Technology Innovations Associates LLC v. Google Inc. Doc. 1 Att. 5

EXHIBIT B
(Part 2 of 3)

Dockets.Justia.com


vtiradentes
(Part 2 of 3)

http://dockets.justia.com/docket/delaware/dedce/1:2013cv00355/51253/
http://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2013cv00355/51253/1/5.html
http://dockets.justia.com/

U.S. Patent Oct. 2, 2012 Sheet 35 of 45 US 8,280,932 B2

Figure 27



932 B2

,280,

US8

Sheet 36 of 45

,2012

2

Oct

U.S. Patent




U.S. Patent Oct. 2, 2012 Sheet 37 of 45 US 8,280,932 B2

Figure 28



U.S. Patent Oct. 2, 2012 Sheet 38 of 45 US 8,280,932 B2

Figuwe 30



U.S. Patent Oct. 2, 2012 Sheet 39 of 45 US 8,280,932 B2

Flgume 31



U.S. Patent Oct. 2, 2012 Sheet 40 of 45 US 8,280,932 B2

GetvialusFromBorsinbled, properiy}
end

g

Svnahworsdsy i onoocasmonomannos

GatCachadValusinbied, proporty) : CacheValusioblect, propenty)

e e e s e e s

SetValusinbied,

&

e e e e

EngususioifBventinbled, shangeiPropariiss:
5 524

aa08

N

sadoasibventioidect, oy

¢ 3206

%%

smdProperties)

SetVaiuninbiect, pCordeiners, valug -

Flguwe 32



U.S. Patent Oct. 2, 2012 Sheet 41 of 45 US 8,280,932 B2

T Tai S

i w QungiedP

e

e

Flgumwe 33



U.S. Patent Oct. 2, 2012 Sheet 42 of 45 US 8,280,932 B2

SRl =
WetunF mmSiorall, ¥y

Figure 34



U.S. Patent

&

e P wc,:’f

Oct. 2, 2012

Fatal avent £ o guisis
favvend Wype T, olbdect G nhanged
prperties 4

Sheet 43 of 45

£

v 3502

For gach proosss P
Subeorier Sat S doe

o
K“'S:}i} feotnanged?

¥ 3507

3503

e avart B7 s CopyFuentiil

¥ 3804

US 8,280,932 B2

3508

(hapnifiar

oot O ChangedPropartiesiiy:

J5408
Compitte dependart
properties I of object &

' =

irvvaikiated ) foe obdeot O

3511

i 3510

Ouaunveniil, & o g

Uipctatar

Figure 35



U.S. Patent

Oct. 2, 2012

Fatoh next avent rom qusus.
fpvenitype T, oiject O

¥

-

o 3604

RN
/M"”‘M 3 =

S,

Sheet 44

of 45 US 8,280,932 B2

OB

HOE i

Bet A = ClasaltyiCh
et Fw o wropdy b

05

ﬁ.{@i‘; M ._ ey e

= {Fg noniaionr sat
s Classine (Ol

3697

et Ao ety 3
Het B oo Oy cartaines got

cxvndnires Cin A
o
H
{one
§ 3609

Py waoh
cordaings O R
o
2308
H

Earh D cipe

A ohject Qo G

Each © v

Figure 38



U.S. Patent Oct. 2, 2012 Sheet 45 of 45 US 8,280,932 B2

KYELE

3702

3703 3704 3708
Fior aaoh .,

TR it i
Each?P w» ewlvass Kin Each K "“""‘f\\\
olassifisr dor "

Fior asets kd
propety B in
shject g

2

kg
Done Union sat of E&?{}&

3707 i 308

Each C m< satisfies 05
R i

collections for K
weghy B

, ITI0 wnen © it :
ronuit wet 8

R PEsu
et B

Figure 37



US 8,280,932 B2

1
COMPUTER SYSTEM FOR AUTOMATIC
ORGANIZATION, INDEXING AND VIEWING
MULTIPLE OBJECTS FROM MULTIPLE
SOURCES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a Continuation of U.S. application Ser.
No. 12/856,428 filed Aug. 13, 2010 by the same inventor
under the same titled, now U.S. Pat. No. 8,055,692, Issued
Month, Day, 2011, which in turn is a Continuation application
of U.S. Ser. No. 11/903,304 filed Jul. 21, 2007 by the same
inventor under the same title, now U.S. Pat. No. 7,840,619,
issued Nov. 12, 2010, which in turn was a Divisional (RCE) of
Regular U.S. application Ser. No. 10/621,689 filed Jul. 16,
2003 by the same inventor under the same title, now U.S. Pat.
No. 7,725,063, issued Oct. 5, 2007, which RCE/Regular
Application was the regular application of Provisional U.S.
Application Ser. No. 60/396,439, filed Jul. 16, 2002 by the
same inventor under the title: System, Method and Software
for Dynamic, Automatic Organization, Archiving, Retrieval,
Indexing and Viewing of Information Objects from Multiple
Sources. The benefit of the filing date of those Regular and
Provisional Applications are claimed under 35 US Code
§§119 and 120, and the international treaties and conventions
to which the United States is a signatory.

FIELD OF THE INVENTION

The invention relates to computer data processing systems
that include central processing units configured with novel
software-based information management systems, including
but not limited to: file system browsers; personal information
management systems; database storage, organization, access-
ing and retrieval systems; digital asset management systems;
email client and server operation; integrated software devel-
opment environments; internet- or intranet-based search
engines; and similar information services and systems.

BACKGROUND OF THE ART

A primary use of computer information systems is the
creation, organization, transmission and storage of informa-
tion of a variety of types in the form of content data, including
but not limited to word processing documents; spreadsheets;
images; drawings; photographs; sounds; music; email; soft-
ware source code; web pages, both local and remote; appli-
cation programs; name and address lists; appointments;
notes; calendar schedules; task lists; personal finance man-
agement data; corporate customer, department, employee,
stocking and accounting data; and so on.

Generally, this information data is stored in either indi-
vidual file system entities (files) of proprietary formats stored
ona local or LAN or WAN network disk drive or accessed via
the Internet, such as a word processing document or databases
with specialized access software. For example, email mes-
sages are often stored bundled together in a single file, and
new messages are retrieved from a remote server via an Inter-
net protocol; access requires a specific email client to manage
these messages. Similarly, accessing information in a data-
base requires specialized programs that are compatible with
the database format or network access protocol to communi-
cate with a server to store or retrieve the information and
display it in a useful format.

Although file data strings (the string of digital bits that
comprise the content data or object) are generally accompa-

10

20

25

30

35

40

45

50

55

60

65

2

nied by a small, rudimentary amount of metadata about the
file, i.e., data that represents properties describing the file
contents (such as one or more of: the file’s name, the creation
date, the last modification date, access privileges, and possi-
bly a comment), there is typically very little or no metadata
conveying information as to the internal structure or meaning
of the file’s contents, that is, no metadata about the content
data. Some files do have internal descriptions of the contents,
but this data is often difficult to access, requiring special
applications to read and not otherwise generally available to
the user. Similarly, records in a database lack information that
is needed for use in file systems. In general, database records
cannot be manipulated in the same way as files in a file
system.

Thus, the differences in the nature and manner in which
content data is stored in individual files and in proprietary
databases, and the lack of useful metadata about the files or
the database content data, makes them closed and partitioned.
This closed and partitioned nature of files and databases poses
numerous, significant organizational, archival and retrieval
problems.

File system browsers, due to their bounded (strictly lim-
ited) knowledge of file contents created by various and pos-
sibly unknown software applications, are limited to organiz-
ing files by the basic metadata properties provided by the file
system itself: by name, various dates, and by directory or
folder.

Finally, there is no general software mechanism (program)
in contemporary operating systems to link or group informa-
tion from diverse independent sources when they are man-
aged by separate applications. This problem with presently
available operating systems and application programs was
succinctly set forth by Mr. Mundie of Microsoft as follows
(referring to Bill Gates):

The scenario is the dream, not something defined in super-
gory detail,” says Mundie. “It’s what Bill and I focus on
more than the business plans or P&Ls. For a project as
big as Longhorn, there could have been 100 scenarios,
but Bill does this thing with his mind where he distills
the list down to a manageable set of factors that we can
organize developer groups around.”” Gates’ scenarios
usually take the form of surprisingly simple questions
that customers might have. Here’s a sampling from our
interviews: “Why are my document files stored one way,
my contacts another way, and my e-mail and instant-
messaging buddy list still another, and why aren’t they
related to my calendar or to one another and easy to
search en masse? ....”

(Quote from Fortune Magazine, available on the Internet
at: http://www.fortune.com/fortune/ceo/articles/0,
15114,371336-3,00.html

In addition, data stored in computer systems does not have,
as a fundamental aspect, relationship information other than
the most trivial of forms. For example, files may be grouped
together within folders or directories, or they may be labeled
with a color, but otherwise there is very little functionality to
allow the grouping or linking of disparate pieces of informa-
tion within the system.

In particular, when a file or other piece of information is
logically involved in multiple groupings, linking, cross-ref-
erencing or relating the groupings is cumbersome at best with
current systems. For example, where a given file “myCarFi-
nances.doc” logically should be grouped in both a “Finances”
group and an “Autos” group, there are no truly easy choices
for accomplishing such multiple grouping. Either a copy of
the file must be made in two separate “Finances” and “Autos”
folders, in which case the user must be careful to update both



US 8,280,932 B2

3

files when changes are made; or a shortcut or alias file must be
created and placed in these folders. Both currently available
approaches involve tedious, repetitive manual effort to create
and manage that becomes exponentially more difficult as the
number of groupings or cross-references increases.

Because of this, cross-referencing and filing objects in
multiple locations is difficult, error-prone, and time-consum-
ing. If copies are made for each location, valuable disk space
is wasted, and the user is left with having to manage changes
by making new copies whenever the original is modified and
remembering every location of every copy. Many cross-ref-
erences require many copies, further complicating the task.
And even if the user decides to create alias files instead of
making actual copies, the alias files still take up space, and the
management issue is equally complex and time-consuming.

Accordingly, there is a long felt need in the art to provide a
truly open computer system having data structures, input
interfaces, displays and operational systems that permits the
organization of information, as data objects, in a wide variety
offiles and databases, which computer system is independent
of the source of the information objects, is dynamic and
automatic, permitting faster archiving, retrieval and viewing
ofthe information and providing more meaningful and useful
links for better organization and indexing of the information.
Whatis needed is a simple-to-use data structure and operating
mechanism to link information together in a dynamic,
memory-and-space-efficient manner, without modifying the
original information or propagating numerous, storage-
space-robbing duplicates, each of which individually must be
updated as new versions arise.

THE INVENTION
Definition of Terms

It is to be understood that references to the following terms
in this application shall have the corresponding meaning pro-
vided (even when used in lower case and not in bold):

Metadata Filing System, abbreviated herein MFS: means
the inventive integrated software system for the management
of informational objects on a computer system through the
comprehensive use of metadata as defined herein, for recog-
nizing, organizing, creating and viewing relationships
between such objects which comprises one or more software
applications that provide both a user-interface and an under-
lying component architecture for the management and dis-
play of the user’s information.

Annotation or annotation metadata: means metadata that
was not originally associated with an object, but which is
defined or specified by either the user or the system for orga-
nizational purposes.

B-Tree: means a data structure by which information may
be stored efficiently on disk, with a minimum of disk accesses
to fetch a particular piece of information using an ordered key
such as a numeric identifier or a sortable string of text.

Cache: means a special storage location in memory or on
disk where objects and their associated metadata properties
may be very quickly retrieved.

Catalog: means a special database built upon the object
store that stores and retrieves reference objects addressed by
UUID and their special metadata properties of this invention;
performs queries on objects by specified metadata property
selection or designation; notifies other processes of the meta-
data property changes; and maintains a dependency graph of
objects.

Classifier: means a process by which objects are examined
and assigned to one or more containers or collections for the

30

35

40

45

55

65

4

purpose of gathering together objects with similar or the same
properties specified in a Boolean-type metadata expression
and/or key phrase match.

Collection: means a grouping of objects based on a meta-
data specification describing properties that all objects in the
group have in common, or objects that were grouped together
specifically by the user as having some shared meaning or
logical grouping.

Container: means an object in which other objects may be
grouped together for the purpose of organization. A collection
is a special type of container, and containers may contain
other containers.

Domain: means an object that includes processes for cre-
ating and managing reference objects of specific types,
including new classes of objects, in a consistent manner.
Domains permits grouping objects by nature, class of infor-
mation in them, or processes of dealing with them. For
example, a domain designated “EMail” may define reference
objects for email messages; a mailbox object; a mailbox
signature; and so on. The EMail domain also provides a
location and retrieval process by which messages are
retrieved from a central server and stored locally in the sys-
tem. A domain designated “File” may define reference
objects, explained below, for files, directories, and volumes,
as well as a scanning and matching process that creates a
mirrored representation within MFS of a directory subtree
specified in a Working Set.

Event: an occurrence of note that may be acted upon by a
thread (defined below) to perform a task.

Link or link metadata: means metadata that is specifically
defined, updated, and accessed for the purpose of linking
together and organizing reference objects logically in collec-
tions and other containers.

Metadata: means data representing a set of properties of a
given type and meaning, that is user-definable and selectable
data about the contents of an object, possibly including but
having more data than conventional, ordinary, presently used
“metadata”. Examples of metadata properties in the inventive
application software system include, but are not limited to,
names; dates and times; comments; locations; descriptions;
markers; icons; sizes; dimensions, exposure data, and copy-
right of images; keywords and phrases; colors; annotations;
links; groups; containment; ownership; access restrictions;
and so on. Metadata as referred to herein is to be distinguished
from currently used “ordinary metadata”, which is rudimen-
tary data that identifies or names an object, such as a file (e.g.
“miscellaneous” or “photos™), but that does not include data
about the contents of an object (about the content data of the
object). Metadata as used herein more particularly includes
specially formulated and used “annotation metadata” and
“link metadata”, defined in detail in the description below,
including by context and example.

Object: means any piece of information stored in a digital
format, including but not limited to file system entities such as
files and folders; specific entities such as documents, appli-
cations, images, sounds, music files, and the like; contact or
name/address records, which may be stored as individual files
or multiple records within a single file; received and sent
email messages; and objects that act as containers to hold
other objects.

Object Store: means a special database that stores and
retrieves object data by unique identifier (UID).

Property: means a user definable or selected descriptor of a
certain kind for the purpose of attributing characteristics or
values to an object in the form of content information meta-
data that can be used to classify objects into collections. A
group of properties set, created or selected by the user or a



US 8,280,932 B2

5

Domain for a particular object is considered the object’s
metadata. In the inventive system, specific link metadata is a
special property of all reference objects in the MFS, provided
to organize reference objects logically in collections and
other containers.

Reference Object: means an object internally created and
stored in the catalog and object store, which represents data
originating externally (such as files or email messages) that
are managed within MFS, the inventive metadata filing sys-
tem.

Thread: means a software entity that performs a particular
task simultaneously, and asynchronously, with other threads.

Unique Identifier, UID: means an identifier that is unique
within the scope of an object store.

Universally Unique Identifier, UUID: means an identifier
which is used to uniquely specify reference objects within the
inventive metadata filing system, as well as provide a one-to-
one mapping between external data (for example, files in the
file system) and reference objects.

Value: means a Boolean, float, integer, date, time, text
string, image, or other measure or metric of a property of an
object.

Working Set: means the set of sources of information,
either created internally or imported from or received from
external originators, that the inventive MFS, metadata filing
system, manages. This includes data from file systems, either
local or remote on a network; web addresses; email servers;
and the like.

SUMMARY, INCLUDING OBJECTS AND
ADVANTAGES OF THE INVENTION

The invention comprises a computer data processing sys-
tem, described in more detail below, that includes a central
processing unit configured with operating system and appli-
cations software, the latter which includes a novel integrated
computer control software system for the management of
informational objects including recognizing, organizing, cre-
ating and viewing relationships between multiple objects.
The overall inventive computer control system, given the
shorthand term “MFS” for metadata filing system, includes
one or more novel software applications that provide both a
user-interface and underlying component architecture,
including an object-oriented database structure, or object
store, and a metadata database structure, or catalog, for the
management and rendering of these objects to a display view-
able by a user in response to user input, regardless of the
source or nature of the object.

The inventive MFS computer data processing system for
automatic organization, indexing and viewing of information
objects from multiple sources is characterized by: at least one
central processing unit configured with client operating sys-
tem and applications software; (and/or in the case of Internet
operations the MF'S system is configured with server software
to host a site on the Internet including the serving of both
static, generally informational Web pages, and dynamic Web
pages, of information to individuals including information
that may be generated on the fly in response to individual
requests, routers and interfaces including at least one client
and/or network interface to at least one network data commu-
nication device for exchange of data among computers, rout-
ers and input devices); and peripheral input and output
devices linked to said client/server central processing unit in
an architecture so as to provide client and/or site operation
and functionality; said central processor unit includes at least
one memory coupled to a bus; said memory including
selected program structures stored therein, including an oper-

10

15

20

25

30

35

40

45

50

55

60

65

6

ating system program structure, at least one client and/or
server system management program structure, at least one
hierarchical data storage management system program struc-
ture, and selected application program code structures includ-
ing the novel MFS code structure described herein; said cen-
tral processing unit reading data input so as to implement
system functionality selected from operational, computa-
tional, archival, sorting, screening, classification, formatting,
rendering, printing and communication functions and pro-
cesses; and data record structures selectably configurable in
object, metadata, relational or hierarchical databases and
which data records are selectably associatable, correlatable
and callable; said central processing unit reading from user,
network or Internet server input devices data relating to
objects received by, created by or selected by individual users,
and processing such data in said central processing unit so as
to generate and manage informational objects by special
metadata linking to reference objects created, received or
selected and/or input by users, and so as to provide informa-
tion management tools that facilitate communication to gen-
erate, transmit and receive, archive, search, order, retrieve and
render objects, including information organization personal-
ized for each individual user based on preferences selected by
the user.

The inventive MFS computer data processing system appa-
ratus for automatic organization, indexing and viewing of
information objects from multiple sources includes a com-
puter-readable memory structured to store object information
in an object oriented database and metadata in a catalog
database, a computer display connected to said memory
means for displaying said objects, a computer-operator (user)
interface device for inputting information to specify objects
or properties of objects, sources of external objects for man-
agement by the inventive MF'S system, a computer processor
connected to said memory for transferring said specifying
information to storage in said memory, link metadata in a
second catalog database in said memory linking said speci-
fying information to said objects to provide rendering thereof
on a display for viewing by the computer system users.

The computer(s) of the invention can be configured in a
system architecture, for example, as one or more client or
server computer(s), database computer(s), routers, interfaces
and peripheral input and output devices, that together imple-
ment the system and network(s) to which a client computer
system may be connected. A computer used in the inventive
system typically includes at least one processor and memory
coupled to a bus. The bus may be any one or more of any
suitable bus structures, including a memory bus or memory
controller, peripheral bus, and a processor or local bus using
any of a variety of bus architectures and protocols. The
memory typically includes volatile memory (e.g., RAM) and
fixed and/or removable non-volatile memory (e.g., ROM,
Flash, hard disk including in RAID arrays, floppy disc, mini-
drive, Zip, Memory stick, PCMCIA card, tape, optical (CD-
ROM, etc.), DVD, magneto-optical, and the like), to provide
for storage of information, including computer-readable
instructions, data structures, program modules, operating
systems, and other data used by the computer(s). A network
interface is coupled to the bus to provide an interface to the
data communication network (LAN, WAN, and/or Internet)
for exchange of data among the various local network users,
site computers, routers, and other computing devices. The
system also includes at least one peripheral interface coupled
to the bus to provide communication with individual periph-
eral devices, such as keyboards, keypads, touch pads, mouse
devices, trackballs, scanners, printers, speakers, micro-



US 8,280,932 B2

7

phones, memory media readers, writing tablets, cameras,
modems, network cards, RF, fiber-optic and IR transceivers,
and the like,

A variety of program modules can be stored in the memory,
including OS; server system programs, HSM (Hierarchical
Storage Management) system programs, application pro-
grams including the MFS control system program(s), other
programs modules and data. In a networked environment, the
program modules may be distributed among several comput-
ing devices coupled to the network, and used as needed. When
aprogram is executed, the program is at least partially loaded
into the computer memory, and contains instructions for
implementing the operational, computational, archival, sort-
ing, screening, classification, formatting, rendering, printing
and communication functions and processes described herein
for the inventive MFS operation of automatic organization,
indexing and viewing of information objects from multiple
sources.

The inventive information object management system
manages these objects, in the applications control program
CPU-configured aspect, by scanning the created, selected or
incoming objects’ source data, whether files on disk or data
provided by remote servers. When individual objects are rec-
ognized as contained in the source data, reference objects
within the MFS system are created and tagged with UUIDs to
provide a one-to-one mapping between external data and
MES reference objects. Specific knowledge of the data for-
mats is used to extract any relevant information from the
objects (e.g. ID3 tags for artist, genre, and so on for music
files) to be used as metadata. This metadata is attached to the
reference objects, which are stored in the catalog for fast
access. As reference objects are created or are updated by
MES, they are collected into system and user-defined collec-
tions, which provide a logical grouping of objects based on
one or more of three criteria: 1) user-defined categorization;
2) user or system-defined metadata query specification(s);
and 3) user or system-defined key phrase matching.

The inventive MFS-configured CPU(s) streamline infor-
mation management by providing a view of information
objects of all domain natures (varieties) from different
sources, with a simple, direct, shared and unified storage and
linkage system that comprises the salient functionality of
storage of only one object, the MFS reference object, and
linking it to one or more collection groups by special user-
created or selected MFS link metadata, including a UUID,
which is in turn stored in a special MFS catalog database. The
link metadata, including the UID and UUID, are aliased to the
various MFS collections selected, set or created by the user in
order to create the retrieval links from the various relevant
collections to the reference object. The inventive MFS-con-
figured system automatically updates stored reference
objects’ metadata (names, sizes, and the like) and links (col-
lection and container membership), classifying incoming and
changed objects by their content data and metadata, thereby
automatically updating and creating new links to the growing
number of objects in the various collections.

The inventive MFS-configured system provides an organi-
zational structure and methodology for information manage-
ment, including archival storage, retrieval, indexing, cross-
referencing, logically grouping, and display of informational
objects of all kinds. Objects may be created within MFS
directly by the user, or within MFS through software compo-
nents that create representations of information not stored
directly within MFS, such as files and folders on a storage
medium.

From the perspective of process, or method of operation of
the MFS-configured computer system the CPU is caused to

10

15

20

25

30

40

45

50

55

65

8

process as follows (by reference to an “external object” is
meant an object outside MFS, although it can be one created
by the client computer system or could be an incoming for-
eign object, that is, one sent from a distant server). When an
external object is to be managed by MFS (whether incoming
or locally created), MFS creates an internal representation of
the object and stores the representation in the MFS object
oriented database (OODB), called the object store, which
assigns an internal unique identifier (UID), upon which it is
termed the “reference object” (RO). The RO is simulta-
neously scanned and metadata is created (including a desktop
icon) and/or extracted, and this metadata is associated (bit
strings added to the object data) with the reference object.
Only this metadata (including unique reference information
for finding the external object, called the universally-unique
1D, or UUID) is stored in the catalog database, not the entire
external object itself. This process is “mirroring”, with the
reference object identified within the system by internal UID,
and the association properties metadata being the “image” (or
“virtual image”) in the catalog. The system, as metadata are
created upon selection or creation of collections or contain-
ers, “reflects” the reference object in them through tagging
additional “path” and “hierarchy” link metadata to the prop-
erties metadata that is automatically associated with the ref-
erence object and stored in the catalog. Updates and changes
to the reference objects also update the metadata in the cata-
log with the changes rippling throughout all the images in all
collections instantly and simultaneously. User identification,
selection, or creation of a collection writes the metadata for
the selected object; dragging and dropping an object into a
collection or container also auto-writes to the metadata, add-
ing the relevant link. Searching the metadata, via automatic or
user selected or created queries recalls the single reference
object from the OODB, and if selected, the external object is
retrieved from the external source (hard drive or other data
storage), permitting a comprehensive desktop interface.

The inventive MFS-configured computer system applica-
tion programs may be written in a wide range of computer
languages, a suitable exemplary language being the C++ lan-
guage. A number of equivalent versions of the inventive MFS
program(s) can be written by a person skilled in the art of
software development upon an understanding of the architec-
ture, methodology and functional features disclosed herein.
The inventive MFS applications can be run on a standard
computer system architecture including a standard industry
computer processor, input/output devices, a bitmapped dis-
play, and at least one primary defined physical data storage
area for temporary and permanent storage of data objects.

The following summary of the features of the inventive
MFS-configured computer system(s) and how these features
are functionally realized will enable one skilled in the art to
write suitable code for applications that realize the MFS
functionality.

Collections: The inventive MFS-configured CPU control
program simultaneously classifies objects into multiple con-
tainers using link metadata rather than duplication, thereby
allowing users to categorize objects in ways that most clearly
reflect different approaches and ways of viewing the same
information. Users can select predetermined collections pro-
vided in a basic menu, such as Family, Friends, Work, To Do,
Activities, and Vacation when running the MFS program for
the first time, and can create and set up user-defined collec-
tions as well.

Drag-And-Drop Categorization: Another feature of the
inventive MFS-configured computer system enables the user
to organize all kinds of information, not merely simple files,
through a drag-and-drop windows-and-icons software func-



US 8,280,932 B2

9

tionality, making it easy to organize objects and cross-refer-
ence them from place to place using a desktop-style interface.
That is, clicking on the icon or list reference to an object in
one collection window and dragging it into another collection
window establishes a new link; the object is now accessible
from both collections. And, rather than being duplicated in an
object database, only the link metadata is placed in the cata-
log, with that catalog being updated for retrieval of the refer-
ence object from either collection. This drag-and-drop link-
age creation without duplication is an extremely powerful
function of the inventive application program.

Dynamic Queries: Another function of the inventive MFS-
configured computer system provides novel ways to show
relationships between information objects based on shared
properties by querying the MFS metadata and creating links
dynamically, including but not limited to matching key
phrases in an object’s textual properties; matching dates and
times, including date and time ranges or exact matches; fil-
tering on sizes, ordering, or type; and so forth.

Partitioned Storage: Another function of the inventive MFS
applications program structure provides a unique and effi-
cient mechanism for storage of objects and their properties,
for fast and dynamic updating and retrieval, a partitioned
storage organization comprising a catalog (a metadata data-
base) and object store (an object database for storing object
data, including B-Tree nodes, foundation and reference
objects).

View By Reference: Another function of the inventive
MEFS program provides a novel mechanism for presenting
non-apparent or unexpected relationships between objects by
leveraging both the system’s and the user’s categorization
mechanisms to show only relevant information through fil-
tering and cross-referencing.

Sticky Paths Another function of the inventive MFS pro-
gram provides a variety of hierarchical views of objects and
their containment relationships and/or location paths within
the user’s computer system, including but not limited to list
views whereby the visible objects’ containment hierarchies
are continuously made visible in a dynamically-updating por-
tion of the window.

People, Activities, Time Orientation: Another function of
the inventive MFS-configured computer system provides a
basic set of organizational principles so users can intuitively
manage their information in a way that reflects the informa-
tion’s relationships as they occur in the real world, including
organizations based on people, projects, activities, time,
places, etc.

Consistency Maintenance Another function of the inven-
tive MFS-configured system keeps all object relationships up
to date automatically, so that any changes in the user’s infor-
mation space (e.g., desktop) results in timely and appropriate
changes to any object views.

Automatic Hypertext Linking: Another function of the
inventive MFS-configured system utilizes the existing orga-
nizational structures and data to automatically create links
between objects, including but not limited to hypertext inks in
textual properties of objects such as the bodies of email mes-
sages or the contents of a document.

Extensible Domains: Another function of the inventive
MFS-configured system provides a plug-in mechanism for
other applications to take advantage of the features of the
invention: MFS provides interfaces to permit one or more
client applications to actively create new objects for, apply
properties to, store, link, and classify the client application’s
information such that it may be viewed and collected in the
same way as any other objects in the system. MFS provides
the software functionality to dynamically restructure and link

10

15

20

25

30

35

40

45

50

55

60

65

10

preexisting file systems, files, and databases in a way that is
modular, scalable, and extensible.

BRIEF DESCRIPTION OF THE FIGURES AND
DRAWINGS

The invention is described in more detail by reference to
the figures and drawings in which:

FIG. 1 is an overview of the inventive system’s major
features;

FIG. 2 is a depiction of the Mirrored Object System;

FIG. 3 describes the Property-Based Information Access;

FIG. 4 is a display depicting the MFS inventive system
desktop interface;

FIG. 5 is a display showing the preview viewing mode for
images;

FIG. 6 is a display of the list viewing mode;

FIGS. 7a, 75 and 7¢ show several displays of the small and
large icon views, with added property tags;

FIG. 8 includes two displays depicting the view scaling
mechanism;

FIGS. 9a and 95 include two displays of the image and text
window views;

FIGS. 10a and 1056 show two displays of the Information
windows for image and music files;

FIGS. 11a and 115 show two displays of the content view
mode, for images and email;

FIGS. 12a and 125 describe the sticky path mechanism for
viewing hierarchies in a list format;

FIG. 13 depicts link metadata between objects and collec-
tions;

FIG. 14 shows two displays of creating a collection of PEG
image files;

FIG. 15 shows two displays of creating a collection of
objects related to Scandinavia by key phrase;

FIGS. 16a and 165 depict the hyperlinking mechanism for
objects with textual properties;

FIG. 17 shows an information window displaying the mul-
tiple classification of an image;

FIG. 18 shows a contact object and its corresponding col-
lection;

FIG. 19 depicts creation of a new object, and dynamic
updating of a collection classifying same;

FIG. 20 is a display depicting the Today collection, show-
ing all objects that had activity today;

FIG. 21 is a display of Today, cross-referenced by collec-
tion;

FIG. 22 is a refinement of FIG. 21, Today cross-referenced
by Received email;

FIG. 23 is adepiction of the domain mechanism for extend-
ing MFS;

FIG. 24 shows adding folders to the MF'S working set;

FIGS. 25a and 255 show the workspace during and after
folders have been added;

FIG. 26 shows the workspace view;

FIG. 27 shows the standard container and content views;

FIG. 28 shows a sticky path view;

FIG. 29 shows creation of a collection;

FIG. 30 shows manually adding objects to a collection;

FIG. 31 shows a metadata query specification for a collec-
tion;

FIG. 32 is a schematic describing an overview of consis-
tency maintenance: how objects are processed within the
inventive system to update properties, classified into collec-
tions, and notified of changes by other objects;



US 8,280,932 B2

11

FIG. 33 is a schematic describing in detail the updater
process: how objects’ properties are updated and their values
stored into the metadata catalog;

FIG. 34 is a schematic describing in detail the synchronizer
process: how changed metadata is written back to the object
store;

FIG. 35 is a schematic describing in detail the notifier: how
objects are notified of changes in metadata, and when the
classifier and updater are notified of changes;

FIG. 36 is a schematic describing the classifier process:
how objects are processed for classification into collections;
and

FIG. 37 is a schematic describing in detail the classification
of a single object.

DETAILED DESCRIPTION OF THE
INVENTIONS, INCLUDING THE BEST MODE

The following detailed description illustrates the invention
by way of example, not by way of limitation of the principles
of the invention. This description will clearly enable one
skilled in the art of computer programming and software
design to make and use the invention, and describes several
embodiments, adaptations, variations, alternatives, and uses
of the inventions, including what we presently believe is the
best mode of carrying out the invention.

In this regard, the invention is illustrated in the several
figures, and is of sufficient complexity that the many parts,
interrelationships, and sub-combinations thereof simply can-
not be fully illustrated in a single patent-type drawing. For
clarity and conciseness, several of the drawings show in sche-
matic, or omit, parts that are not essential in that drawing to a
description of a particular feature, functionality, aspect or
principle of the invention being disclosed. Thus, the best
mode embodiment of one feature may be shown in one draw-
ing, and the best mode of another feature will be called out in
another drawing.

All publications, patents and applications cited in this
specification are herein incorporated by reference as if each
individual publication, patent or application had been
expressly stated to be incorporated by reference.

The Inventive System Implementation

The operation of the inventive MFS-configured computer
system is enabled, and by way of example, embodied in one
or more software program(s) that configure the CPU to pro-
vide(s) the functionalities described above. The overview of
the system architecture is shown in FIG. 1 as implementing a
Mirrored Object System providing Property-Based Informa-
tion Access, through a Comprehensive Desktop Interface,
with Collections Providing Logical Groupings, with a unique
method of Viewing By Reference, as an Extensible Platform.
Each of these functionalities is described below, with refer-
ence to corresponding figures and discussion.

FIG. 1 illustrates a computer system comprising a com-
puter 101 with an output display screen, an input keyboard
and a memory unit, such as a hard drive, 110, and one or more
network link(s) via an e-mail server 114. MFS, 1 comprises
code modules, described in detail below, that interact as
shown by the arrows, including: classifier 102, notifier 103,
updater 104, synchronizer 105, a display, layout and input/
output manager 106, the catalog metadata database 107, and
the object store reference object database 108. Representative
domains viewable on the desktop include a file domain 109, a
music domain 111, images domain 112 an e-mail domain 113
and a personal information domain 115. The e-mail domain is

10

15

40

45

55

12

linked through a network for the communication of files,
music and images to and from a network link, e.g. the Inter-
net.

Mirrored Object System. MFS, by which is meant the
inventive system disclosed herein, comprises one or more
application(s) for organizing all types of text and image infor-
mation—from word processing documents and spreadsheets;
to web pages and multimedia; to illustrations, images, mov-
ies, and photographs; to contacts, notes, and appointments; to
sounds and music; or anything else that is stored and retrieved
on a computer—using the concept of extensible properties
and link information stored as unified metadata (annotation
and link metadata) associated with a reference object.

Many of the different instances of information that a user
may want to organize are already stored as different types of
files in the file system, or otherwise external to the user’s
client computer or the user’s MFS, such as web pages on the
World Wide Web or records in an online database. Some
information is stored one-for-one: that is, a single file repre-
sents a single piece of information (say, a text file). Other
information is aggregated into a single file, or is spread across
multiple files: for example, email messages are typically
stored many to a file due to their small size, and records in a
database may be stored across multiple files as well. MFS
provides the software-enabled computer system functionality
so that the user can manage all of these different sizes and
types of information through portable and replicatable links
to reference objects without repetitive duplication and with
automatic updating. Only one of each reference object is
stored in the object store, and the reference objects mirror
one-for-one the pieces of information found externally (exter-
nal to MFS as described above).

MFS may be used concurrently with other software or
applications that operationally configure the computer sys-
tem to modify the external data sources; these sources do not
notify MFS of any changes, nor do the other applications that
make changes in the system. MFS provides an internal client
computer mechanism for noticing external changes in data
sources such as individual files that may contain objects of
interest, and for creating, deleting, or updating the appropri-
ate reference objects within MFS as necessary, by comparing
external data sources with the reference objects and making
the appropriate additions, deletions and changes in the refer-
ence objects and metadata. (See FIG. 2).

Property-based Information Access. A property is informa-
tion about an object. Currently properties are used in conven-
tional metadata format in a primitive form on computers:
filenames, modification dates, folders, and possibly com-
ments. The MFS inventive system, through the use of unified
metadata (locally-stored, having been extracted from the
original object, as well as links and annotations created by
MES) makes possible the attachment of system-defined as
well as user-selected or created extensible properties about
the content data of, or in, the object for different types of
objects, thereby organizing information, regardless of the
nature of the object, based on the unified metadata values
stored in the catalog by the MFS inventive system.

MFS maintains for each kind of object the conventional,
ordinary types of properties that common operating systems
support—name and modification date, and the folder in
which the file is stored—as well as links and annotations in
the form of corresponding metadata defined by the MFS
itself. In addition, for images, MF'S stores and maintains up to
date in the catalog metadata representing the image dimen-
sions in pixels and the pixel size, as well as resolution, size,
and quality. For music files, MFS stores as metadata the
album, artist, song title, genre and length of song in the



US 8,280,932 B2

13

catalog. For contacts, the metadata information stored is the
typical contact record: first and last name, phone numbers,
and so on in the catalog. For Adobe documents, special
Adobe-specific properties called XMP (Extended Metadata
Protocol) is read from each document and stored in the meta-
data database catalog as well. These properties may be avail-
able by examining the images, music files, Adobe files, and so
on, but are not available in a way that makes it easy to organize
these pieces of information due to the data being embedded in
the files in proprietary and changeable formats. MFS extracts
the selected properties and stores them in the catalog in the
form of metadata, where they may be viewed, modified, and
used for classification into collections. These are only a few of
the different types of objects managed by MFS, and the types
of objects managed is unlimited by the system architecture.

Because of the use of a special metadata data storage struc-
ture in the MFS, the catalog, it is very easy and fast to find the
information needed. Objects may be quickly retrieved by any
expression denoting desired property values stored in the
MFS metadata. Since MFS provides a separate location to
store this metadata and relationships, MFS may be used with
any operating system regardless of the metadata supported by
the operating system directly. (See FIG. 3)

Comprehensive Desktop Interface. MFS presents informa-
tion in a familiar desktop-style interface, with windows that
show objects as icons or list views, among others. Window
and icon sizes and locations are maintained persistently, to
preserve the user’s spatial arrangements. FIG. 4 shows a list
of folders (401), an icon view of Photoshop files (402), a list
of user-defined collections and the counts of objects within
(403), a list of domains (404), a partially-hidden text view
(405), a contact record (406), a note (407), and an appoint-
ment (408).

MEFS goes much farther than other desktop interfaces, how-
ever, in providing new and innovative viewing mechanisms
that leverage the ability of MFS to store and retrieve arbitrary
metadata.

For example, preview images are created and stored by
MES as annotations, and can be very quickly displayed in a
slide view. FIG. 5 shows a typical MFS window with the
object name (501), a type identifier showing that it is a col-
lection (502), a count of the objects displayed (503), a get info
button (504), and a content region in which the objects are
shown (505).

In a list view, FIG. 6, appropriate properties are shown for
the types of objects being viewed; no longer is the user limited
to viewing only the basic name-size-and-date list view. For
example, music properties are shown when appropriate, since
they are stored as metadata in the catalog and can be quickly
retrieved. FIG. 6 shows the Music collection (601), with
columns for filename (602), song title (603), artist (604), and
genre (605). List views may be sorted ascending or descend-
ing; the control (606) determines this, while clicking on the
column headers determine the property on which to sort.

In the icon views of FIGS. 7a, 7 and 7¢, arbitrary layouts
of icons and their related properties are possible; this can be
done programmatically, or laid out by user preference. The
standard view adornments (701 through 704) are available,
and the content may be viewed either as large icon (705), large
icon with additional properties available (706), or small icon
(707).

As shown in FIG. 8, all views may be scaled within the
window, regardless of view type (icon or list). Window (801)
is scaled at 100%, while window (802) is scaled at 150%.
Views may also be sorted by a variety of properties that are
shared by most objects: by name, by date, by size, by count

10

15

20

25

30

35

40

45

50

55

60

65

14

(for folders and other containers); and by kind. This is also
extensible by MFS to new property types.

As illustrated in FIGS. 9a and 95, objects may also be
viewed directly in their own windows. Images and text files in
particular are easily examined within MFS, allowing the user
direct access to the data. The image window has the typical
adornments (901-904; note that 903 displays the image size
and percentage zoom) and the content region (905) displays
the image itself. Resizing the window also resizes the image
to fit the window. A text window has the standard adornments
(906-909; note that 908 displays the text file size) and the
content region (910) displays the file’s text.

Because each object type may have different MFS-usable
metadata that can be extracted or synthesized from the origi-
nal content data, the information window changes depending
on the type of object being viewed. For example, FIGS. 10a
and 105 show that image files present their metadata proper-
ties (resolution, dimensions, and so on) differently than music
files (artist, song title, genre). An image file information win-
dow displays the file name (1001), tabs for file and photo data
(1002 and 1003), and image-file-specific information such as
width, height, resolution, and depth (1004). All information
windows have a tab to show comments (1005) as well as a
view of containers in which the object resides (1006), and
relevant contacts and projects. A Music file information win-
dow displays the filename (1007), common file information
(1008), and custom properties for music files including title,
artist, album, and genre (1009).

Sometimes it is convenient to view objects in a single
window without opening new windows for each. MFS pro-
vides this through the content view, illustrated in FIGS. 11a
and 115. For example, when viewing images, the content
view is divided into a view of the objects in the container
(1101) and the content of the selected object (1102). Of
course, this is not limited to showing individual objects.
Folder contents, contacts, email, and so on may also be
viewed in this way. A list of email messages (1103) may be
examined one at a time by selecting them; the contents are
shown in the right hand pane (1104).

Finally, MFS provides a unique list view feature. List views
can have arbitrary columns for property values, depending on
the type of objects being displayed; these can be determined
programmatically or by user preference. As is common in
list-type views of data, objects in the view that are containers
for other objects may be expanded, showing their contents
in-line with the other objects in the list, and generally
indented to indicate depth in the hierarchy.

One of the problems with a list view is that it is easy to lose
one’s place when scrolling through a hierarchical list of con-
tainers. When the user is looking at an item in the list, how
does the user know what that item’s container is if it has
scrolled off the top? The hierarchical path is easily forgotten.
The unique sticky path view functionality of MFS, shown in
FIGS. 12a and 125, displays hierarchies in list format, while
also maintaining a current-path view at the top of the window
(1201) that keeps the user oriented as to location in the hier-
archy (on the path) as scrolling occurs. In this way the user
always knows what the path is to the items and where the
items (or, conversely, the user) are in the hierarchy. As the user
scrolls through the list, MFS maintains a Sticky Path Pane at
the top of the window that always displays the path to the
topmost item in the list (1202, 1204, 1206), updating dynami-
cally. When the path changes (branches) due to scrolling, the
sticky path redraws to correctly identify the new current path.
Only the bottom part of the window (1203, 1205, 1207)



US 8,280,932 B2

15

scrolls while the path is updated as required. Each branch
successively “sticks” in a multi-line window at the top of the
scroll window.

Collections Providing Logical Groupings. The MFS sys-
tem tags objects of various kinds with the special attributes,
links, and general descriptive metadata described above.
Users may leverage this MFS metadata information to logi-
cally group related objects through special containers called
collections. Collections permit selection of objects and con-
tain objects that are logically-grouped by 1) user-defined
categorization; 2) user or system-defined metadata query; and
3) user or system-defined key phrase matching.

User-defined categorization is enabled by a user directly
specifying that a given object belongs to a given collection;
this is generally achieved through dragging the object to the
collection’s icon in a window, though there are additional
ways to provide user-defined categorization. This updates
specific link metadata in both the object and the collection to
indicate the relationship between the objects. (FIG. 13)

User-defined metadata queries, as shown in FIG. 14, pro-
vide automatic grouping of objects that share certain property
values. These are Boolean metadata expressions used by MFS
to define which objects should belong to the collection (in
addition to those that were categorized by the user). For
example, a collection of all JPEG files may be created by the
user selecting (via a MFS-provided popup menus, and/or a
type-in query line) all objects in the system that have names
that end in .jpg or jpeg, or have a file type of JPEG. The
objects are immediately retrieved and displayed in the collec-
tion window. The collection’s metadata query is specified in
an information window, which consists of the collection
name (1401) and a pane of terms (1402) which must be
satisfied for objects to be collected. When the information
window is closed, the collection window is shown with the
collected objects (1403). Time-based collections, such as
“Today”, dynamically modify their metadata queries to
reflect the meaning of the collection. For example, Today will
update the metadata query each day to correctly specify only
those objects whose modification date is during the current
day. Time-based collections are particularly applicable to
viewing by reference.

User- or system-defined Key Phrase Matching shown in
FIG. 15 provides for automatic grouping of objects whose
textual contents contain certain key phrases. For example, to
group all emails, text files, etc. that mention cities and coun-
tries in Scandinavia, a collection may be created for that
purpose with a query based on key words or phrases that are
related to Scandinavia, and MFS will collect them together.
As before, the collection’s Information window specifies the
collection definition; its name (1501) and a list of key phrases
(1502), at least one of which must exist in an object for it to be
collected. The result collection is displayed in a standard
MES icon window (1503).

As shown in FIGS. 16a and 1654, because collections can
group objects based on key phrases as well as by metadata
properties, examining the objects can provide automatic
cross-indexing and hypertext linking based on the collections
defined. Text windows (1601) are annotated by underlining
and coloring hypertext-linked phrases (1602). Clicking on a
link will provide a popup of the collections that specify that
key phrase (1603); choosing one will open that collection. If
more than one collection specifies the same key phrases, all
appropriate collection will be listed.

An important aspect of the inventive MFS-enabled com-
puter system control program is shown in FIG. 17. Since it
simply modifies the metadata links to indicate collection and
container membership, and does not move or copy the origi-

10

15

20

25

30

35

40

45

50

55

60

65

16

nal objects at all, objects may be classified into several dif-
ferent collections at once. For example, this image is in the
Images collection; it is taken from the air and so was catego-
rized in the Flying collection; it is a JPEG file so it is in the
JPEG collection; it’s a photo of children, so it is in the Kids
collection; it was taken during a trip to Mono Lake, so it is in
the Mono Lake (Blake) folder; and finally, the children in the
photo are in the Ward family. All the containers that contain
the object are listed (1701) and can be opened directly. In this
way the user is spared from having to decide what single
folder the file or object should be stored; collections can have
MF'S metadata links to many objects, and object links may be
stored in many different collections. For example, an auto-
mobile repair bill can be filed in Auto, Repairs, and Bills
simultaneously.

By way of further enabling example, a typical logical
grouping involves People, Places and Activities. As part of the
Personal Information Management Domain, MFS provides
the ability to create named collections for places, as well as
contacts and projects, around which objects may be grouped.
A collection is defined for each contact, and for every project
currently being worked on.

As shown in FIG. 18, MFS automatically creates such
collections and organizes your email and files by examining
them for the contact or project name. Automatic collections
may be extended as desired; for example, if contacts have
nicknames it would be appropriate for their collections to
search for their nicknames as well. In a Contact window
(1801) a Collection button (1802) opens the Collection that is
automatically linked (1803). Note how the Bruce Horn col-
lection has collected together all emails that reference “Bruce
Horn” as well as all of the source files that were written by
Bruce Horn in the development of MFS.

While metadata-query specification and key phrase match-
ing can be viewed as database queries, collections are also
dynamic: when new objects appear, or objects are edited by
the user that then satisfy the metadata query, the collections
are updated immediately. The collections need not be visible
for this to occur, as MFS operates in the background. All
collections are kept up to date at all times.

For example, as shown in FIG. 19, creating a new note
regarding a trip to Norway this summer is automatically
added to the Scandinavia collection. The original collection
(1901) does not include the note (1902) until it is created and
the word Norway is noted by MFS; then itis added (1903) and
hyper-linked automatically (1904).

One easy way to leverage MFS’s metadata capability is to
write meaningful descriptions in the comment field for files
that can be searched by collections. While some operating
systems, such as Mac OS9, provide direct support for storage
of comments, MFS supports comments for all objects
whether or not the operating system does. All metadata cre-
ated for objects within MFS is available, whether or not the
host operating system provides such a feature.

Viewing by Reference. Because a collection specifies what
objects should appear in the collection, objects may be in
many different collections simultaneously if they satisfy each
of'the collections’ specifications. This is a great benefit in that
it allows the user to view data in a variety of ways. For
example, a car repair bill can appear in the Car collection, the
Repairs collection, and Bills simultaneously.

The more collections there are, the more different ways
there are to examine and navigate through information. Each
collection is defined by the user as a meaningful way to view
objects in the user’s information space. The unique MFS
cross-reference display, combined with a dynamic, time-



US 8,280,932 B2

17

based collection set, provides the user insight into the rela-
tionships between various objects.

This display is called view by reference. For example, the
user might want to view what has happened today: what new
email has been received, and what documents have been
created or modified. The Today collection shows this in FIG.
20. The collection window (2001) is the same as any other
Collection with the exception that the query is automatically
maintained by MFS, changing as necessary.

As shown in FIG. 21, now, by switching to the reference
view, the user sees all the collections that contain objects that
were created or modified today. This is extremely useful in
that it filters for only those collections that are relevant to
Today, with no refinement (2101). Instead of showing all of
the collections for all of the people that may have sent email
in the past, the reference view shows only the collections that
have had activity today. For example, by clicking on the
Received collection (2102), the view shows the all received
email (2103).

Further, as shown in FIG. 22, if the user is only interested
in the Received email today, the reference view can be further
refined by double-clicking on the Received collection in the
left pane. This moves the Received collection to the shelf
above (2201), and now only those collections relevant to
Received email Today are visible. Clicking on each collection
in turn shows the collection’s objects that fit the specification.
Selecting the Financial collection (2202) shows all the email
received today that is related to financial news (2203).

Because MFS remembers settings and views, the user can
set up collections and preferred ways of viewing them and
keep them available at all times, constantly updated. A user
may prefer to always view email through the Received col-
lection, filtered by Today; if the user ever chooses to view
previous days’ email she can always view by other time
collections such as Last Week, Last Month, or all received
email.

Extensible Platform. Although many of the types of objects
that people use in their daily work with computers are already
provided by MFS, there are many scenarios where third-
parties might want to leverage the power of MFS’s desktop
metaphor, single reference object storage, metadata linking
functionality, and collection capabilities.

MFS provides an extension mechanism by which new
objecttypes, new views, and new capabilities are easily added
to MFS such that their functionality is presented as seam-
lessly as built-in MFS features. Extensions of this sort are
provided in MFS through Domains. While the MF'S email and
personal information domains provide much of what the stan-
dard user may want and are built in as basic application
functionalities, other email and PIM domains can be devel-
oped that function within MF'S following the principles of the
invention disclosed herein.

Examples of other significant domains that may be devel-
oped include, but are not limited to: a music jukebox, a
domain that allows the user to organize his’her music in the
same way as every other piece of information in MFS; an
extended Image cataloger domain; WebDAV support domain;
personal finance domain; and many more. These can be easily
supported and implemented within the MFS architecture as
disclosed herein. (FIG. 23)

Description Summary. The extensible architecture of the
inventive system enables disparate applications to share and
merge information: email, contacts, notes, and so on are
stored in the same data space, and can refer and cross-index
each other as needed. Separate email databases, personal
information management systems, and file browsers cannot
perform this task. All-in-one solutions, such as Microsoft

20

35

40

45

60

18

Outlook, or application suites such as Microsoft Office, are
limited to the functionality provided by the original devel-
oper, and cannot be extended by third parties. The inventive
MFS-enabled computer system’s catalog mechanism pro-
vides unlimited support for new types of objects and new
metadata, regardless of the underlying file system or operat-
ing system’s features or lack thereof.

Being able to organize all of these disparate types of infor-
mation using the same mechanism provides unique benefits.
For example, a user can maintain a collection of all corre-
spondence to and from a given person or related to a particular
project easily, whether the correspondence was via email,
documents, voice mail, fax, or image files. Similarly, a user
may organize his information on a project-by-project basis;
because a given item may appear in many different collec-
tions simultaneously, a person may work on several projects
and their contact information will therefore appear in all of
the relevant projects.

The system architecture and methodology in providing
dynamic collection functionality (such as time-based collec-
tions: Today, Yesterday, Last Year, and so on), combined with
real-time updating and referencing (Viewing by Reference),
provides a unique and valuable mechanism for examining a
user’s changing information environment.

Finally, the benefits and advantages of the inventive data
organization and archival system includes real-time updating
of collections, which allows the software to notify the user in
a variety of ways as objects enter and leave collections. For
example, the user may want to attach a notification to a given
person’s collection, so that when the user receives email from
that person a particular musical piece is played, or a voice
speaks a phrase.

By way of further description of the inventive system, the
following is a specific example of the use of an application
program, having the functionalities outlined above which one
skilled in the art will recognize is enabled in the following
description, including where pertinent, pseudocode outlines.

Exemplary Methods of Use of the Inventive MFS-Enabled
System

The following is a step-by-step description of a typical use
of the inventive system, embodied in a computer program
running on a client (user) computer with a standard operating
system and file system to store documents and other data. The
use described below is of organizing and retrieving images
created with a digital camera and stored on the computer in
individual image files.

Adding Sources to the Working Set

In order to inform MFS of sources of information to track,
the user must give MF'S the appropriate directions and speci-
fications so that MFS may find and cross-index the informa-
tion. In the case of an email source, the user creates a mailbox
within MFS and lists the internet addresses of the servers
needed (e.g. POP/SMTP or IMAP servers). In the case of
tracking information stored in files and directories in a file
system, the user clicks on a folder in the computer’s desktop
application (the Finder in the Macintosh OS, or Explorer in
Microsoft Windows) and drags it to the workspace window to
add it to MFS’s working set. Other sources will require dif-
ferent mechanisms.

The following describes use of MFS to manage and orga-
nize files in a file system; in particular, image files. For
example, assume that, over a period of time, a particular
computer user has taken thousands of digital images with
his/her digital camera, in various places, including images of
various friends and family. Assume further that he/she has
already grouped these images in folders with descriptive
names such as “Crest Hike 6/01” and “Cycle Oregon 9/02”.



US 8,280,932 B2

19

These images may, in general, have embedded information in
the form of metadata properties, such as image size, bit depth,
date on which the photo was taken, etc.

The user starts the MFS program, and, by dragging the
desired folders of images to the MFS workspace, begins the
organization process. (FIG. 24)

MFS brings up a window showing the progress of the
importing process, while MFS scans each file and folder,
recursively, in the working set (FIG. 25a). At the end of this
process, the window is removed, and the folders appear in the
Workspace. (FIG. 25b)

Viewing User Data

The user may now navigate this folder using the standard
and traditional methods of disk navigation in graphical user
interfaces: double-clicking to open the folder into a new win-
dow; clicking on the disclosure triangle to show the folder’s
contents in the same view; and so on. The windows display
the images in a variety of ways, including well-known icon
and list views showing icons representing either the type of
the file (such as a Photoshop JPEG file) or a miniature “slide”
view (thumbnail) of the image itself. Displayed with the icon,
typically, are properties of the object such as the object’s
physical size, its image dimensions, the last modified date,
and so on. MFS provides additional features for viewing the
images; viewing the image properties (width, height, bit
depth, and so on), and basic editing features (rotation, for
example).

MEF'S also provides a Workspace view (FIG. 26) in which
the following information is visible in four separate panes:

1) the original folders from which the images were exam-

ined (the working set); (2601)

2) a list of all collections defined by MFS and the user;
(2602)

3) a content pane, which dynamically displays the contents
of whatever item is selected in the first two views (2603).
In the case of a folder or collection, the contents of the
folder or collection is shown in anicon or list view; in the
case of an individual item, the item itself is shown in
detail (such as the full image, or contact information)

4) and a metadata pane, which describes the currently-

selected item’s metadata, including the set of containers
to which the item belongs. (2604)

The user may double-click on any of the folders in the
top-left pane, collections in the bottom-left pane, or any item
in the metadata collection set to open them in a new window.

Two other views are available (FIG. 27): a standard win-
dow, which displays the content of a folder, collection or item
(2701); and a content window (2702), which displays a list of
the objects within a folder or collection on the left and the
details of the selected object on the right.

Double-clicking on any item opens a window on that item,
at which point the user may choose how to view the item’s
contents. Other data, typically considered to be the object’s
metadata properties (e.g. name, modification date, and so on)
may be displayed by selecting the item and choosing the Get
Info command, which will bring up a custom information
window for each type of object that displays that object’s
particular properties. For example, a music file would be able
to show the music genre, album name, and so on, while an
image file would show image width and height, along with
other image-specific metadata.

Folders and collections may be viewed in a list format with
the sticky path view, described above. This provides dynamic
path information to the items you are viewing as you scroll
through a hierarchical (folders within folders) list. (FIG. 28)

10

15

20

25

30

35

40

45

50

55

60

65

20

Creating a Collection

By selecting the New Collection command, the user cre-
ates a new collection for organizing the images. (FIG. 29)
Two windows are then opened: the first showing the contents
of'the untitled empty collection, and the second, above, show-
ing the information about the collection including the collec-
tion’s title (2901). The user then types in a name for the
collection—for example, “Western Travel”—and closes the
window. The main collection window remains (2902), and an
icon for the collection is created in the Workspace collection
pane (2903).

Manually Categorizing Objects into Collections

The user may now view images from any of the source
folders, and by dragging their icon representations to either
the collection window or the icon representation in the Work-
space, add those images to the collection. This does not move
the images, nor moditfy them in any way; it simply updates the
links in the catalog indicating that they belong to the collec-
tion. Items from any source may be dragged in this way to any
collection, and items may belong to more than one collection
at a time. (FIG. 30)

The user may also quickly create a collection of images by
selecting the images and choosing the Collect command; this
gathers together the images into a collection, which then may
be renamed by the user.

Items may be re-categorized into different collections by
dragging them to the new collections directly. Also, items
may be removed from a collection by choosing the Remove
command, which removes the items from the collection but
does not otherwise delete the item from the source (e.g. the
file system) or any other collections.

Creating a Collection with a Metadata Specification Query

Once the user has told MFS which information on the disk
should be tracked, independent collections based on the meta-
data of images, say the width or height properties, may be
made of the items imported as well. These collections are the
same collections as described before, with the additional
specification of a metadata query.

For example, say that the user would like to collect all
images that have a width of 1600 pixels and a height of 1200
pixels. The user would then do the following:

Choose New Collection from the File menu. A window
opens, showing the contents of the untitled empty collection,
and a Get-Info sub-window opens above that with informa-
tion about the collection.

The user selects the “untitled” text and changes it to
“1600x1200 Images”. Then the user clicks on the Query tab.
An empty query appears. The user clicks on the popup menu
and chooses Image.

The user clicks on the (+) button, creating a term in the
query. The user clicks on the first popup, choosing the
“Width” property. The user clicks on the second popup,
choosing the “Equals” property. The user types 1600 into the
text field.

Then, then user clicks on the (+) button again, creating a
second term, and clicks on the OR popup menu. The user then
performs similar operations to choose “Height Equals”, and
types 1200 into the text box.

Finally, the user closes the Get Info subwindow, and the
appropriate images appear in the collection window. (FIG.
31)

Creating a Collection with a Key Phrase List

Another variant of the collection is one that collects items
that include in their textual properties specific key phrases.
For example, a Scandinavia collection may be quickly created
by specifying a collection that includes the key phrases

“Oslo”, “Norway”, “Bergen”, “Copenhagen”, “the little mer-





