STEC IP LLC v. Google Inc. Doc. 1 Att. 2

EXHIBIT A
Part 2 of 3

Dockets.Justia.com


vtiradentes
Part 2 of 3

http://dockets.justia.com/docket/delaware/dedce/1:2012cv00639/48816/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2012cv00639/48816/1/2.html
http://dockets.justia.com/

US 7,596,784 B2

7

FIG. 23 is a diagrammatic illustration showing an embodi-
ment of a system according to the invention.

DETAILED DESCRIPTION

Among other aspects and innovations, the invention pro-
vides structure, system, method, method of operation, com-
puter program product, and business model and method for
providing distributed on-demand application processing.

There is a missing category in the available internet infra-
structure based on-demand services. On-demand services fail
to provide on-demand application processing, delivered as an
on demand infrastructure service.

In one embodiment, the present invention provides for
on-demand application processing, delivered as an on
demand internet (or other networked) infrastructure service.
Application processing may for example include one or more
of, but is not limited to, deploying, instantiating, running and
operating an application. One of the major benefits of provid-
ing this type of on-demand service is improvement in opera-
tional and other economics. The novel on-demand applica-
tion processing method and system of the present invention
improves: operational economics such as the elimination of
costly server infrastructure expansion, simplifying and reduc-
ing capacity planning and an economic cost based on use; and
user satistaction by providing a maximum and assured appli-
cation, such as an internet site, responsiveness under substan-
tially any user load and for users located substantially any-
where. The present inventive on-demand application
processing method and system changes the economic focus
of server infrastructure.

The novel on-demand application processing method and
apparatus of the present invention solves an application pro-
vider’s capacity planning problem. For example, an applica-
tion provider is an entity that provides a service via a com-
puter network such as, Charles Schwab, WebVan-like
entities, Walmart.com, and Intuit, which provide various
types of applications accessed by individuals or entities over
the internet. One of the problems that such companies face is
that it is very difficult for them to predict how much demand
they will have for their services and applications. Therefore it
is extremely difficult for them to determine how large a server
farm to deploy to allow greater user access to their services.

The present on-demand application processing method
and apparatus solves this problem by providing on-demand
processing capacity. Thus, the on-demand system provides
the application provider with additional access to further
processing capabilities without the need or expense of the
application provider trying to predict how much processing
capability will be needed. Further, one of the advantages of
the present on-demand application processing method and
system is that the application provider’s cost is based on the
amount of processing capability actually used. Thus, instead
of having a huge up front capital investment to provide the
expected processing capabilities and thus take all the risk to
create these services, the present on-demand application pro-
cessing method and system provides the application process-
ing capacity based on demand, avoiding the need to predict
processing needs, and eliminating the up-front capital invest-
ment.

Another major benefit provided by the novel on-demand
application processing method and system is application user
or customer satisfaction. An application user’s satisfaction is
achieved and maintained because the on-demand application
processing substantially improves the response time of appli-
cations by increasing the processing capacity as the demand
increases, is capable of spreading the load across a plurality

25

30

35

40

45

60

8

servers, and enhancing consistency. The on-demand applica-
tion processing system is further able to put a cap or limit on
how much response time is built into the server side of appli-
cation processing.

The present on-demand application processing method
and system solves the growth spiral and the exponential cost
per user increase in providing applications and services over
the internet by supplying resource capacity based on the
demand for the applications. The present on-demand method
and system will increase resource capacity to an application
provider as user access grows, and will also reduce resource
capacity as user access decreases. Thus, the application pro-
vider simply pays for the amount of resources needed and
used.

The present invention provides an ideal solution to the
fixed capacity problem shown in FIG. 3, through a flexible
on-demand variable capacity providing substantially unlim-
ited server infrastructure capacity which responds within sec-
onds because demand patterns change within seconds. FIG. 4
shows a graphical representation of the on-demand response
of the present on-demand system. The present on-demand
application processing system solves the unpredictable
capacity problem by providing on-demand server or applica-
tion processor capabilities with a response time of seconds or
less. If the capacity demand increases, the on-demand capac-
ity of the present invention adjusts to supply further capacity
90a and 905. If the capacity demand decreases, the on-de-
mand capacity of the present invention adjusted to supply less
capacity 92a and 924, thus reducing the overall cost.

The present invention provides an ideal solution, by pro-
viding substantially instant variable capacity. As an example,
the present invention provides an infrastructure or virtual
infrastructure, which comes on-line or is activated for those
peak times (i.e., those 10 minutes) when a site gets a rush of
Web traffic, and then the virtual infrastructure reduces or go
away when the Web traffic is reduced. Further the present
invention provides substantially unlimited processing
resources, thus providing as much processing as is needed.
The present invention further provides unlimited processing
resources with a global reach, because application providers
now have users all over the world. The present invention
further provides this substantially unlimited capacity to appli-
cation providers at a pricing scheme which charges the appli-
cation providers for the amount of capacity utilized, obviating
the need for capital expenditures. The present on-demand
application processing method and system is flexible and
capable of running substantially any application, thus the
application providers are not limited or locked into a particu-
lar application. The present invention provides the applica-
tion providers with the ability to have the freedom to choose
their own application sets. Further, the present invention
allows the application sets to be completely under the appli-
cation provider’s control. As an example, once an application
provider deploys an application set, the application provider
maintains control over that application set, the data in and
related to the application set, and other such control features.
Thus preventing an application provider from being at the
mercy of someone else owning their application set. Instead,
the application provider maintains complete control over the
services provided through the distributed application set.

FIG. 5 depicts a simplified block diagram of a business
operating over the Internet, sometimes referred to as an
e-business. Generally, an e-business has a set of servers 110
that run several or all of their different applications. The
servers 110 have back end ERPs 112, back end transaction
systems or services 114, and front end systems 116 including,
but not limited to, personalization service 118, an e-selling



US 7,596,784 B2

9

system 120, and a one-to-one marketing system 122, which is
found in a central site. Users 124 gain access through the
internet 126 to the central server or central site 110. As the
number of users 124 accessing the server 110 increases, a
tornado effect 130 results, and a bottleneck 132 is created,
adversely affecting the response time and reliability of the
site.

FIG. 6 depicts a simplified schematic block diagram of one
embodiment of the novel distributed on-demand application
processing system 140 of the present invention which sub-
stantially eliminates the bottleneck and tornado effects seen
in the prior art. In one embodiment, the present on-demand
system 140 pushes or distributes application processes, such
as the front end systems, including, but not limited to, per-
sonalization 118, eSales 120, and one-to-one marketing 122
(see FIG. 5), out into the Internet 126, and out into the infra-
structure of the Internet. In one embodiment, distributed com-
pute resources, such as processors, computers and/or servers
148, of the on-demand system 140 are geographically distrib-
uted, and in one embodiment located and installed globally all
around the world. By geographically distributing the servers
148, the application processing can also be distributed, allow-
ing traffic from users 124 to be distributed and routed to the
servers 148 distributed across the Internet 126. In one
embodiment, final applications or transactions, such as final
purchases, and any other conventional transaction, are routed
back across the internet 126 to the transactions system 1 14
and the ERP system 112. In one embodiment, the transaction
system 114 and the ERP system 112 are not moved out or
distributed across the distributed servers 148. As an example,
auser 124 does his/her shopping and configuring, and the like
as well as determining what he/she would like to buy, through
a distributed server 148 which is geographically closer to the
user in the on-demand system 140. In one embodiment, once
the user 124 selects or hits the “buy” button of the interactive
website to complete the sales transaction, that transaction is
forwarded to the backend systems 112 and 114 maintained on
the application provider’s central servers to complete the
transaction. Thus, significantly reducing the amount of traffic
into the application provider’s central servers, eliminating the
bottle neck effect, improving performance, enhancing
response time, and thus improving and maintaining user sat-
isfaction.

In one embodiment, the entire central site including the
back end ERP 112 and transactions service 114 are distrib-
uted out onto the distributed on-demand system 140. Thus,
even the final transactions, such as the final purchase, are
preformed on the distributed servers 148.

FIG. 7 illustrates in high level block diagram form one
implementation of one embodiment of the overall structure of
the present invention as used in connection with a computer
network 150 such as the Internet. In one embodiment, com-
puter network 150 is a direct link between one or more remote
entities, such as the users 152-1 and 152-2, a separate appli-
cation, a server, a process, computational device and substan-
tially any other entity capable of issuing requests for appli-
cation processing. In one embodiment, computer network
150 is a network providing an indirect link, such as an intranet
or global network (i.e., the Internet). Remote users 152-1 and
152-2 utilize the computer network 150 to gain access to a
plurality of computers or servers 158-1, 158-2, through 158-
n. In one embodiment, the computers 158 are protected by a
firewall 154. In one embodiment, computers 158 are edge-
points (described more fully below), groups of edgepoints,
global dispatchers or other components of a private network
156. In one embodiment, computers 158 are used to run
various applications, such as hosting web sites for access by

10

15

20

25

30

35

40

45

50

55

60

65

10

remote users 152. In one embodiment, the present invention is
implemented on computer network 156 in the form of virtual
environments 160-1 and 160-2. While only two virtual envi-
ronments are illustrated, it is to be understood that any num-
ber of virtual environments may be utilized in connection
with the present invention

In one embodiment, the method and system of the present
invention is implemented in a computer readable medium,
such as a computer program 164 and executed on a computer
166 as illustrated in the high level block diagram of FIG. 8. As
shown, computer 166 incorporates a processor 168 utilizing,
in one embodiment, a central processing unit (CPU) and
supporting integrated circuitry. A memory 170 which is any
type or combination of memory including fast semiconductor
memory (for example, RAM, NVRAM or ROM), slower
magnetic memory (for example, hard disk storage), optical
memory and substantially any conventional memory known
in the art, to facilitate storage of the computer program 164
and the operating system software. In one embodiment, also
included in computer 166 are interface devices including, but
not limited to, keyboard 172, pointing device 174, and moni-
tor 176, which allow a user to interact with computer 166.
Mass storage devices such as disk drive 178 and CD ROM
180 may also be included in computer 166 to provide storage
of information. Computer 166 may communicate with other
computers and/or networks via modem 182 and telephone
line 184 to allow for remote operation, or to utilize files stored
at different locations. Other media may also be used in place
of modem 182 and telephone line 184, such as a direct con-
nection, high speed data line or a wireless connection, and the
like. In one embodiment, the components described above
may be operatively connected by a communications bus 186.
In one embodiment, the components may be operatively con-
nected by wireless communication.

FIG. 9 shows a simplified block diagram of one embodi-
ment of an overall system architecture 200 for the distributed
on-demand application processing service and system 140.
The on-demand system 140 includes an application switching
architecture or technology 202 configured to provide appli-
cation switching, an edge processing network 204, which, in
one embodiment, is hundreds of machines, edgepoints or
servers in hundreds of data centers distributed throughout the
world and/or the internet, automated deployment 206, remote
control 210, security architecture 212, and performance
monitoring 214, all coupled to cooperate and provide appli-
cation processing, and deployment.

Some of the advantages provided by the on-demand
method and system 140 include: protection during peak
loads, in one embodiment, with guaranteed application
response time SLA; global reach with application provider
control of distributed web presence; freedom to grow aggres-
sively including elastic web-processing infrastructure on
demand; no capital investment with costs based on the
amount of capacity used; supporting substantially any appli-
cation on substantially any platform to preserve application
provider’s current application investment; and higher reli-
ability because the system provides superior response time
and automatically routes around failures.

FIG. 10 shows a simplified block diagram of one embodi-
ment of the application switching architecture 202. In one
embodiment, the application switching architecture 202
includes an application snapshot or appshot 220. An appshot
220 is a set of all data and/or state necessary to halt (and then
restore and restart) at least one application at a given point in
time, such that, the application may be restored at a later time
on substantially any machine. For example, an appshot 220
can be an already running application halted at a point in time



US 7,596,784 B2

11

without the application knowing it was halted. In one embodi-
ment, an appshot 220 is the encapsulation of an application
stack of at least one running application including the differ-
ent processes, states, and interprocess communication. For
example, a set of interdependent and/or interacting applica-
tions halted together may be included in an appshot 220. In
one embodiment, the appshot 220 includes, data 222, and a
set of interactive applications, 224a-224n.

One example of an appshot 220 is a configuration engine,
which allows users to shop online and decide exactly what
they want to purchase. A snapshotted application and/or pro-
cess, and the method for performing a snapshot is more fully
described in co-pending U.S. patent application Ser. No.
09/680,847, filed on Oct. 5, 2000, incorporated in its entirety
herein by reference.

In one embodiment, an appshot 220 encapsulates a multi-
tier applications stack, including data 222. The present on-
demand application processing method and system 140 per-
forms this appshot encapsulation or snapshotting which saves
the states of a running set of processes. The encapsulation of
an appshot 220 allows the on-demand system 140 to replicate
an application and provide a plurality of instances of the same
application to be operated at substantially the same time
utilizing a plurality of subsets of the on-demand computa-
tional resources. The replication allows the on-demand sys-
tem 140, among other things, to move the appshot 220 to
another set of compute resources such as another server,
computer or machine, to duplicate the appshot 220 to other
servers, and to replace or upgrade an appshot 220. Further, the
encapsulated appshot 220 allows the on-demand system 140
to put an application when operating as an instance of an
application into a form which allows the system to remove the
instance of the application from an idle server when the
application instance associated with an appshot 220 is not
being used, and to store the appshot 220 in a memory with
accompanying application states. As an example, an appshot
220 is an already running application halted at a point in time.
Thus the on-demand system is capable of freeing up
resources to allow other applications to utilize the idle
resources.

In one embodiment, the on-demand application system
140 is capable of relocating or replicating an appshot 220 to
other or alternate sets of computational resources such as
other compute modules and/or other edgepoints 350 (see FIG.
14A) distributed throughout the worldwide on-demand sys-
tem 140 providing at least a portion of the distributed on
demand computational resources. In one embodiment, an
edgepoint 350 is a computing facility with intelligent routing
and load balancing architecture or capabilities. The edgepoint
is capable of operating as a server. An edgepoint includes at
least one and usually a plurality of servers or processors, such
as a Sun Server 420 available from Sun Microsystems, Win-
dows NT server from Microsoft, and a Linux server available
from Linux, and substantially any other conventional server
known in the art. The edgepoints are deployed, in one
embodiment, throughout the world making up at least a por-
tion of the on-demand system 140. Application providers will
generate an appshot 220 of the application, applications or
site which they want to distribute throughout the on-demand
system 140. The appshot 220 can then be distributed to spe-
cific edgepoints, or distributed globally to every edgepoint
350 of the on-demand system 140. Thus, when an entity 124,
such as a user, a separate application, a server, a process,
computational device and substantially any other entity
capable of issuing requests for application processing, wants
to access the application or site, the edgepoint 350 activates or
restores the appshot 220 to an activate instance of the appli-

15

25

35

40

45

50

55

12

cation or applications encapsulated within the appshot 220.
The configuration and structure of the appshot 220 also
allows the edgepoint 350 to re-encapsulate or snapshot the
application or applications back into an appshot 220 and store
the appshot 220 in a memory when the application or appli-
cations are not in use. As discussed above, the appshot 220 is
capable of being restored or reactivated when needed. In one
embodiment, the application can be restored from an appshot
220, usually in less than 5 seconds, and more usually less than
3 seconds, depending on the available edgepoint resources.
Thus, in one embodiment, the on-demand system 140 pro-
vides capacity on demand by restoring an appshot 220 when
needed to provide one or more instances of an application.
The system monitors the resources utilized to provide pro-
cessing for the active application instances. The application
provider is then charged according to the amount of compu-
tational resources utilized in providing users with access to
their distributed applications.

FIG. 11 depicts a simplified flow diagram of one imple-
mentation of a sequence of steps executed by the present
invention to perform a snapshot of a process or application
instance. In step 250, a snapshot of an active application is
requested. The processes that are snapshotted together in the
form of an application chain share the same application 1D
(AID). As such, the AID is looked up (decision step 252) in
memory containing a list of the AID’s present. If the AID is
not found control returns at step 254. However, if the AID is
found, control continues to decision step 256 where a search
is performed for a process belonging to the application having
the matched AID. If a process is found, control continues to
step 258, where the process is suspended. If the state is con-
sistent and the threads are quiesced (decision step 260), con-
trol loops to step 256 and the remaining processes belonging
to the application are located and suspended. However, if a
process is located that does not have a consistent state or a
thread is not quiesced, suspended processes are resumed and
the snapd module 262 returns a notice that the snapshot was
not completed.

In one embodiment, a snapd module (snapshot daemon
module) comprises a daemon listening on a port that does the
snap-shotting of all processes that have the same snapshot id
(snapid). The state of the applications after a snapshot is taken
is stored in one or more files. The state that is typically saved
includes process state information (for example, in a snapshot
file per process), and memory information (for example, in a
file per anonymous and shared memory segments). In one
embodiment, the snapshot file stores all process state infor-
mation as apseudo ELF file. A different ELF_NOTE section
is created for each process state record (such as file descrip-
tor). Another file called snaplist.snapid identifies all the pro-
cesses in that snapid along with any parent/child relationship.
In one embodiment, the process state information is collected
during execution in preload libraries or when the snapshotting
is done from the kernel.

Once the related processes are suspended, the states of the
suspended processes are checked to see if they are virtualized
(step 268). A virtualized state is any process state that reflects
a virtualized resource. If the state is virtualized, it is retrieved
at step 270 otherwise the non-virtualized state is retrieved at
step 272. If the state has changed since the last snapshot (step
274), the new state is recorded. Control then loops to step 266
and executes through the above sequence of steps until the
states of the processes are checked. Once completed, control
proceeds to step 282, registered global states, such as sema-
phores, are removed. A registered global state is a state that is
not specifically associated with any one process (i.e., private
state). A global state is usually exported (accessible) to all



US 7,596,784 B2

13

processes and its state can be modified (shared) by all pro-
cesses. Control proceeds to step 284, where the process is
terminated. If there are remaining processes (step 286), these
are also terminated. This sequence of steps is concluded to
create a snapshot of an application instance which is stored, in
one embodiment, as a file and made available for reactivation
or transmission to another compute modules, and/or other
edgepoints.

FIG. 12 illustrates a simplified flow diagram of one imple-
mentation of the sequence of steps executed to restore a
snapshotted application. The snapshotted application is
accessed via a shared storage mechanism through a restore
call at step 300. The AID for the snapshotted application is
looked up and (decision step 302) if not found a notification is
issued that the snapshotted application has not been restored.
However, if the AID is found, control continues to decision
step 304 where, if the snapshotted application matching the
AID is located, the global/shared state for each process asso-
ciated with the snapshot are found. Control then continues to
step 308, where remaining global or shared state for the
processes are recreated. Then a process is created that inherits
the global/shared state restored in step 308, and the created
processes are isolated to prevent inter-process state changes.
At step 314, for each type of state within the processes, the
process-private resources are recreated to their state at the
time the application was snapshotted. Ifthe state is virtualized
(decision step 316), the system state is bound to a virtual
definition. In one embodiment, as part of the restore a step is
performed to create a virtual mapping. This is done by taking
the system resource that was created in step 314 and binding
it to the virtual definition that was saved during the snapshot
in step 266. This allows the application to see a consistent
view of resources, since it may not be guaranteed that at
restore time the same system resource will be available. If the
state is shared with another process, such as via a pipe (deci-
sion state 320), the shared state is reconnected with the other
process at step 322. If there are more states (decision step 324)
steps 314 through 322 are repeated. Once steps 314 through
322 have been executed for all states, control continues to step
326, where the process is placed in synchronized wait. If there
are remaining images in the snapshotted application (decision
step 328), steps 310 through 326 are repeated. Once all
images have been processed, control continues to step 330,
where traces and states induced during restore of the process
are removed, and a synchronized operation of the processes
occurs at step 332. Once steps 300 through 332 have executed
without error, the restored application can continue to run
without interruption. Thus, the present invention avoids the
overhead and delay of shutting down an application, storing
data to a separate file, moving both the application and data
file elsewhere, and restarting the program or application.

FIGS. 13A-C depict one implementation of one embodi-
ment of the system and method or process for providing
on-demand compute resources provided by the present inven-
tion. FIG. 13A shows a simplified block diagram of one
embodiment of an edgepoint 350 of the present invention.
The edgepoint 350 includes a memory 352, which is any type
or combination of memory including fast semiconductor
memory (e.g., RAM or ROM), slower magnetic memory
(e.g., hard disk storage), optical memory substantially and
any conventional memory known in the art. Within memory
352 is stored appshots 220a-f. Edgepoint 350 further includes
compute resources 354. Compute resources include but are
limited to at least one of a microprocessor, memory, control
logic, or combination thereof. In operation, the edgepoint 350
is accessed by at least one entity, such as users 124a-b, over a
network, such as the internet 126. When a user 124a is routed

10

15

20

25

30

35

40

45

50

55

60

65

14

to the edgepoint 350 and requests one or more applications,
the edgepoint 350 determines which appshot 220a-fprovides
the desired application. The edgepoint pulls or duplicates the
appshot 2205 from a halted or snapshotted state, and unen-
capsulates or restores the appshot 2205 onto a first set of
compute resources, such as a first server 354a. The server
354q activates an instance of the application 3564 to allow the
user 124a to utilize the application 356a. In one embodiment,
the edgepoint 350 restores an application from an appshot
220 immediately upon request.

Referring to FIG. 13B, once a server 354q is running the
application instance 3564, the application 356a is fully active
and operating, so that additional users 1245 can be routed to
and gain access to the active application 356a. Because the
application 3564¢ is already active, additional users 1245 get
an immediate response with substantially no delay. However,
as more users request access to the application 3564, the
response time begins to suffer, and the effectiveness of this
application begins to deteriorate because the application 356a
becomes overloaded. As additional users 124¢ attempt to
access the instance of the application 356a response time
degrades. In one embodiment, a predetermined response time
threshold or limit is set, or a predefined number of users is set
which limits the number of users allowed to access one
instance of an application. Thus, when a new user 124c¢
attempts to access the application 3564, and this new user
124¢ exceeds the predefined threshold, the edgepoint 350
activates the appshot 2205 to initiate a second instance of the
application 3565. Thus, this demonstrates the ability of the
present invention to provide capacity on the run or on-de-
mand, and provide an optimal response time for the applica-
tions 356a-f-

Referring to FIG. 13C, as the numbers of users accessing
the second instance of the application 3564 continues to
increase, the threshold will once again be reached. Once
additional users 124e attempting to access the second
instance of the application 3565 exceeds the limit, the edge-
point 350 will again activate the appshot 2205 to activate a
third instance of the application 356¢. This will continue until
the servers 354a-f are occupied to capacity running at least
one of the applications 356a-f. At which point, the edgepoint
350 will signal the system 140 and the on-demand application
system 140 will then direct or route additional users to other
edgepoints 350 throughout the distributed on-demand system
140. Thus, the system 140 ensures an effective response time
and reliability, and thus improves user satisfaction.

The present invention also provides for the freeing up of
system resources to be utilized by alternative applications. As
the number of users 124 decrease below a threshold, one of
the application instances, such as the third instance 356¢, can
be terminated or snapshotted to free up a set of resources. The
freed resources allows the edgepoint 350 to activate and run
an alternative appshot 220a-f. Thus, the on-demand system
140 not only provides resources but reduces resources when
not needed, resulting in a reduced cost to the application
provider. Further, the present inventive on-demand method
and system 140 provides for the ability to share resources
among application providers because applications can be ini-
tiated as well as removed from compute resources allowing a
substantially unlimited number of applications to utilize the
same resources.

In one embodiment the edgepoint 350 is not limited to
activating a single application 356 from a single appshot 220.
A single edgepoint 350 can activate a plurality of different
applications 356 on a variety of different sets of compute
resources, such as servers 354, based on the applications
requested by the users 124.



US 7,596,784 B2

15

In prior art systems, application providers wishing to pro-
vide applications had to buy a server, then they must buy or
develop the applications that are going to be loaded and run on
that server, load the server, and activate the server to provide
access to that application. The server is a fully dedicated
resource, so that 100% of the time an application is dedicated
to a specific server. The present on-demand application sys-
tem 140 reverses or switches this paradigm and instead of
applications being dedicated to a server, the on-demand sys-
tem 140 provides computing resources on-demand, when
demand for an application is received, and additionally frees
up resources when demand falls off for the restoring of com-
pletely different applications. Further, application providers
no longer need to purchase the servers. Application providers
simply take advantage of the on-demand application process-
ing system 140 already deployed by loading their applica-
tions onto the distributed on-demand system 140. The on-
demand system 140 allows an application provider to allow
substantially an unlimited number of users to access substan-
tially the same application at substantially the same time
without over loading the system 140 or the application, all
without the need to incur the extremely expensive capital
expense of providing their own system. Instead, the applica-
tion provider pays for the amount of resources utilized to
provide their users access to the applications. As demand
increase, the on-demand system 140 increases the number of
applications running, increasing the amount of compute
resources and capacity, thus the application provider is
charged more; as demand falls, the on-demand system 140
decreases the number of application instances, reducing the
amount of computational capacity, thus the application pro-
vider is charged less. Thus, the application provider is
charged for the amount of resources used.

In one embodiment, the present invention provides for a
distributed on-demand system 140 such that potentially thou-
sands of servers 354 in hundreds of edgepoints 350 are glo-
bally deployed and linked to create a virtual single server
view throughout the world. This virtual single server view
provides an application provider with access and control over
their own applications in the system 140.

FIG. 14A-C show one implementation of one embodiment
of the novel method and system 140 which allows the appli-
cation providers to dictate the distribution of their applica-
tions, the potential compute resources to be available,
upgrade or alter their applications, replace applications,
monitor applications, and monitor the amount of resources
utilized by entities accessing their distributed applications.

Prior art application processing systems require an appli-
cation provider to route a user to a single central site to allow
access to the applications. Every user attempting to access the
application is directed to the single central site. Thus, result-
ing in the bottle neck as discussed above. In the prior art single
server or single central site, the application provider, how-
ever, does maintain access to and control over the application.
In some systems where the application provider outsources
their server capacity, the application provider must select
from a preselected, limited number of applications. Further,
the application provider no longer has direct control over the
application. Any changes desired by the application provider
are submitted by request to the server provider. Then the
server provider must schedule a time at low demands to take
the server down to make the changes. This process results in
large lag times between the decision to make changes and the
implementation of those changes.

FIG. 14A shows a simplified block diagram of one embodi-
ment of the present on-demand application processing system
140 in cooperation with the preexisting internet infrastructure

20

25

40

45

16

126. The present distributed on-demand application process-
ing method and system 140 provides for distributed process-
ing capabilities, with on-demand capacity, as well as provid-
ing the application provider with direct access to the
on-demand system 140 and thus direct access and control
over their applications. The application provider has control
to distribute new applications or change already distributed
applications throughout the on-demand system 140. In one
embodiment, the on-demand system 140 is configured to
provide an application provider with a virtual single server
view of the on-demand system 140. This virtual single server
view allows an application provider complete access and
control over the applications which the application provider
decides to distribute over the system 140. In one embodiment,
the system 140 provides an application provider with the
ability to deploy applications throughout the distributed on-
demand system 140, change and update deployed applica-
tions, and monitor any one or all of the applications deployed
throughout the internet 126 from a single terminal or site. In
one embodiment, the application provider can deploy or
access their applications through any one of a plurality of
terminals or locations, including computers located at their
own facilities. The present on-demand system 140 provides
the application provider with the ability to deploy applica-
tions and access those applications once distributed through
the system 140. As referred to herein, conduit 360 is a staging
facility that enables the application provider to deploy appli-
cations across a computer network. Through the conduit 360
application provider deploys applications, retains control
over their deployed applications, monitors the operation of
their applications on the system 140, checks billing informa-
tion, checks metering information, checks performance infor-
mation, and so forth.

By structuring the on-demand system 140 as a single dis-
tributed system, and allowing the application provider with
access to the on-demand system 140 through a single point,
the on-demand system 140 appears to the application pro-
vider as a single server. Thus, when the application provider
wishes to load and implement a new application onto the
system 140, the application provider simply accesses the
on-demand system 140 through conduit 360. Still referring to
FIG. 14A, in one embodiment, application provider is
capable of loading an application as an appshot 220 onto the
on-demand system 140 from a single origin site 362 through
the conduit 360. The application provider loads the appshot
220 onto the system 140. The application provider is then
capable of designating specific locations (for example, areas
of the world wide system 140, such as, edgepoints 350a and
3505 representing Asia, Western Europe, the United States,
Germany, a north-eastern portion of the United States, or
London) or the entire system to allow users to access the
deployed applications. Once the areas of distribution are des-
ignated, the on-demand system 140 distributes the appshot
220 through a hub 370 to the edgepoints 350 in the areas
designated by the application provider. FIG. 14B shows a
simplified block diagram of one embodiment of the on-de-
mand system 140 with the appshot 220 distributed to edge-
points 350a and 3505. Once the appshot222 is distributed,
auser 124 can then be routed 378 to the most optimal edge-
point 3504 having the specified application, instead of being
routed to the central site 362. Because the on-demand system
140 is configured to appear as a single virtual server, the
application provider loads the appshot 222 once on to the
system 140. The application provider does not need to load
the application onto each edgepoint to distribute the applica-
tion to specific areas of the on-demand system 140 or
throughout the system 140.



US 7,596,784 B2

17

Further, the virtual single server mechanism also allows the
application provider access to the appshot 220 through con-
duit 360 from a single point in the on-demand system 140.
Referring to FI1G. 14C, the application provider is capable of
making changes or up-grading 374 the appshot 220 through
conduit 360 and/or replacing the appshot. In one embodi-
ment, the change or up-grade 374 is made once. This change
or up-grade 374 is then distributed throughout the system to
those edgepoints 350a-b providing the desired application
without additional input from the application provider. Thus,
the application providers maintain control over their applica-
tions and how the applications are distributed. The applica-
tion providers are further capable of directly implementing
changes and updates and replacements to their applications.

FIGS. 15A-C show a simplified block diagram of one
implementation of one embodiment of the optimal user and
entity routing provided by the present invention. FIG. 15A
shows a block diagram of one embodiment of the on-demand
application processing system 140. One of the advantages of
the on-demand system 140 and virtual single server mecha-
nism is the ability to route a user 124 to an optimal edgepoint
350 which will provide the user 124 with the least amount of
latency delays while avoiding overloading a single edgepoint
350. For example, referring to FIG. 15A, to reduce the
amount of latency delay, it would be preferable to route the
user 124 to the geographically closest edgepoint 350a, as
designated by dashed line 1. However, because of an overrid-
ing condition, for example edgepoint 350 is overloaded by
other users, the user 124 is routed to a second edgepoint 3505,
as designated by arrow 2, adding a minimal amount of latency
delay but providing enhanced response time because the sec-
ond edgepoint 3505 is not as heavily loaded, thus providing
an overall superior interaction.

Referring to FIG. 15B, another advantage of the on-de-
mand system 140 is that the applications 356 can be interac-
tive. Thus allowing the user 124 to make changes or additions
380 to the information provided through the application 356.
Further, once changes are made to the application 356, the
on-demand system 140 will continue to route the user 124 to
that same edgepoint 3505, as designated by arrow 3, for future
connections of that user 124 to the on-demand system 140 for
that application 356. This affinity for that user 124 ensure that
the user 124 continues to interact with the most current ver-
sion of the application 356 according to the user’s informa-
tion and changes. The on-demand system 140 also provides
the capability to synchronize or update the system 140 to
reflect the changes 380 made by the user 124. The updates are
made at anytime as dictated by the on-demand system 140,
such as periodically, randomly or by schedule. As shown in
FIG. 15B, the changes 380 made by the user 124 are for-
warded to the origin site 362 through conduit 360, as shown
with reference to arrows 4 and 5 updating the origin site. In
one embodiment, the on-demand system 140 is further
capable of distributing the changes 380 to the other edge-
points 350a which provide access to the application 356,
shown by arrow 6. Thus, the on-demand system 140 synchro-
nizes data and user’s changes 380 throughout the system,
maintaining an active and current system, without further
interaction by the application provider. Examples of user
changes include changes to a user profile, items added to a
shopping cart, and other such changes. One example of data
changes from the application provider would be an online
catalog update from the application provider to the various
edgepoints. Referring to FIG. 15C, once the on-demand sys-
tem 140 is updated and the user’s changes 380 are distributed
throughout the on-demand system 140, the on-demand sys-
tem 140 is again free to re-route or route the user 124 for

5

10

15

20

25

30

35

40

45

50

55

60

65

18

future connections to any optimal edgepoint 350 in the system
140 providing the needed application 356, as noted by arrow
7. Thus, the present on-demand method and system 140 pro-
vides affinity in the routing scheme along with the ability to
synchronize the on-demand system 140.

Some of the additional features and benefits provided by
the novel on-demand application processing method and sys-
tem 140 include edge staging and load testing of applications
and sites. The on-demand system 140 allows application pro-
viders to directly install new versions of a website or appli-
cation onto the system 140. The system 140 allows the appli-
cation provider to limit the access to the new application or
website. Thus, application providers are able to access the
new website or application and functionally test the distrib-
uted site or application. Further, the on-demand system 140
allows the application provider to load test the application or
site prior to allowing public access and use. For example,
utilizing the on-demand system resources, numerous syn-
thetic simultaneous sessions are ableto be activated at a single
time to load test the application or site. The application pro-
vider is able to perform these load tests without the capital
expenditure of having to purchase additional equipment to
perform load testing. Further, because of the pricing scheme
of the present on-demand method, the application provider
then pays for the amount of capacity utilized during this
testing. Which is significantly less expensive than purchasing
additional equipment.

FIG. 16 shows a simplified flow diagram of one implemen-
tation of one embodiment of the process or method 600 and
system providing on-demand computing resources. In step
604, an application request is received from an entity. Once a
request is received, the process 600 enters step 606 where it is
determined if the request from the entity is bound to a specific
compute resource, such as a specific edgepoint. If the request
is not bound, step 610 is entered where the optimal edgepoint
is determine for providing the compute resources for appli-
cation processing. In one embodiment, the optimal edgepoint
is determined based on a plurality of criteria, including mini-
mal latency delay, capacity of the edgepoint, the distribution
of'the desired application across the network, and other such
parameters. Step 612 is entered if, in step 606, the request is
bound or once the optimal edgepoint is determined in step
610. In step 612 it is determined if the bound or optimal
edgepoint is operating at capacity. If the edgepoint is operat-
ing at capacity, step 614 is entered where it is determined
whether the edgepoint can free up sufficient resources by
snapshotting one or more application instances. If resources
cannot be freed up, the process 600 returns to step 610 to
reevaluate and determine the optimal edgepoint. Step 616 is
entered, if in step 612, it is determined that the edgepoint is
not at capacity, orin step 614 it is determined that capacity can
be freed up on the edgepoint. In step 616, the user is routed to
the edgepoint where the edgepoint determines optimal rout-
ing of the user to an instance of the desired application.

FIG. 17 shows a simplified block diagram of one imple-
mentation of one embodiment of the on-demand apparatus
140 including a plurality of edgepoints 3504-b. The network
140 can include substantially any number of edgepoints. FIG.
17 depicts two edgepoints for simplicity, however, it will be
apparent to one skilled in the art that the network 140 can
include substantially an unlimited number of edgepoints.
Network 140 is configured to at least provide application
processing for remote users 124 over the internet 126. Net-
work 140 can include any number of edgepoints allowing the
computational capacity of network 140 to be scaled. Network
140 provides user 124 with differential computational capac-
ity through either of the edgepoints 380a-b. In one embodi-



US 7,596,784 B2

19

ment, network 140 includes a global dispatcher (GD) 430
which at least provides routing of application requests from
user 124 to an edgepoint of the network. Based on network
parameters including, but not limited to, edgepoint load and
which applications are currently provisioned on each edge-
point 380a-b, GD 430 routes the user to the optimal edge-
point, for example first edgepoint 380a. Once the first edge-
point 380a receives the user request, the request is accepted
and dispatched by a local dispatcher 434a. A resource man-
ager 432a determines which of a plurality of compute
resources or modules 436a,-436a; would be the optimal
compute module in which to route the application request. In
determining the optimal compute module, the resource man-
ager 432a determines if a compute module is currently run-
ning the desired application or whether the application needs
to be restored from a snapshotted state. The resource manager
further determines if compute resources need to be freed up.
If resources need to be freed, the resource manager signals a
snapd module 440 of the optimal compute module, where the
snapd module snapshots one or more application instances,
thus freeing up the resources which were associated with the
snapshotted applications. Once the optimal compute module
has the available resources, the resource manager 432a sig-
nals the optimal compute module, for example first compute
module 436a,, where the restored module 442 restores the
desired application from memory 352a if necessary, and ini-
tializes the application to allow the user to interact with or
operate the desired application.

In one embodiment, restored is a daemon that restores the
state of all processes that belong to a single snapid. Snaplist
identifies the list of processes that need to be restored. In one
embodiment, the restore program “morphs” into the target
process. The restore program creates processes in the order
determined by, for example, a parent/child relationship. Each
restore program is designated a process-id (pid) that it morphs
to and each will do so by reading the appropriate snapshot file.

In one embodiment, the resource manager 432 further
monitors the compute resources utilized by each application
instance and records the compute resources utilized. The
on-demand system 140 uses the recorded resource utilization
for determining the amount an application provider is charged
for the use of the compute resources. In one embodiment, the
system includes a monitoring module 464, which monitors
the compute resources and provides the monitored results to
the resource manager and other components of the system. In
one embodiment, the resource manager (RM) utilizes the
perfd module to collect at least some of the data to determine
the amount of resources utilized per application instance. The
resource manager 432 monitors such things as CPU utiliza-
tion, network bandwidth, disk utilization, license usage,
response time latencies, and other such parameters for deter-
mining resource utilization.

In one embodiment, a perfd module comprises an agent or
other entity running on the computer node (CN) that com-
putes or otherwise determines the performance of each of the
CNs. A call to this perfd agent is initiated by the resource
manager (RM). This perfd agent makes system calls to collect
the statistics and sends it to resource manager. Viewed some-
what differently, perfd is or includes a daemon or other
mechanism that collects performance information, hence the
abbreviation perfd for performance daemon. In a more gen-
eral way, a perfd module is any performance determining
module.

In one embodiment, a compute node is a component within
an embodiment of an edgepoint that runs the components of
an Application Instance. Typically, these are application tiers
such as awebserver connected to a middle-tier and a database.

10

15

20

25

30

35

40

45

50

55

60

20

In one embodiment, an edgepoint is a machine or collection
of machines that run the customers site. An administrative
node (AN) is the component within an edgepoint that runs the
administrative components of an edgepoint. For example, a
configuration database, deployer components, data synchro-
nization components, and monitoring components are run in
the administrative or admin node.

In one embodiment, the network 140 further includes at
least one deployment center 444, deployment database
(DDB) 446, conduit 360, and dashboard (i.e., a network oper-
ating center (NOC) dashboard 454 and/or a customer dash-
board 456). In one embodiment, the edgepoints further
include a global dispatch module 460, a data synchronization
module 462 and the metering module 464. The plurality of
edgepoints communicate such that snapshotted instances of
applications can be transterred and users rerouted.

The global dispatch module 460 provides communication
with and access to the network 140, and aids in network
routing to allow entities, such as users 124, access to the
applications and compute resources. The global dispatch
module 460 further receives information from the network
and other edgepoints regarding the amount of compute
resources available on other edgepoints 350 and throughout
the network 140 to aid in optimizing the resources of the
network. The data synchronization module 462 communi-
cates with the network to receive data and information from
the network to update the edgepoint 350 with the data. The
data synchronization module 462 allows new or changed data
distributed across the network to be forwarded to the compute
modules 436 and/or the memory 352 of the edgepoint 350. In
one embodiment, the data synchronization module 462
allows data added or changed by a user 124 to be distributed
across the network 140. The metering module 464 monitors
the edgepoint and the compute resources utilized by an appli-
cation, user, group of applications, and any combination
thereof. The metering module 464 acts in cooperation with
the resource manager 432 to monitor the compute modules
436 and collects data from the compute modules regarding
usage. In one embodiment, the metering module is further
configured to determine an amount to charge the application
providers based on the amount of compute resources utilized
by each application provider for application processing.

In one embodiment, the deployment center 444 acts as the
hub that collects data, policies and applications and distrib-
utes them to the edgepoints 350a-b. Deployment center 444
maintains application and data versions and distributes
updates, revisions and replacements which are forwarded to
the deploy modules 433a-b of the edgepoints 350a-b. In one
embodiment, the deployment through the deployment center
444 includes capturing application states (initial and
updates), policies and testing methods as released to the net-
work 140 from application providers and network adminis-
trators and moving it to the edgepoints 350a-b. The policies
include deployment and execution policies. Application
states include the actual application data/binaries and the
method to create the snapshots.

In one embodiment, the DDB 446 is the repository for the
NOC 452 and serves also as the repository for deployment by
the deployment center 444. Conduit 360 provides an applica-
tion provider with access to the network 140 to distribute,
update and monitor their applications distributed throughout
the edgepoints 350a-b. In one embodiment, the conduit 360
abstracts or virtualizes the distributed nature of the network
140 and allows the application provider to update, manage
and view their data and applications without being burdened
by the location and load of the actual edgepoints 3504a-b.



US 7,596,784 B2

21

In one embodiment, the dashboards provide at least two
forms of data viewing, including immediate and aggregated.
Immediate viewing allows a current, up-to-date view of an
entity of the network 140, such as edgepoints 350a-b, global
dispatcher 430, deployment center 444 and conduit 360. In
one embodiment, immediate viewing is updated on a pre-
defined schedule, periodically when a predefined change
occurs or upon request. Aggregated viewing provides a cumu-
lative temporal view of the entities of the network 140, such as
application instance usage, user patterns, edgepoint usage,
etc. In one embodiment, immediate views are obtained by
polling the edgepoints 350a-b and conduits 360. The aggre-
gate view is accumulated at the deployment center 444. In one
embodiment, dashboards receive resource utilization infor-
mation and determine an amount to charge each application
provider based on the amount of resources utilized.

The NOC dashboard 454 allows network operators and
controllers of network 140 to gain access to and view infor-
mation and data relating to components on the network 140.
In one embodiment, NOC dashboard 454 allows access to
components on the network at machine levels and application
instance levels.

Customer dashboards 456 allow application providers to
view the state of their outsourced applications, such as
response time, data arrival rates, comp-utilities used, amount
of compute resources utilized, cost per application, and other
such information. In one embodiment, the network 140 pre-
vents customer dashboards to gain access to the actual edge-
points 350a-b and the applications stored and operated by the
edgepoints 350a-b.

In one embodiment, network 140 includes additional dash-
boards which allow other operators and users of the network
access to information on and about the network. One example
of'an additional dashboard is an independent software vendor
(ISV) dashboard which allows ISV’s to view the usage pat-
terns of applications on a per application provider or per
application basis. This is an audit for the ISV’s to understand
how their applications are behaving in a real environment.

FIG. 18 depicts a simplified flow diagram of one imple-
mentation of one embodiment of a process 702 for an appli-
cation provider to access and distributing applications onto
the distributed system 140. In step 704, the application pro-
vider gains access to the system 140. In one embodiment, the
application provider gains access through conduit 360. In step
706 the application provider dictates to the system the distri-
bution of the application being deployed. As discussed above,
the application provider is capable of limiting the distribution
to specific geographic locations, to specific markets, to popu-
lated areas (such as only to resources located near metropoli-
tan areas) and other such deployment distribution. The appli-
cation provider can also allow an application to be distributed
across the entire system 140. In step 710, the application
provider specifies limits on the amount of compute resources
to be utilized. The limit may be based on a monitory limit or
other limits. In step 712, the application provider dictates a
maximum response time, such that when demand is such that
the response time is exceeded, the system 140 will activate
additional instances of a desired application. In step 714, the
application is distributed. In step 716, entities, such as users,
servers and computers are allowed to access the distributed
applications.

FIG. 19 depicts a simplified flow diagram of one embodi-
ment of a process 730 for an application provider to monitor
and update applications distributed onto the system 140. In
step 732, the application provider monitors the applications
distributed. In one embodiment, the application provider is
capable of monitoring the system through the dashboards 456

5

10

20

25

30

35

40

45

50

55

60

65

22

and conduit 360. In step 734, it is determined whether the
application provider wishes to update or change the distrib-
uted application or applications. If updates are to be made,
step 736 is entered where the application provider submits the
updates and the updates are distributed. If, in step 734,
updates are not to be made, or following updates, it is deter-
mined in step 740 whether the application provider wishes to
replace a distributed application. If yes, then step 742 is
entered where the application provider submits the replace-
ment application and the replacement application is distrib-
uted. If; in step 740, no replacement is needed, step 744 is
entered where it is determined whether the application pro-
vider wishes to adjust the distribution of one or more appli-
cation. If the adjustments are received and the adjustments to
distribution are made in step 746. If adjustments are not
needed, step 750 is entered where it is determined if the
application provider wishes to adjust resource limits, such as
response time limits, monetary limits, capacity limits and
other such limits. If yes the adjustments are received and
implemented in step 752.

FIG. 20 depicts a flow diagram of one embodiment of a
process 770 for monitoring demand and determining an
amount to bill an application provider. In step 772, the on-
demand system 140 monitors the demand for each applica-
tion distributed on the system. In step 774, it is determined
whether the response time for an application exceeds limits.
In one embodiment, the limits are default limits. In one
embodiment the limits are previously specified by the appli-
cation provider. If the response time limits are exceeded, the
system determines if the system is at capacity, where capacity
is dictated by several factors including, but not limited to
compute resource availability, resource limits specified by the
application provider, and other such factors. If the system is
not at capacity, step 780 is entered where a new instance is
restored where an instance of the application is restored and
activated to allow entities to access the application. In step
782, it is determined if demand exceeds a first threshold,
where the threshold is defined as a number of users per
instance or other such parameters. The threshold is a default
threshold or defined by the application provider. If the
demand exceed the first threshold, then step 784 is entered
where it is determined if the system is at capacity (as
described above). If the system is not at capacity then step 786
is entered where an instance of a desired application is acti-
vated to allow entities to continue to access the application
without exceeding the threshold. In step 790 it is determined
whether the demand is below a second threshold. If the
demand is below the second threshold, at least one instance of
an application will be snapshotted in step 792 to free up
resources and reduce the compute resource cost to the appli-
cation provider.

FIG. 21 depicts a simplified flow diagram of one imple-
mentation of one embodiment of a process 808 for determin-
ing an amount of resources utilized for an application and the
amount to be charged to the application provider based on the
amount of resources utilized. In step 810, the compute
resources providing application processing is monitored. In
step 812, the amount of resources utilized by each distributed
application is determined. In step 814, a total amount of
resources utilized by each individual application provider all
applications distributed by each application provider is deter-
mined. In step 816, an amount to charge each application
provider is determined based on the amount of compute
resources utilized in application processing of all application
distributed by each application provider. In step 818, the



US 7,596,784 B2

23

metered data is presented via a portal to application providers
and partners (such as resellers and independent software ven-
dors).

The capability to meter resource usage creates the further
ability to develop pricing schemes which reflect the economic
value or cost of providing service, including, for example, the
opportunity cost of using compute resources for a given appli-
cation. As an example, demand for computing resources dur-
ing the business day may be higher than demand for process-
ing during the night. The system provides a mechanism for
pricing for peak usage versus off-peak usage.

The system facilitates a transfer pricing mechanism for
computing resources. By metering resources used on an
application level, the system enables a compute resource
provider to determine how much resource usage is related to
each specific application or customer. In one embodiment,
this enables a corporation to allocate the cost of a centralized
computing resource between different departments according
to usage.

In one embodiment, more than one party may own the
compute resources within the distributed network. In this
case, the present invention enables the trading of compute
resources between any number of compute resource suppliers
and users. For example, a party may be an owner of compute
resources that in the normal course of events provide suffi-
cient capacity for its processing needs. This party can, by
deploying the present invention and interconnecting its com-
puting network with those of others, sell underutilized com-
puting resources, and buy compute resources from other par-
ties at times of peak demand. This enables parties to
significantly improve the utilization of their computing infra-
structure.

In the more general case, the present invention enables the
development of an efficient market for trading computing
resources, facilitating economic pricing. By way of example,
a spot market could develop, better reflecting supply and
demand of computing resources. Instruments for managing
the financial risk of fluctuations in price on the spot market
could then develop, for example forward contracts, options
and derivatives.

In one embodiment, the novel system 140 is configured to
provide at least six data paths including: a data path that
connects an entity 124 to an application instance at an edge-
point 380; a data path that sets up application instances for
application providers; a data path which implements the
snapshot/restore framework; a data path which provides a
centralized view of edgepoints to application providers, the
network provider and other such entities for monitoring the
edgepoints and the compute resources utilized; a data path
which provides database and file updates; and a path which
prepares an application or plurality of applications for
deployment and data synchronization.

As discussed above, the edgepoint 350 is capable of per-
forming a plurality of actions or functions based on parameter
and compute resource utilization information collected, such
as performing snapshots of active application instances;
restoring applications based on demand, response time and
other parameters; eftecting amove of an application instance;
identifying optimal compute resources, such as an optimal
compute module for routing a request; monitoring the perfor-
mance and available capacity of the edgepoint to optimize
performance and to signal the global dispatcher 430 when the
edgepoint is operating at or near capacity; and monitoring the
compute resources utilized per application instance such that
the application provider is charged for the resources utilized
in operating the application provider’s distributed applica-
tions.

10

15

20

25

30

35

40

45

55

60

24

In one embodiment, the edgepoint 350 effects moves of
application instances based on the results of an overload of a
compute module, under-utilization of another compute mod-
ule, and/or prioritization of one application instance over
another (based for example, on distribution and prioritization
specified by the system provider and the application provid-
ers).

The edgepoint 350 determines if the edgepoint is over-
loaded and hence notifies the global dispatcher 430 such that
bind requests are re-routed back to the global dispatcher or
initially routed by the global dispatcher to alternative edge-
points. In one embodiment, the resource manager 432 sends
periodic load or resource utilization messages to the global
dispatcher, such that the global dispatcher can accommodate
the server weighting in the databases and memory.

The edgepoint further monitors, meters, and/or collects
resource consumption information from application
instances. This information is used by the dashboards 454,
456 and for billing. In one embodiment, the information that
is collected is logged into the databases or memory. The
information collected by the edgepoint includes, but is not
limited to, CPU usage, memory usage, disk usage, network
bandwidth usage on a per application instance basis. In the
case of CPU usage, information is collected at the software
component level, providing a greater level of granulating than
prior art systems. This information may be used to identify
and allocate resources, manage partnerships and for usage
based billing purposes.

The edgepoint additionally collects performance informa-
tion such as application response time. In one embodiment,
for each application instance, the resource manager 432 per-
forms a periodic response time check. This information is
also used to initiate the snapshot or move actions.

In one embodiment, the conduit 360 allows an application
provider to create and distribute one or more application onto
the network 140 producing the outsourced applications. The
conduit performs a plurality of function including, but not
limited to: determining cleave points; capturing distributed
applications and associated data; capturing distribution
policy, response time policy and other such policies as des-
ignated by the application provider; and test captures.

Cleaving includes a process of dividing one or more appli-
cations into applications that are distributed across the on-
demand network 140, and applications that are not to be
distributed, and instead, for example, maintained by the
application provider. One example is a website, where the site
is cleaved to allow some of the application processing of the
site to be handled by the distributed on-demand network, and
some of'the application processing of the site to be handled by
the central site of the application provider. Thus, cleaving
separates the applications that are outsourced by the applica-
tion provider to be distributed over the present invention to
take advantage of the on-demand compute resources.

The novel on-demand network 140 acquires and captures
the applications and data associated with those applications
through a capture process. The capture process analyzes how
to bring up the necessary applications associated with a
request, such as all the applications in a website operated
from the on-demand system. The capture process further
collects files and database data files for the application
instances to satisfy a request. The capture process maps appli-
cations to application instances and documents the process of
capturing the process of creating an application instance, and
maps data to an application instance for data synchronization
and captures.



US 7,596,784 B2

25

In one embodiment, application and data capture is a pro-
cess for determining how an outsourced application is con-
structed or produced. Some of the steps for application and
data capture include:

a) analyzing how to bring up applications in the network,
such as bringing up applications configured to produce a
web site;

b) collecting the files and database data files for the opera-
tion of application instances;

¢) mapping applications to application instances and docu-
menting the process of creating an application instance.
In one embodiment, this is predominantly the data used
by a packager (not shown) for initial deployment, and
the instructions to start and stop application instances;
and

d) mapping data to an application instance, data synchro-
nization and capturing the data synchronization compo-
nents.

In one embodiment, the application provider dictates the
distribution of the applications onto the distributed, on-de-
mand network 140. The application provider is capable of
designating specific geographic areas for distribution, high
traffic areas, such as specific metropolitan areas, and other
such distribution. The application provider is also capable of
designating the quantity of distribution, which will allow the
application provider to limit the cost by limiting the compute
resources utilized based on the distribution designation.

Policy capturing includes collecting deployment and
execution policies. Deployment policies determine coverage
information and are used by the deployment center 444 to aid
in selecting the edgepoints 350 that will hold the outsourced
applications. Execution policies relate to user-level SLAs and
priorities for execution. Policy capture allows the application
provider to limit and determine the potential cost spent by the
application provider in utilizing the on-demand network.

In one embodiment, the on-demand network 140 is further
capable of providing capacity testing of applications to aid the
application provider to determine the accurate and opera-
tional capacity of application. One example is the testing of
the capacity of a web site before allowing users to access the
web site. Test capture includes a method, data and frequency
to run tests on edgepoints before enabling the applications.

In one embodiment, the conduit 360 includes a studio
module (not shown) which is a module used to perform appli-
cation/data, policy and test captures in the conduit. The studio
module includes at least six functional modules, including: a
catalog module (not shown) which creates an inventory of
deployed application; a camera module (not shown) which is
the portion of the studio used to capture the process of bring-
ing up and/or restoring an application, and establishing an
initial snapshot; a packager module (not shown) configured to
assemble an installed application and snapshots into a format
(package) suitable for deployment; a publisher module (not
shown) capable of transferring the packaged application to a
deployment center; a cleaver module (not shown) which iden-
tifies the portions that are handled by the out-sourced appli-
cations, and will initiate data synchronization; and a policy
editor module (not shown) configured to specify deployment
policies. Application strength, deployment coverage and
level of service are specified through the policy editor mod-
ule. In one embodiment, the coverage is coarsely defined as a
number of application instances, a number of edgepoints
and/or which geographic location or locations. A level of
service is also coarsely defined as a response time of an
application.

The on-demand method and system 140 further provides
remote control capabilities. The remote control feature pro-

15

20

40

45

65

26

vides: policy-based server management with the alignment to
business objectives; deployment policies with application
provider’s selection of coverage, along with deployment and
initiation timing; resource use policy to aid in obtaining the
desired response time within application provider’s budget
constraints; and web-based policy editor.

Another advantage of the novel on-demand method and
system 140 is providing application providers with direct
access to the system 140 and allowing the application pro-
vider to make immediate changes or version updates to exist-
ing applications or site. Further, application providers are
ableto immediately load completely new applications or sites
onto the system 140 without the need to bring the application
or site down.

Another advantage ofthe present method and system 140 is
the ability to provide fast rollback. Because of the design of
the system 140 and ability to maintain applications in an
inactive or snapshotted state as an appshot 220, prior versions
of applications can be maintained on the edgepoints 350
while new versions are loaded onto the edgepoints 350. If
there is a glitch or error in the new version, the system 140 is
able to quickly redirect the system 140 to reinstate the old
version. Thus, avoiding catastrophic errors and glitches.

Another advantage provided by the novel on-demand
method and system 140 is the ability to distribute users 124 to
applications 356 throughout the system 140 thus spreading
the load of the users. This provides the application provider
with additional benefits which were not available through the
prior art without enormous capital expenditures. One benefit
of the on-demand system 140 is the ability to handle
extremely large numbers of entities 124 at a single time
because entities can be directed to application instances dis-
tributed throughout the system 140. As an example, applica-
tion and web providers have the ability to announce and
broadcast an event which may attract abnormally large num-
bers of users without overloading the system. Because the
users can be routed to edgepoints all over the system 140, the
maximum load on any given edgepoint will not exceed the
capacity of the resources of the edgepoints. Thus allowing
abnormally large numbers of entities to utilize or view the
application or website. This is all achieved without the need
for the application provider to purchase large numbers of
servers and accompanying hardware, as well as the need to
configure, load and maintain these large numbers of machines
for such a limited surge in user load.

An additional benefit is that application providers are able
to interact with abnormally large numbers of users instead of
just broadcast to those users. Because the applications are
distributed, the capacity to operate those applications is also
distributed. Thus, allowing each instance of an application to
utilize a larger amount of resources without exhausting the
resources of the system. Thus, more interactive applications
and sites are capable without the need for additional capital
expenditures by the application provider. These are signifi-
cant advantages provided by embodiments of the invention
that are not available in conventional content delivery sys-
tems, networks, or methods.

As an example, big media companies have the capability
through the present on-demand method and system 140 to
now start getting a one to one opportunity with users access-
ing their applications and sites As a comparison, television
allows the distribution of a single program without any inter-
action. However, with the present method and system 140, a
plurality of different programs can be distributed while allow-
ing direct interaction with the user without overloading a
system and without cost prohibitive capital expenditures. As
a further example, if a prior art application or site were to get





