STEC IP LLC v. Oracle Corporation Doc. 1 Att. 1

EXHIBIT A
Part 1 of 2

Dockets.Justia.com

vtiradentes
Part 1 of 2

http://dockets.justia.com/docket/delaware/dedce/1:2012cv00642/48819/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2012cv00642/48819/1/1.html
http://dockets.justia.com/

a2 United States Patent

Abrams et al.

US007596784B2

(549) METHOD SYSTEM AND APPARATUS FOR
PROVIDING PAY-PER-USE DISTRIBUTED
COMPUTING RESOURCES

(75) Inventors: Peter C. Abrams, Belmont, CA (US);
Rajeev Bharadhwaj, Los Altos, CA
(US); Swami Nathan, San Jose, CA
(US); Robert Rodriguez, Fremont, CA
(US); Craig W. Martyn, San Francisco,
CA (US)

(73) Assignee: Symantec Operating Corporation,
Cupertino, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1665 days.

(21) Appl. No.: 09/950,559

(22) Filed: Sep. 10, 2001
(65) Prior Publication Data
US 2002/0166117 Al Nov. 7, 2002

Related U.S. Application Data
(60) Provisional application No. 60/232,052, filed on Sep.

12, 2000.
(51) Imt.ClL

GO6F 9/44 (2006.01)

GO6F 9/445 (2006.01)

GO6F 15/173 (2006.01)
(52) US.CL .o 717/172, 717/120; 717/127,

717/178; 709/224; 709/225; 709/226

(58) Field of Classification Search 717/168-178;

709/201-244
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,732,275 A * 3/1998 Kullicketal. 717/170

10) Patent No.: US 7,596,784 B2
45) Date of Patent: Sep. 29, 2009
5,765,205 A 6/1998 Breslau et al.
5,903,762 A * 5/1999 Sakamoto etal. 717/178
6,065,123 A 5/2000 Chou et al.
6,771,290 B1* 82004 Hoyle ...ccooouvvuverennnnnnn. 715/745
2002/0178244 A1* 11/2002 Brittenham etal. 700/223

2003/0200541 Al* 10/2003 Cheng et al.

OTHER PUBLICATIONS

“Security Roadmap for Ejasent’s Utility Computing Network”,
2001, 18 pgs.

* cited by examiner

Primary Examiner—Chuck O Kendall
(74) Attorney, Agent, or Firm—Meyertons Hood Kivlin
Kowert & Goetzel, P.C.

(57) ABSTRACT

Method, system, apparatus, and computer program and com-
puter program product provide on-demand, scalable compu-
tational resources to application providers over a distributed
network and system. Resources are made available based on
demand for applications. Application providers are charged
fees based on the amount of resources utilized to satisfy the
needs of the application. In providing compute resources,
method and apparatus is capable of rapidly activating a plu-
rality of instances of the applications as demand increases and
to halt instances as demand drops. Application providers are
charged based on metered amount of computational
resources utilized in processing their applications. Applica-
tion providers access the network to distribute applications
onto network to utilize distributed compute resources for
processing of the applications. Application providers are fur-
ther capable of monitoring, updating and replacing distrib-
uted applications. Apparatus and system includes plurality of
computing resources distributed across a network capable of
restoring and snapshotting provisioned applications based on
demand.

25 Claims, 25 Drawing Sheets

RESPONSI
TIME EXCEEDING
LMITS?,

YES
DEACTVATE
INSTANCE

US 7,596,784 B2

Sheet 1 of 25

Sep. 29, 2009

U.S. Patent

A

¢ Ol

SHINOLSND

L

0.

4

$308N0S3Y

l Ol

29 ¢S

9
/
= S30IAY3S
SIONNOSTY et TR Y
3115 934 30N

SH3IWOLSNO
3SOTNYD

Y3AYSS
03SYIONI

99

U.S. Patent Sep. 29, 2009 Sheet 2 of 25 US 7,596,784 B2

—

—
=

—
=

TIVE
FIG. 3

TRAFFIC
I\

U.S. Patent Sep. 29, 2009 Sheet 3 of 25 US 7,596,784 B2

Y

92b

p—%a -90b
A
\

923"
Y

TIVE
FIG. 4

VATRA

TRAFFIC
y

US 7,596,784 B2

Sheet 4 of 25

Sep. 29, 2009

U.S. Patent

G Ol

4N

el

PN

il
0ch

ONILINYYIN
INO OL3NO

NOILVZITYNOSY3d

NOILYYOILNI
di3
aN3I XOvE

S30INH3S
NOILOVSNVYL
ANI XOVE

A\

=1l

Pl

~

US 7,596,784 B2

Sheet 5 of 25

Sep. 29, 2009

U.S. Patent

9 0Ol

i JMNOSKd
8yl o

ONLLIVW
N0 0L N0

¥l
JINOSY3d
8yl //

ﬂﬁv

1743

NIV
NOOLINO

J1MNOSK3d

\

8yl

43

ONILTHEWY
N0 OL N0

JITNOSH3d

NOLLVHOILNI
Nz./v s
N3 XOvE

$30IAY3S
pib NOILOVSNYYL
S TaNayove

-

4]

JITNOSH3d

ol
o

\»

ovl

U.S. Patent Sep. 29, 2009 Sheet 6 of 25 US 7,596,784 B2

156
1602
160-1
VNE2 VN: VIRTUAL SUBNET
—VNES WN:10.10.20 VM: VIRTUAL NETMASK
VN: 10.10.0.4 VIM:255.255.255.0
VM:255.255.255.255 | 1581 158:2 1580
~— N N / S
WEB APP?
SITE 2 10.402.2
101021 102
COMPUTER 1 COMPUTER 2 COMPUTER 3
B~ FREWALL
150
REMOTE USER 1 REMOTE USER 2
/7
150-1 1522

FIG. 7

U.S. Patent Sep. 29, 2009 Sheet 7 of 25 US 7,596,784 B2

166
168
Z
PROCESSOR 170
/
164
o MEMORY
/ COMPUTER PROGRAM
KEYBOARD
174
/
- POINTING DEVICE
/
MONITOR
178
/
DISK DRIVE
180
/
CDROM
" \185
184)
/A MODEM

FIG. 8

U.S. Patent Sep. 29, 2009 Sheet 8 of 25 US 7,596,784 B2

200

AUTOMATED
DEPLOYMENT

206
210
APPLICATION

SWITCHING 212

202
PROCESSING
NETWORK

PERFORMANCE
MONITORING

204

SECURITY
ARCHITECTURE

20

214 L
a2
244 24b
N N

APP.1 APP.2
APP.3 |224<
APPN 224

FIG. 10

U.S. Patent

SUSPEND
PROCESS

STATE
CONSISTENT &
THREADS
QUIESCED?

\

4

RESUME
SUSPENDED
PROCESSES

A

REMOVE
REGISTERED
GLOBAL STATE

2827

284 ‘
™ TERMINATE
PROCESS

Sep. 29, 2009 Sheet 9 of 25 US 7,596,784 B2
249
2/54 REQUEST
SNAPSHOT [N250 [§ l
FAILED
FOR EACH
¥ PROCESS... [™-264
Y
 [FOR EACHTYPE
OF STATE... 266

YES

RETRIEVE
VIRTUALIZED
STATE

268

IS STATE
VIRTUALIZED?

212

STATE
CHANGE SINCE
LAST SNAPSHOT?

DUMP STATE

DELTA [>276

218

YES $

NO

U.S. Patent

FAILED

Sep. 29, 2009

Sheet 10 of 25

299

US 7,596,784 B2

RESTORE

FIND GLOBAL/

SHARED
STATE N

306

;

RECREATE
GLOBALOR
SHARED STATE

!

FOR EACH

308

Y

IMAGE...

!

CREATE
PROCESS

}

ISOLATE
PROCESS

!

FOR EACH TYPE

310

312

YES 328

OF STATE...

!

RESET

STATE [™314

316

Y IS STATE
REMOVE TRACES AN o~ L HMOME VIRTUALIZED?
N NO
STATE INDUCED [™330 GLOBALSTATE| | YES
DURING RESTORE 324
: NO_~MORE BIND S
YSTEM
SYNCHRONIZED STATE> STATE TO VIRTUAL
RESUME OF [-332 I DEFINITION 318
PRocTsses
SHARED
STATE WITH
ANOTHER
PROCESS?
RECONNECT i
SHARE STATE
FIG. 12 TO OTHER PROCESS

US 7,596,784 B2

Sheet 11 of 25

Sep. 29, 2009

U.S. Patent

Vel Ol
o) ey
< <
%l
<
{
{
Q\smm
e g
¢ N opselapes"
OHO,NN O&a@mﬁ@&a W02z e07Z

~ 05t

05¢

US 7,596,784 B2

Sheet 12 of 25

Sep. 29, 2009

U.S. Patent

g¢l "Old

Pvel Wl Gvel EyCl

] 1] I

4
e 995¢ e

\avee|qree]

~{5E

05¢

US 7,596,784 B2

Sheet 13 of 25

Sep. 29, 2009

U.S. Patent

€l Ol
o) W w9
< S L

92l

OtsTwt O] |OF™
~-95¢

49561
pyae"] | «—BY5E

qrse

A

0S¢

US 7,596,784 B2

Sheet 14 of 25

Sep. 29, 2009

U.S. Patent

vyl Ol

09¢

AHW_ ALIS NI9IYO

qose
Z

INI0d39Q3

J06€
Z > /
INIOd39Q4
0.6
Z
9l oK
PoSe
Z
INIOd39a3
INIO43904
>
\ B0GE
0pl

|

-
{9

-

9

Yad:

US 7,596,784 B2

Sheet 15 of 25

Sep. 29, 2009

U.S. Patent

avl Ol

9cl

POSE
Z

INIOd3903

9cl

- N o

E0SE

Va4

US 7,596,784 B2

Sheet 16 of 25

Sep. 29, 2009

U.S. Patent

¢l

POGE
e

906 ble
Z

INIOd3903

INI043903

bl

04€

74
\

O

%€

¢l

BL¢

Ya

US 7,596,784 B2

Sheet 17 of 25

Sep. 29, 2009

U.S. Patent

VGl 9l gm
05€ 09¢
Z Z)
INI0d3903 3LIS NI9IYO
i 7
4] 208
@g
INIOd3903 £
INI0d3903
g
0G¢ N 2
|
._-Z_O&mwcm llllllllllllllllllllllllllllllll \VNF
’
p 9g¢ B0GE
Obl

US 7,596,784 B2

Sheet 18 of 25

Sep. 29, 2009

U.S. Patent

gGl 9l ; m
J06¢€ 09¢
INI0d3903 w . 3LIS NI9IHO 0%
08— f————§ ;
4
9 9G¢ 29¢
_wmm) Q\%m
INIOd3903 - AT
'S
@mm 3
> 9%
088~ |
(SVINIOdINAT fe--domm oo et 1
- 7
y 95¢ B0SE
op)

US 7,596,784 B2

Sheet 19 of 25

Sep. 29, 2009

U.S. Patent

G 9OI4 %m
906¢E 09¢
/ WOU
INIOd3903 31S NISINO e
08¢
7 i
o) 296
05E
INIOd3903 £
- INI0d3903
¢
08¢ N S
08¢ e o — b i
y ode B0GE
oh

U.S. Patent Sep. 29, 2009 Sheet 20 of 25 US 7,596,784 B2

600
—

RECEIVE REQUEST [\-g04

606

1S
REQUEST
BOUND TO
EP?

YES

DETERMINE
OPTIMALEP | -610

CAN
RESOURCES
BE FREED
UP?

YES

FIG. 16

U.S. Patent Sep. 29, 2009 Sheet 21 of 25 US 7,596,784 B2

140
350a 350b
N N
352 352a
SAN SAN
| ll] | II I
436ay | [4362, | [43625 436ay | [4362, | [436a
A8 |48 |48 448 |44)| 448
40 || [40]| M0 440 ||| 440 || M0
A4 ||| 44 || M2 ||| 4 || &4
| 1 J L |]
433a — 432a 4342 433 432 434a
460a 462a | 464a 460a 462a | 464a
454
| | S

Co 2] [sHs ()
%2 -
456

124 322 @

U.S. Patent

Sep. 29, 2009

702

PROVIDE ACCESS

Y

DICTATE
DISTRIBUTION

\

COMPUTE
RESOURCE LIMIT

\i

RESPONSE TIME
LIMIT

N\-712

Y

ALLOW APP.
DISTRIBUTION

N\-714

Y

ALLOW ENTITY
ACCESS TOAPP.

N\-716

|
FIG. 18

Sheet 22 of 25

730

MONITOR

APPLICATION | 732

UPDATE
NEEDED?

UPDATE APP.

<l
-«

N\-736

Yy

740

REPLACE
APP.?

YES

REPLACE APP.

<l
-

N\-742

Y

744

ADJUST

DISTRIBUTION? =

ADJUST
DISTRIBUTION

-«

™\~ 746

Y 750

ADJUST
LIMIT?

ADJUSTLIMIT ~ ™—752

-
&

FIG. 19

US 7,596,784 B2

U.S. Patent Sep. 29, 2009 Sheet 23 of 25 US 7,596,784 B2

770
—

MONITOR

DEMAND | 772

74

RESPONSE 808
TIME EXCEEDING

LIMITS?

MONITOR
RESOURCES | -810
YES |

RESOURCES PER
APPLICATION KW

CAPACITY
AT LIMITS?

VA Y
m%TANEE ™-780 RESOURCES PER |\ .,

APP. PROVIDER
182 Y

DEMAND AMOUNTTO |
EXCEEDING CHARGE 816
1ST THRESHOLD?

Y
CUSTOMER/
PARTNER PORTAL =418

FIG. 21

CAPACITY
AT LIMIT?

ACTIVATE
INSTANCE

DEACTIVATE
NSTANCE | 792

| FIG. 20

US 7,596,784 B2

Sheet 24 of 25

Sep. 29, 2009

U.S. Patent

INJWICO8NT GOHLIN
N3LSAS JALLNIANI HLIM
ALIOYdY3 101

ALIOVaY)
VLIO0L LYV HONd
ONVIA3Q VLOL

¢ NOLLYOITddY

| NOILYONdaY

—

@ 0 8 9 b

¢¢ Old

AVQ 40 JNIL

05

v

001

051

- 00¢

05¢

ONYIN3Q 40 T3ATT

U.S. Patent Sep. 29, 2009 Sheet 25 of 25 US 7,596,784 B2

PATCHER DEPLOYME

CUSTOMER
DASHBOARD

MAINSITE =1
CONDUIT

FIG. 23

US 7,596,784 B2

1

METHOD SYSTEM AND APPARATUS FOR
PROVIDING PAY-PER-USE DISTRIBUTED
COMPUTING RESOURCES

RELATED APPLICATIONS

The present application claims priority to and incorporates
the following applications in their entirety by reference:

A Method and Apparatus for Providing Pay-Per-Use, Dis-
tributed Computing Capacity, U.S. Provisional Application
Serial No. 60/232,052, filed on Sep. 12, 2000;

Snapshot Virtual Templating, U.S. patent application Ser.
No. 09/684,373, filed on Oct. 5, 2000,

Dynamic Symbolic Link Resolution, U.S. patent applica-
tion Ser. No. 09/680,560, filed on Oct. 5, 2000,

Snapshot Restore of Application Chains and Applications,
U.S. patent application Ser. No. 09/680,847, filed on Oct. 5,
2000;

Virtual Resource-ID Mapping, patent application Ser. No.

09/680,563, filed on Oct. 5, 2000; and
Virtual Port Multiplexing, patent application Ser. No.
09/684,457, filed on Oct. 5, 2000.

FIELD OF INVENTION

In general the invention pertains to computer application
processing, more particularly to distributed computing for
computer application processing, and most particularly to
system and method for providing computer application pro-
cessing with dynamic capacity control and pay-per-use usage
charging on an on-demand basis.

BACKGROUND

There is a trend of emerging computing infrastructure
aimed at on-demand services, particularly for Internet or
other distributed networked computing services. There are
basically three categories of on-demand services that are
currently available. The first is content delivery, the second is
storage, and the third is bandwidth. These services are pro-
vided as needed or on-demand, based on a user’s needs at any
given time. For example, if a first data provider needs greater
storage space, an on-demand storage provider simply allo-
cates a greater amount of storage memory to that user, and the
first data provider is charged based on the amount of memory
space used. If the first data provider no longer needs that
amount of memory and deletes information, the on-demand
storage provider is then able to re-allocate that memory space
to an alternative data provider and the first data provider is
charged less because of the reduced storage use.

One of the problems that companies with substantial IT
investments face is that it is very difficult for them to predict
how much demand they will have for their applications (ca-
pacity planning). Therefore, it is extremely difficult for them
to determine how large a server farm to deploy which will
allow greater user access to their services.

Another problem faced by application or website providers
is the continued need for resource capacity to provide
adequate service to their users. This is also referred to as the
scalability problem. FIG. 1 shows a simplified block diagram
representation of the diseconomy of scale resulting in the
server infrastructure. What is seen is that application provid-
ers are in what is sometimes referred to as a high growth
spiral. In the high growth spiral the application provider starts
by building a service 52 to gain application users or customers
54. The increase in users results in an increase in the appli-
cation providers server loads 56. This increased server load

10

15

20

25

30

35

40

45

50

55

60

65

2

causes an increase in response time and often results in the
application provider’s sites failing or going down, which may
resultin aloss 60 ofusers. The application provider must then
invest in more resources and infrastructure 62 to reduce
response time, improve reliability and keep their users happy
64. This increased response time, and reliability then attracts
more users 54, which returns the application provider back to
a point where the increased load demands stress or tax the
application provider’s servers 56, resulting again in a slower
response time and a decrease in reliability. Thus, application
providers are constantly going around in this high growth
spiral.

FIG. 2 shows a graphical representation of the cost peruser
to increase resource capacity. One of the problems faced by
application providers is that the cost of server infrastructure
may typically increase faster than the current number of users
so that costs are non-linear. This means that as the application
provider’s server farm gets more complex the cost delta 70 to
add enough capacity to service one additional user increases.
Thus, the cost 70 of continuing to grow increases dramati-
cally in relation to the cost per user. With most every other
business, as the business grows, economies of scale come into
effect and the costs per user served actually decreases 72. This
is one of the real problems faced by application providers.

Bottlenecks exist in various system resources, such as
memory, disk /O, processors and bandwidth. To scale infra-
structure to handle higher levels of load requires increased
levels of these resources, which in turn require space, power,
management and monitoring systems, as well as people to
maintain and operate the systems. As user load increases, so
does complexity, leading to costs increasing at a faster rate
than volume.

Another problem with providing application processing or
services is the amount of capacity that will be needed at
start-up, as well as the capacity needs in the future to maintain
response time and reliability. These are both start-up costs. It
is relatively impossible to predict in advance, with any degree
of'accuracy, just how successful a site or service is going to be
prior to launching and activating the site.

FIG. 3 shows a graphical representation of user capacity
demands of an application provider. When an application
provider installs a certain number of servers, whatever that
number is, the provider has basically created a fixed capacity
74, while demand itself may be unpredictable. Because of the
unpredictability of usage demands on servers, that fixed
capacity 74 will be either too high 76, and the application
provider did not have as many users as anticipated resulting in
wasted capacity 76 and wasted capital. Or the fixed capacity
74 was too low 80, and the application provider obtained
more users than predicted, resulting in insufficient capacity
80. Thus, if the fixed capacity 74 is too high, the application
provider has invested too much capital 76. If the fixed capac-
ity 74 is too low 80, the application provider has users who are
dissatisfied because the user does not get the service they need
orittakes too long to get responses. This unpredictability is an
extremely difficult problem faced by companies providing
application processing and services and is particularly severe
for those providing services over the Internet simply because
of the dynamics of the Internet. The demand is completely
unpredictable, and is substantially impossible to plan.

One problem faced by on-line application providers or
other users of distributed computing networks is that the
network is actually very slow for interactive services as a
result of large traverses across the network, because commu-
nication signals run into the inherent latency of the network.
For example, if an Internet user is in New York, but that New
York user want to access a website that is serviced in Los

US 7,596,784 B2

3

Angeles, the New York user must be routed or hopped all the
way across the U.S. Sometimes users will be routed all the
way around the world, to get to a specific site. These long
distance routings run into large amounts of latency delay. This
inherent latency of distributed networks is amplified by the
significant increase in the number of interactive services
deployed by application and website providers having very
active pages or sites. Further, there is a general trend towards
customized pages per user. These are sites which are custom
created by the server or application for a particular user. These
customized sites reduce caching effects to substantially zero.
Thus, a customized page, created for that specific user, is
generated at the server origin site and routed all the way back
across the net to the user adding further inherent delays in the
response time. This adds up to a very slow service for more
complex interactive services.

In prior art systems, application providers wishing to pro-
vide applications have to buy or lease a server, then they must
buy or develop the applications that are going to be loaded and
run on that server, load the server, and activate the server to
provide access to that application. The server is a fully dedi-
cated resource, so that 100% of the time an application is
dedicated to a specific server.

Prior art application processing systems require an appli-
cation provider to route a user to a single central site to allow
access to the applications. Every user attempting to access the
application is directed to the single central site. Thus, result-
ing in a bottle neck at the central site. In the prior art single
server or single central site, the application provider, how-
ever, does maintain access to and control over the application.
In some systems where the application provider outsources
their server capacity, the application provider must select
from a preselected limited number of applications. Further,
the application provider no longer has direct control over the
application. Any changes desired require the application pro-
vider to submit a request to the server provider. Then the
server provider must schedule a time at low demands to take
the server down to make the changes. This process results in
large lag times between the decision to make changes and the
implementation of those changes.

SUMMARY

The novel method, apparatus, computer readable medium
and computer program product of the present invention pro-
vides on-demand, scalable computational resources to appli-
cation providers over a distributed network and system. The
resources are made available upon receiving requests for a
first application. Once a request is received, routing of the
request is determined and the request is routed to access the
first application. The application provider is then charged
based on the amount of resources utilized to satisfy the
request. In determining routing the method and apparatus
determines ifa first instance of a first application is active, and
if the first instance is at a capacity. A first set of compute
resources is provided to satisfy the first request and the
amount charged to the first application provider is increased
based on the first set of compute resources. In one embodi-
ment, the method and apparatus activates a second instance of
the first application on a second set of the available compute
resources if the first instance is at capacity and the amount
charged to the first application provider is increased based on
the second set of compute resources. As a result, resources
needed are dynamically available on demand, and freed when
not needed. The application provider is only charged for
services that are actually used.

10

15

25

30

35

40

45

50

55

60

65

4

In one embodiment, a third set of compute resources are
freed up if the compute resources are not available. A second
instance of the first application is restored on a fourth set of
compute resources such that the fourth set of compute
resources includes at least a portion of the freed up third set of
compute resources, and the amount charged to the first appli-
cation provider is increased based on the fourth set of com-
pute resources. In freeing up resources, a first instance of a
second application is snapshotted, wherein the second appli-
cation is provided by a second application provider, and an
amount charged to the second application provider is reduced
based on the freed up third set of compute resources.

The method and apparatus provides application providers
with access to the network, where the network includes the
distributed compute resources configured to provide the
application processing and allows the application providers to
distribute applications onto the network to utilize the distrib-
uted compute resources for processing of the applications.
The application providers are further capable of monitoring,
updating and replacing the distributed applications. The
method and apparatus increases the amount of compute
resources utilized in providing processing for an application
as demand for the application increases. As the amount of
compute resources is increased the amount charged to the
application provider is increased based on the amount of
compute resources utilized. As demand for the application
falls, the amount of resources is reduced and the amount
charged the application provider is reduced.

In one embodiment, the apparatus for providing the on-
demand compute resources includes a first resource manager,
at least one snapd (snapshot or snapshot daemon) module
configured to snapshot an active application, at least one
restored (restore daemon) module configured to restore a
snapshotted application, and a first set of compute resources
configured to provide application processing. The resource
manager couples with and provide at least some control to the
snapd module, restored module and the first set of compute
resources. The resource manager is further configured to
monitor the amount of the first set of compute resources
utilized in providing application processing. In one embodi-
ment, the apparatus includes at least one perfd (performance
or performance daemon) module coupled with the first
resource manager and the first set of compute resources, and
is configured to monitor the first set of computational
resources and provide the resource manager with compute
resource utilization. In one embodiment, a deploy module
couples with the first resource manager and the first set of
compute resources, and is configured to receive at least one
application from at least one of the application providers, and
provision the first set of compute resources to be utilized in
processing the at least one application. A conduit couples
with the deploy module, and is configured to provide the
application providers with access to the deploy module to
distribute applications or updates for application processing.
A local dispatcher couples with the first resource manager
and the first set of compute resources, and is configured to
receive directions from the resource manager and to provide
routing of requests for the at least one application to the first
set of compute resources. In one embodiment, the resource
manager, snapd module, restored module, perfd module,
local dispatch module and deploy module are cooperated into
a single edgepoint. In one embodiment, the apparatus
includes a plurality of edgepoints distributed to provide the
on-demand, distributed compute resources.

In one embodiment, the apparatus includes a plurality of
sets of compute resources and a plurality of resource manag-
ers, such that the sets of compute resources are utilized for

US 7,596,784 B2

5

application processing. Further, a global dispatcher coupled
with the plurality of resource managers, wherein the global
dispatcher is configured to receive requests for at least one
application and to route the requests to an optimal resource
manager. In one embodiment, the apparatus includes one or
more compute modules which comprise at least a snapd mod-
ule, a restored module and at least a third set of compute
resources.

In one embodiment the novel network providing on-de-
mand compute resources includes a first means for applica-
tion processing configured to provide application processing,
afirstapplication distributed onto the network and configured
to be processed by the first means for application processing,
a first means for managing application processing coupled
with the first means for application processing, and config-
ured to activate at least a first instance of the first application
on a first set of the first means for application processing
based on a first amount of demand for the first application.
The network further includes a means for monitoring coupled
with the first means for application processing, and config-
ured to monitor at least the first set of the first means for
application processing utilized to provide the entity with
access to the first instances of the first application, and a
means for determining an amount to charge coupled with the
first means for application processing, and configured to
determine an amount to be charged based on the first set of the
first means for application processing utilized in providing
the entity with access to the first instance of the first applica-
tion. The means for managing application processing is fur-
ther configured to activate a second instance of the first appli-
cation on a second set of the first means for application
processing based on a second amount of demand for the first
application. The means for monitoring is further configured
to monitor the second set of the first means for application
processing utilized to satisfy the second amount of demand
for the first application, and the means for determining an
amount to charge is configured to determine an amount to be
charged based on the second set of the first means for appli-
cation processing utilized in providing access to the second
instance of the first application. The means for managing
application processing is further capable of deactivating one
of'the first and second instances of the first application based
on a third amount of demand for the first application In one
embodiment, the method and apparatus includes a plurality of
means for application processing, and a means for dispatch-
ing coupled with the plurality of means for application pro-
cessing. The means for dispatching is configured to route at
least one entity to an optimal means for application process-
ing allowing the at least one entity access to at least one
application. In one embodiment means for application pro-
cessing is an edgepoint. In one embodiment, the means for
dispatching is a global dispatcher. In one embodiment, the
means for application processing is a compute module.

In one embodiment, the system, method, and business
operating model provide a computer application processing
capacity as a pay-per-use utility on demand.

BRIEF DESCRIPTION OF THE FIGURES

The invention, together with further advantages thereof,
may best be understood by reference to the following descrip-
tion taken in conjunction with the accompanying drawings in
which:

FIG. 1 shows a simplified block diagram representation of
the diseconomy of scale resulting from the server infrastruc-
ture;

10

15

20

25

30

35

40

45

50

60

65

6

FIG. 2 shows a graphical representation of the cost peruser
to increase resource capacity;

FIG. 3 shows a graphical representation of user capacity
demands of an application provider;

FIG. 4 shows a graphical representation of the on-demand
response of the present on-demand system;

FIG. 5 depicts a simplified block diagram of a business
operating over the Internet, sometimes referred to as an
e-business;

FIG. 6 depicts a simplified schematic block diagram of one
embodiment of the novel distributed on-demand application
processing system which substantially eliminates the bottle-
neck and tornado effects seen in the prior art;

FIG. 7 illustrates in high level block diagram form one
implementation of one embodiment of the overall structure of
the present invention as used in connection with a computer
network such as the internet;

FIG. 8 depicts a block diagram of one embodiment of a
computer for implementing the on-demand method and appa-
ratus of the present invention ina computer readable medium;

FIG. 9 shows a simplified block diagram of one embodi-
ment of an overall system architecture for the distributed,
on-demand application processing service and system of the
present invention;

FIG. 10 shows a simplified block diagram of one embodi-
ment of the application switching architecture;

FIG. 11 depicts a simplified flow diagram of one imple-
mentation of a sequence of steps executed by the present
invention to perform a snapshot of a process or application
instance;

FIG. 12 illustrates a simplified flow diagram of one imple-
mentation of the sequence of steps executed to restore a
snapshotted application;

FIGS. 13A-C shows a simplified block diagram of one
embodiment of an edgepoint of the present invention;

FIGS. 14A-C show simplified block diagrams of embodi-
ments of the present on-demand application processing sys-
tem in cooperation with the preexisting internet infrastruc-
ture;

FIGS. 15A-C show a simplified block diagram of one
implementation of one embodiment of the novel on-demand
apparatus and the optimal user and entity routing provided by
the present invention;

FIG. 16 shows a simplified flow diagram of one implemen-
tation of one embodiment of the method and system provid-
ing on-demand compute resources;

FIG. 17 shows a simplified block diagram of one imple-
mentation of one embodiment of a novel on-demand appara-
tus including a plurality of edgepoints;

FIG. 18 depicts a simplified flow diagram of a process for
an application provider to access and distribute applications
onto the distributed, application processing system of the
present invention;

FIG. 19 depicts a simplified flow diagram of one embodi-
ment of a process for an application provider to monitor and
update applications distributed onto the system;

FIG. 20 depicts a flow diagram of one embodiment of a
process for monitoring demand and determining an amount to
bill an application provider;

FIG. 21 depicts a simplified flow diagram of one imple-
mentation of one embodiment ofa process for determining an
amount of resources utilized for an application and the
amount to be charged to the application provider based on the
amount of resources utilized;

FIG. 22 depicts typical exemplary demand situation for
two different applications (or customers) across a twenty-
four hour time period; and

US 7,596,784 B2

7

FIG. 23 is a diagrammatic illustration showing an embodi-
ment of a system according to the invention.

DETAILED DESCRIPTION

Among other aspects and innovations, the invention pro-
vides structure, system, method, method of operation, com-
puter program product, and business model and method for
providing distributed on-demand application processing.

There is a missing category in the available internet infra-
structure based on-demand services. On-demand services fail
to provide on-demand application processing, delivered as an
on demand infrastructure service.

In one embodiment, the present invention provides for
on-demand application processing, delivered as an on
demand internet (or other networked) infrastructure service.
Application processing may for example include one or more
of, but is not limited to, deploying, instantiating, running and
operating an application. One of the major benefits of provid-
ing this type of on-demand service is improvement in opera-
tional and other economics. The novel on-demand applica-
tion processing method and system of the present invention
improves: operational economics such as the elimination of
costly server infrastructure expansion, simplifying and reduc-
ing capacity planning and an economic cost based on use; and
user satisfaction by providing a maximum and assured appli-
cation, such as an internet site, responsiveness under substan-
tially any user load and for users located substantially any-
where. The present inventive on-demand application
processing method and system changes the economic focus
of server infrastructure.

The novel on-demand application processing method and
apparatus of the present invention solves an application pro-
vider’s capacity planning problem. For example, an applica-
tion provider is an entity that provides a service via a com-
puter network such as, Charles Schwab, WebVan-like
entities, Walmart.com, and Intuit, which provide various
types of applications accessed by individuals or entities over
the internet. One of the problems that such companies face is
that it is very difficult for them to predict how much demand
they will have for their services and applications. Therefore it
is extremely difficult for them to determine how large a server
farm to deploy to allow greater user access to their services.

The present on-demand application processing method
and apparatus solves this problem by providing on-demand
processing capacity. Thus, the on-demand system provides
the application provider with additional access to further
processing capabilities without the need or expense of the
application provider trying to predict how much processing
capability will be needed. Further, one of the advantages of
the present on-demand application processing method and
system is that the application provider’s cost is based on the
amount of processing capability actually used. Thus, instead
of having a huge up front capital investment to provide the
expected processing capabilities and thus take all the risk to
create these services, the present on-demand application pro-
cessing method and system provides the application process-
ing capacity based on demand, avoiding the need to predict
processing needs, and eliminating the up-front capital invest-
ment.

Another major benefit provided by the novel on-demand
application processing method and system is application user
or customer satisfaction. An application user’s satisfaction is
achieved and maintained because the on-demand application
processing substantially improves the response time of appli-
cations by increasing the processing capacity as the demand
increases, is capable of spreading the load across a plurality

10

15

20

25

30

35

40

45

50

55

60

65

8

servers, and enhancing consistency. The on-demand applica-
tion processing system is further able to put a cap or limit on
how much response time is built into the server side of appli-
cation processing.

The present on-demand application processing method
and system solves the growth spiral and the exponential cost
per user increase in providing applications and services over
the internet by supplying resource capacity based on the
demand for the applications. The present on-demand method
and system will increase resource capacity to an application
provider as user access grows, and will also reduce resource
capacity as user access decreases. Thus, the application pro-
vider simply pays for the amount of resources needed and
used.

The present invention provides an ideal solution to the
fixed capacity problem shown in FIG. 3, through a flexible
on-demand variable capacity providing substantially unlim-
ited server infrastructure capacity which responds within sec-
onds because demand patterns change within seconds. FIG. 4
shows a graphical representation of the on-demand response
of the present on-demand system. The present on-demand
application processing system solves the unpredictable
capacity problem by providing on-demand server or applica-
tion processor capabilities with a response time of seconds or
less. If the capacity demand increases, the on-demand capac-
ity of the present invention adjusts to supply further capacity
90a and 90b. If the capacity demand decreases, the on-de-
mand capacity of the present invention adjusted to supply less
capacity 92a and 925, thus reducing the overall cost.

The present invention provides an ideal solution, by pro-
viding substantially instant variable capacity. As an example,
the present invention provides an infrastructure or virtual
infrastructure, which comes on-line or is activated for those
peak times (i.e., those 10 minutes) when a site gets a rush of
Web traffic, and then the virtual infrastructure reduces or go
away when the Web traffic is reduced. Further the present
invention provides substantially unlimited processing
resources, thus providing as much processing as is needed.
The present invention further provides unlimited processing
resources with a global reach, because application providers
now have users all over the world. The present invention
further provides this substantially unlimited capacity to appli-
cation providers at a pricing scheme which charges the appli-
cation providers for the amount of capacity utilized, obviating
the need for capital expenditures. The present on-demand
application processing method and system is flexible and
capable of running substantially any application, thus the
application providers are not limited or locked into a particu-
lar application. The present invention provides the applica-
tion providers with the ability to have the freedom to choose
their own application sets. Further, the present invention
allows the application sets to be completely under the appli-
cation provider’s control. As an example, once an application
provider deploys an application set, the application provider
maintains control over that application set, the data in and
related to the application set, and other such control features.
Thus preventing an application provider from being at the
mercy of someone else owning their application set. Instead,
the application provider maintains complete control over the
services provided through the distributed application set.

FIG. 5 depicts a simplified block diagram of a business
operating over the Internet, sometimes referred to as an
e-business. Generally, an e-business has a set of servers 110
that run several or all of their different applications. The
servers 110 have back end ERPs 112, back end transaction
systems or services 114, and front end systems 116 including,
but not limited to, personalization service 118, an e-selling

US 7,596,784 B2

9

system 120, and a one-to-one marketing system 122, which is
found in a central site. Users 124 gain access through the
internet 126 to the central server or central site 110. As the
number of users 124 accessing the server 110 increases, a
tornado effect 130 results, and a bottleneck 132 is created,
adversely affecting the response time and reliability of the
site.

FIG. 6 depicts a simplified schematic block diagram of one
embodiment of the novel distributed on-demand application
processing system 140 of the present invention which sub-
stantially eliminates the bottleneck and tornado effects seen
in the prior art. In one embodiment, the present on-demand
system 140 pushes or distributes application processes, such
as the front end systems, including, but not limited to, per-
sonalization 118, eSales 120, and one-to-one marketing 122
(see FIG. 5), out into the Internet 126, and out into the infra-
structure of the Internet. In one embodiment, distributed com-
pute resources, such as processors, computers and/or servers
148, of the on-demand system 140 are geographically distrib-
uted, and in one embodiment located and installed globally all
around the world. By geographically distributing the servers
148, the application processing can also be distributed, allow-
ing traffic from users 124 to be distributed and routed to the
servers 148 distributed across the Internet 126. In one
embodiment, final applications or transactions, such as final
purchases, and any other conventional transaction, are routed
back across the internet 126 to the transactions system 1 14
and the ERP system 112. In one embodiment, the transaction
system 114 and the ERP system 112 are not moved out or
distributed across the distributed servers 148. As an example,
auser 124 does his/her shopping and configuring, and the like
as well as determining what he/she would like to buy, through
a distributed server 148 which is geographically closer to the
user in the on-demand system 140. In one embodiment, once
the user 124 selects or hits the “buy” button of the interactive
website to complete the sales transaction, that transaction is
forwarded to the backend systems 112 and 114 maintained on
the application provider’s central servers to complete the
transaction. Thus, significantly reducing the amount of traffic
into the application provider’s central servers, eliminating the
bottle neck effect, improving performance, enhancing
response time, and thus improving and maintaining user sat-
isfaction.

In one embodiment, the entire central site including the
back end ERP 112 and transactions service 114 are distrib-
uted out onto the distributed on-demand system 140. Thus,
even the final transactions, such as the final purchase, are
preformed on the distributed servers 148.

FIG. 7 illustrates in high level block diagram form one
implementation of one embodiment of the overall structure of
the present invention as used in connection with a computer
network 150 such as the Internet. In one embodiment, com-
puter network 150 is a direct link between one or more remote
entities, such as the users 152-1 and 152-2, a separate appli-
cation, a server, a process, computational device and substan-
tially any other entity capable of issuing requests for appli-
cation processing. In one embodiment, computer network
150 is a network providing an indirect link, such as an intranet
or global network (i.e., the Internet). Remote users 152-1 and
152-2 utilize the computer network 150 to gain access to a
plurality of computers or servers 158-1, 158-2, through 158-
n. In one embodiment, the computers 158 are protected by a
firewall 154. In one embodiment, computers 158 are edge-
points (described more fully below), groups of edgepoints,
global dispatchers or other components of a private network
156. In one embodiment, computers 158 are used to run
various applications, such as hosting web sites for access by

10

15

20

25

30

35

40

45

50

55

60

65

10

remote users 152. In one embodiment, the present invention is
implemented on computer network 156 in the form of virtual
environments 160-1 and 160-2. While only two virtual envi-
ronments are illustrated, it is to be understood that any num-
ber of virtual environments may be utilized in connection
with the present invention

In one embodiment, the method and system of the present
invention is implemented in a computer readable medium,
such as a computer program 164 and executed on a computer
166 as illustrated in the high level block diagram of FIG. 8. As
shown, computer 166 incorporates a processor 168 utilizing,
in one embodiment, a central processing unit (CPU) and
supporting integrated circuitry. A memory 170 which is any
type or combination of memory including fast semiconductor
memory (for example, RAM, NVRAM or ROM), slower
magnetic memory (for example, hard disk storage), optical
memory and substantially any conventional memory known
in the art, to facilitate storage of the computer program 164
and the operating system software. In one embodiment, also
included in computer 166 are interface devices including, but
not limited to, keyboard 172, pointing device 174, and moni-
tor 176, which allow a user to interact with computer 166.
Mass storage devices such as disk drive 178 and CD ROM
180 may also be included in computer 166 to provide storage
of information. Computer 166 may communicate with other
computers and/or networks via modem 182 and telephone
line 184 to allow for remote operation, or to utilize files stored
at different locations. Other media may also be used in place
of modem 182 and telephone line 184, such as a direct con-
nection, high speed data line or a wireless connection, and the
like. In one embodiment, the components described above
may be operatively connected by a communications bus 186.
In one embodiment, the components may be operatively con-
nected by wireless communication.

FIG. 9 shows a simplified block diagram of one embodi-
ment of an overall system architecture 200 for the distributed
on-demand application processing service and system 140.
The on-demand system 140 includes an application switching
architecture or technology 202 configured to provide appli-
cation switching, an edge processing network 204, which, in
one embodiment, is hundreds of machines, edgepoints or
servers in hundreds of data centers distributed throughout the
world and/or the internet, automated deployment 206, remote
control 210, security architecture 212, and performance
monitoring 214, all coupled to cooperate and provide appli-
cation processing, and deployment.

Some of the advantages provided by the on-demand
method and system 140 include: protection during peak
loads, in one embodiment, with guaranteed application
response time SLA; global reach with application provider
control of distributed web presence; freedom to grow aggres-
sively including elastic web-processing infrastructure on
demand; no capital investment with costs based on the
amount of capacity used; supporting substantially any appli-
cation on substantially any platform to preserve application
provider’s current application investment; and higher reli-
ability because the system provides superior response time
and automatically routes around failures.

FIG. 10 shows a simplified block diagram of one embodi-
ment of the application switching architecture 202. In one
embodiment, the application switching architecture 202
includes an application snapshot or appshot 220. An appshot
220 is a set of all data and/or state necessary to halt (and then
restore and restart) at least one application at a given point in
time, such that, the application may be restored at a later time
on substantially any machine. For example, an appshot 220
can be an already running application halted at a point in time

US 7,596,784 B2

11

without the application knowing it was halted. In one embodi-
ment, an appshot 220 is the encapsulation of an application
stack of at least one running application including the differ-
ent processes, states, and interprocess communication. For
example, a set of interdependent and/or interacting applica-
tions halted together may be included in an appshot 220. In
one embodiment, the appshot 220 includes, data 222, and a
set of interactive applications, 224a-224n.

One example of an appshot 220 is a configuration engine,
which allows users to shop online and decide exactly what
they want to purchase. A snapshotted application and/or pro-
cess, and the method for performing a snapshot is more fully
described in co-pending U.S. patent application Ser. No.
09/680,847, filed on Oct. 5, 2000, incorporated in its entirety
herein by reference.

In one embodiment, an appshot 220 encapsulates a multi-
tier applications stack, including data 222. The present on-
demand application processing method and system 140 per-
forms this appshot encapsulation or snapshotting which saves
the states of a running set of processes. The encapsulation of
an appshot 220 allows the on-demand system 140 to replicate
an application and provide a plurality of instances of the same
application to be operated at substantially the same time
utilizing a plurality of subsets of the on-demand computa-
tional resources. The replication allows the on-demand sys-
tem 140, among other things, to move the appshot 220 to
another set of compute resources such as another server,
computer or machine, to duplicate the appshot 220 to other
servers, and to replace or upgrade an appshot 220. Further, the
encapsulated appshot 220 allows the on-demand system 140
to put an application when operating as an instance of an
application into a form which allows the system to remove the
instance of the application from an idle server when the
application instance associated with an appshot 220 is not
being used, and to store the appshot 220 in a memory with
accompanying application states. As an example, an appshot
220 is an already running application halted at a point in time.
Thus the on-demand system is capable of freeing up
resources to allow other applications to utilize the idle
resources.

In one embodiment, the on-demand application system
140 is capable of relocating or replicating an appshot 220 to
other or alternate sets of computational resources such as
other compute modules and/or other edgepoints 350 (see FIG.
14A) distributed throughout the worldwide on-demand sys-
tem 140 providing at least a portion of the distributed on
demand computational resources. In one embodiment, an
edgepoint 350 is a computing facility with intelligent routing
and load balancing architecture or capabilities. The edgepoint
is capable of operating as a server. An edgepoint includes at
least one and usually a plurality of servers or processors, such
as a Sun Server 420 available from Sun Microsystems, Win-
dows NT server from Microsoft, and a Linux server available
from Linux, and substantially any other conventional server
known in the art. The edgepoints are deployed, in one
embodiment, throughout the world making up at least a por-
tion of the on-demand system 140. Application providers will
generate an appshot 220 of the application, applications or
site which they want to distribute throughout the on-demand
system 140. The appshot 220 can then be distributed to spe-
cific edgepoints, or distributed globally to every edgepoint
350 of the on-demand system 140. Thus, when an entity 124,
such as a user, a separate application, a server, a process,
computational device and substantially any other entity
capable of issuing requests for application processing, wants
to access the application or site, the edgepoint 350 activates or
restores the appshot 220 to an activate instance of the appli-

15

25

35

40

45

50

55

12

cation or applications encapsulated within the appshot 220.
The configuration and structure of the appshot 220 also
allows the edgepoint 350 to re-encapsulate or snapshot the
application or applications back into an appshot 220 and store
the appshot 220 in a memory when the application or appli-
cations are not in use. As discussed above, the appshot 220 is
capable of being restored or reactivated when needed. In one
embodiment, the application can be restored from an appshot
220, usually in less than 5 seconds, and more usually less than
3 seconds, depending on the available edgepoint resources.
Thus, in one embodiment, the on-demand system 140 pro-
vides capacity on demand by restoring an appshot 220 when
needed to provide one or more instances of an application.
The system monitors the resources utilized to provide pro-
cessing for the active application instances. The application
provider is then charged according to the amount of compu-
tational resources utilized in providing users with access to
their distributed applications.

FIG. 11 depicts a simplified flow diagram of one imple-
mentation of a sequence of steps executed by the present
invention to perform a snapshot of a process or application
instance. In step 250, a snapshot of an active application is
requested. The processes that are snapshotted together in the
form of an application chain share the same application ID
(AID). As such, the AID is looked up (decision step 252) in
memory containing a list of the AID’s present. If the AID is
not found control returns at step 254. However, if the AID is
found, control continues to decision step 256 where a search
is performed for a process belonging to the application having
the matched AID. If a process is found, control continues to
step 258, where the process is suspended. If the state is con-
sistent and the threads are quiesced (decision step 260), con-
trol loops to step 256 and the remaining processes belonging
to the application are located and suspended. However, if a
process is located that does not have a consistent state or a
thread is not quiesced, suspended processes are resumed and
the snapd module 262 returns a notice that the snapshot was
not completed.

In one embodiment, a snapd module (snapshot daemon
module) comprises a daemon listening on a port that does the
snap-shotting of all processes that have the same snapshot id
(snapid). The state of the applications after a snapshot is taken
is stored in one or more files. The state that is typically saved
includes process state information (for example, in a snapshot
file per process), and memory information (for example, in a
file per anonymous and shared memory segments). In one
embodiment, the snapshot file stores all process state infor-
mation as apseudo ELF file. A different ELF_NOTE section
is created for each process state record (such as file descrip-
tor). Another file called snaplist.snapid identifies all the pro-
cesses in that snapid along with any parent/child relationship.
In one embodiment, the process state information is collected
during execution in preload libraries or when the snapshotting
is done from the kernel.

Once the related processes are suspended, the states of the
suspended processes are checked to see if they are virtualized
(step 268). A virtualized state is any process state that reflects
a virtualized resource. If the state is virtualized, it is retrieved
at step 270 otherwise the non-virtualized state is retrieved at
step 272. If the state has changed since the last snapshot (step
274), the new state is recorded. Control then loops to step 266
and executes through the above sequence of steps until the
states of the processes are checked. Once completed, control
proceeds to step 282, registered global states, such as sema-
phores, are removed. A registered global state is a state that is
not specifically associated with any one process (i.e., private
state). A global state is usually exported (accessible) to all

US 7,596,784 B2

13

processes and its state can be modified (shared) by all pro-
cesses. Control proceeds to step 284, where the process is
terminated. If there are remaining processes (step 286), these
are also terminated. This sequence of steps is concluded to
create a snapshot of an application instance which is stored, in
one embodiment, as a file and made available for reactivation
or transmission to another compute modules, and/or other
edgepoints.

FIG. 12 illustrates a simplified flow diagram of one imple-
mentation of the sequence of steps executed to restore a
snapshotted application. The snapshotted application is
accessed via a shared storage mechanism through a restore
call at step 300. The AID for the snapshotted application is
looked up and (decision step 302) if not found a notification is
issued that the snapshotted application has not been restored.
However, if the AID is found, control continues to decision
step 304 where, if the snapshotted application matching the
AID is located, the global/shared state for each process asso-
ciated with the snapshot are found. Control then continues to
step 308, where remaining global or shared state for the
processes are recreated. Then a process is created that inherits
the global/shared state restored in step 308, and the created
processes are isolated to prevent inter-process state changes.
At step 314, for each type of state within the processes, the
process-private resources are recreated to their state at the
time the application was snapshotted. If the state is virtualized
(decision step 316), the system state is bound to a virtual
definition. In one embodiment, as part of the restore a step is
performed to create a virtual mapping. This is done by taking
the system resource that was created in step 314 and binding
it to the virtual definition that was saved during the snapshot
in step 266. This allows the application to see a consistent
view of resources, since it may not be guaranteed that at
restore time the same system resource will be available. If the
state is shared with another process, such as via a pipe (deci-
sion state 320), the shared state is reconnected with the other
process at step 322. If there are more states (decision step 324)
steps 314 through 322 are repeated. Once steps 314 through
322 have been executed for all states, control continues to step
326, where the process is placed in synchronized wait. If there
are remaining images in the snapshotted application (decision
step 328), steps 310 through 326 are repeated. Once all
images have been processed, control continues to step 330,
where traces and states induced during restore of the process
are removed, and a synchronized operation of the processes
occurs at step 332. Once steps 300 through 332 have executed
without error, the restored application can continue to run
without interruption. Thus, the present invention avoids the
overhead and delay of shutting down an application, storing
data to a separate file, moving both the application and data
file elsewhere, and restarting the program or application.

FIGS. 13A-C depict one implementation of one embodi-
ment of the system and method or process for providing
on-demand compute resources provided by the present inven-
tion. FIG. 13A shows a simplified block diagram of one
embodiment of an edgepoint 350 of the present invention.
The edgepoint 350 includes a memory 352, which is any type
or combination of memory including fast semiconductor
memory (e.g., RAM or ROM), slower magnetic memory
(e.g., hard disk storage), optical memory substantially and
any conventional memory known in the art. Within memory
352 is stored appshots 220a-f. Edgepoint 350 further includes
compute resources 354. Compute resources include but are
limited to at least one of a microprocessor, memory, control
logic, or combination thereof. In operation, the edgepoint 350
is accessed by at least one entity, such as users 124a-b, over a
network, such as the internet 126. When a user 124a is routed

10

15

20

25

30

35

40

45

50

55

60

65

14

to the edgepoint 350 and requests one or more applications,
the edgepoint 350 determines which appshot 220a-fprovides
the desired application. The edgepoint pulls or duplicates the
appshot 2205 from a halted or snapshotted state, and unen-
capsulates or restores the appshot 2205 onto a first set of
compute resources, such as a first server 354a. The server
354a activates an instance of the application 3564 to allow the
user 124a to utilize the application 356a. In one embodiment,
the edgepoint 350 restores an application from an appshot
220 immediately upon request.

Referring to FIG. 13B, once a server 354q is running the
application instance 3564, the application 356a is fully active
and operating, so that additional users 1245 can be routed to
and gain access to the active application 356a. Because the
application 356a is already active, additional users 1245 get
an immediate response with substantially no delay. However,
as more users request access to the application 3564, the
response time begins to suffer, and the effectiveness of this
application begins to deteriorate because the application 356a
becomes overloaded. As additional users 124¢ attempt to
access the instance of the application 356a response time
degrades. In one embodiment, a predetermined response time
threshold or limit is set, or a predefined number of'users is set
which limits the number of users allowed to access one
instance of an application. Thus, when a new user 124c¢
attempts to access the application 3564, and this new user
124¢ exceeds the predefined threshold, the edgepoint 350
activates the appshot 2205 to initiate a second instance of the
application 3565. Thus, this demonstrates the ability of the
present invention to provide capacity on the run or on-de-
mand, and provide an optimal response time for the applica-
tions 356a-f.

Referring to FIG. 13C, as the numbers of users accessing
the second instance of the application 3564 continues to
increase, the threshold will once again be reached. Once
additional users 124e attempting to access the second
instance of the application 3565 exceeds the limit, the edge-
point 350 will again activate the appshot 2205 to activate a
third instance of the application 356¢. This will continue until
the servers 354a-f are occupied to capacity running at least
one of the applications 356a-f. At which point, the edgepoint
350 will signal the system 140 and the on-demand application
system 140 will then direct or route additional users to other
edgepoints 350 throughout the distributed on-demand system
140. Thus, the system 140 ensures an effective response time
and reliability, and thus improves user satisfaction.

The present invention also provides for the freeing up of
system resources to be utilized by alternative applications. As
the number of users 124 decrease below a threshold, one of
the application instances, such as the third instance 356¢, can
be terminated or snapshotted to free up a set of resources. The
freed resources allows the edgepoint 350 to activate and run
an alternative appshot 220a-f. Thus, the on-demand system
140 not only provides resources but reduces resources when
not needed, resulting in a reduced cost to the application
provider. Further, the present inventive on-demand method
and system 140 provides for the ability to share resources
among application providers because applications can be ini-
tiated as well as removed from compute resources allowing a
substantially unlimited number of applications to utilize the
same resources.

In one embodiment the edgepoint 350 is not limited to
activating a single application 356 from a single appshot 220.
A single edgepoint 350 can activate a plurality of different
applications 356 on a variety of different sets of compute
resources, such as servers 354, based on the applications
requested by the users 124.

