EXHIBIT F

Part 2 of 2

The domain administrating server (DAS) 150 makes it possible to perform these various domain-wide studies at high speed because all the necessary information is stored in a centralized location, having been earlier collected, integrated, placed in a searchable database and organized 5 according to desired search fields. Excessive time may be required if the DAS 150 were not present and an administrative workstation 160 tried to scan the domain 190 on its own to collect the desired information from all the file servers 110-140 on the network, organize it into a search- 10 able database, and so forth. Also a disadvantageous duplication of work will occur if two or more administrative workstations 160, 161, etc., are asked to simultaneously but independently scan the domain 190 for the same information and collect it by way of network backbone 105. Such a 15 process would also lead to excessive traffic congestion on the net-work-linking backbone 105, particularly where multiple studies of domain-wide activities are desired.

Domain-wide studies can be used for recognizing a variety of current status problems and for performing various 20 trend analysis functions. FIGS. 3A and 3B show one example. In FIG. 3A, a line plot 301 graphs storage capacity utilization versus time, up to a current snapshot time 302. Line plot 301 shows that a first disk drive (DRIVE-A) belonging to a first server will soon run out of free space if 25 line 301 is extended at its current slope into the future, as indicated by dashed portion 303. A side-by-side comparison with a historical plot 311 of storage capacity utilization in FIG. 3B—for a second disk drive (DRIVE_B) that belongs to a second server-shows that the second disk drive 30 (DRIVE-B) is being underutilized even though it perhaps has less total storage space (a lower MAX level) than the first disk drive (DRIVE-A) and that the first disk drive (DRIVE-A) is perhaps being overutilized. (The slope of line 311, which shows active storage space versus time for 35 DRIVE-B, is substantially less than the slope of the DRIVE-A line 301.) In view of these plots a human administrator, or an artificially-intelligent automated administrator (see element 150.25 of FIG. 6), might decide to rearrange the work loads of the respective first and second 40 servers so that the loads are more fairly balanced. One way is to reassign some users of over-utilized DRIVE-A to the under-utilized DRIVE-B.

Status and trend-analysis reports can be generated as line plots, pie charts, bar graphs and so forth to give viewers a 45 picture of what is happening on the studied domain 196 currently, what happened in the past, and what trends will probably evolve over time given past and current domain-wide activities.

FIGS. 4A and 4B show side-by-side examples of pie 50 charts 401 and 411 showing used versus free storage space on respective drives DRIVE-A and DRIVE-B within the domain. (Note that pie 411 has a smaller diameter than pie 401 thereby indicating a smaller maximum capacity level (MAX).) A large number of side-by-side pie charts (or bar 55 charts—with used part of capacity rectangle shaded and unused part unshaded) can be displayed on the screen of the system administrator's workstation (160) at one time to give the administrator an instantaneous appreciation storage capacity and utilization across a substantial part if not all of 60 the domain. If historical trends are to be viewed on a pie or bar chart, different colors or fill patterns can be assigned to slices of a pie or bar chart to represent incremental changes over time.

Trend-analysis studies can be used to look for, by way of 65 example: load shifts on a by-the user basis, on a by the volume basis, on a by-the server basis, on a by-the network

site basis, on a used-versus-free space ratioed basis, and so forth. Each analysis can warn of an upcoming problem and suggest a solution. More drives may have to be purchased for a very active site that needs fast response time. The files of a user who has gone of on vacation or left the company might be moved to archive storage so as to free up space for other users. And so forth. The centralized availability and quick accessibility of the domain-wide virtual catalog snapshots, 150.00, 150.01, 150.02, etc., makes such trend studies easier to implement.

The current snapshot of the domain-wide virtual catalog 150.00 can be used by itself to assist in cross-domain file transfers. These are transfers that require a movement of data from one server (e.g., 110) to a second server (e.g., 120). After a particular file is located in for example, the archive storage of a first server through the use of the domain-wide virtual catalog (current snapshot) 150.00, it may be desirable to request a transfer of a copy of the archived file to the primary storage of a particular, second server. The user screen will show a listing such as above TABLE 2. The information in the listing is extracted from the domain-wide virtual catalog (current snapshot) 150.00. A drag-and-drop operation may be provided within a user interface (165 or 175) of a workstation wherein the user highlights, with a first mouse click, the name of the desired source file and the user then drags-and-drops a copy of the highlighted block into a directory entry of a second server, which directory entry is also shown on the screen. Depending on context, the domain administrating server (DAS) 150 can responsively issue appropriate permissions to allow the corresponding transfer to take place immediately across the network-linking backbone 105 or at a scheduled later time. Because the source file in this particular example is an archived file, a retrieve and mount task will be appended to a schedule list made for a system operator, and the transfer will take place at the time the archived media is mounted.

The domain-wide activities of moving files across the domain 190, and/or generating domain-wide storage traffic and trend views, are just a few of the many domain-wide activities for which use of the domain administrating server (DAS) 150 can be advantageous.

Before delving into other such activities, it is worthy to note that an administrative or user workstation 160, 161, . . . , 170 can be located anywhere along the enterprise 100 and such a workstation 160, 170 can nonetheless communicate with the DAS 150 to access the information contained in the DAS 150 for purposes of analysis or other use. It will be shown below that any administrative workstation 160, 161, etc., can interact with or activate one or more of a set of below-described domain control operations from any place along the network by accessing the DAS 150. There are several advantages to such a scheme.

The domain administrating server (DAS) 150 serves as a central repository for collecting domain-wide information and as a central command post from which domain-wide control commands can be broadcast. One advantage of this scheme is that the DAS 150 can provide a consistent interface to the remainder of the domain 190 or to the remainder of the networked enterprise 100.

Domain-wide information is preferably collected by the domain server (DAS) 150 during low-traffic periods so as to minimize the effect of such collection on other network activities. Once collected, the information is available for quick access by an administrative workstation 160, 161 located anywhere along the network. Each administrative workstation 160, 161 is loaded with a same administrative graphical user interface package 165 so that a consistent

administrative interface is presented to the data/controls of the domain server (DAS) 150 regardless of where on the network the user is located. A network administrator does not have to be concerned with the particular user interface provided at each file server site (e.g. Microsoft WindowsTM 5 versus Microsoft DOSv) because the information from these various sources are passed by the domain/local exchange agents 119, 129,..., 149 to the domain server 150 and then passed back to the system administrator in a consistent manner through the administrative graphical user interface 10 165.

A permissions-limited version 175 of the administrative graphical user interface 165 may be provided for users of different experience or privilege levels so that such users can also have a homogeneous, though perhaps restricted, interface to domain-wide data irrespective of where in the domain that data is actually stored.

In one embodiment, the administrative graphical user interface 165 conforms to standard Microsoft Windowsu format and provides user features such as ones listed in 20 below Table 3.

TABLE 3

Section 3.1: Basic Interface Operations

The user interface shall include:

Drag and drop manipulations of graphical objects to provide an intuitive method for selecting objects, and grabbing and dragging them to desired action icons

Button bar to ease and speed the selection of typical tasks 30 Context sensitive Help

A Menu Bar including drop-down menus named File, Edit, Tree, View, Tools, Options, Window, and Help with the drop-down menus changing in content based on the current focus

Section 3.2: File-Down Menu Operations

The File drop-down menu shall consist of the following selections:

New

Open

Save (button bar icon)

Save As Delete Print Preview

Page Setup

Print (button bar icon)

Exi

Section 3.3: The Edit Drop-Down Menu Operations

The Edit drop-down menu shall have the following selections:

Release
Delete
Move
Cut
Copy

Paste

Section 3.4: The Tree Drop-Down Menu Operations

The Tree drop-down menu shall have the following selections:

Expand Branch (button bar icon)
Expand All (button bar icon)
Collapse Branch
Sort
Name
Type
Size

Split

Date

Section 3.5: The View Drop-Down Menu Operations

The View drop-down menu shall have the following selections:

Graphical Form (button bar icon(s))

Pie Bar

Line

Summary

Forecast

Variance

XYZ Axis Definitions (with selections being FileName,

FileAge, and Users)

Options

Title

Description

Legend Headers

Footers

File Definition (button bar icon)

5 DOS Wildcard

Directory

Programs

Documents Hidden/System

Data Danga

Date Range

Archived

Migrated

Compressed

Non-Compressable

Other Netware attributes as appropriate

User Groups (button bar icon)

Wildcard

Selected

Virtual Storage View Filter (button bar icon)

Backup

55

Storage Server (HSM)

Data Range Media Element Backed up only

Archived only

Migrated

Storage Server (HSM)

Date Range Storage Layer Media Element

Section 3.6: The Tools Menu Operations

The Tools drop-down menu shall have the following selections:

Storage System Monitor (button bar icon)

Scheduler (button bar icon)

User Groups Editor (button bar icon)

Snapshot

Backup

Migration

RAID

Section 3.7: The Options Menu Operations

The Options drop-down menu shall have the following selections:

Client Server Polling Settings

Log File Retention

Log File Paths

Sections 3.8: The Windows Menu Operations

The Windows drop-down menu shall have the following selections:

New

Cascade

Tile

Refresh

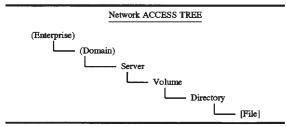
Section 3.9: The Help Menu Operations

The Help drop-down menu shall have the following selections:

Contents

Search

Tutorial


Support

About Help

About System Administrator

A tree-style view of how data and resources are distributed across the domain 190 will produce an introductory screen on the administrative or user workstations 160, 161, . . . 170 having the hierarchical form shown in below Table 4.

TABLE 4

A mouse-based or other "expand" selection of the displayed "Enterprise" field will provide an on-screen listing of N domains (by DomainNee), any one of which can be designated as a currently-selected domain. Additional information regarding the status of each domain (e.g., up and running, shutdown, length of up/down time, total storage capacity, etc.) may be displayed at the same time. The listing can be sorted by name, date, size and so forth.

Similarly, a mouse-based or other "expand" selection of the displayed "Domain" field will provide an on-screen listing of a plurality of N servers (by ServerName) within the 65 current domain, any one of which servers can be designated as a currently-selected server. Additional information 22

regarding the status of each server may be displayed at the same time (e.g., up and running, shutdown, length of up/downtime, number of users, workload level, etc.) The names of up and running servers can be obtained from the domain-wide virtual catalog (current snapshot) 150.00 since down servers will not respond to a current snapshot scan. The database 150.1 of the DAS 150 preferably includes a section storing location information about each server in terms of: Country, Region, State, City, Campus, Building, Department and Office. This location information may be displayed together with the name of each server and its status. The listing can be sorted by name, date, size and so forth.

A mouse-based or other "expand" selection of the "Server" field of Table 4 will provide an on-screen listing of a plurality of M volumes (by VolumeName) that are currently mounted within the currently-selected server, any one of which volumes can be designated as a currently-selected volume. Additional information regarding the number of files and amount of total versus free space in each volume may be displayed at the same time. The former and latter information is obtained from the domain-wide virtual catalog (current snapshot) 150.00. The database 150.1 of the DAS 150 preferably includes a section storing scan information for each volume in terms of: ScanDate, ScanStartTime, ScanStopTime, ScanName and ScanRequesterId (the ID number of the administrative workstation that requested the scan or of the DAS module that requested the scan). This scan information may be displayed together with the name of each volume and its corresponding volume attributes. The listing can be sorted by name, date, size, type of storage (e.g., primary (P), secondary (S), backup (B) or archive (A)) and so forth.

A mouse-based or other selection of the "Volume" field of Table 4 will provide an on-screen listing of a plurality of K directories (by DirectoryName) defined within the currently-selected volume, any one of which directories can be designated as a currently-selected directory. Additional information regarding the number of files and amount of total versus free space in each directory may be displayed at the same time. The former and latter information is obtained from the domain-wide virtual catalog (current snapshot) 150.00. The listing can be sorted by name, date, size and so forth.

Similarly, a mouse-based or other selection of the "Directory" field of Table 4 will provide an on-screen listing of a plurality of J files (by FileName) within the currently selected directory, any one of which files can be designated as a currently-selected file for viewing, copying, renaming, moving, printing, or other manipulation (See Section 3.2 of above Table 3). The listing can be sorted by name, date, size and so forth.

No operation is provided for clicking on the "File" field of Table 4. It is there Just to show the next level below that of Directory.

File manipulation operations such as opening, renaming, and so forth will, of course require access to the corresponding local catalog and/or the corresponding actual data within the respective file server rather than mere access to the domain-wide virtual catalog (current snapshot) 150.00. If a file is to be copied or moved from one file server to another, such a transfer will probably require data transfer across the network-linking backbone 105. This brings us to another area where the DAS 150 becomes quite useful, traffic control.

Traffic scheduling is a problem on networked systems. Users have come to expect instantaneous response to their file access and other requests. But the network-linking

backbone 105 and/or other components of the system can at times become overwhelmed with a deluge of job requests if care is not taken to schedule data transfer tasks across the backbone 105 and/or through other components of the system (e.g., disk drives) so that the workload of each such 5 component is distributed in a fairly balanced manner over

Traffic scheduling and control is one of the important domain-wide activities supported by the domain administrating server (DAB) 150. Because it is relatively common 10 to have a primary storage means (111) located at a first site, a secondary storage means (122) located at a second site, a backup storage means (133) located at a third site and an archive storage means (144) located at yet a fourth site; the network-linking backbone 105 is routinely used for massive 15 data transfers such as those that take place when a large set of aged files are migrated from primary to secondary storage or when a bulk portion of the files in the domain are being backed-up or archived. The data-transfer bandwidth of the network-linking backbone 105 and/or various file servers 20 can become saturated during such bulk data transfers, thereby blocking individual users from obtaining immediate access to desired files.

It is accordingly preferable to schedule operations which tend to saturate the backbone 105 (e.g., backup and 25 migration) to time periods which otherwise exhibit relatively low traffic volumes and to distribute these jobs over time so as to avoid traffic congestion on the network-linking backbone 105 or elsewhere.

FIG. 5 shows a Gant-style traffic chart 500 that illustrates 30 an example of how bulk data transfers can be distributed across time to balance work loads and ease congestion on the network-linking backbone 105. A first HSM migration transfer 501 is scheduled to take place between first and second time points, t₁ and t₂, and to move a set of files from a first 35 instructions 614 comply with certain domain-wide backup file server-A to a secondary storage server-H. The transfer completion time to is projected to occur a certain length of time after the transfer begin time t₁, based on the size of the files to be transferred. (The latter information is obtained from the domain-wide virtual catalog (current snapshot) 40 150.00.) But because unexpected events can occur during the transfer (e.g., transient error and recovery operations), a certain amount of slack (delta) time is added before the next data transfer job 502 begins at time t₃.

A similar approach is followed for following job 503. In 45 the example, job 502 is a backup transfer from server-A to server-K and job 503 is a backup transfer from server-B to server-K, where servers A, B, H and K are understood to all reside in the same domain 190 but at different network sites. Note that the jobs 501-503 are arranged to be nonoverlap- 50 ping in the time domain so as to avoid traffic congestion on the network-linking backbone 105.

In order to provide a smoothly distributed job schedule such as that shown in FIG. 5, one has to know: first, what periods of time are most likely to exhibit low traffic con- 55 gestion on the network-linking backbone 105; second, what amount of time is expected to be consumed by each bulk data transfer job; and then one has to order the transfer jobs for best fit relative to the available low-congestion time slots.

Referring to FIG. 6, a map 600 is shown of logical flows between various data and control mechanisms distributed amongst the domain administrating server (DAS) 150, the GUI 165 of an administrative workstation, and the DAS/ local field agents 119a-d of a given server computer 110'. 65

Map 600 is subdivided into three sections by a set of dash-doubledot partition lines 603. Logic flow crossings

through the dash-doubledot partition lines 603 are understood to represent signal flow through the net-work-linking backbone 105 (FIG. 1).

A backbone monitor 150.23 is provided within the domain-wide status monitor/control program 150.2 of the DAS 150 for monitoring message packets 610 traveling along the network-linking backbone 105 to determine what time periods or other conditions correlate with respectively low traffic flow on the backbone 105. Data 611 representing time spaced snapshots of backbone traffic patterns 150.13 is loaded into the domain administrating data/rule base 150.1 that is maintained by the DAS 150.

Based on historical traffic information 612 or other information collected into the data/rule base 150.1, a task scheduler 150.22 within the domain-wide status monitor/control program 150.2 of the domain server 150 sends instructions 614 through the partition 603 by way of the local backup field agent 119b of the respective server computer 110' to the corresponding local backup execution program 117 (see FIG. 1).

Backup instructions 614 indicate when the backup activities of that DAS-managed file server 110 should begin and which files should be backed up (e.g. all or only those that have been altered in the last day). An API-like interface connects the local backup field agent 119b to the corresponding local backup execution program 117. The API-like interface, as will be understood by those skilled in the art, translates between a domain-wide standard data format and a local format used by the local backup execution program 117 much as a general purpose API (application program interface) provides interfacing between an operating system kernel and a specialized application program.

A backup policy-enforcer 150.27 is interposed between the task scheduler 150.22 and the local backup field agent 119b for assuring that backup operations specified by policies. These domain-wide backup policies are established either by a human administrator or by a rule-base driven artificial administrator 150.25 that is included in the domainwide status monitor/control program 150.2 of the DAS 150. The backup policy-enforcer 150.27 is part of a general, domain-wide policy enforcer 150.26 and the latter program module is part of the domain-wide status monitor/control program 150.2.

In similar manner, further scheduling information 615 is transferred from the task scheduler 150.22 through a migration policy-enforcer 150.28 of the DAB 150 to the local hierarchical storage management program 118 by way of a local HSM field agent 119a. The hierarchical storage management instructions 615 indicate when the migration activities of the instructed file server 110 should begin and which files should be migrated to secondary storage.

Although not shown, it is to be understood that similar scheduling of archive operations moves from the task scheduler 150.22 through an archive policy-enforcer 150.29 to a local archive control agent in the case where the server computer 110' includes an archiving mechanism.

In order to properly schedule domain-wide file transfers such as those involved in backup and migration operations, the task scheduler 150.22 consults the domain-wide virtual catalog (current snapshot) 150.00, as indicated by logic flow 616, to determine the size of each file that is to be transferred. The file size information is used for calculating the time to be consumed by a transfer, given rate information indicating the speed at which each transfer from a first storage means to a second storage means is expected to take place. (The domain administrating data/rule base 150.1 develops such rate information through experience.)

Given the transfer size (flow 616) of each backup or migration job, and the historical traffic patterns (flow 612) of the network-linking backbone 105, the task scheduler 150.22 can determine the time needed for each transfer, what low-traffic slots are available, and how to order jobs to fit 5 into the available slot. If a given transfer job is too big to fit into a single low-traffic slot, the transfer job can be subdivided into plural subtasks and fitted accordingly.

Like backup and migration transfers, the activity of collecting information from the local catalogs of all storage 10 means 111-144 of the domain 190 can at time create traffic congestion on the network-linking backbone 105. Accordingly, the task scheduler 150.22 schedules the operations of a snapshot collecting portion 150.21 of the domainwide status monitor/control program 150.2 so that snapshot 15 collections are timed to occur during low traffic periods.

To speed collection, a local scan agent program 119c is installed in each server computer 110' and asked to scan the local catalogs of that server computer at a designated scan time and to store the results for later pick up by the DAS 20 snapshot collector 150.21. Instruction flows 619 and 620 respectively move from the task scheduler 150.22 to the local scan agent program 119c and the DAS snapshot collector 150.21 for coordinating the activities of the two.

administrating server 150 is oversee and manage the local infrastructures of its domain. Each local infrastructure support program 116, 126, . . . , 146 (FIG. 1) periodically scans its corresponding local infrastructure 180, 180', ... 180" to check the status of the power supplies (UPS) and other parts 30 of the local infrastructure, and then stores a local snapshot of infrastructure status. The infrastructure status information can include information indicating local power supply conditions (e.g. each of redundant power supplies is turned on or off), local temperature conditions and local component 35 security conditions (e.g. the open or shut status of various cabinet doors). Some file servers include a local watchdog for keeping track of number of recoverable errors encountered during normal utilization of the local storage means 111-114. Such an error history log may also be included in 40 the local snapshot generated by the local infrastructure support program 116, 126, ..., 146.

A local infrastructure configuration agent program 119d (FIG. 6) having an appropriate API-like interface is provided in each DAB-managed server (e.g., 110') to periodically 45 collect the local infrastructure snapshot generated by the local infrastructure support program 116, 126, ..., 146 and to convert the status snapshot output by the local infrastructure support program 116, 126, ..., 146 into a standardized infrastructure status report that has a same consistent format 50 across the domain 190. In other words, although the local infrastructure support program 116 of first file server 110 might produce a status report having a first format and the infrastructure support program 126 of the second file server 120 might generate a status report having a different second 55 format, the respective domain/local exchange subagents 119d and 129d (not shown) of these systems convert the respective infrastructure status reports into domain-wide standardized report formats.

The DAS snapshot collector 150.21 periodically scans the 60 network and retrieves from the respective field exchange agents 119d-149d a respective set of standardized infrastructure status reports. Instruction flows 621 and 620 respectively move from the task scheduler 150.22 to the local scan agent program 119d and the DAS snapshot 65 collector 150.21 for coordinating the activities of the latter two modules.

These collected infrastructure status reports are integrated over a given scan period to define a current snapshot of domain-wide infrastructure status. Repeated scans develop a historical picture 150.11 of infrastructure changes on a domain-wide basis. The domain-wide infrastructure snapshots 150.11 are stored in the domain administrating data/ rule base 150.1 in similar fashion to the virtual catalog snapshots 150.00-150.02 and accessed for viewing and analysis in similar fashion to that of the domain wide virtual catalogs 150.00-150.02.

In many instances it is desirable to maintain within the infrastructure snapshots 150.11, the brand names, manufacturer serial numbers and purchase prices of each piece of hardware equipment (e.g., each server computer, disk drive, tape drive, printer, etc.) at each local site for purposes of asset management. This asset management information is used, first, simply to determine what is "out there". When networks grow very quickly, it is often hard to keep track of what pieces of equipment are on-line (actively coupled to the network) and what pieces of equipment have been taken out of service for one reason or another. If certain pieces of equipment have been returned to the manufacturer for repair, or replaced and sold-off, it is useful to be able to track down such information.

A second reason for maintaining asset management infor-Yet another primary domain-wide activity of the domain 25 mation within the infrastructure snapshots 150.11 is for purposes of performance evaluation. Large networks typically include a collection of server computers from different vendors, disk drives from different vendors, tapes and tape drives from different vendors, printers from different vendors, and so forth. As time goes on, each such piece of equipment develops an error history and a repair/ replacement history. It is useful for network administrators to discover which brands of equipment work best in their particular environment and which exhibit poor performance. Then when the network is expanded or problematic equipment is replaced, the system administrators have an idea of which brands of equipment should be avoided and which should be preferred on a price/performance basis.

> Even if all equipment is purchased from a top quality vendor, a problematic unit might still be included in the lot due to variances in mass production. The problematic unit does not always make its presence known when first purchased; rather its performance degrades slowly over time so that even if its operations are within specifications at first, they eventually fall out of specification. A system administrator may wish to know ahead of time that such a condition is developing and may wish to be able to plan future purchases or repairs in view of this information. Hence, the combination of asset management information and error rate history information and repair/replace history information that is contained in the infrastructure snapshots 150.11 may be used for trend analysis purposes; to identify those pieces of equipment whose performance is degrading most rapidly and to plan for repair or replacement of such units even before significant problems develop.

> Many of the transient-type errors that develop during data exchange between a server computer 110'-140' and its respective mass storage devices 111-144 are handled by local error recovery hardware and software. As observed above, it is useful for the system administrator to collect such information on a domain-wide or enterprise-wide basis so that this information can be evaluated to detect unusual performance and/or trends in performance. However this long-term performance information does not have to be collected immediately as it happens. The DAS 150 can wait for quiet times on the network-linking backbone 105 in which to scan the network and collect this information.

On occasion, problems develop which need to be brought to the immediate attention of a network administrator (artificial one 150.27 or a human one). Examples of such problems include non-recoverable failures of storage devices 111-114, a failure within a power supply 181, failure 5 of a temperature control device 182, security breach such as the opening of an alarmed cabinet door 183, or a connection break as noted by a connection checking module 184. These type of events are referred to herein as immediate-attention events.

@ When an immediate-attention event occurs, the corresponding domain/local exchange agent 119-149 issues an SNMP alert report out onto the network backbone 105. The backbone monitor 150.23 includes an SNMP monitor portion which monitors the backbone 105 and distinguishes 15 normal reports from such immediate-notification/action reports. The immediate-attention SNMP reports are tagged as such by the SNMP monitor and forwarded to the artificial administrator 150.25 as indicated by signal flow line 622. The artificial administrator 150.25 uses rule base 150.1 to 20 determine what level of response should accompany each SNMP immediate-attention report. A high-urgency report might require immediate shutdown of part or all of the network. The rules of rule base 150.1 may dictate that an urgent alert message be sent to one or more human admin- 25 istrators by way of the communications gateway 104, 106 (FIG. 1) to their respective wireless pagers (beepers) 107. In some cases, corrective reconfiguration with or without shutdown of various portions of the network may be put off to a later, less congested portion of the day. In such a case, the 30 corrective action would be sent to the task scheduler 150.22. Cooperative signal exchanges between the artificial administrator 150.25 and the task scheduler 150.22 are denoted by signal flow line 625.

There are some domain-wide developments or trends 35 which cannot be seen at the local level of a given file server 110-140, but can be seen or projected by analyzing the domain-wide collective of information that is present in the infrastructure snapshots 150.11 and in the domain-wide virtual catalog snapshots, 150.00, 150.01, 150.02, etc. The 40 artificial administrator 150.25 inspects these domain-wide collectives of information, as indicated by signal flow lines 626 and 627, and takes or schedules responsive actions as deemed necessary. The same information base is available to a remotely located, human administrator as indicated by 45 signal flow lines 636 and 637.

The domain-wide task scheduler 150.22 is responsible for number of tasks other than scheduling event-driven system recovery. As already mentioned, it performs the following additional scheduling tasks of: (1) scheduling backup opera- 50 tions at each network site, (2) scheduling hierarchical storage migration operations at each site; (3) scheduling domain-wide scans by the DAS 150 for virtual catalog information, for infrastructure information or for other tions for files stored at each site. The task scheduler 150.22 is additionally responsible for: (5) scheduling diagnostic operations at each network site; (6) scheduling the transfer of a given file over the network-linking backbone 105 from one location on the domain to another; (7) scheduling 60 system shutdowns to allow for routine or event-driven maintenance and repairs; and after a system shutdown, (8) scheduling system restart operations.

Task scheduling can be ordered as a on a one time event, or periodically as determined by the artificial administrator 65 150.25, or on a daily basis, or on a weekly basis, or monthly basis or yearly basis, as desired.

The policy-enforcer 150.26 which is included within the domain status/control module 150.2 is used for broadcasting domain-wide policy rules to all or selected ones of the domain/local exchange agents 119-149. The local exchange agents 119-149 then enforce the policies locally. Among the types of policies that may be downloaded into the domain/ local exchange agents 119-149 is a backup policy dictating whether file backups should be made on an incremental basis every night (e.g. backup only the files that have 10 changed) and on a full basis every weekend (e.g. backup every file over the weekend); or whether some other backup procedure should be followed (e.g. full backup every other day). A similar domain-wide policy may be dictated with regard to hierarchical storage migration. The HSM policy can dictate a length of time from last access at which migration should begin. Similarly, an archive policy may define various conditions under which files should be archived including length of time from last access and status of file owner (e.g. such as when the owner goes on a sabbatical or terminates employment). Additional policies may be broadcast to dictate the availability to different users of various tools on the network.

A virtual file manager 165.1 is included in the administrative graphical user interface (GUI) 165 for retrieving information from the domain-wide virtual catalog snapshots, 150.00, 150.01, 150.02, etc., and displaying desired views or reports to a human administrator. Signal flow line 636 represents the flow of such information across partition 603 to the virtual file manager 165.1. A return signal flow 646 from the virtual file manager 165.1 to the task scheduler 150.22 places desired file manipulation operations on the task execution list of the scheduler.

Database search and report operations are coordinated through a reports and views generating module 165.6. The expandable tree listing of above TABLE 4 is an example of a view provided by the reports and views generating module 165.6. Search results and reports have to pass through a permissions filter 165.7 before being output to a workstation screen 160a. The permissions filter 165.7 is controlled by a security module 165.5 of the administrative GUI 165. Persons who provide the appropriate passwords are given different levels of permission and are thereby allowed to or blocked from accessing various functions of the administrative GUI 165. Keyboard requests 160b or other inputs also pass through the permissions filter 165.7 prior to being granted. A help module 165.4 is provided for giving users context sensitive help information.

A remote infrastructure manager 165.3 is included in the administrative GUI 165 for generating infrastructure reconfiguration commands. Like file manipulation commands, these infrastructure reconfiguration commands are returned by signal flow line 647 to the task scheduler 150.22 for logging onto its task execution list.

The above disclosure is to be taken as illustrative of the domain-wide information; and (4) scheduling archive opera- 55 invention, not as limiting its scope or spirit. Numerous modifications and variations will become apparent to those skilled in the art after studying the above disclosure.

By way of example, in the same manner that each domain administrating server (DAS) collects and integrates the catalog, infrastructure, and other information from the respective sites of its domain, an enterprise-administrating server (EAS) can be fashioned to collect and analyze the corresponding information from all the DAS's of a given enterprise.

Given the above disclosure of general concepts and specific embodiments, the scope of protection sought is to be defined by the claims appended hereto.

What is claimed is:

- 1. A machine-implemented, network management method for managing a network of file servers where each file server has a data storage device for storing a plurality of data files and the respective data storage device of each file server 5 contains a local catalog for describing each file currently stored in the respective data storage device at least by name and size, said method comprising the steps of:
 - (a) collecting snapshots over time of the respective local catalogs of plural file servers of the network and storing said collected snapshots in a database memory so as to thereby create a historical database of collected snapshot information; and
 - (b) automatically tracking changes across the historical database of snapshot information with respect to time. 15
- 2. The method of claim 1 wherein said step of tracking includes:

- (b.1) periodically recording used storage space in a given file server; and
- (b.2) based on the recorded history of used storage space, predicting when the used storage space of that file server will reach the maximum storage capacity of that file server.
- 3. The method of claim 1 wherein said step of tracking includes:
 - (b.1) following the progress of various versions of a named file as those various versions migrate from primary to secondary storage across the network.
- primary to secondary storage across the network.

 4. The method of claim 1 wherein said step of tracking includes:
 - (b.1) tracking storage usage load shifts on a per-user basis, or on a per-storage volume basis, or on a per-server basis, or on a per-network site basis.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

PATENT NO. : 5,678,042

DATED :October 14, 1997

INVENTOR(S): Thomas Pisello et al.

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby corrected as shown below:

Column 11, line 7, "DAB-managed" should be --DAS-managed--; line 14, "DAB-managed" should be --DAS-managed--; line 40, "DM-managed" should be --DAS-managed--.

Column 14, line 24, in the third column, "127" should be --1297--.

Column 16, line 2, "LIST day?.do*" should be --LIST dav?.do*--. Column 19, line 6, "DOS ν " should be --DOS TM --; line 19, "Windows ν " should be --Windows™--.

Column 20, line 1, after line 1 insert -- Expand 1 level--.

Column 21, line 57, "DomainNee" should be --DomainName--.
Column 23, line 10, "(DAB)" should be --(DAS)--.
Column 24, line 46, "DAB" should be --DAS--.
Column 25, line 45, "DAB-managed" should be --DAS-managed--.

Signed and Sealed this

Seventeenth Day of March, 1998

Attest:

BRUCE LEHMAN

Since Tehran

Attesting Officer

Commissioner of Patents and Trademarks