claim 1, wherein said object-oriented
class library comprises object-oriented task classes for
enabling said application to access in an object-oriented
manner said services to reference and control a task, said
task representing an execution environment for at least one
thread of execution associated with said task.

4. The apparatus of claim 3, wherein said task classes
comprise a first task object-oriented class encapsulating
attributes and operations of an existing task, said first task
class including protected methods to enable run-time spe-
cific subclasses of said first task class to spawn new tasks.

5. The apparatus of claim 4, wherein said first task class
comprises methods for enabling said application to deter-
mine whether a possible task exists, to suspend and resume
said existing task, to terminate said existing task, to receive
predetermined information relating to said existing task, to
identify a thread of execution contained in said existing task,
and to perform predetermined virtual memory operations in
an address space associated with said existing task.

6. The apparatus of claim 5, wherein said object-oriented
class library comprises an object-oriented thread class for
enabling said application to create a new thread of execu-
tion, said task classes further comprising a second object-
oriented task class, derived from said first task class, for
enabling said application to spawn a new run-time specific
task having a single thread of execution by passing an
instance of said thread class to an instance of said second
task class.

7. The apparatus of claim 1, wherein said object-oriented
class library comprises object-oriented synchronization
classes for enabling said application to access in an object-
oriented manner said services to synchronize execution of
said thread of execution.

8. The apparatus of claim 7, wherein said synchronization
classes define counting semaphores for use in synchronizing
the execution of said thread of execution, said synchroni-
zation classes comprising methods for enabling said appli-
cation to acquire one or more of said counting semaphores
in an exclusive mode or in a shared mode, and to release said
counting semaphores after said counting semaphores are
acquired.

9. The apparatus of claim 8, wherein said counting
semaphores are recoverable.

10. The apparatus of claim 7, wherein said synchroniza-
tion classes define a monitor lock for use in synchronizing
said thread of execution, said synchronization classes com-
prising methods for enabling said application to acquire and
release said monitor lock, and to block on a specified
condition once said monitor lock is acquired, said applica-

5,519,867

39

tion releasing said monitor lock when said application
blocks on said specified condition, and after said application
is unblocked, due to satisfaction of said specified condition,
said application reacquiring said monitor lock before resum-
ing execution.

11. The apparatus of claim 10, wherein said synchroni-
zation classes further comprise methods for enabling said
application to perform a broadcast operation on a specified
blocking condition when said application has acquired said
monitor lock, said broadcast operation unblocking all of said
threads of execution that are blocked on said specified
blocking condition.

12. The apparatus of claim 7, wherein said object-oriented
class library comprises object-oriented scheduling classes
for enabling said application to access in an object-oriented
manner said services to schedule execution of said thread of
execution.

13. The apparatus of claim 12 in which an actual sched-
uling priority, a default scheduling priority, and a maximum
scheduling priority are associated with said application, said
scheduling classes defining one or more scheduling priori-
ties, said object-oriented class library including methods for
setting each of said actual, default, and maximum schedul-
ing priorities of said application to one of said scheduling
priorities.

14. The apparatus of claim 13, wherein said scheduling
classes comprise an object-oriented class defining an idle
scheduling priority adapted for use with said threads of
execution that execute when said computer is substantially
idle.

15. The apparatus of claim 13, wherein said scheduling
classes comprise an object-oriented class defining a respon-
sive scheduling priority adapted for use with highly respon-
sive threads of execution that execute for short time periods,
and that block following said short time periods.

16. The apparatus of claim 13, wherein said scheduling
classes comprise an object-oriented class defining an inter-
action scheduling priority adapted for use with highly
responsive threads of execution implementing an interface
between a human operator and said computer.

17. The apparatus of claim 13, wherein said scheduling
classes comprise an object-oriented class defining a long-
term scheduling priority adapted for use with threads of
execution that execute for long periods of time.

18. The apparatus of claim 13, wherein said scheduling
classes comprise methods for enabling a task to specify a
relative scheduling urgency of said task.

19. The apparatus of claim 1, wherein said object-oriented
class library comprises object-oriented fault classes for
enabling said application to access in an object-oriented
manner said services to process system and user-defined
processor faults.

20. The apparatus of claim 19, wherein said fault classes
comprise a first object-oriented class defining a generic fault,
said first class having virtual methods for setting a processor
computer program logic and a fault computer program logic
to thereby identify said generic fault, said first class repre-
senting an abstract base class.

21. The apparatus of claim 20, wherein said fault classes
comprise a second object-oriented class, derived from said
first object-oriented class, comprising non-virtual methods
for setting said processor computer program logic and said
fault computer program logic in accordance with informa-
tion specific to a particular fault of a particular processor
such that said second class represents a processor-specific
fault, said non-virtual methods of said second class over-
riding said virtual methods of said first class.

10

15

20

25

30

35

45

50

55

60

65

40

22. The apparatus of claim 21, wherein said fault classes
comprise an object-oriented class encapsulating information
identifying a destination port, a fault message format, and
fault types, said object-oriented class comprising methods
for enabling said application to specify said destination port,
said fault message format, and said fault types, and for
enabling said application to instruct said operating system to
send messages in said specified fault message format to said
specified destination port when said specified fault types
OCCUr.

23. The apparatus of claim 19, wherein said fault classes
comprise a first object-oriented class comprising methods
for obtaining and returning a processing state of said thread
of execution.

24. The apparatus of claim 23, wherein said fault classes
comprise a second object-oriented class having methods for
enabling said application to receive fault messages and to
respond to received fault messages, said fault messages
comprising information identifying a faulting task and said
faulting task’s faulting thread of execution, and/or informa-
tion of a faulting thread of execution’s state, said faulting
thread of execution’s state being obtained by calling said
methods of said first class.

25. An apparatus for providing an object-oriented inter-
face to a procedural operating system, said system providing
services including procedural functions saved as executable
program logic that are called to access said services, said
apparatus comprising:

(a) a computer;

a memory component in said computer;

(c) a code library, stored in said memory component,
comprising means for storing said executable program
logic in an object-oriented class library; means for
interfacing to an object-oriented application; and said
object-oriented class library defining object-oriented
statements, said statements insertable into said appli-
cation to enable said application to access said services
during run-time execution of said application in said
computer; and

(d) means, in said object-oriented class library, including
object-oriented, thread classes for enabling said appli-
cation to access in an object-oriented manner operating
system services to spawn, control, and obtain informa-
tion relating to a thread of execution.

26. The apparatus of claim 25, wherein said object-
oriented class library comprises object-oriented task classes
for enabling said application to access in an object-oriented
manner said services to reference and control a task, said
task representing an execution environment for at least one
thread of execution associated with said task.

27. The apparatus of claim 26, wherein said object-
oriented class library comprises object-oriented synchroni-
zation classes for enabling said application to access in an
object-oriented manner said services to synchronize execu-
tion of threads of execution.

28. The apparatus of claim 27, wherein said object-
oriented class library comprises object-oriented, scheduling
classes for enabling said application to access in an object-
oriented manner said services to schedule execution of said
thread of execution.

29. The apparatus of claim 28, wherein said object-
oriented class library comprises object-oriented, fault
classes for enabling said application to access in an object-
oriented manner said services to process system and user-
defined processor faults.

30. An apparatus for providing an object-oriented inter-
face to a procedural operating system, said system providing

5,519,867

41

services including procedural functions saved as executable
program logic that are called to access said services, said
apparatus comprising:

(a) a computer;

(b) 2 memory component in said computer; and

(c) a code library, stored in said memory component,
comprising means for storing said executable program
logic in an object-oriented class library; means for
interfacing to an object-oriented application; and said
object-oriented class library comprising object-ori-
ented thread classes, said thread classes comprising
methods for accessing said services during run-time
execution of said application in said computer, said
thread classes having statements, said statements
insertable into said application to enable said applica-
tion to access said services to spawn, control, and
obtain information relating to threads of execution.

31. The apparatus of claim 30, wherein said thread classes
comprise a first object-oriented class encapsulating infor-
mation necessary to create a new thread of execution said
first class being an abstract base class, and a second object-
oriented class for enabling said application to spawn a new
thread of execution on a task by passing a subclass of said
first class to an instance of said second class, and for
enabling said application to terminate, suspend, resume, and
schedule an existing thread of execution, said second class
having instances, said instances representing run-time pro-
cessing entities in said computer.

32. An apparatus for providing an object-oriented inter-
face to a procedural operating system, said system providing
services including procedural functions saved as executable
program logic that are called to access said services, said
apparatus comprising:

(a) a computer;

(b) a memory component in said computer; and

(c) a code library, stored in said memory component,
comprising means for storing said executable program
logic in an object-oriented class library; means for
interfacing to an object-oriented application; and said
object-oriented class library comprising object-ori-
ented task classes, said task classes comprising meth-
ods for accessing said services during run-time execu-
tion of said application in said computer, said task
classes having statements, said statements insertable
into said application to enable said application to access
said services to reference and control a task, said task
representing an execution environment for at least one
thread of execution associated with said task.

33. The apparatus of claim 32, wherein said task classes
comprise a first object-oriented class encapsulating
attributes and operations of an existing task, said first class
including protected method to enable run-time specific sub-
classes of said first class to spawn new tasks.

34. The apparatus of claim 33, wherein said first class
comprises methods for enabling said application to deter-
mine whether a possible task exists, to suspend and resume
said existing task, to terminate said existing task, to receive
predetermined information relating to said existing task, to
identify a thread of execution contained in said existing task,
and to perform predetermined virtual memory operations in
an address space associated with said existing task.

35. The apparatus of claim 34, wherein the object-ori-
ented class library comprises an object-oriented thread class
for enabling said application to create a new thread of
execution, and said task classes further comprising a second
object-oriented task class, derived from said first class, for

20

25

35

40

45

50

55

60

65

42

enabling said application to spawn a new run-time specific
task having a single thread of execution by passing an
instance of said thread class to an instance of said second
task class.

36. An apparatus for providing an object-oriented inter-
face to a procedural operating system, said system providing
services including procedural functions saved as executable
program logic that are called to access said services, said
apparatus comprising:

(a) a computer;

(b) 2 memory component in said computer; and

(c) a code library, stored in said memory component,
comprising means for storing said executable program
logic in an object-oriented class library; means for
interfacing to an object-oriented application; and said
object-oriented class library comprising object-ori-
ented synchronization classes, said synchronization
classes comprising methods for accessing said services
during run-time execution of said application in said
computer, said synchronization classes having state-
ments, said statements insertable into said application
to enable said application to access said services to
synchronize execution of threads of execution.

37. The apparatus of claim 36, wherein said synchroni-
zation classes define counting semaphores for use in syn-
chronizing the execution of said thread of execution, said
synchronization classes comprising methods for enabling
said application to acquire one or more of said counting
semaphores in an exclusive mode or in a shared mode, and
to release said counting semaphores after said counting
semaphores are acquired.

38. The apparatus of claim 37, wherein said counting
semaphores are recoverable.

39. The apparatus of claim 37, wherein said synchroni-
zation classes define a monitor lock for use in synchronizing
said thread of execution, said synchronization classes com-
prising methods for enabling said application to acquire and
release said monitor lock, and to block on a specified
condition once said monitor lock is acquired, said applica-
tion releasing said monitor lock when said application
blocks on said specified condition, and after said application
is unblocked, due to satisfaction of said specified condition,
said application reacquiring said monitor lock before resum-
ing execution.

40. The apparatus of claim 39, wherein said synchroni-
zation classes further comprise methods for enabling said
application to perform a broadcast operation on a specified
blocking condition when said application has acquired said
monitor lock, said broadcast operation unblocking all of said
threads of execution that are blocked on said specified
blocking condition.

41. An apparatus for providing an object-oriented inter-
face to a procedural operating system, said system providing
services including procedural functions saved as executable
program logic that are called to access said services, said
apparatus comprising:

(a) a computer;

(b) 2 memory component in said computer; and

(c) a code library, stored in said memory component,
comprising means for storing said executable program
logic in an object-oriented class library; means for
interfacing to an object-oriented application; and said
object-oriented class library comprising object-ori-
ented, scheduling classes, said scheduling classes com-
prising methods for accessing said services during
run-time execution of said application in said computer,

5,519,867

43

said scheduling classes having statements, said state-
ments insertable into said application to enable said
application to access said services.

42. The apparatus of claim 41 in which an actual sched-
uling priority, a default scheduling priority, and a maximum
scheduling priority are associated with said application, said
scheduling classes defining one or more scheduling priori-
ties, said object-oriented class library including methods for
setting each of said actual, default, and maximum schedul-
ing priorities of said application to one of said scheduling
priorities.

43. The apparatus of claim 42, wherein said scheduling
classes comprise an object-oriented class defining an idle
scheduling priority adapted for use with said threads of
execution that execute when said computer is substantially
idle.

44, The apparatus of claim 43, wherein said scheduling
classes comprise an object-oriented class defining a respon-
sive scheduling priority adapted for use with highly respon-
sive threads of execution that execute for short time periods,
and that block following said short time periods.

45. The apparatus of claim 44, wherein said scheduling
classes comprise an object-oriented class defining an inter-
action scheduling priority adapted for use with highly
responsive threads of execution implementing an interface
between a human operator and said computer.

46. The apparatus of claim 44, wherein said scheduling
classes comprise an object-oriented class defining a long-
term scheduling priority adapted for use with threads of
execution that execute for long periods of time.

47. (Amended) The apparatus of claim 44, wherein said
scheduling classes comprise methods for enabling a task to
specify a relative scheduling urgency of said task.

48. An apparatus for providing an object-oriented inter-
face to a procedural operating system, said system providing
services including procedural functions saved as executable
program logic that are called to access said services, said
apparatus comprising:

(a) a computer;

(b) 2 memory component in said computer; and

(c) a code library, stored in said memory component,
comprising means for storing said executable program
logic in an object-oriented class library; means for
interfacing to an object-oriented application; and said
object-oriented class library comprising object-ori-
ented fault classes, said fault classes comprising meth-

10

15

20

25

30

35

40

45

44

ods for accessing said services during run-time execu-
tion of said application in said computer, said fault
classes having statements, said statements insertable
into said application to enable said application to access
said services to process system and user-defined pro-
cessor faults.

49, The apparatus of claim 48, wherein said fault classes
comprise a first object-oriented class defining a generic fauit,
said first class having virtual methods for setting a processor
computer program logic and a fault computer program logic
to thereby identify said generic fault, said first class repre-
senting an abstract base class.

50. The apparatus of claim 49, wherein said fault classes
comprise a second object-oriented class, derived from said
first object-oriented class, comprising non-virtual methods
for setting said processor computer program logic and said
fault computer program logic in accordance with informa-
tion specific to a particular fault of a particular processor
such that said second class represents a processor-specific
fault, said non-virtual methods of said second class override
said virtual methods of said first class.

51. The apparatus of claim 49, wherein said fault classes
comprise an object-oriented class encapsulating information
identifying a destination port, a fault message format, and
fault types, said object-oriented class comprising methods
for enabling said application to specify said destination port,
said fault message format, and said fault types, and for
enabling said application to instruct said operating system to
send messages in said specified fault message format to the
specified destination port when said specified fault types
occur.

52. The apparatus of claim 49, wherein said fault classes
comprise a first object-oriented class comprising methods
for obtaining and returning a processing state of said thread
of execution.

53. The apparatus of claim 52, wherein said fault classes
comprise a second object-oriented class having methods for
enabling said application to receive fault messages and to
respond to received fault messages, said fault messages
comprising information identifying a faulting task and said
faulting task’s faulting thread of execution, and/or informa-
tion of a faulting thread of execution’s state, said faulting
thread of execution’state being obtained by calling said
methods of said first class.

% ok ok ok 3k

EXHIBIT 3

ORI 0O 10 00
US005566337A

United States Patent 9 1] Patent Number: 5,566,337
Szymanski et al. 451 Date of Patent: Oct. 15, 1996
[54] METHOD AND APPARATUS FOR FOREIGN PATENT DOCUMENTS
IS);SSE‘I;;SIUTING EVENTS IN AN OPERATING 0528222 2/1993 European Pat. Off. .
W091/03017 3/1991 WIPO.
[75] Inventors: Steven J. Szymanski, Cupertino; OTHER PUBLICATIONS

Thomas E. Saulpaugh, San Jose; . . .

William J. Keenan, Redwood City, all IBM: ‘OS/2 2.0 Presentation Manager Programming

of Calif. Guide’, Mar. 1992, QUE, USA, p. 31-5, last paragrph, p.
31-6, paragraph 3.

[73] Assignee: églll)fle Computer, Inc., Cupertino, Primary Examiner—Jack B. Harvey

Assistant Examiner—Sumati Lefkowitz
Attorney, Agent, or Firm—Burns, Doane, Swecker & Mathis

[57] ABSTRACT

[21]1 Appl. No.: 242,204

[22] Filed: May 13, 1994
In a computer including an operating system, an event

[51] Int. CL° GOGF 9/00 producer for generating an event and detecting that an event
[52] US.Cl . 395/733, 395/650, 395/700 has occurred in the computer and an event consumer which
[58] Field of Search 395/650, 725, need to be informed when events occur in the computer, a

395/700, 775 system for distributing events including a store for storing a

specific set of events of which the at least one event

[56] References Cited consumer is to be informed, an event manager control unit
U.S. PATENT DOCUMENTS for receiving the event from the event producer, comparing

. the received event to the stored set of events, and distrib-

. 395/182.2 uting an appropriate event to an appropriate event consumer,
-------------------------- 395/650 and a distributor for receiving the event from the control unit

5,155,842 10/1992 Rubin
5,237,684 8/1993 Record et al.

§§g§ggi iﬁggj glurryd tal gggggg and directing the control unit to distribute an appropriate
,305, 0rd et al. .ovevcereiieieriveeinne s
31837 61994 Damiel et al. . o 305/6s0 CVenl to an appropniate event consumer.
5,355,484 10/1994 Record et al.ccevevreverreenenens 395/650
5,430,875 7/1995 Ma 395/650 24 Claims, 10 Drawing Sheets
30 320 305
\ 330 4 110
i it htteh Ikl B
| EVENT || BROADCAST
i QUEUE i i CONSUMER
#1 #1
| |
‘ EVENT 1 [BrROADCAST
| QUELE |4 CONSUMER
| #2 | #2
SUBSCRIPTION |
' MATRIX EVENT BROADCAST
' QUELE — L CONSUMER
I #3 | #3
|
: EVENT | [eroanCasT
QUELE | L1 CONSUMER
| P EVENT | | #4
I MANAGER| |
I r ‘ CONT]F}roL | 3+60
331 UN
|| EvENT KiND EVENT KIND | o I
[| HeADER#1 HEADER #2 i Sggxgl‘:‘;‘é‘&
350
| y'd /(#1
' SEQUENTIAL I
| CONSUMER || SEQUENTIAL
DATABASE [T CONSUMER
‘ #2
N IS S _ |
EVENT EVENT 340 || SEQUENTIAL
DISTRIBUTOR pisTREUTOR P | [CONSUMER
#1 #2 | #3
T = — == === — — J
I f
!]
! i
|

EVENT EVENT EVENT EVENT 00
PRODUCER PRODUCER | | PRODUCER PRODUCER |t——3
#1 #2 #3 #4

U.S. Patent Oct. 15, 1996

10

FIG. 1

Sheet 1 of 10

5,566,337

\ EXT. DISK
P ROCTEZSSOR STORE STORE
INPUT 14 16
DEVICE 20
/0
18
OUTPUT
DEVICE 22
26
NETWORK
27
MEMORY 24

OPERATING SYSTEM

28

EVENT
MANAGER 30

5,566,337

U.S. Patent Oct. 15, 1996 Sheet 2 of 10
30 320 305
\4_ 330 4 310
e bt ittt I IR
[' EVENT || BROADCAST
1 QUEUE | CONSUMER
#1 #1
| |
| EVENT | I BROADCAST
! QUEUE -4 CONSUMER
| #2 | #2
| SUBSCRIPTION I
l MATRIX EVENT BROADCAST
QUEUE CONSUMER
| #3 | #3
| [
| EVENT | BrRoADCAST
QUELE CONSUMER
I 24 EVENT ! #4
[MANAGER |
CONTROL 360
l | | i ot | *
|| EvENT KIND EVENTKIND | ¢/ |
| | HEADER #1 HEADER #2 || SEQUENTIAL
350 CONSUMER
| ¥ /(#1
I SEQUENTIAL '
l CONSUMER || SEQUENTIAL
| DATABASE ™ l CONSUMER
#2
Lo e e e !
EVENT EVENT /340 | & SEQUENTIAL
DISTRIBUTOR DISTRIBUTOR ‘ || CONSUMER
#1 #2 #3
——_——]=_——— = = |— = === 4 |
% |
| |
! 1
| ——/— I - ———J———-————-—-—— _1
/ \ /. N\
EVENT EVENT EVENT EVENT
PRODUCER | | PRODUCER || PRODUCER | | PRODUCER |t—300
#1 #2 43 #4

FIG. 2

U.S. Patent Oct. 15, 1996 Sheet 3 of 10 5,566,337

FIG. 3 FIG. 6

320 FIRST SUBSCRIPTION 3310 NEXT HEADER
\\ LAST SUBSCRIPTION N DISTRIBUTOR OBJECT ID
MAXIMUM EVENTS EVENT IDENTIFIER
NEXT EVENT FIRST SUBSCRIPTION
EVENT ARRAY LAST SUBSCRIPTION
FIG. 5a FIG. 7
3300
i 45
EVENT QUEUE POINTER pdd
EVENT KIND HEADER POINTER EVENT SERVICE
NEXT SUBSCRIPTION, SAME EVENT EVENT KIND
PREVIOUS SUBSCRIPTION, SAME EVENT
NEXT SUBSCRIPTION, SAME QUEUE
PREVIOUS SUBSCRIPTION, SAME QUEUE
EVENT SUBJECT
FIG. 8
' 40
FIG. 5b 3500 EVENT NAME
pd EVENT SUBJECT /\/
EVENT IDENTIFIER Ap—————
EVENT SUBJECT p——
SEQUENTIAL CONSUMER OBJECT ID

U.S. Patent Oct. 15, 1996 Sheet 4 of 10 5,566,337

SUBSCRIPTION
MATRIX

I - - - -T-T-T-=-=-=-=-=-=--- EVENT
e | s
| 3300 |
| | ,
| \I\f |
l r < '
| ‘[//
: R

_ ‘ r
; T
Y]
il [T
; Y I
[— .
; %
S (VR 1 s s

- - -
EVENT KIND

HEADERS
FIG. 4 331

U.S. Patent

Oct. 15, 1996 Sheet 5 of 10
FIG. 9A

START

PRODUCER
DETECTS OR
GENERATES EVENT
600

l

PRODUCER
GENERATES
DESCRIPTION OF
EVENT
602

l

[CALL EVENT MANAGEFq

604

5,566,337

U.S. Patent Oct. 15, 1996 Sheet 6 of 10 5,566,337

FIG. 9B

ND ASYNCHRONOUS YES RETURN TO
I' PROCESSING? PRODUCER 608
PROCESS PROCESS
SYNCHRONOUSLY ASYNCHRONOUSLY
612 610
L |
v
EVENT MANAGER SENDS EVENT TO EACH
SEQUENTIAL CONSUMER WITH
MATCHING DATABASE ENTRIES
614
by

SEQUENTIAL CONSUMER INDICATES
[F PROCESSING OF EVENT SHOULD
CONTINUE OR STOP
616

RETURN TO
YES CALLING
PRODUCERS
620

AST SEQUENTIAL
CONSUMER?
622

U.S. Patent Oct. 15, 1996 Sheet 7 of 10 5,566,337

FIG. 9C

EVENT MANAGER SENDS
EVENT TO DISTRIBUTOR TO
DISTRIBUTE TO BROADCAST
CONSUMERS
624

ENQUEUE EVENTS
ACCORDING TO CALLS
625

)4
RETURNTO
SYNCHFI?NOUSL YES { PRODUCER
' 618
626
NO

REPLY TO
PRODUCER
630

U.S. Patent Oct. 15, 1996

FIG. 9D

ALL
CONSUMERS
RECEIVE
NOTICE?
6242

USE
PLACEHOLDER
FOR DATA?
6240

Sheet 8§ of 10

- 5,566,337

YES M

USE

GiveToAllConsumers

CALL
6244

B ND
\
USE
Yes GiveToSelectConsumers
CALL
6246
b4
ALL USE
CONSUMERS YES > GivePlaceholderToAllConsumers
RECEIVE CALL
NOTICE? 6250
6248
NO
USE
i BRETURN TO
leePIaceholdergoASLElectConsumers EVENT MANAGER
6252 6254

U.S. Patent

Oct. 15, 1996

FIG. 10

SEQUENTIAL
CONSUMERS

Sheet 9 of 10

CALL EVENT MANAGER
TO GET INSTALLED
700

|

%

WAIT FOR EVENT
702

I

EVENT
RECEIVED?
704

ACT ON EVENT
704

'

SHOULD OTHER
CONSUMERS SEE

EVENT HANDLED
MESSAGE
711

|

EVENT TO BE PASSED
TO NEXT SEQUENTIAL
CONSUMER
709

5,566,337

U.S. Patent

Oct. 15, 1996

FIG. 11

BROADCAST
CONSUMERS

REGISTER WITH
EVENT MANAGER
800

l

EVENT CREATES
EVENT QUEUE AND
RETURNS
802

h 4

Sheet 10 of 10

BROADCAST CONSUMER
CALLS EVENT MANAGER TO
SUBSCRIBE TO KINDS OF
EVENTS
804

'

EVENT MANAGER ADDS
ENTRIES TO SUBSCRIPTICN
MATRIX
806

>

A 4

BROADCAST CONSUMER
CALLS EVENT MANAGER TO
GET NEXT EVENT
808

v

ACT ON EVENT
810

J

5,566,337

5,566,337

1

METHOD AND APPARATUS FOR
DISTRIBUTING EVENTS IN AN OPERATING
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is related to a patent application
No. 08/245,141 entitled “Method and Apparatus for Han-
dling Requests Regarding Information Stored in A File
System”, in the name of Steven James Szymanski and Bill
Monroe Bruffey, filed on May 13, 1994, herein incorporated
by reference.

BACKGROUND

The present invention is directed to a method and appa-
ratus for distributing information about events occurring in
a computer, and in particular an event manager which
manages the distribution of those events to the appropriate
entities within the computer.

For purposes of this description, an event is any occur-
rence in a computer of which software programs running on
that computer or on a connected computer might need to be
informed. Events may include occurrences such as, for
example, a keystroke, a mouse click, disk insertion and
ejection, network connection and disconnection, the com-
puter entering a “sleep mode” shutdown, a window uncov-
ered (i.e., the contents of the window need to be redis-
played), a new file created, a directory renamed, the contents
of file changed, and the tree space on a volume changed, etc.

Interrupts and error conditions may also be counted as
atypical examples of events. In particular, interrupts need to
be handled by a program so an event manager is an inap-
propriate solution. However, the code which does handle the
interrupt might generate an event based on the interpretation
of the interrupt. For example, the computer might generate
an interrupt when the user inserts a floppy disk. The interrupt
itself is unlikely to be propagated by the event manager, but
it would be reasonable for the interrupt handler to produce
a “disk inserted” event. Error conditions are similar. Most of
the time it is necessary for one of the computer programs on
the system to handle the error, therefore more direct point to
point mechanisms are appropriate. However, there are kinds
of errors which are more advisory in nature which would be
appropriate to be sent via events. For example, some por-
table computers take various actions to reduce power con-
sumption when the battery gets low. It would be appropriate
to produce an event called “battery low” to inform all
software programs of the condition, and have all of the
software which can reduce power consumption consume
these events.

Currently, known operating systems all have some type of
mechanism for managing the events that occur within the
computer. However, these mechanisms use a point-to-point
method of managing the events. That is, the entities pro-
ducing or detecting events distribute the events to the
entities using the events. To accomplish this, all of the
entities producing or detecting events must know which
entities they must notify when a particular event is generated
within the computer. This configuration is very cumbersome
and inefficient. Further, it is resource intensive since all
entities producing or detecting events must have information
on all the events they produce or detect and also on all the
entities interested in those events. This information is both
extensive and constantly changing, causing modifications to
be difficult.

10

15

20

25

35

40

45

50

55

60

65

2

Further, point-to-point mechanisms lack flexibility. Under
point-to-point schemes, if there is a new consumer of an
event, a new version of the producer must be released which
knows about the new consumer. Or if a new kind of event
becomes necessary, a new version of the event manager
must be released which knows how to distribute the new
kind of event.

It is desirable to provide an apparatus for efficiently
dealing with all kinds of events in an operating system and
for distributing information regarding specific kinds of
events to programs which require such information. To this
end, it is also desirable to improve the system performance
and reduce the resources required to distribute such infor-
mation. To meet these goals, it is desirable to provide an
apparatus for managing events in which communication
between the event producers and consumers is facilitated
without requiring each event producer to be aware of all of
the event consumers.

BRIEF STATEMENT OF THE INVENTION

In accordance with the present invention, the foregoing
objectives, as well as others, are achieved through central-
ization of event management, and in particular, by providing
an event manager for handling the distribution of events
within the computer.

According to one embodiment, in a computer including at
least one event producer for detecting that an event has
occurred in the computer and generating an event and at
least one event consumer which need to be informed when
events occur in the computer, a system is provided for
distributing information about events. The system includes
storing means for storing a specific set of events of which the
event consumers are to be informed, an event manager
control means for receiving the event from the event pro-
ducer, comparing the received event to the stored set of
events, and distributing an appropriate event to an appro-
priate event consumer, and a distributor for receiving the
event from the control means and directing the control
means to distribute an appropriate event to an appropriate
event consumer.

According to another embodiment, a system is provided
for distributing events occurring in a computer. The system
comprises event producers for detecting that an event has
occurred in the computer, generating an event, and gener-
ating a description of the event and event consumers which
need to be informed when events occur in the computer, the
event consumers comprising a first and a second class of
consumers. The system further comprises storing means for
storing a specific set of events of which the event consumers
am to be informed, event manager control means for receiv-
ing the event from the event producers and comparing the
received event to the stored set of events, distributor means,
responsive to the event control means, for deciding if an
event should be passed to an event consumer. The event
manager control means comprises first means for sending an
event to appropriate event consumers of a first type in
accordance with the stored set of events, and second means
for sending the event to appropriate event consumers of a
second type responsive to the distributor means.

According to another embodiment, a method is provided
for distributing events occurring in a computer. The method
comprises the steps of determining that an event has been
detected by an event producer in the computer, storing, in a
storing means, a specific set of events of which an event
consumer is to be informed, receiving the event in an event

5,566,337

3

control means from the event producer and comparing the
received event to the stored set of events. The method further
comprises receiving the event in a distributor means from
the control means, directing the control means to distribute
an appropriate event to an appropriate event consumer, and
distributing, via the control means, an appropriate event to
an appropriate event COnsumer.

Still other objects, features and attendant advantages of
the present invention will become apparent to those skilled
in the art from a reading of the following detailed description
of the embodiments constructed in accordance therewith,
taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described in more
detail with reference to preferred embodiments of the
method and apparatus, given only by way of example, and
with reference to the accompanying drawings, in which:

FIG. 1 is a block diagram of an exemplary computer on
which the present invention can be implemented;

FIG. 2 is a block diagram of the architecture for the event
manager according to one embodiment of the present inven-
tion;

FIG. 3 is an exemplary embodiment of the event queue
data structure according to the present invention;

FIG. 4 is an exemplary embodiment of the subscription
matrix according to the present invention;

FIG. 5a is an exemplary embodiment of the subscription
data structure according to the present invention;

FIG. 5b is an exemplary embodiment of the sequential
consumer entry structure according to the present invention;

FIG. 6 is an exemplary embodiment of the event kind
header data structure according to the present invention;

FIG. 7 is an exemplary embodiment of the event name
data structure according to the present invention;

FIG. 8 is an exemplary embodiment of the event data
structure according to the present invention;

FIGS. 9A, 9B, 9C and 9D are flowchart illustrating the
event handling process from the event producers’ and the
event distributors’ point of view according to one embodi-
ment of the present invention;

FIG. 10 is a flowchart illustrating the event handling
process from the sequential consumers’ point of view
according to one embodiment of the present invention; and

FIG. 11 is a flowchart illustrating the event handling
process from the broadcast consumers’ point of view
according to one embodiment of the present invention.

DETAILED DESCRIPTION

In general, the invention recognizes the need for efficient
communications between different entities within the com-
puter concerning events occurring within the computer. In
particular, communications are required to inform entities
within the computer about the events produced by other
entities. The method required to handle these communica-
tions is complicated by the fact that the entities involved do
not know the identity of the other entities. The method is
further complicated by the fact that the identity of the
entities needing to know about events and the lists of events
which can occur are subject to constant change.

One goal for the event manager according to the present
invention is to provide a common service which supports a
majority of these kinds of communications. The information

20

25

30

35

45

50

55

60

65

4

which needs to be communicated is referred to as the event.
According to one embodiment, the event is described by
three pans, an event identifier which indicates the kind of
event, an event subject, which identifies the entity which the
event happened to, and event information which describes
how the event occurred. The entities within the computer
which are the sources of the information are referred to as
the producers of the event. In particular, an event producer
is any software on a computer that is responsible for
generating an event or for detecting that the computer
hardware has generated an event. The event producer then
generates a description for each event it produces or detects.
The entities within the computer which need to receive the
information are referred to as consumers of the event. In
particular, an event consumer is any program that needs to
be informed when an event has occurred and needs to be
informed of the description of the event. Any intermediate
service which moderates the connection between the pro-
ducers and consumers of an event is referred to as the
distributor of the event.

According to one embodiment of the present invention,
there are two classes of event consumers which differ in their
relationships to other consumers of an event, namely broad-
cast consumers and sequential consumers. Broadcast con-
sumers have no relationship with other consumers. They do
not need to know if other consumers exist, nor in what order
consumers arc informed of the event, as long as they
themselves are eventually informed. Sequential consumers,
on the other hand, have very definite relationships with other
consumers. They require that no other consumer be told
about an event while they themselves are still processing it,
and they require the ability to influence when in the
sequence they receive the event. In addition, many sequen-
tial consumers require the ability to modify the event itself,
and even block an event from being received by other
consumers. Consumers are defined as sequential or broad-
cast based on whether they have to react to an event without
fail. In particular, a sequential consumer must react to the
kinds of events in which it is interested and so a distributor
should not withhold those events from the sequential con-
sumer. For example, a communications program would be a
sequential consumer of events which notify of the dropping
of a connection, since the communication program would
need to respond to such an event.

Broadcast consumers typically have a set of kinds of
events in which they are interested and want to be notified
of the next event from this set as simply as possible. Many
broadcast consumers are interested in events that occur only
to a limited set of subjects, and so one embodiment of the
present invention provides a method for filtering events
based on “who” they involve. In addition, the set of events
in which the broadcast consumers are interested changes
over time as does the immediacy of the interest. Thus, one
embodiment of the present invention provides a method
which allows the consumer to modify the set of events which
will be delivered to the consumer. Lastly, there is no clear
pattern as to whether broadcast consumers want to poll the
event manager control unit to collect an event, or if they
want to be notified asynchronously. Therefore, according to
one embodiment, both options are supported.

FIG. 1 is a block diagram showing an exemplary com-
puter on which the software according to the present inven-
tion can be implemented. The computer 10 includes a
processor (CPU) 12, an external storage device 14, a disk
storage device 16, an input/output (I/O) controller 18, an
input device 20, an output device 22, a memory 24, and a
common system bus 26 connecting each of the above

5,566,337

5

elements. Only one input device and one output device is
shown in FIG. 1 for ease of readability purposes. However,
it will be appreciated that the computer 10 can include more
than one such device. The processor 12, the external storage
device 14, the disk storage device 16 and the memory 24 are
also connected through the bus 26 and the I/O controller 18
to the input and output devices 20 and 22. In addition, the
computer 10 can also be adapted for communicating with a
network 27.

Stored within the memory 24 of the computer 10 are a
number of pieces of software which can be executed by the
processor 12. One of those pieces of software is an operating
system 28. In one embodiment, the operating system 28 is a
microkernel operating system capable of maintaining mul-
tiple address spaces. An event manager 30 resides within the
operating system. In an exemplary embodiment, the com-
puter system 10 of the present invention is an Apple Macin-
tosh™ computer system made by Apple Computer, Inc., of
Cupertino, Calif.,, and having a microprocessor and a
memory wherein a microkernel operating system 28 that
includes the event manager 30 resides. The components of
the computer system can be changed within the skill of the
ordinary artisan once in possession of the instant disclosure.
Although the present invention is described in a Macin-
tosh™ environment, it is within the scope of the invention,
and within the skill of the ordinarily skilled artisan, to
implement the invention in a DOS, Unix, or other computer
environment.

The present invention relates to an architecture for an
event manager for managing events that occur in an oper-
ating system. Clients of the event manager include event
consumers and event producers, that is, applications pro-
grams and the various parts of the operating system, such as
for example, a file manager.

According to one embodiment, the present invention
cooperates with an operating system with a microkernel
architecture in which the kernel provides a semaphore
synchronization mechanism and a messaging system. The
messaging system creates and maintains a set of message
objects and one or more port objects. The messaging system
has a number of features. It allows a creator-defined value to
be associated with each object. The messaging system also
allows multiple objects to be mapped to the same port and
messages to be either received from a port or have a function
be called when a message of an appropriate type is sent to
that port. Further, the messaging system allows the receiver
of the message to determine the object to which the message
was originally sent and to derive the creator-defined value
for that object. One example of such a microkernel archi-
tecture is provided by NuKERNEL™, used in Apple Macin-
tosh™ computers. The NuKERNEL™ gystem is described
in copending U.S. patent application Ser. No. 08/128,706,
filed on Sep. 30, 1993, for a “System For Decentralizing
Backing Store Control Of Virtual Memory In A Computer”,
application Ser. No. 08/220,043, filed on Mar. 30, 1994, for
an “Object Oriented Message Passing System And Method”,
and an application entitled “System and Method Of Object
Oriented Message Filtering”, filed in the name of Thomas E.
Saulpaugh and Steven J. Szymanski, on or about the date of
filing of the present application. These three patent applica-
tions are incorporated by reference herein.

According to the messaging system, a service is provided
by a server, and software wishing to make use of the service
is called a client of the server. Messages are sent to a target
by clients and received by servers. The message directs the
server to perform a function on behalf of the client. Message
objects are abstract entities that represent various resources

10

15

20

25

30

35

40

45

50

60

65

6

to messaging system clients. These objects may represent,
for example, devices, files, or windows managed by a server.
Clients send messages to objects, which objects are identi-
fied by an identification labelled ObjectID.

Message ports are abstract entities that represent a service.
These ports may represent, for example, a device driver, a
file system, or a window manager. Servers receive messages
from ports, which ports are identified by a label PortID.
Objects are assigned to a port. A message sent to an object
is received at that object’s port. Ports and objects are created
by the messaging system on behalf of a server. The creation
of an object requires designating a port from which mes-
sages sent to the object will be retrieved.

According to one embodiment, the messaging system is
used by the event manager in that the event distributors have
an associated port and object, the sequential consumers have
an associated port and object, and the event manager main-
tains a port and objects assigned to that port for each
broadcast consumer. The events are passed as messages by
the event producers to the distributor’s associated object, the
sequential consumers receive the messages from their asso-
ciated port, and the broadcast consumers send messages to
request events to the event manager via the object main-
tained for that broadcast consumer. Additionally, according
to one embodiment, the event manager uses the message
filter mechanism provided in a messaging system to imple-
ment sequential consumers. For each sequential consumer, a
message filter is created on the distributor’s ObjectID. The
code which receives messages through the filter checks for
matches (on the what and who provided) and forwards the
appropriate messages to the sequential consumer. One
example of such a message filtering mechanism is described
in the above-referenced patent application in the name of
Thomas E. Saulpaugh and Steven J. Szymanski.

FIG. 2 is a block diagram of the architecture for the event
manager 30 shown in FIG. 1. The event manager 30 (shown
by the dashed line in FIG. 2) is operationally connected to
and communicates with a plurality of event distributors 340,
corresponding in number to the different kinds of events
possible within the system, a plurality of event consumers,
and a plurality of event producers 300.

According to one embodiment, the plurality of event
consumers can include broadcast consumers 310 and
sequential consumers 360. It is appreciated that a given
system may have either one or more broadcast consumers or
one or more sequential consumers, or both.

According to the present invention, events are grouped
into “kinds”, for example, all keystrokes are one kind of
event, all mouse clicks are another kind of event, all new file
creations am another kind of event, etc. It is also possible to
group the events differently, for example, all depressions of
a particular key are one kind of event. This is not a preferred
implementation at least in part because the number of kinds
of events would quickly become unmanageable. However,
the choice of how to group the events is within the skill of
the ordinary artisan once in possession of the present dis-
closure.

The event manager 30 includes an event manager control
unit 305 and data structures. The data structures include a
subscription matrix 330, a sequential consumer database
350, a plurality of event queues 320 provided in one-to-one
correspondence with the broadcast consumers 310, and a
plurality of event kind headers 331 provided in one-to-one
correspondence with the event distributors 340. The event
manager control unit 305 consists of at least one software
routine which manages the event manager data structures.

5,566,337

7

Event producers 300 represent any software on a com-
puter that is responsible for generating an event, or is
responsible for detecting that other entities in the computer
have generated an event. The event producers generate
descriptions of each event they produce or detect. Each kind
of event can have any number of event producers, and a
given event produce may produce or detect multiple kinds of
events. Event consumers, including broadcast consumers
310 and sequential consumers 360, represent any program
that needs to be informed when an event has occurred and
needs to be informed of the description of that event. Each
kind of event can have any number of event consumers, and
a given event consumer may need to be notified of multiple
kinds of events.

It is possible for an event consumer to be an event
producer and for an event producer to be an event consumer.
In particular, there are many cases where a piece of software
will consume one kind of event, and produce another kind
in response. For example, the file manager might consume
“disk inserted” events, mount the volumes on the inserted
media, and then produce “new volume” events as a result. It
is also possible that a given program may subscribe to
different kinds of events differently. In particular, the pro-
gram may subscribe as a sequential consumer for some
kinds of events and as a broadcast consumer for other kinds
of events.

Event queues 320 are lists of events that are maintained by
the event manager control unit 305 for each of the broadcast
consumers 310 to hold information about events of interest
to the corresponding broadcast consumer. According to one
embodiment, the event queues 320 are structured as first-in,
first-out lists. Other suitable storage configurations such as
lists ordered by event priority or by producer priority, for
example, disk inserted events may always have higher
priority than mouse clicks or disk event producers may have
higher priority than mouse event producers, may also be
used. In FIG. 2, event queue #1 is the list of events of interest
to broadcast consumer #1, event queue #2 is the list of events
of interest to broadcast consumer #2, and so on. Although
four broadcast consumer/queue pairs are shown in FIG. 2, it
is appreciated that any number of broadcast consumer/queue
pairs can be defined at a given time.

According to one embodiment, the event queues 320 are
stored in the format shown in FIG. 3, including the following
fields: first subscription; last subscription; maximum events;
next event; and event array. The first and last subscription
fields are pointers to the first and last subscription for the
corresponding broadcast consumer 310. An event subscrip-
tion is a description of a specific set of events of which a
particular broadcast consumer needs to be informed. The
maximum events field is the maximum number of events
that are to be maintained in the queue for that consumer.
According to one embodiment, the size of the event array
may be slightly larger than the indicated maximum to
provide a cushion. The event array stores the list of events
that have occurred in the form of an array of elements, each
element being an event to which the corresponding broad-
cast consumer has subscribed. In one embodiment, the
queues are stored in circular buffers, although other suitable
storage configurations such as singly and doubly linked lists
and dynamic stacks could be used.

Subscription matrix 330 is a structure that maintains the
information about all existing event subscriptions. In par-
ticular, the subscription matrix 330 is used to keep track of
the subscriptions for the events in which the broadcast
consumers are interested.

A plurality of sequential consumers 360 may be defined.
Although three sequential consumers #1, #2, and #3, are

20

25

30

35

40

50

55

60

65

8

shown in FIG. 2, it is appreciated that any number of
sequential consumers can be defined. The sequential con-
sumer database 350 is composed of a plurality of sequential
consumer entries which list the events in which each sequen-
tial consumer 360 is interested.

In one embodiment, the subscription matrix 330 can be
configured as illustrated in FIG. 4, where there is one
subscription structures 3300 stored for each subscription.
Other suitable configurations may be used such as sparse
arrays, or dynamic lists of subscriptions on the event queue
and/or event kind structures. The subscription structures
3300 stored in the subscription matrix are connected to the
event queues 320 and the event kind headers 331. In
particular, there is one event kind header 331 stored for each
kind of event known to the system, thus the number of event
kind headers is equal to the number of event distributors.
The event kind headers 331 store information for the event
manager control unit 305 to use to determine which dis-
tributor handles the kind of event currently being processed.
A RegisterDistributor (described below) call creates the
event kind header.

According to one embodiment, the subscriptions 3300 are
stored in the subscription matrix 330 in the format shown in
FIG. 54, including the following fields: event queue pointer;
event kind header pointer; next subscription, same event;
previous subscription, same event; next subscription, same
queue; previous subscription, same queue; and event sub-
ject. The event queue pointer is a pointer to the event queue
to which the subscription belongs. The event kind header
pointer is the pointer to the event kind header for the kind of
event which is the subject of the subscription. The event
subject identifies the structure which the event happened to.
The rest of the fields are the pointers to the other subscrip-
tions.

An exemplary format for the sequential consumer entries
is illustrated in FIG. 5b. According to one embodiment, the
entries each include the following fields: event identifier,
event subject and sequential consumer object ID. The event
identifier identifies the kinds of events in which the sequen-
tial consumer is interested. The event subject identifies the
subject of the events in which the sequential consumer is
interested. The sequential consumer object ID identifies the
objectID for the sequential consumer which created the
entry in the sequential consumer database. According to one
embodiment, the sequential consumer database 350 is part
of the subscription matrix 330 and there is a pointer to the
subscription structure for each sequential consumer. Accord-
ing to another embodiment shown in FIG. 2, the sequential
consumer database 350 is provided separately from the
subscription matrix 330 as described above. The event
manager control unit 305 performs a comparison between
the data structure and the detected event to determine
whether the event should go to that sequential consumer.

According to one embodiment, the message filtering
mechanism is used to maintain the information required to
provide the appropriate sequential consumers with the
events as they occur. This mechanism is generally described
in the Saulpaugh and Szymanski patent application dis-
cussed above.

According to one embodiment, the event kind headers
331 are stored in the format shown in FIG. 6. The event kind
header 331 includes the following fields: next header; Dis-
tributorObjectld; event identifier; first subscription; and last
subscription. The next header field is a pointer to next header
in a singly linked list of event kind headers. The Distribu-
torObjectID is the distributor ObjectID for the correspond-

5,566,337

9

ing event distributor. The event identifier identifies the kind
of event the associated distributor handles. The first and last
subscription fields are pointers to first and last subscriptions
defined for this kind of event.

Event distributors 340 are programs that are responsible
for interpreting event subscriptions so as to distribute appro-
priate events to appropriate broadcast consumers. According
to one embodiment, them is an event distributor for handling
each kind of event. In particular, there is an event distributor
to handle all keystrokes detected by any of the event
producers, another event distributor to handle all mouse
clicks, and so on. :

According to one embodiment, it is up to the distributors
to determine which broadcast consumers am notified of the
event. The event manager control unit 305, using the sub-
scription matrix 330, keeps track of which consumers want
the events, while the distributors have the final say as to
which consumers are actually notified. A given distributor
might always give the result to all interested consumers, or
it might always choose one, or it might ask to see each
consumer and choose some and not others. This allows for
a very flexible architecture. For example, while all applica-
tions will be interested in mouse clicks (and therefore would
subscribe to that kind of event), only one (either the front-
most or the application for which a window is clicked on)
should actually receive it. The mouse click event distributor
determines which of the subscriptions was for the frontmost
application and sends it only to that one. Another example
would be that there might be several pieces of code which
would want to know when a new file was created, and
generally all of them should be told. Therefore, the new file
event distributor would always send the event to all sub-
scribers.

As shown in FIG. 2, each broadcast consumer 310 com-
municates with and is operationally connected to its respec-
tive event queue 320 through the event manager control unit
305. Each broadcast consumer 310 also communicates with
and is operationally connected to the subscription matrix
330 through the event manager control unit 305. The event
queues 320 each communicate with and are operationally
connected to the subscription matrix 330 through the event
manager control unit 305. The sequential consumer database
350 communicates with and is operationally connected to
the event manager control unit 305 and the sequential
consumers 360 communicate with the sequential consumer
database 350 via the event manager control unit 305. The
plurality of event kind headers 331 are operationally con-
nected to the plurality of event distributors 340, which are
operationally connected to the plurality of event producers
300.

Each broadcast consumer 310 uses the event manager
control unit 305 to cream an event queue 320 to hold events
in which it is interested between the time the event is
reported and the time the broadcast consumer consumes it.
Each broadcast consumer 310 communicates to the event
manager control unit 305 a set of event subscriptions that
describe all the events of which it needs to be informed. This
set of event subscriptions may be changed at any time. The
event manager control unit 305 stores that information in the
subscription matrix to be used by the event distributors 340.

In summary, according to one embodiment of the present
invention, event producers 300 detect events and build event
descriptions. They send those descriptions to the event
manager 30 by calling the event manager control unit 305.
The event manager control unit 305 sends the event descrip-
tion to each sequential consumer 360 in turn based on the

10

15

20

30

35

40

45

50

55

60

65

10

entries in the sequential consumer database 350. The event
manager control unit 305 then sends the event description to
the event distributor 340 who is responsible for distributing
that kind of event. The event distributor 340 calls the event
manager control unit 305 to send the event description to
those broadcast consumers 310 which it decides are appro-
priate based on the information in the subscription matrix
330. The event manager control unit 305 gives the event
descriptions to the appropriate broadcast consumers 310 by
initially storing those descriptions in the event queues 320.
The broadcast consumers 310, when ready, call the event
manager control unit 305 to retrieve the next event descrip-
tion stored in its corresponding event queue 320.

APPLICATION PROGRAMMER INTERFACE

According to the present invention, the event consumers,
the event producers and the event distributors may be
written by third parties other than the manufacturer of the
event manager. Therefore, an application programmer inter-
face (API) is defined to provide a specification which allows
these third parties to communicate with the event manager.
The following is a description of one embodiment of an API
which allows communication with the event manager
according to the present invention.

Event Structure

According to one embodiment, an event is composed of
three parts: what happened (the event identifier), who it
happened to (the event subject), and details of how the event
happened (the event information). Since it is desirable for
the set of possible events to be easily extensible (by the
developers of the other parts of the operating system and by
applications programmers), the “what” part of the event
structure is defined to be a unique identifier referred to as the
event name. In one embodiment, the event name identifier
can be implemented as a 4 character code known as an
OSType. It is appreciated that other suitable identifiers could
be used instead by one of ordinary skill once in possession
of the present disclosure. According to one embodiment, it
can be a pair of identifiers. In particular, in this disclosure,
the implementation described uses two OSTypes. An exem-
plary structure 45 for the event name identifier is shown in
FIG. 7. The event service identifier serves as the “signature”
or name of the service which defined the event, e.g., a word
processing program, and the event kind identifier identifies
the event itself, e.g., new file created. Thus, the universe of
all names, referred to as the namespace, of events is man-
aged by controlling the signatures.

The “who” field of the event structure, defined according
to one embodiment as the event subject, is difficult to define
since all possible uses of the event manager can not be
anticipated and therefore all forms of the hardware and
software elements that the “who” might describe also can
not be anticipated. Fortunately, the only public operation
which needs to be supported for this part of an event is a test
for equality, i.e., equality against a “who” which was pro-
vided by a broadcast consumer for a subscription, so the
event manager control unit 305 need not know the structure
of the subscription and it can be defined as an uninterpreted
array of bytes. Suitable configurations of the “who” field can
be used, such as a fixed length or a variable length field,
within the skill of the ordinary artisan once in possession of
the present disclosure.

5,566,337

11

The “details” part of the structure, that is, the info field in
FIG. 8, is totally open ended, and will vary not only with
each event, but potentially with each instance of the event.
Thus, one embodiment for the structure is an open ended
array of bytes.

FIG. 8 is a block diagram of the event structure according
to one embodiment of the present invention. The event 40
consists of the event name, event subject, byte count, and
event info fields. The event name field specifies the what, the
event subject field specifies the who, and the byte count and
event into fields specify the how. Event info is the actual data
and byte count indicates the length of the data.

System Calls

The event producers are provided with a single call to
submit events to the event manager control unit 305. In
particular, the call sends the message of an event to the event
manager control unit 305. According to one embodiment,
the producers then receive confirmation that every consumer
who needs to respond to the event has had a chance to
process it. In particular, when the call returns, the distributor
knows that every sequential consumer has seen it, and it is
enqueued for every broadcast consumer. This confirmation
is not required and can be omitted according to another
embodiment. According to one embodiment, this call has
been split into two calls (FindDistributor and ProduceEvent)
For efficiency reasons to actor out the identification of who
knows how to distribute that kind of event. The API is shown
in Table 1.

Table 1 and the succeeding tables present structure defi-
nitions written in the C language. While the examples herein
are shown in C, it is within the skill of the ordinary artisan
to use other suitable programming languages to implement
the present invention. In addition, the code shown in the
Tables is an example of an implementation of the invention
according to one embodiment. It is appreciated that other
implementations are possible and within the skill of the
ordinary artisan once in possession of the present disclosure.

In Table 1, OSStatus is a type usually used as a return
value used to indicate if the call succeeded. OptionBits is a
type usually used as an input parameter to a call to allow the
user to specify small variations on how the call is to be
processed.

TABLE 1
typedef Object ID EventDistributorID;
typedef OptionBits ProduceEventOptions;
enum
kProduceEventsynchronously = 0x00000001
// don’t return until all Sequential
Consumers have completed
I
OSStatus FindDistrbutor (EventName eventname,
EventDistributorID *inputID);
OSStatus ProduceEvent (EventInformationPtr event,
EventDistributorID distributor
ProduceEventOptions options);
Consumers

According to one embodiment of the present invention, as
discussed above, broadcast consumers and sequential con-
sumers differ in their relationships to other consumers of an
event. Broadcast consumers do not need to know if other
consumers exist, nor in what order consumers are informed
of the event, as long as they themselves are eventually

10

20

30

35

45

50

60

12

informed. Sequential consumers require that no other con-
sumer be told about an event while they themselves are still
processing it, and they require the ability to influence when
in the sequence they receive the event. In addition, many
sequential consumers require the ability to modify the event
itself, and even block an event from being received by other
consumers.

According to one embodiment, the API provides a method
for filtering events based on “who” they involve to allow
broadcast consumers to limit the set of subjects for which
they will be notified about events. In addition, the API
provides a method which allows the broadcast consumer to
modify the set of events in which it is interested over time.
Lastly, the API supports the ability of broadcast consumers
to poll the event manager control unit 305 to collect an
event, or to be notified asynchronously by use of a messag-
ing system providing asynchronous notification functional-
ity.

In the interface according to one embodiment, the con-
sumer calls the event manager control unit 305 to create a
consumer structure which embodies a list of events in which
the consumer is interested. These structures are opaque to
the caller (i.e., its details are known only to the event
manager control unit 305).

According to one embodiment, this consumer structure is
an event queue 320. The API allows the broadcast consum-
ers to call the event manager control unit 305 to create an
event queue. In particular, the event queues 320 are created
by the event manager control unit 305 as a result of a
CreateBroadcastConsumer call, and they are eliminated as a
result of a DisposeBroadcastConsumer call. One embodi-
ment of the details of the queues are illustrated in FIG. 3.
The event queue includes, among other things, the name of
the consumer (used by distributors to identity specific con-
sumers), and the maximum number of events the event
manager control unit 305 will buffer by storing in the event
queue for that consumer. The consumer is asked to provide
this latter value so the event manager control unit 305 is not
committed to an unbounded amount of buffering. Should
this value be exceeded, additional events are discarded and
the next event the consumer will get is an “Overrun” event
from the event manager control unit 305 itself. The example
code in Table 2 illustrates this feature.

TABLE 2

dypedef ObjectID EventConsumerID;
typedef FilterName EventConsumerName;
OSStatus CreateBroadcastConsumer (

EventConsumerID *consumer,

EventConsumerName name,

uint32 maxPending);
OSStatus DisposeBroadcastConsumer {

EventConsumerID consumer);

Once the broadcast consumer has an EventConsumerID,
it subscribes to the kinds of events in which it is interested.
As part of the subscription process the broadcast consumer
can specify both the EventName and the EventSubject to be
matched for determining when the consumer needs to be
notified of the event. The policies of how the EventSubject
is matched by the event distributor 340 is dependent on the
kind of event being processed. According to one embodi-
ment, this can be implemented as a byte-by-byte compari-
son. Other suitable implementations may be used, for
example, if there are three different kinds of events that are
identical for subscription purposes, i.e., the same consumers
are to be notified of them, therefore, these events are

5,566,337

13

compared as equal even though the actual bits are different.
The list of events associated with an EventConsumerID can
be expanded at any time using SubscribeBroadcastCon-
sumer, and the events kinds can be removed from the list at
any time with UnsubscribeBroadcastConsumer. If a particu-
lar kind of event is unsubscribed, any event instances of that
kind which have already been collected for that consumer
are discarded. This is illustrated in Table 3.

TABLE 3
OSStatus SubscribeBroadcastConsumer (
EventConsumerID consumer,
EventName eventName,
EventSubjectPtr subject);
OSStatus UnsubscribeBroadcastConsumer
EventConsumerID consumer,
EventName eventName,
EventSubjectPtr theSubject);

Processing Events

The HoldEvents/UnholdEvents calls are provided to sim-
plify some special cases in the processing of events. When
a kind of event is held, instances of those events are still
collected for the broadcast consumer; however, they will not
be returned: to the user by a Consume call until they are
unheld. In this way, the event manager handles situations in
which particular kinds of events are still of interest to a
broadcast consumer, but the processing of those events are
temporarily impossible or not a priority. According to
another embodiment, the same functionality could be pro-
vided by creating two separate broadcast consumer IDs, one
for the non-held events and one for the holdable events. The
broadcast consumer could then choose when to consume
from the second EventConsumerID. However, this embodi-
ment may not be completely practical because it is not
always possible to anticipate what will belong in which
category, and the decision process for holding is often quite
removed from the event processing cycle. The HoldEvents/
UnholdEvents calls, according to one embodiment, provide
a simple interface for separating that decision process. These
calls are illustrated in Table 4.

TABLE 4

OSStatus HoldEvents (EventConsumerID consumer,
EventName eventName,
EventSubjectPtr subject);

OSStatus UnholdEvents (EventConsumerID consumer,
EventName eventName,
EventSubjectPtr subject);

Finally, when the list of interesting events is built, the
broadcast consumer consumers the events which are col-
lected using one of two calls, a synchronous call and an
asynchronous call. Both calls specify the consumer objectID
to identify the queue, and provide a buffer into which the
event is copied. The Async call additionally requires a
EventNotification structure which describes the action to be
performed when a buffer has been filled in with a new event.
According to one embodiment, the EventNotification and
EventInformationPtr are types defined by an operating sys-
tem kernel. If the buffer provided is not large enough to hold
the event description, the leading part of the description is
copied into the buffer. The rest of the description is dropped.
These calls are illustrated in Table 5.

10

15

20

25

30

40

45

50

55

60

65

14
TABLE 5
OSStatus ConsumeEvent (
EventConsumerID conswner,
uint32 maxEventSize,
EventInformationPtr event);
" OSStatus ConsumeEventASync {
EventConsumerID conswner
EventNotification *completion,
uint32 maxEventSize,
EventInformationPtr event);

FlushEvents is used to remove events which have been
collected for the broadcast consumers but which have not
been consumed. The broadcast consumer specifies an Event-
Name (which can use wildcards) and EventSubject. The
event manager control unit 305 then disposes of any events
which match the description and were collected but not
processed. This call is illustrated in Table 6. ~

TABLE 6
OSStams FlushEvents (
EventConsumerID consumer,
EventName eventname,
EventSubjectPtr subject);

Sequential Consumers have very different requirements
tier their API. Since they serve as a bottleneck for the
transmission of events, their API should be designed for
maximum throughput; and should be structured to require a
response for each event to indicate when the event manager
control unit 305 can pass the event on to the next sequential
consumer or the broadcast consumers. Based on this, the
API according to one embodiment of the present invention
assumes that events are passed to sequential consumers as
messages using a suitable communication facility, such as
the messaging system service provided by a microkernel
operating system as discussed above. According to one
embodiment, the sequential consumer sends a message to
the event manager control unit 305 asking for the next event
and the event itself is returned in the reply to the message.
Other implementations are also possible within the skill of
the ordinary artisan once in possession of the present dis-
closure. According to one embodiment, sequential consum-
ers receive these messages by way of an accept function or
by asynchronous receives to allow the receiver to overlap
program execution with the receive operation to insure a
rapid response time. One example of such a messaging
system is provided by NuKERNEL™, discussed above.

According to one embodiment, since the messaging sys-
tem provides a funneling mechanism, having multiple
objects associated with a single port, no subscription calls
are needed for sequential consumers. Instead, the sequential
consumer will be asked to create an object for each inter-
esting kind of event, and those objects can be associated
with ports in any way the consumer desires. The objects are
then associated with a kind of event using the API described
below. Other suitable embodiments of this feature are within
the skill of the ordinary artisan once in possession of the
present disclosure.

According to one-embodiment, the actual sequencing of
the consumers is provided by using the message filtering
mechanism to transparently list, screen, alter, or re-route
messages. Message filters are a software fabricated message
interception device which can be ordered in a predetermined
priority order to allow certain filters to take precedence over
others. One embodiment of the present invention imple-
ments the sequencing of the consumers using this ordering

5,566,337

15

capability. This mechanism is described in detail in the
copending application filed in the name of Saulpaugh and
Szymanski referenced above.

The InstallSequentialConsumer call is used to tell the
event manager control unit 305 that events of the given name
and subject should be passed to the given object. The name,
ordering and options parameters are used to determine the
exact ordering in which those events are given to the
sequential consumers that are interested in them. The
RemoveSequentialConsumer call is used to remove the
installed sequential consumer. The installation and removal
calls are illustrated in Table 7.

TABLE 7

typedef FilterID SequentialConsumerID;
typedef FilterName
SequentialConsumerName;

OSStatus InstallSequentialConsumer (

SequentialConsumerID *consumer,
SequentialConsumerName consumersName,
ObjectID consumersObject
FilterOptions consumerOptions,
FilterobjectPair consumerOrdering,
EventName eventname,
EventSubjectPtr eventSubject);
OSStatus RemoveSequentialConsumer (
SequentialConsumerID consumer);

Once a sequential consumer has been installed and has
received or consumed an event, the sequential consumer
needs to indicate when it is done with the event so the event
manager control unit 305 can pass it on to the next sequential
consumer (or to the broadcast consumers if there am no
more sequential ones). In particular, the sequential consumer
makes a NextConsumer call to the event manager control
unit 305 indicating that it has completed processing of the
event. The event manager control unit 305 then passes the
event to the next sequential consumer or to the appropriate
broadcast consumers. Instead of passing the event on, a
sequential consumer has the ability to declare an event
handled so that it will not be distributed to any more
consumers of any type. In particular, a sequential consumer
can make an EventHandled call to prohibit further distribu-
tion of the event. These two calls are illustrated in Table 8.
In one embodiment, NextConsumer uses the messaging
system call ContinueMessage which acts as an automatic
forward command to continue to the next object in a filter
chain in the messaging system, and EventHandled uses the
messaging system call ReplyToMessage which specifies that
all the objects in a chain have processed the message. This
mechanism is described in detail in the copending applica-
tion filed in the name of Saulpaugh and Szymanski refer-
enced above.

TABLE 8
0OSStatus NextConsumer (MessagelD eventMessagelD);
OSStatus EventHandled (MessageID eventMessagelD);
Distributors

As discussed above, each distributor is responsible for
processing different kinds of events. Each distributor must
therefore know the events for which it is responsible.

According to one embodiment, most events are routed
through the appropriate sequential consumers and then cop-
ies are given to all of the broadcast consumers who have
expressed interest. According to a default implementation,

10

15

20

25

35

40

45

50

55

60

65

16

any matching of event subjects by the event distributors is
done by direct byte comparison of the whole value to
determine which consumers have to be notified of the event.
Other suitable implementations are within the skill of the
ordinary artisan once in possession of the present disclosure.

According to one embodiment, a default distributor is
provided to pass certain kinds of events to all broadcast
consumers. For example, events such as battery low events
will always be distributed to all interested consumers. Each
event that can be distributed by the default distributor must
register with the default distributor by the Register-
EventWithDefaultDistributor call, illustrated in Table 9.
This call is made one time per kind of event over the life of
the system to tell the default distributor that it is responsible
for those events.

TABLE 9

OSStatus RegisterEventWithDefaultDistributor(
EventName eventName);

A custom distributor is registered with the event manager
control unit 305 for handling each kind of event that is not
handled by the default distributor. According to one embodi-
ment, registering a custom distributor with the event man-
ager control unit 305 is performed by a call which associates
an event with an object so that when the associated event
occurs, the event manager control unit 305 knows which
distributor will handle the distribution of that event. The
custom distributors are independently loaded services and
all communication between producers and distributors is
accomplished by sending and receiving messages. To
receive the events to process and distribute, each distributor
must provide an ObjectID to which events are sent from the
producers. Calls for registering and unregistering custom
distributors are illustrated in Table 10.

TABLE 10
OSStatus RegisterDistributor(
EventName eventname,
ObjectID distributor);
OSStatus UnregisterDistributor(
EventName eventname,
ObjectID distributor);

There are several cases where the distributor needs to
apply more complicated heuristics to the process of deter-
mining which broadcast consumers should receive notifica-
tion of events reported by the producers. The information in
the subscription matrix is available to the distributor to help
determine which broadcast consumers to notify. According
to one embodiment, a distributor cannot give an event to a
broadcast consumer who has not asked for it, and the
distributor looks in the subscription matrix to find out who
asked for it. However, distributors are allowed to give the
event to only a subset of the broadcast consumers who asked
for it. The kinds of ways a distributor might need to effect
the distribution of events include:

1. The way in which event subjects are matched is more
complicated than direct byte comparison. There may be
substructure in the subject identification which needs to
be taken into account, or there may be some form of
wildcard processing which needs to be handled.

2. Particular events may need to be routed to a subset of
the broadcast consumers who have expressed interest,
perhaps only one. For instance, mouse events need to
be routed to only the one appropriate application or
those applications which are interested in them.

5,566,337

17

3. Related events may need to be combined. For instance,
multiple update region events for the same window
should be combined until the application actually con-
sumes the event.

Note that none of these possibilities affect sequential
consumers. This is because one of the reasons sequential
consumers are needed is to influence the distribution pro-
cess. In other words, sequential consumers are so labelled
because for the kinds of events in which they are interested,
they must react to the event. Thus, there are no circum-
stances under which a distributor would choose not to send
the event to a particular sequential consumer. Therefore, the
event manager control unit 305 automatically sends all
produced events through the gauntlet of sequential consum-
ers before handing them off to the distributors.

FIGS. 9A, 9B, and 9C are flowcharts illustrating the event
handling process from the event producers’ and the event
distributors’ point of view according to one embodiment of
the present invention.

As shown in FIG. 9A, the event producer first detects or
generates an event (step 600). The event producer generates
a description of the event (step 602) and calls the event
manager control unit 305 to send the event to the appropriate
event consumers, both broadcast and sequential consumers
(step 604).

FIG. 9B illustrates the processing of the event by the
event manger control unit 305 according to one embodiment
of the present invention. It is appreciated that although the
following description assumes the use of a messaging sys-
tem to send the events between elements of the computer,
suitable alternative embodiments can be implemented by an
ordinarily skilled artisan once in possession of the present
disclosure.

At step 606, a determination is made whether the event
producer needs to know when the event has been handled,
that is, whether to process the request asynchronously or
synchronously. If the event producer does not need to know
when the event has been handled (as indicated by an input
parameter to the call), it returns to the producer (step 608)
and processes the rest of the steps in this Figure asynchro-
nously (step 610). If the event producer does need to know,
the steps are processed synchronously (step 612).

The test is implemented by making the message sent in
step 606 an asynchronous message, otherwise it is a syn-
chronous message. In particular, the event producer calls the
event manager control unit 305 to send a message concern-
ing the detected event. The producer provides an input
parameter having a value which indicates whether it wants
to wait for a response, in which case the message is sent
synchronously. Otherwise, the message is sent asynchro-
nously. By definition, if the message is sent synchronously,
the event manager control unit 305 does not return from that
call until the message has been processed by all sequential
consumers; if the message is sent asynchronously, as soon as
the message is sent, the event manager control unit 305
returns back to the event producer so that the event producer
does not know whether the message is processed.

At step 614, the event manager control unit 305 sends the
event to each sequential consumer having an entry in the
sequential consumer database 350 matching the event
description. This is done one at a time, and each sequential
consumer can, by calling the event manager control unit
305, either have the message sent to the next sequential
consumer or declare that the event has been handled. Thus,
after the sequential consumer completes processing the
event, the sequential consumer indicates whether processing
of the event should continue or whether the event processing

10

15

20

25

30

35

40

45

50

55

60

65

18

should stop because the event has been handled (step 616).
A determination is then made by the event manager control
unit 305 whether that sequential consumer indicated that the
event was handled (step 618). If so, the event is prohibited
from being distributed to any other consumers and so the
routine returns to the calling producer. If the sequential
consumer indicated that the event was not handled, a deter-
mination is made whether that sequential consumer is the
last one (step 622). If not, the distributor returns to step 616
to distribute the event to the next sequential consumer.

Referring now to FIG. 9C, when the event has been
distributed to all sequential consumers (step 622), the event
manager control unit 305 sends the event to the event
distributor responsible for that kind of event to distribute to
the broadcast consumers (process 624). The event is sent as
a message to the distributor. The messaging system auto-
matically passes it on to the distributor when all of the filters
have processed it and none have replied (thereby declaring
the event handled). Other suitable implementations are pos-
sible, such as having the event manager control unit 305 call
the event distributor at this point, are within the skill of the
ordinary artisan once in possession of the present disclosure.

Process 624 is illustrated in FIG. 9D. The distributor
decides how to distribute the event in this process. Accord-
ing to one embodiment, it can do this by calling the event
manager control unit 305 to sequence through all of the
subscriptions for that kind of event to see, which of the
consumers who have subscribed should get the event.

One situation is where the distributor needs to route an
event to all or some of the consumers; but needs to be able
to modify the event data itself up until the point at which the
consumer receives and consumes it (step 6240). For
example, in a windowing environment, when a window is
uncovered (i.e., the topmost window is closed), a window
uncovered event is generated. Because it is possible that
another portion of the uncovered window may still be
uncovered, the window uncovered event distributor wants to
be able to modify this event up until the point at which it is
consumed. In this case, the distributor submits a place holder
structure for the actual message, and gives it to the appro-
priate consumers.

The place holder structure includes a reference constant
field, RefCon, to be used by the distributor to identify the
event, and an ObjectID to be used to get the actual data from
the distributor. The distributor provides the value of the
RefCon field when it creates the placeholder, and is respon-
sible for being able to take that value and provide back the
actual event description. Thus, when the consumer actually
tries to consume the placeholder, the event manager control
unit 305 sends a message to the given ObjectID containing
the placeholder RefCon. The distributor then fills in the
buffer with the actual, current event description and the
consumer’s buffer is passed to Consume. Since this func-
tionality needs to be provided for both select and all con-
sumers, two calls are provided as shown in Table 11. If all
consumers are to be notified of an event using a place holder
(step 6248), the GivePlaceholderToAllConsumers call is
used (step 6250). If only select consumers are to be notified
of an event using a place holder (step 6248), the GivePlace-
holderToSelectConsumers call is used (step 6252).

TABLE 11

OSStatus GivePlaceholderToAllConsumers

Event InformationPtr event,
void* placeholderRefCon,
ObjectID fullfilemntID);

5,566,337

19
TABLE 11-continued
OSStatus
GivePlaceholderToSelectConsumers
EventInformationPtr event,
ConsumerFilterFunction fliterFunc,
void* placeholderRefCon,
ObjectID fullfilemntID);

If the distributor does not need to modify the event data,
the result of the determination at step 6240 is no. Then, in
step 6242, a determination is made if all of the broadcast
consumers should receive the event. Note that if this is the
case all of the time, it is preferable to use the default
distributor which automatically notifies all consumers.
Alternatively, if special processing is required only for a
subset of events, for any event not in that subset, the
GiveEventToAllConsumers call can be used to invoke the
distribution mechanism (step 6244). This call is illustrated in
Table 12.

TABLE 12

OSStatus

GiveEventToAllConsumers(EventInformationPtr event);

The situation in which the distributor needs to choose a
subset of the consumers to receive the message may occur
either because the distributor needs to process any subject
matches or because the nature of the event requires limiting
the distribution is detected by a no response to the test in step
6240. In particular, in cases where a byte-by-byte compari-
son of the subject field is not desired, the distributor is
responsible for determining if the subjects match. To accom-
plish this, the GiveEventToSelectConsumers call is used
(step 6246), and a filter function, ConsumerFilterFunction,
is called for each consumer who has subscribed to that kind
of event (regardless of the subject they specified). The
function returns true if the event should be given to that
consumer, false if not. This call is illustrated in Table 13.

TABLE 13

typedef Boolean (*ConsumerFilterFunction)(
EventInformationPtr
EventConsumerName
EventSubjectPtr

0OSStatus GiveEventToSelectConsumers(
EvenlnformationPtr
ConsumerFilterFunction

event,
consumer,
subsciptnSubj);

event,
filterFunc);

After each of the calls at steps 6244, 6246, 6250,and 6252,
the routine returns to the event manager control unit 305
(step 6254).

Referring now to FIG. 9C, at step 625, the event manager
control unit 305 enqueues the event according to which call
was used in FIG. 9D. According to one embodiment, the
events are enqueued and dequeued in a first in, first out
(FIFO) order. When an event consumer is ready to act on an
event, it dequeues the top most event in the event queue and
handles it as required.

If the steps of FIG. 9B were processes synchronously
(step 626), the routine returns to the producer at step 628.
Otherwise, the routine replies to the producer’s message
(step 630).

FIG. 10 is a flowchart illustrating the event handling
process from the sequential consumers’ point of view
according to one embodiment of the present invention. First,
the sequential consumer calls the event manager control unit
305 to get installed (step 700). According to one embodi-

10

15

20

25

30

35

40

45

50

55

60

65

20

ment, the consumer provides an ObjectID to which events
are to be sent as messages. It is appreciated that other
suitable implementations are possible, for example, the
consumer could provide a function pointer which is called
with a pointer to the event description. Such suitable imple-
mentations are within the skill of the ordinary artisan once
in possession of the present disclosure.

The sequential consumer does whatever it wants while
waiting for an event to occur (step 702). According to one
embodiment, since events are sent as messages, the sequen-
tial consumer calls the messaging system to either accept or
receive a message through the given Object. Other things
may be done by the sequential consumer, depending on
whether the process is synchronous or asynchronous.

When an event is received (step 704), the sequential
consurmer acts on the event in the appropriate way (step
706). The sequential consumer then decides whether it wants
other consumers (sequential or broadcast) to see this event
or if it has handled the event well enough that others should
not see it (step 707). If the event is done, and others should
not see it, an event handled message is sent by calling the
event manager control unit 305 (step 711). Otherwise, the
sequential consumer calls the event manager control unit
305 to say that the event should be passed to the next
consumer (step 709). The sequential consumer then loops
back to the wait state of step 702.

FIG. 11 is a flowchart illustrating the event handling
process from the broadcast consumers’ point of view
according to one embodiment of the present invention. The
broadcast consumer first calls the event manager control unit
305 to register itself using the CreateConsumer call. Once
registered, the distributor will start receiving messages
through the object referred to by the given ObjectID. The
contents of these messages are the descriptions generated by
the producers of the events they have detected or generated.
The distributor must then indicate to the event manager
control unit 305 which of the currently executing consumers
should receive the event. In one embodiment, the messaging
system routes events from the producers, through the
sequential consumers, and into the distributors. The distribu-
tor then uses the event manager control unit 305 to put the
event on the appropriate queues.

The event manager control unit 305 creates an event
queue for the consumer and returns (step 802). The broad-
cast consumer then calls the event manager control unit 305
to subscribe to particular kinds of events in which it is
interested (step 804). The event manager control unit 305
adds the entries in the subscription matrix to keep track of
the consumer’s subscriptions (step 806).

The consumer calls the event manager control unit 305 to
get the next event (step 808). According to one embodiment,
this is implemented by having the consumer send a message
to the event manager control unit 305. The reply to that
message will be the next event for that consumer. The
consumer has the option of doing this synchronously or
asynchronously, and the consumer either sends the message
synchronously or asynchronously accordingly. Other suit-
able implementations are possible within the skill of the
ordinary artisan once in possession of the present disclosure.
The consumer acts on the event as it sees fit (step 810), and
the process loops back to step 808.

The foregoing description of the specific embodiments
will so fully reveal the general nature of the invention that
others can, by applying current knowledge, readily modify
and/or adapt for various applications such specific embodi-
ments without departing from the generic concept, and,
therefore, such adaptations and modifications should and are

5,566,337

21

intended to be comprehended within the meaning and range
of equivalents of the disclosed embodiments. It is to be
understood that the phraseology of terminology employed
herein is for the purpose of description and not of limitation.

What is claimed is:

1. In a computer including at least one event producer for
detecting that an event has occurred in the computer and
generating an event and at least one event consumer which
needs to be informed when events occur in the computer, a
system for distributing events comprising:

storing means for storing a specific set of events of which

said at least one event consumer is to be informed;

event manager control means for receiving the event from
the event producer, comparing the received event to the
stored set of events, and distributing an appropriate
event to an appropriate event consumer; and

distributor means for receiving the event from the control
means and directing said control means to distribute an
appropriate event to an appropriate event consumer.

2. The system according to claim 1, wherein said dis-
tributor means comprises a distribuior module for each kind
of event possible in the computer.

3. The system according to claim 1, wherein a plurality of
event consumers are included in the computer and the
plurality of consumers comprise:

broadcast consumers having no relationship with other

consumers, the broadcast consumers operating inde-
pendently of other consumers and of the order in which
consumers are informed of the event; and

sequential consumers having relationships with other con-
sumers, the sequential consumers requiring that no
other consumer be told about an event while they
themselves are processing the event and having an
ability to influence when they receive the event relative
to the other consumers.

4. The system according to claim 3, wherein said dis-

tributor means comprises:

means for determining if the event is to be sent to
broadcast consumers with a signal indicating that the
distributor means maintains a right to modify the event
based on subsequent events until the broadcast con-
sumers receive the event; and

means, responsive to a positive determination by said
means for determining, for directing said control means
to distribute the event to the appropriate broadcast
consumers with a signal indicating that the distributor
means maintains the right to modify the event.

5. The system according to claim 3, wherein said dis-

tributor means comprises:

first means for determining if the event is to be sent to
broadcast consumers with a signal indicating that the
distributor means maintains a right to modify the event;

second means, responsive to a positive determination by
said first means for determining, for determining if the
event is to be passed to all broadcast consumers;

means, responsive to a positive determination by said
second means for determining, for directing said con-
trol means to distribute the event to all broadcast
consumers with a signal indicating that the distributor
means maintains the right to modify the event;

means, responsive to a negative determination by said
second means for determining, for directing said con-
trol means to distribute the event to select broadcast
consumers with a signal indicating that the distributor
means maintains the right to modify the event;

22

third means, responsive to a negative determination by
said first means for determining, for determining if the
event is to be sent to all broadcast consumers;

means, responsive to a positive determination by said

.5 third means for determining, for directing said control

means to distribute the event to all broadcast consum-
ers; and

means, responsive t0 a negative determination by said
third means for determining, for directing said control
means to distribute the event to select broadcast con-
sumers.
6. The system according to claim 3, wherein said storing
means comprises:

a subscription matrix for storing subscriptions to events in
which the broadcast consumers are interested; and

a sequential consumer database for storing entries to
events in which the sequential consumers are inter-
ested.

7. The system according to claim 3, wherein said storing
means comprises an event queue corresponding to each of
the broadcast consumers for receiving distributed events
from said control means and for storing the distributed
events until the events are consumed by the corresponding
broadcast consumer.

8. The system according to claim 3, wherein said control
means comprises means for passing an event to the sequen-
tial consumers in succession in accordance with the entries
in the sequential consumer database.

9. The system according to claim 8, wherein said control
means comprises means for prohibiting passing of an event
upon receiving an event handled message from a sequential
consumer.

10. A computer system comprising:

event producers for detecting that an event has occurred
in the computer, generating an event, and generating a
description of the event;

event consumers which need to be informed when events
occur in the computer, said event consumers compris-
ing a first and a second class of consumers;

storing means for storing a specific set of events of which
the event consumers are to be informed;

event manager control means for receiving the event from
the event producers and comparing the received event
to the stored set of events;

distributor means, responsive to said event control means,
for deciding if an event should be passed to an event
consumer;
said event manager control means comprising:
first means for sending an event to appropriate event
consumers of a first class in accordance with the
stored set of events, and
second means for sending the event to appropriate
event consumers of a second class responsive to said
distributor means.]
11. The system according to claim 10, wherein said
distributor means comprises a distributor module for each
kind of event possible in the computer.
12. The system according to claim 10, wherein

said first class of consumers comprise sequential consum-
ers having relationships with other consumers, the
sequential consumers requiring that no other consumer
be told about an event while they themselves are
processing it, and having an ability to influence when
they receive the event relative to the other consumers;
and

10

35

45

50

55

60

65

5,566,337

23

said second class of consumers comprise broadcast con-
sumers having no relationship with other consumers,
the broadcast consumers operating independently of
other consumers and of the order in which consumers
are informed of the event.

13. The system according to claim 12, wherein said

distributor means comprises:

means for determining if the event is to be sent to
broadcast consumers with a signal indicating that the
distributor means maintains a right to modify the event
based on subsequent events until the broadcast con-
sumers receive the event; and

means, responsive to a positive determination by said
means for determining, for directing said control means
to distribute the event to the appropriate broadcast
consumers with a signal indicating that the distributor
means maintains the right to modify the event.
14. The system according to claim 12, wherein said
storing means comprises:

a subscription matrix for storing subscriptions to events in
which the broadcast consumers are interested; and

a sequential consumer database for storing entries to
events in which the sequential consumers are inter-
ested.

15. The system according to claim 12, wherein said
storing means comprises an event queue corresponding to
each of the broadcast consumers for receiving distributed
events from said control means and for storing the distrib-
uted events until the events are consumed by the correspond-
ing broadcast consumer.

16. The system according to claim 12, wherein said
control means comprises means for passing an event to the
sequential consumers in succession in accordance with the
entries in a sequential consumer database.

17. The system according to claim 16, wherein said
control means comprises means for prohibiting passing of an
event upon receiving an event handled message from a
sequential consumer.

18. A method for distributing events occurring in a
computer, said method comprising the steps of:

determining that an event has been detected by an event
producer in the computer;

storing, in a storing means, a specific set of events of
which an event consumer is to be informed;

receiving the event in an event control means from the
event producer;

comparing the received event to the stored set of events;

5

20

25

30

35

40

45

24

receiving the event in a distributor means from the control

means;

directing the control means to distribute an appropriate

event to an appropriate event consumer; and
distributing, via the control means, an appropriate event to
an appropriate event consumer.

19. The method according to claim 18, wherein the event
consumer comprises a plurality of consumers including
broadcast consumers which operate independently from one
another and of the order in which consumers are informed of
events and sequential consumers which require that no other
consumer be told about an event while they themselves are
processing it and have an ability to influence when they
receive the event relative to the other consumers.

20. The method according to claim 19, wherein said step
of distributing comprises the steps of:

determining if the event is to be sent to broadcast con-

sumers with a right to modify the event based on
subsequent events until the broadcasts consumers
receive the event; and

distributing the event to the appropriate broadcast con-

sumers with the right to modify responsive to a positive
determination by said step determining.

21. The method according to claim 19, wherein said step
of storing comprises the steps of:

storing, in a subscription matrix, subscriptions to events in
which the broadcast consumers am interested; and

storing, in a sequential consumer database, entries to
events in which the sequential consumers are inter-
ested.
22. The method according to claim 19, further comprising
the steps of:

receiving distributed events in an event gueue correspond-
ing to a broadcast consumer; and

storing the distributed events in the event queue until the
events are consumed by the corresponding broadcast
consumer.

23. The method according to claim 19, wherein the step
of distributing comprises the step of passing an event to the
sequential consumers in succession upon receiving a con-
tinue message from a sequential consumer indicating that it
has completed processing of the event.

24. The method according to claim 23, wherein the step
of distributing further comprises the step of prohibiting
passing of an event upon receiving an event handled mes-
sage from a sequential consumer.

C I S T

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 5,566,337
DATED : October 15, 1996
INVENTOR(S) : ~Steven J. SZYMANSKI, et al.

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby

corrected as shown below:
Item [57]

Replace the Abstract as follows:

In a computer including event producers for generating events and
detecting that an event has occurred. in the computer and event consumers
which need to be informed when events occur in the computer, a system
distributes information about the events. The system includes a
store for storing a specific set of events of which an event consumer
is to be informed, an event manager control unit for receiving the
event from an event producer, comparing the received event to the
stored set of events, and distributing the appropriate event to the
appropriate event consumer, and a distributor for receiving the event
from the control unit and directing the control unit to distribute the
appropriate event to the appropriate event consumer. The system manages
events within the computer by facilitating communication between the
event producers and the event consumers without requiring each event
producer to be aware of all of the event consumers.

Signed and Sealed this
Twenty-eighth Day of January, 1997

e B i

BRUCE LEHMAN

Attesting Oﬁcer Commissioner of Patents and Trademarks

EXHIBIT 4

US005915131A

United States Patent [(1] Patent Number: 5,915,131
Knight et al. 451 Date of Patent: Jun. 22,1999
[54] METHOD AND APPARATUS FOR 5,553,245 9/1996 Su et al. oceveucieeneeceenne 395/284
HANDLING I/O REQUESTS UTILIZING 5,572,675 11/1996 BEIgler ..cuvvveverecererererercrennee 395/200.2
SEPARATE PROGRAMMING INTERFACES OTHER PUBLICATIONS
TO ACCESS SEPARATE 1/O SERVICES
Forin, A., et al. entitled “An I/O System for Mach 3.0,”
[75] Inventors: Holly N. Knight, La Honda; Carl D. Proceedings of the Usenix Mach Symposium 20-22, Nov.
Sutton, Palo Alto, Wayne N. 1991, Monterey, CA, US, 20-22 Nov. 1991, pp. 163-176.
Meretsky, Los Altos; Alan B. Mimms, Steve Lemon and Kennan Rossi, entitled “An Object Ori-
San Jose, all of Calif. ented Device Driver Model,” Digest of Papers Compcon
’95, Technologies for the Information Superhighway 5-9,
[73] Assignee: Apple Computer, Inc., Cupertino, Mar. 1995, San Francisco, CA, USA pp. 360-366.
Calif. Glenn Andert, entitled “Object Frameworks in the Taligent
0OS,” Intellectual Leverage: Digest of Papers of the Spring
[21] Appl. No.: 08/435,677 Computer SOCI International Conference (Compcon), San
] Francisco, Feb. 28—Mar. 4, 1994, Feb. 24, 1994, Institute of
[22] Filed: May 5, 1995 Electrical and Electronics Engineers, pp. 112-121.
[51] It CL® oo GOGF 9/40; GOGF 1314 Ht» ‘Intereonnecting electronic mail networks: Gateways
[52] US.ClL oo 395/892; 395/682; 395/828; N lransialion SWAlCgIes are proposed tor backbone Nel-
. . works to interchange incompatible electronic documents on
395/702; 707/104; 345/333 . s S
. multivendor networks’, Data Communications, p. 128, vol.
[58] Field of Searchccccccoeecnenenncneee 395/828, 702, 17, No. 10, Sep. 1988
395/834, 200.2, 892, 682, 309; 3;057/313034 Knibbe, ‘IETFEF’s Resource Reservation Protocol to facilitate
/ mixed voice, data, and video nets’, Network World, p. 51,
[56] References Cited Apr. 24, 1995.
Primary Examiner—Thomas C. Lee
U.S. PATENT DOCUMENTS Assistant Examiner—Rehana Perveen
4,593,352 6/1986 Castel et al. ...cooovvvverrrrvreennnn, 364200 Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor &
4,727,537 2/1988 NichOIS ..c.ooevveeeecveverenececcnnens 370/85 Zafman
4,908,859 3/1990 Bennett et al. 380/10
4982325 1/1991 Tignor et al. ... L 3eano0 7] ABSTRACT
5,129,086 7/1992 Coyle, Ir. et al. ... 395/650 - - S -
5148527 9/1992 Basso et al. ... " 305325 A computer system handling mqltlple applications Wherelp
5197.143 3/1993 Lary et al 395/425 groups of I/O services are accessible through separate appli-
5430845 7/1995 Rimmer et al. 305275 cation programming interfaces. Each application has mul-
5491813 2/1996 Bondy et al. woooooooserserr 395/500 tiple application programming interfaces by which to access
5,513,365 4/1996 Cook et al. 395/800 different families of 1/0 services, such as I/O devices.
5,535,416 7/1996 Feeney et al. 395/834
5,537,466 7/1996 Taylor et al. ..cccovrveureueceermcenne 379/201 20 Claims, 8 Drawing Sheets
L APPLICATION 201 J
FLE | | BLOCK | | scsI
MANAGER STORAGE MANAGER
APl API APl
N S 2‘(')4
202 ﬂ 203 ﬂ USER MODE WORLD
l (:lﬂ KERNEL WORLD
205
4 '2/06 ,2/07
FILE BLOCK scsi
MANAGER STORAGE MANAGER
FPI SERVER FPI SERVER FPI SERVER
FILE BLOCK scsl
MANAGER STORAGE MANAGER
FAMILY FAMILY FAMILY
208
DISK
DRIVER SiM

5,915,131

Sheet 1 of 8

Jun. 22,1999

U.S. Patent

1 "OId

09t €21 q10u1NOD ecl
mowwmom.__umo qvx._o HOSHNI ayuvogAI
® © 12t
(1] 41 HOSN3S | 9ZL AvVdsid
FOV4HILNI ANEL ! s21 ocL — 3AlHa
O/l NOH4d - MSId AddOT4
v.iZl HITI0HLINOD K—>1 43T10HLNOD = —
-OHOIN o/l dIHD
a0l — aNNOS 32IA3a
AHOWaIW K—— AdOD QHVH
J1ILVTOA-NON 09L
HOLVHINID
M201D ovlL
ol Ol ¥8l1 LINN 601
) | 3ovddaan |, NV
AHOW3AN K) K’
¢ 2| rHO1vVISNVHL K
NIV ~ sna) ~
1vo01 N sng o
>1ad, col Z81 TVNDIS P mops_moo_z
— ~— H3IMOd
HOSSIOOHd |* I 181 0Sb om0
§ €81 TVYNDIS
+ NOLLYOIGNI 1OH m
bS1L €61
¥3A003A | | HOLMS i< mwwaw‘pm
A
T ¢St A1ddns
SININOdINOD H3IMOd
HIHI0 oL <

U.S. Patent Jun. 22,1999 Sheet 2 of 8 5,915,131
L APPLICATION 201 J
FILE BLOCK scsl
MANAGER STORAGE MANAGER
API API API
o o 204
ﬂ 202 ﬂ 203 ﬂ USER MODE WORLD
K:Lﬂ KERNEL WORLD
205 206 207
L < L
FILE BLOCK scsl
MANAGER STORAGE MANAGER
FPI SERVER| | | |FPI SERVER| | | |FPI SERVER
(1 FLE BLOCK scsi
MANAGER STORAGE MANAGER
FAMILY FAMILY FAMILY
208 < e_5S < 5 [
| wrs |||} oisk []]]L i
FILE DRIVER SIM
_ |SYSTEM

FIG. 2

U.S. Patent Jun. 22,1999 Sheet 3 of 8 5,915,131

APPLICATION 302

PROCEDURE CALL l FAMILY
PROGRAMMING
FPI LIBRARY INTERFACE
301
303
KERNEL MESSAGE USER MODE WORLD
KERNEL MESSAGE KERNEL WORLD
FPI SERVER
304
PROCEDURE CALL l
FAMILY:
305
PROCEDURE CALL 1 PLUGHIN
_______________________ Y PROGRAMMING
< INTERFACE
PLUG-IN 306
307

FIG. 3

U.S. Patent Jun. 22,1999 Sheet 4 of 8 5,915,131
. i 405
Xliby |29 Zliby |~
ﬂ ﬂ USER MODE WORLD
U | ‘ KERNEL WORLD
M
- D
X Y yi)
FPI FPI FPI
SERVER SERVER SERVER
408 409 410
X Y y4
1014 411 412 418 | | 00
X FAMILY Y FAMILY Z FAMILY
IMPLEMEN- IMPLEMEN- IMPLEMEN-
TATION TATION TATION
414 415 416
<5 5 .5
L X L Y i i y4 Ay,
PLUG IN PLUG IN < PLUG IN
M7 418 |0, 419
406 407
N y N v
Ylib, Zlib)

)

U.S. Patent

Jun. 22,1999

Sheet 5 of 8

5,915,131

Dlib ,
503

USER MODE WORLD

Z
FPI
SERVER

Z

Z FAMILY
IMPLEMEN-
TATION

_LZJ—LF 0
| PLUG IN

505

<

Vl‘

KERNEL WORLD

502

D FPI
SERVER

71

504
=g

501

FIG. 5

U.S. Patent Jun. 22,1999 Sheet 6 of 8 5,915,131

FAMILY FAMILY
A B
> <>
SHARED CODE
— PLUG-IN |- AND/OR DATA — PLUG-IN [
A B
/ /
-~ -
601 602

FIG. 6

U.S. Patent Jun. 22,1999 Sheet 7 of 8 5,915,131

APPLICATION 710

4k

APls |

/]

USER MODE WORLD
KERNEL WORLD

4

7(& A%
N ACCEPT
FPI SERVER FUNCTION

0 STREAMS

N WORLD
PROTOCOL SINGLE

PROTOCOL| | [TASK

PROTOCOL
<)
NETWORK y
—| DEVICE [~
DRIVER

FIG. 7

U.S. Patent Jun. 22,1999 Sheet 8 of 8 5,915,131

APPLICATION 801

|

API A

802

USER MODE WORLD
KERNEL WORLD

803

FPI SERVER

FAMILY
804
WRAPPER
X\ T1asK
f— s
GENERIC

DRIVER
805

FIG. 8

5,915,131

1

METHOD AND APPARATUS FOR
HANDLING I/O REQUESTS UTILIZING
SEPARATE PROGRAMMING INTERFACES
TO ACCESS SEPARATE I/O SERVICES

FIELD OF THE INVENTION

The invention relates to the field of computer systems;
particularly, the present invention relates to handling service
requests generated by application programs.

BACKGROUND OF THE INVENTION

Application programs running in computer systems often
access system resources, such as input/output (I/O) devices.
These system resources are often referred to as services.
Certain sets of services (e.g., devices) have similar charac-
teristics. For instance, all display devices or all ADB devices
have similar interface requirements.

To gain access to I/O resources, applications generate
service requests to which are sent through an application
programming interface (API). The service requests are con-
verted by the API to a common set of functions that are
forwarded to the operating system to be serviced. The
operating system then sees that service requests are
responded to by the appropriate resources (e.g., device). For
instance, the operating system may direct a request to a
device driver.

One problem in the prior art is that service requests are not
sent directly to the I/O device or resource. All service
requests from all applications are typically sent through the
same API. Because of this, all of the requests are converted
into a common set of functions. These common set of
functions do not have meaning for all the various types of
I/0O devices. For instance, a high level request to play a
sound may be converted into a write function to a sound
device. However, the write function is not the best method
of communicating sound data to the sound device. Thus,
another conversion of write data to a sound data format may
be required. Also, some functions do not have a one-to-one
correspondence with the function set of some I/O devices.
Thus, it would be desirable to avoid this added complexity
and to take advantage of the similar characteristics of classes
of I/O devices when handling I/O requests, while providing
services and an environment in which to run those services
that is tuned to the specific device needs and requirements.

SUMMARY OF THE INVENTION

A method and apparatus for handling I/O requests is
described. In the present invention, the I/O requests are
handled by the computer system having a bus and a memory
coupled to the bus that stores data and programming instruc-
tions. The programming instructions include application
programs and an operating system. A processing unit is
coupled to the bus and runs the operating system and
application programs by executing programming instruc-
tions. Each application programs have multiple separate
programming interfaces available to access multiple sets of
I/O services provided through the operating system via
service requests.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from
the detailed description given below and from the accom-
panying drawings of various embodiments of the invention,
which, however, should not be taken to limit the invention
to the specific embodiments, but are for explanation and
understanding only.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 a block diagram of one embodiment in the com-
puter system of the present invention.

FIG. 2 is an overview of the I/O architecture of the present
invention.

FIG. 3 illustrates a flow diagram of I/O service request
handling according to the teachings of the present invention.

FIG. 4 illustrates an overview of the I/O architecture of
the present invention having selected families accessing
other families.

FIG. 5 illustrates extended programming family interface
of the present invention.

FIG. 6 illustrates plug-in modules of different families
that share code and/or data.

FIG. 7 illustrates a single task activation model according
to the teachings of the present invention.

FIG. 8 illustrates a task-per-plug-in model used as an
activation model according to the teachings of the present
invention.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

A method and apparatus handling service requests is
described. In the following detailed description of the
present invention numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. However, it will be apparent to one skilled in the
art that the present invention may be practiced without these
specific details. In other instances, well-known structures
and devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing
arts to most effectively convey the substance of their work
to others skilled in the art. An algorithm is here, and
generally, conceived to be a self-consistent sequence of steps
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipu-
lated. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits,
values, elements, symbols, characters, terms, numbers, or
the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated
that throughout the present invention, discussions utilizing
terms such as “processing” or “computing” or “calculating”
or “determining” or “displaying” or the like, refer to the
action and processes of a computer system, or similar
electronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission or display devices.

The present invention also relates to apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may

5,915,131

3

comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose machines may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these machines will appear from the descrip-
tion below. In addition, the present invention is not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the invention as described herein.

Overview of the Computer System of the Present Invention

Referring to FIG. 1, an overview of a computer system of
the present invention is shown in block diagram form. The
present invention may be implemented on a general purpose
microcomputer, such as one of the members of the Apple
family of personal computers, one of the members of the
IBM personal computer family, or one of several other
computer devices which are presently commercially avail-
able. Of course, the present invention may also be imple-
mented on a multi-user system while encountering all of the
costs, speed, and function advantages and disadvantages
available with these machines.

As illustrated in FIG. 1, the computer system of the
present invention generally comprises a local bus or other
communication means 100 for communicating information,
a processor 103 coupled with local bus 100 for processing
information, a random access memory (RAM) or other
dynamic storage device 104 (commonly referred to as a
main memory) coupled with local bus 100 for storing
information and instructions for processor 103, and a read-
only memory (ROM) or other non-volatile storage device
106 coupled with local bus 100 for storing non-volatile
information and instructions for processor 103.

The computer system of the present invention also
includes an input/output (I/O) bus or other communication
means 101 for communication information in the computer
system. A data storage device 107, such as a magnetic tape
and disk drive, including its associated controller circuitry,
is coupled to I/O bus 101 for storing information and
instructions. A display device 121, such as a cathode ray
tube, liquid crystal display, etc., including its associated
controller circuitry, is also coupled to I/O bus 101 for
displaying information to the computer user, as well as a
hard copy device 124, such as a plotter or printer, including
its associated controller circuitry for providing a visual
representation of the computer images. Hard copy device
124 is coupled with processor 103, main memory 104,
non-volatile memory 106 and mass storage device 107
through I/O bus 101 and bus translator/interface unit 140. A
modem 108 and an ethernet local area network 109 are also
coupled to I/O bus 101.

Bus interface unit 140 is coupled to local bus 100 and I/O
bus 101 and acts as a gateway between processor 103 and
the I/O subsystem. Bus interface unit 140 may also provide
translation between signals being sent from units on one of
the buses to units on the other bus to allow local bus 100 and
I/0 bus 101 to co-operate as a single bus.

An 1/O controller 130 is coupled to I/O bus 101 and
controls access to certain I/O peripherals in the computer
system. For instance, I/O controller 130 is coupled to
controller device 127 that controls access to an alpha-
numeric input device 122 including alpha-numeric and other
keys, etc., for communicating information and command

10

15

20

25

30

35

40

45

50

55

60

65

4

selections to processor 103, and a cursor control 123, such
as a trackball, stylus, mouse, or trackpad, etc., for control-
ling cursor movement. The system also includes a sound
chip 125 coupled to I/O controller 130 for providing audio
recording and play back. Sound chip 125 may include a
sound circuit and its driver which are used to generate
various audio signals from the computer system. I/O con-
troller 130 may also provide access to a floppy disk and
driver 126. The processor 103 controls I/O controller 130
with its peripherals by sending commands to I/O controller
130 via local bus 100, interface unit 140 and 1/O bus 101.

Batteries or other power supply 152 may also be included
to provide power necessary to run the various peripherals
and integrated circuits in the computer system. Power sup-
ply 152 is typically a DC power source that provides a
constant DC power to various units, particularly processor
103. Various units such as processor 103, display 121, etc.,
also receive clocking signals to synchronize operations
within the computer systems. These clocking signals may be
provided by a global clock generator or multiple clock
generators, each dedicated to a portion of the computer
system. Such a clock generator is shown as clock generator
160. In one embodiment, clock generator 160 comprise a
phase-locked loop (PLL) that provides clocking signals to
processor 103.

I/0O controller 140 includes control logic to coordinate the
thermal management. Several additional devices are
included within the computer system to operate with the
control logic within I/O controller 140. A timer 150, a switch
153 and a decoder 154 are included to function in connection
with the control logic. In one embodiment, decoder 154 is
included within bus interface unit 140 and timer 150 is
included in I/O controller 130.

Switch 153 is a p-channel power MOSFET, which has its
gate connected to the power signal 182, its source to the
power supply and its drain to processor’s V,, pin.

In one embodiment, processor 103 is a member of the
PowerPC™ family of processors, such as those manufac-
tured by Motorola Corporation of Schaumberg, Ill. The
memory in the computer system is initialized to store the
operating system as well as other programs, such as file
directory routines and application programs, and data input-
ted from I/O controller 130. In one embodiment, the oper-
ating system is stored in ROM 106, while RAM 104 is
utilized as the internal memory for the computer system for
accessing data and application programs. Processor 103
accesses memory in the computer system via an address bus
within bus 100. Commands in connection with the operation
of memory in the computer system are also sent from the
processor to the memory using bus 100. Bus 100 also
includes a bi-directional data bus to communicate data in
response to the commands provided by processor 103 under
the control of the operating system running on it.

Of course, certain implementations and uses of the
present invention may neither require nor include all of the
above components. For example, in certain implementations
a keyboard or cursor control device for inputting informa-
tion to the system may not be required. In other
implementations, it may not be required to provide a display
device displaying information. Furthermore, the computer
system may include additional processing units.

The operating system running on processor 103 takes care
of basic tasks such as starting the system, handling
interrupts, moving data to and from memory 104 and
peripheral devices via input/output interface unit 140, and
managing the memory space in memory 104. In order to take
care of such operations, the operating system provides

5,915,131

5

multiple execution environments at different levels (e.g.,
task level, interrupt level, etc.). Tasks and execution envi-
ronments are known in the art.

Overview of the Present Invention

In one embodiment, the computer system runs a kernel-
based, preemptive, multitasking operation system in which
applications and I/O services, such as drivers, operate in
separate protection domains (e.g., the user and kernel
domains, respectively). The user domain does not have
direct access to data of the kernel domain, while the kernel
domain can access data in the user domain.

The computer system of the present invention uses one or
more separate families to provide I/O services to the system.
Each I/O family provides a set of I/O services to the system.
For instance, a SCSI family and its SCSI interface modules
(SIMs) provide SCSI based services, while a file systems
family and its installable file systems provide file manage-
ment services. In one embodiment, an I/O family is imple-
mented by multiple modules and software routines.

Each family defines a family programming interface (FPI)
designed to meet the particular needs of that family. An FPI
provides access to a given family’s plug-ins, which are
dynamically loaded pieces of software that each provide an
instance of the service provided by a family. For example,
within the file systems family (File Manager), a plug-in
implements file-system-specific services. In one
embodiment, plug-ins are a superset of device drivers, such
that all drivers are plug-ins, but not all plug-ins are drivers.

Access to services is available only through an I/O
family’s programming interface. In one embodiment, hard-
ware is not directly accessible to application software, nor is
it vulnerable to application error. Applications have access
to hardware services only through an I/O family’s program-
ming interface. Also, the context within which an I/O service
runs and the method by which it interacts with the system is
defined by the I/O family to which it belongs.

FIG. 2 illustrates the relationship between an application,
several I/O families, and their plug-ins. Referring to FIG. 2,
an application 201 requests services through one or more
family FPIs, shown in FIG. 2 as File Manager API 202,
Block Storage API 203, and SCSI Manager API 204. The
File Manager API 202, Block Storage API 203, and SCSI
Manager API 204 are available to one or more applications
in the user domain.

In one embodiment, the service requests from application
201 (and other applications) are sent through File Manager
API 202, Block Storage API 203, and/or SCSI Manager API
204, etc., and flow as messages to family FPI servers
205-207, which reside in the kernel domain. In one
embodiment, the messages are delivered using a kernel-
supplied messaging service.

Any communication method may be used to communi-
cate service requests to I/O families. In one embodiment,
kernel messaging is used between the FPI libraries and the
FPI server for a given family, between different families, and
between plug-ins of one family and another family. The
communication method used should be completely opaque
to a client requesting a family service.

Each of the FPI servers 205-207 permit access to a
distinct set of services. For example, File Manager FPI
server 205 handles service for the file manager family of
services. Similarly, the Block Storage FPI server 206
handles service requests for the block storage family of
services.

Note that FIG. 2 shows three families linked by kernel
messages. Messages flow from application level through a
family to another family, and so on. For instance, a service

10

15

20

25

30

35

40

45

50

55

60

65

6

request may be communicated from application level to the
file system family, resulting in one or more requests to the
block storage family, and finally one or more to the SCSI
family to complete a service request. Note that in one
embodiment, there is no hierarchical relationship among
families; all families are peers of each other.

Families in the Present Invention

A family provides a distinct set of services to the system.
For example, one family may provide network services,
while another provides access to a variety of block storage
mediums. A family is associated with a set of devices that
have similar characteristics, such as all display devices or all
ADB devices.

In one embodiment, each family is implemented in soft-
ware that runs in the computer system with applications. A
family comprises software that includes a family program-
ming interface and its associated FPI library or libraries for
its clients, an FPI server, an activation model, a family
expert, a plug-in programming interface for its plug-ins, and
a family services library for its plug-ins.

FIG. 3 illustrates the interaction between these compo-
nents. Referring to FIG. 3, a family programming interface
(FPI) 301 provides access to the family’s services to one or
more applications, such as application 302. The FPI 301 also
provides access to plug-ins from other families and to
system software. That is, an FPI is designed to provide
callers with services appropriate to a particular family,
whether those calls originate from in the user domain or the
operating system domain.

For example, when an application generates data for a
video device, a display FPI tailored to the needs of video
devices is used to gain access to display services. Likewise,
when an application desires to input or output sound data,
the application gains access to a sound family of services
through an FPI. Therefore, the present invention provides
family programming interfaces tailored to the needs of
specific device families.

Service requests from application 302 (or other
applications) are made through an FPI library 303. In one
embodiment, the FPI library 303 contains code that passes
requests for service to the family FPI server 304. In one
embodiment, the FPI library 303 maps FPI function calls
into messages (e.g., kernel messages) and sends them to the
FPI server 304 of the family for servicing. In one
embodiment, a family 305 may provide two versions of its
FPI library 303, one that runs in the user domain and one that
runs in the operating system kernel domain.

In one embodiment, FPI server 304 runs in the kernel
domain and responds to service requests from family clients
(e.g., applications, other families, etc.). FPI server 304
responds to a request according to the activation model (not
shown) of the family 305. In one embodiment, the activation
model comprises code that provides the runtime environ-
ment of the family and its plug-ins. For instance, FPI server
304 may put a request in a queue or may call a plug-in
directly to service the request. As shown, the FPI server 304
forwards a request to the family 305 using a procedure call.
Note that if FPI library 303 and the FPI server 304 use kernel
messaging to communicate, the FPI server 304 provides a
message port.

Each family 305 includes an expert (not shown) to
maintain knowledge of the set of family devices. In one
embodiment, the expert comprises code within a family 305
that maintains knowledge of the set of family plug-ins
within the system. At system startup and each time a change
occurs, the expert is notified.

In one embodiment, the expert may maintain the set of
family services using a central device registry in the system.

5,915,131

7

The expert scans the device registry for plug-ins that belong
to its family. For example, a display family expert looks for
display device entries. When a family expert finds an entry
for a family plug-in, it instantiates the plug-in, making it
available to clients of the family. In one embodiment, the
system notifies the family expert on an ongoing basis about
new and deleted plug-ins in the device registry. As a result,
the set of plug-ins known to and available through the family
remains current with changes in system configuration.

Note that family experts do not add or alter information in
the device registry nor do they scan hardware. In one
embodiment, the present invention includes another level of
families (i.e., low-level families) whose responsibility is to
discover devices by scanning hardware and installing and
removing information for the device registry. These low-
level families are the same as the families previously dis-
cussed above (i.e., high level family) in other ways, i.c. they
have experts, services, an FPI, a library, an activation model
and plug-ins. The low-level families’ clients are usually
other families rather than applications. In one embodiment,
families are insulated from knowledge of physical connec-
tivity. Experts and the device registry are discussed in more
detail below.

A plug-in programming interface (PPI) 306 provides a
family-to-plug-in interface that defines the entry points a
plug-in supports so that it can be called and a plug-in-to-
family interface that defines the routines plug-ins call when
certain events, such as an I/O completion, occur. In addition,
PPI 306 defines the path through which the family and its
plug-in exchange data.

A family services library (not shown) is a collection of
routines that provide services to the plug-ins of a family. The
services are specific to a given family and they may be
layered on top of services provided by the kernel. Within a
family, the methods by which data is communicated,
memory is allocated, interrupts are registered and timing
services are provided may be implemented in the family
services library. Family services libraries may also maintain
state information needed by a family to dispatch and manage
requests.

For example, a display family services library provides
routines that deal with vertical blanking (which is a concern
of display devices). Likewise, SCSI device drivers manipu-
late command blocks, so the SCSI family services library
contains routines that allow block manipulation. A family
services library that provides commonly needed routines
simplifies the development of that family’s plug-ins.

Through the PPI 306, a call is made to a plug-in 307. In
one embodiment, a plug-in, such as plug-in 307, comprises
dynamically loaded code that runs in the kernel’s address
space to provide an instance of the service provided by a
family. For example, within the file systems family, a plug-in
implements file-system-specific services. The plug-ins
understand how data is formatted in a particular file system
such as HFS or DOS-FAT. On the other hand, it is not the
responsibility of file systems family plug-ins to obtain data
from a physical device. In order to obtain data from a
physical device, a file system family plug-in communicates
to, for instance, a block storage family. In one embodiment,
block storage plug-ins provide both media-specific drivers,
such as a tape driver, a CD-ROM driver, or hard disk driver,
and volume plug-ins that represent partitions on a given
physical disk. Block storage plug-ins in turn may make SCSI
family API calls to access data across the SCSI bus on a
physical disk. Note that in the present invention, plug-ins are
a superset of device drivers. For instance, plug-ins may
include code that does not use hardware. For instance, file

10

15

20

25

30

35

40

45

50

55

60

65

8

system and block storage plug-ins are not drivers (in that
drivers back hardware).

Applications, plug-ins from other I/O families, and other
system software can request the services provided by a
family’s plug-ins through the family’s FPI. Note also that
plug-ins are designed to operate in the environment set forth
by their family activation model.

In one embodiment, a plug-in may comprises two code
sections, a main code section that runs in a task in the kernel
domain and an interrupt level code section that services
hardware interrupts if the plug-in is, for instance, a device
driver. In one embodiment, only work that cannot be done at
task level in the main code section should be done at
interrupt level. In one embodiment, all plug-ins have a main
code section, but not all have interrupt level code sections.

The main code section executes and responds to client
service requests made through the FPI. For example, sound
family plug-ins respond to sound family specific requests
such as sound playback mode setting (stereo, mono, sample
size and rate), sound play requests, sound play cancellation,
etc. The interrupt level code section executes and responds
to interrupts from a physical device. In one embodiment, the
interrupt level code section performs only essential
functions, deferring all other work to a higher execution
levels.

Also because all of the services associated with a par-
ticular family are tuned to the same needs and requirements,
the drivers or plug-ins for a given family may be as simple
as possible.

Family Programming Interfaces

In the present invention, a family provides either a user-
mode or a kernel-mode FPI library, or both, to support the
family’s FPI. FIG. 4 illustrates one embodiment of the I/O
architecture of the present invention. Referring to FIG. 4,
three instances of families 401403 are shown operating in
the kernel environment. Although three families are shown,
the present invention may have any number of families.

In the user mode, two user-mode FPI libraries, Xlib,, 404
and Zlib, 405, are shown that support the FPIs for families
X and Z, respectively. In the kernel environment, two
kernel-mode FPI libraries, Ylib, 406 and Zlib,, 407, for
families Y and Z, respectively, are shown.

Both the user-mode and the kernel-mode FPI libraries
present the same FPI to clients. In other words, a single FPI
is the only way family services can be accessed. In one
embodiment, the user-mode and kernel mode libraries are
not the same. This may occur when certain operations have
meaning in one mode and not the other. For example,
operations that are implemented in the user-mode library,
such as copying data across address-space boundaries, may
be unnecessary in the kernel library.

In response to service requests, FPI libraries 404 and 405
map FPI functions into messages for communication from
the user mode to the kernel mode. In one embodiment, the
messages are kernel messages.

The service requests from other families are generated by
plug-ins that make calls on libraries, such as FPI libraries
406 and 407. In one embodiment, FPI libraries 406 and 407
map FPI functions into kernel messages and communicate
those messages to FPI servers such as Y FPI server 409 and
Z FPI server 410 respectively. Other embodiments may use
mechanisms other than kernel messaging to communicate
information.

In the example, the Z family 403 has both a user-mode
library 405 and a kernel-mode library 407. Therefore, the
services of the Z family may be accessed from both the user
mode and the kernel mode.

5,915,131

9

In response to service request messages, X FPI server
408, Y FPI server 409 and Z FPI server 410 dispatch
requests for services to their families. In one embodiment,
each of FPI servers 408—410 receives a kernel message,
maps the message into a FPI function called by the client,
and then calls the function in the family implementation
(414-416).

In one embodiment, there is a one-to-one correspondence
between the FPI functions called by clients and the function
called by FPI servers 408—410 as a result. The calls from FPI
serves 408—410 are transferred via interfaces 411-413. For
instance, X interface 411 represents the interface presented
to the FPI server 408 by the X family 414. It is exactly the
same as the FPI available to applications or other system
software. The same is true of Y interface 412 and Z interface
413.

The X family implementation 414 represents the family
activation model that defines how requests communicated
from server 408 are serviced by the family and plug-in(s). In
one embodiment, X family implementation 414 comprises
family code interfacing to plug-in code that completes the
service requests from application 400 via server 408.
Similarly, the Y family implementation 415 and Z family
implementation 416 define their family’s plug-in activation
models.

X plug-in 417, Y plug-in 418 and Z plug-in 419 operate
within the activation model mandated by the family and
provide code and data exports. The required code and data
exports and the activation model for each family of drivers
is family specific and different.

Extending Family Programming Interfaces

A plug-in may provide a plug-in-specific interface that
extends its functionality beyond that provided by its family.
This is useful in a number of situations. For example, a block
storage plug-in for a CD-ROM device may provide a block
storage plug-in interface required of the CD-ROM device as
well as an interface that allows knowledgeable application
software to control audio volume and to play, pause, stop,
and so forth. Such added capabilities require a plug-in-
specific APL.

If a device wishes to export extended functionality outside
the family framework, a separate message port is provided
by the device and an interface library for that portion of the
device driver. FIG. § illustrates the extension of a family
programming interface.

Referring to FIG. 5, a plug-in module, Z plug-in 501,
extends beyond the Z family boundary to interface to family
implementation D 502 as well. A plug-in that has an
extended API offers features in addition to those available to
clients through it’s family’s FPIL. In order to provide extra
services, the plug-in provides additional software shown in
FIG. 5 as an interface library Dlib, 503, the message port
code D FPI server 504, and the code that implements the
extra features D 505.

Sharing Code and Data Between Plug-ins

In one embodiment, two or more plug-ins can share data
or code or both, regardless of whether the plug-ins belong to
the same family or to different families. Sharing code or data
is desirable when a single device is controlled by two or
more families. Such a device needs a plug-in for each family.
These plug-ins can share libraries that contain information
about the device state and common code. FIG. 6 illustrates
two plug-ins that belong to separate families and that share
code and data.

Plug-ins can share code and data through shared libraries.
Using shared libraries for plug-ins that share code or data
allows the plug-ins to be instantiated independently without

10

15

20

25

30

40

45

50

55

60

65

10

encountering problems related to simultaneous instantiation.
Referring to FIG. 6, the first plug-in 601 to be opened and
initialized obtains access to the shared libraries. At this
point, the first plug-in 601 does not share access. When the
second plug-in 602 is opened and initialized, a new connec-
tion to the shared libraries is created. From that point, the
two plug-ins contend with each other for access to the shared
libraries.

Sharing code or data may also be desirable in certain
special cases. For instance, two or more separate device
drivers may share data as a way to arbitrate access to a
shared device. An example of this is a single device that
provides network capabilities and real time clock. Each of
these functions belong to a distinct family but may originate
in a single physical device.

Activation Models in the Present Invention

An activation model defines how the family is imple-
mented and the environment within which plug-ins of the
family execute. In one embodiment, the activation model of
the family defines the tasking model a family uses, the
opportunities the family plug-ins have to execute and the
context of those opportunities (for instance, are the plug-ins
called at task time, during privileged mode interrupt
handling, and so forth), the knowledge about states and
processes that a family and its plug-ins are expected to have,
and the portion of the service requested by the client that is
performed by the family and the portion that is performed by
the plug-ins.

Each model provides a distinctly different environment
for the plug-ins to the family, and different implementation
options for the family software. Examples of activation
models include the single-task model, the task-per-plug-in
model, and the task-per-request model. Each is described in
further detail below. Note that although three activation
models are discussed, the choice of activation model is a
design choice and different models may be used based on the
needs and requirements of the family.

In one embodiment, the activation model uses kernel
messaging as the interface between the FPI libraries that
family clients link to and the FPI servers in order to provide
the asynchronous or synchronous behavior desired by the
family client. Within the activation model, asynchronous I/O
requests are provided with a task context. In all cases, the
implementation of the FPI server depends on the family
activation model.

The choice of activation model limits the plug-in imple-
mentation choices. For example, the activation model
defines the interaction between a driver’s hardware interrupt
level and the family environment in which the main driver
runs. Therefore, plug-ins conform to the activation model
employed by its family.

Single-Task Model

One of the activation models that may be employed by a
family is referred to herein as the single-task activation
model. In the single-task activation model, the family runs
as a single monolithic task which is fed from a request queue
and from interrupts delivered by plug-ins. Requests are
delivered from the FPI library to an accept function that
enqueues the request for processing by the family’s process-
ing task and wakes the task if it is sleeping. Queuing,
synchronization, and communication mechanism within the
family follow a set of rules specified by the family.

The interface between the FPI Server and a family imple-
mentation using the single-task model is asynchronous.
Regardless of whether the family client called a function
synchronously or asynchronously, the FPI server calls the
family code asynchronously. The FPI server maintains a set

5,915,131

11

of kernel message IDs that correspond to messages to which
the FPI server has not yet replied. The concept of maintain-
ing kernel message IDs corresponding to pending I/O server
request messages is well-known in the art;

Consider as an example family 700, which uses the
single-task activation model, shown in FIG. 7. Referring to
FIG. 7, an application 710 is shown generating a service
request to the family’s APIs 711. APIs 711 contain at least
one library in which service requests are mapped to FP1
functions. The FPI functions are forwarded to the family’s
FPI server 701. FPI server 701 dispatches the FPI function
to family implementation 703, which includes various pro-
tocols and a network device driver that operate as a single
task. Each protocol layer provides a different level of
service.

The FPI server 701 is an accept function that executes in
response to the calling client via the FPI library (not shown).
An accept function, unlike a message-receive-based kernel
task, is able to access data within the user and kernel bands
directly. The accept function messaging model requires that
FPI server 701 be re-entrant because the calling client task
may be preempted by another client task making service
requests.

When an /O request completes within the family’s
environment, a completion notification is sent back to the
FPI server 701, which converts the completion notification
into the appropriate kernel message ID reply. The kernel
message ID reply is then forwarded to the application that
generated the service request.

With a single-task model, the family implementation is
insulated from the kernel in that the implementation does it
not have kernel structures, IDs, or tasking knowledge. On
the other hand, the relationship between FPI server 701 and
family code 702 is asynchronous, and has internal knowl-
edge of data structures and communication mechanisms of
the family.

The single-task model may be advantageously employed
for families of devices that have one of several character-
istics: (1) each I/O request requires little effort of the
processing unit. This applies not only to keyboard or mouse
devices but also to DMA devices to the extent that the
processing unit need only set up the transfer, (2) no more
than one I/O request is handled at once, such that, for
instance, the family does not allow interleaving of I/O
requests. This might apply to sound, for example, or to any
device for which exclusive reservation is required (i.e.,
where only one client can use a device at a time). The
opposite of a shared resource. Little effort for the processor
exists where the processor initiates an I/O request and then
is not involved until the request completes, or (3) the family
to be implemented provides its own scheduling mechanisms
independent of the underlying kernel scheduling. This
applies to the Unix™ stream programming model.
Task-Per-Plug-In Model

For each plug-in instantiated by the family, the family
creates a task that provides the context within which the
plug-in operates.

FIG. 8 illustrates the task-per-plug-in model. Referring to
FIG. 8, an application 801 generates service requests for the
family, which are sent to FPI 802. Using an FPI library, the
FPI 802 generates a kernel message according to the family
activation model 804 and a driver, such as plug-in driver
805.

In one embodiment, the FPI server 803 is a simple
task-based message-receive loop or an accept function. FPI
server 803 receives requests from calling clients and passes
those requests to the family code 804. The FPI server 803 is

10

15

20

25

30

40

45

50

55

60

65

12

responsible for making the data associated with a request
available to the family, which in turn makes it available to
the plug-in that services the request. In some instances, this
responsibility includes copying or mapping buffers associ-
ated with the original request message to move the data from
user address space to the kernel level area.

The family code 804 consists in part of one or more tasks,
one for each family plug-in. The tasks act as a wrapper for
the family plug-ins such that all tasking knowledge is
located in the family code. A wrapper is a piece of code that
insulates called code from the original calling code. The
wrapper provides services to the called code that the called
code is not aware of.

When a plug-in’s task receives a service request (by
whatever mechanisms the family implementation uses), the
task calls its plug-in’s entry points, waits for the plug-in’s
response, and then responds to the service request.

The plug-in performs the work to actually service the
request. Each plug-in does not need to know about the
tasking model used by the family or how to respond to event
queues and other family mechanisms; it only needs to know
how to perform its particular function.

For concurrent drivers, all queuing and state information
describing an I/O request is contained within the plug-in
code and data and within any queued requests. The FPI
library forwards all requests regardless of the status of
outstanding I/O requests to the plug-in. When the client
makes a synchronous service request, the FPI library sends
a synchronous kernel message. This blocks the requesting
client, but the plug-in’s task continues to run within its own
task context. This permits clients to make requests of this
plug-in even while another client’s synchronous request is
being processed.

In some cases of a family, a driver (e.g., 805) can be either
concurrent or nonconcurrent. Nevertheless, clients of the
family may make synchronous and asynchronous requests,
even though the nonconcurrent drivers can handle only one
request at a time. The device manager FPI server 803 knows
that concurrent drivers cannot handle multiple requests
concurrently. Therefore, FPI server 803 provides a mecha-
nism to queue client requests and makes no subsequent
requests to a task until the task signals completion of an
earlier I/O request.

When a client calls a family function asynchronously, the
FPI library sends an asynchronous kernel message to the FPI
server and returns to the caller. When a client calls a family
function synchronously, the FPI library sends a synchronous
kernel message to the FPI server and does not return to the
caller until the FPI server replies to the message, thus
blocking the caller’s execution until the I/O request is
complete.

In either case, the behaviors of the device manager FPI
server 803 is exactly the same: for all incoming requests, it
either queues the request or passes it to the family task,
depending on whether the target plug-in is busy. When the
plug-in signals that the I/O operation is complete, the FPI
server 803 replies to the kernel message. When the FPI
library receives the reply, it either returns to the synchronous
client, unblocking its execution or it notifies the asynchro-
nous client about the I/O completion.

The task-per-plug-in model is intermediate between the
single-task and task-per-request models in terms of the
number of tasks it typically uses. The task-per-plug-in model
is advantageously used where the processing of I/O requests
varies widely among the plug-ins.

Task-Per-Request Model

The task-per-request model shares the following charac-

teristics with the two activation models already discussed:

5,915,131

13

(1) the FPI library to FPI server communication provides the
synchronous or asynchronous calling behavior requested by
family clients, and (2) the FPI library and FPI server use
kernel messages to communicate I/O requests between
themselves. However, in the task-per-request model, the FPI
server’s interface to the family implementation is com-
pletely synchronous.

In one embodiment, one or more internal family request
server tasks, and, optionally, an accept function, wait for
messages on the family message port. An arriving message
containing information describing an I/O request awakens
one of the request server tasks, which calls a family function
to service the request. All state information necessary to
handle the request is maintained in local variables. The
request server task is blocked until the I/O request
completes, at which time it replies to the kernel message
from the FPI library to indicate the result of the operation.
After replying, the request server task waits for more mes-
sages from the FPI library.

As a consequence of the synchronous nature of the
interface between the FPI server and the family
implementation, code calling through this interface remains
running as a blockable task. This calling code is either the
request server task provided by the family to service the I/O
(for asynchronous I/O requests) or the task of the requester
of the I/O (for certain optimized synchronous requests).

The task-per-request model is advantageously employed
for a family where an I/O request can require continuous
attention from the processor and multiple I/O requests can
be in progress simultaneously. A family that supports dumb,
high bandwidth devices is a good candidate for this model.
In one embodiment, the file manager family uses the task-
per-request model. This programming model requires the
family plug-in code to have tasking knowledge and to use
kernel facilities to synchronize multiple threads of execution
contending for family and system resources.

Unless there are multiple task switches within a family,
the tasking overhead is identical within all of the activation
models. The shortest task path from application to I/O is
completely synchronous because all code runs on the call-
er’s task thread.

Providing at least one level of asynchronous call between
an application and an I/O request results in better latency
results from the user perspective. Within the file system, a
task switch at a file manager API level allows a user-visible
application, such as the Finder™, to continue. The file
manager creates an I/O tasks to handle the I/O request, and
that task is used via synchronous calls by the block storage
and SCSI families to complete their part in I/O transaction
processing.

The Device Registry of the Present Invention

The device registry of the present invention comprises an
operating system naming service that stores system infor-
mation. In one embodiment, the device registry is respon-
sible for driver replacement and overloading capability so
that drivers may be updated, as well as for supporting
dynamic driver loading and unloading.

In one embodiment, the device registry of the present
invention is a tree-structured collection of entries, each of
which can contain an arbitrary number of name-value pairs
called properties. Family experts examine the device regis-
try to locate devices or plug-ins available to the family.
Low-level experts, discussed below, describe platform hard-
ware by populating the device registry with device nodes for
insertion of devices that will be available for use by appli-
cations.

In one embodiment, the device registry contains a device
subtree pertinent to the I/O architecture of the present
invention. The device tree describes the configuration and
connectivity of the hardware in the system. Each entry in the
device tree has properties that describe the hardware repre-

10

15

20

25

30

35

40

45

50

55

60

65

14

sented by the entry and that contain a reference to the driver
in control of the device.

Multiple low-level experts are used, where each such
expert is aware of the connection scheme of physical devices
to the system and installs and removes that information in
the device tree portion of the device registry. For example a
low-level expert, referred to herein as a bus expert or a
motherboard expert, has specific knowledge of a piece of
hardware such as a bus or a motherboard. Also, a SCSI bus
expert scans a SCSI bus for devices, and installs an entry
into the device tree for each device that it finds. The SCSI
bus expert knows nothing about a particular device for
which it installs an entry. As part of the installation, a driver
gets associated with the entry by the SCSI bus expert. The
driver knows the capabilities of the device and specifies that
the device belongs to a given family. This information is
provided as part of the driver or plug-in descriptive structure
required of all plug-ins as part of their PPI implementation.

Low-level experts and family experts use a device registry
notification mechanism to recognize changes in the system
configuration and to take family-specific action in response
to those changes.

An example of how family experts, low-level experts, and
the device registry service operate together to stay aware of
dynamic changes in system configuration follows: Suppose
a motherboard expert notices that a new bus, a new network
interface and new video device have appeared within the
system. The motherboard expert adds a bus node, a network
node, and a video node to the device tree portion of the
device registry. The device registry service notifies all
software that registered to receive notifications of these
events.

Once notified that changes have occurred in the device
registry, the networking and video family experts scan the
device registry and notice the new entry belonging to their
family type. Each of the experts adds an entry in the family
subtree portion of the device registry.

The SCSI bus expert notices an additional bus, and probes
for SCSI devices. It adds a node to the device registry for
each SCSI device that it finds. New SCSI devices in the
device registry result in perusal of the device registry by the
block storage family expert. The block storage expert
notices the new SCSI devices and loads the appropriate
drivers, and creates the appropriate device registry entries, to
make these volumes available to the file manager. The file
manager receives notification of changes to the block stor-
age family portion of the device registry, and notifies the
Finder™ that volumes are available. These volumes then
appear on the user’s desktop.

Whereas, many alterations and modifications of the
present invention will no doubt become apparent to a person
of ordinary skill in the art after having read the foregoing
description, it is to be understood that the particular embodi-
ment shown and described by way of illustration are in no
way to be considered limiting. Therefore, reference to the
details of the various embodiments are not intended to limit
the scope of the claims which themselves recite only those
features regarded as essential to the invention.

Thus, a method and apparatus for handling I/O requests in
a computer system has been described.

We claim:

1. A computer system comprising:

a bus;

at least one memory coupled to the bus for storing data

and programming instructions that include applications
and an operating system; and

a processing unit coupled to the bus and running the

operating system and applications by executing pro-
gramming instructions, wherein an application has a
first plurality of tailored distinct programming inter-

5,915,131

15

faces available to access a plurality of separate sets of
computer system services provided through the oper-
ating system of the computer system via service
requests.

2. The computer system defined in claim 3 wherein each
of the first plurality of tailored distinct programming inter-
faces are tailored to a type of I/O service provided by each
set of I/O services.

3. A computer system comprising:

a bus;

at least one memory coupled to the bus for storing data
and programming instructions that include applications
and an operating system, wherein the operating system
comprises a plurality of servers, and each of the first
plurality of programming interfaces transfer service
requests to one of the plurality of servers, wherein each
of the plurality of servers responds to service requests
from clients of the separate sets of I/O services; and

a processing unit coupled to the bus and running the
operating system and applications by executing pro-
graming instructions, wherein an application has a first
plurality of tailored distinct programming interfaces
available to access a plurality of separate sets of 1/O
services provided through the operating system via
service requests.

4. The computer system defined in claim 3 wherein
service requests are transferred as messages in a messaging
system.

5. The computer system defined in claim 4 wherein each
of the plurality of servers supports a message port.

6. The computer system defined in claim 3 wherein at
least one of the plurality of servers is responsive to service
requests from applications and from at least one other set of
I/O services.

7. The computer system defined in claim 3 wherein the
operating system further comprises a plurality of activation
models, wherein each of the plurality of activation models is
associated with one of the plurality of servers to provide a
runtime environment for the set of I/O services to which
access is provided by said one of the plurality of servers.

8. The computer system defined in claim 7 wherein at
least one instance of a service is called by one of the plurality
of servers for execution in an environment set forth by one
of the plurality of activation models.

9. A computer system comprising:

a bus;

at least one memory coupled to the bus for storing data
and programming instructions that comprise applica-
tions and an operating system;

a processing unit coupled to the bus and running the
operating system and applications by executing pro-
gramming instructions, wherein the operating system
provides computer system services through a tailored
distinct one of a plurality of program structures, each
tailored distinct program structure comprising:

a first programming interface for receiving service
requests for a set of computer system I/O services of
a first type,

a first server coupled to receive service requests and to
dispatch service requests to the computer system I/O
services,

an activation model to define an operating environment
in which a service request is to be serviced by the set
of computer system I/O services, and

at least one specific instance of the set of computer
system I/O services that operate within the activation
model.

10

20

25

30

35

40

45

50

55

60

65

16

10. The computer system defined in claim 9 wherein the
first programming interface is responsive to request from
applications and from other program structures.

11. The computer system defined in claim 9 wherein the
first programming interface comprises at least one library for
converting functions into messages.

12. The computer system defined in claim 9 wherein the
first server receives a message corresponding a service
request from the first programming interface, maps the
message into a function called by the client, and then calls
the function.

13. The computer system defined in claim 9 wherein the
message comprises a kernel message.

14. A computer system comprising:

a bus;

at least one memory coupled to the bus for storing data
and programming instructions that comprise applica-
tions and an operating system;

a processing unit coupled to the bus and running the
operating system and applications by executing pro-
gramming instructions, wherein the operation system
provides input/output (I/O) services through a tailored
distinct one of plurality of program structures, each
tailored distinct program structure comprising:

a first programming interface for receiving service
requests for a set of I/O services of a first type,

a first server coupled to receive service requests and to
dispatch service requests to the I/O services,

an activation model to define operating environment in
which a service request is to be serviced by the set of
I/O services, and

at least one specific instance of the set of I/0 services
that operate within the activation model, wherein one
of the said at least one specific instances comprises
a service that accesses another program structure,
and further wherein said one of said at least one
specific instances communicates to said another pro-
gram structure of a second type using a message
created using a library sent to the server of said
another program structure.

15. The computer system defined in claim 9 wherein two
or more I/O services share code or data.

16. The computer system defined in claim 15 wherein said
two or more I/O services are different types.

17. The computer system defined in claim 9 wherein the
program structure further comprises a storage mechanism to
maintain identification of available services to which access
is provided via the first server.

18. A computer implemented method of accessing I/O
services of a first type, said computer implemented method
comprising the steps of:

generating a service request for a first type of I/O services;

a tailored distinct family server, operating in an operating
system environment and dedicated to providing access
to service requests for the first type of I/O service,
receiving and responding to the service request based
on an activation model specific to the first type of 1/O
services; and

a processor running an instance of the first type of I/O
services that is interfaces to the file server to satisfy the
service request.

19. The method defined in claim 18 wherein the service

request is generated by an application.

20. The method defined in claim 18 wherein the service
request is generated by an instance of an I/O service running
in the operating system environment.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,915,131
DATED : June 22, 1999

INVENTOR(S) : Knight, et al.

Itis certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

In column 15 at line 14 delete “the” and insert -- a --
In column 15 at line 54 delete “” and insert -- ;-

In column 16 at line 20 delete “operation” and
insert -- operating --

In column 16 at line 58 delete “interfaces” and
insert -- interfaced --

Signed and Sealed this
Eighteenth Day of January, 2000

Q. TODD DICKINSON

Commissioner of Patents and Trademarks

Attesting Officer

EXHIBITS

US005929852A

United States Patent (i 11] Patent Number: 5,929,852
’ ’
Fisher et al. 451 Date of Patent: Jul. 27,1999
[54] ENCAPSULATED NETWORK ENTITY 5,819,090 10/1998 Wolf et al. ...ooevvviiviininnnne 345/335 X
ggﬁfﬁgggﬁTosFYgqu}WORK FOREIGN PATENT DOCUMENTS
WO
[75] Inventors: Stephen Fisher; Michael A. Cleron, A9107719 5/1991 WIPO .
both of Menlo Park; Timo Bruck,
Mountian View, all of Calif. OTHER PUBLICATIONS
)) Develop, The Apple Technical Journal, “Building an Open-
[73] Assignee: Apple Computer, Inc., Cupertino, Doc Part Handler”, Issue 19, Sep., 1994, pp. 6-16.
Calif. Baker, S. “Mosaic—Surfing at Home and Abroad,” Proceed-
ings ACM SIGUCCS User Services Conference XXII, Oct.
[21] Appl. No.: 09/007,691 16-19, 1994, pp. 159-163.
S PCT International Search Report dated Oct. 22, 1996 in
(22] Filed: Jan. 15, 1998 corresponding PCT Case No. PCT/US96/06376.
N MacWeek, Nov. 7, 1994, vol. 8, No. 44, Cyberdog to Fetch
Related U.S. Application Data Internet Resources for OpenDoc APPS, Robert Hess.
[63] Continuation of application No. 08/435,880, May 5, 1995, Opinion, MacWeek Nov. 14, 1994’. The Second Decade,
abandoned. Cyberdog Could Be a Breakthrough if it’s Kept on a Leash,
Henry Norr.
[51] Int. CLE e, GO06T 1/00 y
[52] US. Cle oo 345/335 Primary Examiner—Joseph H. Feild
[58] Field of Search ... 345/335, 339, Attorney, Agent, or Firm—Cesari & McKenna, LLP
345/348, 356; 395/701, 200.47, 200.48, [57] ABSTRACT
680, 681, 682, 683, 684
A network-oriented component system efficiently accesses
[56] References Cited information from a network resource located on a computer
network by creating an encapsulated network entity that
U.S. PATENT DOCUMENTS contains a reference to that resource. The encapsulated entity
5,202,828 4/1993 Vertelney et al. ..o, 395/936 X is preferably implemented as a network component stored
5,481,666 1/1996 Nguyen €t al. .coooevereceerncenee 395/762 on a computer remotely displaced from the referenced
5,500,929 3/1996 Dickinson - 395/160 resource. In addition, the encapsulated entity may be mani-
5,530,852 6/1996 Meske, Ir. et al. - 395/600 fested as a visual object on a graphical user interface of a
27237’546 771996 Salu;‘f’r """" T 3595/ 762 computer screen. Such visual manifestation allows a user to
5 547‘3’% Sﬁggg ‘IT\?IaariI:Iileftti aH' """""""""""" 332 /2%8%%13 easily manipulate the entity in order to display the contents
5659791 8/1997 Nakajima wtal 345/3'02 of the resource on the screen or to electronically forward the
5,724,506 3/1998 Cleron et al. 39520001 entity over the network.
5,724,556 3/1998 Souder et al. 345335 X
5,781,189 7/1998 Holleran et al. 345/335 20 Claims, 14 Drawing Sheets

COMPONENT
OBJECT
602

VIEWING
EDITOR
660

612

COMPONENT LAYER 606 OPERATING

SYSTEM

ARBITRATOR
OBJECT
616

DISPATCHER
OBJECT

628 610

626

GRAPHIC

WINDOW

INTERFACE OBJECT
OBJECT 630

650

WINDOW
MANAGER
614

5,929,852

Sheet 1 of 14

Jul. 27,1999

U.S. Patent

— IN3ITO _
H3IAH3S

L "Old

00¢

/r\ 00¢
N‘oom
~ HIAHIS
oLl 006
INTIO
IN3MO
002
00€
7 yangas | v
oLl

- 00€

H3AH3S

P Ot
IN3INO
00¢

1N3ITO

00¢

H3AH3S

m\ 00¢g

Alo:

o

5,929,852

Sheet 2 of 14

Jul. 27,1999

U.S. Patent

~ o o o] -

L]

OO O

Nu. 8cc

0gc vee

¢ 9Id

=

AHOW3IW

3N..w éle

NdO

o_.mlw

AHLINJOYHIO O/l

3

:.J.\ ¢éd

AHOMLAN
H31NdWOD

0S¢

5,929,852

Sheet 3 of 14

Jul. 27,1999

U.S. Patent

€ Bld
— AHOW3N 7
Smk 2Le
Nndo
oElW 91€
MHOMLAN
AHLINDHID O/l
~ Nmmv mm:,.:n_s_oo
213 » /(
0S€
(Ms1a)
AHOW3AW SSYN | \ 0ce

AN

5,929,852

Sheet 4 of 14

Jul. 27,1999

U.S. Patent

¥ "Old

— 0ly 3HVMAHVH 7

02y W3LSAS DNILYHIdO

0lddv| § OInddy
A L

00¥ ,\\

/\om¢ -/

H3IAVT IHNLOFLIHOHY LNINOJWNOD

'dNOD

'dNOD

— ooy

HIAV]
IN3INOdJWOD
MHOMLIN

oSy

[N}

ININOdJWNOD
AHOMLIN

1

N3INOJINOD
AHOMLAN

1N3INOdWOD 1NINOdNOD
HHOMLIN AHOMLIN

= oy

5,929,852

Sheet 5 of 14

Jul. 27,1999

U.S. Patent

S 'Old

cES

142"]

1151

8¢S

0SS 99% 095

HHOMLAN H31dvav H344N4
H31NdNWOD NHOML3IN MHOML3AN

896G 296
055
[O]R]
W3LSAS ONILYHIHO
[eT4] 02% v1S [Tz
y3Lldvav Y344ng HIDVYNYW JDOV4HILNI
AV1dSId NEERRS) MOANIM MHOMLIN
225
91§ m N

005 7

809
905 L
H3AV] ¢0S
ININOJWOO ANINOJNOD

v0S

5,929,852

Sheet 6 of 14

Jul. 27,1999

U.S. Patent

¥19
HIOVNVIN
MOANIM

019
W3LSAS
ONILYHIdO

MOGNIM

9 9l

059
103rgo
30V443INI
OlHdVYHD

0g9
103rgo0

929
103rdo
H3IHO1VdSId

919
103rdo
HOLv4d.llgdy

909 H3AYT LNINOAWOD

M\ cl9

099
HOl1d3
ONIM3IA

209
103rdo
1NINOdWOO

¥99

5,929,852

Sheet 7 of 14

Jul. 27,1999

U.S. Patent

004 w

0cL

oS

VARSIE

NOILYWHOANI NOILVOOANI
1NINOdNOD

1492 ¢t
SS300V 304HNOS3H

U.S. Patent Jul. 27,1999 Sheet 8 of 14 5,929,852

802 -~ 800
CYBERITEM
804 806
1\ S
GOPHERITEM\' - WEBITEM >
ARTICLE *— NEWSGROUPITEM

810 808
FIG. 8

900
/

CYBERSTREAM
902

(GOPHERSTREAM WEBSTREAM RTICLESTREAM

904 906

FIG. 9

5,929,852

Sheet 9 of 14

Jul. 27,1999

U.S. Patent

0l 'Ol

H3IMIIATHNLOId H3aSMOHgdNOHHSMIN
020} vLOL

HIaM3IIALXI] HISMOodga3M

8101

¢iol

9101

HISMOdg310lidy H3ISMOoHgH3IHdO5)

010}

NOISN31X33Svg - ININOJWOD3SVY

1ININOdWOD 9001}

NOISN3LX3H3gaAD

/ 0001

5,929,852

Sheet 10 of 14

Jul. 27,1999

U.S. Patent

Vi Old

90t

ebe4 awoH
W3L1|H3IHHOYD

ooe- AddeH
W31|d3HdOB)

ajddy
W31|H3IHdJOY)

NOISNILX3H3IgAD

¢ — — — H3ISMOUgH3IHd0H)

/\ YOLL
0011

U.S. Patent Jul. 27,1999 Sheet 11 of 14 5,929,852

f1100

GOPHERITEM

Happy Face

GOPHERITE
Home Page

GOPHERITEM

r\1120

WEBBROWSER

CYBEREXTENSION

Y1124

GOPHERITEM
Home Page

FIG. 11B

U.S. Patent Jul. 27,1999 Sheet 12 of 14 5,929,852

f1100

N 1104_\
1110 ——————Mfpple

GOPHERITEM
Happy Face

GOPHERITEM
Home Page

CYBEREXTENSION

1130

GOPHERSTREAM

— /
Home Page

FIG. 11C

U.S. Patent Jul. 27,1999 Sheet 13 of 14 5,929,852

f1100

: £ Apple
GOPHERITEM
Happy Face
CYBEREXTENSION
1106
_ GOPHERITEM
Home Page
GOPHERITEM
Apple
1140
N 1120 S

[E——— Home Page

WEBBROWSER _ | Home Page

Click Me!

Click me too!

Click me first!

CYBEREXTENSION

GOPHERITEM
Home Page

FIG. 11D

U.S. Patent Jul. 27,1999 Sheet 14 of 14 5,929,852

1200 ’\ 1202
(START :'

l 31204

USER DOUBLE-CLICKS ON J
HOME PAGE ICON

GOPHERBROWSER COMPONENT RECEIVES
“DOUBLE-CLICKING” EVENT AND CALLS OPEN

METHOD OF HOME PAGE GOPHERITEM COMPONENT

1208

GOPHERITEM COMPONENT CREATES WEBBROWSER
COMPONENT AND PASSES ITSELF TO NEWLY

CREATED CYBEREXTENSION COMPONENT

1210

WEBBROWSER COMPONENT NOTIFIED THAT
GOPHERITEM COMPONENT HAS BEEN ASSIGNED AND
GOPHERITEM COMPONENT INSTRUCTED TO CREATE
GOPHERSTREAM COMPONENT TO DOWNLOAD DATA

1212

GOPHERITEM COMPONENT CALLS OPEN METHOD OF
WEBBROWSER COMPONENT TO DISPLAY DATA ON SCREEN

FINISH

FIG. 12

5,929,852

1

ENCAPSULATED NETWORK ENTITY
REFERENCE OF A NETWORK
COMPONENT SYSTEM

This application is a continuation of U.S. patent appli-
cation Ser. No. 08/435,880, filed May 5, 1995, now aban-
doned.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This invention is related to the following copending U.S.
patent applications:

U.S. patent application Ser. No. 08/435,377, titled
EXTENSIBLE, REPLACEABLE NETWORK COMPO-
NENT SYSTEM,;

U.S. Pat. No. 5,784,619 issued Jul. 21, 1998, titled
REPLACEABLE AND EXTENSIBLE NOTEBOOK
COMPONENT OF A NETWORK COMPONENT SYS-
TEM,;

U.S. patent application Ser. No. 08/435,862, titled
REPLACEABLE AND EXTENSIBLE LOG COMPO-
NENT OF A NETWORK COMPONENT SYSTEM;

U.S. Pat. No. 5,724,506, issued Mar. 3, 1998, titled
REPLACEABLE AND EXTENSIBLE CONNECTION
DIALOG COMPONENT OF A NETWORK COMPO-
NENT SYSTEM; and

U.S. Pat. No. 5,781,189 issued Jul. 14, 1998, titled
EMBEDDING INTERNET BROWSER/BUTTONS
WITHIN COMPONENTS OF A NETWORK COMPO-
NENT SYSTEM, each of which was filed May 5, 1995 and
assigned to the assignee of the present invention.

FIELD OF THE INVENTION

This invention relates generally to computer networks
and, more particularly, to an architecture and tools for
building Internet-specific services.

BACKGROUND OF THE INVENTION

The Internet is a system of geographically distributed
computer networks interconnected by computers executing
networking protocols that allow users to interact and share
information over the networks. Because of such wide-spread
information sharing, the Internet has generally evolved into
an “open” system for which developers can design software
for performing specialized operations, or services, essen-
tially without restriction. These services are typically imple-
mented in accordance with a client/server architecture,
wherein the clients, e.g., personal computers or
workstations, are responsible for interacting with the users
and the servers are computers configured to perform the
services as directed by the clients.

Not surprisingly, each of the services available over the
Internet is generally defined by its own networking protocol.
A protocol is a set of rules governing the format and
meaning of messages or “packets” exchanged over the
networks. By implementing services in accordance with the
protocols, computers cooperate to perform various
operations, or similar operations in various ways, for users
wishing to “interact” with the networks. The services typi-
cally range from browsing or searching for information
having a particular data format using a particular protocol to
actually acquiring information of a different format in accor-
dance with a different protocol.

For example, the file transfer protocol (FTP) service
facilitates the transfer and sharing of files across the Internet.

10

15

20

25

30

35

40

45

50

55

60

65

2

The Telnet service allows users to log onto computers
coupled to the networks, while the netnews protocol pro-
vides a bulletin-board service to its subscribers.
Furthermore, the various data formats of the information
available on the Internet include JPEG images, MPEG
movies and y-law sound files.

Two fashionable services for accessing information over
the Internet are Gopher and the World-Wide Web (“Web”).
Gopher consists of a series of Internet servers that provide
a “list-oriented” interface to information available on the
networks; the information is displayed as menu items in a
hierarchical manner. Included in the hierarchy of menus are
documents, which can be displayed or saved, and searchable
indexes, which allow users to type keywords and perform
searches.

Some of the menu items displayed by Gopher are links to
information available on other servers located on the net-
works. In this case, the user is presented with a list of
available information documents that can be opened. The
opened documents may display additional lists or they may
contain various data-types, such as pictures or text;
occasionally, the opened documents may “transport” the
user to another computer on the Internet.

The other popular information service on the Internet is
the Web. Instead of providing a user with a hierarchical
list-oriented view of information, the Web provides the user
with a “linked-hypertext” view. Metaphorically, the Web
perceives the Internet as a vast book of pages, each of which
may contain pictures, text, sound, movies or various other
types of data in the form of documents. Web documents are
written in HyperText Markup Language (HTML) and Web
servers transfer HTML documents to each other through the
HyperText Transfer Protocol (HTTP).

The Web service is essentially a means for naming
sources of information on the Internet. Armed with such a
general naming convention that spans the entire network
system, developers are able to build information servers that
potentially any user can access. Accordingly, Gopher
servers, HTTP servers, FTP servers, and E-mail servers have
been developed for the Web. Moreover, the naming conven-
tion enables users to identify resources (such as documents)
on any of these servers connected to the Internet and allow
access to those resources.

As an example, a user “traverses” the Web by following
hot items of a page displayed on a graphical Web browser.
These hot items are hypertext links whose presence are
indicated on the page by visual cues, e.g., underlined words,
icons or buttons. When a user follows a link (usually by
clicking on the cue with a mouse), the browser displays the
target pointed to by the link which, in some cases, may be
another HTML document.

The Gopher and Web information services represent
entirely different approaches to interacting with information
on the Internet. One follows a list-approach to information
that “looks” like a telephone directory service, while the
other assumes a page-approach analogous to a tabloid news-
paper. However, both of these approaches include applica-
tions for enabling users to browse information available on
Internet servers. Additionally, each of these applications has
a unique way of viewing and accessing the information on
the servers.

Netscape Navigator™ (“Netscape™) is an example of a
monolithic Web browser application that is configured to
interact with many of the previously-described protocols,
including HTTP, Gopher and FTP. When instructed to
invoke an application that uses one of these protocols,

5,929,852

3

Netscape “translates” the protocol to hypertext. This trans-
lation places the user farther away from the protocol
designed to run the application and, in some cases, actually
thwarts the user’s Internet experience. For example, a dis-
cussion system requiring an interactive exchange between
participants may be bogged down by hypertext translations.

The Gopher and Web services may further require addi-
tional applications to perform specific functions, such as
playing sound or viewing movies, with respect to the data
types contained in the documents. For example, Netscape
employs helper applications for executing applications hav-
ing data formats it does not “understand”. Execution of these
functions on a computer requires interruption of processing
and context switching (i.e., saving of state) prior to invoking
the appropriate application. Thus, if a user operating within
the Netscape application “opens” a MPEG movie, that
browsing application must be saved (e.g., to disk) prior to
opening an appropriate MPEG application, e.g., Sparkle, to
view the image. Such an arrangement is inefficient and
rather disruptive to processing operations of the computer.

Typically, a computer includes an operating system and
application software which, collectively, control the opera-
tions of the computer. The applications are preferably task-
specific and independent, e.g., a word processor application
edits words, a drawing application edits drawings and a
database application interacts with information stored on a
database storage unit. Although a user can move data from
one application to the other, such as by copying a drawing
into a word processing file, the independent applications
must be invoked to thereafter manipulate that data.

Generally, the application program presents information
to a user through a window of a graphical user interface by
drawing images, graphics or text within the window region.
The user, in turn, communicates with the application by
“pointing” at graphical objects in the window with a pointer
that is controlled by a hand-operated pointing device, such
as a mouse, or by pressing keys of a keyboard.

The graphical objects typically included with each win-
dow region are sizing boxes, buttons and scroll bars. These
objects represent user interface elements that the user can
point at with the pointer (or a cursor) to select or manipulate.
For example, the user may manipulate these elements to
move the windows around on the display screen, and change
their sizes and appearances so as to arrange the window in
a convenient manner. When the elements are selected or
manipulated, the underlying application program is
informed, via the window environment, that control has
been appropriated by the user.

A menu bar is a further example of a user interface
element that provides a list of menus available to a user.
Each menu, in turn, provides a list of command options that
can be selected merely by pointing to them with the mouse-
controlled pointer. That is, the commands may be issued by
actuating the mouse to move the pointer onto or near the
command selection, and pressing and quickly releasing, i.c.,
“clicking” a button on the mouse.

In contrast to this typical application-based computing
environment, a software component architecture provides a
modular document-based computing arrangement using
tools such as viewing editors. The key to document-based
computing is the compound document, i.e., a document
composed of many different types of data sharing the same
file. The types of data contained in a compound document
may range from text, tables and graphics to video and sound.
Several editors, each designed to handle a particular data
type or format, can work on the contents of the document at
the same time, unlike the application-based computing envi-
ronment.

10

15

20

25

30

35

40

45

50

55

60

65

4

Since many editors may work together on the same
document, the compound document is apportioned into
individual modules of content for manipulation by the
editors. The compound-nature of the document is realized by
embedding these modules within each other to create a
document having a mixture of data types. The software
component architecture provides the foundation for assem-
bling documents of differing contents and the present inven-
tion is directed to a system for extending this capability to
network-oriented services.

To remotely access information stored on a resource of the
network, the user typically invokes a service configured to
operate in accordance with a protocol for accessing the
resource. In particular, the user types an explicit destination
address command that includes a uniform resource locator
(URL). The URL is a rather long (approximately 50
character) address pointer that identifies both a network
resource and a means for accessing that resource. The
following is an example of a hypothetical URL address
pointer to a remote resource on a Web server:

http:/aaaa.bbb.cc/hypertext/DdddEecee/W WW/FHTT. html

It is apparent that having to type such long destination
address pointers can become quite burdensome for users that
frequently access information from remote resources.

Therefore, it is among the objects of the present invention
to simplify a user’s experience on computer networks with-
out sacrificing the flexibility afforded the user by employing
existing protocols and data types available on those net-
works.

Another object of the invention is to provide a system for
users to search and access information on the Internet
without extensive understanding or knowledge of the under-
lying protocols and data formats needed to access that
information.

Still another object of the invention is to provide users
with a simple means for remotely accessing information
stored on resources connected to computer networks.

SUMMARY OF THE INVENTION

Briefly, the invention comprises a network-oriented com-
ponent system for efficiently accessing information from a
network resource located on a computer network by creating
an encapsulated network entity that contains a reference to
that resource. The encapsulated entity is preferably imple-
mented as a network component stored on a computer
remotely displaced from the referenced resource. In
addition, the encapsulated entity may be manifested as a
visual object on a graphical user interface of a computer
screen. Such visual manifestation allows a user to easily
manipulate the entity in order to display the contents of the
resource on the screen or to electronically forward the entity
over the network.

In the illustrative embodiment of the invention, the ref-
erence to the network resource is preferably a “pointer”,
such as a uniform resource locator (URL), that identifies the
network address of the resource, e.g., a Gopher browser or
a Web page. In addition to storing the pointer, the encapsu-
lated entity also contains information for invoking appro-
priate network components needed to access the resource.
Communication among the network components is achieved
through novel application programming interfaces (APIs) to
facilitate integration with an underlying software component
architecture. Such a cooperating architecture allows the
encapsulated entity and network components to “transport”
the user to the network location of the remote resource.

5,929,852

5

Specifically, the encapsulated entity component is an
object of the network-oriented component system that is
preferably embodied as a customized framework having a
set of interconnected abstract classes. A Cyberltem class
defines the encapsulated entity object which interacts with
other objects of the network system to remotely access
information from the referenced resource. Since these
objects are integral elements of the cooperating component
architecture, any type of encapsulated network entity may be
developed with consistent behaviors, i.e., these entities may
be manifested as visual objects that can be distributed and
manipulated iconically.

Advantageously, the inventive encapsulation technique
described herein provides a user with a simple means for
accessing information on computer networks.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the invention may be
better understood by referring to the following description in
conjunction with the accompanying drawings in which:

FIG. 1 is a block diagram of a network system including
a collection of computer networks interconnected by client
and server computers;

FIG. 2 is a block diagram of a client computer, such as a
personal computer, on which the invention may advanta-
geously operate;

FIG. 3 is a block diagram of the server computer of FIG.
1;

FIG. 4 is a highly schematized block diagram of a layered
component computing arrangement in accordance with the
invention;

FIG. 5 is a schematic illustration software of the interac-
tion of a component, a software component layer and an
operating system of the computer of FIG. 2;

FIG. 6 is a schematic illustration of the interaction
between a component, a component layer and a window
manager in accordance with the invention;

FIG. 7 is a schematic diagram of an illustrative encapsu-
lated network entity object in accordance with the invention;

FIG. 8 is a simplified class heirarchy diagram illustrating
a base class Cyberltem, and its associated subclasses, used
to construct network component objects in accordance with
the invention;

FIG. 9 is a simplified class heirarchy diagram illustrating
a base class CyberStream, and its associated subclasses, in
accordance with the invention;

FIG. 10 is a simplified class hierarchy diagram illustrating
a base class CyberExtension, and its associated subclasses,
in accordance with the present invention;

FIGS. 11A-11D are highly schematized diagrams illus-
trating the interactions between the network component
objects, including the encapsulated network entity object of
FIG. 7, and

FIG. 12 is an illustrative flowchart of the sequence of
steps involved in invoking, and accessing, information from
a referenced network resource.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT

FIG. 1 is a block diagram of a network system 100
comprising a collection of computer networks 110 intercon-
nected by client computers (“clients”) 200, e.g., worksta-
tions or personal computers, and server computers
(“servers”) 300. The servers are typically computers having

10

15

20

25

30

35

40

45

50

55

60

65

6

hardware and software elements that provide resources or
services for use by the clients 200 to increase the efficiency
of their operations. It will be understood to those skilled in
the art that, in an alternate embodiment, the client and server
may exist on the same computer; however, for the illustra-
tive embodiment described herein, the client and server are
separate computers.

Several types of computer networks 110, including local
area networks (LANs) and wide area networks (WANS),
may be employed in the system 100. ALAN is a limited area
network that typically consists of a transmission medium,
such as coaxial cable or twisted pair, while a WAN may be
a public or private telecommunications facility that inter-
connects computers widely dispersed. In the illustrative
embodiment, the network system 100 is the Internet system
of geographically distributed computer networks.

Computers coupled to the Internet typically communicate
by exchanging discrete packets of information according to
predefined networking protocols. Execution of these net-
working protocols allow users to interact and share infor-
mation across the networks. As an illustration, in response to
a user’s request for a particular service, the client 200 sends
an appropriate information packet to the server 300, which
performs the service and returns a result back to the client
200.

FIG. 2 illustrates a typical hardware configuration of a
client 200 comprising a central processing unit (CPU) 210
coupled between a memory 214 and input/output (I/O)
circuitry 218 by bidirectional buses 212 and 216. The
memory 214 typically comprises random access memory
(RAM) for temporary storage of information and read only
memory (ROM) for permanent storage of the computer’s
configuration and basic operating commands, such as por-
tions of an operating system (not shown). As described
further herein, the operating system controls the operations
of the CPU 210 and client computer 200.

The I/O circuitry 218, in turn, connects the computer to
computer networks, such as the Internet networks 250, via a
bidirectional bus 222 and to cursor/pointer control devices,
such as a keyboard 224 (via cable 226) and a mouse 230 (via
cable 228). The mouse 230 typically contains at least one
button 234 operated by a user of the computer. A conven-
tional display monitor 232 having a display screen 235 is
also connected to /O circuitry 218 via cable 238. A pointer
(cursor) 240 is displayed on windows 244 of the screen 235
and its position is controllable via the mouse 230 or the
keyboard 224, as is well-known. The I/O circuitry 218
receives information, such as control and data signals, from
the mouse 230 and keyboard 224, and provides that infor-
mation to the CPU 210 for display on the screen 235 or, as
described further herein, for transfer over the Internet 250.

FIG. 3 illustrates a typical hardware configuration of a
server 300 of the network system 100. The server 300 has
many of the same units as employed in the client 200,
including a CPU 310, a memory 314 and /O circuitry 318,
each of which are interconnected by bidirectional buses 312
and 316. Also, the I/O circuitry connects the computer to
computer networks 350 via a bidirectional bus 322. These
units are configured to perform functions similar to those
provided by their corresponding units in the computer 200.
In addition, the server typically includes a mass storage unit
320, such as a disk drive, connected to the I/O circuitry 318
via bidirectional bus 324.

It is to be understood that the I/O circuits within the
computers 200 and 300 contain the necessary hardware, e.g.,
buffers and adapters, needed to interface with the control

5,929,852

7

devices, the display monitor, the mass storage unit and the
network. Moreover, the operating system includes the nec-
essary software drivers to control, e.g., network adapters
within the I/O circuits when performing I/O operations, such
as the transfer of data packets between the client 200 and
server 300.

The computers are preferably personal computers of the
Macintosh® series of computers sold by Apple Computer
Inc., although the invention may also be practiced in the
context of other types of computers, including the IBM®
series of computers sold by International Business Machines
Corp. These computers have resident thereon, and are con-
trolled and coordinated by, operating system software, such
as the Apple® System 7®, IBM OS2®, or the Microsoft®
Windows® operating systems.

As noted, the present invention is based on a modular
document computing arrangement as provided by an under-
lying software component architecture, rather than the typi-
cal application-based environment of prior computing sys-
tems. FIG. 4 is a highly schematized diagram of the
hardware and software elements of a layered component
computing arrangement 400 that includes the novel
network-oriented component system of the invention. At the
lowest level there is the computer hardware, shown as layer
410. Interfacing with the hardware is a conventional oper-
ating system layer 420 that includes a window manager, a
graphic system, a file system and network-specific
interfacing, such as a TCP/IP protocol stack and an Apple-
talk protocol stack.

The software component architecture is preferably imple-
mented as a component architecture layer 430. Although it
is shown as overlaying the operating system 420, the com-
ponent architecture layer 430 is actually independent of the
operating system and, more precisely, resides side-by-side
with the operating system. This relationship allows the
component architecture to exist on multiple platforms that
employ different operating systems.

In accordance with the present invention, a novel
network-oriented component layer 450 contains the under-
lying technology for creating encapsulated entity compo-
nents that contain references to network resources located on
computer networks. As described further herein, communi-
cation among these components is achieved through novel
application programming interfaces (APISs) to ensure inte-
gration with the underlying component architecture layer
430. These novel APIs are preferably delivered in the form
of objects in a class hierarchy.

It should be noted that the network component layer 450
may operate with any existing system-wide component
architecture, such as the Object Linking and Embedding
(OLE) architecture developed by the Microsoft Corporation;
however, in the illustrative embodiment, the component
architecture is preferably OpenDoc, the vendor-neutral,
open standard for compound documents developed by,
among others, Apple Computer, Inc.

Using tools such as viewing editors, the component
architecture layer 430 creates a compound document com-
posed of data having different types and formats. Each
differing data type and format is contained in a fundamental
unit called a computing part or, more generally, a “compo-
nent” 460 comprised of a viewing editor along with the data
content. An example of the computing component 460 may
include a MacDraw component. The editor, on the other
hand, is analogous to an application program in a conven-
tional computer. That is, the editor is a software component
which provides the necessary functionality to display a

10

15

20

25

30

35

40

45

50

55

60

65

8

component’s contents and, where appropriate, present a user
interface for modifying those contents. Additionally, the
editor may include menus, controls and other user interface
elements. The network component layer 450 extends the
functionality of the underlying component architecture layer
430 by defining network-oriented components 480 that
seamlessly integrate with these components 460 to provide
basic tools for efficiently accessing information from net-
work resources located on, e.g., servers coupled to the
computer networks.

FIG. 4 also illustrates the relationship of applications 490
to the elements of the document computing arrangement
400. Although they reside in the same “user space™ as the
components 460 and network components 480, the applica-
tions 490 do not interact with these elements and, thus,
interface directly to the operating system layer 420. Because
they are designed as monolithic, autonomous modules,
applications (such as previous Internet browsers) often do
not even interact among themselves. In contrast, the com-
ponents of the arrangement 400 are designed to work
together and communicate via the common component
architecture layer 430 or, in the case of the network
components, via the novel network component layer 450.

Specifically, the invention features the provision of the
network-oriented component system which, when invoked,
causes actions to take place that enhance the ability of a user
to interact with the computer to create encapsulated entities
that contain references to network resources located on
computer networks, such as the Internet. The encapsulated
entities are manifested as visual objects to a user via a
window environment, such as the graphical user interface
provided by System 7 or Windows, that is preferably dis-
played on the screen 235 (FIG. 2) as a graphical display to
facilitate interactions between the user and the computer,
such as the client 200. This behavior of the system is brought
about by the interaction of the network components with a
series of system software routines associated with the oper-
ating system 420. These system routines, in turn, interact
with the component architecture layer 430 to create the
windows and graphical user interface elements, as described
further herein.

The window environment is generally part of the operat-
ing system software 420 that includes a collection of utility
programs for controlling the operation of the computer 200.
The operating system, in turn, interacts with the components
to provide higher level functionality, including a direct
interface with the user. A component makes use of operating
system functions by issuing a series of task commands to the
operating system via the network component layer 450 or, as
is typically the case, through the component architecture
layer 430. The operating system 420 then performs the
requested task. For example, the component may request
that a software driver of the operating system initiate trans-
fer of a data packet over the networks 250 or that the
operating system display certain information on a window
for presentation to the user.

FIG. § is a schematic illustration of the interaction of a
component 502, software component layer 506 and an
operating system 510 of a computer 500, which is similar to,
and has equivalent elements of, the client computer 200 of
FIG. 2. As noted, the network component layer 450 (FIG. 4)
is integrated with the component architecture layer 430 to
provide a cooperating architecture that allows any encapsu-
lated entity and network component to “transport” the user
to the network location of a remote resource; accordingly,
for purposes of the present discussion, the layers 430 and
450 may be treated as a single software component layer
506.

5,929,852

9

The component 502, component layer 506 and operating
system 510 interact to control and coordinate the operations
of the computer 500 and their interaction is illustrated
schematically by arrows 504 and 508. In order to display
information on a screen display 535, the component 502 and
component layer 506 cooperate to generate and send display
commands to a window manager 514 of the operating
system 510. The window manager 514 stores information
directly (via arrow 516) into a screen buffer 520.

The window manager 514 is a system software routine
that is generally responsible for managing windows 544 that
the user views during operation of the network component
system. That is, it is generally the task of the window
manager to keep track of the location and size of the window
and window areas which must be drawn and redrawn in
connection with the network component system of the
present invention.

Under control of various hardware and software in the
system, the contents of the screen buffer 520 are read out of
the buffer and provided, as indicated schematically by arrow
522, to a display adapter 526. The display adapter contains
hardware and software (sometimes in the form of firmware)
which converts the information in the screen buffer 520 to a
form which can be used to drive a display screen 535 of a
monitor 532. The monitor 532 is connected to display
adapter 526 by cable 528.

Similarly, in order to transfer information as a packet over
the computer networks, the component 502 and component
layer 506 cooperate to generate and send network
commands, such as remote procedure calls, to a network-
specific interface 540 of the operating system 510. The
network interface comprises system software routines, such
as “stub” procedure software and protocol stacks, that are
generally responsible for formating the information into a
predetermined packet format according to the specific net-
work protocol used, e.g., TCP/IP or Apple-talk protocol.

Specifically, the network interface 540 stores the packet
directly (via arrow 556) into a network buffer 560. Under
control of the hardware and software in the system, the
contents of the network buffer 560 are provided, as indicated
schematically by arrow 562, to a network adapter 566. The
network adapter incorporates the software and hardware,
ie., electrical and mechanical interchange circuits and
characteristics, needed to interface with the particular com-
puter networks 550. The adapter 566 is connected to the
computer networks 550 by cable 568.

In a preferred embodiment, the invention described herein
is implemented in an object-oriented programming (OOP)
language, such as C++, using System Object Model (SOM)
technology and OOP techniques.

The C++ and SOM languages are well-known and many
articles and texts are available which describe the languages
in detail. In addition, C++ and SOM compilers are commer-
cially available from several vendors. Accordingly, for rea-
sons of brevity, the details of the C++ and SOM languages
and the operations of their compilers will not be discussed
further in detail herein.

As will be understood by those skilled in the art, OOP
techniques involve the definition, creation, use and destruc-
tion of “objects”. These objects are software entities com-
prising data elements and routines, or functions, which
manipulate the data elements. The data and related functions
are treated by the software as an entity that can be created,
used and deleted as if it were a single item. Together, the data
and functions enable objects to model virtually any real-
world entity in terms of its characteristics, which can be

10

15

20

25

30

35

40

45

50

55

60

65

10

represented by the data elements, and its behavior, which
can be represented by its data manipulation functions. In this
way, objects can model concrete things like computers,
while also modeling abstract concepts like numbers or
geometrical designs.

Objects are defined by creating “classes™ which are not
objects themselves, but which act as templates that instruct
the compiler how to construct an actual object. A class may,
for example, specify the number and type of data variables
and the steps involved in the functions which manipulate the
data. An object is actually created in the program by means
of a special function called a “constructor” which uses the
corresponding class definition and additional information,
such as arguments provided during object creation, to con-
struct the object. Likewise objects are destroyed by a special
function called a “destructor”. Objects may be used by
manipulating their data and invoking their functions.

The principle benefits of OOP techniques arise out of
three basic principles: encapsulation, polymorphism and
inheritance. Specifically, objects can be designed to hide, or
encapsulate, all, or a portion of, its internal data structure
and internal functions. More specifically, during program
design, a program developer can define objects in which all
or some of the data variables and all or some of the related
functions are considered “private” or for use only by the
object itself. Other data or functions can be declared “pub-
lic” or available for use by other programs. Access to the
private variables by other programs can be controlled by
defining public functions for an object which access the
object’s private data. The public functions form a controlled
and consistent interface between the private data and the
“outside” world. Any attempt to write program code which
directly accesses the private variables causes the compiler to
generate an error during program compilation which error
stops the compilation process and prevents the program
from being run.

Polymorphism is a concept which allows objects and
functions that have the same overall format, but that work
with different data, to function differently in order to pro-
duce consistent results. Inheritance, on the other hand,
allows program developers to easily reuse pre-existing pro-
grams and to avoid creating software from scratch. The
principle of inheritance allows a software developer to
declare classes (and the objects which are later created from
them) as related. Specifically, classes may be designated as
subclasses of other base classes. A subclass “inherits” and
has access to all of the public functions of its base classes
just as if these functions appeared in the subclass.
Alternatively, a subclass can override some or all of its
inherited functions or may modify some or all of its inherited
functions merely by defining a new function with the same
form (overriding or modification does not alter the function
in the base class, but merely modifies the use of the function
in the subclass). The creation of a new subclass which has
some of the functionality (with selective modification) of
another class allows software developers to easily customize
existing code to meet their particular needs.

In accordance with the present invention, the component
502 and windows 544 are “objects” created by the compo-
nent layer 506 and the window manager 514, respectively,
the latter of which may be an object-oriented program.
Interaction between a component, component layer and a
window manager is illustrated in greater detail in FIG. 6.

In general, the component layer 606 interfaces with the
window manager 614 by creating and manipulating objects.
The window manager itself may be an object which is

5,929,852

11

created when the operating system is started. Specifically,
the component layer creates window objects 630 that cause
the window manager to create associated windows on the
display screen. This is shown schematically by an arrow
608. In addition, the component layer 606 creates individual
graphic interface objects 650 that are stored in each window
object 630, as shown schematically by arrows 612 and 652.
Since many graphic interface objects may be created in
order to display many interface elements on the display
screen, the window object 630 communicates with the
window manager by means of a sequence of drawing
commands issued from the window object to the window
manager 614, as illustrated by arrow 632.

As noted, the component layer 606 functions to embed
components within one another to form a compound docu-
ment having mixed data types and formats. Many different
viewing editors may work together to display, or modify, the
data contents of the document. In order to direct keystrokes
and mouse events initiated by a user to the proper compo-
nents and editors, the component layer 606 includes an
arbitrator 616 and a dispatcher 626.

The dispatcher is an object that communicates with the
operating system 610 to identify the correct viewing editor
660, while the arbitrator is an object that informs the
dispatcher as to which editor “owns” the stream of key-
strokes or mouse events. Specifically, the dispatcher 626
receives these “human-interface” events from the operating
system 610 (as shown schematically by arrow 628) and
delivers them to the correct viewing editor 660 via arrow
662. The viewing editor 660 then modifies or displays, either
visually or acoustically, the contents of the data types.

Although OOP offers significant improvements over other
programming concepts, software development still requires
significant outlays of time and effort, especially if no pre-
existing software is available for modification.
Consequently, a prior art approach has been to provide a
developer with a set of predefined, interconnected classes
which create a set of objects and additional miscellaneous
routines that are all directed to performing commonly-
encountered tasks in a particular environment. Such pre-
defined classes and libraries are typically called “frame-
works” and essentially provide a pre-fabricated structure for
a working document.

For example, a framework for a user interface might
provide a set of predefined graphic interface objects which
create windows, scroll bars, menus, etc. and provide the
support and “default” behavior for these interface objects.
Since frameworks are based on object-oriented techniques,
the predefined classes can be used as base classes and the
built-in default behavior can be inherited by developer-
defined subclasses and either modified or overridden to
allow developers to extend the framework and create cus-
tomized solutions in a particular area of expertise. This
object-oriented approach provides a major advantage over
traditional programming since the programmer is not chang-
ing the original program, but rather extending the capabili-
ties of that original program. In addition, developers are not
blindly working through layers of code because the frame-
work provides architectural guidance and modeling and, at
the same time, frees the developers to supply specific actions
unique to the problem domain.

There are many kinds of frameworks available, depending
on the level of the system involved and the kind of problem
to be solved. The types of frameworks range from high-level
frameworks that assist in developing a user interface, to
lower-level frameworks that provide basic system software

10

15

20

25

30

35

40

45

50

55

60

65

12

services such as communications, printing, file systems
support, graphics, etc. Commercial examples of application-
type frameworks include MacApp (Apple), Bedrock
(Symantec), OWL (Borland), NeXT Step App Kit (NeXT)
and Smalltalk-80 MVC (ParcPlace).

While the framework approach utilizes all the principles
of encapsulation, polymorphism, and inheritance in the
object layer, and is a substantial improvement over other
programming techniques, there are difficulties which arise.
These difficulties are caused by the fact that it is easy for
developers to reuse their own objects, but it is difficult for
the developers to use objects generated by other programs.
Further, frameworks generally consist of one or more object
“layers™ on top of a monolithic operating system and even
with the flexibility of the object layer, it is still often
necessary to directly interact with the underlying system by
means of awkward procedure calls.

In the same way that a framework provides the developer
with prefab functionality for a document, a system
framework, such as that included in the preferred
embodiment, can provide a prefab functionality for system
level services which developers can modify or override to
create customized solutions, thereby avoiding the awkward
procedural calls necessary with the prior art frameworks. For
example, consider a customizable network interface frame-
work which can provide the foundation for browsing and
accessing information over a computer network. A software
developer who needed these capabilities would ordinarily
have to write specific routines to provide them. To do this
with a framework, the developer only needs to supply the
characteristic and behavior of the finished output, while the
framework provides the actual routines which perform the
tasks.

A preferred embodiment takes the concept of frameworks
and applies it throughout the entire system, including the
document, component, component layer and the operating
system. For the commercial or corporate developer, systems
integrator, or OEM, this means all of the advantages that
have been illustrated for a framework, such as MacApp, can
be leveraged not only at the application level for things such
as text and graphical user interfaces, but also at the system
level for such services as printing, graphics, multi-media,
file systems and, as described herein, network-specific
operations.

Referring again to FIG. 6, the window object 630 and the
graphic interface object 650 are elements of a graphical user
interface of a network component system having a customi-
zable framework for greatly enhancing the ability of a user
to efficiently access information from a network resource on
computer networks by creating an encapsulated entity that
contains a reference to that resource. The encapsulated entity
is preferably implemented as a network component of the
system and stored as a visual object, e.g., an icon, for display
on a graphical user interface. Such visual display allows a
user to easily manipulate the entity component to display the
contents of the resource on a computer screen or to elec-
tronically forward the entity over the networks.

Furthermore, the reference to the network resource is a
pointer that identifies the network address of the resource,
e.g., a Gopher browser, a Web page or an E-mail message.
FIG. 7 is a schematic diagram of an illustrative encapsulated
network entity object 700 containing a pointer 710. In one
embodiment of the invention, the pointer may be a uniform
resource locator (URL) having a first portion 712 that
identifies the particular network resource and a second
portion 714 that specifies the means for accessing that

5,929,852

13

resource. More specifically, the URL is a string of approxi-
mately 50 characters that describes the protocol used to
address the target resource, the server on which the resource
resides, the path to the resource and the resource filename.
It is to be understood, however, that other representations of
a “pointer” are included within the principles of the
invention, e.g., a Post Office Protocol (POP) account and
message identification (ID).

In addition to storing the pointer, the encapsulated entity
also contains information 720 for invoking appropriate
network components needed to access the resource. Com-
munication among these network components is achieved
through novel application programming interfaces (APIs).
These APIs are preferably delivered in the form of objects in
a class hierarchy that is extensible so that developers can
create new components. From an implementation viewpoint,
the objects can be subclassed and can inherit from base
classes to build customized components that allow users to
see different kinds of data using different kinds of protocols,
or to create components that function differently from exist-
ing components.

In accordance with the invention, the customized frame-
work has a set of interconnected abstract classes for defining
network-oriented objects used to build the customized net-
work components. These abstract classes include
Cyberltem, CyberStream and CyberExtension and the
objects they define are used to build the novel network
components. A description of these abstract classes is pro-
vided in copending and commonly assigned U.S. patent
application titled Extensible, Replaceable Network Compo-
nent System, filed May 5, 1995, which application is incor-
porated by reference as though fully set forth herein.

Specifically, the Cyberltem class defines the encapsulated
entity object which interacts with objects defined by the
other abstract classes of the network system to “transport”
the user to the network location, i.e., remotely access
information from the referenced resource and display that
information to the user at the computer. Since these objects
are integral elements of the cooperating component
architecture, any type of encapsulated network entity may be
developed with consistent behaviors, i.e., these entities may
be manifested as visual objects that can be distributed and
manipulated iconically.

FIG. 8 illustrates a simplified class hierarchy diagram 800
of the base class Cyberltem 802 used to construct the
encapsulated network entity component object 602. In
accordance with the illustrative embodiment, subclasses of
the Cyberltem base class are used to construct various
network component objects configured to provide such
services for the novel network-oriented component system.
For example, the subclass Gopherltem 804 is derived from
the Cyberltem class 802 and encapsulates a network entity
component object representing a “thing in Gopher space”,
such as a Gopher directory.

Since each of the classes used to construct these network
component objects are subclasses of the Cyberltem base
class, each class inherits the functional operators and meth-
ods that are available from that base class. Accordingly,
methods associated with the Cyberltem base class for, e.g.,
instructing an object to open itself, are assumed by the
subclasses to allow the network components to display
Cyberltem objects in a consistent manner.

In some instances, a Cyberltem object may need to spawn
a CyberStream object in order to obtain the actual data for
the object it represents. FIG. 9 illustrates a simplified class
hierarchy diagram 900 of the base class CyberStream 902

10

15

20

25

30

35

40

45

50

55

60

65

14

which is an abstraction that serves as an API between a
component configured to display a particular data format
and the method for obtaining the actual data. Specifically, a
CyberStream object contains the software commands nec-
essary to create a “data stream” for transfering information
from one object to another. According to the invention, a
GopherStream subclass 904 is derived from the Cyber-
Stream base class 902 and encapsulates a network object
that implements the Gopher protocol.

FIG. 10 is a simplified class hierarchy diagram 1000 of
the base class CyberExtension 1002 which represents addi-
tional behaviors provided to components of the underlying
software component architecture. For example, CyberEx-
tension objects add functionality to, and extend the APIs of,
existing components so that they may communicate with the
novel network components, such as the encapsulated entity
objects. As a result, the CyberExtension base class 1002
operates in connection with a Component base class 1006
through their respective subclasses BaseExtension 1004 and
BaseComponent 1008.

CyberExtension objects are used by components that
display the contents of Cyberltem objects; this includes
browser-like components, such as a Gopher browser or Web
browser, along with viewer-like components, such as JPEG,
MPEG or text viewers. The CyberExtension objects also
keep track of the Cyberltem objects which these components
are responsible for displaying. In accordance with the
invention, the class GopherBrowser 1010 may be used to
construct a Gopher-like network browsing component and
the class WebBrowser 1012 may be used to construct a
Web-like network browsing component.

FIGS. 11A-11D are highly schematized diagrams illus-
trating the interactions between the novel network-oriented
components, including the encapsulated (CyberItem) net-
work entity component according to the invention. It is to be
understood that the components described herein are objects
constructed from the interconnected abstract classes. In
general, a user has “double clicked” on an icon of a graphical
user interface 1100 displayed on a computer screen. The
icon represents, e.g., a Gopher directory displayed in a
Gopher browser application. Initially, a GopherBrowser
component 1110 displays two icons representing Cyberltem
components, the icons labeled (Gopherltem) Happy Face
1104 and (Gopherltem) Home Page 1106. These latter
components represent the contents of a Gopher directory
labeled (Gopherltem) Apple 1114.

In FIG. 11A, the left side of the diagram illustrates a
GopherBrowser component 1110 that is displayed on the
computer screen, i.e., the right side of the diagram. The
GopherBrowser component has a CyberExtension compo-
nent 1112 which keeps track of the Gopherltem components.
When the user double clicks on the Home Page Gopherltem
icon 1106, the GopherBrowser component 1110 receives this
event and issues a call to an “Open” method of a Home Page
Gopherltem component; this call instructs the Gopherltem
component 1106 to open itself.

Specifically, and referring to FIG. 11B, the Gopherltem
component 1106 creates a component of the appropriate type
to display itself. For this example, the Gopherltem prefer-
ably creates a WebBrowser component 1120. Once created,
the WebBrowser component further creates a CyberExten-
sion component 1122 for storing the Home Page Gopher-
Item component (now shown at 1124). In accordance with
the invention, the Home Page Gopherltem component is a
network entity containing a pointer that points to the net-
work address of a Gopher server storing the appropriate Web

page.

5,929,852

15

In FIG. 11C, the CyberExtension component 1122 then
notifies the WebBrowser component 1120 that it has been
assigned a Gopherltem component 1124 to display. The
WebBrowser component 1120 calls a method CreateCyber-
Stream of the Gopherltem to create a GopherStream com-
ponent 1130 for downloading the appropriate data.
Thereafter, the WebBrowser component 1120 begins asy-
chronously downloading an HTML document from the
appropriate Gopher server (not shown).

Control of the execution of this process then returns to the
Gopherltem component 1124 in FIG. 11D. This component,
in turn, issues a call to an Open method of the WebBrowser
component 1120, which causes the downloaded HTML
document to appear on the screen (now shown at 1140). For
a further understanding of the invention, FIG. 12 provides an
illustrative flowchart 1200 of the sequence of steps involved
in invoking, and accessing, information from a referenced
network resource, as described above.

In summary, the network-oriented component system
provides a customizable framework that enables a user to
create an encapsulated entity containing a reference to a
network resource on a computer network. Advantageously,
the inventive encapsulation technique allows a user to
simply manipulate visual objects when accessing informa-
tion on the network. Instead of having to type the destination
address of a resource, the user can merely “drag and drop”
the icon associated with entity anywhere on the graphical
user interface. When the user “double clicks” on the icon,
the entity opens up in a window and displays the contents of
the resource at that network location. Since the address is
encapsulated within the network reference entity, the user
does not have to labor with typing of the cumbersome
character string.

While there has been shown and described an illustrative
embodiment for implementing an extensible and replaceable
network component system, it is to be understood that
various other adaptations and modifications may be made
within the spirit and scope of the invention. For example,
additional system software routines may be used when
implementing the invention in various applications. These
additional system routines include dynamic link libraries
(DLL), which are program files containing collections of
window environment and networking functions designed to
perform specific classes of operations. These functions are
invoked as needed by the software component layer to
perform the desired operations. Specifically, DLLs, which
are generally well-known, may be used to interact with the
component layer and window manager to provide network-
specific components and functions.

The foregoing description has been directed to specific
embodiments of this invention. It will be apparent, however,
that other variations and modifications may be made to the
described embodiments, with the attainment of some or all
of their advantages. Therefore, it is the object of the
appended claims to cover all such variations and modifica-
tions as come within the true spirit and scope of the
invention.

What is claimed is:

1. A method of efficiently accessing information from a
network resource located on a computer network for display
on a computer coupled to the network, the network resource
having one or more associated data types, each data type
being accessible by a corresponding object-oriented soft-
ware component, the method comprising the steps of:

defining at least one network component that integrates
the object-oriented software components needed to

15

20

25

30

35

40

50

55

60

16

access the one or more data types associated with the
network resource;

creating an encapsulated entity component containing a

reference to a location of the network resource on the
computer network, the encapsulated entity component
also identifying the at least one network component
that was defined for the network resource;

storing the encapsulated entity component as a visual

object on the computer;

in response to manipulation of the visual object with a

pointing device, displaying the contents of the network
resource on a screen of the computer by invoking the
object-oriented software components integrated by the
at least one identified network component.

2. The method of claim 1 wherein the step of displaying
comprises the step of invoking a first network component for
displaying the contents of the referenced network resource
on the screen, the first network component comprising a
browsing component.

3. The method of claim 2 wherein the step of displaying
further comprises the step of invoking a second network
component for transfering the contents of the referenced
network resource to the first network component, the second
network component comprising a data stream component.

4. The method of claim 3 further comprising the step of
creating objects for communication among the encapsulated
entity and network components through application pro-
gramming interfaces.

5. The method of claim 4 wherein the step of creating
comprises the step of constructing the encapsulated entity
component from an Item object defined by an Item object
class.

6. The method of claim 5 wherein the step of creating
comprises the step of spawning a Stream object from the
Item object, the Stream object representing the data stream.

7. Apparatus for efficiently accessing information from a
network resource located on a computer network for display
on a computer coupled to the network, the network resource
having one or more associated data types, each data type
being accessible by a corresponding object-oriented soft-
ware component, the apparatus comprising:

an object-oriented software component architecture layer

configured to define at least one network component
that integrates the object-oriented software components
needed to access the one or more data types associated
with the network resource; and

an encapsulated network entity component cooperating

with the component architecture layer and containing a
reference to the network resource and an identifier for
the at least one network component that was defined for
the network resource wherein, the encapsulated net-
work entity component is manifested as visual object
on a display screen of the computer and further
wherein, the encapsulated network entity component is
adapted for manipulation by a pointing device of the
computer to display contents of the network resource
on the screen by invoking the object-oriented software
components integrated by the at least one identified
network component.

8. The apparatus of claim 7 further comprising:

an operating system interfacing with the component archi-

tecture layer to control the operations of the computer;
and

a network component layer coupled to the component

architecture layer to form a cooperating component
computing arrangement.

5,929,852

17

9. The apparatus of claim 8 wherein the cooperating
component computing arrangement generates the encapsu-
lated network entity.

10. The apparatus of claim 9 wherein the reference to the
network resource is a pointer that identifies the address of
the network resource on a computer network.

11. The apparatus of claim 10 wherein the pointer is a
uniform resource locator.

12. The apparatus of claim 11 wherein the uniform
resource locator has a first portion that identifies the network
resource and a second portion that specifies a means for
accessing that resource.

13. The apparatus of claim 11 wherein the uniform
resource locator is a character string that describes a proto-
col used to address the network resource, a server on which
the resource resides, a path to the resource and a resource
filename.

14. The apparatus of claim 10 wherein the pointer is a post
office protocol account.

15. Apparatus for efficiently accessing information from a
network resource located on a computer network for display
on a computer coupled to the network, the network resource
having one or more associated data types, each data type
being accessible by a corresponding object-oriented soft-
ware component, the apparatus comprising:

means for defining at least one network component that

integrates the object-oriented software components
needed to access the one or more data types associated
with the network resource;

means for creating an encapsulated entity component

containing a reference to a location of the network
resource on the computer network, the encapsulated
entity component also identifying the at least one
network component that was defined for the network
resource;

5

10

15

20

25

30

18

means for storing the encapsulated entity component as a
visual object on the computer; and

means, responsive to manipulation of the visual object
with a pointing device, for displaying contents of the
network resource on a screen of the computer by
invoking the object-oriented software components inte-
grated by the at least one identified network compo-
nent.

16. The apparatus of claim 15 wherein the means for
displaying comprises means for invoking a first network
component for displaying the contents of the referenced
network resource on the screen, the first network component
comprising a browsing component.

17. The apparatus of claim 16 wherein the means for
displaying further comprises means for invoking a second
network component for transfering the contents of the
referenced network resource to the first network component,
the second network component comprising a data stream
component.

18. The apparatus of claim 17 further comprising means
for creating objects for communication among the encapsu-
lated entity and network components through application
programming interfaces.

19. The apparatus of claim 18 wherein the means for
creating comprises means for constructing the encapsulated
entity component from an Item objected defined by an Item
object class.

20. The apparatus of claim 19 wherein the means for
creating comprises means for spawning a Stream object
from the Item object, the Stream object representing the data
stream.

EXHIBIT 6

United States Patent [
Miller et al.

US005946647A

5,946,647
Aug. 31, 1999

[(11] Patent Number:
451 Date of Patent:

[54] SYSTEM AND METHOD FOR PERFORMING
AN ACTION ON A STRUCTURE IN
COMPUTER-GENERATED DATA

[75] Inventors: James R. Miller, Mountain View;
Thomas Bonura, Capitola; Bonnie
Nardi, Mountain View; David Wright,
Santa Clara, all of Calif.

[73] Assignee: Apple Computer, Inc., Cupertino,

Calif.
[21] Appl. No.: 08/595,257
[22] Filed: Feb. 1, 1996
[51] Int. CLS oo GO6F 17/27
[52] U.S. Cle o 704/9; 704/1
[58] Field of Searchcccccccovueneuncncee 704/1, 7, 9-10,
704/243; 707/513, 101-104
[56] References Cited
U.S. PATENT DOCUMENTS
5,115,390 5/1992 Fukuda et al. ..occccoeeveeenennencne 364/146
5,130,924 7/1992 Barker et al. 704/1
5,164,899 11/1992 Sobotka et al. 704/9
5,202,828 4/1993 Vertelney et al. 364/419
5247437 9/1993 Vale et al. 70471
5,369,575 11/1994 Lamberti et al. ..ccccoevvverueeveennenes 704/1
5,574,843 11/1996 Gerlach et al.ccoevvrevennnnnne 395/118

OTHER PUBLICATIONS

TerryMorse Software “What is Myrmidon” Downloaded
from the Internet at URL http://www.terrymorse.com (Pub-
lication Date Unknown), 2 pages.

Shoens, K. et al. “Rufus System: Information Organization
for Semi-Structured Data,” Proceedings of the 19th VLDB
Conference (Dublin, Ireland 1993), pp. 1-12.

Schwarz, Peter and Shoens, Kurt. “Managing Change in the
Rufus System,” Abstract from the IBM Almaden Research
Center, pp. 1-16.

Myers, Brad A. “Tourmaline: Text Formatting by Demon-
stration,” (Chapter 14) in Watch What I Do: Programming
by Demonstration, edited by Allen Cypher, MIT Press,
(Cambridge, MA 1993), pp. 309-321.

Maulsby, David. “Instructible Agents,” Dissertation from
the Department of Computer Science at The University of
Calgary (Calgary, Alberta—Jun. 1994), pp. 178, 181-188,
193-196 (from Chapter 5).

Rus, Daniela and Subramanian, Devika. “Designing Struc-
ture—Based Information Agents,” AAAI Symposium (Mar.
1994), pp. 79-86.

Primary Examiner—Yorester W. Isen
Assistant Examiner—Patrick N. Edouard
Attorney, Agent, or Firm—Carr & Ferrell LLP

[57] ABSTRACT

A system and method causes a computer to detect and
perform actions on structures identified in computer data.
The system provides an analyzer server, an application
program interface, a user interface and an action processor.
The analyzer server receives from an application running
concurrently data having recognizable structures, uses a
pattern analysis unit, such as a parser or fast string search
function, to detect structures in the data, and links relevant
actions to the detected structures. The application program
interface communicates with the application running
concurrently, and transmits relevant information to the user
interface. Thus, the user interface can present and enable
selection of the detected structures, and upon selection of a
detected structure, present the linked candidate actions.
Upon selection of an action, the action processor performs
the action on the detected structure.

24 Claims, 10 Drawing Sheets

105 ~1 Output 100
| Device /
I Input Device
110 ~1
115
Disk Communications
ROM Storage Interface
175 185
155 RAM
Miscl 172 Floj Disk
165 .4 Program Data] Printer pr,-%lve
160 ~H (S))F/’setfr:ng Application}{| 157 180 190

X

170

5,946,647

Sheet 1 of 10

Aug. 31, 1999

U.S. Patent

|

PIE

0L}
I wolsAg
061 08l 191 “Tiuonesyddy Bunesedg 09t
aALQ Sy eleq wesborq]~ §94
s1q Addoy4 gL tosin
NvYd GS1
mmn_‘ G N
aoeuoU| obeiolg Wod
SUOHEBDIUNWWO)D y¥siq
gLl
L~ O}
291ne(Induyj
Ndd [~ oz
\ @o1neQ
00} e T N

5,946,647

Sheet 2 of 10

Aug. 31, 1999

U.S. Patent

¢ ©ld

T e — - N N N T S S S S ~%
/]
| _
| “
u i
u I
u]
; _
“ aoepau| 1
; lossooold |g—| ©oepe| weiboid joMeS gt
w uonoY 1980 uoneoiddy 19zAjeuy ! luswinooqg
m “
i
;
; ~ ~ ~ ~~ _ ~
: 052 ove 0€2 022 m ole
u .
1

5,946,647

Sheet 3 of 10

Aug. 31, 1999

U.S. Patent

0¢ce

uuuuuz‘n.-u-u-.-u-.--.-n‘-.“.-‘“““u““uu“nuuuu“u“““u“‘

e P L L L P

€ Old

suonoy
pajeloossy

0€e

e e P B LR e L

slewweln)

r

0¢ce

lasied

oLe

lllllllll

lllllllll

llllllllllll

" o ——————_——_—_———_—_—— . ———— ' " . _—__—_——_—— > -

5,946,647

Sheet 4 of 10

Aug. 31, 1999

U.S. Patent

¥ "Old

0y —

lapjo} abessaw o1u01108|8 Ul Ind
(# anael) uosiad |eD
18Y9| UM iSuoloY
Aelqif sweu :aweN

Jepusjed 2]uoio8je Ul Ind SUOiOY
Jewwelb ayep :91e(

)ooq ssaippe [leW-3 Ul ind
le-3 pusg suonoy
rewwelb ssaippe |lew-2 :SSalppe |lew-J

00q ssalppe ul ind
lons| SIM ‘SuOlOY
Jewwe.b ssaippe ao1y0-jsod :sseippe 891}J0-1S0d

)o0q auoyds|a} dluoso8le Ul Ind
€D :suonoy
Jewwelb Jequinu suoyd :eqINU BuoYd

0¢e ~J

1184

5,946,647

Sheet 5 of 10

Aug. 31, 1999

U.S. Patent

oLs

G "Old

20Q uyor
‘Aj@1oouIg

LLIOD"MIOM @ 90P[* :SSalppe [lew-3J

S0L¥6 YO ‘odsioueld ues
108.1S AllIH | :Ssalppe

$€£21-56S (S1P) Jequnu suoyd

mau Aw si siy

-qod

M 0¢s

SaINJoNS 109819

5,946,647

Sheet 6 of 10

Aug. 31, 1999

U.S. Patent

0LS

9 "OId

80Q uyo

‘Ajoaaouig

woo"iom @ aopn :sseippe |lew-3

GOL¥6 VO ‘0osioueld ueg

1984S AlltH 1| :ssaippe
vE21-55G (S1¥)| Jequinu suoyd

moau Aw sI Siy L

-gog

5,946,647

Sheet 7 of 10

Aug. 31,1999

U.S. Patent

01S

L "Ol4

a0 uyor
‘Aj@1aouIg

[-SS8Jppe |lew-3
300Qq auoyds|al
01U0.}08}8 Ul INd .‘_n_nc.mw .

reolS IH | :SS8ippe

TR TERCIN] -/equnu auoyd

OLL

mau Aw st siy

-qog

U.S. Patent Aug. 31, 1999 Sheet 8 of 10 5,946,647

(. stwr) 800

Receive Document Content 810

v

Scan for Patterns in Document Content L~ 820

Link Actions to Detected Structures L~ 825
E ©)
Retrieve Presentation Regions for Detected Structures /830
©
Content Yes

Changed?

Regions
Changed?

No

Request Display of
Structures Received?

FIG. 8

U.S. Patent Aug. 31, 1999 Sheet 9 of 10 5,946,647

Display Regions /91 0

Request for
Display of Linked Actions
Received?

Display Menu of Actions

Action
Selected?

Execute Action L~ 950

FIG. 9

U.S. Patent Aug. 31,1999 Sheet 10 of 10

C START)
)

Retrieve Data to be Analyzed

/1010

5,946,647

820

/

v
Retrieve Grammars

v

/1030

Detect Structures Using Grammars

1040

v

Link Associated Actions to Detected
Structures

/1050

1020

A 4

v

Retrieve Library of Strings L~

1070

Detect Identical Strings in Data

/1080

v

Link Associated Actions to Detected
Strings

/1090

1060

A 4

Perform Other Pattern Analysis

1100

v
C END)
FIG. 10

5,946,647

1

SYSTEM AND METHOD FOR PERFORMING
AN ACTION ON A STRUCTURE IN
COMPUTER-GENERATED DATA

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to manipulation of struc-
tures in computer data. More particularly, the invention
relates to a system and method for performing computer-
based actions on structures identified in computer data.

2. Description of the Background Art

Much data that appears in a computer user’s day-to-day
activities contains recognizable structures that have seman-
tic significance such as phone numbers, e-mail addresses,
post-office addresses, zip codes and dates. In a typical day,
for example, a user may receive extensive files from word-
processing programs and e-mail that contain several of these
structures. However, visually searching data files or docu-
ments to find these structures is laborious and cognitively
disruptive, especially if the document is lengthy and hard to
follow. Furthermore, missing a structure such as a date may
lead to missing an important meeting or missing a deadline.

To help facilitate searching a document for these
structures, programmers can create or employ pattern analy-
sis units, such as parsers, to automatically identify the
structures. For the purposes of the present description, the
term “pattern” refers to data, such as a grammar, regular
expression, string, etc., used by a pattern analysis unit to
recognize information in a document, such as dates,
addresses, phone numbers, names, etc. The term “structure”
refers to an instantiation of a pattern in the document. That
is, a “date” pattern will recognize the structure “Oct. 31,
1995.” The application of a pattern to a document is termed
“parsing.”

Conventional systems that identify structures in computer
data do not enable automatic performance of an action on an
identified structure. For example, if a long e-mail message is
sent to a user, the user may implement a pattern analysis unit
to search for particular structures, such as telephone num-
bers. Upon identification of a structure, the user may want to
perform an action on the structure, such as moving the
number to an electronic telephone book. This usually
involves cutting the structure from the e-mail message,
locating and opening the electronic telephone book appli-
cation program, pasting the structure into the appropriate
field, and closing the application program. However, despite
the fact that computer systems are getting faster and more
efficient, this procedure is still tedious and cognitively
disruptive.

One type of system that has addressed this problem
involves detecting telephone numbers. Such systems enable
a user to select a telephone number and request that the
application automatically dial the number. However, these
systems do not recognize the selected data as a telephone
number, and they generally produce an error message if the
user selects invalid characters as a phone number. Also, they
do not enable the performance of other candidate actions,
such as moving the number to an electronic telephone book.
That is, if a user wishes to perform a different action on an
identified telephone number, such as storing the number in
an address book, the user cannot automatically perform the
action but must select and transfer the number to the
appropriate data base as described above.

Therefore, a system is needed that identifies structures,
associates candidate actions to the structures, enables selec-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion of an action and automatically performs the selected
action on the structure.

SUMMARY OF THE INVENTION

The present invention overcomes the limitations and
deficiencies of previous systems with a system that identifies
structures in computer data, associates candidate actions
with each detected structure, enables the selection of an
action, and automatically performs the selected action on the
identified structure. It will be appreciated that the system
may operate on recognizable patterns for text, pictures,
tables, graphs, voice, etc. So long as a pattern is
recognizable, the system will operate on it. The present
invention has significant advantages over previous systems,
in that the present system may incorporate an open-ended
number and type of recognizable patterns, an open-ended
number and type of pattern analysis units, and further that
the system may enable an open-ended number and type (i.c.
scripts, macros, code fragments, etc.) of candidate actions to
associate with, and thus perform, on each identified struc-
ture.

The present invention provides a computer system with a
central processing unit (CPU), input/output (I/0) means, and
a memory that includes a program to identify structures in a
document and perform selected computer-based actions on
the identified structures. The program includes program
subroutines that include an analyzer server, an application
program interface, a user interface and an action processor.
The analyzer server receives data from a document having
recognizable structures, and uses patterns to detect the
structures. Upon detection of a structure, the analyzer server
links actions to the detected structure. Each action is a
computer subroutine that causes the CPU to perform a
sequence of operations on the particular structure to which
it is linked. An action may specify opening another
application, loading the identified structure into an appro-
priate field, and closing the application. An action may
further include internal actions, such as storing phone num-
bers in an electronic phone book, addresses in an electronic
address book, appointments on an electronic calendar, and
external actions such as returning phone calls, drafting
letters, sending facsimile copies and e-mail, and the like.

Since the program may be executed during the run-time of
another program, i.e. the application which presents the
document, such as Microsoft Word, an application program
interface provides mechanisms for interprogram communi-
cations. The application program interface retrieves and
transmits relevant information from the other program to the
user interface for identifying, presenting and enabling selec-
tion of detected structures. Upon selection of a detected
structure, the user interface presents and enables selection of
candidate actions. When a candidate action is selected, the
action processor performs the selected action on the selected
structure.

In addition to the computer system, the present invention
also provides methods for performing actions on identified
structures in a document. In this method, the document is
analyzed using a pattern to identify corresponding struc-
tures. Identified structures are stored in memory and pre-
sented to the user for selection. Upon selection of an
identified structure, a menu of candidate actions is
presented, each of which may be selected and performed on
the selected structure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system having a
program stored in RAM, in accordance with the present
invention.

5,946,647

3

FIG. 2 is a block diagram of the program of FIG. 1.

FIG. 3 is a block diagram illustrating the analyzer server
of FIG. 2.

FIG. 4 is a block diagram illustrating a particular example
of the analyzer server of FIG. 2.

FIG. 5§ illustrates a window presenting an example of a
document having recognizable structures.

FIG. 6 illustrates a window with the identified structures
in the example document of FIG. § highlighted based on the
analyzer server of FIG. 4.

FIG. 7 illustrates a window showing the display of a
pop-up menu for selecting an action.

FIGS. 8 and 9 together are a flowchart depicting the
preferred method for selecting and performing an action on
an identified structure.

FIG. 10 is a flowchart depicting the preferred method for
identifying a structure in a data sample.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a block diagram is shown of a
computer system 100 including a CPU 120. Computer
system 100 is preferably a microprocessor-based computer,
such as a Power Macintosh manufactured by Apple
Computer, Inc. of Cupertino, Calif. An input device 110,
such as a keyboard and mouse, and an output device 105,
such as a CRT or voice module, are coupled to CPU 120.
ROM 155, RAM 170 and disk storage 175 are coupled to
CPU 120 via signal bus 115. Computer system 100 option-
ally further comprises a printer 180, a communications
interface 185, and a floppy disk drive 190, each coupled to
CPU 120 via signal bus 115.

Operating system 160 is a program that controls and
facilitates the processing carried out by CPU 120, and is
typically stored in RAM 170. Application 167 is a program,
such as a word-processor or e-mail program, that presents
data on output device 105 to a user. The program 165 of the
present invention is stored in RAM 170 and causes CPU 120
to identify structures in the data presented by application
167, to associate actions with the structures identified in the
data, to enable the user to select a structure and an action,
and to automatically perform the selected action on the
identified structure. This program 165 may be stored in disk
storage 175 and loaded into an allocated section of RAM
170 prior to execution by CPU 120. Another section of RAM
170 is used for storing intermediate results and miscella-
neous data 172. Floppy disk drive 190 enables the storage of
the present program 165 onto a removable storage medium
which may be used to initially load program 165 into
computer system 100.

Referring now to FIG. 2, a schematic block diagram of
program 165 is shown together with its interaction with a
document 210. Program 165 contains program subroutines
including an analyzer server 220, an application program
interface 230, a user interface 240 and an action processor
250. Analyzer server 220 receives data having recognizable
patterns from a document 210, which may be retrieved from
a storage medium such as RAM 170, ROM 155, disk storage
175, or the like, and presented on output device 105 by
application 167. Analyzer server 220 comprises one or more
pattern analysis units, such as a parser and grammars or a
fast string search function and dictionaries, which uses
patterns to parse document 210 for recognizable structures.
Upon detection of a structure, analyzer server 220 links
actions associated with the responsible pattern to the
detected structure, using conventional pointers.

10

15

20

25

30

35

40

45

50

55

60

65

4

After identifying structures and linking actions, applica-
tion program interface 230 communicates with application
167 to obtain information on the identified structures so that
user interface 240 can successfully present and enable
selection of the actions. In a display-type environment,
application program interface 230 retrieves the locations in
document 210 of the presentation regions for the detected
structures from application 167. Application program inter-
face 230 then transmits this location information to user
interface 240, which highlights the detected structures,
although other presentation mechanisms can be used. User
interface 240 enables selection of an identified structure by
making the presentation regions mouse-sensitive, i.e. aware
when a mouse event such as a mouse-down operation is
performed while the cursor is over the region. Alternative
selection mechanisms can be used such as touch sensitive
screens and dialog boxes. It will be appreciated that detected
structures can be hierarchical, i.e. that a sub-structure can
itself be selected and have actions associated with it. For
example, a user may be able to select the year portion of an
identified date, and select actions specific to the year rather
than to the entire date.

User interface 240 communicates with application 167
through application program interface 230 to determine if a
user has performed a mouse-down operation in a particular
mouse-sensitive presentation region, thereby selecting the
structure presented at those coordinates. Upon selection of
this structure, user interface 240 presents and enables selec-
tion of the linked candidate actions using any selection
mechanism, such as a conventional pull-down or pop-up
menu.

The above description of the user interface is cast in terms
of a purely visual environment. However, the invention is
not limited to visual interface means. For example, in an
audio environment, user interface 240 may present the
structures and associated actions to the user using voice
synthesis and may enable selection of a pattern and action
using voice or sound activation. In this type of embodiment,
analyzer server 220 may be used in conjunction with a
text-to-speech synthesis application 167 that reads docu-
ments to users over a telephone. Analyzer server 220 scans
document 210 to recognize patterns and link actions to the
recognized patterns in the same manner as described above.
In the audio environment, user interface 240 may provide a
special sound after application 167 reads a recognized
pattern, and enable selection of the pattern through the use
of an audio interface action, such as a voice command or the
pressing of a button on the touch-tone telephone keypad as
before. Thus, user interface 240 may present the linked
actions via voice synthesis. One can create various environ-
ments having a combination of sensory mechanisms.

Upon selection of a candidate action, user interface 240
transmits the selected structure and the selected action to
action processor 250. Action processor 250 retrieves the
sequence of operations that constitute the selected action,
and performs the sequence using the selected structure as the
object of the selected action.

Referring now to FIG. 3, a block diagram illustrating an
analyzer server 220 is shown. In this figure, analyzer server
220 is described as having a parser 310 and a grammar file
320, although alternatively or additionally a fast string
search function or other function can be used. Parser 310
retrieves a grammar from grammar file 320 and parses text
using the retrieved grammar. Upon identification of a struc-
ture in the text, parser 310 links the actions associated with
the grammar to the identified structure. More particularly,
parser 310 retrieves from grammar file 320 pointers attached

5,946,647

5

to the grammar and attaches the same pointers to the
identified structure. These pointers direct the system to the
associated actions contained in associated actions file 330.
Thus, upon selection of the identified structure, user inter-
face 240 can locate the linked actions.

FIG. 4 illustrates an example of an analyzer server 220,
which includes grammars 410 and a string library 420 such
as a dictionary, each with associated actions. One of the
grammars 410 is a telephone number grammar with asso-
ciated actions for dialing a number identified by the tele-
phone number grammar or placing the number in an elec-
tronic telephone book. Analyzer server 220 also includes
grammars for post-office addresses, e-mail addresses and
dates, and a string library 420 containing important names.
When analyzer server 220 identifies an address using the
“e-mail address” grammar, actions for sending e-mail to the
identified address and putting the identified address in an
e-mail address book are linked to the address.

FIG. 5 shows a window 510 presenting an exemplary
document 210 having data containing recognizable
structures, including a phone number, post-office address,
e-mail address, and name. Window 510 includes a button
520 for initiating program 165, although alternative mecha-
nisms such as depressing the “option” key may be used.
Upon initiation of program 165, system 100 transmits the
contents of document 210 to analyzer server 220, which
parses the contents based on grammars 410 and strings 420
(FIG. 4). This parsing process produces the window shown
in FIG. 6. As illustrated in FIG. 6, analyzer server 220
identifies the phone number, post-office address, e-mail
address and name. Although not shown in FIG. 6, analyzer
server 220 links the actions associated with grammars 410
and strings 420 to these identified structures, and application
program interface 230 retrieves information on the location
of these structures from application 167. User interface 240
then highlights the identified structures in document 210,
and makes the identified structures mouse-sensitive.

As shown in FIG. 7, upon recognition of a mouse-down
operation over a structure, user interface 240 presents a
pop-up menu 710. In this example, pop-up menu 710
displays the candidate actions linked to the selected tele-
phone number grammar 410, including dialing the number
and putting the number into an electronic telephone book.
Upon selection of the action for putting the number in an
electronic telephone book, user interface 240 transmits the
corresponding telephone number and selected action to
action processor 250. Action processor 250 locates and
opens the electronic telephone book, places the telephone
number in the appropriate field and allows the user to input
any additional information into the file.

FIGS. 8 and 9 display a flowchart illustrating preferred
method 800 for recognizing patterns in documents and
performing actions. This method is carried out during the
run-time of application 167. Referring first to FIG. 8§,
method 800 starts by receiving 810 the content, or a portion
of the content, from document 210. Assuming program 165
initiates with the receipt of any text, the received content or
portion is scanned 820 for identifiable structures using the
patterns in analyzer server 220. Upon detection of a structure
based on a particular pattern, actions associated with the
particular pattern are linked 825 to the detected structure.
Assuming a display-type environment, the presentation
region location for a detected structure is retrieved 830 from
application 167. If the document content being displayed on
output device 105 is changed 840, for example by the user
adding or modifying text, method 800 restarts. Otherwise,
method 800 continues with block 850. If the presentation

10

15

20

25

30

35

40

45

50

55

60

65

6

regions change 850, for example by the a user scrolling
document 210, then new presentation regions from applica-
tion 167 are again retrieved 830. Otherwise, method 800
continues to block 860. As illustrated by block 860, method
800 loops between blocks 840 and 860 until a request for
display of identified structures is received 860. It will be
appreciated that the steps of the loop (blocks 840, 850 and
860) can be performed by application 167.

Referring also to FIG. 9, when a request for the display of
detected structures is received 860, the regions are displayed
910 using presentation mechanisms such as highlighting the
presentation region around each detected structure, although
alternative presentation mechanisms can be used. If a
request for the display of candidate actions linked to a
detected structure is not received 920, method 800 returns to
block 840. However, if a request is received 920, the actions
linked in block 825 are displayed 930. This request for
display of candidate actions can be performed using a
selection mechanism, such as a mouse-down operation over
a detected structure, which causes the candidate actions
linked to the structure to be displayed 930. Display 930 of
candidate actions may be implemented using a pop-up
menu, although alternative presentation mechanisms can be
used such as pull-down menus, dialog boxes and voice
synthesizers.

As illustrated in block 940, if an action from the displayed
candidate actions is not selected 940, method 800 returns to
block 840. However, if an action is selected 940, the action
is executed 950 on the structure selected in block 920. After
execution 950 of an action, method 800 returns to block 840.
Method 800 ends when the user exits application 167,
although other steps for ending method 800 can alternatively
be used.

Referring now to FIG. 10, a flowchart illustrating the
preferred method 820 for scanning and detecting patterns in
a document is shown. Method 820 starts by retrieving 1010
data to be analyzed. After the data is retrieved, several
pattern analysis processes may be performed on the data. As
illustrated in block 1020, a parsing process retrieves 1030
grammars, detects 1040 structures in the data based on the
retrieved grammars, and links 1050 actions associated with
each grammar to each structure detected by that grammar.
As illustrated in block 1060, a fast string search function
retrieves 1070 the contents of string library 420, detects
1080 the strings in the data identical to those in the string
library 420, and links 1090 actions associated with the
library string to the detected string. As illustrated in block
1100, additional pattern analysis processes, such as a neural
net scan, can be performed 1100 to detect in the data other
patterns, such as pictures, graphs, sound, etc. Method 820
then ends. Alternatively, the pattern analysis processes can
be performed in parallel using a multiprocessor multitasking
system, or using a uniprocessor multithreaded multitasking
system where a thread is allocated to execute each pattern
detection scheme.

These and other variations of the preferred and alternate
embodiments and methods are provided by the present
invention. For example, program 165 in FIG. 1 can be stored
in ROM, disk, or in dedicated hardware. In fact, it may be
realized as a separate electronic circuit. Other components of
this invention may be implemented using a programmed
general purpose digital computer, using application specific
integrated circuits, or using a network of interconnected
conventional components and circuits. The analyzer server
220 of FIG. 2 may use a neural net for searching a graphical
document 210 for faces, or a musical library for searching a
stored musical piece 210 for sounds. The user interface 240

5,946,647

7

may present structures and actions via voice synthesis over
a telephone line connection to system 100. The embodi-
ments described have been presented for purposes of illus-
tration and are not intended to be exhaustive or limiting, and
many variations and modifications are possible in light of
the foregoing teaching. The system is limited only by the
following claims.

What is claimed is:

1. A computer-based system for detecting structures in
data and performing actions on detected structures, com-
prising:

an input device for receiving data;

an output device for presenting the data;

amemory storing information including program routines

including

an analyzer server for detecting structures in the data,
and for linking actions to the detected structures;

a user interface enabling the selection of a detected
structure and a linked action; and

an action processor for performing the selected action
linked to the selected structure; and

a processing unit coupled to the input device, the output

device, and the memory for controlling the execution of
the program routines.

2. The system recited in claim 1, wherein the analyzer
server stores detected structures in the memory.

3. The system recited in claim 1, wherein the input device
receives the data from an application running concurrently,
and wherein the program routines stored in memory further
comprise an application program interface for communicat-
ing with the application.

4. The system recited in claim 1, wherein the analyzer
server includes grammars and a parser for detecting struc-
tures in the data.

5. The system recited in claim 4, wherein the analyzer
server includes actions associated with each of the
grammars, and wherein the analyzer server links to a
detected structure the actions associated with the grammar
which detects that structure.

6. The system recited in claim 1, wherein the analyzer
server includes a string library and a fast string search
function for detecting string structures in the data.

7. The system recited in claim 6, wherein the analyzer
server includes actions associated with each of the strings,
and wherein the analyzer server links to a detected structure
the actions associated with the grammar which detects that
string structure.

8. The system recited in claim 1, wherein the user
interface highlights detected structures.

9. The system recited in claim 1, wherein the user
interface enables selection of an action by causing the output
device to display a pop-up menu of the linked actions.

10. The system recited in claim 1, wherein the programs
stored in the memory further comprise an application run-
ning concurrently that causes the output device to present
the data received by the input device, and an application
program interface that provides interrupts and communi-
cates with the application.

11. The system recited in claim 1, wherein the user
interface enables the selection of a detected structure and a
linked action using sound activation.

12. The system recited in claim 1, wherein a first one of
the actions may invoke a second one of the actions.

8

13. A program storage medium storing a computer pro-
gram for causing a computer to perform the steps of:
receiving computer data;
5 detecting a structure in the data;
linking at least one action to the detected structure;
enabling selection of the structure and a linked action; and

executing the selected action linked to the selected struc-
ture.
14. In a computer having a memory storing actions, a
system for causing the computer to perform an action on a
structure identified in computer data, comprising:

10

means for receiving computer data;

15 . .
means for detecting a structure in the data;

means for linking at least one action to the detected
structure;
means for selecting the structure and a linked action; and
20 means for executing the selected action linked to the
selected structure.

15. In a computer having a memory storing actions, a
method for causing the computer to perform an action on a
structure identified in computer data, comprising the steps
of:

receiving computer data;

25

detecting a structure in the data;
39 linking at least one action to the detected structure;
enabling selection of the structure and a linked action; and
executing the selected action linked to the selected struc-
ture.

16. The method recited in claim 15, wherein the computer
data is received from the application running concurrently.

17. The method recited in claim 15, wherein the memory
contains grammars, and wherein the step of detecting a
structure further comprises the steps of retrieving a grammar
and parsing the data based on the grammar.

18. The method recited in claim 17, wherein the grammar
is associated with a particular action, and wherein the step
of linking at least one action to the detected structure
includes the step of linking the particular action to the
detected structure.

19. The method recited in claim 15, wherein the memory
contains strings, and wherein the step of detecting a structure
further comprises the steps of retrieving a string from the
memory and scanning the data to identify the string.

20. The method recited in claim 15, further comprising
after the step of detecting a structure, the step of highlighting
the detected structure.

21. The method recited in claim 15, further comprising,
after the step of linking at least one action to the detected
structure, the step of displaying and enabling selection of an
action for performance on the detected structure.

22. A computer-based method for causing a computer to
identify, select and perform an action on a structure in
computer data received from a concurrently running
application, said application presenting the computer data to
the user, the method comprising the steps of:

45

55

60

receiving computer data from the application;
detecting a structure in the computer data;
linking at least one action to the detected structure;

5,946,647

9

communicating with the application to determine the
location of the detected structure as presented by the
application, to enable selection of the detected structure
and a linked action, and to determine if the detected
structure and a linked action have been selected; and

performing a selected action linked to the detected pat-
tern.

10
23. The method recited in claim 15, wherein the step of
enabling uses sound activation.
24. The method recited in claim 15, wherein a first one of
5 the actions may invoke a second one of the actions.

	Exhibit 1.pdf
	Exhibit 2
	Exhibit 3
	Exhibit 4
	Exhibit 5
	Exhibit 6

