

EXHIBIT E

St Clair Intellectual Property Consultants Inc. v. Apple Inc. et al Doc. 1 Att. 5

Dockets.Justia.com

http://dockets.justia.com/docket/delaware/dedce/1:2010cv00982/45242/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2010cv00982/45242/1/5.html
http://dockets.justia.com/

United States Patent [19]

Fung

[54]

[75]

[73]

[21]

SYSTEM AND METHOD OF COMPUTER
OPERATING MODE CONTROL FOR POWER
CONSUMPTION REDUCTION

Inventor: Henry Tat-Sang Fung, San Jose, Calif.

Assignee: Vadem, San Jose, Calif.

Appl. No.: 09/121,352

[22] Filed: Jul. 23, 1998

[62]

[51]
[52]
[58]

[56]

Related U.S. Application Data

Division of application No. 08/767,821, Dec. 17, 1996, Pat.
No. 5,892,959, which is a continuation of application No.
08/460,191, Jun. 2, 1995, abandoned, which is a continua­
tion of application No. 08/285,169, Aug. 3, 1994, aban­
doned, which is a continuation of application No. 08/017,
975, Feb. 12, 1993, Pat. No. 5,396,635, which is a
continuation of application No. 07/908,533, Jun. 29, 1992,
abandoned, which is a continuation of application No.
07/532,314, Jun. 1, 1990, abandoned.

Int. CI.7 .. G06F 1J26
U.S. CI. ... 713/323; 713/320
Field of Search 713/300-340

4,279,020
4,316,247
4,317,180
4,365,290
4,381,552
4,398,192
4,463,440
4,479,191
4,509,148
4,510,398
4,538,231
4,545,030
4,667,289
4,698,748
4,766,567
4,780,843
4,809,163
4,823,292
4,835,681

References Cited

U.S. PATENT DOCUMENTS

7/1981 Christian et al. 364/900
2/1982 Iwamoto 364/200
2/1982 Lies ... 364/707

12/1982 Nelms et al. 364/200
4/1983 Nocilini et al. 364/900
8/1983 Moore et aI 340/825.44
7/1984 Nishiura et al. 364/900

10/1984 Nojima et al. 364;707
4/1985 Asano et al. 365/230
4/1985 Culp et al. 307/35
8/1985 Abe et al. 364/483

10/1985 Kitchin 364/900
5/1987 Yoshida et al. 364/200

10/1987 Juzswik et al. 364/200
8/1988 Kato .. 364/900

10/1988 Tietjen 364/900
2/1989 Hirosawa et al. 364/200
4/1989 Hillion 364/707
5/1989 Culley 364/200

111111 111
US006079025A

[11] Patent Number: 6,079,025
[45] Date of Patent: Jun. 20,2000

4,841,440
4,881,205
4,907,183
4,922,450
4,963,769
4,968,900
4,974,180
4,980,836
4,991,129
4,996,706

6/1989 Yonezu et al. 364/200
11/1989 Allara 365/222
3/1990 Tanaka 364/707
5/1990 Rose et al. 364/900

10/1990 Hiltpold et al. 307/465
11/1990 Harvey et al. 307/296.3
11/1990 Patton et al. 364/550
12/1990 Carter et al. 364/483

2/1991 Swartz 364/707
2/1991 Cho ... 379/93

(List continued on next page.)

Primary Examiner-Ayaz R. Sheikh
A.ssistant Examiner-David A. Wiley
Attorne}\ Agent, or Firm-Flehr Hohbach Test Albritton &
Herbert LLP

[57] ABSTRACT

An activity sensing power reduction and conservation
apparatus, system, and method for a computer system. The
computer system has resources including a processor, a
memory, and an input/output device, and an operating
system for controlling the resources. At least one of the
resources can be placed into in anyone of three operating
modes including a first mode having a first power consump­
tion level, a second mode having a second power consump­
tion level less than the first level, and a third mode having
a third level less than the second level. The first mode may
be characterized by maintaining clocking of the processor at
a first clock frequency, the second mode by clocking the
processor at a second clock frequency less than the first
frequency or by not maintaining clocking of the processor,
and the third mode by maintaining operation of the memory
to preserve the integrity of any stored memory contents.
During operation of the computer system in the first mode,
activity is monitored to detect completion of idle threads
executing on the system, and the processor clock is slowed
or stopped to at least that one resource in response to the idle
thread completion detection. During operation in the second
mode where the processor clock is slowed or stopped, a slow
or stop resource command is generated to slow or turn off
clock signal to at least one of the resources in response to
occurrence of a timeout condition indication received from
a timer circuit.

48 Claims, 5 Drawing Sheets

5,021,679
5,025,387
5,041,964
5,083,266
5,119,377
5,123,107
5,129,091
5,151,992
5,167,024

6,079,025
Page 2

U.S. PATENT DOCUMENTS

6/1991 Fairbanks et al. 307/66
6/1991 Frane 364/493
8/1991 Cole et al. 364/200
1/1992 Watanabe 395/275
6/1992 Cobb et al. 371/550
6/1992 Mensch, Jr 395/800
7/1992 Yorimoto et al. 395/750
9/1992 Nagae 395/750

11/1992 Smith et al. 395/375

5,175,845 12/1992 Little 395/550
5,201,059 4/1993 Nguyen 395/800
5,218,704 6/1993 Watts, Jr. et al. 395/750
5,222,239 6/1993 Rosch 395/750
5,239,652 8/1993 Secbert et al. 395/750
5,247,164 9/1993 Takahashi 235/492
5,247,213 9/1993 Trinh et al. 307/465
5,247,655 9/1993 Khan et al. 395/550
5,249,298 9/1993 Bolan et al. 395/750
5,251,320 10/1993 Kuzawinski et al. 395/750

u.s. Patent Jun. 20, 2000 Sheet 1 of 5 6,079,025

"} f CPU j

4 3 5

• j
NMI [IS 30 C13 (6-0 /6-n

PO'JER PC •••
27-10 0 IOn

28.../.,..
-IANAG.~ CTRL --- ~

UNIT ::1(
11 80 \..79 CLKlD'UT a.Jm

r"LB
[9 PERIPt£RAL PERIPHERAL

.... LLB ...
0 ~ n

... ACPRV •
I

\-. 7-0 ~ '-7-n RASCAS ~ DRAM
29 J RI

-_72 11---r-- ------ -----f-l
• r33 I I
I

~22
9~

I •
PO'JER I

! ~V(CPU)j-
I SUPPLY) I ~S'J(PC)I-

~ccl I

AC ~~T :
S'J(O) l- I

(22-0
•• 22-n, I

J-VSSt . i. I 14 ."'7" : S'J(n) t-L _____________ J

FIG.-l
r----79-----~~-----t

I HARDVARE 90 I
MONITOR ST ATE OFT'J ARE

I -1- CTRL MONITOR I
I AM TV I
I 16 24 I

~ 20 19 17 ,
15 I I

REFRESH CLOCK PO'JER
I CTRL CTRL CTRL I
L _________________ ~

FIG.-2

u.s. Patent Jun. 20, 2000 Sheet 2 of 5 6,079,025

~D(O ••• 7)
EXT 32Hz 52, SUPPLY I STATUS Ril SO -1 INDEX ~ 5

~CC 71 -1/ 36 37, ••• w Jl 70
DET ~

~ DEBDUNCE I EXTRIG ST ATE: I _ - 23 -REFRSEL
1---~"-11~L~O~GI~C;.J 17 r -~ - - I

_ 24 ~ 6.=...2~ OUT

r
""-- - - I'~ f!. REG

11,59..-- 58

.RESE(16
STATIC-CPU Jr

I ,63 I I I
_ • ...;;.,S,;;..1 ----.t ACTIVITY AC'TM1! DOZE...l P\JRDOZE I-~ 76
INTR MDNITDR I f....,;ITIMEDUlf I PWRSLEEP I'" ~~':' I

_ • .;;,,;;;IO....;.R_...-(r 77 I __ S~~~4 II--.-~ l!4"[]x~ I
.IOW \ 76., :"11 ~l P\JRON ~~L.or"""~ I

I I r"'~~ I\.woo:: .'-- "'l .VCS l LOGIC EL TRIG -.... L.:..60 -57
.AEN H+lr--HH----~I_t_M r 34 1 I
SA(O ... 9) @ ~ I I
DRQ(O ... 3) ~T I r1t1r-t-q~'-~68 67,

INMI
LB
LLB
ACP\JR
LBPDL

_ 751' ~ I ~ r6S -l-nEL II I
-..,..'-+-...... rS4 I L...,~

ACT MASK

NMl MASK

55../ +

NMI

1 '----+++-l1+H J LCD I I I
I l LCDTRIG .. I' I II III I VP(O)

L --- I- - VP(1) I

I

'

POLAR L ~}OR as 1
REG I -~. I

L~ 61 33 _ VP(O ... 'D
--~---~.

LOGIC rsELF' TURNOF'F ~ (27

1 NMI ~

u.s. Patent Jun. 20, 2000 Sheet 3 of 5 6,079,025

SUSPEND OFF
FIG.4

ON

N

DOZE

N

SLEEP

N

">-------. NMI

u.s. Patent

AC("t)

TH= +128

TL= -256

N

N

Jun. 20, 2000 Sheet 4 of 5

5 10 12

FIG.5

DOZE SLEEP

FIG.6 FIG.7

6,079,025

N

u.s. Patent Jun. 20, 2000 Sheet 5 of 5 6,079,025

EXAMPLE 1 I LOTUS 1 2 3
PD'JER

(25 MS ~ j.- --, r- 300 MS>
ON

DOZE
SLEEP

JlJ
~ 2 MIN. TYPICAL -l

I I I 11----+-1 -ii ~ HI I~-
LOAD IDLE DATA ENTRY RECAL

FIG.8
EXAMPLE 2 I MICROSOFT 'JDRD

PO'JER
~ I-- (25 MS ~ r- 300 MS)

no:: 1nnIl Jlnn
SLEEP

I I
LOAD

PO'JER

ON -+---1

DOZE
SLEEP

DATA ENTRY IDLE

FIG.9
EXAMPLE 3 I MICROSOFT 'JINDO'JS

~ ~l --------1/ I I
LOAD DATA ENTRY IDLE

FIG.l0

6,079,025
1

SYSTEM AND METHOD OF COMPUTER
OPERATING MODE CONTROL FOR POWER

CONSUMPTION REDUCTION

2
Conservation of power has been utilized for some parts of

battery-powered computers but has been ignored for other
parts of such computers. In general, power consumption is
distributed in battery-powered computers among the major

CROSS REFERENCE RELATED U.S. PATENT
APPLICATION

This application is a divisional of Ser. No. 081767,821
Dec. 17, 1996 U.S. Pat. No. 5,892,959 which is a continu­
ation of Ser. No. 08/460,191 Jun. 2, 1995 abandoned, which
is a continuation of Ser. No. 08/285,169 Aug. 3, 1994
abandoned which is a continuation of Ser. No. 08/017,975
Feb. 12, 1993 U.S. Pat. No. 5,396,635 which is a continu­
ation ofSer. No. 07/908,533 Jun. 29, 1992 abandoned which

5 parts of those computers. One part with significant power
consumption is the central processing unit (CPU). Another
part is the input/output (I/O) devices such as display screens,
keyboards, modems, printers, disk drives and the like. Still
another part with significant power com;umption is storage

10 (memory).

is a continuation of Ser. No. 07/532,314 Jun. 1, 1990 15

abandoned.

BACKGROUND OF THE INVENTION

Prior art attempts at conserving power have employed
screen blanking which reduces the power to the display
screen when the screen has not been used for some period of
time. Typically, a timeout circuit senses changes in screen
information and, if no change has occurred for a predeter­
mined timeout period, the backlight to the screen is turned
off for power reduction. While screen blanking is effective
in reducing power for the display screen, no reduction
results in power to the driver circuitry for the display, to the A portion of the disclosure of this patent document

contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

20 CPU, or to other parts of the computer. Furthermore, when
the screen is blanked, the computer cannot be used until
reset.

Other prior art attempts at conserving power consumption
have focused on disk drives because the power consumption

The present invention relates to computers and particu­
larly to methods and apparatus for power management in
computers, particularly in battery-powered computers.

The major parts of computers include a central processing
unit (CPU), input/output (I/O) devices such as display
screens, keyboards, modems, printers, disk drives and the
like, and storage (memory).

25 of rotating magnetic disks is high. Disk drive manufacturers
have employed various schemes for reducing the power
consumption of the disk drive. While such power consump­
tion schemes are effective for the disk drive, no reduction
results in power to the CPU or other parts of the computer.

30 Computers without disk drives, such as small "notebook"
computers, have no need, of course, for the conservation of
power in a disk drive.

In order to extend the battery life of portable computers
and to manage power in computers, there is a need for

35 improved power management methods and apparatus in
computers, particularly for power management that can be
extended to many different parts and conditions of the

The CPU communicates with the I/O devices, with the
storage and otherwise operates with addresses defined
within the computer address range. Typically, addresses for
VO devices are within an I/O address range. Addresses for
execution of programs without I/O reference typically are
within a memory address range. Similarly, that portion of
memory allocated for display is within a video memory 40

address range.
Computers function to execute application programs such

computer.

SUMMARY OF THE INVENTION

The present invention is a method and apparatus for
power management in a computer. The computer typically
includes as hardware a central processing unit (CPU), stor­
age (memory) and VO devices and includes as software an

as word processing, spreadsheet and data base management
programs. Typically, the computer and the application pro­
grams are under the control of a software operating system
that manages the different system parts and resources includ­
ing some I/O devices. For example, during the execution of

45 operating system adapted to control the computer during
application program execution.

an application program when the CPU wishes to check to
determine if any key has been depressed on the keyboard,
the CPU through a subroutine call to the operating system 50

requests the operating system through execution of a sub­
routine to perform a key-actuation detection task. Since the
operating system performs many such tasks, the operating
system has a detailed knowledge of many activities within
the computer. However, under some circumstances, appli- 55

cation programs bypass the operating system and directly
address I/O devices. Typically, each I/O device is assigned
an I/O address within an I/O address range. For application
programs which directly address 1/0 devices without oper­
ating system calls, the operating system is not immediately 60

aware of I/O activity. With such complex operation III

computers, the task of power conservation is difficult.

The power management method and apparatus causes the
computer system to enter the power conservation mode after
sensing inactivity by a software monitor or by a hardware
monitor.

The software monitor monitors the activity of the oper­
ating system or other software in the system. The software
monitor typically is a software module linked, for example,
to the operating system at boot time for monitoring subrou­
tine calls to the operating system.

The hardware monitor monitors the hardware to detect
inactivity. The hardware monitor typically is circuitry for
detecting inactivity independently from the software. For
example, the hardware monitor senses predetermined
address ranges, such as an I/O address range and a video
memory address range, and monitors the activity of
addresses by the CPU to addresses within these ranges. If no
data transfers occur within the specified address ranges for
predetermined periods of time, then a power conservation

The need for power conservation is well known in
battery-powered computers and must be performed in a
manner that does not interfere with the operation of the
computer or impede users from interacting with the com­
puter during the execution of application programs.

65 mode is entered to conserve power in the computer system.
By using both a software monitor and a hardware monitor,

the power management unit determines exactly when to

6,079,025
3

enter into power conservation mode without sacrificing
system performance.

In the software monitor, inactivity is determined by
detecting how many "active" or "idle" function calls an
application makes within some time period. In the IBM PC 5

DOS environment, the activity status is checked, for
example, no less frequently than every 50 milliseconds.
There are 256 IBM PC DOS function call., and, in principle,
each is labeled as "idle" or "active" and each is assigned a
corresponding positive or negative number. A positive num- 10

ber is assigned to an "active" function call and a negative
number to an "idle" function call.

4
The foregoing and other objects, features and advantages

of the invention will be apparent from the following detailed
description in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a block diagram of a computer with the
power management unit of the present invention.

FIG. 2 depicts a block diagram of the power management
unit of the FIG. 1 system.

FIG. 3 depicts a detailed block diagram of the hardware
for the power management unit of FIG. 2.

The power management software monitor forms an activ-
FIG. 4 depicts a state diagram depicting the multiple

states associated \yith the power management unit of FIGS.
15 1, 2 and 3 as determined by the hardware monitor.

ity measurement as a running total of the function call
numbers as the function calls are made. Whenever a function
call is made (either active or conservation), the power
management software monitor algebraically adds the func­
tion call number to the accumulated value and determines
whether the system is to remain in the active mode or be
switched to the conservation mode by comparing the mag­
nitude of the accumulated value with a function call thresh- 20

old.

FIG. 5 depicts a representation of operation for various
states as a function of the activity measurement.

FIG. 6 depicts a state diagram depicting switching to
conservation mode (DOZE or SLEEP state) operation under
control of the software monitor.

FIG. 7 depicts a state diagram depicting the sequencing
which forces to the ON state during an activity window
period under control of the software monitor.

FIG. 8 depicts a representation of operation for a spread­
sheet application program.

FIG. 9 depicts a representation of operation for a word­
processing application program.

The function call threshold for determining activity is a
variable depending on the computer system speed. To pre­
vent the system from oscillating between the active and
conservation mode due to minor changes in system activity, 25

hysterisis is provided by using active and conservation
function call thresholds. The accumulated total for the
activity measurement is reset after it reaches the active
threshold going in one direction or the conservation thresh­
old going in the opposite direction as the case may be.

FIG. 10 depicts a representation of operation for a win-
30 dowing application program.

The active and conservation thresholds are typically
unequal so that the entry and exit from conservation mode
is biased. For example, in order to have the system enter the
conservation mode quickly and thereby to reduce power
consumption, the active threshold is set with a number 35

greater than the number for the conservation threshold.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Computer System-FIG. 1
In FIG. 1, computer 3 is typically a small, battery-

powered computer such as a "notebook" computer. The
computer 3 includes a CPU 4, a CPU bus 5, a plurality of 110
controllers 6-0, ... , 6-n where "n" is a constant equal, for
example, to 7. Connected to the controllers 6-0 through 6-n

40 are plurality of peripheral devices 7-0, ... , 7-n, respectively.
The controllers and peripheral devices 6 and 7 typically
include a keyboard, a display, a hard disk drive, a modem,
a printer, and similar devices. Each of the controllers 6-0
through 6-n connects to the conventional computer bus 5.

In one embodiment, functions that require immediate
attention are assigned numbers large relative to the active
and idle thresholds so that a single occurrence of the
function call \yill force the accumulated count over the
active threshold and thus force the system to be in the active
mode. The hysterisis effect can be bypassed by forcing the
power management unit into active mode without changing
the activity count. In this case, the next idle function call will
bring the system back to idle mode.

45
If the software monitor or the hardware monitor indicates

Also connected to the bus 5 is the memory, which in one
particular embodiment is DRAM random access memory
11. The memory 11, when of the type requiring refresh, is
refreshed with *RAS and * CAS lines 29 under control of the
PC controller 13 which provides *PCRAS and *PCCAS

inactivity, the power management unit enters the conserva­
tion mode. The conservation mode has multiple states which
provide different levels of power conservation.

A first state, called a DOZE state, is entered after sensing
inactivity by the hardware monitor for a first period of time.
A second state, called a SLEEP state, is entered after sensing
inactivity by the hardware monitor for a second predeter­
mined time where the second predetermined time is greater
than the first predetermined time. A third state, called a
SUSPEND state, is entered after sensing inactivity by the
hardware monitor for a third period of time greater than the
first and second time periods.

Another state is OFF which turns off all power for the
computer under predetermined conditions.

During periods of inactivity, power consumption is
reduced in different ways, for example, by reducing clock
speeds or removing clocks, and/or by removing power,
and/or by controlling the refresh frequency to memory.

In accordance with the above summary, the present inven­
tion achieves the objective of providing an improved power
management method and apparatus.

50 signals on lines 30 to power management unit 15 including
a hardware monitor 79 and a software monitor 80. The I/O
devices are separately powered through switch unit 22 and
switches 22-0, ... , 22-n by the VCC power from power
supply 9 which receives power either from the battery 10 or

55 an AC source 14. Power supply 9 is of a conventional type
which supplies a low battery signal LB, a low-low battery
signal LLB, and an AC power signal ACPWR to power
management unit 15.

The computer 3 typically includes as software an oper-
60 ating system adapted to control the computer system and to

control operations during application program execution.
Computer 3 functions to execute application programs such
as word processing, spreadsheet and data base management
programs. Computer 3, during the execution of application

65 programs, is under control of a software operating system.
The operating system manages the different system parts and
resources including the I/O devices 6 and 7. For example,

6,079,025
5

during the execution of an application program when the
CPU wishes to check to determine if any key has been
depressed on a keyboard I/O device, the CPU 4 through a
subroutine call to the operating system requests the operat­
ing system to execute a subroutine to perform a key- 5

actuation detection task. Since the operating system per­
forms many similar calls to the operating system, these calls
represent detailed information about many activities within
the computer system.

6
hardware monitor for a second predetermined time where
the second predetermined time is greater than the first
predetermined time or when the activity measurement
sensed by the software monitor exceeds the idle threshold.
A third state, called a SUSPEND state, is entered after
sensing inactivity for a third period of time greater than the
first and second time periods. Another state is OFF which
turns off all power for the computer under predetermined
conditions.

After having entered one or more of the activity states of
the conservation mode, the power management unit
sv.ritches back to the active mode when activity is sensed by
the monitors.
Power Management Unit-FIG. 2

In FIG. 2, a block diagram of the power management unit
15 of FIG. 1 is shown. The power management unit includes
a hardware monitor 79 (including an activity monitor 16 and
a timer unit 24), a software monitor 80, a state control unit
23, a power control unit 17, a clock control unit 18, and a

In FIG. 1, the computer 3, through the CPU 4, issues 10

control and address signals on the bus 5 which define the
overall computer address range for computers including the
sets of address ranges for all of the memory, I/O and other
devices connected to the bus 5. Whenever any of the
peripherals 7-0 to 7-n are to be accessed for data to be 15

transferred over the bus 5, the address of the corresponding
I/O controller 6-0 to 6-n (either by unique address lines or
unique address lines in combination with control lines)
specifies the addressed one of the I/O controllers 6 and
corresponding peripheral 7.

Similarly, memory 11 has locations addressed by a set of
addresses on bus 5 within a memory address range. Some of
the addresses in the range of addresses for memory 11 are
typically allocated and reserved only as a set of video
memory addresses. Whenever the video memory region 8 of 25

memory 11 is to be addressed, address appears on bus 5
,vithin the set of video memory addresses.

20 refresh control unit 20. The hardware monitor 79 (using
activity monitor 16) analyzes the address activity on the
system bus 5 to provide activity information used to control
power management. The timer unit 24 times the activity
information sensed by the monitor 16. The state control unit
23 controls the changes among different power consumption
states to achieve power management.

The computer system of FIG. 1 includes a power man­
agement unit 15 having a software monitor 80 and a hard­
ware monitor 79 for monitoring activity of the computer 30

system. The power management unit 15 is connected to the
bus 5 to sense activity, using hardware monitor 79, on the
bus 5 and is connected to the CPU 4 (executing the operating
system and the software monitor 80), the power supply 9, the
memory 11 and PC controller 13 for controlling power 35

The power control unit 17 control the switches 22-0, ... ,
22-n of FIG. 1 as a function-of the activity sensed by activity
monitor 16 and the state determined by state control unit 23.

The clock control unit 18 controls the distribution of
and/or the frequency of the CPU and other clocks as a
function of the activity sensed by the activity monitor 16 and
the state determined by state control unit 23.

The refresh control unit 20 controls the refresh of the
RAM memory 11 of FIG. 1 at a rate which is determined by
the activity sensed by the activity monitor 16 and state
control unit 23.

management.
The power management unit 15 of FIG. 1 operates to

cause the computer system to enter the power conservation
mode after sensing inactivity by the hardware monitor 79 or
by the software monitor 80 and to enter the active mode after
sensing activity or other conditions.

The hardware monitor 79 monitors the hardware to detect
inactivity. The hardware monitor 79 typically is circuitry for
detecting inactivity independently from the software and the
software monitor 80. For example, the hardware monitor 79
senses predetermined address ranges, such as an VO address
range and a video memory address range, and monitors the
activity of addresses by the CPU to addres. es within these
ranges. If no data transfers occur within the specified address
ranges for predetermined periods of time, then a power
control mode is entered to conserve power in the computer
system.

The software monitor 80 monitors the activity of the
operating system or other software in the system. The
software monitor 80 typically is a software module linked,
for example, to the operating system at boot time for
monitoring subroutine calls to the operating system.

The power management unit (PMU) 15 is provided to
manage power and reduce, over time, the overall power

40 consumption of computer 3. This management is accom­
plished using an activity monitor 16 to detect periods of
system inactivity. During periods of inactivity, power con­
sumption is reduced by reducing clock speeds or removing
clocks through clock control unit 18, and/or by removing

45 power through power control unit 17, andlor by controlling
the refresh frequency through refresh control unit 20. Stan­
dard and slow refresh DRAM support is provided by refresh
control unit 20. Inputs are provided to the power manage­
ment unit 15 which will allow power on or off commands

50 from external sources such as a pushbutton, modem ring
indicator, or read-time-clock (RTC) time of day alarm.
Hardware Monitor Generally-FIG. 3

Referring to FIG. 3, the power management unit (PMU)
15 includes the hardware monitor 79 (activity monitor 16

55 and timer unit 24) which is designed to operate with minimal
system requirements and mthout software support. Power
management occurs in response to the hardware monitor
independently of any operating system (DOS) or application By using a software monitor 80 and a hardware monitor

79, the power management unit 15 decides exactly when to
enter into power conservation mode and active mode with- 60

out unnecessarily sacrificing system performance.

program support.
In FIG. 3, the PMU 15 has its own power-on reset signal

(*RESEl) which is produced by a VCC power detector 71,
separate from any other reset signal of computer 3, and upon
initial power-on, the registers of the power management unit
15 are initialized to preestablished default values to provide

The power conservation mode includes a number of
activity states. A first state, called a DOZE state, is entered
after sensing inactivity for a first period of time by the
hardware monitor or when an idle threshold is exceeded as
determined by the software monitor. A second state, called
a SLEEP state, is entered after sensing inactivity by the

65 basic functionality without need of any software.
While the hardware monitor 79 and the power manage­

ment unit 15 are provided FIG. 3 as a hardware embodiment,

6,079,025
7 8

The system clock oscillator signal CLKl is connected to
the CPU Clock Control block 49 to produce the CLKOUT.
From there CLKOUT, as controlled by PMU 15 and control
block 49, drives CPU 4. The CLKOUT clock can be stopped

a software embodiment of the hardware monitor 79 is
described in the program listing of TABLE 1. Using the
program listing of TABLE 1 executing in the CPU 4, power
management, using a software embodiment of a hardware
monitor, occurs under program control.

In accordance with the operation of the hardware monitor
79, a predetermined set of address ranges on bus 5 is
monitored by power management unit 15 as part of the
power management operation. For example, the predeter­
mined set of address ranges monitored for power manage­
ment typically includes all of the I/O address range, that is,
the addresses of the 1/0 controllers 6-0 through 6-n and the
video memory address range for the video memory locations

5 for static CPU's, or reduced automatically by a divisor
specified in the CLOCK field of control register 53 during
DOZE and SLEEP states. CLKI is passed through
unchanged to CLKOUT in SUSPEND state.

Detailed implementations of the various monitor, control

8 within the memory 11. Of course, other address ranges can
be added to or used as the predetermined set for power
management. The set of address ranges including the video
memory and the I/O address ranges has been found to
provide excellent information for controlling power man­
agement.

10 and logic blocks of FIG. 3 will be clear from the following
detailed description. Additionally, a software embodiment of
the hardware monitor 79 including logic and control func­
tions equivalent to those in the hardware embodiment
appears as the Program Listing of TABLE 1.

15 Software Monitor Generally

The hardware monitor 79 senses the activity of addresses 20

on the bus 5. Whenever addresses within the predetermined
set of addresses are not present on the bus 5 for predeter­
mined time periods, the power management unit 15 respon­
sively switches power consumption states and controls the
consumption of power by different parts of the computer 3. 25

The power management unit 15 has four main operating
states, namely, ON, DOZE, SLEEP, and SUSPEND, and a
fifth state which is OFF. The five power management states,
under control of the hardware monitor 79, are shown by the
state diagram of FIG. 4. The activity monitor 16, external 30

inputs (EXT, RESET), and the timeouts of timer unit 24
generally control the transitions between states in the state
control unit 23 as shown in the state diagram of FIG. 4. The
CPU 4 of FIG. 1 may also command the PMU 15 to enter
any state. The commands from the CPU 4 typically derive 35

from execution of the software monitor 80, but may derive
from other CPU 4 commands.

In FIG. 3, each of the four active states (not OFF) has an
associated PWR register which indicates in one embodiment
which of eight power control outputs VP[O ... 7] on lines 40

33 will be active during the state. More generally, any
number, (n+l), outputs Vp[O ... n] can be employed. The
PWR registers in power control unit 17 are PWRON register
57, PWRDOZE register 58, PWRSLEEP register 59 and
PWRSUSPEND register 60 as shown in FIG. 3. A power 45

control multiplexer 76 selects the eight outputs from one of
the registers 57 through 60 corresponding to the current state
on STATE lines 34 from unit 23, and these eight outputs
drive the VP[O ... 7] power control outputs from EXOR unit
35. Also, the CPU 4 of FIG. 1 can write, under program 50

control, to any of the PWR registers 57 through 60 to control
which of the I/O devices 6 and 7 are powered at any time.

To turn an I/O device on, the corresponding bits in the
PWR registers 57 through 60 for the state(s) in which they
are to be on is typically high. The POLARITY register 61 55

specifies the actual polarity of each output VP[O . . . 7]
required to turn the associated one of the switches 22-0, ... ,
22-n on and thereby supply power to the I/O devices 6 and
7. The default value of the POLARITY register is 03h,
which implies a logic low to turn on VP[2 ... 7], which will 60

typically control logic sv.ritches 22 with low-trne output
enables (for example, sv.ritches 22 typically include a PNP
transistor in the VCC line from power supply 9) and high to
turn on the LCD, VP[O], and EL backlight, VP[I], power.
The value of the VP[O ... 7] bits just prior to the polarity 65

control by EXOR 35 may be read back through the OUT­
PUT register 62 to CPU 4 over bus 5.

The software monitor 80 of FIG. 2 includes a power
management software module linked into the operating
system, for example, during boot up time. One embodiment
of the module appears as the program listing of TABLE 2.

The software monitor 80 monitors all the function calls to
the operating system. Every time an idle function call is
made, the activity measurement, AC(t), is incremented and
then checked against thresholds. The incrementing is alge­
braic by the amount of D a' a positive DOS call number, or
D i , a negative DOS call number.

If the activity measurement, AC(t), is below the idle
threshold, T H' and the system is in the active mode, no action
will be taken. However, if the activity measurement, AC(t),
is above the idle threshold, T H' the power management
software will check the current system status and if in the
active mode, will switch to the conservation mode.

The activity measurement, AC(t), is given by the follow­
ing Eq. (1):

L [Da(t) + Di(t) = AC(t)] Eq. (1)
a,i

where,
D a(t)=Active DOS call numbers as a function of time
D,{t)=Idle DOS call numbers as a function of time
AC(t)=Accumulated Activity Count of DOS call numbers

as a function of time, that is, activity measurement
While all of the interrupts of the operating system may be

assigned a Da or Di value the following, for example in the
following CHART 1.

CHART 1

Il'<TERRUPT CALL NUMBER TYPE

116 (keyboard poll) +12 Di
110 (video active) -25 Da
18 (timer) -25 Da
114 (communications) -400 Da

Using the values in CHART 1, each time an interrupt 16
(116) occurs, the software monitor incrementsAC(t) by +12
and each time 110 or 18 occurs the software monitor incre­
ments AC(t) by -25. The value of AC(t) is shown for one
example of operation in FIG. 5.

Referring to FIG. 5, the value of AC(t) as a function of t
is shown. In the example of FIG. 5, the first eight values of
t find keyboard polling occurring by the 116 interrupt so that
+12 is added to AC(t) for each of the first eight values of t.
In FIG. 5, at t=8, the timer interrupt 18 occurs and subtracts
-25 from the AC(t) value. Thereafter the keyboard polling

6,079,025
9

continues until the value of AC(t) reaches 128, the value of
TH in the example of FIG. 5. At t=12 in FIG. 5, AC(t) is
reset, for example, to 0 when the computer system enters the
conservation (idle) mode. At about t=20 in FIG. 5, which
may include a long time duration generally indicated by the 5

broken line at about t=15, video interrupt no becomes active
and starts to add -25 to the AC(t) value until at about time
t=35 the value of AC(t) reaches the -256 value of the
threshold TL .

When the value of AC(t) is above Tm then the software 10

monitor is operative to switch the computer system into the
conservation mode. Whenever AC(t) is in below the thresh­
old Tv the software monitor is operative to switch the
computer system back to the active mode.

The example of FIG. 5 is only for purposes of represent- 15

ing the manner in which AC(t) is incremented as a function
of the positive and negative interrupt call numbers. Of
course, other counting methods may be employed. In the
program of TABLE 2, after the T H value of + 128 is reached,
the counter is reset to +256 and each value of Da decrements 20

the count until the threshold TL is reached at O.
The operation which occurs when the value of AC(t)

exceeds the threshold T m is explained with respect to the
flowchart of FIG. 6.

where,
TH>Kl
TL<K2
T~Idle Threshold
TL =ActivityThreshold

K 1=128
K,=-256

10

Combined Hardware Monitor and Software Monitor Opera­
tion

If the system is in ON state and AC(t) is greater than or
equal to T H, the power management software monitor will
bring the system into DOZE state. If the system is already
in DOZE or SLEEP state, no further action will be needed.
Similarly, the activity count, AC(t), will be decremented
every time an active function call, Da, is made. The activity
count is then used to compare with the active threshold. If
the count is higher than the active threshold, T H, then the
power management software monitor 80 will force the
system into the power conservation mode (DOZE or
SLEEP) per the FIG. 6 operation regardless of the status of
the hardware monitor 79. If the activity count is equal to or
less than the active threshold, Tv then the system will be
programmed into the ON state.

The ON state can also be entered if the hardware monitor

In FIG. 6, the value of D (either Da or Di), the interrupt
number value, is added as indicated in Eq. (1) to form the
accumulation value of the activity measurement, AC(t). This
accumulation is indicated by the oval marked D in FIG. 6.

25 79 detects a predetermined set of address ranges on bus 5.

Next, the value of AC(t) is compared with the threshold
TH . If the value of the summation in Eq. (1) is not greater
than the threshold, T H, then the N no choice is made the loop
repeats so that the next value of D is added to the AC(t)
activity measurement. For example, in FIG. 5, this activity
continues until approximately t=12 in FIG. 5.

In FIG. 5, at about t=12, the activity measurement AC(t)
equals or exceeds the threshold T H and hence the Y output

For example, the predetermined set of address ranges moni­
tored for power management typically includes all of the I/O
address range, that is, the addresses of the I/O controllers 6-0
through 6-n, and the video memory address range for the

30 video memory locations 8 with the memory 11. Of course,
other address ranges can be added to or used as the prede­
termined set for power management. The set of address
ranges including the video memory and the I/O address
range has been found to provide excellent information for

35 controlling power management.

of the comparison connects to the SLEEP state detector. If
already in the state, then the Y output will force the computer
system to remain in the SLEEP state. If not in the SLEEP
state, then the software monitor will force the computer 40

system into the DOZE state.

After entering the ON state, the power management unit
will continue to be in the ON state until any idle function call
detects the activity count has reached or gone beyond the
idle threshold, T H'

There are application programs such as Microsoft's Win-
dows described in connection with FIG. 10 that do not use
the DOS idle function calls and therefore the system would
never go into the DOZE state through operation of the
software monitor 80. Therefore, a watch dog timer is built

Note that the FIG. 6 operation will force the computer
system into the DOZE or SLEEP state as long as the activity
measurement AC(t) exceeds the threshold T H When the
threshold T H has been exceeded, AC(t) is reset and remains
reset until another activity event, Da or Di, occurs. In FIG.
5, for example, this occurs at about t=20 when AC(t) begins
to count toward T L'

In addition to the comparison of the activity measurement
AC(t) against the upper threshold Tm the software monitor
80 also compares the value of the activity measurement
against the lower threshold TL • This comparison is repre­
sented by the flowchart of FIG. 7.

In FIG. 7, the oval represents the incrementing of the
activity measurement AC(t) in accordance with Eq. (1).
After each incrementing of the activity measurement, the
value of AC(t) is compared to determine if it is less than or
equal to TL • If not, then the N output of the comparison
continues the incrementing of the activity measurement for
each new value determined in accordance with Eq. (1).

If the activity measurement AC(t) is less than or equal to
Tv then the Y output of the comparison connects the
operation to the activity ,vindow comparison.

45 into the power management software monitor to monitor the
absence of idle function calls as indicated in connection with
FIG. 7. If a time period greater than Tawas shown in the flow
chart in FIG. 7 has been exceeded without any idle function
call being made, then it is assumed that the application

50 program bypasses DOS and goes directly to the hardware.
During the T a ". time period (see FIG. 7) the power

management unit will be forced into the ON state until
detection of activity for predetermined period of time, Taw'
This period, Taw is normally more than a minute in order not

55 to affect the system performance. There is no power saving
during the time out period, Taw' even if the CPU is actually
idling. After the Taw time period, the hardware monitor 79
will take over completely.

In most cases, application programs go through DOS to
60 perform I/O operations. The power management software

monitor 80 keeps track of all the operating system function
calls. If the accumulative count of all active and idle
function calls is greater than the upper threshold, T H' then

If AC(t)~TL and AW(t)~Taw' then the FIG. 7 operation 65

switches to the ON state.

the system is assumed to be inactive. The power manage­
ment software monitor will program the power management
unit to DOZE state only if the system is still in ON state. The

If AC(t)~TH' then test sleep state. computer 3 will enter DOZE state without waiting for the

6,079,025
11

ON state timer to expire and therefore maximizes the power
saving of the system. If computer 3 is already in DOZE or
SLEEP, no action will be needed from the power manage­
ment software monitor until the system becomes active
again. 5

In the software monitor 80, inactivity is determined by
detecting how many active or idle function calls an appli­
cation makes within some time period. In the IBM PC DOS
environment, the activity status is checked no less frequently 10

than every 50 milliseconds. There are 256 IBM PC DOS
function calls and each is labeled as idle or active with a
corresponding positive or negative number. A positive num­
ber is assigned to an active function call and a negative
number to an idle function call. The power management 15

software module keeps a running total of the accumulated
value of the function call numbers as the function calls are
made. Whenever a function call is made, (either active or
idle), the power management software module algebraically
adds the number to the accumulated value and decides
whether the system is active or not by comparing the
magnitude of the accumulated value with a function call
threshold. The function call threshold for determining activ-

20

ity is a variable depending on the computer system speed.

To prevent the system from oscillating between the active
and idle state due to minor changes in system activity,
hysterisis is provided by using active, Tv and idle, TH ,

function call thresholds. The accumulated total is clamped at

25

T H after it reaches the active thresholds THor TL as the case 30

may be. The active and idle thresholds are typically unequal
(128 and -256) so that the entry and exit from conservation
(idle) mode is biased. For example, in order to have the
system enter the idle mode quickly and thereby to reduce
power consumption, the active threshold is set ""ith a 35

threshold number (128) greater than the idle threshold
number (-256). Also, functions that require immediate
attention are assigned numbers large relative to the active
and idle thresholds so that a single occurrence of the
function call (for example, I14=-400) ""ill force the accu- 40

mulated count over the active threshold (TL =-256) and thus
force the system to be in the active mode. The hysterisis
effect can be bypassed by forcing the power management
unit into active mode without changing the activity count. In

45
this case, the next idle function call will bring the system
back to idle mode.

If the software monitor 80 or the hardware monitor 79
indicates inactivity, the power management unit enters the
conservation mode which has multiple states with different 50

levels of power conservation.

The hardware monitor 79 works in conjunction with the
software monitor 80 linked to the operating system during
boot up time. The state control unit 23 is controlled by the
timer unit 24 and power management software module 100. 55

The power management software will override the hardware
timer unit 24 whenever inactivity is detected in the operating
system level. Since this can be done in a much finer
resolution than the hardware monitor 79, the combined
software and hardware monitor maximize power saving 60

""ithout any degradation in system performance.
Power Management Unit Detail-FIG. 3

Line List

In FIG. 3, the following lines and functions are defined for 65

the connections output (0) from and input (I) to the PMU 15
of FIGS. 1 and 2.

Name

SAID .. 9]
SD[O .. 7]
VPO
VP1
VP[2 .. 7]
*RAS
*CAS
*PCRAS
*PCCAS
*VCS
*IOR
*IOW
*Sl

AEN
INMI
NMI
INTR
DRQ[O . .3]

*DACKO
EXT
RI
RTC
CLKI
CLKOUT 0
LB
LLB
ACPWR
*RESET
*REFRSEL
OSC
CLK1IN
CLK10UT 0
CLK2IN
CLK20UT 0
LBPOL
STiITIC_ CPt; I
VCC
VSS

Registers

Type

I/O
0
0
0
0
0
*RAS
'CAS
I

0

12

Function

System Address on bus 5
System Data on bus 5
LCD power control
EL backlight power control
Peripheral power control
*RAS for DRAM
*CAS for DRAM
for DRAM
for DRAM
Video RAM chip select
I/O Read
IjO Write
Status. low indicates read or mem
read operation
DMAenable
1'\:~'1I input from user system
"~1I output to CPt;
lnt request output of computer
DMA requests which could occur in
DOZE or SLEEP

Indicates refresh DMA cycle
I External command input (button)
Ring indicator from modem
I Alarm output from RTC

CPt; clock input
Clock out to CPt;
Low battery detect. first warning
I Low battery detect, second warning
AC power good input
External RC required for reset
o Low when PMU controls DRAM refresh

Xlal osc output
Clock 1 in for switched clock lout
Switched clock lout
Clock 2 in for s~vitched clock 2 out
Switched clock 2 out
Low battery polarity select
Connect to Vee if cpe is static

Power
Ground

In FIG. 3, the PMU 15 includes a number of registers
accessed for read or write by CPU 4 over bus 5 via an index
register addressing scheme. When not accessed by CPU 4,
for example, after a power on detection by detector 71, the
registers are all initialized to a default state. When accessed
by CPU 4, an index value is first v.rritten to the index register
50 from bus 5 and the index value is decoded by decoder 70
to select one of the registers of PMU 15 for access to bus 5
to receive or send information from or to CPU 4. The index
register 50, after an index write, is changed to point to
another register to be accessed. When reset, the index
register is not active to enable any PMU 15 register. This is
a safety feature to help prevent applications executing on the
CPU 4 from inadvertently accessing PMU 15 registers. All
registers may be read and written over bus 5.

The PMU 15 data registers are:

Data Register (Ref. No.-FIG.3) Index Decode

STATUS 51 OOH
SUPPLY 52 02H
CONTROL 53 04H
ACTMASK 54 06H
NMIMASK 55 08H
OSC 56 OAH
PWRON 57 OCH
PWRDOZE 58 OEH

PWRSLEEP
PWRSUSPEND
POLARITY
OUTPLI 62
DOZE
SLEEP 64
SUSPEND 65
LCD
EL 67

Status Register

Bit Name

D7 RESUME

D6 WUl
05 WUO
04 NMI2
03 NMI1
D2 NMIO
01 STATEl
DO STATEO

13

-continued

59 10H
60 12H

61 14H
16H

63 18H
lAH
lCH

66 lEH
lOR

Function

Resuming from SUSPEND
(warm start)
Wakeup code MSB
Wakeup code LSB

> N~n cause code

State MSB
State LSB

6,079,025

5

D2 SLOW o
D1 CCLKl
DO CCLKO o

14

-continued

Clock runs slow in ON
CPU Clock divisor, DOZE and SLEEP
! default divisor ~ 4

In register 53, the RING[O ... 2] bits are used to set the
number of RI pulses required for tumon. The default value
is 1 so that only one pulse is required for tumon. If set to 0,

10 RI is disabled. State logic 23 has conventional logic for
detecting and counting RI pulses from a modem, one of the
110 peripherals 7-0 to 7-n. D3 is only used for static CPU's.
SLOW indicates reduced clock speed operation in On. The
CCLK[O ... 1] bits select the clock divisor for CLKOUT in
SLEEP and DOZE states, and in ON if SLOW is set,

15 according to the table.

20

CCLK[O .. 1]

o

2
3

Divisor

2
4
8

In register 51, only DO and Dl are affected by a write. The
CPU 4 can write the state code to this register to put the 25

PMU in another state. Writing OFFh puts it in the OFF state.
The NMI cause, state and wakeup codes are decoded as
follows:

ACT:'vlASK Register

Bit Name

07

Default Function

0

Code
Wakeup NMI Cause

000 None, or INMI
001 EXT input
input
010 LB
input
011 LLB timeout
input
100 SLEEP timeout

Code State

00 On
01 DOZE

10 SLEEP

11 SUSPEND

Code
Cause

00
01 EXT

10 RTC

11 R I

30

35

D6 MSK_ VIDM 0 Mask access to video memory
05 MSK_ OMA 0 Mask all DMA activity
D4 MSK_ P63 Mask access to port 63h
D3 MSK_ PICl 0 Mask access to port AOh, Alh
02 MSK_ RTC 1 Mask access to port 70h, 71 h
Dl MSK_ KED 0 Mask keyboard (pOlt 60H,64H)
DO MSK_ 10 0 Mask access to all ports not

maskable by 0[2 .. 5]

The activity monitor ACTIVITY output is the logical OR
of all unmasked activity sources. This register 54 affects
only the ACTIVITY output. Refresh DMAcycles(*DACKO
low), interrupts, or accesses to the PMU 15, never affect the

101 SUSPEND timeout 40 activity monitor 16.

"RESET sets STATE[O .. 1] and clears all other bits.

Supply Register
This register 52 is read only. D[O ... 2, 5] are driven 45

directly by the input lines. Bit D3 is set when system activity
is detected and is cleared when this register is read.

Bit Name Function

05 STATIC _CPU 1 ~ Static CPU (clock stops in
DOZE)

D4 ORAMRDY 1 ~ CPU controls DRAM (same as
*REFRSEL)

D3 ACTIVITY System activity present
D2 LLB Low battery 2 (second warning)
01 LB Low battery 1 (first warning)
DO ACPWR AC power input in range

Control Register

Bit Name Default Function

07 0
D6 RING2 0
05 RINGl 0

D4 RINGO
03 STATIC_CPU 0

> Number of RI pulses reguired
for tUfnon
/ default ~ 1
For static CPU's

50

55

60

65

NMIMASK Register
This register 55 masks the various NMI sources. In the

default state only the INMI input can generate NMI.

Bit
Default ~ame Function

06 OS2 Mask INMI input 0
D5 MSK_SUSPENO Mask SUSPEND timeout
04 MSK_ SLEEP Mask SLEEP timeout
D3 MSK_ LLB Mask LLB input
D2 MSK_ LB Mask LB input
01 MSK_ EXT Mask EXT input

OSC Register

Bit Name Default Function

D7 OSCDIV3
D6 OSCDIV2 OSC input divisor -1
D5 OSCDIVl 0 default code ~ 11 01

(divisor ~ 14)
D4 OSCDIVO /
D3
02 SLWREF 0 Slow refresh DRAM
D1 RASWIDTHl 0 *RAS pulse width MSB
DO RASWIDTHO 0 *RAS pulse width LSB

Referring to register 56, OSCDIV[O ... 3] plus one is the
OSC frequency in MHz, except for OSCDIV[O ... 3]=13,

6,079,025
15

the default, indicates 14.318 MHz. SLWREF is set when
slow refresh DRAM is used. RASWIDTH[O ... 1] indicates
the width of the *RAS pulse in units of OSC periods. The
default value is 0 which disables refresh in SUSPEND state,
and no RAS/CAS is generated. Values of 1 to 3 indicate 1 to 5

3 OSC periods.
PWR Registers

The bits 0[0 ... 7] in these registers 57 through 60
correspond directly with the power control outputs Vp[O ...

16
EL timeouts in timers 66 and 67 will be retriggered when
entering the ON state from SUSPEND or OFF. The retrigger
lines from STATE logic 23 to the timers are not shO\~m in
FIG. 3 for clarity.

In FIG. 3, the STATE logic 23 recieves the CPU data bus
0(0 ... 7) from bus 5 for receiving state commands issued
by the software monitor 80 of TABLE 2. The STATE logic
also receives the address detection line 76 from activity
monitor 16 which enables the STATE logic 23 to receive the

10 state commands from the sofnvare monitor when addressed
over the bus 5.

7]. In a particular state, the corresponding PWR register
outputs control the VP lines 23. The exception is VPO and
VPl which are LCD and EL power, respectively. These
outputs are AND'ed in AND gates 41 and 42 with the LCD
and EL timer outputs prior to driving the lines 33. All bits are
then exclusive NOR'ed in gates 35 with the POLARITY 15

register 61, and the result drives the lines 33. The default
values for these registers are as follows, where 1 indicates
that the controlled device is on:

PWRON
PWRDOZE
PWRSLEEP
PWRSUSPEND

POLARITY Register

FFh
FFh

OOh
OFh

This register 61 controls the polarity of the VP outputs. If
a logic low is required on a VP line to turn the external
device on, the corresponding bit in the POLARITY register
61 must be low. If a high is required, set the bit high.
Timer Registers

The nonzero value loaded into one of the timer registers
63 through 68 is the actual timeout minus one. A zero
disables the timeout. Therefore a 4 bit timer can be set for

If the SLOW bit in the control register 53 is false, the
CLKOUT rate on line 28 will be full speed. If the SLOW bit
is true, CLKOUTwill be as specified by the CCLK[O,I] bits
in register 53. This clock control allows the user to save
power, for example, when running non-computationally
intensive applications such as word processing.
DOZE State

The DOZE state is entered from the ON state when the
20 activity monitor 16 has not detected activity and therefore

has not provided the ACTIVITY signal within the time, Tl,
specified by the DOZE timer 63. In the DOZE state encoded
on lines 34, the power control outputs VP[O ... 7] from unit
17 are controlled by the PWRDOZE register 58. If a

25 non-static CPU 4 is used, the clock on line 28 will be slowed
as specified by CCLK[O,I] in register 53.

If a static CPU 4 is used, CLKOUT on line 28 will stop
in the low state immediately following a non-DMAmemory
read instruction, as indicated by * SI going high while * AEN

30 is low, so that no chip select will be low. If INTR goes high,
CLKOUT will be enabled until after EOI is written to the
interrupt controller with INTR false. If INMI goes high,
CLKOUT will be enabled. If an internally generated NMI

a timeout from 1 to 15 time units. Reading a timer register 35

returns the value that was last written to it, not the actual
time remaining. The default values are tabulated below:

occurs, CLKOUT will be enabled until the NMIMASK
register 55 is read. If any DRQ goes high, CLKOUTwill be
enabled until after the next memory read instruction with
AEN and all DRQ inputs false. The enable request functions
for INTR, INMI, internal NMI and DMA are separate and
CLKOUT is enabled when any event requests it, so that an

Timer Range

DOZE 1-15 sec
SLEEP 1-15 min
SUSPE;-..rD 5-75 min

Default

5 sec
2 min
o (disabled)

40 interrupt handler in CPU 4 will run to completion even if it
is interrupted by a DMA request. These enable request
functions are independent of the activity monitor and the
ACTMASK register 54. Enabling CLKOUT does not cause
the PMU 15 to leave DOZE, unless the activity monitor 16

LCD 1-15 min
EL 1-15 min

TED
TBD

45 is subsequently triggered. If this trigger occurs, the PMU 15
will enter the ON state and the enable request logic will be
cleared.

OUTPUT Register
The OUTPUT register 62 is a read only register. For each

VP[O ... 7] output that is on, the corresponding bit in the 50

OUTPUT register will be set.
The control and logic functions for the activity monitor

16, the state logic 23, the NMI logic 21, and other compo­
nents of FIG. 3 are conventional logic circuits for imple­
menting the logic and control functions hereinafter 55

described or alternatively are the software logic of TABLE
1.
ON State

SLEEP State
The SLEEP state is entered when the PMU 15 has been

in the DOZE state for the time, TI, specified by the SLEEP
timer 64 and no ACTIVITY signal has occurred. In the
SLEEP state, the CLKOUT operation is the same as in
DOZE. The power control outputs are controlled by the
PWRSLEEP register 59.

Alternatively, the PMU can be programmed to generate
NMI and remain in DOZE state instead of automatically
entering SLEEP.
SUSPEND State

The SUSPEND state is entered when the PMU 15 has
been in the SLEEP state for the time, T3, specified by the
SUSPEND timer 65 or when a power check detects low
battery signals, LB or LLB. The SUSPEND state is entered
after these conditions only when the CPU 4 wTites the code
for SUSPEND to the STATUS register 40 and this operation

Referring to FIG. 4, the ON state is entered from the
SUSPEND or OFF state when the *RESET input is low, and 60

also when one of EXT, RTC or RI goes high if ACPWR is
true or LB is false. It is entered from DOZE or SLEEP when
the activity monitor 16 detects activity with addresses in the
predetermined address set. In the ON state encoded on lines
34, all power control outputs VP[O ... n] will be controlled 65 requires software support because in SUSPEND the CPU

operation is affected. In SUSPEND operation, CLKOUT is
the same as CLKI. The power control outputs are controlled

by the PWRON register 57. Upon entering the ON state, the
DOZE timeout timer 63 will be retriggered. The LCD and

6,079,025
17 18

by the PWRSUSPEND register 60. In SUSPEND, the CPU
4 and the device (for example, a switch) which generates the
system reset signal must be powered off. Only activity on the
EXT, RI or RTC inputs can cause an exit from SUSPEND,
and the new state after exit will be ON. When the reset 5

counter output of divider 44 is divided to produce 256 Hz
which is used by the refresh control logic 48. Further
dividing in divider 46 produces 32 Hz for slow refresh to
refresh control logic 48, and 8 Hz and 1/(7.5) Hz for use by
the timers 63, 64, 65 and 68.

circuit power is restored, it will reset the CPU 4, which will
then execute a warm startup routine in a conventional
manner. DRAM refresh may be enabled in SUSPEND. If
DRAM refresh is not enabled, the PMU 15 does not need
OSC from unit 43 in SUSPEND, and gates it off internally
to minimize OSC power consumption. The OSC output will
stay low. The bus interface is inhibited, and the data bus 5
is tristated.
OFF State

The OFF state is entered when the CPU 4 writes the code
of OFF (OFFh) to the STATUS register 51. It is also entered
5 seconds after the EXT input goes high if the NMI is not
serviced.

The OFF state is meaningful only when the PMU 15 is
powered from a battery while the rest of the computer 3 is
turned off. This type of power connection is necessary only
if the PMU 15 must awaken the system from the OFF state
by activating VP outputs on lines 33 in response to transi­
tions on the EXT input. If this function is not required, then
the PMU 15 may be powered off when the system is
powered off, and the OFF state as described below is not
required.

In the OFF state, all outputs from the PMU 15 are either
low or tristated, and all devices other than PMU 15 in the
computer 3 are powered off. Any inputs will have pulldowns
so that floating inputs, if any, ""ill not cause increased power
dissipation. Only activity on the EXT, RI or RTC inputs can
cause an exit from OFF, and the new state ""ill be ON. The
bus 5 interface is inhibited and data bus 5 is tristated.
Activity Monitor

The activity monitor 16 includes an address detector 73
which receives addresses from bus 5 representing the
address activity of the CPU 4. The address detector 73
receives, for example, control lines and address lines SA(O

Timers
There are six timers in the PMU 15, namely, DOZE timer

63, SLEEP timer 64, LB (low battery) timer 68, SUSPEND
timer 65, EL (backlight) timer 66, and LCD timer 67. Each

10 of the six timers a 4-bit register loadable by CPU 4 over bus
5. Setting a timer register to 0 disables it; setting it to a
nonzero value enables it. If enabled, certain timers are
triggered by the transition to the ON state. Individual timers
are also triggered by events specific to their functions. Some

15 timers are retriggerable, timing out at a programmable time
following the last trigger.

The DOZE timer 63 is programmable from 1 to 15
seconds with a resolution of 1 second, and the SUSPEND
timer 65 is programmable from 5 to 75 minutes with a

20 resolution of 5 minutes. All other timers are programmable
from 1 to 15 minutes ""ith a resolution of one minute. There
is a quantization error associated with retriggering any timer.
This error is a quantization error associated v.ith retriggering
any timer. This error v.iIl cause the actual timeout to be up

25 to 1fs of the resolution of the timer longer (but never shorter)
than the programmed value. The error does not vary with the
programmed value.

The LCD timer 66 and the EL timer 67 are retriggerable.
The timer outputs are AND' ed in AND gates 41 and 42 with

30 the power control bits selected by the power control multi­
plexer 76 according to the current PMU state to control the
LCD (VPO) and EL (VP1) power control outputs to EXOR
35. This operation provides the flexibility to turn the EL and
LCD outputs off when the associated timers 66 and 67 time

35 out, or to control the outputs in any PMU power­
management state under control of multiplexer 76.

The DOZE timer 63 is retriggerable and is triggered by
the activity monitor ACTIVITY output in the ON state, and
triggers the transition to DOZE state when it times out.

The SLEEP timer 64 is triggered when the DOZE state is
entered and is cleared when the DOZE state is exited. Timer
64 either generates NMI or triggers the transition to SLEEP
state when it times out.

. . . 9) from bus 5 for sensing when those addresses are 40

within the predetermined address set. The predetermined
address set is defined, for example, by an address set
specified by ACTMASK register 54. The detector 73 com­
pares or masks the address set specified by register 74 with
the addresses on bus 5 and provides an address detect signal

The SUSPEND timer 65 is triggered when the SLEEP
45 state is entered and is cleared when SLEEP is exited. If

on line 76 to the logic 77. The logic 77 receives the other
inputs to the activity monitor 16 and combines them, using
conventional logic circuitry, to provide three outputs.

The three outputs provided by activity monitor 16 are
produced by conventional logic or by software as shown in 50

TABLE 1. The EXTRIG output is a function of keyboard
activity only and is used to retrigger the EL backlight timer
67. The LCDTRIG output is true for keyboard activity or
video memory writes, and retriggers the LCD timer 66. The
ACTIVITY output is an OR function of a programmable 55

selection of different activities specified in the ACTMASK
register 54. When active, this output returns the PMU 15 to

unmasked, an NMI v.ill be generated when it times out.
The LB timer 68 is enabled when ACPWR is false (no AC

power). Timer 68 is triggered when LB is first detected. If
unmasked, NMI is generated by the LB timer 68 output once
per minute when it times out, until a period of one minute
elapses during which LB remains continuously false. The
NMI cause will be identified as an LB or LLB interrupt.
Software can maintain a counter and display a message once
per X interrupts. It can also monitor LLB and shut the
computer down after Y interrupts. It can also monitor LLB
and shut the computer down after Y interrupts with LLB
true.
NMI

The PMU unit 15 OR's together a number of internally
the ON state and retriggers the DOZE timeout timer 63. The
activity monitor 16 does not produce the ACTIVITY output
in response to accesses to the registers of PMU 15.
OSC Programmability

The OSC frequency of refresh control unit 20 provides the
timebase for the timers and the refresh for DRAM memory

60 generated NMI requests to produce the NMI output on line
27. These requests can be masked by bits in the NMIMASK
register 55. The INMI input comes from conventional exter­
nal NMI-generating logic such as a parity detector, and can

11. The PMU 15 may be programmed to accept a range of
OSC frequencies. The OSC frequency of oscillator 43 is fed 65

to a counter 44 which divides it by a divisor which is
programmed in the OSC register 56. The programmable

be OR'ed with the internal NMI requests to generate NMI
when unmasked by the OS2 bit in the NMIMASK register
55. The NMI output on line 27 generally goes to the CPU
NMI input, except on OS2 systems where it must go to an

6,079,025
19 20

EXT is a rising edge sensitive input, intended for use with
an external pushbutton. A rising transition on this input
while the PMU 15 is in OFF or SUSPEND will force the

IRQ. The NMI CAUSE code bits in the Status register 40
indicate the cause of the NMI on line 27. An internally
generated NMI is cleared by reading the NMIMASK reg­
ister 55.

NMI may be generated to indicate a low battery when
ACPWR is false.

PMU 15 to the ON state. A transition in ON, DOZE or
5 SLEEP will generate NMI.

If the MSKSLEEP bit is cleared, the PMU 15 will
generate NMI when the SLEEP timer 64 times out and
remain in DOZE instead of entering SLEEP.

NMI is also generated when the SUSPEND timer 65
times out. Software can then save status and go to SUS- 10

PEND or OFF state.
A high on the EXT input while not in the OFF or

SUSPEND state will generate NMI. Software can then save
status and go to SUSPEND or OFF state. If the NMI is not
serviced within 5 seconds, the PMU 15 assumes there is no 15
software support for SUSPEND and will tum all power off
and enter the OFF state.
Refresh In SUSPEND State

Refresh is enabled by setting the RASWIDTH[O ... 1]
bits in the OSC register 56 to a nonzero value. This enables
OSC to run in SUSPEND mode, and the RASWIDTH value 20
also sets the width of the *RAS pulse in units of OSC clock
periods. Slow refresh is enabled by setting SLWREF high.
The PMU 15 generates *MRAS and *MCAS signals to mux
32 to refresh DRAM while the CPU is powered off or being
reset. When the CPU is active, the *PCRAS, *PCCAS 25
signals on lines 30 from the PC controller 13 are selected by
multiplexer 30 to provide the *RAS, *CAS signals on lines
29. *REFRSEL on line 72 will go low to indicate that the
PMU 15 is controlling refresh and high for PC controller 13
control.

If enabled, the DRAM refresh outputs are active in 30

SUSPEND. When entering SUSPEND, the PMU 15 imme­
diately generates a burst of 1024 CAS before RAS refresh
cycles. A burst of 256 cycles is then repeated every 3.9 ms
if SLOWREF is false or every 31.25 ms if SLOWREF is
true. After entering the ON state from SUSPEND, the PMU 35
15 generates bursts of 1024 refresh cycles over 2.9 ms. This
operation allows as much time as needed for CPU power
stabilization, crystal oscillator startup and CPU reset. When
the CPU is ready to take over control of the DRAM, it must
poll the SUPPLY register 38 until the DRAMRDY bit goes
high. The PMU 15 senses the polling operation as a request 40

from the CPU for DRAM control, and at the end of the first
refresh burst following a CPU I/O read of the SUPPLY
register 38, the PMU 15 sets *REFRSEL high to return
control of the DRAM to the CPU. The DRAMRDY bit is
essentially the same signal as *REFRSEL.

The purpose of the bursts when entering and leaving 45
SUSPEND is to eliminate violations of the refresh rate spec
when switching between external refresh row address gen­
eration (DMA cycles during ON) and internal row address
generation (CAS before RAS during SUSPEND).

Pseudo static RAM refresh is also supported. When 50
*REFRSEL goes low, *RAS can drive *RFSH low for auto
refresh mode. The burst refresh will assure that switching
between external and internal refresh will not violate the
refresh rate spec. Self refresh can also be used by driving
*RFSH low when *REFRSEL is low, but other logic will
have to generate the refresh burst when entering and leaving 55
SUSPEND, if required.
External Wakeup Inputs

RI is a rising edge sensitive input, to state logic 23 from
a modem ring indicator RI output of a peripheral 7. The
number of rising edges required for this input to be recog- 60

nized is specified in bits D[4 ... 6] of the Control register
53. The default is one transition. If these bits are zero, this
input is disabled. If enabled, a rising transition on this input
will force the PMU 15 to the ON state.

RTC is an edge sensitive wakeup-alarm input from a real
time clock in CPU clock control 49 of FIG. 3. A rising or 65

falling transition on this input will force the PMU 15 to the
ON state.

EXT is debounced in ON, DOZE and SLEEP in a
conventional debouncer circuit 36. A rising edge immedi­
ately generates NMI but only if EXT has been sampled low
at least twice by a 32 Hz debounce clock from counter 46
prior to the rising edge. The debounce clock is derived from
OSC 43 and therefore may be stopped in SUSPEND and
OFF, so the PMU 15 will not enter these states until the
debounce operation is completed. To prevent resuming due
to contact bounce on the release of a pushbutton, the PMU
15 will defer execution of a change of state command from
the CPU 4 until after the EXT input has been sampled low
twice by the debounce circuit 36. This operation is typically
transparent to software. For example, if the user presses the
button in ON, the PMU 15 will generate NMI, and the CPU
will write the command to enter SUSPEND and then
execute a halt instruction. Nothing will happen until after the
pushbutton is released, at which time the PMU 15 will enter
SUSPEND.

Resume and Power On

The PMU 15 has its own private * RESET signal, typically
from an external RC network detector 71 which detects
VCe. This signal resets only the PMU 15 when power,
VCC, is first applied to it. A separate reset signal must be
generated by external hardware for the CPU when entering
the ON state from SUSPEND or OFF state. At power on, the
CPU 4 must read the RESUME bit in the Status register 51.
RESUME will be cleared if the startup is a cold start from
OFF and will be set to indicate a warm start (resume) from
SUSPEND. If RESUME is cleared, the wakeup bits WU[O
... 1] in the Status register 51 will be zero, otherwL<;e they
will indicate which external input caused the resume. The
RESUME bit will be cleared after the Status register is read.

Clock Switching

The clock switch control 69 is provided to switch input
clocks CLKlIN and CLK2IN clocks to output clocks
CLKI0UT AND CLK20UT for peripherals. The CLKI and
CLK2 operations are the same. For example, the CLKlIN is
passed to the CLKI0UT output by control 69 in ON and
DOZE. When entering SLEEP mode, CLKI0UT will stop
synchronously in the low state. CLKlOUT will start syn­
chronously when returning to the ON state.

Low Battery Detection

The LB and LLB inputs indicate low battery and low low
battery as generated by a conventional battery level detector
in power supply 9 of FIG. 1. The polarity of these inputs is
programmable by the LBPOL line which can be strapped
low or high. If this line is high, LB and LLB are high true.
If low, these inputs are low true. The status of the LB and
LLB lines after polarity correction can be read in the
SUPPLY register 38. A low battery indication can generate
NMI.

Power Sequencing

To minimize turnon transients, the turnon of VPl (EL
power) is delayed by 4 to 8 ms after OSC begins clocking,
when entering the ON state.

Program Listing

A computer program embodiment of the hardware moni­
tor for the power management unit appears in the following
TABLE 1.

21

TABLE 1

Power Management Software

Copyright - 1989 Vadem, Inc.

All Rights Reserved.

C:

.xlist
include romeq.dec
include- romdef.dec
include seteq.dec
include clkeq.dec
include 8250eq.dec
include prneq.dec
include crteq.dec
include- vg600.dec
include notes.dec
include kbdeq.dec
.list
include pwreq.dec
CMSG <Power Management BIOS Kernel>
pmdata segment para public 'pmdata·
extrn oll_power_status:word
extrn sleep_power_status:word
extm lb_event_handler:dword
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
pmdata
dataO
extrn
extrn
dataO

lb_event mask:word
doze_timeout:byte
doze_count:byte
sleep_timeout:byte
sleep_count:byte
kbd_timeout:byte
kbd_count:byte
pWf_off_timeout:word
p",rr_off_count:word
led_time on:byte
led_time_off:byte
led_next event byte
led_cyde_count:word
lb_def_event_type:byte
lb_event_rep:byte
lb_event_count:byte
sleep_save_buf:byte
pm_fiags:byte
second_counter:byte
minute_counter:byte
one_shot_handler:dword
one_shot_timer:dword
Ib_Iast_event:word
pm_ram_chksum:word
pffi_save_ss:word
pNi_save_sp:word
pm_resume_stack:byte
ends
segment public 'DATAO'
crt addr:word
reset_flag:word
ends

code segment word public 'code'
assume- cs:code, ds:pmdata
public power_management
:power_mallagement_init,power_management_enable
public pm_timer_hook,pm_kbd_hook
public pm_euter_sleep, read_com, write com
public write_crt_reg, read_crt_reg
public suspend, resume
extm dataOp:word
extrn get_pm_ds:near
extrn alloc_pll1_ds:near
extrn default_low_battery_alarm:near
extrn rd_rtcw:near
extrn Wf_rtcw:near
extrn rd_rtcb :near
extrn wr_rtcb:near

extrn play _song:llear
extrn set_ibm_timer:near
extrn checksum:near

6,079,025
22

6,079,025
23

TABLE i-continued

extrn oem_pm_init:near
extrn oem_pm~et_status:near

extrn oem_pm_extensions:near
extrn oem_pffi_halt:near
extrn oem_pm_activity?:near
extrn
extrn

extrn
extrn
extrn
extrn
extrn
extrn
extrn

extrn
extrn
extrn
extrn

extrn

extrn
extrn
extrn

extrn
extrn
es_arg
ah_arg
al_arg
ax_arg
cx_arg
cl_arg
ch_arg
dx_arg
dl_arg
dh_arg
bh_arg
bl_arg
bx_arg
bp_arg
si_arg
di_arg
page

oem_pm_reset_activity:near
oem_pm_toggle_led:near
oem_pffi_turu_oll_peripherals :llear
oem_pm_turn_ofl:~peripherals:near

oem_pffi_power_off:near
oem_pffi_suspend:near
oem_pffi_blank_ video :near
oem_pm_restore_ video:near
oem_pffi_save_peripherals :near
oem_pffi_restore_peripherals:near
oem_pffi_save_video_state:ne-ar
oem_pID_res tore_ video_s tate :near
oem_pm_kbd activity?:near
oem_pm_reset_kbd_activity:near
oem_pm_make_power_off_noise:near
oem_pm_make_low _battery _noise:near
oem_pm_defaults :near
oem_pm--£et_hw:near
oem_pm_get_nmi_handler:near
equ word ptr [bp+ 16]
equ byte ptr [bp+ 15]
equ byte ptr [bp+14]
equ word ptr [bp+ 14]
equ word ptr [bp+ 12]
equ byte ptr [bp+ 12]
equ byte ptr [bp+ 13]
equ word ptr [bp+ 10]
equ byte ptr [bp+ 10]
equ byte ptr [bp+ 11]
equ byte ptr [bp+09]
equ byte ptr [bp+08]
equ word ptr [bp+08]
equ word ptr [bp+04]
equ word ptr [bp+02]
equ word ptr [bp+OO]

pwrmgt_fx_table label word
dw pm_get_profile
dw pm_get_rtc_profile
dw pm_set_profile
dw pm_set_rtc_profile
dw pm_event_handler
dw pm_one_shot_event_handler
dw pm_get_pm_status
dw pm_enter_sleep
dw oem_m_power_off
dw oem_m_suspend

pwrmgt_fx_table_len equ ($-pwrmgt_fx_table)/2

power_management_init

Called to initialize the Data Structures for

;get current profile
;get profile in rtc
;set active profile
;update rtc profile
;install evt handler
;install evt handler
;get status
;enter sleep
;power off
;suspend

the power management kerne1. Alocate a Data Segment
initialize variables, install the default
Low Battery event handler, and call oem_pm_defaults
to setup any system specific hardware or default
settings. Does not enable the power management yet ..

power_management_init proc
dbMESSAGE ITEST8+ITESTh <power_management_init>
call al1oc_pm_ds ;now sets ds ..
sub
mov
mov
mov
mov
int
push
mov
int
mov
call
mov
mov

ax, ax
pm_flags, al
second_counter, 18
minute_counter, 60 ;init this stuff ...
ax,(SYS_PWR_~1GT shl 8) or GET_RTC_PWR_PROFILE
TASKIl'<!
dx ;save power off timeout
ax,(SYS_PWR_MGT shl 8) or SET_PWR_PROFlLE
TASKIl'<!
ah, CM_ALM_REP ;get alarm repeat
rd_rtcb
cl, al ;input param
ah, C'vI_DEF _ALM

24

6,079,025
25

TABLE i-continued

call rd_rtcb
mov bI, a1
and bx. LEE LBl or LBE LB2 ;default event type ...
pop dx ;restore pvtT_off_timeout
mav ax.(SYS_PWR_MGT shl 8) or INSTALL_LP_EVT_HANDLER
push cs
pop es
mav di. offset default_low_battery_alarm
int TASKIl'.i
jmp oem_pm_defaults

power_management_init endp

Start Power I\1anagement ...

After Initial Power Up Self Tests are completed.
power management is enabled. Do not enable until
it is time to boot the system.

power_management_enable pIoe
push ds
call get_pm_ds ;load ds pointer
or pm_flags, PM_ENABLED
pop ds
ret

power_management_enable endp

Power Management dispatch routine

Programmatic interface to the Power :rvlanagement KerneL
used to read lalter management parameters.

This function is installed as Int iSh (task management)
function DeFh.

Po'\ver_Management pIoe near
sti
cmp
jnz
jmp

@@:
jae
push
push
pusha
mov
call
sub
shl
mov
call
popa
pop
pap
retf

md_err:
stc
retf

aI, PM_OEM_FX
@F
oem_pID_extensions
cmp al,pwrmgt_fx_tab1e_len
md err
ds
es

bp,sp
get_pm_ds
ah,ah
ax,l
si,ax
pwrmgLfx_table[si]

es
ds
2
mov ah,86h

2
Power_~fanagement endp
page

Return to caller the current active profile.
This may have been modified by Set profile calls.

pm~et_profile:

dbMESSAGE ITEST8+fTESTb <pm_set_profile>
moy ax,on_power_status
mov si_arg~ ax
moy ax, sleep_power_status
moy di_arg, ax
mav al,lb_def_event_type
mov bl_arg, al
rrioy al,kbd_timeout
mov bh_arg, al
moy al,doze_timeout
mav cl_arg, al

;extended function??
;no ...

;do private functions

;not here

;stack addressing ...
;load ds pointer

;execute the_function

;return
Jx err

;saye flags

26

6,079,025
27

TABLE i-continued

mov aI, sleep_timeout
mov ch_arg, al
mov ax,pwr_off_limeout
mov dx_arg, ax
de
ret

Setthe current active profile.
Alter the desired parameters. Do this by calling
get profile, and then changing just those parameters
and then calling set profile

pm_set_profile:

page

dbMESSAGE ITEST8+ITESTh <pm_set_profile>
mov doze_timeout, cl
mov sleep_timeout, ch
may Ib_def_event_type, bl
may kbd_timeout, bh
mov p'\vr off_timeout, dx
mov pWf_off_count,O
mov ax, si_arg
mov on_power_status, ax
mov ax, di_arg
mov sleep_pu\ver_status, ax
mov ax, si_arg
call oem_pm_tufll_oll_peripherals
de
ret

Return to caller the current active profile.
This may have been modified by Set profile calls.

pm---l5et_profile:
dbMESSAGE ITEST8+ITESTh <pm_get_profile>
may ax,oll_power_ status
mov si_arg, ax
mov ax,sleep_power_status
mov di_arg, ax
may al,lb_def_event_type
may bl_arg, al
mov al,kbd_timeout
mov bh _arg, al
mov al,doze_timeout
mov d _arg, al
may al,sleep_timeout
mov ch_arg, al
may ax,pwf_off_timeout
mov dx_arg, ax
dc
ret

Set the current active profile.
Alter the desired parameters. Do this by calling
get profile, and then changing just those parameters
and then calling set profile

pm_set_profile:
dbMESSAGE ITEST8+ITESTh <pm_set_profile>
mov doze_timeout, cl
mov sleep_timeout, ch
mov Ib_def_event_type, bl
mov kbd_timeaut, bh
mov pwr_oft~timeout, dx
mov pWf_off_count,O
mov ax, si_arg
mov oll_power_status, ax
mov ax, di_arg
mov sleep_power_status, ax
mov ax, si_arg
call oem_pm_tufll_on_peripherals
de

~clear countdown

;clear countdown

28

29

TABLE i-continued

ret
page

Read Back current prbfile stored in the NV-RAM.
; This profile is the default active at power up

pm_get_rtc_profile
dbMESSAGE ITEST8+ITESTb <pm_get_rtc_profile>
mov ah,CM_OPCW
call rd _ftew

inov si_arg~ bx
mov ah,CM_SPCW
call rd _ftcw

mov ill_arg, bx
mov ah,CM_DOZE
call rd _ftcw

mov cx_arg, bx
mov ah.CM ALM REP
call rd _ftcw

mov dx _arg, bx
mov ah,CM_DEF _ALM
call rd _ftew

mov bx_arg, bx
dc
ret

Set the current NV-RAM profile.
Alter the desired parameters. Do this by calling
get rtc profile, and then changing just those parameters
and then calling set rtc profile
This profile will be active next hard reset.

pm_set_rtc_profile:

page

dbMESSAGE ITEST8+ITESTb <pm_set_rtc_profile>
mov ah, CM_OPCW
mov bx, si_arg
call WI_ftcW

mov ah, C'vI_SPCW
mov bx, di_arg
call wr_ ftew

mov ah,CM _DOZE
mov bx, cx_arg
call WI ftew -

mov ah,CM_ALM_REP
mov bx, dx_arg
call WI_ftew
mov ah.CM DEF_ALM
mov bx, bx_arg
call wr _ftcW

dc
ret

Install a Low_Battery Event Handler.
Specify the Event criteria, which dictates
under which conditions the Event Handler is called,
and specify a repeat rate for recurring conditions.
Also specify a power off/ Suspend timeout
after the detection of a Low, Low Battery condition

pm_eve nt_handler:
dbMESSAGE ITEST8+ITESTb <pm_event_handler>
xchg [lb_event_mask],bx
mov bx_arg, bx
xchg word ptr [lb_event_handler],di
mov di_arg, di
mov bx.es_arg
xchg w~rd ptr [lb_event_handler+2l,bx
mov es_arg, bx
xchg [lb_event_rep], d
mov d_arg, d
xchg [p\Vf_off_timeout], dx
mov dx_arg, dx

6,079,025
30

and
mov
or
jz
or

31

TABLE i-continued

[pm_flags],not PYl_LB_HANDLER
ax, word ptr [Ib_event_handler]
ax, word ptr [lb_event_handler+2]
@F

6,079,025

@@:
dc
ret

[pm_flags],PM_LB_HANDLER
mov [Ib_event_count], 0 ;time to do ...

Certain applications and/or management functions
may wish to be notified if a timebut period occurs
after a certain event. This function provides
a 55 !vlsec resolution timing function for timing
events, and acts like a hardware one-shot; timing out
calling the one shot handler, and cancelling the
timer until it is reloaded again.

plll_one_shot_event_handler:
dbMESSAGE ITEST8+ITESTh <pm_one_shot_handler>
mav word ptr [one_shat_handler],di
mov bx:es_arg
mov word ptr [one_shat_handler+2],bx
mov word ptr [one_shat_timer], cx
mov word ptr [one_shat_timer+2], dx
mov ai, [pm_flags]
or cx: dx

;get status
~cancel??

jz os_cancel ;yes ...

test
Not a Cancel request! so check if one shot is rolling

ai, PM_ONE_SHOT_HANDLER
jnz
and
mov
or
jz
or

@@
de
ret

os_err
ai, not PM_Ot'>'E_SHOT_HANDLER
bx, word ptr [one_shot_handler]
bx, word ptr [one_shot_handler+2]
@F
ai, PM_ONE_SHOT_HANDLER
mav [pm_flags], al

os err: mov ah_arg,86b
stc
ret

os_cancel:
and
mav
de
ret

ai, not PM_Ot'>'E_SHOT_HANDLER
[pm_flags], al

Return the status of the System Status port.
this port has twa defined bits:

bit 0 ~ Low Battery
bit 1 = Low, Low Battery

bit 0 ~ Low Battery
bit 1 ~ Low, Low Battery

Other bits have OEM specific meanings
pm_get_m_status:

~already active

dbYlESSAGE ITEST8+fTEST.b <pm_get_pm_status>
call oem_pm_get_status
mov bx arg, ax
ret

: This function sets up a sleep command at the
; next timer interrupt.
pm_enter_sleep:

or pm_flags, PM_SLEEP
ret

assume cs:code,ds:dataO,es:pmdata

;say to sleep

32

6,079,025
33

TABLE i-continued

This routine is used to read the state of a
video register

inputs: bl

outputs: ax

read_cIt_reg pIoe near
mov dx.crt addr
mov al,bl
out dX,al
inc dl
in al,dx
mov ch,al
dec dl
mov al,bl
inc al
out dx,al
inc dl
in al,dx
mov ah,ch
ret

read_crt_reg endp

; This routine is used to read the status of a
8250 serial port and save it in memory

read_com pIoe
add dl,icr
in al,dx
or al,DLAB
jmp $+2
out dx,al
sub dl,lcr
in aX,dx
stosw
add
in
and
jmp
out
sub
mov

rcoml:
inc
stosb
loop
ret

dl,icr
al,dx
al,not DLAB
$+2
dx,al
dl,lcr-ier
cx,6
in al,dx
dx

rcoml

read_com endp

; This routine- is used to read the status of a
Industry Standard Parallel port and save it in memory

read_Ipt proc
add dl,printer_control
in al,dx
stosb
ret

read_Ipt endp
assume cs:code,ds:pmdata,es:dataO

write com

: This routine is used to restore the status of a
8250 serial port from where it was saved in memory

write_com pIoe
add dl,icr
in al,dx
or al,DLAB
jmp $+2
out dx,al

~ address in 6845

= word read

;set addr

;get msb

;set next addr

;get lsb

;save com port in DX

;set dlab to read div reg

;read divisor reg

34

6,079,025
35

TABLE i-continued

sub dl,lcr
lodsw
out dx,ax
add dl,lcr
in al,dx
and al,not DLAB
jmp $+2
out dx,al
sub dl,lcr-ier
mav cx,6

wcoml: lodsb
out dx,al
inc dx
loop wcoml
ret

write _com endp

This routine is used to restore the status of a
Industry Standard Parallel port from
where it was saved in memory

write_lpt proc
add dl,printer_control
lodsb
out dx,al
ret

write_lpt endp

"vrite crt register

This routine is used to restore the status of a
video register from memory

inputs:
bl

ex = word to vlrite
~ address in 6845

write _crt_reg proc near
mov dx,crt addr
mav al,bl
out dx,al
mov al,ch
inc dl
out dx,al
dec dl
mov al,bl
inc al
out dx,al
inc dl
mov al,cl
out dx,al
ret

"",rrite_crt_reg endp
assume cs:code,ds:pmdata,es:nothing
page

In Software Based Power 1vlanagement, this routine
is part of the Keyboard Interrupt chain. It is
used to detect keyboard activity.

Called every KED INT: Set Keyboard Active bit

restore video if necessary

must save regs, take care of ints .

pill_kbd_hook:
dbPC ITEST1+ITESTh "k"
call get_pm_ds
test pm_flags, PM_ VBLANK
jz @F
call oem_pm_restore_video
and pm_flags, not PM_ VB LANK

@@: or pm_flags, PM_KEDAcr

;set addr

;send msb

;set next addr

:send Isb

:get ds
;video blanked out???
:NO
~ turn 0 n screen
:clear blank flag

:say keyboard had

36

6,079,025
37

TABLE i-continued

activity
ret

page

In Software Based Power Management~ this routine
performs the function of the Timer and Dispatcher
It is part of the Timer Interrupt chain1 after
the timer end of interrupt (EOI) has been sent.

Checks for system activity and DOZES! SLEEPs

Entry conditions: eli, ds,es,pusha saved, ds=dataOp
This routine- contains two threads of code,
which execute independently.

COU:\lER thread:

The COUNTER thread checks for the one shot,
handles the second and minute- counters, and looks
at the iow battery level, and dispatches the LB
event handler. It then looks at the DOZE flag,
and if doze is active, returns without changing
the activity status; so that the code after the DOZE
HIT can function.

DOZE thread:

The DOZE thread runs when an activity check
shows no activity has been present for the
entire DOZE timeout. The processor clock
is slowed, the DOZE bit is setl interrupts
are enabled, and the CPU is put into HLT.
When HIT is exited 1 (18.2 hz) the activity
status is checked, to see if DOZE should be
terminated. If activity is present,
the DOZE flag is cleared and the
activity exit is taken.
If activity is not present, a test is made
for the SLEEP timeout. If the SLEEP timeout
has elapsed, SLEEP is entered, after saving
the peripheral state. Otherwise, the CPU
is halted, and the DOZE loop is reentered,
and the cycle continues until
terminated by ACfIVITY or SLEEP.

even
pm_timer_hook:

cli
call
test

inz
imp

@@:
ES:DI

get_pm_ds
pm_flags, PM_ENABLED
@F
exit_wo_change
call oem_pm_get_hw

;fast ...

;ints are off .
;establish ds
;running yet??

;no ...
;get hw_caps to

test pm_flags, PM_ONE_SHOT_HANDLER ;have one??
jz ck_sec ;no ...
dec word ptr one_shot_timer
sbb word ptr one_shot_timer,O
jnz ck_sec
and pm_flags, not PM_ONE_SHOT_HANDLER ;dont any more ...
call one shot_handler ;called w/ ints disabled

First, handle the one second dispatching

even
ck_sec:

dec
jz
imp

second_counter
is_sec
exit_wo_change

38

6,079,025
39

TABLE i-continued

Second Rolled, Check Minutes

is sec: mov second_counter,18
db PC ITEST2+ITESTh "'Q"

dec minute_counter
jz @f
jmp not_minute

@@: dbpC fTEST2+ITESTh "("
page

All Code Below is executed once per Minute.
; All ~1inute Counters are decremented here ...

mov minute_counter, 60

Count Down Sleep Timer

Turned On by Entering Doze .
sub ax: ax
cmp sleep_timeout,al
jz Ib_dec
mov
test
jz
dec

@@:

aI, sleep_count
al,al
@F
al
mov sleep_count, al

Count Down low battery event Timer

Rep count set by LB event detection
Ib dec:

cmp
jz
mov
test
jz
dec

@@:

lb_event_rep,ah
kbd_dec
aI, Ib_event_count
ai, al
@F
al
mov Ib_event_count, al

Check For Keyboard Activity

even
kbd_dec:

test es:[dij].HW_CAPS, HWC_KBACT
jz pWf_dec
call oem_pm_kbd_activity?
jnz nokbact
dbPC ITEST2+fTESTh" 'Y"

Count Down Keyboard Timef

Turned On by No Kbd Activity ...
cmp kbd_ timeout,O
jz pwr_ dec
mov all kbd _count
test al,al
jz pWf_dec
dec al
mov kbd_count, al
jnz pwr_ dec
or pm_flags, PM_ VBLANK
call oem_pm_blank_video
jmp short pWf_dec

nokbact:
mov al,kbd_timeout
mov kbd_count, al
call oem_pm_reset_kbd_activity

Count Down Power Off Timer

;ticks per second ... reset

;count minutes ...

;reset

;for resetting
;timeout used??
:NO
;get sleep counter

;dec sleep counter
;reset

;timeout used??
;NO
:dec event counter
;already O???
;yes ...
;dec rep counter

;reset

;doesnt support KB activity
:kbd active??
;yes, normal

;timeout used??
;NO
;get blank counter
~done ...

;dec sleep counter
;reset to 0
;next counter
;say its off ...
;blank the video

reset counter

;clear activity bit

Turned On by LB2 detection below, and powers off
if hw supports it

even
pWf_dec:

40

6,079,025
41

TABLE i-continued

jz
cmp
jz
dec
jnz
dbPC
call

not_po:

not_po
p'\vI_off_timeout,O
not_po
pWf_off_count
not_po
ITEST2+ITESTh "p"
oem_pffi_power_off

dbPC ITEST2+ITESTh 'Y
page

; All Code Below is execute once a Second

even
not_minute:

Check and attend to the low battery indicators ...

Once a Second, we check the Battery Levels via
polling. Since some hardware generate-s an N~n,
we inay not need to do this, Since the NMI will
be invoked at event time.

;doesnt support power off
;Countdown enabled??
;NO
:dec event counter

The Event Handler is assumed not to be fe-entrant,
so it will not be re-entered until the first event
is handled. The next event will trigger as soon as
the PM_IN_LB_HANDLER flag is cleared.

Handler or no, the power off!Suspend Timeout is started
at Low, Low Batterv detection.

test' es:[dilHW_CAPS, HWC LB_NMI
jnz ck_Ied
call oem_pm_get_status
and ax, Ib_event_mask
jz ck_Ib
test pm_flags, PM_LB_HANDLER
jnz ck_ilbh

ck_Ib: mov lb_event_count, 0
entry ...
ck_Iba: test ax, LBE_LB2
off??

jz
jmp short pwr_ct

ck_ilbh:
dbPC ITEST2+ITESTh "v"
test pm_flags, PM_IN_LB_HANDLER
jnz ck_Ib2
cmp ax. lb last_event
jnz ck_fevt
cmp Ib_event_count,O
jnz ck_Ib2
even

ck_fevt:
mov
or
mov
push
call

ax ...

Ib_last_event,ax
pm_flags, PM_IN_LB_HANDLER
bl,lb_def_event_type
ax
lb_event handler

pop ax
mov bl, lb_event_rep
mov lb_event_count, bl

;supports nmi, dont need this
;get this stuff
:need to attend to??
;no ...
:have one??
;yes ...
;clear rep count for re-

;need to start power

:no ...
;still count power off

;Blocked??
;dont reenter

;same event as previously??

;time to repeat??
~no ...

:save event

;default criteria

;do it, LB flags in

;reset
;event rep time

and pm_flags, not PM_IN_LB_HANDLER

Start power off timeout/suspend machine

ck_Ib2:
ofl??

jz
cmp
jnz

pwr_ct:
test
jnz
test
jz
db PC

test ax. LBE LB2

ck_Ied
pwr_off_count,O
ck_Ied
mav ax~ p""\'T_off timeout
aX,ax
pwr_to
es:[dilHW _CAPS, HWC_SUSPEND
ck_Ied
ITEST2+ITESTh "0"

;need to start power

~no ...
;started previously??
;yes ...
:start event
;immediate off/suspend???
:no ...

;doesnt support suspend

42

6,079,025
43

TABLE i-continued

call suspend
jmp exit_w_activity

pwr_to: mov pwr_off_count, ax

Handle LED F1ash Cycles

Some OEMs flash LEOs at different duty cycles to
indicate different operational conditions.

OniOff modulation is provided by this function.

LED flash cycles are handled
during the once per second loop

even
ck_Ied:

test es:[di].HW_CAPS, HWC_LEDS
jz
cmp
jz
dec

ck_activity
led_time_on, 0
ck_activity
led_next_event

delta
jnz ck_activity

LED event time, toggle state, inc counters
call oem_pm_toggle_led
mov aI, led_time_off
jz ck_Ied2
mov ax, led_cycle_count
test ax, ax
jz ck_ ledl
dec ax
mov led_cycle_count, ax
jnz ck_ led I
mov led_time_on, 0

ck _Iedl:
mov al,led_ time _on

ck_Ied2:
mov led_next_event, al

"ext, check if reentering from DOZE timer int

Thread detection logic:
we made it to heTe1 so lets see if we need to
exit to block again in DOZE~ or to process a sleep
command, or perhaps enter doze.

If the DOZE flag is set, this means we entered the
timer hook from doze. we should then exit without
resetting the activity monitor, and let the DOZE thread
see if something happened to run Full Clock speed.

;suspend the machine ...
;yes, run now ...
;counter

;doesnt support LEOs
;LED cycle active??
;no
~dec counter to next

;Non-zero, wait

;NO

;count infinite ...
;yes ...

;dec count every ON .. .
;not timed out yet .. .
;LED cycle NOT active

~reset

If the DOZE flag is not set, check and see if No activity
has been present for the DOZE timeout, and enter DOZE if so.
Othen"rise reset the activity monitor.

even
ck_activity:

test pm_flags, PM_SLEEP
jz @F
call sleep
call oem_pm_halt
jmp wake

@@: test pm_flags, PM_DOZE
jz @F
jmp exit_wo_change

@@:
call

Next, check the activity Monitor =====

dbPC ITEST2+fTESTb "I"

jnz
cmp
jz
dec
jnz
jmp

@@:

oem_pm_activity?
exit_ w _activity
doze_timeout, 0
@F
doze_count
@F
go_doze
sti

;Req to sleep??

;yes ...

;run ...

;\Vere WE dozing ..
;no
; YES, exit to code below

;turns ints off ...
~yes, normal
;doze allowed??
;NO
;timeout??

44

6,079,025
45

TABLE i-continued

exits ...

Various exits to the COUNTER and DOZE threads ...

Depending on Activity conditions
even

exit_w_3ctivity:
;===Exit, and reset the activity monitor

sti
mov aI, doze_timeout
mov doze_count, al

Exit, and reset the activity monitor
exit_w_clear:

dbPC ITEST2+ITESTb" • p"
call oem_pm_reset_activity

exit_wo_change:
ret

page

At this point, we enter DOZE, having fulfilled the
criteria to enter that STATE

even
go_doze:

mov aI, sleep_tilneout
mov sleep_count, al

entered
or pm_flags, PM_DOZE
dbPC ITEST2+ITESTb "d"

slow_cpu:

~start sleep counter
;each time doze re-

;in doze

call oem_pm_halt ;slow cpu, do halt
:~~~~ When we start up here, the sleep_check will already
have

been run and taken the early return
call oem_pill_activity?
jz ck_sleep
and pm_flags, not PM_DOZE
jmp exit_w_activity

Decrement Sleep Counters .

; At this point, we enter check .the SLEEP counters
for criteria to enter that STATE. If not, reenter

the DOZE loop

ck_sleep:
sub
cmp
jz
cmp
jnz
call
and
jmp

page

Sleep

al,al
sleep_timeout,al
slow_cpu
sleep_count,al
slow_cpu
sleep
pm_flags, not PM_DOZE
exit_ w _activity

At this point, we enter SLEEP, having fulfilled the
criteria to enter that STATE

Save, in order:
Video Adaptor state
LCD state
8250 modes
LPT modes
Timer Mask

Sleep:
dbPC
push
push
push
mov

ITEST2+ITESTb "S"
eli
si
ex
eli,oifset sleep_save_buf

;no, ehk sleep
;clear doze flag
;yes, normal

;register zero
;sleep allowed.
:NO
;sleep time??
; no
;enter sleep mode
;clear doze flag
;because we came out ...

46

6,079,025
47

TABLE i-continued

cld
and pm_flags, not PM~SLEEP
assume cs:code,ds:dataO,es:pmdata
push ds
pop es
mov ds,dataOp

save Display State

save COM, LPT setups

mov dx, COMI
call read_com

mav dx, COM2
call read_com
mav dx, LPTI
call read_lpt
mav dx, LPT2
call read_lpt
mav dx, LPTI
call read_lpt
call oem_pffi_save_peripherals

in ai, PICI
stosb ;save
or ai, TMRI'" T
out PICl,al

assume cs:code,ds:pmdata,es:dataO
push es
pop ds

;starting sleep req

;get COMI

;get COM2

;get LPTI

;for private stuff ...

;get timer mask

;disable the timer interrupt

mav es,dataOp ;swap ES/DS
mov ax,sleep_power_status ;turns off stuff ...
call aem_pm_tuffi_off_peripherals ;actually turns aff

stuff ...
ret

page
wake:

Restare Peripheral Status~~~~~~~~~~~~~~~~~~

Because we are here, this means the ·wakeup key
was pressed, or an external interrupt came in.
Time to wake up ...

Restore, in order:
Video Adaptor state
8250 mode
LPTmode
Timer interrupt

eli
mov ax,on_power_status
call aem_pm_tuffi_on_peripherals
mov si,oftset sleep_save_buf
cld

Restore Display State

restore COM and PR~

mov dx,COMl
call write _com

mov dx,COM2
call write _com

mov dX,LPTl
call write _lpt
mav dx,LPT2
call write _lpt
mov dx,LPT3
call write _lpt
call oem_pm_restore_peripherals
push ds
call set_ ibm timer
pop ds
lodsb

; \Vhat to turn on ..
;go do it
;start of save area

;get com port

;get com port

;restare lpt port

;restore lpt port

;restore Ipt port

;for private stuff ...

~restore ticks ...

48

6,079,025
49

TABLE i-continued

page

out PICl,al
pop ex
pop si
pop di
db PC ITEST2+ITESTh "G"
ret

suspend

Swap stacks, to

assume cs:code,es:dataO,ds:pmdata
suspend proe

; reenable interrupts

Save User Stack ~~~~
eli
mov ax,ss
mov pm_save_s8, ax ;save stack
mov ax,sp
mov pm_save_sp, ax
sti

Run On Resume Stack=====
mov ax, ds
mov 58, ax
mov sp, offset pm_resume stack
mov es,dataOp
mov reset_flag, FRESIDRE
call checksum
mov pm_ram_chksum, ax
call sleep
call oem_pm_suspend

Cold Boot code j mps here with BP as no resume
return address ...

check for a valid resume, do so

otherwise, jmp bp to cold boot code
resume:

mov es,dataOp
cmp reset_flag, FRESIDRE
jnz resume_err

;~~~~~ PM data should still be valid ~~~~~
call get_pm_ds ;get datasg
mov ax, ds
mov 58, ax
mov sp, offset pm_resume_stack
call checksum
cmp ax, pffi_ram_chksum
jnz resume_err
call wake

Restore User Stack ~~~~~~~~~
mov ax, pm_save_58
mov Ss, ax
mov sp, pm_save_sp

;setup resume stack

;check this memory
;save in pm_datat
;save it all ...
;do ...

;setup resume stack

;restore devices ..

ret ;to suspend caller
resume_err:

jmp bp ;return to do a hard
reset
suspend endp
code ends

end

50

51

TABLE 2

Program Listing
A computer program embodiment of the software monitor for

the power management unit appears in the following TABLE 2.

Do power management functions of int 16h and int 8h

Copyright - 1990 Vadem, Inc.

All Rights Reserved.

C:

code segment public 'code'
assume cs:code
org 100h

start:
jmp init
even

dw 0378h
label dword

i8 off dw 0
i8_seg dw Offill,
0ld_il0 label dword
il0 off dw o ; vector to old il0
il0_seg dw Offfth
01d_i16 label dword
i16 off dw o : vector to old i16
i16_seg dw Offill,
setr db 0 ~ counter for timeouts
two_crr dw 12*182 ; 2 minute counter
; - - - - Interrupt 10h handler
new_il0:

call busy_check
jmp 0ld_il0

: - - - - Interrupt 8 handler
new_iS:

call
imp

busy_check:
cmp

iz
sub

jz

busy_check
old i8

sctr,O
i8fast_mode
sctr,50
i8fast_mode

inc i8z
rnav sctr,O

: already in faxt mode?

; - - - - Switch to turbo mode here:
i8fast_mode:

cmp two_ctr,O ; if timed out, do nothing
jz i8z ; let IO monitor take over

: - - - Two minutes have not gone by, turn it to ON! - - - -
dec two ctr
push dx
push ax
mav dx,0178h
mov al,OoOh
out dx,al
inc dx
in al,dx ; get status of chip
mav ah,al
and al,3 : LSB 2 bits

iz i8q ; if not 0:'11", nothing to do!
dec dx
mov al,OoOh
out dx,al
inc dx
mov al,ah
and al,not 3 ; set to 0:'11" mode
out dx,al

i8q:
pop ax
pop dx

i8z:
ret

; - - - - Interrupt 16 interceptor
new_i16:
; - - - - Time to switch from OK to DOSE mode? - - - -

push ax
push dx
mov dx,0178h

6,079,025
52

TABLE 2-continued

mav al,OcOh
out dx,al

5 inc dx
in al,dx ; get status of chip
mov ah,al
and al,3 ; LSB 2bits

inz i16 dose ; if not OK, nothing to do!
; - - - - Check to see if time to go into DOSE ...

10 add sctr,24

15

jnc i16q
; - - - - Time to go into DOZE!

dec cl.x
mov
out
inc
rnov
or
out

al,OcOh
cl.x,al
dx
al,ah
al,l
dx,al

; set to dose mode
~ we are now in DOSE mode~

imp short i16setctrs
; - - - We are already in DOSE mode, count fasler!
i16_dose:

20 add sctr,200
i16q inc

i16setctrs:
mov
mav

sctr,Offh
two_ctr,12 * 182

; clamp it

i16q:
25 pop

; 18.2 Hz * 120 seconds

dx
a.x pop

imp
init_str

assume

old i16 ; do the original i16

init:

db 'Power management controller version 1.00.$'
ds:code

30 mav dx,offset init_str
ah,9 mav

int
mav
int
mov

21h
a.x,3508h
21h

35 mov
i8_seg~es

i8_aff,bx

40

45

50

55

60

push
pop
mav
mov
int
rnov
int
mov
mav
push
pop
mov
rnov

ds
es
cl.x,offset new _i8
ax,2508h
21h
ax,351Oh
21h
il0_seg,es
ilO_off,bx
ds
es
dx,offset new _ilO
ax,251Oh

int 21h
mav a.x,3516h
int 21h
mav
mov
push
pop
mov
mov
int
mov
mov
shr
mov
int

i16_seg,es
i16_off,bx
ds
es
dx,ofi'set new_i16
ax,2516h
21h
dx,offset init_str+ 15
clA
dx,cl
ax,3100h
21h

code ends
end start

While the invention has been particularly shown and
described with reference to preferred embodiments thereof,
it will be understood by those skilled in the art that the

65 foregoing and other changes in form and details may-be
made therein without departing from the spirit and scope of
the invention.

6,079,025
S3

What is claimed is:
S4

12. The method in claim 8, wherein said interrupt com­
prises an idle handler. 1. In a computer system comprising as hardware a plu­

rality of system resources including a central processing unit
(CPU), a memory device, and an input/output device, and as
software, an operating system for managing and controlling
said system resources, said system being operable in anyone

13. The method in claim 12, wherein said idle handler
enables background operations while the system waits for

5 input.

of at least three operating modes including a first-mode
having a first power consumption level, a second-mode
having a second power consumption level less than said first
power consumption level, and a third-mode having a third 10

power consumption level less than said second power con­
sumption level; a method for controlling the operating mode

14. The method in claim 12, wherein said idle handler is
a operating system idle handler.

15. The method in claim 14, wherein said operating
system idle handler comprises DOS Interrupt 28h.

16. The method in claim 14, wherein said operating
system idle handler comprises DOS Multiplex Interrupt
(Interrupt 2Fh).

of said computer system comprising:
while operating in said first mode, monitoring said com­

puter to detect execution of a predefined code thread,
and generating a first-mode to second-mode transition
command signal in response to said detecting execution

17. The method in claim 14, wherein said operating
system idle handler comprises DOS Idle Call (Interrupt 2Fh

15 Function 1680).

of a predefined code thread; and changing said oper­
ating mode from said first -mode to said second-mode in
response to said first-mode to second-mode transition 20

command signal; and
while operating in said second mode, monitoring said

computer to detect occurrence or non-occurrence of a
second predefined event, and generating a second­
mode to third-mode transition command signal in 25

response to said second event detection; and changing
said operating mode from said second-mode to said
third-mode in response to said second-mode to third­
mode transition command signal;

said first operating mode characterized by maintaining 30

clocking of said CPU at a first frequency;

18. The method in claim 12, wherein said idle handler
comprises execution of an idle thread, and wherein execu­
tion of said idle thread communicates to other processes in
said computer that the computer system is idle.

19. The method in claim 8, wherein said operating system
call is an operating system multiplex interrupt and is used to
monitor inter-process communications to identify idle class
calls.

20. The method in claim 8, wherein said operating system
call is an operating system multiplex interrupt and is used to
monitor inter-process communications to identify operating
system start-up and shut-down.

21. The method in claim 7, wherein said operating system
call informs the system that the operating system is idle.

22. The method in claim 7, wherein said CPU is executing
a plurality of threads and wherein each of said threads is in
an idle state. said second operating mode characterized by clocking

said CPU at a second frequency less than said first
frequency or by not maintaining clocking of said CPU;
and

said third operating mode characterized by maintaining
operation only of said memory to preserve the integrity
of data stored therein.

23. The method in claim 22, wherein said threads have an
idle class priority such that they do not execute unless there

35 are no threads having higher execution priority than said idle
class priority.

2. The method in claim 1, wherein said predefined code
thread comprises an idle thread.

24. The method in claim 22, wherein a keystroke check
loop has an idle priority and is an indication of system idle.

25. The method in claim 22, wherein herein said thread is
40 any thread that gives an indication that the system is at idle.

3. The method in claim 2, wherein said second predefined
event comprises occurrence of a timer timeout condition a
predetermined period of time after initiation of execution of
said first idle thread.

4. The method in claim 2, wherein said second predefined 45

event comprises occurrence of a predetermined timer tim­
eout condition.

5. The method in claim 4, wherein said step of turning off

26. The method in claim 25, wherein said CPU generated
command is selected from the group consisting of a system
halt command, a system suspend command, and a system
hibernate command.

27. The method in claim 25, wherein said CPU generated
command is generated whenever an idle thread has been
executing for more than a predetermined period of time.

28. The method in claim 1, wherein said first-mode to
second-mode transition command slows or stops clocking of at least one device comprises turning off clock to all devices

except said memory.
6. The method in claim 1, wherein said execution of a

predefined code thread comprises execution of a predefined
code segment.

7. The method in claim 6, wherein said predefined code
segment comprises an operating system call.

50 the CPU; and wherein said second-mode to third-mode
transition command signal slows or stops clocking of other
of said system devices and resources with the proviso that
inputs required for maintenance of data stored in said
memory are maintained.

8. The method in claim 7, wherein said operating system
call is an interrupt.

9. The method in claim 8, wherein said operating system

55

is selected from the group consisting of a multi-tasking
operating system, Microsoft Windows, Microsoft DOS, and 60

combinations thereof.
10. The method in claim 8, wherein said interrupt com­

prises an idle state interrupt.
11. The method in claim 10, wherein said idle state

interrupt is selected from the group consisting of DOS Idle 65

Handler (Interrupt 28h), and DOS Idle Call (Interrupt 2Fh
Function 1680).

29. The method in claim 1, wherein said second prede­
termined event comprises the occurrence of a second timer
timeout.

30. The method in claim 1, further comprising the steps
of:

while operating in said third mode, monitoring said com­
puter to detect occurrence or non-occurrence of a third
predefined event, and generating a third-mode to first­
mode transition command signal in response to said
third event detection; and changing said operating
mode from said third-mode to said first-mode in
response to said third-mode to first-mode transition
command signal.

6,079,025
SS

31. The method in claim 30, wherein said third event is
selected from the group consisting of occurrence of a
keyboard input, modem ring indicator, real time clock alarm,
external pushbutton, and any predetermined interrupt.

32. The method in claim 30, wherein said second pre- 5

defined event is an event selected from the set consisting of
a timeout event, a CPU command event, and a statistical
evaluation event; and wherein said third event is selected
from the group consisting of occurrence of a keyboard input,
modem ring indicator, real time clock alarm, external 10

pushbutton, and any predetermined interrupt.
33. The method in claim 30, further comprising the steps

of:
while operating in said second mode, monitoring said

computer to detect occurrence or non-occurrence of a
fourth predefined event, and generating a second-mode 15

to first-mode transition command signal in response to
said fourth event detection; and changing said operat­
ing mode from said second-mode to said first-mode in
response to said second-mode to first-mode transition
command signal. 20

34. The method in claim 33, wherein said fourth event is
selected from the group consisting of a direct memory
access (DMA), occurrence of a keyboard input, modem ring
indicator, real time clock alarm, external pushbutton, any
CPU initiated activity, any predetermined interrupt, and the 25

occurrence of a predetermined address on a system bus.
35. The method in claim 30, wherein said second pre­

defined event is an event selected from the set consisting of
a timeout event, a CPU command event, and a statistical
evaluation event; and wherein said third event is selected 30

from the group consisting of an occurrence of a keyboard
input, modem ring indicator, real time clock alarm, external
pushbutton, and any predetermined interrupt; and wherein
said fourth event is selected from the group consisting of a
direct memory access (DMA), occurrence of a keyboard
input, modem ring indicator, real time clock alarm, external 35

pushbutton, any CPU initiated activity, any predetermined
interrupt, and the occurrence of a predetermined address on
a system bus.

36. The method in claim 1, wherein said second pre­
defined event is an event selected from the set consisting of 40

a timeout event, a CPU command event, and a statistical
evaluation event.

37. The method in claim 1, further comprising the step of
directly commanding said system to any of said first-mode,
second-mode, or third mode by a CPU command. 45

38. In a computer system comprising as hardware a
plurality of system resources including a central processing
unit (CPU), a memory device, and an input/output device,
and as software, an operating system for managing and
controlling said system resources, said system being oper- 50

able in anyone of at least three operating modes including
a first-mode having a first power consumption level, a
second-mode having a second power consumption level less
than said first power consumption level, and a third-mode
having a third power consumption level less than said 55

second power consumption level; a method for controlling
the operating mode of said computer system comprising:

while operating in said first mode, monitoring said com­
puter to detect exceeding a threshold value for a
statistical evaluation of active and idle process, and 60

generating a first-mode to second-mode transition com­
mand signal in response to said detecting exceeding a
threshold value for a statistical evaluation of active and
idle process; and changing said operating mode from
said first-mode to said second-mode in response to said 65

first-mode to second-mode transition command signal;
and

S6
while operating in said second mode, monitoring said

computer to detect occurrence or non-occurrence of a
second predefined event, and generating a second­
mode to third-mode transition command signal in
response to said second event detection; and changing
said operating mode from said second-mode to said
third-mode in response to said second-mode to third­
mode transition command signal;

said first operating mode characterized by maintaining
clocking of said CPU at a first frequency;

said second operating mode characterized by clocking
said CPU at a second frequency less than said first
frequency or by not maintaining clocking of said CPU;
and

said third operating mode characterized by maintaining
operation only of said memory to preserve the integrity
of data stored therein.

39. The method as in claim 38, wherein said idle process
makes at least one function call.

40. The method as in claim 38, wherein said idle process
is comprised of threads.

41. The method in claim 38, wherein said statistical
evaluation comprises statistical evaluation of active and idle
function calls.

42. In a computer system comprising as hardware a
plurality of system resources including a central processing
unit (CPU), a memory device, and an input/output device,
and as software, an operating system for managing and
controlling the system resources, at least one of said system
devices and resources being operable in anyone of three
operating modes including a first-mode having a first power
consumption level, a second-mode having a second power
consumption level less than said first power consumption
level, and a third-mode having a third power consumption
level less than said second power consumption level; a
method for controlling the operating mode of the computer
system comprising the steps of:

while operating in said first mode, monitoring said com­
puter to detect completion of execution of all idle
threads executing on said system, and generating a
slow or stop processor clock command in response to
said idle thread completion detection;

while operating in said second mode wherein said CPU
clock is slowed or stopped, receiving an interrupt from
a timer circuit indicating occurrence of a predetermined
timer time-out condition, and generating a slow or stop
device command to slow or tum off clock signal to at
least one of said devices in response to occurrence of
said timeout condition;

said first operating mode characterized by maintaining
clocking of said CPU at a first clock frequency;

said second operating mode characterized by clocking
said CPU at a second clock frequency less than said
first frequency or by not maintaining clocking of said
CPU; and

said third operating mode characterized by maintaining
operation of said memory to preserve the integrity of
memory contents stored therein.

43. The method in claim 42, further comprising the steps
of:

while operating in said third mode, monitoring said com­
puter to detect occurrence or non-occurrence of a third
predefined event, and generating a third-mode to first­
mode transition command signal in response to said
third event detection; and changing said operating
mode from said third-mode to said first-mode in

6,079,025
57

response to said third-mode to first-mode transition
command signal.

58
to a processor clock signal, a memory device, and an
input/output device, and an operating system for controlling
operation of said computer system, at lea'St one of said
system devices and resources being operable in anyone of

44. The method in claim 43, wherein said third event is
selected from the group consisting of occurrence of a
keyboard input, modem ring indicator, real time clock alarm,
external pushbutton, and a predetermined hardware inter­
rupt.

45. The method in claim 43, further comprising the steps
of:

5 at least three operating modes including a first-mode having
a first power consumption level, a second-mode having a
second power consumption level less than said first power

while operating in said second mode, monitoring said
computer to detect occurrence or non-occurrence of a
fourth predefined event, and generating a second-mode

consumption level, and a third-mode having a third power
10 consumption level less than said second power consumption

level; said computer system characterized in that said com­
puter system further comprises:

to first-mode transition command signal in response to
said fourth event detection; and changing said operat­
ing mode from said second-mode to said first-mode in 15

response to said second-mode to first-mode transition
command signal.

46. The method in claim 45, wherein said fourth event is
selected from the group consisting of a direct memory
access (DMA), occurrence of a keyboard input, modem ring 20

indicator, real time clock alarm, external pushbutton, any
CPU initiated activity, any predetermined interrupt, and the
occurrence of a predetermined address on a system bus.

47. The method in claim 42, wherein said first predefined
event is an event selected from the set consisting of a 25

timeout event, a CPU command event, and a statistical
evaluation event; and wherein said second predefined event
is an event selected from the set consisting of a timeout
event, a CPU command event, and a statistical evaluation
event; and wherein said third event is selected from the 30

group consisting of an occurrence of a keyboard input,
modem ring indicator, real time clock alarm, external
pushbutton, and any predetermined interrupt; and wherein
said fourth event is selected from the group consisting of a
direct memory access (DMA), occurrence of a keyboard 35

input, modem ring indicator, real time clock alarm, external
pushbutton, any CPU initiated activity, any predetermined
interrupt, and the occurrence of a predetermined address on
a system bus.

48. A computer system including as hardware a plurality 40

of system resources including a processing unit responsive

idle thread execution completion detection means for
monitoring said computer system to detect completion
of execution of all idle threads executing on said
system while operating in said first mode;

processor clock speed control means for slowing or
stopping said processor clock signal in response to said
idle thread execution completion detection;

a timer circuit generating a timer-timeout signal indicat­
ing occurrence of a predetermined timer time-out con­
dition;

a device controller receiving said timer-timeout signal
while operating in said second mode wherein said
processor clock is slowed or stopped and generating a
slow or stop device signal to slow or turn off clock
signal to at least one of said devices in response to
occurrence of said timer timeout condition;

said first operating mode characterized by maintaining
clocking of said processor at a first clock frequency;
said second operating mode characterized by clocking
said processor at a second clock frequency less than
said first frequency or by not maintaining clocking of
said processor; and said third operating mode charac­
terized by maintaining operation of said memory to
preserve the integrity of memory contents stored
therein.

* * * * *

	Bibliography
	Claims
	Drawings
	Description
	Abstract

