STEC IP LLC v. Microsoft Corporation Doc. 1 Att. 2

EXHIBIT A
Part 2 of 2

Dockets.Justia.com


http://dockets.justia.com/docket/delaware/dedce/1:2012cv00640/48817/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2012cv00640/48817/1/2.html
http://dockets.justia.com/

US 7,596,784 B2

15

In prior art systems, application providers wishing to pro-
vide applications had to buy a server, then they must buy or
develop the applications that are going to be loaded and run on
that server, load the server, and activate the server to provide
access to that application. The server is a fully dedicated
resource, so that 100% of the time an application is dedicated
to a specific server. The present on-demand application sys-
tem 140 reverses or switches this paradigm and instead of
applications being dedicated to a server, the on-demand sys-
tem 140 provides computing resources on-demand, when
demand for an application is received, and additionally frees
up resources when demand falls off for the restoring of com-
pletely different applications. Further, application providers
no longer need to purchase the servers. Application providers
simply take advantage of the on-demand application process-
ing system 140 already deployed by loading their applica-
tions onto the distributed on-demand system 140. The on-
demand system 140 allows an application provider to allow
substantially an unlimited number of users to access substan-
tially the same application at substantially the same time
without over loading the system 140 or the application, all
without the need to incur the extremely expensive capital
expense of providing their own system. Instead, the applica-
tion provider pays for the amount of resources utilized to
provide their users access to the applications. As demand
increase, the on-demand system 140 increases the number of
applications running, increasing the amount of compute
resources and capacity, thus the application provider is
charged more; as demand falls, the on-demand system 140
decreases the number of application instances, reducing the
amount of computational capacity, thus the application pro-
vider is charged less. Thus, the application provider is
charged for the amount of resources used.

In one embodiment, the present invention provides for a
distributed on-demand system 140 such that potentially thou-
sands of servers 354 in hundreds of edgepoints 350 are glo-
bally deployed and linked to create a virtual single server
view throughout the world. This virtual single server view
provides an application provider with access and control over
their own applications in the system 140.

FIG. 14A-C show one implementation of one embodiment
of the novel method and system 140 which allows the appli-
cation providers to dictate the distribution of their applica-
tions, the potential compute resources to be available,
upgrade or alter their applications, replace applications,
monitor applications, and monitor the amount of resources
utilized by entities accessing their distributed applications.

Prior art application processing systems require an appli-
cation provider to route a user to a single central site to allow
access to the applications. Every user attempting to access the
application is directed to the single central site. Thus, result-
ing in the bottle neck as discussed above. In the prior art single
server or single central site, the application provider, how-
ever, does maintain access to and control over the application.
In some systems where the application provider outsources
their server capacity, the application provider must select
from a preselected, limited number of applications. Further,
the application provider no longer has direct control over the
application. Any changes desired by the application provider
are submitted by request to the server provider. Then the
server provider must schedule a time at low demands to take
the server down to make the changes. This process results in
large lag times between the decision to make changes and the
implementation of those changes.

FIG. 14A shows a simplified block diagram of one embodi-
ment of the present on-demand application processing system
140 in cooperation with the preexisting internet infrastructure

20

40

45

16

126. The present distributed on-demand application process-
ing method and system 140 provides for distributed process-
ing capabilities, with on-demand capacity, as well as provid-
ing the application provider with direct access to the
on-demand system 140 and thus direct access and control
over their applications. The application provider has control
to distribute new applications or change already distributed
applications throughout the on-demand system 140. In one
embodiment, the on-demand system 140 is configured to
provide an application provider with a virtual single server
view of the on-demand system 140. This virtual single server
view allows an application provider complete access and
control over the applications which the application provider
decides to distribute over the system 140. In one embodiment,
the system 140 provides an application provider with the
ability to deploy applications throughout the distributed on-
demand system 140, change and update deployed applica-
tions, and monitor any one or all of the applications deployed
throughout the internet 126 from a single terminal or site. In
one embodiment, the application provider can deploy or
access their applications through any one of a plurality of
terminals or locations, including computers located at their
own facilities. The present on-demand system 140 provides
the application provider with the ability to deploy applica-
tions and access those applications once distributed through
the system 140. As referred to herein, conduit 360 is a staging
facility that enables the application provider to deploy appli-
cations across a computer network. Through the conduit 360
application provider deploys applications, retains control
over their deployed applications, monitors the operation of
their applications on the system 140, checks billing informa-
tion, checks metering information, checks performance infor-
mation, and so forth.

By structuring the on-demand system 140 as a single dis-
tributed system, and allowing the application provider with
access to the on-demand system 140 through a single point,
the on-demand system 140 appears to the application pro-
vider as a single server. Thus, when the application provider
wishes to load and implement a new application onto the
system 140, the application provider simply accesses the
on-demand system 140 through conduit 360. Still referring to
FIG. 14A, in one embodiment, application provider is
capable of loading an application as an appshot 220 onto the
on-demand system 140 from a single origin site 362 through
the conduit 360. The application provider loads the appshot
220 onto the system 140. The application provider is then
capable of designating specific locations (for example, areas
of the world wide system 140, such as, edgepoints 3504 and
3505 representing Asia, Western Europe, the United States,
Germany, a north-eastern portion of the United States, or
London) or the entire system to allow users to access the
deployed applications. Once the areas of distribution are des-
ignated, the on-demand system 140 distributes the appshot
220 through a hub 370 to the edgepoints 350 in the areas
designated by the application provider. FIG. 14B shows a
simplified block diagram of one embodiment of the on-de-
mand system 140 with the appshot 220 distributed to edge-
points 350a and 3505. Once the appshot222 is distributed,
auser 124 can then be routed 378 to the most optimal edge-
point 350a having the specified application, instead of being
routed to the central site 362. Because the on-demand system
140 is configured to appear as a single virtual server, the
application provider loads the appshot 222 once on to the
system 140. The application provider does not need to load
the application onto each edgepoint to distribute the applica-
tion to specific areas of the on-demand system 140 or
throughout the system 140.



US 7,596,784 B2

17

Further, the virtual single server mechanism also allows the
application provider access to the appshot 220 through con-
duit 360 from a single point in the on-demand system 140.
Referring to FIG. 14C, the application provider is capable of
making changes or up-grading 374 the appshot 220 through
conduit 360 and/or replacing the appshot. In one embodi-
ment, the change or up-grade 374 is made once. This change
or up-grade 374 is then distributed throughout the system to
those edgepoints 350a-b providing the desired application
without additional input from the application provider. Thus,
the application providers maintain control over their applica-
tions and how the applications are distributed. The applica-
tion providers are further capable of directly implementing
changes and updates and replacements to their applications.

FIGS. 15A-C show a simplified block diagram of one
implementation of one embodiment of the optimal user and
entity routing provided by the present invention. FIG. 15A
shows a block diagram of one embodiment of the on-demand
application processing system 140. One of the advantages of
the on-demand system 140 and virtual single server mecha-
nism is the ability to route a user 124 to an optimal edgepoint
350 which will provide the user 124 with the least amount of
latency delays while avoiding overloading a single edgepoint
350. For example, referring to FIG. 15A, to reduce the
amount of latency delay, it would be preferable to route the
user 124 to the geographically closest edgepoint 350a, as
designated by dashed line 1. However, because of an overrid-
ing condition, for example edgepoint 350 is overloaded by
other users, the user 124 is routed to a second edgepoint 3505,
as designated by arrow 2, adding a minimal amount of latency
delay but providing enhanced response time because the sec-
ond edgepoint 3505 is not as heavily loaded, thus providing
an overall superior interaction.

Referring to FIG. 15B, another advantage of the on-de-
mand system 140 is that the applications 356 can be interac-
tive. Thus allowing the user 124 to make changes or additions
380 to the information provided through the application 356.
Further, once changes are made to the application 356, the
on-demand system 140 will continue to route the user 124 to
that same edgepoint 3504, as designated by arrow 3, for future
connections of that user 124 to the on-demand system 140 for
that application 356. This affinity for that user 124 ensure that
the user 124 continues to interact with the most current ver-
sion of the application 356 according to the user’s informa-
tion and changes. The on-demand system 140 also provides
the capability to synchronize or update the system 140 to
reflect the changes 380 made by the user 124. The updates are
made at anytime as dictated by the on-demand system 140,
such as periodically, randomly or by schedule. As shown in
FIG. 15B, the changes 380 made by the user 124 are for-
warded to the origin site 362 through conduit 360, as shown
with reference to arrows 4 and 5 updating the origin site. In
one embodiment, the on-demand system 140 is further
capable of distributing the changes 380 to the other edge-
points 350a which provide access to the application 356,
shown by arrow 6. Thus, the on-demand system 140 synchro-
nizes data and user’s changes 380 throughout the system,
maintaining an active and current system, without further
interaction by the application provider. Examples of user
changes include changes to a user profile, items added to a
shopping cart, and other such changes. One example of data
changes from the application provider would be an online
catalog update from the application provider to the various
edgepoints. Referring to FIG. 15C, once the on-demand sys-
tem 140 is updated and the user’s changes 380 are distributed
throughout the on-demand system 140, the on-demand sys-
tem 140 is again free to re-route or route the user 124 for

5

10

15

20

25

30

35

40

45

50

55

60

65

18

future connections to any optimal edgepoint 350 in the system
140 providing the needed application 356, as noted by arrow
7. Thus, the present on-demand method and system 140 pro-
vides affinity in the routing scheme along with the ability to
synchronize the on-demand system 140.

Some of the additional features and benefits provided by
the novel on-demand application processing method and sys-
tem 140 include edge staging and load testing of applications
and sites. The on-demand system 140 allows application pro-
viders to directly install new versions of a website or appli-
cation onto the system 140. The system 140 allows the appli-
cation provider to limit the access to the new application or
website. Thus, application providers are able to access the
new website or application and functionally test the distrib-
uted site or application. Further, the on-demand system 140
allows the application provider to load test the application or
site prior to allowing public access and use. For example,
utilizing the on-demand system resources, numerous syn-
thetic simultaneous sessions are able to be activated at a single
time to load test the application or site. The application pro-
vider is able to perform these load tests without the capital
expenditure of having to purchase additional equipment to
perform load testing. Further, because of the pricing scheme
of the present on-demand method, the application provider
then pays for the amount of capacity utilized during this
testing. Which is significantly less expensive than purchasing
additional equipment.

FIG. 16 shows a simplified flow diagram of one implemen-
tation of one embodiment of the process or method 600 and
system providing on-demand computing resources. In step
604, an application request is received from an entity. Once a
request is received, the process 600 enters step 606 where it is
determined if the request from the entity is bound to a specific
compute resource, such as a specific edgepoint. If the request
is not bound, step 610 is entered where the optimal edgepoint
is determine for providing the compute resources for appli-
cation processing. In one embodiment, the optimal edgepoint
is determined based on a plurality of criteria, including mini-
mal latency delay, capacity of the edgepoint, the distribution
of the desired application across the network, and other such
parameters. Step 612 is entered if, in step 606, the request is
bound or once the optimal edgepoint is determined in step
610. In step 612 it is determined if the bound or optimal
edgepoint is operating at capacity. If the edgepoint is operat-
ing at capacity, step 614 is entered where it is determined
whether the edgepoint can free up sufficient resources by
snapshotting one or more application instances. If resources
cannot be freed up, the process 600 returns to step 610 to
reevaluate and determine the optimal edgepoint. Step 616 is
entered, if in step 612, it is determined that the edgepoint is
not at capacity, or in step 614 it is determined that capacity can
be freed up on the edgepoint. In step 616, the user is routed to
the edgepoint where the edgepoint determines optimal rout-
ing of the user to an instance of the desired application.

FIG. 17 shows a simplified block diagram of one imple-
mentation of one embodiment of the on-demand apparatus
140 including a plurality of edgepoints 350a-b. The network
140 can include substantially any number of edgepoints. FIG.
17 depicts two edgepoints for simplicity, however, it will be
apparent to one skilled in the art that the network 140 can
include substantially an unlimited number of edgepoints.
Network 140 is configured to at least provide application
processing for remote users 124 over the internet 126. Net-
work 140 can include any number of edgepoints allowing the
computational capacity of network 140 to be scaled. Network
140 provides user 124 with differential computational capac-
ity through either of the edgepoints 380a-b. In one embodi-



US 7,596,784 B2

19

ment, network 140 includes a global dispatcher (GD) 430
which at least provides routing of application requests from
user 124 to an edgepoint of the network. Based on network
parameters including, but not limited to, edgepoint load and
which applications are currently provisioned on each edge-
point 380a-b, GD 430 routes the user to the optimal edge-
point, for example first edgepoint 380a. Once the first edge-
point 380a receives the user request, the request is accepted
and dispatched by a local dispatcher 434a. A resource man-
ager 432a determines which of a plurality of compute
resources or modules 436a,-436a; would be the optimal
compute module in which to route the application request. In
determining the optimal compute module, the resource man-
ager 432a determines if a compute module is currently run-
ning the desired application or whether the application needs
to be restored from a snapshotted state. The resource manager
further determines if compute resources need to be freed up.
If resources need to be freed, the resource manager signals a
snapd module 440 of the optimal compute module, where the
snapd module snapshots one or more application instances,
thus freeing up the resources which were associated with the
snapshotted applications. Once the optimal compute module
has the available resources, the resource manager 432a sig-
nals the optimal compute module, for example first compute
module 436a,, where the restored module 442 restores the
desired application from memory 352aq if necessary, and ini-
tializes the application to allow the user to interact with or
operate the desired application.

In one embodiment, restored is a daemon that restores the
state of all processes that belong to a single snapid. Snaplist
identifies the list of processes that need to be restored. In one
embodiment, the restore program “morphs” into the target
process. The restore program creates processes in the order
determined by, for example, a parent/child relationship. Each
restore program is designated a process-id (pid) that it morphs
to and each will do so by reading the appropriate snapshot file.

In one embodiment, the resource manager 432 further
monitors the compute resources utilized by each application
instance and records the compute resources utilized. The
on-demand system 140 uses the recorded resource utilization
for determining the amount an application provider is charged
for the use of the compute resources. In one embodiment, the
system includes a monitoring module 464, which monitors
the compute resources and provides the monitored results to
the resource manager and other components of the system. In
one embodiment, the resource manager (RM) utilizes the
perfd module to collect at least some of the data to determine
the amount of resources utilized per application instance. The
resource manager 432 monitors such things as CPU utiliza-
tion, network bandwidth, disk utilization, license usage,
response time latencies, and other such parameters for deter-
mining resource utilization.

In one embodiment, a perfd module comprises an agent or
other entity running on the computer node (CN) that com-
putes or otherwise determines the performance of each of the
CNs. A call to this perfd agent is initiated by the resource
manager (RM). This perfd agent makes system calls to collect
the statistics and sends it to resource manager. Viewed some-
what differently, perfd is or includes a daemon or other
mechanism that collects performance information, hence the
abbreviation perfd for performance daemon. In a more gen-
eral way, a perfd module is any performance determining
module.

In one embodiment, a compute node is a component within
an embodiment of an edgepoint that runs the components of
an Application Instance. Typically, these are application tiers
such as a webserver connected to amiddle-tier and a database.

10

15

20

25

30

35

40

45

50

55

60

65

20

In one embodiment, an edgepoint is a machine or collection
of machines that run the customers site. An administrative
node (AN) is the component within an edgepoint that runs the
administrative components of an edgepoint. For example, a
configuration database, deployer components, data synchro-
nization components, and monitoring components are run in
the administrative or admin node.

In one embodiment, the network 140 further includes at
least one deployment center 444, deployment database
(DDB) 446, conduit 360, and dashboard (i.e., a network oper-
ating center (NOC) dashboard 454 and/or a customer dash-
board 456). In one embodiment, the edgepoints further
include a global dispatch module 460, a data synchronization
module 462 and the metering module 464. The plurality of
edgepoints communicate such that snapshotted instances of
applications can be transferred and users rerouted.

The global dispatch module 460 provides communication
with and access to the network 140, and aids in network
routing to allow entities, such as users 124, access to the
applications and compute resources. The global dispatch
module 460 further receives information from the network
and other edgepoints regarding the amount of compute
resources available on other edgepoints 350 and throughout
the network 140 to aid in optimizing the resources of the
network. The data synchronization module 462 communi-
cates with the network to receive data and information from
the network to update the edgepoint 350 with the data. The
data synchronization module 462 allows new or changed data
distributed across the network to be forwarded to the compute
modules 436 and/or the memory 352 of the edgepoint 350. In
one embodiment, the data synchronization module 462
allows data added or changed by a user 124 to be distributed
across the network 140. The metering module 464 monitors
the edgepoint and the compute resources utilized by an appli-
cation, user, group of applications, and any combination
thereof. The metering module 464 acts in cooperation with
the resource manager 432 to monitor the compute modules
436 and collects data from the compute modules regarding
usage. In one embodiment, the metering module is further
configured to determine an amount to charge the application
providers based on the amount of compute resources utilized
by each application provider for application processing.

In one embodiment, the deployment center 444 acts as the
hub that collects data, policies and applications and distrib-
utes them to the edgepoints 350a-b. Deployment center 444
maintains application and data versions and distributes
updates, revisions and replacements which are forwarded to
the deploy modules 433a-b of the edgepoints 350a-b. In one
embodiment, the deployment through the deployment center
444 includes capturing application states (initial and
updates), policies and testing methods as released to the net-
work 140 from application providers and network adminis-
trators and moving it to the edgepoints 350a-b. The policies
include deployment and execution policies. Application
states include the actual application data/binaries and the
method to create the snapshots.

In one embodiment, the DDB 446 is the repository for the
NOC 452 and serves also as the repository for deployment by
the deployment center 444. Conduit 360 provides an applica-
tion provider with access to the network 140 to distribute,
update and monitor their applications distributed throughout
the edgepoints 350a-b. In one embodiment, the conduit 360
abstracts or virtualizes the distributed nature of the network
140 and allows the application provider to update, manage
and view their data and applications without being burdened
by the location and load of the actual edgepoints 350a-5.



US 7,596,784 B2

21

In one embodiment, the dashboards provide at least two
forms of data viewing, including immediate and aggregated.
Immediate viewing allows a current, up-to-date view of an
entity of the network 140, such as edgepoints 350a-b, global
dispatcher 430, deployment center 444 and conduit 360. In
one embodiment, immediate viewing is updated on a pre-
defined schedule, periodically when a predefined change
occurs or upon request. Aggregated viewing provides a cumu-
lative temporal view of the entities of the network 140, such as
application instance usage, user patterns, edgepoint usage,
etc. In one embodiment, immediate views are obtained by
polling the edgepoints 350a-b and conduits 360. The aggre-
gate view is accumulated at the deployment center 444. In one
embodiment, dashboards receive resource utilization infor-
mation and determine an amount to charge each application
provider based on the amount of resources utilized.

The NOC dashboard 454 allows network operators and
controllers of network 140 to gain access to and view infor-
mation and data relating to components on the network 140.
In one embodiment, NOC dashboard 454 allows access to
components on the network at machine levels and application
instance levels.

Customer dashboards 456 allow application providers to
view the state of their outsourced applications, such as
response time, data arrival rates, comp-utilities used, amount
of compute resources utilized, cost per application, and other
such information. In one embodiment, the network 140 pre-
vents customer dashboards to gain access to the actual edge-
points 350a-b and the applications stored and operated by the
edgepoints 350a-b.

In one embodiment, network 140 includes additional dash-
boards which allow other operators and users of the network
access to information on and about the network. One example
of'an additional dashboard is an independent software vendor
(ISV) dashboard which allows ISV’s to view the usage pat-
terns of applications on a per application provider or per
application basis. This is an audit for the ISV’s to understand
how their applications are behaving in a real environment.

FIG. 18 depicts a simplified flow diagram of one imple-
mentation of one embodiment of a process 702 for an appli-
cation provider to access and distributing applications onto
the distributed system 140. In step 704, the application pro-
vider gains access to the system 140. In one embodiment, the
application provider gains access through conduit 360. In step
706 the application provider dictates to the system the distri-
bution of the application being deployed. As discussed above,
the application provider is capable of limiting the distribution
to specific geographic locations, to specific markets, to popu-
lated areas (such as only to resources located near metropoli-
tan areas) and other such deployment distribution. The appli-
cation provider can also allow an application to be distributed
across the entire system 140. In step 710, the application
provider specifies limits on the amount of compute resources
to be utilized. The limit may be based on a monitory limit or
other limits. In step 712, the application provider dictates a
maximum response time, such that when demand is such that
the response time is exceeded, the system 140 will activate
additional instances of a desired application. In step 714, the
application is distributed. In step 716, entities, such as users,
servers and computers are allowed to access the distributed
applications.

FIG. 19 depicts a simplified flow diagram of one embodi-
ment of a process 730 for an application provider to monitor
and update applications distributed onto the system 140. In
step 732, the application provider monitors the applications
distributed. In one embodiment, the application provider is
capable of monitoring the system through the dashboards 456

5

10

20

25

30

35

40

45

50

55

60

65

22

and conduit 360. In step 734, it is determined whether the
application provider wishes to update or change the distrib-
uted application or applications. If updates are to be made,
step 736 is entered where the application provider submits the
updates and the updates are distributed. If, in step 734,
updates are not to be made, or following updates, it is deter-
mined in step 740 whether the application provider wishes to
replace a distributed application. If yes, then step 742 is
entered where the application provider submits the replace-
ment application and the replacement application is distrib-
uted. If, in step 740, no replacement is needed, step 744 is
entered where it is determined whether the application pro-
vider wishes to adjust the distribution of one or more appli-
cation. If the adjustments are received and the adjustments to
distribution are made in step 746. If adjustments are not
needed, step 750 is entered where it is determined if the
application provider wishes to adjust resource limits, such as
response time limits, monetary limits, capacity limits and
other such limits. If yes the adjustments are received and
implemented in step 752.

FIG. 20 depicts a flow diagram of one embodiment of a
process 770 for monitoring demand and determining an
amount to bill an application provider. In step 772, the on-
demand system 140 monitors the demand for each applica-
tion distributed on the system. In step 774, it is determined
whether the response time for an application exceeds limits.
In one embodiment, the limits are default limits. In one
embodiment the limits are previously specified by the appli-
cation provider. If the response time limits are exceeded, the
system determines if the system is at capacity, where capacity
is dictated by several factors including, but not limited to
compute resource availability, resource limits specified by the
application provider, and other such factors. If the system is
not at capacity, step 780 is entered where a new instance is
restored where an instance of the application is restored and
activated to allow entities to access the application. In step
782, it is determined if demand exceeds a first threshold,
where the threshold is defined as a number of users per
instance or other such parameters. The threshold is a default
threshold or defined by the application provider. If the
demand exceed the first threshold, then step 784 is entered
where it is determined if the system is at capacity (as
described above). Ifthe system is not at capacity then step 786
is entered where an instance of a desired application is acti-
vated to allow entities to continue to access the application
without exceeding the threshold. In step 790 it is determined
whether the demand is below a second threshold. If the
demand is below the second threshold, at least one instance of
an application will be snapshotted in step 792 to free up
resources and reduce the compute resource cost to the appli-
cation provider.

FIG. 21 depicts a simplified flow diagram of one imple-
mentation of one embodiment of a process 808 for determin-
ing an amount of resources utilized for an application and the
amount to be charged to the application provider based on the
amount of resources utilized. In step 810, the compute
resources providing application processing is monitored. In
step 812, the amount of resources utilized by each distributed
application is determined. In step 814, a total amount of
resources utilized by each individual application provider all
applications distributed by each application provider is deter-
mined. In step 816, an amount to charge each application
provider is determined based on the amount of compute
resources utilized in application processing of all application
distributed by each application provider. In step 818, the



US 7,596,784 B2

23

metered data is presented via a portal to application providers
and partners (such as resellers and independent software ven-
dors).

The capability to meter resource usage creates the further
ability to develop pricing schemes which reflect the economic
value or cost of providing service, including, for example, the
opportunity cost of using compute resources for a given appli-
cation. As an example, demand for computing resources dur-
ing the business day may be higher than demand for process-
ing during the night. The system provides a mechanism for
pricing for peak usage versus off-peak usage.

The system facilitates a transfer pricing mechanism for
computing resources. By metering resources used on an
application level, the system enables a compute resource
provider to determine how much resource usage is related to
each specific application or customer. In one embodiment,
this enables a corporation to allocate the cost of a centralized
computing resource between different departments according
to usage.

In one embodiment, more than one party may own the
compute resources within the distributed network. In this
case, the present invention enables the trading of compute
resources between any number of compute resource suppliers
and users. For example, a party may be an owner of compute
resources that in the normal course of events provide suffi-
cient capacity for its processing needs. This party can, by
deploying the present invention and interconnecting its com-
puting network with those of others, sell underutilized com-
puting resources, and buy compute resources from other par-
ties at times of peak demand. This enables parties to
significantly improve the utilization of their computing infra-
structure.

In the more general case, the present invention enables the
development of an efficient market for trading computing
resources, facilitating economic pricing. By way of example,
a spot market could develop, better reflecting supply and
demand of computing resources. Instruments for managing
the financial risk of fluctuations in price on the spot market
could then develop, for example forward contracts, options
and derivatives.

In one embodiment, the novel system 140 is configured to
provide at least six data paths including: a data path that
connects an entity 124 to an application instance at an edge-
point 380; a data path that sets up application instances for
application providers; a data path which implements the
snapshot/restore framework; a data path which provides a
centralized view of edgepoints to application providers, the
network provider and other such entities for monitoring the
edgepoints and the compute resources utilized; a data path
which provides database and file updates; and a path which
prepares an application or plurality of applications for
deployment and data synchronization.

As discussed above, the edgepoint 350 is capable of per-
forming a plurality of actions or functions based on parameter
and compute resource utilization information collected, such
as performing snapshots of active application instances;
restoring applications based on demand, response time and
other parameters; effecting amove of an application instance;
identifying optimal compute resources, such as an optimal
compute module for routing a request; monitoring the perfor-
mance and available capacity of the edgepoint to optimize
performance and to signal the global dispatcher 430 when the
edgepoint is operating at or near capacity; and monitoring the
compute resources utilized per application instance such that
the application provider is charged for the resources utilized
in operating the application provider’s distributed applica-
tions.

10

15

20

25

30

35

40

45

55

60

65

24

In one embodiment, the edgepoint 350 effects moves of
application instances based on the results of an overload of a
compute module, under-utilization of another compute mod-
ule, and/or prioritization of one application instance over
another (based for example, on distribution and prioritization
specified by the system provider and the application provid-
ers).

The edgepoint 350 determines if the edgepoint is over-
loaded and hence notifies the global dispatcher 430 such that
bind requests are re-routed back to the global dispatcher or
initially routed by the global dispatcher to alternative edge-
points. In one embodiment, the resource manager 432 sends
periodic load or resource utilization messages to the global
dispatcher, such that the global dispatcher can accommodate
the server weighting in the databases and memory.

The edgepoint further monitors, meters, and/or collects
resource consumption information from application
instances. This information is used by the dashboards 454,
456 and for billing. In one embodiment, the information that
is collected is logged into the databases or memory. The
information collected by the edgepoint includes, but is not
limited to, CPU usage, memory usage, disk usage, network
bandwidth usage on a per application instance basis. In the
case of CPU usage, information is collected at the software
component level, providing a greater level of granulating than
prior art systems. This information may be used to identify
and allocate resources, manage partnerships and for usage
based billing purposes.

The edgepoint additionally collects performance informa-
tion such as application response time. In one embodiment,
for each application instance, the resource manager 432 per-
forms a periodic response time check. This information is
also used to initiate the snapshot or move actions.

In one embodiment, the conduit 360 allows an application
provider to create and distribute one or more application onto
the network 140 producing the outsourced applications. The
conduit performs a plurality of function including, but not
limited to: determining cleave points; capturing distributed
applications and associated data; capturing distribution
policy, response time policy and other such policies as des-
ignated by the application provider; and test captures.

Cleaving includes a process of dividing one or more appli-
cations into applications that are distributed across the on-
demand network 140, and applications that are not to be
distributed, and instead, for example, maintained by the
application provider. One example is a website, where the site
is cleaved to allow some of the application processing of the
site to be handled by the distributed on-demand network, and
some of'the application processing of the site to be handled by
the central site of the application provider. Thus, cleaving
separates the applications that are outsourced by the applica-
tion provider to be distributed over the present invention to
take advantage of the on-demand compute resources.

The novel on-demand network 140 acquires and captures
the applications and data associated with those applications
through a capture process. The capture process analyzes how
to bring up the necessary applications associated with a
request, such as all the applications in a website operated
from the on-demand system. The capture process further
collects files and database data files for the application
instances to satisfy a request. The capture process maps appli-
cations to application instances and documents the process of
capturing the process of creating an application instance, and
maps data to an application instance for data synchronization
and captures.



US 7,596,784 B2

25

In one embodiment, application and data capture is a pro-
cess for determining how an outsourced application is con-
structed or produced. Some of the steps for application and
data capture include:

a) analyzing how to bring up applications in the network,
such as bringing up applications configured to produce a
web site;

b) collecting the files and database data files for the opera-
tion of application instances;

¢) mapping applications to application instances and docu-
menting the process of creating an application instance.
In one embodiment, this is predominantly the data used
by a packager (not shown) for initial deployment, and
the instructions to start and stop application instances;
and

d) mapping data to an application instance, data synchro-
nization and capturing the data synchronization compo-
nents.

In one embodiment, the application provider dictates the
distribution of the applications onto the distributed, on-de-
mand network 140. The application provider is capable of
designating specific geographic areas for distribution, high
traffic areas, such as specific metropolitan areas, and other
such distribution. The application provider is also capable of
designating the quantity of distribution, which will allow the
application provider to limit the cost by limiting the compute
resources utilized based on the distribution designation.

Policy capturing includes collecting deployment and
execution policies. Deployment policies determine coverage
information and are used by the deployment center 444 to aid
in selecting the edgepoints 350 that will hold the outsourced
applications. Execution policies relate to user-level SLAs and
priorities for execution. Policy capture allows the application
provider to limit and determine the potential cost spent by the
application provider in utilizing the on-demand network.

In one embodiment, the on-demand network 140 is further
capable of providing capacity testing of applications to aid the
application provider to determine the accurate and opera-
tional capacity of application. One example is the testing of
the capacity of a web site before allowing users to access the
web site. Test capture includes a method, data and frequency
to run tests on edgepoints before enabling the applications.

In one embodiment, the conduit 360 includes a studio
module (not shown) which is a module used to perform appli-
cation/data, policy and test captures in the conduit. The studio
module includes at least six functional modules, including: a
catalog module (not shown) which creates an inventory of
deployed application; a camera module (not shown) which is
the portion of the studio used to capture the process of bring-
ing up and/or restoring an application, and establishing an
initial snapshot; a packager module (not shown) configured to
assemble an installed application and snapshots into a format
(package) suitable for deployment; a publisher module (not
shown) capable of transferring the packaged application to a
deployment center; a cleaver module (not shown) which iden-
tifies the portions that are handled by the out-sourced appli-
cations, and will initiate data synchronization; and a policy
editor module (not shown) configured to specify deployment
policies. Application strength, deployment coverage and
level of service are specified through the policy editor mod-
ule. In one embodiment, the coverage is coarsely defined as a
number of application instances, a number of edgepoints
and/or which geographic location or locations. A level of
service is also coarsely defined as a response time of an
application.

The on-demand method and system 140 further provides
remote control capabilities. The remote control feature pro-

15

40

45

65

26

vides: policy-based server management with the alignment to
business objectives; deployment policies with application
provider’s selection of coverage, along with deployment and
initiation timing; resource use policy to aid in obtaining the
desired response time within application provider’s budget
constraints; and web-based policy editor.

Another advantage of the novel on-demand method and
system 140 is providing application providers with direct
access to the system 140 and allowing the application pro-
vider to make immediate changes or version updates to exist-
ing applications or site. Further, application providers are
able to immediately load completely new applications or sites
onto the system 140 without the need to bring the application
or site down.

Another advantage of the present method and system 140 is
the ability to provide fast rollback. Because of the design of
the system 140 and ability to maintain applications in an
inactive or snapshotted state as an appshot 220, prior versions
of applications can be maintained on the edgepoints 350
while new versions are loaded onto the edgepoints 350. If
there is a glitch or error in the new version, the system 140 is
able to quickly redirect the system 140 to reinstate the old
version. Thus, avoiding catastrophic errors and glitches.

Another advantage provided by the novel on-demand
method and system 140 is the ability to distribute users 124 to
applications 356 throughout the system 140 thus spreading
the load of the users. This provides the application provider
with additional benefits which were not available through the
prior art without enormous capital expenditures. One benefit
of the on-demand system 140 is the ability to handle
extremely large numbers of entities 124 at a single time
because entities can be directed to application instances dis-
tributed throughout the system 140. As an example, applica-
tion and web providers have the ability to announce and
broadcast an event which may attract abnormally large num-
bers of users without overloading the system. Because the
users can be routed to edgepoints all over the system 140, the
maximum load on any given edgepoint will not exceed the
capacity of the resources of the edgepoints. Thus allowing
abnormally large numbers of entities to utilize or view the
application or website. This is all achieved without the need
for the application provider to purchase large numbers of
servers and accompanying hardware, as well as the need to
configure, load and maintain these large numbers of machines
for such a limited surge in user load.

An additional benefit is that application providers are able
to interact with abnormally large numbers of users instead of
just broadcast to those users. Because the applications are
distributed, the capacity to operate those applications is also
distributed. Thus, allowing each instance of an application to
utilize a larger amount of resources without exhausting the
resources of the system. Thus, more interactive applications
and sites are capable without the need for additional capital
expenditures by the application provider. These are signifi-
cant advantages provided by embodiments of the invention
that are not available in conventional content delivery sys-
tems, networks, or methods.

As an example, big media companies have the capability
through the present on-demand method and system 140 to
now start getting a one to one opportunity with users access-
ing their applications and sites As a comparison, television
allows the distribution of a single program without any inter-
action. However, with the present method and system 140, a
plurality of different programs can be distributed while allow-
ing direct interaction with the user without overloading a
system and without cost prohibitive capital expenditures. As
a further example, if a prior art application or site were to get



US 7,596,784 B2

27

amillion and a half simultaneous “views” of an event, there is
no way, with prior art systems, to turn those “views” imme-
diately into a million and a half purchases or registrations or
any other interaction because a computer system large
enough to handle that amount of a load at a single site would
be too cost prohibitive. But with the present on-demand
method and system 140, the million and a half'load is distrib-
uted throughout the world wide system of data centers, each
housing a plurality edgepoints. Thus, instead of a single
server or machine handling a million and a half simultaneous
hits, the load is distributed across hundreds of edgepoints
and/or servers, which results in thousands or less simulta-
neous hits per edgepoint 350. A load of tens of thousands of
simultaneous hits is manageable for a single server or
machine. Thus, the benefits of distributing loads becomes
apparent through the scalable, on-demand capacity provided
by the present system 140.

A further advantage of the present on-demand method and
system is that the user maintains control over their own appli-
cations and websites which are deployed over the on-demand
system. In prior art systems, the application provider owns
their own servers, allowing the application provider with
complete control over the application or site. The application
provider knows exactly what is being provided. Further, the
application provider has direct access to the single server
allowing the application provider the ability to monitor the
application, the load of the application or site, and the types of
interaction occurring with the application or site. However,
the prior art systems require the large up-front capital expen-
diture to initiate and maintain the servers. Further, the prior art
systems have either too much capacity and thus wasted capi-
tal expenditure, or too little capacity and thus unsatisfied
users.

In one embodiment, the present on-demand method and
system 140 is designed to allow the application provider with
direct control and access to their applications. With the added
benefit of being able to monitor specific regions, the applica-
tion provider has the ability to adjust their applications or
websites according to feedback received from a specified
region to more accurately address the needs and desires of
users in that region by simply adjusting the instances of the
appshot housed in edgepoints in those regions of interest.
Further, the application provider is able to fully monitor the
application. In one embodiment, this is achieved by allowing
application providers to create different applications to be
deployed geographically as desired. In one embodiment, the
on-demand method and system includes: a web-based perfor-
mance portal to allow the application provider comprehen-
sive statistics on the virtual single server with the additional
benefit of obtaining further web response time metrics; alerts
based on set bands of acceptable performance; and expense
monitoring based on the amount of resources used by the
application provider including daily web-based bill review,
and alerting of faster-than-expected spending.

Some of the safety precautions or security architecture
provided by the novel on-demand method and system 140 are
discussed below. The security architecture ensures that edge-
points run registered appshots 220 to prevent hackers from
starting other applications; appshots 220 do not allow login,
SetUserID, and other such conditions to prevent hackers from
breaking out of the appshot control; appshots 220 access
limited disk storage, memory, sockets and other such
resources to protect user data; the conduit 360 and hub 324
authenticate each other before transfers of data or appshots;
appshots 220 are compressed and encrypted when transferred
from the conduit 360 to the edgepoints 350; administration is
authenticated and changes are audited. The system 140 also

20

30

40

45

28

prevents denial-of-service attacks because of the size of the
distributed on-demand system 140 and the number of edge-
points 350.

In one embodiment, the present on-demand method and
system 140 utilizes links from other applications, such as
application provider’s home or central web site, to route the
user 124 to the desired application 356 stored and maintained
onan edgepoint. The system allows an application provider to
outsource only a portion of their applications to the on-de-
mand system 140, while still maintaining some of their appli-
cation processing. For example, an application provider may
outsource some of the applications to operate a web site, but,
the application provider’s central site is still maintained by
the application provider. In an alternative embodiment, an
application provider outsources their entire application suite
and sites, including their central site, to the on-demand sys-
tem 140. In one embodiment, the link or pointer from the
central site points to a site maintained and controlled by the
application provider, but is stored and operated from the
resources of the on-demand system 140. When the link or
pointer is activated, the on-demand system 140 is accessed
and the user 124 is routed to the most optimal edgepoint
providing the application desired. In one embodiment, the
optimal edgepoint is determined based on network latency
and edgepoint load. If the loading on a first edgepoint 350a is
too great, the system will route the user 124 to a second
edgepoint 35056 even though the second edgepoint 3505
maybe a further distance way from the user 124 than the first
edgepoint 350a. This rerouting is performed because it is
worth taking additional latency delays along the routed path
to get to the second edgepoint 3505 because the second edge-
point 3505 is under less load or stress and will provide a
superior response, resulting in a superior response even with
the added latency delay.

The present on-demand method and system 140 not only
provides on-demand, distributed application processing, the
on-demand method and system 140 also provides shared
resources throughout the distributed on-demand system 140.
In one embodiment, because of the unique ability to store an
application in a snapshotted state, the present invention is also
capable of removing an application from resources when the
application is not being actively used, thus freeing up the
resources. This allows an alternative application to be acti-
vated on those resources. Thus providing on-demand, distrib-
uted application processing through shared resources which
reduces the cost of the resources because a plurality of appli-
cation providers are utilizing the same resources. In one
embodiment, the present invention provides for the ability to
return an application not being used into a snapshotted state to
free up resources for other applications to utilize. Further, in
one embodiment, when an active application is returned to a
snapshotted state freeing up resources, the application pro-
vider is no longer charged for the resources that the applica-
tion was utilizing. The application provider pays for the
amount of resources which are actually used by applications
distributed by the application provider. The amount of con-
sumed resources are measured in a variety of different ways
including: the amount of processor usage; the amount of
memory usage; the number of processors operating; the
amount of network bandwidth usage; the number of appshots
deployed; the density of appshot deployment; and any com-
bination thereof.

Prior art or conventional systems and methods have been
developed which distribute content to allow local routing of
users. However, these conventional systems and methods do
not provide for a method of communicating or returning
processed information back to the main site. Prior art out-



US 7,596,784 B2

29

sourced content providers do not provide for processing capa-
bilities of the application providers specific applications. The
present invention provides for the separation of applications,
the outsourcing of those applications to distribute the load
utilizing distributed resources allowing superior perfor-
mance, without limiting the functions or processing of the
applications.

In one embodiment, the present on-demand method and
system 140 provides for the scheduling of website or appli-
cations to servers and/or resources The inventive method and
system are dynamic and real-time or near-real time. This
scheduling of resources is an inversion of the prior-art para-
digm of requiring an application to be dedicated to a single
server. lypical prior-art systems are configured such that
applications are implemented to run on fixed machines or
servers. When a request to access an application comes in to
a prior art system, the request gets routed to a waiting server.
Therefore, the applications on such systems must be active at
all times because requests cannot be predicted. Because these
applications are fixed or tied to the machine or server, the
prior-art server must also be kept running all the time.

The present method and system 140 provides for the
dynamic scheduling of a website or application to be pro-
cessed on demand by restoring an appshot to its running state.
Thus, an application can be shut down or removed from
server resources until a request for that application is issued.
A snapshotted application 220 can be loaded from a shared
memory into a server and accompanying resources in less
than approximately five seconds and more usually in less than
about three seconds, activating what was an idle server. These
times are guidelines and not limitations. Thus, the present
method and system 140 allows for instant activation of the
application on substantially any chosen compute resource.
Further, when the application is no longer being used, the
present method and system 140 provides the capability to halt
the application to free up the resources for another applica-
tion. Therefore, the system 140 is able to provide economies
of scale and favorable pricing to application providers.
Attempting to try and achieve this capability through prior art
systems is completely impractical because of the amount of
time needed to take down an entire application to free up a
server and resources along with the amount of time needed to
install and activate a new application is completely prohibi-
tive. Thus the present method and system 140 allows for the
dynamic scheduling of applications to be processed on
demand on optimal compute resources by restoring an app-
shot to its running state which reverses the paradigm of dedi-
cating servers to applications. Batch processing is therefore
well supported

The on-demand network 140 provides the capability of
handling more applications per CPU, computer, micropro-
cessor and/or processor than is available through prior art
computers, systems or networks by over provisioning the
number of applications that are provided by the edgepoint and
time multiplexing the use of these applications. In part, this is
a result of the “bursting” nature of demand. This is achieved
through the unique snapshot/restore ability of the network
and edgepoint. Prior art systems cannot provide this capabil-
ity because of the amount of time needed to take down an
application and activate a new application, as well as the loss
of data and current state information associated with an appli-
cation at the time it is taken down. The system 140 provides
for the unique ability to quickly halt an application, and store
the application and associated states. The halting of the appli-
cation is achieved without adversely affecting the application
or adversely affecting the operation of the application when
the application is reactivated or restored for operation. By

20

25

30

35

40

45

30

snapshotting an application, the edgepoint frees up the set of
resources for an alternative application. Thus, the edgepoint
can multiplex the access and operation of applications with-
out adversely affecting the operation of the application, and
without the application and user’s knowledge.

In one embodiment, the on-demand method and system
140 is application oriented as apposed to process oriented.
The on-demand method and system 140 provides for a virtu-
alization layer in the operating system, such that an applica-
tion is considered the object of interest, instead of considering
the processes as the object of interest. Thus allowing the
freezing or halting of an application, and the storage of the
application stack, including the different processes, their
interprocess communication and its state.

By enabling an application oriented processing network,
the method and system enables a higher level of utilization of
computing resources. This is a result of increasing the number
of applications than can be handled per CPU coupled with the
inherently variable nature of demand for computing
resources. Prior art systems are characterized by very low
average levels of utilization for computing resources.
Because it is not possible to quickly take down an application
and activate a new application, a single processing resource
must necessarily lie idle when demand for the application tied
to that resource diminishes.

Application demand varies according to application type,
type and geographic location, among other variables. By way
of'example, demand for enterprise applications usually peaks
during business hours whereas demand for consumer-centric
web sites may peak during evening hours. Peak demand times
will be different in different time zones. Further, demand for
processing for certain applications is less time-dependent
than others. The present invention enables less time-critical
applications (such as batch processing) to be run when
demand for more time-critical applications (such as web
applications) is low. Because the technology enables the shar-
ing of processors between different applications, this leads to
improvements in utilization levels.

FIG. 22 depicts typical exemplary demand situation for
two different applications (or customers) across or over a
twenty-four hour time period. Demand for Application 1
peaks at 1400 whereas demand for Application 2 peaks at
1900. With prior art systems, the amount of processing capac-
ity that would be required to satisfy the total demand for both
customers or applications is the sum of the total amount of
processing capacity that would be required for each of the
applications individually (in this case 200 units). With the
present invention, the total amount of processing capacity
required is equal to the maximum aggregated demand in any
time period, in this case 160 units. This is a direct result of the
inventive system and method’s ability to quickly take down
and set up applications resulting from the snapshot/restore
technology.

The novel on-demand application processing method and
system 140 creates a completely new economic model. The
present invention further provides a new technology and
method to share compute resources. Still further, the present
invention provides the technology and method to bring com-
pute capacity on demand very quickly. The present method
and system 140 also provides for dynamic server allocation
and resource sharing. Thus, providing on-demand resources
at significantly reduced cost to the application provider.

It will be appreciated in light of the description provided
herein that the inventive system, method, business model, and
operating service moves the provisioning of utility-based or
computing utility services to the next level of services, that of
a true utility service. Aspects of the invention provide cus-



US 7,596,784 B2

31

tomers the ability to buy just what they need without being
trapped into having to pay for capacity they don’t use. Essen-
tially computing services are moved from buying fixed capac-
ity, the traditional outsourcing model, to buying variable
capacity.

The inventive system and method provides on-demand
computing solutions that enable enterprises to improve the
server efficiency, application performance and financial
return of their information technology (IT) environments.
Leveraging an embedded software platform, the inventive
system and method enables server infrastructure to be shared
securely across applications to offer a range of computing
infrastructure management, provisioning and operations
solutions to enterprises and service providers with significant
application investments. By dynamically allocating, retriev-
ing and tracking computing resources, the inventive system
and method enables the first true computing utility. In one
embodiment, the system and method provide a service plat-
form offering on-demand web application processing using a
utility-based pricing model.

While various aspects of the system and method of the
invention have already been described, FIG. 23 provides a
diagrammatic illustration showing an exemplary embodi-
ment of a system according to the invention. The diagram
illustrates relationships between the Internet (or other net-
work) and routers, distribution nodes (DN), Ethernet Hub,
Administrative Nodes (AN), computer nodes (CN) and SAN
Hub with associated disk array. Also illustrated are the global
dispatcher (GP), deployment center, and NOC. Users and a
main site are also coupled to other elements of the system over
the Internet or other network connection. An NOC dashboard
and a customer dashboard are also provided in this particular
system configuration.

The foregoing description of specific embodiments and
examples of the invention have been presented for the pur-
pose of illustration and description, and although the inven-
tion has been illustrated by certain of the preceding examples,
it is not to be construed as being limited thereby. They are not
intended to be exhaustive or to limit the invention to the
precise forms disclosed, and obviously many modifications,
embodiments, and variations are possible in light of the above
teaching. It is intended that the scope of the invention encom-
pass the generic area as herein disclosed, and by the claims
appended hereto and their equivalents.

Having disclosed exemplary embodiments and the best
mode, modifications and variations may be made to the dis-
closed embodiments while remaining within the scope of the
present invention as defined by the following claims.

What is claimed is:
1. A method for providing distributed, on-demand applica-
tion processing, comprising:

allowing a first application provider to deploy atleast a first
application onto a network, wherein the network
includes distributed compute resources configured to
provide application execution;

receiving a request for execution of the first application
from the first application provider; and utilizing the dis-
tributed compute resources for execution of the first
application in response to receiving the request for
execution of the first application from the first applica-
tion provider;

metering and monitoring an amount of the compute
resources utilized in execution of the first application;
charging the first application provider based on the
amount of compute resources utilized in execution of the
first application;

10

15

25

30

35

40

45

50

55

60

65

32

increasing the amount of compute resources utilized in
execution of the first application by a first set of compute
resources; and increasing the amount charged to the first
application provider based on the first set of compute
resources.

2. The method as claimed in claim 1, further comprising:

allowing the first application provider to update the first

application.

3. The method as claimed in claim 2, further comprising:

allowing the first application provider to monitor the first

application.

4. The method as claimed in claim 3, further comprising:

allowing the first application provider to replace the first

application with a second application.

5. The method as claimed in claim 1, further comprising:

allowing an entity to access the compute resources over the

network to interact with the first application.

6. The method as claimed in claim 1, wherein increasing
the amount of computer resources includes increasing the
amount of compute resources due to an increased demand for
the first application.

7. The method as claimed in claim 1, further comprising:

reducing the amount of compute resources utilized in

execution of the first application by a second set of
compute resources; and

reducing the amount charged to the first application pro-

vider based on the second set of compute resources.

8. The method as claimed in claim 1, further comprising:

providing a second application provider with access to the

network;

allowing the second application provider to distribute at

least a third application onto the network;
allowing an entity to access the compute resources over the
network to interact with the third application;

monitoring the amount of the compute resources utilized
for providing application processing of the third appli-
cation; and

charging the second application provider based on the

amount of compute resources utilized in processing the
third application.

9. A method of providing on-demand computational
resources over a distributed network, the method comprising:

providing an application provider with access to a distrib-

uted network;

through the network the application provider dictating at

least a first portion of the distributed network to receive
at least one application; and

distributing the application onto computational resources

within the first portion of the distributed network dic-
tated to receive the application.

10. The method as claimed in claim 9, further comprising:

the application provider dictating a limit on an amount of

the computational resources to be utilized in providing
at least one entity with access to the application for
processing of the application.

11. The method as claimed in claim 10, further comprising:

through the network, the application provider updating the

first application.

12. The method as claimed in claim 10, further comprising:

metering and monitoring the amount of computational

resources utilized in providing the at least one entity
with access to application; and

charging the application provider based on the amount of

computational resources utilized in providing the at least
one entity with access to the application.

13. The method as claimed in claim 12, further comprising:

metering and monitoring demand for the application; and



US 7,596,784 B2

33

adjusting the amount of computational resources utilized
in providing the at least one entity with access to the
application based on the demand.

14. The method as claimed in claim 13, wherein adjusting
the amount of computational resources utilized comprises not
exceeding the limit of the computational resources dictated
by the application provider.

15. The method as claimed in claim 13, wherein adjusting
the amount of computational resources utilized further com-
prises:

initiating an additional instance of the application if the
demand for the application exceeds a first threshold; and

halting an instance of the application if the demand for the
application falls below a second threshold.

16. The method as claimed in claim 15, wherein initiating
an instance of the application comprises restoring a snapshot-
ted application; and wherein halting an instance of the appli-
cation comprises snapshotting an active application.

17. The method as claimed in claim 10, further comprising:

the application provider monitoring the amount of compu-
tational resources utilized in providing the at least one
entity with access to the application; and

the application provider adjusting the limit on the amount
of computational resources available to provide the at
least one entity with access to the application.

18. The method as claimed in claim 17, wherein:

the first threshold is based on response time of the appli-
cation.

19. An apparatus for providing on-demand compute

resources, comprising:

a plurality of compute resources including at least one
memory, wherein the plurality of compute resources are
distributed across a network, wherein the plurality of
compute resources are coupled to allow communication
between at least first compute resources and second
compute resources; a conduit coupled to the network,
and

configured to provide an application provider access to the
network to distribute at least a first application onto the
network and request execution of the first application
using the plurality of compute resources;

a first resource manager coupled with at least the first
compute resources, wherein the first resource manager
is configured to activate at least a first set of the first
compute resources for processing of the first application
when demand for the first application exceeds a first
threshold;

and a metering module coupled with the first compute
resources, wherein the metering module is configured to
monitor the first compute resources including the first
set of the first computer resource being activated for
processing of the first application, and wherein the
metering module is configured to determine an amount
to bill the first application provider based on the first set
of the first compute resources utilized;

wherein the first resource manager is configured to activate
asecond set of the first compute resources for processing

10

15

20

25

30

35

40

45

50

55

34

of the first application when demand for the first appli-
cation exceeds a second threshold;

and wherein the metering module is configured to monitor

the second set of the first computer resource being acti-
vated for processing of the first application, and wherein
the metering module is configured to determine an
increased amount to bill the first application provider
based on the second set of the first compute resources
utilized.

20. The apparatus as claimed in claim 19, wherein:

the conduit is further configured to provide the application

provider with access to the network to update the first
application.

21. The apparatus as claimed in claim 20, wherein:

the conduit is further configured to provide the application

provider with access to the network to replace the first
application with a second application.

22. The apparatus as claimed in claim 20, wherein:

the first compute resources includes at least a first and

second set of compute resources, where the first and
second set of the first compute resources are configured
to be activated and deactivated based on a demand and to
provide application processing for at least the first appli-
cation.

23. The apparatus as claimed in claim 22, further compris-
ing wherein:

the first resource manager coupled with the first compute

resources, and is configured to monitor demand for at
least the first application such that the resource manager
activates and deactivates at least one of the first and
second sets of the first computer resources based on
demand.

24. The apparatus as claimed in claim 23, wherein the first
resource manager is further configured to monitor the amount
of the first compute resources utilized in processing the first
application; and the apparatus further comprising:

wherein the metering module coupled with the first

resource manager, and is configured to receive the
amount of the first compute resources utilized and to
determine an amount to bill the first application provider
based on the amount of the first compute resources uti-
lized.

25. The apparatus as claimed in claim 19, wherein:

the first resource manager is configured to deactivate one of

the first and second sets of the first compute resources
processing the first application when the demand for the
first application falls below a third threshold; and

the metering module registers a decreased amount of com-

pute resources utilized for application processing of the
first application based on the deactivation of one of the
first and second sets of the first computer resources
being deactivated, and the metering module is config-
ured to determine a reduce amount to billed the first
application provider based on the decreased amount of
the first compute resources utilized.

* #* #* #* #*



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 0 7,596,784 B2 Page 1 of 1
APPLICATION NO. : 09/950559

DATED . September 29, 2009

INVENTOR(S) : Abrams et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b)
by 2232 days.

Signed and Sealed this
Twenty-eighth Day of September, 2010

David J. Kappos
Director of the United States Patent and Trademark Office



