STEC IP LLC v. Amazon.com Inc. et al Doc. 1 Att. 10

EXHIBIT H

Dockets.Justia.com

http://dockets.justia.com/docket/delaware/dedce/1:2012cv00641/48812/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2012cv00641/48812/1/10.html
http://dockets.justia.com/

US007254621B2

az United States Patent

(10) Patent No.: US 7,254,621 B2

Singhal et al. 45) Date of Patent: *Aug. 7, 2007
(54) TECHNIQUE FOR ENABLING REMOTE (52) US.CL .ot 709/218; 709/217
DATA ACCESS AND MANIPULATION FROM (58) Field of Classification Search 709/200-203,
A PERVASIVE DEVICE 709/217-227
See application file for complete search history.
(75) Inventors: Sandeep Kishan Singhal, Englewood)
Cliffs, NJ (US); Barry Eliot Levinson, (56) References Cited
New York, NY (US); Darren Michael U.S. PATENT DOCUMENTS
Sanders, Nanuet, NY (US) o
6,640,106 B2* 10/2003 Gutowski et al. 455/456.1
(73) Assignee: Symantec Corporation, Cupertino, CA 6,765,596 B2 7/2004 Lection et al.
(US) 6,816,719 B1 11/2004 Heinonen et al.
2002/0065110 Al* 5/2002 Enns et al. 455/566
(*) Notice: Subject to any disclaimer, the term of this iggiigigigfi i}: ggggi Xlnandahl etal ... ;‘ig;g(l)(z)
: . Wareeeeeiennn
%atselg lls SZ’E{)‘;HS;%:; ggjyllswd under 33 20050113139 AL* 5/2005 Boss et al. ooooooee..... 455/558
* cited by examiner
This patent is subject to a terminal dis- . .
claimer. Primary Examiner—Moustafa M. Meky
(74) Attorney, Agent, or Firm—Fenwick & West LLP
(21) Appl. No.: 11/075,437
67 ABSTRACT
(22) Filed: Mar. 7, 2005 Methods, systems, and computer program instructions for
(65) Prior Publication Data enabling users of pervasive devices to remotely access and
manipulate information in ways that might otherwise be
US 2005/0216492 A1 Sep. 29, 2005 impossible or impractical because of inherent limitations of
L the device. The disclosed techniques enable a wide variety
Related U.S. Application Data of data manipulation operations to be performed on behalf of
(63) Continuation of application No. 09/848,394, filed on the pervasive device, for a wide variety of content types. In
May 3, 2001, now Pat. No. 6,925,481. preferred embodiments, no modifications or add-ons are
required to the pervasive device.
(51) Imt. ClL
GO6F 15/16 (2006.01) 24 Claims, 9 Drawing Sheets

World-Wide Web

S

110

140

File
Access
Proxy

Proxy

Protocol

...................

@

wWID

130

150
170
Data 160
Manipulation
Server

US 7,254,621 B2

Sheet 1 of 9

Aug. 7, 2007

U.S. Patent

weby
indino
eyed

(174

09}

Janes
uoneinditeN e
ee@ |
Axoid
$S800Y
94
(1) 4%
0si

oclL aim

OGO

........................... Axoid
0zl jodojold

®) !

["Old

G8M SPIM-PHOM

US 7,254,621 B2

Sheet 2 of 9

Aug. 7, 2007

U.S. Patent

09z
562

[¥4

(1] 7+
G0Z

a7 "OIA
juidseseguoneindiveneieg uud 9 wWooy eoussajuo) g oop
wduenieguonendivepyeyeq jund . 7/ .
} 474 £5C c5C 152 0%2C
lewsalaniaguonendiveeieq jlew-e se pues OSY
xejaneguonendiueeleq waldioss 0) xe} TNX
HeAuos/laAlaguonendiueneeq TAXEM O} HaAUDD MAX
rq174 Loz 002

VIO

U.S. Patent

Aug. 7, 2007 Sheet 3 of 9

FIG. 3

WID Requests
Data

Request Routed to
Corresponding
Protocol Proxy

Forward
request to
information source

Receive
response from
information source

Obtain
available service
information

Format
information to include
access to services

Forward
information to
requesting WID

WID receives
data and

service information

300

310

320

330

340

350

360

370

US 7,254,621 B2

US 7,254,621 B2

Sheet 4 of 9

Aug. 7, 2007

U.S. Patent

(1L 4

osy

oLy

aim Bunsanbai
0} asuodsa. 8onpo.d

[
weby indinQ ejleqg
woJl} asuodsal aAIR0eY

juaby IndinQ

,Emn_ 0} }senbal pJemio

SBA

ipalinbay Jusby
JndinQ ejeq

ory

oty

ejep uo Buisseooid
Aressadsu uuoued

|

ocy

pajejndivew
Buiaq uonew.oul
pue psjsenbal Buieq
20IA19G BuILLIBle(

|

(1] 7 4

JaAIeg
uonendiuely eyeq
Aq penessl jsenbay

]

ooy

Ssalppy
UOIED0AU| SOIAIDG BIA
@o1Aeg sisenbay QIM

v OId

US 7,254,621 B2

Sheet 5 of 9

Aug. 7, 2007

U.S. Patent

woo abpajeas mww//:diy=png uudasniaguonendiuepeleqy/-dny

S DId

wo2'abpajaasrmww//dpu=Hng,

ds "Old

yuudusnsguonendiveyereqy/.dpy

VS Old

US 7,254,621 B2

Sheet 6 of 9

Aug. 7, 2007

U.S. Patent

9SHEZ) QU 100B=a1)009,

4S8 "DIA

20p 'Hodal/qQIMAGPaSSOI0YS|1)/19A18 SMBU//=)SOPR00P uodaipientegally//=olié alysenieguonendiveNeieq//-dny

dS "OId

ooppodaisentaga|y//=aiyéuudianiaguonendiuepereq//:duy

ds ‘Old

US 7,254,621 B2

Sheet 7 of 9

Aug. 7, 2007

U.S. Patent

Juswbas=a)e|dwaygoop uodal/ianIasa|ly//=ajjiMaIAJaAIaSuUOeINdIUBNBYR//-dIY

IS "DIA

Wwod opIesu@Aon|=1sepRIx}'69./860sW /1aniag|iew//=6sul¢ |lewsa/santaguonendiueeleq;//-dny

HS "OId

[rews/ianaguonendiveneyeqy/:dny

DS DA

U.S. Patent Aug. 7,2007 Sheet 8 of 9 US 7,254,621 B2

FIG. 6A

602

600

|

610

U.S. Patent Aug. 7,2007 Sheet 9 of 9 US 7,254,621 B2

FIG. 6B

-In ternet Explorer 3:31p

/1{192.168.1.10/redfedge_de | g

600

AL S KET
MAFPBLAST!

From: La Guardia New York, NY
To: 2 Executive Dr Fort Lee, NJ 07024~-3308

Your trip's estimated travel time is 18 minutes for
12,07 miles of trav

620 FQF Fi] @receunste

US 7,254,621 B2

1

TECHNIQUE FOR ENABLING REMOTE
DATA ACCESS AND MANIPULATION FROM
A PERVASIVE DEVICE

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of prior application Ser.
No. 09/848,394, filed May 3, 2001, which is hereby incor-
porated herein by reference, now U.S. Pat. No. 6,925,481.

FIELD OF THE INVENTION

The present invention relates to pervasive computing, and
more particularly to methods, systems, and computer pro-
gram instructions for enabling users of pervasive devices
(such as limited-function mobile devices, smart appliances,
etc.) to remotely access and manipulate information in ways
that might otherwise be impossible or impractical because of
inherent limitations of the device.

BACKGROUND OF THE INVENTION

Pervasive devices (also referred to as “pervasive comput-
ing devices”) have become popular in recent years as people
increasingly seek “anywhere, anytime” access to services
such as voice and data communications. Many pervasive
devices are designed to be mobile, and may equivalently be
referred to as “mobile devices” or “mobile computing
devices”. Examples of mobile pervasive devices range from
two-way pagers to personal digital assistants, or “PDAs”
(such as the Palm Pilot, Handspring Visor™, or Compaq
iPAQ) to cellular phones (such as the Nokia 6110) to
multi-function devices (such as the Nokia 9110 or Qual-
comm “pdQ™” smartphone). (“Visor” is a trademark of
Handspring, and “pdQ” is a trademark of QUALCOMM
Incorporated.) All pervasive devices are not necessarily
mobile, however. Examples of this latter category include
smart appliances for the home or business setting, devices
which are permanently mounted in automobiles, and so
forth.

Pervasive devices typically share several common char-
acteristics:

1) limited processor speed;

2) limited memory capacity;

3) small size, which limits the richness of the data input
and output interfaces (for example, small screen, limited
keypad, and so forth);

4) a limited amount of software pre-installed on the
device; and

5) access to limited-bandwidth networks.

The inherent drawbacks of these characteristics are fur-
ther exacerbated by:

1) the need to maximize the device’s relatively short
battery life—which in turn prevents additional processor
power or memory capacity from being added to the device;
and

2) the need to simplify use of the device—which in turn
reduces the desirability of supporting an “open” software
installation platform in which arbitrary software packages
might be added.

As people rely on pervasive devices for day-to-day infor-
mation access tasks, they find that the experience can be
extremely limiting. While pervasive devices vary widely in
functionality and in their capabilities, some general obser-
vations for an average pervasive device can be made. First,
the device typically does not have sufficient memory to store

20

25

40

45

50

55

2

all of the information that the user requires. Indeed, most of
a user’s files or data are normally stored on a desktop
personal computer (“PC”), laptop, or corporate server.
Moreover, the device’s memory limitations often prevent the
user from manipulating large files, such as graphics-inten-
sive presentations (where it might be desirable, for example,
to re-order the slides within a presentation). Second, the
device typically does not have the software required to
access all of the data that the user might wish to use. For
example, most pervasive devices are unable to run common
software applications such as Microsoft® Word or
Microsoft® Powerpoint. (“Microsoft” is a registered trade-
mark of Microsoft Corporation.) Some pervasive devices,
such as two-way pagers from Research In Motion (“RIM”),
do not usually have a Web browser installed, and therefore
the user cannot render data formatted as Web documents.
Third, the device often does not have the necessary drivers
installed with which to support all the data manipulation
operations the user might wish to perform. For example,
pervasive devices typically do not have drivers to support
operations such as printing and faxing. Similarly, pervasive
devices typically do not have drivers for video graphics
array (“VGA”) adapters that would enable the device to
display content to a projector (such as a liquid crystal
display, or “LCD,” projector).

Some pervasive devices would not be considered as
limited in function, although they may suffer from some of
the drawbacks of limited-function devices such as poor
ease-of-use (having, for example, a small screen size).
Examples include the Compaq iPAQ Home Internet Appli-
ance IA-1 and the Audrey™ home appliance from 3Com
Corporation. (“Audrey” is a trademark of 3Com Corpora-
tion.) The term “Wireless Information Device”, or “WID”,
will be used hereinafter to refer to this type of pervasive
device as well as limited-function pervasive devices. (This
term recognizes the fact that both the limited-function and
full-function pervasive computing devices typically com-
municate using wireless communication techniques and
protocols, such as 802.11, Bluetooth, and so forth.)

Various attempts have been made to address the limita-
tions of WIDs; however, existing approaches fail to provide
a satisfactory solution.

One existing approach to addressing the limitations of
WIDs involves the technique of “transcoding” content into
a form that is better suited for the WID. Products such as the
WebSphere® Transcoding Publisher from International
Business Machines (“IBM”) Corporation and Spyglass
Prism from Open TV, Inc. represent examples of this class
of solution. (“WebSphere” is a registered trademark of
IBM.) Through transcoding, the content is programmatically
manipulated for a target device. For example, the transcod-
ing process may enable the content to be rendered effectively
on a small-screen device (perhaps by altering font size,
removing image files, and so forth). Typically, a “transcod-
ing engine” located on a server or network device receives
the content in its original form, performs a conversion
process, and delivers the renderable format to the client
device. However, these transcoding solutions only address
the need to view content: they do not provide a capability to
manipulate the content from the WID. For example, the
transcoding process does not enable the WID to e-mail, fax,
print, or project the content.

Another approach to addressing the limitations of WIDs
involves supplementing the capabilities of the WID through
the deployment of hardware adapters or software. For
example, a special-purpose attachment (known as a “Spring-
board™” module) may be plugged into a Handspring Visor

US 7,254,621 B2

3

device to enable the device to perform additional functions
such as viewing and projecting Microsoft PowerPoint files.
(“Springboard” is a trademark of Handspring.) The Pre-
senter-to-Go™ module from Margi Systems, Inc. is one
instance of such an attachment. (“Presenter-to-Go” is a
trademark of Margi Systems, Inc.) As another example,
software may be installed on a Microsoft Pocket PC device
to enable the device to print Microsoft Word files to a limited
set of printers. The PrintPocketCE software from FieldSoft-
ware Products is one instance of such a software product.
However, these client-centric add-on approaches increase
the cost of the WID solution significantly and sometimes far
exceed the cost of the WID itself. They also require addi-
tional power, effectively reducing the WID’s available bat-
tery life. Fach add-on solution typically supports only a
single data manipulation option (or a very limited set of
options), for only a limited set of file formats (or in some
cases, for a single file format). Several different add-ons may
therefore be needed to enable a WID to meet a particular
user’s requirements. An additional disadvantage of this
approach is that the extra hardware is often bulky and
inconvenient to carry, whereas additional software often
requires a complex installation process by end-users, con-
sumes valuable memory on the WID, and may not interop-
erate effectively with existing software loaded on the WID.

Therefore, what is needed is a technique for enabling
WIDs to access and manipulate data that avoids the limita-
tions of the prior art.

SUMMARY OF THE INVENTION

The present invention is directed to methods, systems, and
computer program instructions for enabling wireless infor-
mation devices to access and manipulate data. The data
being accessed may reside on a Web server, a file server, a
personal desktop PC, or elsewhere. The data may represent
virtually any type of information, including Web content,
e-mail messages, or files in various formats. The data
manipulation operations that are provided through use of the
present invention may include viewing, faxing, printing, and
projecting the data, as well as delivering the data to a voice
messaging system.

Note that the discussion herein is primarily in terms of a
limited set of data manipulation tasks or operations. These
operations are discussed for purposes of illustration, and not
of limitation. Many other manipulation operations might be
provided in an implementation of the present invention,
including modifying or changing data in some way; con-
verting data from one format to another; transferring data
from one device to another (e.g. to a remote file server for
storage); publishing the data to a Web site; importing data
(including a file or document) into a repository; disseminat-
ing data to one or more recipients (such as by sending e-mail
messages); attaching data to a workflow message; control-
ling a remote application (such as launching and paging
through a remotely hosted PowerPoint presentation); and so
forth.

Enabling WIDs to easily access a wide variety of types of
data and to initiate a wide variety of manipulations on that
data in an efficient, cost-effective manner—in spite of the
device’s inherent limitations (such as limited processor
capacity, limited embedded software, and/or limited band-
width capability)—is a primary objective of the present
invention.

In preferred embodiments, the techniques of the present
invention provide these advantages without requiring the
installation of new software or hardware on the WID, in a

20

25

30

40

45

4

manner that is easily extensible to support new manipulation
operations and new data types.

Objectives of the present invention are realized by a
solution that comprises one or more proxies, Zero or more
agents, and a data manipulation server (hereinafter, “DMS”).
The DMS provides information about what services may be
performed, and how to invoke those services. The DMS also
performs operations on behalf of the WID, in cooperation
with the proxies and the agents. In preferred embodiments,
the proxies, agents, and DMS are not located within the
WID, but instead are accessed by sending one or more
request messages from the WID. This solution enables the
WID’s capabilities to be augmented in a very flexible yet
powerful and cost-effective manner, without requiring any
modifications to be made to the WID itself.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a block diagram which depicts an archi-
tecture and components of a preferred embodiment of the
present invention.

FIGS. 2A and 2B illustrate examples of a table in which
information about available data access and/or manipulation
services is stored, according to a preferred embodiment of
the present invention.

FIG. 3 provides a flowchart that depicts logic with which
a WID accesses data and receives information about what
manipulation operations are available on that data, accord-
ing to a preferred embodiment of the present invention.

FIG. 4 provides a flowchart that depicts logic with which
a WID requests a manipulation service upon data it has
accessed, and with which that service is performed, accord-
ing to a preferred embodiment of the present invention.

FIGS. 5A-5] provide syntax examples that are used in
describing operation of a preferred embodiment of the
present invention.

FIGS. 6A and 6B illustrate samples of graphical user
interface (“GUI”) displays that may be used to display
available service information, according to the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present invention will now be described more fully
hereinafter with reference to the accompanying drawings, in
which a preferred embodiment of the invention is shown.
Like numbers refer to like elements throughout.

Flowchart illustrations of aspects of the present invention
are described below. The logic of these flowcharts may be
provided as methods, systems, and/or computer program
instructions embodied on one or more computer readable
media, according to an embodiment of the invention. As will
be obvious to one of ordinary skill in the art, these flowcharts
are merely illustrative of the manner in which the associated
aspects of the present invention may be implemented, and
changes may be made to the logic that is illustrated therein
(for example, by altering the order of operations shown in
some cases, by combining operations, etc.) without deviat-
ing from the inventive concepts disclosed herein.

The present invention provides an efficient, cost-effective
technique for enabling a wireless interface device to easily
access a wide variety of types of data and to initiate a wide
variety of manipulations on that data, without requiring the
installation of new software or hardware on the WID, and in
a manner that is easily extensible to support new manipu-
lation operations and new data types.

US 7,254,621 B2

5

FIG. 1 illustrates a preferred architecture and components
of a system in which the present invention operates. The
system may provide support for multiple WIDs, although
only one WID 130 is illustrated in FIG. 1. The WID, which
in preferred embodiments is a commercially-available WID
which may be provided by any one of a number of vendors,
includes at least one software application with which a user
interacts to access and/or manipulate data. In preferred
embodiments, this user-interaction software application is
the only software required on the WID to enable use of the
present invention. This user-interaction software preferably
comprises a browser implementation (such as a Web
browser); in alternative embodiments, other types of user-
interaction software applications (including, but not limited
to, e-mail client software) may be used. The user-interaction
software application may be installed on the WID when it is
marketed, and may be a commercially-available software
implementation. When browser software is present, it pref-
erably supports at least one markup language. Examples of
markup languages that may be supported include the Hyper-
text Markup Language (“HTML”); Wireless Markup Lan-
guage (“WML”); and Voice Extensible Markup Language
(“VoiceXML”).

Note that while preferred embodiments of the present
invention operate with commercially-available WIDs and
without requiring hardware or software modifications or
add-ons, in alternative embodiments the WID may be spe-
cifically adapted for use with the present invention, without
deviating from the inventive concepts disclosed herein. For
example, a WID might include modifications to provide a
user interface tailored for use with the present invention, or
perhaps code for optimizing data access and/or manipulation
processing. Moreover, auxiliary software may be provided
to provide enhanced authentication, encryption, compres-
sion, or similar functions that augment the transmission of
data described herein. Furthermore, while the preferred
embodiment anticipates invocation by user interaction (and
user-interaction software), there may be implementations in
which automated or programmatic invocation is appropriate.
In these cases, software which embodies the automated or
programmatic invocation may replace the previously-de-
scribed user-interaction software as the only software
required on the WID to enable use of the present invention.
Or, the two forms of invocation software may co-exist on a
WID.

At least one protocol proxy 120 is provided, according to
the teachings of the present invention. A protocol proxy
provides a bridge between the client (i.e. an application
executing on WID 130) and the information that it seeks to
access and manipulate. A protocol proxy is responsible for
accessing information on behalf of the client and (in pre-
ferred embodiments) annotating this accessed information
with information about the manipulation services available
for that accessed information. (The annotation process is
described in more detail below, with reference to Block 350
of FIG. 3.) The information may be accessed, for example,
from its location on one or more Web content servers in the
World Wide Web (hereinafter, “Web™) 110, in a distributed
file system 150 of the prior art, or from an application of the
prior art. This content server may deliver content that
includes services which have been “pre-added” to the con-
tent (e.g. by querying the DMS directly), so that the protocol
proxy is not required to provide additional annotations. This
latter situation may be particularly beneficial, for example,
if the content server happens to be co-located with the DMS.

Preferred embodiments of the present invention include at
least one of the following types of protocol proxy: (1) a

10

15

20

25

30

35

40

45

50

55

60

65

6

Hypertext Transfer Protocol (“HTTP”) proxy, (2) a Wireless
Session Protocol (“WSP”) proxy, and (3) a Simple Mail
Transfer Protocol (“SMTP”), Post Office Protocol (“POP” or
“POP3”), or Internal Message Access Protocol (“IMAP”)
proxy. An HT'TP proxy handles requests for and reception of
information using HTTP request and response messages. A
WSP proxy handles requests for and reception of informa-
tion using WSP request and response messages. SMTP, POP,
and IMAP proxies handle requests for and reception of
electronic mail respectively using SMTP, POP, and IMAP
request and response messages.

Alternative embodiments may include different and/or
additional protocol proxy types. For example, a synchroni-
zation protocol proxy may be included, which may be used
to synchronize data stored locally on a user’s WID with data
stored elsewhere (such as on the user’s desktop PC). An
example synchronization protocol is “SyncML” which is
being developed by The SyncML Initiative to seamlessly
synchronize wireless and wireline data and devices. (See
http://www.syncml.org for more information on SyncML.)

The protocol proxies in a particular implementation of the
present invention may each run on different hosts if desired,
and individual protocol proxies may be co-located with
other components of the system. The protocol proxy func-
tion described herein may be replicated, if desired (for
example, to administratively separate different types of
proxy function, for purposes of fault tolerance or fault
isolation, for scalability and load balancing, etc.) Moreover,
a single proxy may itself be divided into separate compo-
nents. For example, an HTTP proxy may include a first
component that determines whether the request is for con-
tent on the Web or perhaps on a file server; a second
component that handles those requests which are for Web
content; and a third component that handles those requests
which are for content from a file server. The multiple
components may, in turn, be distributed across multiple
machines.

In one embodiment, prior art configuration mechanisms
are used to adapt the WID for communicating with a
protocol proxy. For example, the client Web browser may be
instructed to communicate with an HTTP proxy, or synchro-
nization software on the WID may be configured to send
synchronization protocol messages to the synchronization
protocol proxy. In this embodiment, the protocol proxy then
intercepts outbound messages from the client on the WID
and processes those messages as disclosed herein. In another
embodiment, a WID communicates with a protocol proxy
through a wireless access point (not shown in FIG. 1), such
as an 802.11 access point or a Bluetooth access point (the
functioning of which is known in the art). In this latter
embodiment, the access point or an adapter device commu-
nicating with the access point receives outbound messages
from the WID and evaluates those messages to determine
which protocol is in use. The access point or adapter device
then routes the outbound message to the appropriate proto-
col proxy. (This latter embodiment is preferred in the present
invention because it avoids the need to configure the WID.)

Zero or more file access proxies 140 are also provided,
according to the present invention. File access proxies may
be located on various file servers, desktop computers, data-
base systems, or other storage devices, and provide access to
data stored in one or more repositories 150 which are located
on (or otherwise accessible to) those machines. A particular
file access proxy may access data from a local repository,
within remote data stores (such as information that is
accessible from a remote file server or Web server), infor-
mation stored within local applications (such as stored

US 7,254,621 B2

7

e-mail messages), and/or information stored within remote
applications (such as information that is accessible through
a database or directory application). Accessible information
may be dynamically generated by the local or remote
application, such as a live sensor reading.

A data manipulation server 160 is provided, according to
the present invention. In preferred embodiments, the DMS
has two roles. One role is to provide data manipulation
services. Another role is to maintain a repository of the
available services for various types of data and to make this
information available.

While not shown in FIG. 1, it may be desirable in some
situations to have multiple data manipulation servers 160,
for example for purposes of availability or load balancing or
administrative control. Furthermore, the DMS may be
located within a cluster. The function of the DMS may
optionally be partitioned, with different services hosted on
different DMS’s.

In its role of providing data manipulation services, those
services may be provided by the DMS either directly, or
indirectly by invoking one or more data output agents 170
(which are described below). For example, the DMS may
directly manipulate content by performing a conversion of
the content into HTML upon receiving a conversion request
from the WID. As another example, the DMS may indirectly
manipulate content by forwarding the content to a file
manipulation agent, where that file manipulation agent is
responsible for storing the content in a repository. In simple
cases, the DMS may operate in a “pass-through” mode
wherein it merely forwards content to a data output agent
(such as a file manipulation agent). In most cases, however,
the DMS performs operation-specific processing of the data
received from the client before determining whether and
where to forward data that may need further processing by
an agent. In general, the data manipulation operations pro-
vided by the DMS may be arbitrarily complex, and operate
in a content-dependent manner. In some cases, manipulation
requests received from the WID may imply other manipu-
lations that need to be performed. As one example, if a
request is received from the WID to fax content to a
recipient, the DMS preferably invokes a conversion process
(which may be provided by the DMS, by a data output agent,
or perhaps by another component of the system) to trans-
form the content into Tag Image File Format (“TIFF”),
where the resulting TIFF document is then sent to a data
output agent responsible for performing facsimile transmis-
sion. As another example, if a request for printing a Web
page is received from the WID, the DMS first accesses the
content of the Web page by retrieving it from the Web (or
perhaps from cache storage) and then forwards that content
to a selected data output agent which is responsible for print
services. More information on the data manipulation pro-
cessing provided by the DMS is provided below, with
reference to FIG. 4.

In its role as a repository of available services, the DMS
preferably maintains a table (or a list or other analogous
structure, referred to hereinafter as a “table” for ease of
reference) to identify those services. At run-time, this table
is used to provide the WID with a list of the available data
manipulation services for particular data content. The table
is preferably organized according to file content type. An
example is shown in FIG. 2A, which indicates that files of
type “XML” may be converted to WBXML (“Wireless
Application Protocol Binary XML”) decks (see 205) or
faxed to recipients (see 210), whereas files of type “ASCII”
may be sent as e-mail (see 215). In this example, the file
content type appears first, in column 200; an identification of

25

40

45

55

8

the service appears next, in column 201; and an address of
the service (i.e. a service invocation address, described
below) appears in column 202. The service identification
from column 201 may, for example, be presented to a user
on a user interface to enable user selection of the corre-
sponding service.

Alternatively, the table may be organized in a different
manner. Furthermore, the entries in the table may optionally
provide for further qualifying the services, such that the
availability of a particular service depends on additional
factors beyond the file content type. Examples of such
factors include: (1) identification of individual users or user
groups; (2) user privileges or access rights; (3) particular
locations from which a service will be available; (4) the
target WID type; and (5) combinations of such factors. FIG.
2B provides an example of this optional further qualifica-
tion, wherein the example table is organized according to file
content type (in column 250), user identification (in column
251), and location (in column 252). The service is identified
in column 253, and the service invocation address appears in
column 254. As illustrated therein, the print service is
available with all files and all locations (indicated by pres-
ence of a wildcard symbol “*”) for user A (see 255), whereas
printing is only available to user B for files of type “.doc”
and only while he is located in Conference Room C (see
260).

When user identifying information is stored in the DMS’
table for use as a factor in service availability, it may be
represented in several alternative formats, such as: the user’s
name; a department number to which an authorized user
must belong; an Internet Protocol (“IP”) address (which may
optionally identify a user group, e.g. through a subnet mask)
of the user’s WID; and so forth. Similarly, location infor-
mation used as a factor in service availability may be
represented in several alternative manners. Location infor-
mation is further described below, with reference to Block
340 of FIG. 3. Some factors used in determining service
availability, such as user access rights or privileges, may
require dynamically querying a directory or similar reposi-
tory at run-time to determine availability. Information used
in the retrieval may in some cases be obtained from the
request message issued by the client (e.g. from header values
in HTTP requests). Techniques for performing this type of
dynamic look-up processing are well known in the art, and
will not be described in detail herein.

The examples in FIGS. 2A and 2B use a simplified format
for purposes of illustration. In an actual implementation, the
entries in the tables may vary from the format shown. For
example, the identification of the available service may
perhaps be represented using numeric identifiers, rather than
textual descriptions. In this case, the WID may optionally
contain software adapted for use with the numeric codes,
and may translate the codes into text before displaying a list
of available services to the user. Or, this translation might be
performed by the protocol proxy before the available ser-
vices list is returned to the WID. The table might also
contain an identification of an icon or graphic symbol
corresponding to selected ones of the available services,
where this icon or symbol can be displayed to the user on the
WID. The table might also contain multiple versions of the
textual or graphical descriptions, to accommodate presenta-
tion in different languages.

A “service invocation address” is specified for each
service (see the examples in columns 202 and 254 of FIGS.
2A and 2B, respectively) and indicates an address at which
the service may be invoked. In preferred embodiments, these
addresses are provided as Uniform Resource Locators

US 7,254,621 B2

9

(“URLs”). Preferably, the addresses are specified within the
entries stored in the DMS’s table, as shown in the example
tables of FIG. 2A and FIG. 2B, although alternatively the
addresses may be separately stored (perhaps as a storage
optimization). As an example of using the latter approach, a
print service might appear many times in the DMS” table. To
eliminate redundant storage of this service’s URL, the URL
might be correlated to the print service but separately stored,
enabling individual table entries such as 255 and 260 in FIG.
2B (which specity qualifiers on when printing is available)
to be associated with the proper URL at run-time even
though column 254 is omitted. Similarly, separate storage
may be desirable in cases where the appropriate URL to use
for creating the available services list is determined dynami-
cally at run-time.

Note that while the service invocation addresses used
herein as examples specify locations on a DMS, this is for
purposes of illustration and not of limitation. One or more of
the URLs may alternatively identify services provided at
locations other than the DMS.

In alternative embodiments, service invocation addresses
may employ address formats other than URLs, such as
e-mail addresses, or perhaps a combination of an e-mail
address and subject line, to designate a service to be
invoked.

When requested information is delivered to a client appli-
cation on the WID, a list of service invocation addresses for
the available services is provided along with that informa-
tion (as will be discussed in more detail with reference to
Block 350 of FIG. 3). Each service invocation address is
preferably augmented with an identity of the information
that is to be operated upon. In some cases, it may be possible
to infer the information identity from the service invocation
address, in which case this augmentation is not required. For
example, a service invocation address might identify a
Structured Query Language (“SQL”) query whose result is
implicitly the data being manipulated.

Returning now to FIG. 1, one or more data output agents
170, which implement specific output manipulation opera-
tions (such as printing, faxing, projecting, or delivering to a
voice mail system, the details of which do not form part of
the present invention), are provided. (Note that a data output
agent, as the term is used herein, refers to a component that
delivers file content to an output device, whereas a file
access proxy as defined herein retrieves file content in
read-only mode. In some instances, a data output agent and
a file access proxy may be co-located, and furthermore these
functions may be implemented within a single software
component.) The DMS passes data to selected ones of these
agents to perform the manipulation services which are
managed by the DMS. In preferred embodiments of the
present invention, one or more of the following data output
agents are supported:

a print server agent, which is responsible for sending jobs
to one or more printers;

a projection server agent, which is responsible for driving
the display of content to an LCD projector, video display, or
other graphical terminal;

a file manipulation server agent, which is capable of
performing file operations such as copying, deleting, and
renaming files (and which is typically co-located with a file
access proxy);

an e-mail manipulation server agent, which is capable of
performing e-mail operations such as sending, receiving,
and deleting e-mail messages (and which is typically co-
located with a file access proxy that accesses e-mail files);

10

15

20

25

30

35

45

50

55

60

65

10

a fax server agent, which is responsible for sending
information for facsimile transmission; and

a voice mail server agent, which is responsible for sending
information for delivery through a voice messaging system.

The agents may send data to queues or other similar
structures or processors, which may in turn be implemented
as agents. For example, the output of a print server agent
may be sent to a selected print queue for printing (using
queuing techniques which are well known in the art). An
agent such as a print server may manage local resources,
such as a locally-stored print queue for a particular printer,
or remote resources, such as access to multiple printers (each
of which typically has its own print queue processing). In
degenerate cases, a print server agent may be manifested
simply as a print queue. Similarly, other agents such as the
fax server agent and projection server agent may be mani-
fested as queues for their respective devices.

Referring now to FIG. 3, logic is illustrated that may be
used to provide data access support for a WID, including
delivery of a list of the manipulation operations that are
available on that data. At Block 300, the client software on
the WID issues a request for information. (This corresponds
to request message flow 1 in FIG. 1. The encircled numbers
in FIG. 1 all refer to message flows.) Typically, this request
is initiated by action of the WID user. Block 310 indicates
that a protocol proxy receives this request. As described
earlier, the outbound request either may be received by the
protocol proxy to which the client software has been con-
figured to communicate, or may be received by a wireless
access point or adapter device (which then inspects the
content to determine which protocol proxy is required, and
forwards the request to that proxy).

At Block 320, the protocol proxy forwards the request to
the appropriate information source. For example, if the
request is an HT'TP request for Web content issued by a Web
browser, then an HTTP proxy forwards that HTTP request to
the Web. Or, if the request is for file content, it will be
forwarded to a file access proxy. (This corresponds to
message flow 2 or 3 in FIG. 1.) At Block 330, the protocol
proxy receives the response from the information source.
(This corresponds to message flow 4 or 5 in FIG. 1.)

The protocol proxy then determines, in Block 340, which
services are available to the WID for manipulating the
returned content. This determination may be made in several
ways. In a preferred embodiment, the protocol proxy issues
a query to the DMS for a list of available services. (This
corresponds to message flow 6 in FIG. 1.) Upon receiving
the list from the DMS, the protocol proxy may optionally
cache the list for use with subsequent requests (in order to
avoid the message exchange and processing overhead of
repeatedly requesting such information from the DMS). In
an alternative embodiment, the protocol proxy may be
statically pre-configured with a list of available services that
are appropriate for particular types of content, users, loca-
tions, or other criteria as described previously with respect
to FIGS. 2A and 2B; in this case, message flow 6 of FIG. 1
is not required.

When queried by the protocol proxy at Block 340, the
DMS consults its stored table entries (see FIGS. 2A and 2B
for examples), using logic that is adapted to the particular
storage format in use by that DMS, and determines which
services are available for the data being returned to the WID.
As stated earlier, the available services are preferably fil-
tered according to the type of content being returned, and
may also (or alternatively) account for one or more other
factors. (This filtering process has been discussed with
reference to FIGS. 2A and 2B, above.)

US 7,254,621 B2

11

When an identification of the user is one of the factors
used to determine service availability, the user’s identifica-
tion may be obtained in a protocol-specific manner. For
example, the user’s identification may be available as the
value of a cookie in an HTTP request or response header. Or,
in some cases a look-up operation may be performed to
obtain this information if a table or other similar repository
of such information is available.

In preferred embodiments, the client software on the WID
does not participate in data manipulation operations (rather,
the request is sent to the DMS, which obtains the data and
manages the manipulation operations), and therefore capa-
bilities of the WID may not be of interest when determining
the list of available services. However, there may be some
cases where this information is deemed useful. For example,
it may be known that user input is required for a particular
manipulation operation (such as specifying the target of an
e-mail message). If the target WID is incapable of support-
ing the necessary interactions, then that service is preferably
omitted from the delivered list by the evaluation performed
by the DMS at Block 340. When this type of processing is
to be performed, information about the capabilities available
on the WID may be obtained in a variety of ways, such as
by inspecting the content types accepted according to the
Accept header of an HTTP message, by assessing browser
capabilities according to information provided in the User-
Agent header of an HTTP message, by analyzing capability
information explicitly provided by the device, or by inspect-
ing a repository of capability information indexed by device
identity. These approaches for determining client capabili-
ties are well known in the prior art.

When information about the location of the WID is used
as a factor in determining available services, this location
information may also be obtained in various ways and once
obtained, may be used in various ways. The location infor-
mation may, for example, be determined by querying a
global positioning system (“GPS”) function on the client.
Or, the location information might be obtained by querying
a Location Registry, such as the Location Registry described
in commonly-assigned U.S. Pat. No., still pending (Ser. No.
09/848,441, filed concurrently herewith), which is entitled
“Location-Aware Service Proxies in a Short-Range Wireless
Environment” and which is incorporated herein by refer-
ence. As disclosed therein, a mobile device’s access point
(equivalently, a WID’s access point) monitors its traffic to
obtain the device’s location. This location information,
which preferably comprises a list of access points which are
near the mobile device at a point in time, is maintained in the
Location Registry. This Location Registry implements a
query interface that may be used by an implementation of
the present invention to determine the location of a particu-
lar WID. This related invention also discloses “Location
Aware Service Proxies” that intercept requests initiated by
mobile clients, and that use the location of the mobile device
to determine which content to deliver to the mobile device.
These location-aware service proxies may be used in con-
junction with the present invention to determine what con-
tent may be delivered, and a protocol proxy may then
annotate that content with available services information
(where the set of available services may also be based on
location, among other factors). Furthermore, a protocol
proxy as disclosed herein may also function as a location-
aware service proxy. In this latter case, the location-aware
service proxy preferably performs further location-sensitive
filtering on the available services list obtained from the
DMS in Block 340. Or, alternatively, the location-aware
service proxy may transmit location information to the DMS

40

45

12

(e.g. on message flow 6 of FIG. 1), where the DMS then
factors that information into its list-generation processing.

Once the protocol proxy has the list of available services,
it preferably formats or annotates that list in Block 350. (In
alternative embodiments, this function may be performed by
the DMS before it returns the available services information
to the protocol proxy.) In a preferred embodiment, this
annotation comprises modifying the service invocation
addresses to enable the WID’s user to easily invoke each
available service. For example, in the case of HTML content
such as a Web page, the protocol proxy in this preferred
embodiment adds a set of links (which may be represented
as text or icons) to the list of available services that may be
used to manipulate that HTML content. Preferably, the links
take the form of a service invocation address that is param-
eterized with an identity of the information to be manipu-
lated. Suppose, for example, that one of the available
services is to print a Web page, and that the DMS has
supplied the service invocation address shown in FIG. 5A
for that print operation, where this syntax, in this example,
identifies print service software on the DMS itself. Using the
standard HTTP syntax for a parameter list, the Web page
“www.reefedge.com” may be identified for printing by this
print software by supplying the parameter list shown in FIG.
5B, which identifies the data being manipulated, thereby
yielding an annotated link as shown in FIG. 5C.

As another example, suppose a Microsoft Word document
named “report.doc”, which is accessed from the root direc-
tory of a file server named “fileServer”, is being returned to
the WID, and that available services for this document
include printing it and filing (i.e. storing) it on a file server.
To print the document, the document may be identified for
printing by the print software on the DMS by supplying the
sample syntax shown in FIG. 5D, where the parameter
“file=//fileServer/report.doc” identifies the data being
manipulated.

Alternatively, to identify the document for filing at a
location “newServer/filesAccessedByWID/”, the sample
syntax shown in FIG. S5E may be used, where the value of
the “dest” parameter identifies the new file storage location.

In the preferred embodiment, the service invocation
address may be coupled with additional information during
this annotation process in order to ensure that the DMS
(and/or data output agent, as appropriate for a particular
manipulation service) accesses and manipulates the required
information. For purposes of illustration, suppose the user
accessed a Web page for which cookie values were used in
customizing the page content. As an example, the WID
user’s bank account number may have been transmitted in a
cookie on the outbound HTTP request message, and this
account number may have been used by a Web server to
generate a Web page showing the user’s current bank
account balances. If, after viewing this customized Web
page, the user decides that she would like to print the
information, the DMS must be able to use this same page
content when invoking the printing operation. Rather than
forwarding the Web page from the WID to the DMS, the
protocol proxy of the preferred embodiment captures the
cookies that were present on the original HTTP request and
includes those cookies as additional parameters on the
annotated links created during the processing of Block 350.
(Preferably, all cookies are stored and copied to the links,
although if the protocol proxy is adapted to know that certain
cookies are irrelevant, they may be omitted.) By preserving
the cookies in the link annotations, the subsequent manipu-
lation services invoked from the DMS will automatically
have the same cookie values that were used in processing the

US 7,254,621 B2

13

original request message, thereby ensuring that the manipu-
lated content corresponds to the content delivered to the
WID user. FIG. 5F provides an example of syntax that may
be used to annotate a link with a cookie whose name is
“acct_nbr” and whose value is “123456”. (Note that the
DMS prepares the user’s bank account information for
printing in response to a data manipulation request indicated
as message flow 8 in FIG. 1, and invokes the print process
at a data output agent by issuing message flow 10 in FIG. 1.
The processing performed by the DMS may further com-
prise obtaining bank account information by issuing mes-
sage flow 9 in FIG. 1.)

This same approach may be used for form parameters that
are submitted to a Web server (e.g. using an HTTP POST
message). To encode the form parameter information in the
URL, a parameter name such as “postParams” may be
substituted for the “cookie” parameter name shown in FIG.
5F. A parameter name/value pair may then be listed, in an
analogous manner to listing a cookie name/value pair.

A service invocation address may be coupled with any
combination of cookies, form parameters, or other informa-
tion.

When encoding cookies, form parameters, and other
information in this manner, three issues should be consid-
ered. First, URL length is currently limited to 255 characters,
according to the HTTP specification. Second, it is difficult to
encode all character sets in URLs. Third, a DMS may in
some cases be implemented within a Web client which is not
able to programmatically control the sending of request data.
For example, the DMS might use Microsoft Internet
Explorer, which provides no programmatic way to force a
cookie to be sent. To address these problems, the cookies,
form parameters, and so forth may be cached by the protocol
proxy (i.e. when the original content is being processed).
This cached information may then be used in three ways to
construct a valid request for use with the present invention.

In a first approach, in the service invocation address URL,
a parameter can be given by which the cached parameters
can be obtained by the DMS from the protocol proxy. For
example, “?params=http://protocolproxy/params/
139x3e245” gives the DMS a URL from which the cached
parameters, cookies, etc. can be obtained. The value
“139x%3e245” in this example is meant as a temporary code
which represents the parameters associated with the particu-
lar request.

In a variation of this first approach, the parameter on the
service invocation address URL may identify how to obtain
the cached parameters from the cache, rather than from the
protocol proxy.

In a second approach, the data URL may actually point to
the protocol proxy itself. The protocol proxy, upon receiving
the data request from the DMS, determines the real request
and obtains the requested data on the DMS’ behalf. For
example, “http://protocolproxy/request/139x3e245” might
cause a request (along with the appropriate cookies, form
parameters, and other information) to be issued from the
protocol proxy to the true source of the data.

In a third approach, the DMS may request the content by
itself using the protocol proxy, in much the same way that
all requests from the WID were directed through the proto-
col proxy. However, the protocol proxy may annotate the
data source with a tag that the protocol proxy can later use
to reconstruct the original query. For example, the protocol
proxy might rewrite the content request URL to be “http://
www.yahoo.com/?protocolproxy=139x3e245”, so, upon
receiving the request from the DMS, the protocol proxy may

5

10

15

20

25

30

35

40

45

50

55

60

65

14

look up session 139x3e245 in its cache, obtain the necessary
parameters, and forward the properly-formatted request to
location “www.yahoo.com”.

It is also possible that the protocol proxy might cache the
data content (rather than the parameters). In this case, the
content location provided by the protocol proxy might then
point to that cache. There is then no need to provide cookies
or parameters in the URL, because the DMS can obtain the
full content from the cache. To achieve maximal perfor-
mance and capacity in this situation, the cache is preferably
capable of storing multiple versions of content associated
with the same URL, with each version associated with a
different combination of cookies, form parameters, and other
request information.

Optionally, additional formatting information may be
supplied as parameters on selected service invocation
addresses during the annotation process of Block 350. These
additional parameters may be provided for implementation-
specific usage, including for customization of the data
manipulation service. One example, described above, is to
specify a destination address for a file that is being stored in
a repository. As another example, suppose the data manipu-
lation service is to send an e-mail message to a particular
recipient. An example of invoking the “email” service,
which is managed through the DMS at the location shown in
FIG. 5G, to send a message identified as “msg98765.txt” to
the recipient “lucy@ricardo.com” is shown in FIG. 5H.

As yet another example of adding parameters to service
invocation addresses, it may be desirable in a file conversion
service to supply parameter values to be used in guiding the
conversion process. Suppose, for example, that the previ-
ously-discussed “report.doc” Microsoft Word document is
being converted to HTML, and that the conversion software
allows several different types of transformations, based upon
identification of a particular template. The template may
specify how to format the title, for example, and how to
“chunk” the source document into different pieces, how
links to those pieces are embedded, and so forth. If the
template parameter value is “plain”, for example, the con-
version is adapted to returning plain text, whereas if the
template parameter value is “segmented”, then the conver-
sion may generate a “chunked” document where each logi-
cal input segment appears on a different page, and perhaps
failing to specify a template parameter value causes the
entire document to be generated as a single HTML page. A
sample service invocation address for viewing the converted
file in segmented form is shown in FIG. 5I.

Preferably, the annotation process of Block 350 generates
separate annotated links for each valid option, such that
when the user selects one of the links, all the necessary
information is present for properly invoking the data
manipulation service. (Note that the DMS prepares this file
for viewing in response to a data manipulation request
indicated as message flow 8 in FIG. 1, and returns the result
for rendering on the WID at message flow 12 in FIG. 1. The
processing performed by the DMS may further comprise
obtaining the file content by issuing message flow 11 in FIG.
1)

The parameter types supplied during the annotation pro-
cess may be stored in, and obtained from, the DMS table
along with the applicable service invocation address. Or, the
protocol proxy may provide service-specific code for deter-
mining which parameter types are applicable for a particular
service.

While the preferred embodiment has been described in
terms of embedding the service description directly into the
content (e.g. as links in HTML), other alternative

US 7,254,621 B2

15

approaches may be used without deviating from the scope of
the present invention. As one example, the annotation pro-
cess may comprise generating a compound document which
combines the original content (in HTML, WML, XML, etc.)
and the service definition (in XML, or perhaps a similar
well-structured markup language). In this approach, the
service description may be embedded directly into the
content. As another example, a multi-part MIME (Multi-
purpose Internet Mail Extensions) message may be gener-
ated which contains the original content (in one part) and the
service description (in another part). These alternative
approaches provide different ways for conveying the list of
available services.

Optionally, an implementation of the present invention
may enable the protocol proxy itself to directly invoke data
manipulation operations. For example, during the annotation
processing in Block 350, the protocol proxy may wish to
save the content being returned to the WID in response to its
request message into a cache, for faster retrieval on subse-
quent requests. Or, the protocol proxy may determine that a
data conversion operation is desirable, for example by
converting an XML document to a WBXML deck. Prefer-
ably, the protocol proxy sends a data manipulation request
message to the DMS for such processing, and the DMS then
invokes the necessary file access proxy and/or other data
output agent processing. Upon receiving the response from
the DMS, the protocol proxy preferably delivers the result-
ing data to the WID in addition to (or, alternatively, instead
of) the originally accessed information. For example, if the
original request was for a Web page, and the protocol proxy
requests that this Web page be converted to a WBXML deck,
then either the deck or the deck plus the Web page may be
delivered to the WID, as appropriate in a particular imple-
mentation of the present invention. (As will be obvious,
some types of DMS response are preferably never transmit-
ted to the client, such as those responses or portions thereof
which provide return code and status information.) This type
of protocol proxy-initiated manipulation may be appropriate
when software executing on the proxy can predict that the
user would be likely to request the data manipulation
operation, and the “automatic” invocation by the protocol
proxy therefore serves to simplify the user’s task. It is also
appropriate when the protocol proxy can determine that the
data in the accessed format cannot be presented on the WID
without first performing a conversion. This latter type of
determination may be made by inspecting the content types
accepted by the WID, for example as indicated on the Accept
header of the outbound HTTP request. In the preferred
embodiment, the protocol proxy invokes a conversion ser-
vice to convert all incoming Microsoft Word files to HTML
or WML, because Microsoft Word files cannot be rendered
natively on most WIDs. Other similar conversions may also
be automatically provided. The list of available services to
be delivered to the WID along with the content may be
provided in terms of the originally-accessed content, or the
manipulated content, or both, as appropriate in a particular
situation.

Continuing on with FIG. 3, at Block 360, the content,
along with the annotated list of available services, is
returned to the WID. This corresponds to message flow 7 in
FIG. 1. The WID then receives this information (Block 370)
and preferably displays the content and/or the available
services list to the user. However, in alternative embodi-
ments, the service list might be displayed separately from
the document. A browser might import that service list and
populate a dynamic menu, pop-up, service selection panel,
or other custom user interface component. (As stated earlier,

10

15

20

25

30

35

40

45

50

55

60

65

16

in some cases it may be desirable to include custom or
modified client software on the WID for use with the present
invention, such as software which provides a tailored user
interface.)

Once the service list is available, the user may then invoke
a selected service in order to initiate further manipulation of
the delivered content. In response to the user’s invocation, a
request message will be sent to the location identified on the
service invocation address (which, as illustrated herein, is
preferably an address identifying a service on the DMS, but
alternatively may be a service running elsewhere). This
request message corresponds to message flow 8 in FIG. 1.
The processing performed on the DMS in response to
receiving the data manipulation request will be described
with reference to the logic in FIG. 4.

In some cases, a WID may have pertinent data that is
locally stored, such as information to be used when sending
fax content to a recipient. After receiving a list of available
services from the protocol proxy and selecting one of these
services, the locally-stored data may be posted from the
WID to the DMS, for use as the selected service executes.

Note that programmatic operations on the WID may
invoke a data manipulation service in some cases, rather
than the user performing the invocation. For example, the
DMS may embed a script within the available services list,
where this script may autonomously invoke a manipulation
service. Suppose, for purposes of illustration, that a WID
issues a request to receive a current view of the user’s
calendar from his desktop PC. The data returned to the WID
in response to the request may include one or more software-
activated alarms. When the appropriate action occurs (such
as the passage of time to reach a calendared alarm event), a
data manipulation service identified in a script supplied by
the DMS may be programmatically triggered to perform
some alarm processing (such as printing the agenda for a
scheduled meeting to the printer at the designated confer-
ence room).

Turning now to FIG. 4, logic is depicted that may be used
to support processing when the WID requests a data manipu-
lation service from the DMS. At Block 400, the WID issues
a request for a particular service by invoking the provided
(and possibly annotated) service invocation address. (This
corresponds to message flow 8 in FIG. 1.) Note that all
parameters for this invocation are already available (or
indirectly indicated) on the service invocation address, hav-
ing been supplied by the protocol proxy during the annota-
tion process in Block 350 of FIG. 3. At Block 410, the DMS
receives the request, and at Block 420, the DMS parses the
annotated information in the request to determine the speci-
fied service invocation address, the identity of the data to be
manipulated, and any other parameters that may be present.
At Block 430, the DMS retrieves the identified data and may
optionally manipulate it, according to the requirements of
the particular data manipulation service being performed.
For example, the DMS may know that a conversion service
is necessary before performing the manipulation operation
requested by the user, and may therefore automatically
invoke such processing. As described earlier, if the user
requests a fax service, then the DMS may retrieve the data
and convert it into a TIFF file prior to transmitting it to a fax
agent, without requiring the user to explicitly request the
conversion to TIFF. (The transmission to the fax agent
occurs according to Block 450, described below.) The DMS
may perform this processing directly, or by invoking a data
output agent or other conversion software.

Preferably, the annotated service invocation address pro-
vides a complete description of the data to be manipulated,

US 7,254,621 B2

17

as has been shown in the examples herein. Alternatively, it
may happen that the DMS needs to evaluate additional
information in order to locate the data. For example, if a file
name is received that does not specify a complete file path
from a root directory, then the DMS preferably uses imple-
mentation-dependent techniques for resolving the location
and directory path information. (Or, an error message may
be returned in such cases, if desired.)

At decision Block 440, the DMS determines whether
processing by a data output agent is required to complete the
requested service. Each service implemented on the DMS is
adapted to knowing what type of further processing is
required and what agent(s) need to be invoked.

If the answer to the decision block is Yes, then control
passes to Block 450 where a request to the appropriate data
output agent is generated. The data output agent that is
invoked is preferably determined according to the type of
service to be performed, and optionally by evaluating other
factors (such as the user’s identity, the processing load on
particular printers, current network conditions such as avail-
able bandwidth and/or outages, which data output agent
supports the user’s e-mail service or file system, and so
forth). The data output agent performs any necessary opera-
tions, using processing which is known in the prior art, to
perform the requested data manipulation. For example, if the
data output agent controls an LCD projector, then the data
output agent retrieves the information to be projected, ren-
ders it, and makes the rendered information available to the
associated projector (e.g. through a VGA output connector).
Or, if the data output agent handles sending of e-mail
messages, then the message to be sent is retrieved, formatted
for delivery (if necessary), and transmitted.

In alternative embodiments, the DMS may choose to not
retrieve selected data content until the data is required by the
data output agent. This may be implemented by generating
a special URL and passing this URL to the data output agent.
When the data output agent needs the content, it requests
that URL (from the DMS), and then the content is actually
obtained (by the DMS, possibly through the protocol proxy)
and delivered to the data output agent. This has the advan-
tage of avoiding data retrieval until/unless it is needed, and
avoids the need to “push” data to the data output agent.

As indicated at Block 460, the DMS then preferably
receives a response message from the invoked data output
agent. This response message may be simply a success or
failure indication, or it may include additional information
such as status information. For example, when a print
service has been invoked, the response message may indi-
cate that the print job has started (or is queued), which
printer has the print job, where that printer is located, and so
forth.

When the answer to decision Block 440 is No, and also
following the processing of Block 460, at Block 470 the
DMS generates a response to the WID that requested the
data manipulation service. Similar to the response message
received at Block 460, this response message may indicate
success or failure, and may include additional information
about the status of the request. Optionally, the response may
include a list of further data manipulation services that may
be performed on the data that was sent to the WID at Block
370 of FIG. 3. In some cases, the DMS may return new
content to the WID after invocation of the data manipulation
service. In these cases, the response message sent in Block
470 preferably includes a newly-created list of services that
are available for this new content. This processing may be
performed by the DMS initiating a request to the protocol
proxy for content at a URL that is actually served from the

30

35

40

45

55

18
DMS, after which the protocol proxy will retrieve the
content from the DMS and then query the DMS for the
services list. The protocol proxy then annotates this list, and
returns the content to the WID. This approach avoids dupli-
cation of the service annotation processing logic.

Turning now to FIG. 6A, a sample GUI display that
provides available service information is illustrated, accord-
ing to the present invention. This display shows an image of
a Microsoft PowerPoint presentation file that has been
retrieved by a file access proxy. The file has also been
converted for display on the WID (e.g. to make the slides of
the presentation viewable on the WID’s display panel). This
conversion may be performed automatically by the protocol
proxy upon detecting that the requested content is a Pow-
erPoint file and/or that the target WID cannot display files of
this type, as discussed earlier. Along with the content 610 of
the slide, four icons 601-604 have been provided in a header
area 600 to enable the user to select from among four data
manipulation services which are available for this content.
The first icon 601 provides a link to a home page; icon 602
may be selected to print the content; icon 603 may be
selected to project the content; and icon 604 may be selected
to log out of the system.

FIG. 6B provides another sample GUI display with avail-
able service information. This display shows an image 620
of a page retrieved from a Web server. Along with this
content 620, three icons 601, 602, and 604 have been
provided in header area 600. These icons represent the same
functions discussed with reference to FIG. 6A. In this
example, the printer icon 603 has been omitted, and the user
therefore cannot request printing of the image. (It may be
that there is no printer available for the WID’s current
location, or that the user is not authorized to access the
printer, etc.)

As has been demonstrated, the present invention provides
anumber of advantages over prior art solutions for accessing
and manipulating data content from a WID. The teachings
which have been described do not require modifications of
the WID, yet support a wide variety of data manipulation
operations and a wide variety of content types. Furthermore,
the supported operations and content types are easily exten-
sible, again without requiring modifications to the WID.

The foregoing description of a preferred embodiment is
for purposes of illustrating the present invention, and is not
to be construed as limiting thereof. Although a preferred
embodiment has been described, it will be obvious to those
of skill in the art that many modifications to this preferred
embodiment are possible without materially deviating from
the novel teachings and advantages of this invention as
disclosed herein. Accordingly, all such modifications are
intended to be within the scope of the present invention,
which is limited only by the claims hereafter presented (and
their equivalents).

We claim:
1. A method of enabling data access and manipulation
from a pervasive device, comprising the steps of:
receiving a data access request from a pervasive device;
obtaining the requested data;
determining what data manipulation operations are avail-
able for the obtained data; and
providing references to the determined data manipulation
operations to the pervasive device.
2. The method of claim 1, wherein a reference to a
determined data manipulation operation comprises a service
invocation address.

US 7,254,621 B2

19

3. The method of claim 1, further comprising the steps of:

receiving a request to perform a selected one of the

determined data manipulation operations; and
performing the requested operation on behalf of the
pervasive device.

4. The method of claim 1, wherein the determining step
further comprises determining what data manipulation
operations are available for a content type of the obtained
data.

5. The method of claim 1, wherein the determining step
further comprises determining what data manipulation
operations are available for a user of the pervasive device.

6. The method of claim 1, further comprising the steps of:

determining a current location of the pervasive device;

and

determining what data manipulation operations are avail-

able for the current location of the pervasive device.

7. The method of claim 1, wherein the determining step
further comprises determining what data manipulation
operations are available responsive to a type of the pervasive
device.

8. The method of claim 1, further comprising the steps of:

performing one or more data manipulation operations on

the obtained data, thereby creating transformed data;
determining what data manipulation operations are avail-
able for the transformed data; and

providing references to the determined data manipulation

operations for the transformed data to the pervasive
device.

9. A computer program product having a computer-
readable medium having computer program code encoded
thereon to be executed by a processor for enabling data
access and manipulating from a pervasive device, the com-
puter program code adapted to perform steps comprising:

receiving a data access request from a pervasive device;

obtaining the requested data;

determining what data manipulation operations are avail-

able for the obtained data; and

providing references to the determined data manipulation

operations to the pervasive device.

10. The computer program product of claim 9, wherein a
reference to a determined data manipulation operation com-
prises a service invocation address.

11. The computer program product of claim 9, further
comprising the steps of:

receiving a request to perform a selected one of the

determined data manipulation operations; and
performing the requested operation on behalf of the
pervasive device.

12. The computer program product of claim 9, wherein
the determining step further comprises determining what
data manipulation operations are available for a content type
of the obtained data.

13. The computer program product of claim 9, wherein
the determining step further comprises determining what
data manipulation operations are available for a user of the
pervasive device.

14. The computer program product of claim 9, further
comprising the steps of:

determining a current location of the pervasive device;

and

determining what data manipulation operations are avail-

able for the current location of the pervasive device.

20

25

30

35

40

45

50

55

60

20

15. The computer program product of claim 9, wherein
the determining step further comprises determining what
data manipulation operations are available responsive to a
type of the pervasive device.

16. The computer program product of claim 9, further
comprising the steps of:

performing one or more data manipulation operations on

the obtained data, thereby creating transformed data;
determining what data manipulation operations are avail-
able for the transformed data; and

providing references to the determined data manipulation

operations for the transformed data to the pervasive
device.

17. A system for enabling data access and manipulation
from a pervasive device, comprising:

a data manipulation server for maintaining a repository of

data manipulation operations; and

a protocol proxy in communication with the pervasive

device and the data manipulation server and adapted to:

receive a data access request from the pervasive device;

obtain the requested data;

communicate with the data manipulation server to
determine, responsive to the obtained data, what data
manipulation operations are available; and

provide references to the determined data manipulation
operations to the pervasive device.

18. The system of claim 17, wherein the data manipula-
tion server maintains a service invocation address for a data
manipulation operation in the repository and wherein the
reference to the determined data manipulation operation
comprises the service invocation address.

19. The system of claim 17, wherein the data manipula-
tion server is adapted to receive a request to perform a
selected one of the determined data manipulation operations
and invoke the requested operation on behalf of the perva-
sive device.

20. The system of claim 17, wherein the protocol proxy is
further adapted to determine what data manipulation opera-
tions are available for a content type of the obtained data.

21. The system of claim 17, wherein the protocol proxy is
further adapted to determine what data manipulation opera-
tions are available for a user of the pervasive device.

22. The system of claim 17, wherein the protocol proxy is
further adapted to:

determine a current location of the pervasive device; and

determine what data manipulation operations are avail-

able responsive to the current location of the pervasive
device.

23. The system of claim 17, wherein the protocol proxy is
further adapted to determine what data manipulation opera-
tions are available responsive to a type of pervasive device.

24. The system of claim 17, wherein the protocol proxy is
further adapted to:

perform one or more data manipulation operations on the

obtained data, thereby creating transformed data;
determine what data manipulation operations are avail-
able for the transformed data; and

provide references to the determined data manipulation

operations for the transformed data to the pervasive
device.

