Digitude Innovations LLC v Research In Motion LTD. et al. Doc. 1 Att. 1

EXRHIBIT A

Dockets.Justia.com

http://dockets.justia.com/docket/delaware/dedce/1:2011cv01196/47604/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2011cv01196/47604/1/1.html
http://dockets.justia.com/

U 7324043

1O ALL, TQ WHOM THESE; PRESENTS; SHALT, COME?

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

November 08, 2011

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THIS OFFICE OF:

U.S. PATENT: 5,926,636
ISSUE DATE: July 20, 1999

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

e

Certifying Officer

US005926636A

United States Patent [19] 11 Patent Number: 5,926,636
Lam et al. [451 Date of Patent: *Jul. 20, 1999
[54] REMOTE PROCEDURAL CALL 5,475,836 12/1995 Harris et al. cc.vvereereneereersrennnn, 395/681

COMPONENT MANAGEMENT METHOD 5,581,461 12/1996 Coll et al. woveevvvrerereererreernnenans 3957205

[75]

(73]
[*]

(21]
[22]

[51]
(52]
(58]

[56]

FOR A HETEROGENEOUS COMPUTER
NETWORK

Primary Examiner—Daniel H. Pan
Attorney, Agent, or Firm—Forrest Gunnison

Inventors: Geoffrey T. Lam, San Jose; Ajay [57] ABSTRACT
Malik, Fremont; Senthil K.
Ponnuswamy, San Jose; Thomas M. In response to a component management function call by a
Battle, Los Altos Hills, all of Calif. remote client application, the component management appli-
cation programming interface (API) generates a message
Assignee: Adaptec, Inc., Milpitas, Calif. that identifies the called function and the version of the
. . . . component management API. The component management
Notice: This patent issued on a continued pros- API calls a local message transfer RPC command to send the
ecution appli‘catiorlx filed under 37 CFR message to a RPC command module. The RPC command
1.53(d), and is subject to the twenty year module processes the local message transfer RPC command,
patent term provisions of 35 US.C. and packages the message for transfer as a RPC over the
154(2)(2). heterogenous network. The RPC command module sends
the packaged RPC to a network stack which in turn transmits
by
Appl. No.: 08/603,531 the packaged RPC over the heterogenous network to a
. 99 network stack in the server computer. The server network
Filed: Feb. 21, 1996 stack provides the packaged RPC to a server RPC command
Int. CLS .o GOGF 13/14; GO6F 9/44 ~ module that unpacks the RPC in a conventional manner to
UsS. CL v 395/683; 395/200.62; 395/684 ~ ovtain the original message. The [rosage 1s passed 10 2
Field of Search ..., 395/683, 200.01, server comp:)ﬁ;x}t managtzmcnt APL '{‘hzs:rve{ CO[[EP onent
395/800, 615, 670, 200.12, 200.15, 21016, HFREINEL A © Parses the o e R
672, 335, 326, 200.61, 200.57, 684, 800.23, P“f ¢r archilecture ol the °t‘°“ °°mp"ti{;PI ! p th‘S
200.79, 200.31, 200.62; 379/60, 45; 329/94.3, ~ 'niormation, server component management API reads the
60 version specified in the message. If the specified version is
incompatible with the version of the server component
References Cited management ABI, a reply indicat.ing the \.fers.ion incompat-
ibility is transmitted to remote client application and other-
U.S. PATENT DOCUMENTS wise the message is processed further by the server compo-
5,278,955 1/1994 Fortéet al. oo 3950001 ~ Dent management APL.
5,329,619 7/1994 Pagé et al. ..oeeeeennnn. 395/200.01
5,434,908 7/1995 XKlein 379/88 15 Claims, 7 Drawing Sheets
511
APL FCN CALL
vl RPEWESSFSEEGE 2
515
WNDOWS 0s/2
CLENT CUENT
516
I ———
4
526
SR SRR
STRVER T 525
COMMAN
- SFER 3
505 RPCHESSAGE 506
SERVER COWPONENT |52
MANAGEMENT AP
1PC_WESSAGE
T
540-1 / \ 50-n
COMP?NENT s o o [COMPONENT|
SERVER COMPUTER 520

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

5,926,636

Sheet 1 of 7

Jul. 20, 1999

U.S. Patent

1YY 40I¥d
T Dld
(NNS
‘00S) NELER HAAY3S ¥IAY3S
NEINES 7/S0 MIOMLIN IN
XINN
051~ 0117 0917 081
Y J 4
y \ Y
4 A
! / \
ddv
ddv ddv
SMOGNIM
-~ N\moo mmmo
INIM IN
IN3MO 0Z1-] 1%
0£1-"] SMOONIM 4/s0 S04

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

5,926,636

250

U.S. Patent Jul. 20,1999 Sheet 2 of 7
RPC
DCE SUN
NDR XDR
NET BIOS SOCKETS TLI
TCP SPX
IP IPX
NET BEUI
IEEE 802.2
NDIS ODI
IEEE IEEE
802.5 802.3 SDLC ISDN
(TOKEN RING)| (ETHERNET)
FIBER TWISTED
OPTIC COAX PAIR
FIG. 2

PRIOR_ART

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

5,926,636

Sheet 3 of 7

Jul. 20, 1999

U.S. Patent

I~-20¢

L4V 3014
& Dld

¢—C0¢

0FC 30VAYILNI ININOWOD
m_m@\‘:o B - 0e¢s NEIVARERIED
S\m 01F JOVAYIINI INIWIOYNVH

ddV
INIWIOVYNYI

u-10¢

ddv
INIWIOVNVA

¢—10¢

LININIOVNVYI

00¢

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

1/0
MANAGER
W IPC INTERFACE
TO SERVER
IPC MODULE

430

U.S. Patent Jul. 20,1999 Sheet 4 of 7 5,926,636
e 7
1 CLENT - |
! CLEENT |
| APP 1
! |
| |
e 10 !
L REMOTE |- |
L REMOTE 413 | |
. CLIENT = |
| |
L | RRC
| l
| Y Y 4 |
' RPC COMMAND 44 '
| CLIENT '
:)
| [TNETWORK STACK |41 |
s s |

- —~400
mr = = — "e ________________ 1
| [NETWORK STACK 425 |
| . |
| ! N
| RPC COMMAND 424 :
| SERVER |
B |
I SFRVER |
] IPC MODULE LOCAL 1~ RPC
P! 423 | !
! | 422 |
: ——————————————————— . !

|
| Jo
| !
| I
! |
l |
| |
t !
| !
! |
n |
[

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

U.S. Patent ju. 20,1999 Sheet 5 of 7 5,926,636

REMOTE CUENT [~511
APP

L~APT FON CALL
y
COMPONENT MANAGE [~512

API
TRANSFER
501 | ~RPC_MESSAGE , 202
4 BUFFER L
REMOTE RPC 515
WINDOWS COMMAND‘ MODULE 05/2
CLIENT , CLIENT
NETWORK TRANSPORT [~516
STACK 510 500 | k
y ¥ \
I ?
1 l y
4
NETWORK TRANSPORT -
NT STﬁCK UNIX
SERVER ! SERVER
SERVER RPC 525
COMMAND MODULE
T ! TRANSFER C
505 _~RPC_MESSAGE 506
, BUFFER
SERVER COMPONENT |~529
MANAGEMENT API
+~IPC_MESSAGE

~530
1/0 MANAGER

540-1 / \ 540-n
) {

COMPONENT| o « o [COMPONENT
1 n

SERVER COMPUTER 520

FIG. 5

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

U.S. Patent Jul. 20, 1999 Sheet 6 of 7

REMOTE CLIENT COMPUTER 510
L~511

REMOTE
CLIENT
APPLICATION

AP ADMIN
FCN CALL TL___A_pI_ 5_03____
r—— " 77" FCN
CALL

MANAGEMENT RPC ADMIN

|
!

| COMPONENT REMOTE
| FCN_ MODULE MODULE

| CLENT
| COMPONENT MANAGEMENT APL 51

TRANSFER 803

RPC_MESSAGE ADMIN AP
BUFFER FCN CALL

515
REMOTE RPC g

COMMAND
MODULE

PACKAGED
RPC

.~ 516

NETWORK
STACK

CLIENT L ~613 L ~614 |

3,926,636

——— e

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

U.S. Patent Jul. 20, 1999 Sheet 7 of 7 5,926,636
r.__—_-.—.—_—_—___._—_—.—..._—.—————-—-————.—-———‘-
| 540-1— 540-n— -}
: COMPONENT} . .. |COMPONENT :
| 1 f |
| !
! \ / |
|
| Tt oo == l
| | 632 1/0
| | COMPONENT | yceR |
| | MAN(G 20 |
1 ! ER |
| l } |
! |] |
| L 8T 1o manAGeR |
: 1 SERVER !
| |
| I B R |
f EV_MESSAGE IPC_MESSAGE ;
| re T -y - 1 |
L SERVER 523 o2
	SERVER COMPONENT
COMPONENT MANAGEMENT	
: MANAGEMENT FCN_MODULE	
IR . A N S	
, FCN CALL i	
TRANSFER ~ {—613	
RPC_MESSAGE LOCAL ,	
'BUFFER CLIENT	
, APPLICATION	
’	
; SERVER RPC ~ [~525	
COMMAND '	
MODULE :	
PACKAGED	
[RPC
! l	
NETWORK 26	
: STACK	
l	
f SERVER	
U COMPUTER 520 |
500
‘ {
. I
FIG. 6B

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

5,926,636

1
REMOTE PROCEDURAL CALL
COMPONENT MANAGEMENT METHOD
FOR A HETEROGENEOUS COMPUTER
NETWORK

BACKGROUND OF THE INVENTION

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent files or records, but otherwise reserves all copyright
rights whatsoever.

1. Field of the Invention

The present invention is related generally to communica-
tions across a computer system network and more specifi-
cally to methods for managing components in a heteroge-
neous computer system network.

2. Description of Related Art

A current trend in computing is to interconnect a variety
of computer architectures and computer operating systems
in a single network 100. As illustrated in FIG. 1, network
100 includes a variety of servers, i.e., a Unix server 150, a
Netware server 160, an OS/2 server 170, and a Windows NT
server 180. Herein, network 100 and similar networks are
referred to as heterogeneous networks. Heterogeneous net-
works include local area networks.

One configuration commonly used for performing opera-
tions over a network, such as network 100, is a client/server
architecture. A server process executing on a server com-
puter is a provider of services. Servers include file servers,
database servers, transaction servers, groupware servers and
object servers.

A client process, that is executing either on a server
computer or another computer, is a consumer of services
provided by the server. Thus, in FIG. 1, three computers 110,
120 and 130, that are each running a client process, are
illustrated.

Clients and servers are loosely ‘coupled systems that
interact over network 100. Each interaction between a client
and a server tells a server which service is requested. After
the server receives the request, the server determines how to
perform the service specified in the request.

Communications between a client and a server over
heterogeneous network 100 require a method for transport-
ing requests over network 100 from a client running under
one operating system to a server that is either running under
another operating system, or the same operating system. One
widely used method for communication over heterogeneous
network 100 is a remote procedure call (RPC). Techniques
for implementing client/server applications, and client/
server applications with remote procedure calls are known to
those skilled in the art. A remote procedure call (RPC) hides
the physical structure of network 100 and makes a server on
network 100 appear to be one function call away.
Specifically, a remote procedure call hides the details of
network 100 by using a procedure call mechanism that is
well known.

A common way to illustrate implementation of a remote
procedure call is a stack. FIG. 2 is an example of one prior
art representation of a stack 200 that includes two common
implementations of a RPC. One widely used RPC standard
is distributed computing environment (DCE) RPC (FIG. 2).
ADCE RPC allows a client to interoperate with one or more
servers on other computing platforms, even when the client
and server are from different vendors with different operat-
ing systems.

15

30

35

40

45

55

65

2

DCE is associated with an interface definition language
(IDL) and compiler that facilitate creation of RPCs. The IDL
compiler creates source code stubs for both the client and
server sides of an application. The stubs are compiled and
linked to the RPC run-time library, which is responsible for
finding - servers in a distributed system, performing the
message exchanges, packing and uwnpacking the message
parameters, and processing any errors that occur. The DCE
RPC does not support transactions.

One problem encountered in using RPCs is the represen-
tation of data across a network with multiple platforms,
because different CPUs represent data structures differently,
for example, Big-Endian versus Little-Endian. To maintain
machine independence, the RPC uses some level of data
format translation across systems.

With DCE, the client chooses one of the multiple data
format representations from the network data representation
(NDR) service. (See FIG. 2.) The client chooses the data
format, typically its own native data representation; tags the
data with the chosen format; and the server must transform
the data into a format that the server understands.

Another common RPC is provided by Sun Microsystems
of Mountain View, Calif. RPC on Sun Microsystems com-
puters requires that the client convert the data to a neutral
canonical format using an external data representation
(XDR). (See FIG. 2.) With the Sun approach, all clients look
the same to a server. In FIG. 2, NetBios, sockets and
transport layer interface (TLI) are all interfaces between
RPC and the various network transport stacks. Network
transport stacks include TCP/IP, NetBIOS, IPX/SPX,
DECuet, AppleTalk, OSI, and SNA/APPN, for example.
There is a logical interface to the network device drivers at
the bottom of the network transport stack. Examples of
widely supported logical interfaces to network device driv-
ers are Microsoft/3Com’s NDIS and Novell’s ODI. The
remainder of the standards, drivers, and communication
protocols in FIG. 2 are known to those of skill in the art and
are shown only for completeness. A more complete discus-
sion of transport stacks is provided, for example, in
Tannenbaum, Computer Networks, Prentice Hall, (1988).
Herein, a network stack refers to network stack 250.

RPCs are used widely. However, for desktop management
of components within a single desktop computer system,
another approach is used. A Desktop Management Interface
(DMI) bas been defined by the Desktop Management Task
Force, MIS JF2-51,2111 N.E. 25th Avenue, Hillsboro, Oreg.
97124. DML s a local interface between management appli-
cations that manipulate information on components, e.g.,
physical or logical entities in a computer system, and the
components. For a detailed description of DMI, see the
Desktop Management Interface Specification, Version 1.0,
Apr. 29, 1994, which is incorporated herein by reference in
its entirety.

FIG. 3 is a block diagram of DMI within computer system
300. Management applications 301-1 to 301-n use 2 man-
agement interface 310 to manage components 302-1 to 302-i
within computer system 300. Management applications
include a management console, a desktop management
application, and a local area network management applica-
tion. In general, a management application is a remote or
local application that changes, interrogates, controls, tracks,
or lists components of a desktop computer system.

Management interface 310 shields mapagement applica-
tions 301-1 to 301-n from the different mechanisms used to
obtain management information from components 302-1 to
302-i within computer system 300. Typical components

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

5,926,636

3

include software applications, operating systems, hardware
products, peripheral products, and system hardware. Each
component has a management information file (MIF), that
describes the manageable characteristics of the component,
stored in a MIF database 340 within computer system 300.

Management interface 310 is a data interface, as opposed
te the procedural interface used in a RPC. Data blocks
describe the format for data transfer instead of parameters to
a function call. Thus, a command is issued from a manage-
ment application, for example, management application
301-1, to build a data block and pass the data block to
service layer 320. All commands are specified with data
blocks, but there is one function call provided to pass the
command to service layer 320,)

Service layer 320 is a desk-top resident application that
controls the flow of information between management inter-
face 310 and a component interface 330. Service layer 320
is a permanent background process that is always ready to
handle an asynchronous request. The operations of the
service layer are documented in: Chapter 2 of the Desktop
Management Interface Specification.

Component interface 330 receives calls from service layer
320. Component interface 330 also is a data interface, and so
data blocks describe the format for data transfer. Commu-
nication between component interface 330 and service layer
320 is operating system dependent.

‘While DMI provides a useful function for the desktop, the
data interface, ie., command blocks, is a departure from
RPC. The current trend for management of components in a
heterogeneous network is to use RPC.

FIG. 4 is a block diagram of a client/server architecture
used over a network, e.g. a heterogeneous network, to
manage hardware components. A remote client application
411, that needs to interact with a hardware component on
server computer 420, uses RPCs to communicate over
heterogeneous network 400 with server computer 420.

For example, remote client application 411 is a graphic
user interface (GUI) such as that used on a Windows
workstation. A remote I/O management application pro-
gramming interface 412 (IOMAPI 412) is provided to
remote client application 411 by a remote client interprocess
communication module 413,

IOMAPI 412 includes general I/O management functions,
RAID management functions, and an administration appli-
cation programming interface (API). The functions available

" to remote-client application 411 in IOMAPI 412 are the same
as those made available to a local client application 435 on
server computer 420 by server IPC module 423. Function
calls to IOMAPI 412 by remote client application 411 result
in I/O management on server computer 420. The adminis-
tration calls by remote client application 411 through
IOMAPT 412 are used for establishing a network session,
and for ensuring the authentication and access rights of
applications issuing IOMAPI calls.

A call to a function in IOMAPI 412 by remote client
application 411 is passed to RPC command client 414. RPC
command client 414 packages the function call in a con-
ventional fashion and transmits the packaged function call to
network stack 415, which in turn controls transmission of
the packaged function call over network 400 to network
stack 425 of server computer 420.

To package the request, RPC command client 414 con-
verts the function call and any associated data to a neutral
canonical format using an external data representation
(XDR). Thus, in FIG. 4, IOMAPI 412 and RPC command
client 414 are functionally the RPC layer of FIG. 2.

10

20

25

30

35

40

45

55

60

65

4

Network stack 425 transmits the packaged function call to
server RPC command module 424. Server RPC command
module 424 extracts the function call from the packaged
request. If the function call is an administration function
call, server RPC command module 424 processes the admin-
istration function call and replies to RPC command client
414 that in turn communicates with remote client application
411. However, if the function call is an IOMAPI function
call, server RPC command module 424 passes the function
call to server IPC module 423 Server IPC module 423
transfers the specified function call via a message buffer
IPC_MESSAGE to an I/O manager 430 with an interface to
server IPC module 423. Message buffer IPC_ MESSAGE,
sometimes called message IPC_ MESSAGE, is transmitted
using an interprocess commupication. In response to mes-
sage [IPC_ MESSAGE, I/O manager 430 issues a call to the
appropriate management function.

I/O manager 430 performs the called management func-
tion and returns the result to server IPC module 423. The
results are returned from server IPC module 423 to remote
client application 411 in the normal manner for a RPC.

While the architecture of FIG. 4 overcomes the limita-
tions of DMI by using a RPC mechanism, the use of RPCs
introduces limitations on updates and modifications. Any
change in remote IOMAPI 412 and/or local IOMAPI 422
requires a change in RPC command client 414 and RPC
command module 424. Any change in RPC command client
414 and RPC command module 424 implies changes in
remote client application 411. The RPC interface must
support every single command that’s defined in the list of
procedure calls for every possible version and must support
every one of the parameters that are passed with each of
these procedure calls.

Hence, RPC may not work properly in an environment
with mixed versions of remote IOMAPI 412 and local
IOMAPI 422. To assure version capability across heteroge-
neous network 400, remote client IPC module 413, client
RPC command module 414, server RPC command module
424 and server IPC module 423 must be updated to support
each version, recompiled, and relinked for each of the
computers on network 400. For heterogeneous networks,
this is a formidable task. Thus, while the trend is to imple-
ment RPC for component management over a heterogeneous
network, the requirement of the current RPC architecture for
either consistent versions or support of all versions through-
out such a network will limit the actual utilization of RPC
for component management.

SUMMARY OF THE INVENTION

According to the principles of this invention, a computer
process for using remote procedure calls over a heteroge-
neous computer network overcomes the problems associated
with supporting different versions of application program-
ming interfaces by remote procedure call modules on client
and server computers, i.c., first and second computers.
Moreover, the remote procedure call process of this inven-
tion is independent of the architecture of the computer
platforms on the network, i.c., the process can be used
between computers having different computer architectures.

Unlike prior art RPC modules that were required to
support every single command that was defined in the list of
procedure calls for every possible version, the RPC modules
of this invention support only a single RPC command that
transfers a buffer of information. The particular information
in the buffer does not affect the operation of the RPC
module. Consequently, the RPC modules are independent of

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

5,926,636

5

the client applications and application programming inter-
faces with which the RPC modules interact.

In one embodiment, a message buffer in a first computer
is filled with information (including a version of an appli-
cation programming interface on the first computer) by the
client application, executing on the first computer, calling a
function in the application programming interface. The
application programming interface issues 2 message transfer
remote procedure call to a remote procedure call module on
the first computer to transfer the message buffer over the
heterogeneous computer network to a second computer.

Each of a plurality of functions called in the application
programming interface fill the message buffer and then call
the single remote procedure call command to transfer the

message buffer. Preferably, the information in the message.

buffer is one byte-aligned.

When the message buffer is received in the second
computer, the version of the application programming inter-
face in the message buffer is compared with a version of an
application programming interface on the second computer.
Specifically, in one embodiment a plurality of version iden-
tifiers of the application programming interface on the first
computer are compared with a plurality of version identifiers
of the application programming interface on the second
computer.

If the comparison of the version of the application pro-
gramming interface in the message buffer with a version of
an application programming interface on the second com-
puter indicates that the versions are compatible, processing
of the message is continued on the second computer.
Conversely, if the versions are incompatible, an error is
placed in the message and the message is returned to the first
computer. :

Prior to comparing the versions on the second computer,
a field is read in the message that includes an identifier of the
computer architecture of the first computer, e.g., the address-
ing format. If the computer architecture of the first computer
is incompatible with the computer architecture of the second
computer, the message is converted to a form that is com-
patible with the second computer prior to making the version
comparison.

In another embodiment of this invention, a component
management function call is issued from a remote client
application on a remote client computer to a remote client
component management application programming interface
on the remote client computer. In response to the remote
client component management function call, the remote
client component management application programming
interface builds a message in a buffer memory of the remote
client computer. The message includes an identifier for the
called component management function and a version of the
component management application programming interface.

The remote client component management application
programming interface sends the message to a server com-
puter on a heterogeneous computer network using a remote
procedure call command module. The remote procedure call
command module is independent of the called component
management function.

Specifically, to send the message, the remote client com-
ponent management application programming interface
calls a local message transfer remote procedure call com-
mand to transfer the message from the client component
management application programming interface to the
remote procedure call module on the client computer.

The remote procedure call module packages the message
for transfer over the heterogeneous computer network. The

10

15

20

25

40

45

50

60

6

remote call module transmits the packaged message to a first
network stack on the client computer which in turn transmits
the packaged message from the first network stack to a
second network stack on a server computer. The packaged
message is transmitted from the second network stack to a
server RPC command module on the server computer. The
server RPC command module converts the packaged mes-
sage back to the message. The message is then transferred
from the server RPC command module to a server compo-
nent management application programming interface on the
server computer.

The server component management application program-
ming interface reads a field in the message to determine
whether an addressing format of the client computer is
compatible with an addressing format of the server com-
puter. If the addressing formats are not compatible, the
server component management application programming
interface converts the message to an addressing format
compatible with the server computer.

After the checking of the addressing format and the
conversion if necessary, the versions are checked as
described above. The elimination of the version dependency
of the RPC module facilitates use of RPCs in a wide variety
of heterogeneous networks.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a prior art heterogeneous network.
FIG. 2 is an iflustration of a prior art network stack.

FIG. 3 is a diagram of the prior art desktop management
interface in a desktop computer system.

FIG. 4 is an illustration of a structure used to implement
RPCs over a heterogeneous network for management of a
RAID structure.

FIG. 5 is an illustration of a structure and process of this
invention for implementing, over heterogeneous networks,
version independent RPCs for component management.

FIGS. 6A and 6B are a more detailed illustration of the
structure and process of this invention for implementing,
over heterogeneous networks, version independent RPCs for
component management.

DETAILED DESCRIPTION

According to the principles of this invention, 2 remote
procedure call process for management of components on a
heterogeneous network 500 eliminates problems associated
with differing versions of the remote procedure call process
on a client and a server. The remote procedure call process
of this invention minimizes, and in some applications
eliminates, updating the remote procedure call modules;
simplifies the distribution of updates; and is platform inde-
pendent.

In this embodiment, heterogeneous network 500 includes
multiple types of clients, e.g. Windows client 501, remote
client application 511, and OS/2 client 502, and multiple
types of servers, e.g., Windows NT server 505, a server
computer 520 that includes I/O manager server 530, and
Unix server 506. According to the principles of this
invention, a remote client component management applica-
tion programming interface 512 is interposed between a
remote client application 511 on a remote client computer
510 and a remote client RPC command module 515. Herein,
a client application, application programming interfaces,
modules, and stacks are referenced. Those skilled in the art
will understand that such applications, interfaces and mod-
ules represent software processes that execute on a computer

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

5,926,636

7

while a network stack represents a combination of software
processes and hardware operations.

Remote client component management application pro-
gramming interface 512 does not directly provide compo-
nent management function calls with parameters to remote
client RPC command module 515, as in prior art RPC.
Rather, according to the principles of this invention, in
response to a component management function call by
remote client application 511, remote client component
management application programming interface (API) 512
generates a message RPC__MESSAGE_REQUEST that
identifies the called function and the version of remote client
component management API 512,

After remote client component management API 512
builds message RPC_MESSAGE_REQUEST, remote cli-
ent component management API 512 calls a local message
transfer RPC command to send message RPC__
MESSAGE_ REQUEST to remote client RPC command
module 515. Consequently, remote client RPC command
module 515 supports only a single function call and not each
component management function supported by server com-
ponent management application programming interface 522.
This configuration decouples the RPC from the particular
version of server component management API 522, and so
eliminates the prior art problems associated with incompat-
ible versions of function calls supported by remote client
and server RPC command modules 515, and 525 over
network 500. This configuration also supports changes to
remote client RPC command module 515 without affecting
component management APIs 512 and 522, and conversely.

In addition to the single function call for all component
management function calls, in one embodiment, adminis-
tration application programming interface calls by remote
client application 511 to component management API 512
are passed to remote client RPC command module 515.
Administration application programming interface calls are
used to establish a network session, and to ensure the
authentication and access rights of remote applications issu-
ing component management function calls.

Thus, in this embodiment, remote client RPC command
module 515 supports two sets of operations. A first set of
operations processes the local message transfer RPC
command, and packages the message for transfer as a RPC
over network 500. A second set of operations handles the
administration functions supported by the administration
AP, and packages the administration function call for
transfer as a RPC over network 500. In both cases, the
message is packaged using the prior art techniques for the
particular type of RPC implemented on remote client com-
puter 510.

Remote client RPC command module 515 sends the
packaged RPC to network stack 516 which in turn transmits
the packaged RPC over heterogeneous. network 500 to
network stack 526 in server computer 520. Any of the
various network stacks illustrated in FIG. 2 may used with
this invention. Server computer 520 is not identified as any
particular type of server, because the principles of this
invention are independent of the particular type of server.
Those skilled in the art, in view of this disclosure, will be
able to implement the invention in a wide variety of servers.

Network stack 526 provides the packaged RPC to server
RPC command module 525. Server RPC command module
525 unpacks the packaged RPC in a conventional manner to
obtain the RPC. If the RPC is a procedure call to the
administration API, server RPC command module 525 pro-
cesses the procedure call and responds appropriately. If the

15

35

40

45

55

65

8
RPC is the local message transfer RPC command, message
RPC_MESSAGE_REQUEST is passed to server compo-
nent management application programming interface 522.

Server component management application programming
interface 522 parses message RPC__MESSAGE__
REQUEST passed from server RPC command module 525
to determine the computer architecture of remote client
computer 510, ¢.g., the addressing format used on remote
client computer 510. With this information, server compo-
nent management AP 522 reads the version specified in
message RPC__MESSAGE_REQUEST. The specified ver-
sion is compared with the version of server component
management API 522. If the specified version is incompat-
ible with the version of server component management API
522, a reply indicating the version incompatibility is placed
in the message that in turn is transmitted to remote client
application 511 by server component management API 522.

When the specified version is compatible with server
component management API 522, message RPC__
MESSAGE_REQUEST is passed to 1/0 manager 530, as
message IPC__MESSAGE in a format compatible with I/O
manager 530, using standard operating system interprocess
communication. As is known to those of skill in the art, the
addressing format may not be the same on remote client
computer 510 and server computer 520. It is the responsi-
bility of server component management API 522 to assure
that message RPC_ MESSAGE_ REQUEST is converted to
message JPC_MESSAGE in a form, e.g., addressing
format, that can be processed by I/O manager 530. If no
conversion is necessary, message RPC_MESSAGE__
REQUEST is simply passed through as message IPC__
MESSAGE after the version comparison.

In this embodiment, I/0 manager 530 interfaces with a
plurality of components 540-1 to 540-n. Components 546-1
to 540-n can include software applications, operating
systems, hardware products, peripheral devices, and system
hardware. In response to message IPC_MESSAGE, I/0
manager 530 performs the called function for the specified
component and if necessary places a reply in message
IPC_MESSAGE.

1/O manager 530 returns message IPC_ MESSAGE, that
includes the result, to server component management AP]
522. Server component management API 522 passes
returned message IPC_MESSAGE as message RPC_
MESSAGE_ RESULT, via the local message transfer RPC
command, to server RPC command module 525.

Server RPC command module 525 packages and trans-
mits returned message RPC__MESSAGE_ RESULT to net-
work stack 526 which in turn transmits packaged returned
message RPC__MESSAGE__RESULT over network 500 to
network stack 516 in remote client computer 510. Network
stack 516 passes returned message RPC_MESSAGE__
RESULT to remote RPC command module 515.)

Remote client RPC command module 515, in turn,
unpacks and transfers returned message RPC__ MESSAGE__
RESULT to remote client component management API 512.
Remote client component management API 512 extracts the
results from the returned message and provides the results in
a proper format to remote client application 511 by an
interprocess communication. In this embodiment, remote
client component management API 512 has the responsibil-

ity to convert the format of message RPC__ MESSAGE__

RESULT if necessary.

Consequently, the component management procedure call
by remote client application 511 appears to remote client
application 511 as a normal RPC. However, the various

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

5,926,636

9

remote procedure management function calls supported by
server component management API 522 are reduced to a
single RPC command that transfers a buffer of data, i.e.,
message RPC_MESSAGE, and that is independent of the
particular versions of RPC command modules 515 and 525
on remote client computer 510 and server computer 520,
respectively.

Further, RPC command modules 515 and 525 support
only the single function call to transfer the buffer of data
generated by the component management APL. The respon-
sibility for supporting each I/O management function call is
removed from RPC command modules 515 and 525 and
rests solely with component management APIs 512 and 522.
This simplifies RPC command modules 515 and 525 in
comparison to the modules of FIG. 4 and makes modules
515 and 525 independent of the particular version of com-
ponent management APIs 512 and 522. The principles of
this invention are applicable in general to client/server
applications over a heterogeneous network that utilize RPC
and support the buffer transfer function call.

In this embodiment, remote client RPC command module
515 and server RPC command module 525 are executable
modules. Application 511 loads executable remote client

10

15"

20

remote procedure call command module 515 which in turn

loads client component management API 512 which is
dynamic linked libraries (DLLs). Since client component
management API 512 is not statically linked to remote client
application 511, a change in API 512 does not require
recompiling and relinking of remote client application 511.

In one embodiment, remote client and server RPC com-
mand modules 512 and 522 include capability for supporting
a plurality of network transport stacks. Also, I/O manager
530, in response to a component event builds an event
message EV_MESSAGE characterizing the event and
passes event message EV._MESSAGE to server component
management API 522 using an interprocess communication.

Server component management API 522 in turn calls the
local message transfer RPC command to send event message
EV_MESSAGE to server RPC command module 525.
While message EV_MESSAGE includes different informa-
tion than messages RPC_MESSAGE_REQUEST and
RPC_MESSAGE__ RESULT, RPC command modules 515
and 525 see only a buffer of information and so their
operation is not affected by the differences in the messages.

Message EV_ MESSAGE, that characterizes the event, is
packaged and transmitted over heterogeneous network in a
manner similar to that described above and is provided to
remote client component management API 512. For an
event, client component management API 512 coaverts the
format of message EV_ MESSAGE, if necessary, and pro-
vides the information to remote client application 511. Since
APIs 512 and 522 are equivalent and RPC command mod-
ules 515 and 525 are equivalent, the transmission of event
notifications from a server to a client is facilitated.

FIG. 6A is a more detailed block diagram of remote client
computer 510, and in particular of remote client component
management application pfogramming interface 512. In this
embodiment, remote client component management API
512 include two modules, a client component management
function module 613, and a remote remote procedure call
administration module 614. Appendix B, which is incorpo-
rated herein by reference in its entirety, is one embodiment
of general [/O management functions that are included in
module 613. Appendix C, which is incorporated herein by
reference in its entirety, is one embodiment of specific RAID
structure management functions that are also included in

25

30

35

40

45

50

55

65

10

module 613. As indicated above, the information in Appen-
dices B and C is also included in server component man-
agement function module 623, that is described more com-
pletely below.

According to the principles of this invention, a remote
client Windows 3.1 application uses LoadLibrary(),
GetProcAddress() and FreeLibrary() APIs to access the 1/0
management API functions in client component manage-
ment function module. Client application 511 is required to
make all calls to remote client component management API
512 absolutely dynamically.

To assure that remote client application 511 and compo-
nent management function module 613 are synchronized,
i.e., component management function module 613 knows
the type of remote client application 511 and the machine
byte-order, remote client application 511 is required to call
a component management APl function that initializes
remote client component management function module 613
before calling any other functions in module 613. One
example of a call definition for such a function is presented
in Appendix B. If the initialization function is not called first,
all functions calls to module 613 by remote client applica-
tion 511 return an error.

Administration API calls 602 by remote client application
511, for example a Windows graphical user interface, to
remote RPC administration module 614 of client component
management APl 512 are used to establish a network
session, and to ensure the authentication and access rights of
remote applications issuing component management func-
tion calis. Table 1 is an example of administration functions
supported in one embodiment of this invention.

TABLE 1

EXAMPLES OF FUNCTIONS IN
REMOTE PROCEDURE CALL ADMINISTRATION MODULE

Open Session Close Session

Change Timeout Change Retry Timeout
Server Login Server Logout
Notify Active Notify Add Entry

Notify Remove Entry Get Next Notify Entry

Table 1 contains only the names of representative functions.
Those skilled in the art can implement a wide varicty of
functions in remote RPC administration module 614.
Consequently, the particular functions identified in Table 1
are illustrative only and are not intended to limit remote RPC
administration module 614 to the particular functions named
in TABLE 1.

When such an administration API call is transported to
server RPC command module 525, server RPC command
module 525, in addition to responding to the administration
API call, maintains a database of information characterizing
the registered remote clients. This database is similar to
those in the prior art and so is not described further.
However, in addition to the typical prior art information, the
database also includes event registration information so that
server RPC command module 525 knows which remote
clients to send each event message that is received from /O
manager 530.

A remote client function call 601 to one of a plurality of
functions provided by remote client component manage-
ment function module 613 does not result in passing a
function call with parameters to remote RPC command
client module 515, as described above. Rather according to
the principles of this invention, in response to function call
601 to remote client component management function mod-

Copy prévided by USPTO from the PIRS Image Database on 10/31/2017

5,926,636

11

ule 613, component management function module 613
builds, in a buffer memory, a message RPC__ MESSAGE,__
REQUEST that identifies at least the called function, and the
version of the remote client component management func-
tion module 613, ie., the version of remote client compo-
nent management API 512. In this embodimeant, the infor-
mation in message RPC_MESSAGE_REQUEST is one-
byte-aligned, ie., message RPC_MESSAGE is one-byte-
aligned. Appendix A, which is a part of the present
disclosure and which is incorporated herein by reference in
its entirety, is one example of a definition for the message
built in the buffer memory. In the embodiment of Appendix
A, the message includes a plurality of fields. The informa-
tion in the plurality of fields includes a byte order of the
message, i.e., information characterizing the architecture of
remote client computer 510; a size of the message; a major
version identifier of remote client component management
API 512; a minor version identifier of remote client com-
ponent management API 512; a message tag; an identifier
for remote client process 511 that receives the result of the
message; a message type identifier, e.g., a request or a resul;
a length of any data transmitted in the message; a command,
ie., a function call; and space for the result of the function
call.

In this embodiment, component management function
module 613 includes an XDR module. However, as indi-
cated above, according to the principles of this invention,
only the receiving API converts message RPC__MESSAGE
to a format compatible with the architecture of the receiving
computer, if necessary. (Herein, if only reference numeral
RPC_MESSAGE is used, the description applies to both the
request message and the result message). Consequently, in
response to a call by remote client application 511 to a
function provided by remote client component management
function module 613, component manageiment function
module 613 does not utilize the XDR module. In this
embodiment, client component management function mod-
ule 613 utilizes the XDR module for event messages from
/0 manager 530, if necessary.

Upon completion of message RPC_MESSAGE__
REQUEST, component management module 613 calls a
local message transfer RPC command 603 to send the
message to remote client RPC command module 515. As
explained above, remote RPC command module 515 has
two sets of operations.

The first set of operations processes the local message
transfer RPC command, and packages message RPC_
MESSAGE_REQUEST for transfer as a RPC over network
500. For example, if the message is in a different format than
that used for RPC commands over network 500, remote RPC
command module 515 converts the message to the proper
RPC format as in the prior art RPC methods. As explained
above, the particular operations performed by remote client
RPC command module 515 depend, for example, on
whether the DCE RPC method or the SUN Microsystems’
RPC method is utilized.

Asecond set of operations in remote client RPC command
module 515 handles the administration functions supported
by RPC administration module 614. Specifically, in response
to administration function call 604, remote client RPC
command module 515 packages the administration function
call for transfer as a RPC over network 500.

Remote client RPC command module 515 is independent
of the functions supported by remote client component
management function module 613, because remote client
RPC command module 515 only processes the single local
message transfer RPC command for every function sup-

10

20

25

30

35

40

45

50

55

60

65

12

ported by module 613. Thus, the RPC interface across
network 500 is independent of the version of remote client
component management function module 613.

This means that different versions of component manage-
ment application programming interfaces 512 and 522 on
remote client computer 510 and server computer 520,
respectively, no longer have the possibility of hanging either
or both of computers 510 and 520.

As explained above, remote client RPC command module
515 sends the packaged RPC to network stack 516 which in
turn transmits the packaged RPC over network 500 to
network stack 526 in server computer 520 (FIG. 6B).
Network stack 526 provides the packaged RPC to server
RPC command module 525.

Server RPC command module 525 unpacks the packaged
RPC in a conventional manner. If the RPC is a RPC
administration function call, server RPC command module
525 processes the RPC administration function call and
responds appropriately. If the RPC is the local message
transfer RPC command, a buffer containing message RPC_
MESSAGE__REQUEST is passed to server component
management function module 623 in server component
administration API 522. Notice that local client applications
627 on server computer 520 also issue component manage-
ment interface function calls to server component manage-
ment APT 522, .

Server component management function module 623
parses message RPC__MESSAGE__REQUEST passed from
server RPC command module 525 to determine the client
machine architecture specified in message RPC__
MESSAGE_ REQUEST. In the message format of Appen-
dix A, a byte order field is used to indicate the computer
architecture of remote client computer 510. The information
in byte order field is independent of the order that the byte
order field is processed. Consequently, the byte order field is
read correctly independent of the addressing method used by
a particular computer architecture.

When message RPC__MESSAGE_REQUEST is in a
format that is different from that processed by I/O manager
server 631, server component management function module
623 converts the format of message RPC__ MESSAGE__
REQUEST to a neutral canonical format message IPC__
MESSAGE using an external data representation (XDR) that
is similar in function to the XDR provided by Sun Micro-
systems. For example, if the message is in a Little-Endian
addressing format, and server computer 520 uses Big-
Endian addressing, server component management function
module 623 converts message RPC_MESSAGE__
REQUEST to message IPC_MESSAGE in a Big-Endian
message format.

The conversion of a message at the computer receiving
the message has several advantages. First, no conversion is
required if both the sending computer and the receiving
computer have a common architecture. Second, when
necessary, the conversion of commands to I/0 manager 530
is done only on the server computer which is typically more
powerful than the client computer.

After server component management function module
623 assures that the message is in a format compatible with
server computer 520, server component management func-
tion module 623 reads the version specified in the message.
For the embodiment of the message in Appendix A, the
version includes both a major version identifier and a minor
version identifier. If the version is compatible with server
component management API 522, e.g., both the major and
minor versions are compatible, processing of message
RPC_MESSAGE_REQUEST continues, as described
below.

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

5,926,636

13

However, if the version is incompatible with server com-
ponent management API, an error status is placed in mes-
sage RPC_MESSAGE by server component management
function module 623. Server component management func-
tion module 623 changes the message type to result in
message RPC_MESSAGE_ REQUEST to obtain message
RPC_MESSAGE_RESULT. Module 623 calls the mes-
sage transfer RPC command 603 to send message RPC__
MESSAGE_RESULT to server RPC command module
525. In this instance, no message is transmitted to I/O
manager 530. When the version is compatible with server
component management APl 522, either the converted
message, when the computer architectures of remote client
computer 510 and server computer 520 are different, or the
original message, when the computer architectures of
remote client computer 510 and server computer 520 are
compatible, is passed as message IPC_ MESSAGE by an
interprocess communijcation from server component man-
agement function module 623 to I/O manager server for
interprocess communication 631. Message IPC_
MESSAGE is 2 buffer that is used to transmit procedure
calls to particular functions of 1/0 manager server for
interprocess calls 631.

In response to message IPC_MESSAGE, I/O manager
server for interprocess communication 631 issues a call to
the appropriate management function in component 1/0
manager server 632. Component I/O manager server 632
performs the called management function for the specified
component and returns the result to I/0 manager server for
interprocess communication 631. The particular operations
performed by component 1/0 manager 632 and the interac-
tions between I/O manager server for interprocess commu-
nication 631 and component I/O manager server 530 are
similar to those that would be performed in a prior art
component I/O manager. '

I/O manager server for interprocess communication 631,
in response to the result for the called management function
for component 540, places the result in message IPC_
MESSAGE and returns message IPC__MESSAGE to server
component management function module 623.

Server component management function module 623
changes the type of message in the message buffer contain-
ing message RPC_MESSAGE_ REQUEST and places the
result from message IPC_MESSAGE in message RPC_
MESSAGE_REQUEST. Module 623 calls the local mes-
sage transfer RPC command to transfer message RPC_
MESSAGE_REQUEST to server RPC command module
525 as message RPC_MESSAGE_ RESULT. Notice that
message RPC_MESSAGE_REQUEST and message
RPC_MESSAGE__RESULT are really the same structure.
The different reference numerals are used to assist in under-
standing the communication flow and are not intended to
limit the invention in any way. Message RPC_ MESSAGE_
RESULT is transferred to remote client computer 510 and
processed as described above with respect to FIG. 5.

In this embodiment, component management function
module 613 and component management function module
623 are functionally similar. Both modules 613 and 623
build a message in response to a component management
application programming interface function call. In the case
of remote client 511, the message must be transported over
network 500 to be presented to I/O manager server 521,
while for local client application 627, module 623 must only
pass the message locally using an interprocess communica-
tion.

Since component management modules 613 and 623
handle all component management function calls, RPC

10

20

25

30

35

40

45

50

55

60

65

14

command modules 515 and 525 are independent of any
particular component management function. Consequently,
any change in RPC command modules 515 and 525 does not
require regenerating, compiling and linking of remote client
application 511, module 613 and module 623.

In the previous embodiment, an I/O management function
was called by client application 511, a message in a memory
buffer was built by client component management function
module 613 and transmitted by remote client RPC command
module 515 to server computer 520. However, events can
occur with respect to one or more of components 540-1 to
540-n that may affect the operation of a client application
such as remote client application 511.

Consequently, in one embodiment of this invention, an
event server process within I/O manager 530 builds an event
message EV_MESSAGE. One embodiment of event mes-
sage EV_MESSAGE is presented in Appendix B, which is
incorporated herein by reference in its entirety. After event
message EV_MESSAGE is built in a buffer memory of
server computer 520, event message EV__MESSAGE is
passed to server component management function module
623 via an interprocess call.

Server component management function module 623
maintains a database of local clients on server computer 520
that have registered for events. In this embodiment, server
RPC command module 525 and local client application 627
are local clients of server component management AP 522.
Event message EV_MESSAGE is transmitted by server
component management function module 623 to each local
client that has registered for the event message.

In this embodiment, server RPC command module 525
has registered for the event message. Consequently, server
component management function module 623 calls a local
message transfer RPC to transfer the message buffer con-
taining message EV_MESSAGE to server RPC command
module 525.

As indicated above, RPC command module 525 main-
tains a database of remote clients that registered to receive
notification of an event message EV_MESSAGE. RPC
command module 525 packages message EV_ MESSAGE
and sends the message 1o each registered remote client. RPC
command module 525 sends the packaged message to
network stack 526, which in turn transmits the packaged
message to the remote client computer.

In this embodiment, the operation of server computer 520
and remote client computer 510 are effectively reversed
because the event message buffer is filled by I/O manager
530 and subsequently transmitted to remote client computer
510 by server component management function module 623
using a local message transfer RPC from server RPC module
525.

Thus, the operations in the transfer of the event message
are the same as those described above with the change in
direction of the message taken into account. Thus, the
operation of the local message transfer RPC command, and
the operation of RPC command modules 515 and 525, and
network stacks 516 and 526 is not repeated herein in further
detail. However, it is noted that RPC command modules 515
and 525 could be implemented so that one executable
module is called for events and another executable module
is called for API function calls.

In another embodiment, remote RPC command modules
515 and 525 support operations over a plurality of transport
stacks within network stacks 516 and 526 for example
transport stacks that support the TCF/IP and SPX protocols.
This allows client RPC command module 515 to commu-
nicate with server RPC command modules on both similar

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

5,926,636

15

and different network transport protocols. In this
embodiment, remote RPC command module 515, for
example, includes a particular executable module for each
transport protocol stack. Remote client application 511 loads
a particular executable remote RPC command module to use
one of the plurality of network transport protocols for a task.
All futther RPC communications to and from application
511 for that task use that network transport protocol until the
task exits. The same task can not issue calls to different
network transport stacks concurrently. However, two differ-
ent tasks may use different network transport stacks even
though the tasks share client component management API
512.

In one embodiment of this invention, as indicated above,
the client application is a Windows 3.1 application, and
remote RPC command modules 515 and 525 are executable
modules while component management APIs 512 and 522
are dynamically linked libraries. The invention was imple-
monted using the EZ-RPC compiler provided by NobleNet,
Inc., 337 Turnpike Rd., Southboro, Mass. 01772 and related
tools available from NobleNet, Inc. to generate a portion of
modules 515 and 525.

The embodiments of the invention described above are
only illustrative of the principles of this invention. In view
of this disclosure, those skilled in the art can implement a
variety of application programming interfaces and the mes-
sage transfer RPC commands to eliminate the problems
associated with using RPCs over heterogeneous networks.
The use of the single RPC command over heterogeneous
networks eliminates the problems associated with conven-
tional RPCs and a variety of versions of one or more APIs
on the heterogeneous network.

We claim:

1. A computer process for using remote procedure calls
over a heterogeneous computer network comprising:

filling a message buffer in a first computer with informa-

tion including a version of an application programming
interface on said first computer by a client application,
executing on said first computer, calling 2 management
function in said application programming interface,
wherein said first computer is on said heterogeneous
computer network; and

Issuing a message transfer remote procedure call by said

application programming interface to transfer said mes-

sage buffer over said heterogeneous computer network

fo a second computer;-

wherein said local message transfer remote procedure
call is used for management functions in said appli-
cation programming interface;

said message transfer remote procedure call is used to
tranfer all message buffers; and

said message transfer remote procedure call is inde-
pendent of said information in said message buffer.

2. A computer process for using remote procedure calls
over a heterogencous computer network as in claim 1
wherein said filling said message buffer comprises aligning
said information in said message buffer so that said infor-
mation is one byte-aligned.

3. A computer process for using remote procedure calls
over a heterogeneous computer network as in claim 1 further
comprising:

comparing said version of said application programming

interface in said message buffer with a version of an
application programming interface on said second
computer.

4. A computer process for using remote procedure calls
over a heterogeneous computer network as in claim 3

10

20

30

35

40

45

50

55

60

65

16

wherein said comparing said version of said application
programming interface in said message buffer with a version
of an application programming interface on said second
computer further comprises:

comparing a plurality of version identifiers of said appli-

cation programming interface on said first computer
with a plurality of version identifiers of said application
programming interface on said second computer.

5. A computer process for using remote procedure calls
over a heterogencous computer network as in claim 3 further
comprising:

continuing processing of information in said message

buffer by said application programming interface on
said second computer upon said comparing said version
of said application programming interface in said mes-
sage buffer with a version of an application program-
ming interface on said second computer indicating that
said versions are compatible.

6. A computer process for using remote procedure calls
over a heterogeneous computer network as in claim 1
wherein said management function is an /O management
function and said application programming interface is a
component management application programming interface.

7. A computer process for using remote procedure calls
over a heterogeneous computer network comprising:

issuing a component management function call from a

remote client application on a remote client computer
to a remote client component management application
programming interface on said remote client computer,
wherein said remote client computer is on said hetero-
geneous computer network;

building a message in a buffer memory of said remote

client computer by said remote client component man-
agement application programming interface wherein
said message includes an identifier for the called com-
ponent management function; and a version of the
remote client component management application pro-
gramming interface; and

sending said message to a server computer on said het-

erogeneous computer network using a remote proce-
dure call command module wherein said remote pro-
cedure call command module is independent of said
called component management function.

8.- A computer process for using remote procedure calls
over a heterogeneous computer network as in claim 7
wherein said sending said message to a server computer on
said heterogeneous computer network further comprises:

calling a local message transfer remote procedure call

command by said client component management API
to transfer said message from said remote client com-
ponent management application programming inter-
face to a remote client remote procedure call module
(RPC)on said client computer.

9. A computer process for using remote procedure calls
over a heterogeneous computer network as in claim 8
wherein said sending said message to a server computer on
said heterogeneous computer network further comprises:

packaging said message for transfer over said heteroge-

neous computer network by said remote client RPC
command module.

10. A computer process for using remote procedure calls
over a heterogeneous computer network as in claim 9
wherein said sending said message to a server computer on
said heterogeneous computer network further comprises:

transmitting said packaged message from said remote

client RPC command module to a first network stack on
said client computer;

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

5,926,636

17

transmitting said packaged message from said first net-
work stack to a second network stack on a server
computer; and :

transmitting said packaged message from said second
network stack to a server RPC command module on
said server computer wherein said server RPC com-
mand module converts said packaged message back to
said message.

11. A computer process for using remote procedure calls
over a heterogeneous computer network as in claim 10
further comprising:

transferring said message from said server RPC command

module to a server component management application
programming interface on said server computer.

12. A computer process for using remote procedure calls
over a heterogeneous computer network as in claim 11
further comprising:

reading a field in said message by said server component

management application programming interface to
determine whether an addressing format of said client
computer is compatible with an addressing format of
said server computer.

13. A computer process for using remote procedure calls
over a heterogencous computer network as in claim 12
further comprising:

10

20

18

converting said message to an addressing format compat-
ible with said server computer upon said server com-
ponent management application programming inter-
face determining that the addressing format of said
client computer is incompatible with said addressing
format of said server computer.

14. A computer process for using remote procedure calls
over a heterogeneous computer network as in claim 7
wherein said message is one byte-aligned.

15. A computer process for using remote procedure calls
over a computer network comprising:

placing a command in a message buffer by a computer

process executing on a first computer connected to said

computer network

wherein said command is for another computer process
executing on a second computer connected to said
computer network; and

using a single remote procedure call to transfer all mes-

sage buffers over said network computer network so
that said single remote procedure call is used indepen-
dent of the command in said message buffer and said
single remote procedure call is used by said first
computer to transfer said message buffer to said second
computer.

Copy provided by USPTO from the PIRS Image Database on 10/31/2011

