

Exhibit A

International Business Machines Corporation v. Airbnb, Inc. Doc. 1 Att. 1

Dockets.Justia.com

https://dockets.justia.com/docket/delaware/dedce/1:2020cv00351/71687/
https://docs.justia.com/cases/federal/district-courts/delaware/dedce/1:2020cv00351/71687/1/1.html
https://dockets.justia.com/

United States Patent

US007072849B1

(12) (10) Patent No.: US 7,072,849 B1
Filepp et al. (45) Date of Patent: Jul. 4, 2006

(54) METHOD FOR PRESENTING ADVERTISING (56) References Cited
IN AN INTERACTIVE SERVICE U.S. PATENT DOCUMENTS

(75) Inventors: Robert Filepp, White Plains, NY (US); 3,653,001 A * 3/1972 Ninks - 395,132

Alexander W. Bidwell, New York, NY (Continued)
(US); Francis C. Young, Pearl River, FOREIGN PATENT DOCUMENTS
NY (US); Allan M. Wolf, Ridgefield, JP 573167 * 1 1982
CT (US); Duane Tiemann, Ossining, JP 3204259 * 9, 1991
NY (US); Mel Bellar, New York, NY OTHER PUBLICATIONS
(US); Robert D. Cohen, Pouyhquag,
NY (US); James A. Galambos, “Trintex Sets Prodigy Pricing; Telaction Reports New Cable
deceased, late of Westport, CT (US); System Affiliate’: IDP Report; v 9 Issue:n4 p. 2(2); Apr. 1,
Kenneth H. Appleman, Brewster, NY 1988: Dialog(file 648, 06639981).*
(US); Sam Meo, Carmel, NY (US) (Continued)

(73) Assignee: International Business Machines Primary Examiner Donald L. Champagne
Corporation, Armonk, NY (US) (74) Attorney, Agent, or Firm—Connolly Bove Lodge &

s s Hutz LLP: Douglas Lefeve

(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT
patent is extended or adjusted under 35 A method for presenting advertising in an interactive service
U.S.C. 154(b) by 0 days. provided on a computer network, the service featuring

applications which include pre-created, interactive text/
21) Appl. No.: 08/158,025 raphic sessions is described. The method features steps for (21) App 9 grap p

presenting advertising concurrently with service applica
(22) Filed: Nov. 26, 1993 tions at the user terminal configured as a reception system.

In accordance with the method, the advertising is structured
Related U.S. Application Data in a manner comparable to the service applications enabling

the applications to be presented at a first portion of a display
(60) Division of application No. 07/388,156, filed on Jul. associated with the reception system and the advertising

28, 1989, now Pat. No. 5,347,632, which is a con- resented at a second portion. Further, steps are provided for s s s s s p p p p

tinuation-in-part of application No. 07/328,790, filed storing and managing advertising at the user reception
on Mar. 23, 1989, now abandoned, which is a con- system so that advertising can be pre-fetched from the
tinuation-in-part of application No. 07/219,931, filed network and staged in anticipation of being called for
on Jul. 15, 1988, now abandoned presentation. This minimizes the potential for communica

• u a-s s tion line interference between application and advertising
(51) Int. Cl traffic and makes the advertising available at the reception

we system so as not to delay presentation of the service appli
G06O 30/00 (2006.01) cations. Yet further the method features steps for individu

(52) U.S. Cl. .. 70.5/14 alizing the advertising Supplied to enhance potential user
(58) Field of Classification Search 364/401; interest by providing advertising based on a characterization

395/600, 144, 153, 200, 250, 201, 207,210,
395/214,611, 613, 614, 615, 762, 779, 782,
395/133, 135,507, 327, 339, 340, 343, 346,

395/200.09, 445, 460
See application file for complete search history.

of the user as defined by the users interaction with the
service, user demographics and geographical location. Yet
additionally, advertising is provided with transactional
facilities so that users can interact with it.

25 Claims, 16 Drawing Sheets

US 7,072,849 B1
Page 2

U.S. PATENT DOCUMENTS

4.552,349 A * 1 1/1985 Loos et al. 27O/54
4.575,579 A * 3/1986 Simon et al. 178/4
4,688,167 A * 8, 1987 Agarwal 395,343
4,714.996 A * 12/1987 Gladney et al. 395/600
4,805,134. A 2, 1989 Calo et al. 395/610
4,823,122 A * 4, 1989 Mann et al. 340,825.28
4,873,662 A 8/1989 Sargent
4,887.204 A 12, 1989 Johnson et al. 395/600
4,897,781 A * 1/1990 Chang et al. 395/600
4,897,782 A * 1/1990 Bennett et al. 395/600
4,989,850 A * 2/1991 Weller 270/11
5,036,314 A * 7/1991 Barillari et al. 340,717
5,087,805. A * 2/1992 Silverschotz et al. .. 219/121.71
5,105,184 A * 4, 1992 Pirani et al. 340,721
5,119,290 A 6, 1992 Loo et al. 395/400

OTHER PUBLICATIONS

“The Handbook'; Prodigy; C1990 Prodigy Services Com
pany Glessbrenner, Alfred; Ceries, New On-line fee; S4.95
a Month; Home Office Computing; v8 P. 36(1): Dec., 1990
Dialog (file 647,09685321).*
“Advertisers Need Quick Fix for Zipping, Zapping; Mar
keting News; v20 n10; pp. 12; May 9, 1986; Dialog: File 15,
Accii OO317906.
“Consumers Plugging into new Electronic Mall': Advertis
ing Age: Mar. 4, 1985; p. 741; Dialog: File 16, Acci
O 11555.74%
“CompuServe Will Jointly Offer Advertising and Direct
Marketing Services via the CompuServe Information Ser
vice, a Videotex System: News Release; Oct. 19, 1983; pp.
1-3: Dialog: File 16, Acci 00962377.*
“Compuserve, L.M. Berry to Test Viability of Online Adver
tising: Online Database Report; v4 n10; p. 12; Oct. 1983;
Dialog: File 275, Acci 00610155.*
Miller: “Database and Videotex Services. Where is Video
tex Going?': Data Communications Buyers' Guide 1983;
pp. 152-157; Nov. 1982: Dialog: File 15, Acci 00188062.*
Dictionary of Computers, Information Processing & Tele
communications, 2nd ed.: Jerry M. Rosenberg: 1984; pp.

183, 184, 268, 269,303, 395, 402,455, 530, 531, 594, 639,
640, 690, 691.*
Dictionary of Computers, Information Processing & Tele
communications, 2nd ed.: Jerry M Rosenberg: 1984; p.
700.*
Miller: “Database and Videotex Services. Where Is Video
tex Going?': Data Communications Buyers' Guide 1983;
pp. 152, 157; Nov. 1982.*
Dietrich et al.: “Toward a Graphic Standard”; PC World; v2
n12; p. 264-269; Nov. 1984.*
“MCTel Inc. Advertises in the Electronic Mall Shop-at
Home Service, an Advertising Vehicle of CompuServe Inc.
And L. M. Berry & Co.”: PR Newswire, PH303; Jan. 23,
1985; Dialog: File 148, Acci 02341095.*
“Consumers Plugging Into New Electronic Mall': Advertis
ing Age: Mar. 4, 1985; p. 741.*
“Home-Computer Shopping Arrives': Discount Store News;
v24; p. 3(2); Mar. 18, 1985; Dialog: File 148, Acci
O2324097.*
“Advertisers Need Quick Fix for Zipping, Zapping; Mar
keting News; v20 n10; pp. 12; May 9, 1986.*
Caplinger, Michael, “An Information System Based on
Distributed Objections”, OOPSLA '87 Proceedings.
Schatz, Bruce, “Telesophy: A System for Manipulating the
Knowledge of a Community”, 1987 IEEE.
Christodoulakis, S., “The Multimedia Object Presentation
Manager of MINOS: A Symmetric Approach”. ACM
SIGMOD Conf. 1986.
Christodoulakis, S., "Issues in the Architecture of a Docu
ment Archiver Using Optical Disk Technology”, 1985 ACM.
Christodoulakis, S., “Multimedia Document Presentation,
Information Extraction, and Document Formation in
MINOS: A Model and A System” 1986 ACM.
Sigel, Efrem, “The Future of Videotext”, 1983, Knowledge
Industry Publications, Inc., White Plains NY and London.
Alber, Antone F., Videotex/Teletext Principles & Practices,
McGraw-Hill, Inc., 1985.

* cited by examiner

U.S. Patent Jul. 4, 2006 Sheet 1 of 16 US 7,072,849 B1

information Loyer
1 OO

2OO

O
20

3OO Coche/Concentrator

40 Reception System

FIG. 1

US 7,072,849 B1 Sheet 2 of 16 Jul. 4, 2006 U.S. Patent

OZ

uu938ÁS Jeonpou)

U.S. Patent Jul. 4, 2006 Sheet 3 of 16 US 7,072,849 B1

255

Hedder Portition 250

Body Portition Body Partition
260 260

Window
Portition
275

U.S. Patent Jul. 4, 2006 Sheet 4 of 16 US 7,072,849 B1

255
Presentotion Doto 44

ABC APPLES-7
APPLES ARE GOOD FOR YOU

Header
Portition #1
25O Display

Field 2
27

Body
Eton 2 APPEs cost feAC
260 HOW MANY APPLES DO YOU

Display
Field 1
270
(input)

WISH TO ORDER 2 -

AD
Portition 3 Display
28O # Field 3

272 AD
ACON

BACK PATH MENU JUMPHEP EXT
292 29 294 296 297 298

Commond Bor
2." SPECIFIC DISPLAY SCREEN EXAMPLE

285

FIG. 3b

U.S. Patent Jul. 4, 2006 Sheet S of 16 US 7,072,849 B1

OBJECT STRUCTURE

550
\ 551 552 552 552

header SEGMENT SEGMEN SEGMENT

553 554 555

FIG. 4a

US 7,072,849 B1 U.S. Patent

H15ONET! TOHINOOC||

U.S. Patent Jul. 4, 2006 Sheet 8 of 16 US 7,072,849 B1

OBJECTS: COMPOSTION AND RELATIONSHIPS 5OO 524.

PAGE TEMPLATE OBJECTS -522
532 PAGE ELEM

-520 526 (ELEMENT SELECTOR
KEYWORD PAGE FORMAT CAL PROGRAM CALLS CALLS CALL

PAGE FORMAT OBJECTS
PARTITION DEFINITIONS
PAGE DEFAULTS

504 or 51 O

PAGE ELEMENT OBJECTS

-528
PARTITION DEFINITION
CUSTOM TEXT-N 514
CUSTOM CURSOR 1 N512
PRESENTATION DATAYN 550
FIELD DEFINITIONS-N 516
ARRAY DEFINITIONS-Ns
PROGRAM CALLs N.

PROGRAM OBJECTS
PROGRAMSFN 534

WINDOW OBJECTS

PARTITION DEFINITION

CUSTOM TEXT-514
CUSTOM CURSOR1512
PRESENTATION DATA
FED DEFINITIONS
ARRAY DEFINITIONS
PROGRAM CALLs

U.S. Patent Jul. 4, 2006 Sheet 9 of 16 US 7,072,849 B1

55
PAGE TEMPLATE OBJECT

PAGE PAGE OBJECT FORMAT ELEMENT

0. ThESE POINTERS ARE
Q - ETHER SYMBOUCOTHE

PAGE FORMAT OBJECT OBJECT OF THE POINTED
DESCRIBES PARTTTIONS \ S.529 DISPLACEMENTS WITHEN A

502 lar anar tim N 8 - M

(PAGE ELEMENT OBJECT
DEFINES PRESENTATION DATA FOR A GMEN PARTTON
FED DEFINITIONS, PROGRAM LOGIC TO BE EXECUTED

SO4

PROGRAM OBJECT

PROGRAM LOGIC TO BE INTERPRETED
AS A RESULT OF AN EVENT, e.g., FIELD POST-PROCESSOR

SO8

FIG 5a

U.S. Patent Jul. 4, 2006 Sheet 10 of 16 US 7,072,849 B1

PAGE COMPOSTION AND PROCESSING
26 5OO 5

PAGE TEMPLATE R PAGE FORMAT CALL

-1 532

PROGRAM CALL
PAGE EEMENT CAL

PAGE EEMEN CA

EVENT PROGRAM ID PARAMETERS

PARAMETER ORMEN
PROGRAMS, EG:

t APPLICATION
ROGRAM OBJECT MODES COMMON

CODE

FELD POSPROCESSOR
FIELD INTALZER

FIG. 5b

U.S. Patent

(2)

(C)

SELECTORS
NTAZERS

(1c
OP WINDOW

(1d)
OSE WINDOW
(WO-id

Jul. 4, 2006

RGGER PROG
OBJECT (PO-id

INTERPRE PRE-PROC

BUFLD PPT

PROCESS PARAMS.
GENERATE TRANS,
OPEN WINDOW
CLOSE WINDOW
NAVGATE TO PAGE
(w/o RETURN)

Sheet 11 of 16

PROCESS OBJECTS

REGUEST OBJS.
PARSE OBJS.

INTERPRET SEGS

TRIGGER PRE-PROC
MNGE WINDOW STACK
X-FER PRES, DATA

NAV(PTO-ld yNERPRE POST-PROC

US 7,072,849 B1

FIG. 6
R.S. PROTOCOL

(3)
PAGE/OPEN WINDOW
PROCESSING
COMPLEE

WAT FOREVENT
(D) USER INPUT

SYSTEM GENERATED

PROCESS EVENT
TRANS PHYS.--LOG EVENT
UPDATE DISPLAY FELDS
PEVs)
NCTION CAL

TRIGGER FUNCTION
FILTER
TRIGGER POST-PROC

S. TRGGER
OGRAM

OBJECT (Po-id)

U.S. Patent Jul. 4, 2006 Sheet 12 of 16 US 7,072,849 B1

PARTONED APPUCATIONS

e LINKED PAGE TEMPLATE OBJECTS

e PAGE ELEMEN OBJECTS

o PROGRAM OBJECTS AND PROCESSORS

o TRANSACTION MESSAGE

41 O

H

SERVICE SOFTWARE KERNAL

42O LOGICAL OPERATING SYSTEM
433

45O PC SPECIFIC MULT - ASKER

PC SPECIFC OPERATING SYSTEM

4OO

RECEPTION SYSTEM LAYERS

FIG. 7

U.S. Patent Jul. 4, 2006 Sheet 13 of 16 US 7,072,849 B1

o Key Echo/
Ellion Keyboard Cursor Movement Display

Manoder Monager
Open/Close 4-54 nodoW Presentation 461
Navigate Doto

Object
Interpreter

Object Response Object Request
Processor 436 pre

(Build PPT- Ond open/close Request post firing of process window TBOL Or
Storage s &c firing

du 9 post Facility Object Sconner process
(porse segments) Ors

plication level
object request Interpreter

Non-loco) field
object Object Y438 Doto
request id return Ad

water Collection
Mondder Object id

Doto Collection g request 442
messages R Q

3.43 OUCOOS Monocer interfoce Request Next Queue

Send OA Receive DIA
M Messages; 469
ess999 443 F.G.S"Se s

link Communicotions Send Fotol Error Doto
Monoger

FOto
Error

Monoger

FIG. 8

U.S. Patent Jul. 4, 2006 Sheet 14 of 16 US 7,072,849 B1

551 - 526 N 522 N PAGE PAGE lar ADSLOT
PTO OBJECT FORMAT ELEMENT

500 HEADER CA CALL- SLENG
STYPE

\ 522- 522
PAGE PAGE M
ELEMEN ELEMENT
CALL CALL OB, ED

ABC
CBJ LENGTH
OBU CONTRO
STYPE - 553 V
554-SENG 8 ABCY-555

555-ABCF \ SENG-554
SSS-STYPE X STYPE-553
554-SENG 1 .
555-ABCX 0. 504

PAGE
PAGE ELEMENT ANAP
FORMA OBJECT B PRESENTATION
OBJECT PARTION CDAA

55, 1XS30
55 532

PAGE NAPPS FELD FIELD FLO. PROG, PROGRAM
EEMENTBPRESN.DEFFORDEF, FORDEF. FORCAFOR COR
OBJECT CDATAPT PART, FD. POST
PART 2 INTAUZER PigSOR

U.S. Patent Jul. 4, 2006 Sheet 15 of 16 US 7,072,849 B1

FIG 1 O
PAGE PROCESSING TABLE (ppt)

PAGE LEVEL, DATA

WINDOW
ELEMENT CHAN NB:

WINDOW LEMEL. DATA
WINDOW LEVEL, DATA

ELEMENT EVEL, DATA N

N ELEMENT EVEL, DATA N

WINDOW LEVE DATA
WINDOW LEVEL, DATA

N ELEMENT LEME DATA N

N ELEMENT LEVEL DATA N

WINDOW LEVE DATA

7 N ELEMENT EVEL, DATA
/

A / rap tra on v
FED LEME DATA \? Field level data N

N FIELD LEVEL, DATA

U.S. Patent Jul. 4, 2006

FIG 11

Fetch PTO
ossociated with string

triggers post-processors
associated with nearest
alphabetic JUMPword

Sheet 16 of 16

User opproximation
of application/interest

User invokes
"JUMP" function

Staged PEO "JUMPwindow"
opened on disploy; cursor
in /O field; user types

approximation of
applicotion nome

first chorocter of
user-typed strin

comporéd on coched
to ble

Table for PTO-religted
nneumonics for first

chorocter fetched from
network

Local string-seorch code
searches retrieved toble

for matching string

Y Letter
string nigge

1.
Window for "INDEX"

option opened

Present fetched
to be o soroble

3OS

US 7,072,849 B1

US 7,072,849 B1
1.

METHOD FOR PRESENTING ADVERTISING
IN AN INTERACTIVE SERVICE

RELATED APPLICATIONS

This is a division of application Ser. No. 07/388,156 filed
Jul. 28, 1989, Sep. 13, 1994, as U.S. Pat. No. 5,347,632,
application Ser. No. 07/388,156 being a continuation in part
of application Ser. No. 07/328,790, now abandoned filed
Mar. 23, 1989, which itself was a continuation in part of
application Ser. No. 07/219,931, now abandoned filed Jul.
15, 1988.

BACKGROUND OF THE INVENTION

1. Field of Use
This invention relates generally to a distributed process

ing, interactive computer network intended to provide very
large numbers of simultaneous users; e.g. millions, access to
an interactive service having large numbers; e.g., thousands,
of applications which include pre-created, interactive text/
graphic sessions; and more particularly, to a method for
presenting advertising to service users during interactive
sessions, the method featuring steps for presenting adver
tising concurrently with applications, the advertising being
organized as data which is stored for presentation and
replenished at the user sites So as to minimize interference
with retrieval and presentation of application data; the
method also featuring steps for individualizing the adver
tising presented based on user characterizations defined by
service interaction and/or other data Such as user demo
graphics and geographical location.

2. Prior Art
Interactive computer networks are not new. Traditionally

they have included conventional, hierarchical architectures
wherein a central, host computer responds to the information
requests of multiple users. An illustration would be a time
sharing network in which multiple users, each at a remote
terminal, log onto a host that provides data and software
resource for sequentially receiving user data processing
requests, executing them and Supplying responses back to
the users.

While such networks have been successful in making the
processing power of large computers available to many
users, problems have existed with them. For example, in
such networks, the host has been required to satisfy all the
user data processing requests. As a result, processing bottle
necks arise at the host that cause network slowdowns and
compel expansion in computing resources; i.e., bigger and
more complex computer facilities, where response times are
sought to be held low in the face of increasing user popu
lations.

Host size and complexity, however, are liabilities for
interactive networks recently introduced to offer large num
bers of the public access to transactional services such as
home shopping, banking, and investment maintenance, as
well as informational services concerning entertainment,
business and personal matters. As can be appreciated, com
mercial interactive networks will have to provide attractive
services at low cost and with minimal response times in
order to be successful. Unlike military and governmental
networks where, because of the compulsory nature of the
service performed, costs, content and efficiency are of sec
ondary concern, in commercial services, since use is pre
dominantly elective, and paid for by the consumer, costs will
have to be held low, content made interesting and response
times reduced in order to attract and hold both users who

10

15

25

30

35

40

45

50

55

60

65

2
would subscribe to the service and merchandisers who
would rely on it as a channel of distribution for their good
and services. Accordingly, if the service delivery system is
allowed to increase in size and complexity, either unchecked
or unsubsidized, higher use costs would have to be charged
to recover the larger capital and operating expenses, with the
negatively, spiralling effect that fewer users could be
attracted and be available over which to spread the costs for
Sustaining the service.

In the past, other Suppliers of mass-media services such as
radio, television, newspapers, and magazines, have sought to
hold access and subscription prices to affordable levels by
relying on advertising income to offset the costs of providing
their users with the benefits of technological advance. How
ever, in the case of interactive computer services, it has not
been apparent how advertising could be introduced without
adversely affecting service speed and content quality, which
as noted, are considered essential elements for service
SCCCSS,

Particularly, in an interactive service, if advertising were
provided in a conventional manner; as for example, by
providing the advertising as additional data to be Supplied to
and presented at the user sites, the effort would compete with
the Supplying and presentation of service application data,
and have the undesirable effect of diminishing service
response time. More specifically, if advertising were Sup
plied conventionally from a host to a user site, the applica
tion traffic, which constitutes the substance of the service,
would have to compete with advertising for network com
munication resources. Yet additionally, even if traffic con
flicts were somehow avoided, the presentation of the service
applications would have to be interrupted and delayed; for
example like television and radio commercials, as advertis
ing content was presented to the user. The effect of these
anticipated delays would be to degrade application response
time and diminishing service attractiveness.

Additionally, in view of the need to maintain the user's
interest in application content so as to drive the interactive
session, it has not been apparent how advertising matter
could be provided without distracting the user or disrupting
the session. Where service response time is diminished for
the sake of advertising which is either irrelevant or distaste
ful, insult is added to the injury, increasing the likelihood the
user, and service, will be, simply, turned off.

SUMMARY OF INVENTION

Accordingly, it is an object of this invention to provide a
method for presenting advertising in an interactive service.

It is another object of this invention to provide a method
for presenting advertising in an interactive service which
method enables the presentation of advertising to be inte
grated with presentation of service applications.

It is a yet another object of this invention to provide a
method for presenting advertising in an interactive service
which method minimizes the potential for interference
between the Supply of interactive-service applications and
advertising.

It is a still another object of this invention to provide a
method for presenting advertising which minimizes the
potential for interference between presentation of interac
tive-service applications and advertising. It is yet a further
object of this invention to provide a method for presenting
advertising in an interactive service which method enables
the advertising presented to be individualized to the user to
whom it is presented in order to increase the likelihood the
advertising will be of interest to the user.

US 7,072,849 B1
3

And, it is still a further object of this invention to provide
a method for presenting advertising in an interactive service
which method enables the user to transactionally interact
with the advertising presented.

Briefly, the method for presenting advertising in accor
dance with this invention achieves the above-noted and
other objects by featuring steps for presenting advertising
concurrently with service applications at the user reception
system; i.e., terminal. In accordance with the method, the
advertising is structured in a manner comparable to the
manner in which the service applications are structured. This
enables the applications to be presented at a first portion of
a display associated with the reception system and the
advertising to be presented concurrently at a second portion
of the display. Further, in accordance with the method, the
user reception system at which the advertising is presented
includes facility for storing and managing the advertising so
that it can be pre-fetched from the network and staged at the
reception system in anticipation of being called for presen
tation. This minimizes the potential for communication line
interference between application and advertising traffic and
makes the advertising available at the reception system so as
not to delay presentation of the service applications. Yet
further the method features steps for individualizing the
advertising Supplied to enhance potential user interest by
providing advertising based on a characterization of the user
as defined by the users interaction with the service, user
demographics and geographical location. Yet additionally,
advertising is provided with transactional facilities so that
users can interact with it.

In preferred form, the method includes step for organizing
advertising and applications as objects that collectively
include presentation data and executable program instruc
tions for generating the advertising and applications at the
reception system. In accordance with the preferred form of
the method, advertising and application objects are selec
tively distributed in the service network in accordance with
a predetermined plan based on the likelihood the applica
tions and advertising will be called by the respective user
reception systems.

Also in preferred form, the method includes step for
maintaining an advertising object identification queue, and
an advertising object store that are replenished based on
predetermined criteria as advertising is called for association
and presentation with applications. In accordance with the
method, as applications are executed at the reception system,
the application objects provide generalized calls for adver
tising. The application calls for advertising are Subsequently
forwarded to the reception system advertising queue man
agement facility which, in turn Supplies an identification of
advertising who's selection has been individualized to the
user based on, as noted, the user's prior interaction history
with the service, demographics and local. Thereafter, the
object identification for the advertising is passed to the
object store to determine if the object is available at the
reception system. In preferred form, if the advertising object
is not available at the reception system, a sequence of
alternative advertising object identifications can be provided
which if also are unavailable at the reception system will
resulting in an advertising object being requested from the
network. In this way, advertising of interest can be targeted
to the user and secured in time-efficient manner to increase
the likelihood of user interest and avoid service distraction.

10

15

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

The above and further objects, features and advantages of
the invention will become clear from the following more
detailed description when read with reference to the accom
panying drawings in which:

FIG. 1 is a block diagram of the interactive computer
network in which the method of the present invention may
be practiced;

FIG. 2 is a schematic diagram of the network illustrated
in FIG. 1;

FIGS. 3a and 3b are plan views of a display screen for a
user reception system at which advertising can be presented
to a user in accordance with the method of the present
invention;

FIGS. 4a, 4b, 4c and 4d are schematic drawings that
illustrate the structure of objects, and object segments that
may be used for advertising and applications in accordance
with the method of the present invention;

FIG. 5a is a schematic diagram that illustrates the con
figuration of the page template object which might be used
for presentation of an application and advertising in accor
dance with the method of the present invention;

FIG. 5b is a schematic diagram that illustrates page
composition which might be used for presentation of an
application and advertising in accordance with the method
of the present invention;

FIG. 6 is a schematic diagram that illustrates the protocol
which might be used by a reception system for Supporting
applications and advertising in accordance with the method
of the present invention;

FIG. 7 is a schematic diagram that illustrates major layers
for a reception system which might be used for Supporting
applications and advertising in accordance with the method
of the present invention;

FIG. 8 is a block diagram that illustrates native code
modules for a reception system which might be used for
Supporting applications and advertising in accordance with
the method of the present invention:

FIG. 9 is a schematic diagram that illustrates an example
of a partitioned application to be processed by a reception
system which might be used for Supporting applications and
advertising in accordance with the method of the present
invention;

FIG. 10 illustrates generation of a page with a page
processing table for a reception system which might be used
for Supporting applications and advertising in accordance
with the method of the present invention;

FIG. 11 is a flow diagram for an aspect of the navigation
method of a reception system which might be used for
Supporting applications and advertising in accordance with
the method of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

General System Description

FIGS. 1 and 2 show a network in which the method of the
present invention for presenting advertising might be used.
As seen the network, designated 10, includes a plurality of
reception units within a reception layer 401 for displaying
information and providing transactional services. In this
arrangement, many users each access network 10 with a
conventional personal computer; e.g., one of the IBM or
IBM-compatible type, which has been provided with appli
cation software to constitute a reception system (RS) 400.

US 7,072,849 B1
5

As seen in FIG. 1, interactive network 10 uses a layered
structure that includes an information layer 100, a switch/file
server layer 200, and cache/concentrator layer 300 as well as
reception layer 401. This structure maintains active appli
cation databases and delivers requested parts of the data
bases on demand to the plurality of RS400's, shown in FIG.
2. As seen in FIG. 2, cache/concentrator layer 300 includes
a plurality of cache/concentrator units 302, each or which
serve a plurality of RS 400 units over lines 301. Addition
ally, switch/file server layer 200 is seen to include a server
unit 205 connected to multiple cache/concentrator units 302
over lines 201. Still further, server unit 205 is seen to be
connected to information layer 100 and its various elements,
which act as means for producing, Supplying and maintain
ing the network databases and other information necessary
to support network 10. Continuing, switch/filer layer 200 is
also seen to include gateway systems 210 connected to
server 205. Gateways 210 couple layer 200 to other sources
of information and data; e.g., other computer systems. As
will be appreciated by those skilled in the art, layer 200, like
layers 401 and 300, could also include multiple servers,
gateways and information layers in the event even larger
numbers of users were sought to be served.

Continuing with reference to FIG. 2, in preferred form,
each RS 400 is seen to include a personal computer 405
having a CPU 410 including a microprocessor (as for
example, one of the types made by INTEL Corporation in its
X'86 family of microprocessors), companion RAM and
ROM memory and other associated elements, such as moni
tor 412 with screen 414 and a keyboard 424. Further,
personal computer 405 may also include one or two floppy
disk drives 416 for receiving diskettes 426 containing appli
cation Software used to Support the interactive service and
facilitate the interactive sessions with network 10. Addition
ally, personal computer 405 would include operating sys
tems software; e.g., MS-DOS, supplied on diskettes 428
suitable for the personal computer being used. Personal
computer 405 still further may also include a hard-disk drive
420 for storing the application software and operating sys
tem software which may be transferred from diskettes 426
and 428 respectfully.
Once so configured, each RS 400 provides: a common

interface to other elements of interactive computer network
10; a common environment for application processing; and
a common protocol for user-application conversation which
is independent of the personal computer brand used. RS 400
thus constitutes a universal terminal for which only one
version of all applications on network 10 need be prepared,
thereby rendering the applications interpretable by a variety
of brands of personal computers.
RS 400 formulated in this fashion is capable of commu

nication with the host system to receive information con
taining either of two types of data, namely objects and
messages. Objects have a uniform, self-defining format
known to RS 400, and include data types, such as interpret
able programs and presentation data for display at monitor
screen 414 of the user's personal computer 405. Applica
tions presented at RS 400 are partitioned into objects which
represent the minimal units available from the higher levels
of interactive network 10 or RS 400. In this arrangement,
each application partition typically represents one screen or
a partial screen of information, including fields filled with
data used in transactions with network 10. Each Such screen,
commonly called a page, is represented by its parts and is
described in a page template object, discussed below.

Applications, having been partitioned into minimal units,
are available from higher elements of network 10 or RS 400,

10

15

25

30

35

40

45

50

55

60

65

6
and are retrieved on demand by RS 400 for interpretive
execution. Thus, not all partitions of a partitioned applica
tion need be resident at RS 400 to process a selected
partition, thereby raising the storage efficiency of the user's
RS 400 and minimizing response time. Each application
partition is an independent, self-contained unit and can
operate correctly by itself. Each partition may refer to other
partitions either statically or dynamically. Static references
are built into the partitioned application, while dynamic
references are created from the execution of program logic
using a set of parameters, such as user demographics or
locale. Partitions may be chosen as part of the RS processing
in response to user created events, or by selecting a key word
of the partitioned application (e.g., “JUMP or “INDEX,”
discussed below), which provides random access to all
services represented by partitioned applications having key
words.

Objects provide a means of packaging and distributing
partitioned applications. As noted, objects make up one or
more partitioned applications, and are retrieved on demand
by a user's RS 400 for interpretive execution and selective
storage. All objects are interpreted by RS 400, thereby
enabling applications to be developed independently of the
personal computer brand used.

Objects may be nested within one another or referenced
by an object identifier (object-id) from within their data
structure. References to objects permit the size of objects to
be minimized. Further, the time required to display a page is
minimized when referenced objects are stored locally at RS
400 (which storage is determined by prior usage meeting
certain retention criteria), or have been pre-fetched, or in
fact, are already used for the current page.

Objects carry application program instructions and/or
information for display at monitor screen 414 of RS 400.
Application program objects, called pre-processors and
post-processors, set up the environment for the users inter
action with network 10 and respond to events created when
the user inputs information at keyboard 424 of RS 400. Such
events typically trigger a program object to be processed,
causing one of the following: sending of transactional infor
mation to the coapplications in one layer of the network 10:
the receiving of information for use in programs or for
presentation in application-dependent fields on monitor
screen 414; or the requesting of a new objects to be
processed by RS 400. Such objects may be part of the same
application or a completely new application.
The RS 400 supports a protocol by which the user and the

partitioned applications communicate. All partitioned appli
cations are designed knowing that this protocol will be
supported in RS 400. Hence, replication of the protocol in
each partitioned application is avoided, thereby minimizing
the size of the partitioned application.
RS 400 includes a means to communicate with network

10 to retrieve objects in response to events occurring at RS
400 and to send and receive messages.
RS 400 includes a means to selectively store objects

according to a predetermined storage criterion, thus enabling
frequently used objects to be stored locally at the RS, and
causing infrequently used objects to forfeit their local Stor
age location. The currency of objects stored locally at the RS
400 is verified before use according to the objects storage
control parameters and the storage criterion in use for
version checking.

Selective storage tailors the contents of the RS 400
memory to contain objects representing all or significant
parts of partitioned applications favored by the user.

US 7,072,849 B1
7

Because selective storage of objects is local, response time
is reduced for those partitioned applications that the user
accesses most frequently.

Since much of the application processing formerly done
by a host computer in previously known time-sharing net
works is now performed at the user's RS 400, the higher
elements of network 10, particularly layer 200, have as their
primary functions the routing of messages, serving of
objects, and line concentration. The narrowed functional
load of the higher network elements permits many more
users to be serviced within the same bounds of computer
power and I/O capability of conventional host-centered
architectures.

Network 10 provides information on a wide variety of
topics, including, but not limited to news, industry, financial
needs, hobbies and cultural interests. Network 10 thus
eliminates the need to consult multiple information sources,
giving users an efficient and timesaving overview of subjects
that interest them.

The transactional features of interactive network 10 saves
the user time, money, and frustration by reducing time spent
traveling, standing in line, and communicating with sales
personnel. The user may, through RS 400, bank, send and
receive messages, review advertising provided in accor
dance with the method of the present invention, place orders
for merchandise, and perform other transactions.

In preferred form, network 10 provides information,
advertising and transaction processing services for a large
number of users simultaneously accessing the network via
the public switched telephone network (PSTN), broadcast,
and/or other media with their RS 400 units. Services avail
able to the user include display of information such as movie
reviews, the latest news, airlines reservations, the purchase
of items such as retail merchandise and groceries, and quotes
and buy?sell orders for stocks and bonds. Network 10
provides an environment in which a user, via RS 400
establishes a session with the network and accesses a large
number of services. These services are specifically con
structed applications which as noted are partitioned so they
may be distributed without undue transmission time, and
may be processed and selectively stored on a user's RS 400
un1t.

System Configuration

As shown in FIG. 1, interactive computer network 10
includes four layers: information layer 100, switch and file
server layer 200, concentrator layer 300, and reception layer
401.

Information layer 100 handles: (1) the production, storage
and dissemination of data and (2) the collection and off-line
processing of such data from each RS session with the
network 10 so as to permit the targeting of information and
advertising to be presented to users and for traditional
business Support.

Switch and file server layer 200 and cache/concentrator
layer 300 together constitute a delivery system 20 which
delivers requested data to the RS 400's of reception layer
401 and routes data entered by the user or collected at RS
400's to the proper application in network 10. With refer
ence to FIG. 2, the information used in a RS 400 either
resides locally at the RS 400, or is available on demand from
the cache/concentrator 300 or the file server 205, via the
gateway 210, which may be coupled to external providers,
or is available from information layer 100.

There are two types of information in the network 10
which are utilized by the RS 400: objects and messages.

10

15

25

30

35

40

45

50

55

60

65

8
Objects include the information requested and utilized by

the RS 400 to permit a user to select specific parts of
applications, control the flow of information relating to the
applications, and to supply information to the network.
Objects are self-describing structures organized in accor
dance with a specific data object architecture, described
below. Objects are used to package presentation data and
program instructions required to support the partitioned
applications and advertising presented at a RS 400. Objects
are distributed on demand throughout interactive network
10. Objects may contain: control information; program
instructions to set up an application processing environment
and to process user or network created events; information
about what is to be displayed and how it is to be displayed;
references to programs to be interpretively executed; and
references to other objects, which may be called based upon
certain conditions or the occurrence of certain events at the
user's personal computer, resulting in the selection and
retrieval of other partitioned applications packaged as
objects.

Messages are information provided by the user or the
network and are used in fields defined within the constructs
of an object, and are seen on the user's RS monitor 412, or
are used for data processing at RS 400. Additionally, and as
more fully described hereafter, messages are the primary
means for communication within and without the network.
The format of messages is application dependent. If the
message is input by the user, it is formatted by the parti
tioned application currently being processed on RS 400.
Likewise, and with reference to FIG. 2, if the data are
provided from a co-application database residing in delivery
system 20, or accessed via gateway 210 or high function
system 110 within the information layer 100, the partitioned
application currently being processed on RS 400 causes the
message data to be displayed in fields on the user's display
monitor as defined by the particular partitioned application.

All active objects reside in file server 205. Inactive objects
or objects in preparation reside in producer system 120.
Objects recently introduced into delivery system 20 from the
producer system 120 will be available from file server 205.
but, may not be available on cache/concentrator 302 to
which the user's RS 400 has dialed. If such objects are
requested by the RS 400, the cache/concentrator 302 auto
matically requests the object from file server 205. The
requested object is routed back to the requesting cache/
concentrator 302, which automatically routes it to the com
munications line on which the request was originally made.
from which it is received by the RS 400.
The RS 400 is the point of application session control

because it has the ability to select and randomly access
objects representing all or part of partitioned applications
and their data. RS 400 processes objects according to
information contained therein and events created by the user
on personal computer 405.

Applications on network 10 act in concert with the
distributed partitioned applications running on RS 400.
Partitioned applications constructed as groups of objects and
are distributed on demand to a user's RS 400. An application
partition represents the minimum amount of information and
program logic needed to present a page or window, i.e.
portion of a page presented to the user, perform transactions
with the interactive network 10, and perform traditional data
processing operations, as required, including selecting
another partitioned application to be processed upon a user
generated completion event for the current partitioned appli
cation.

US 7,072,849 B1

Objects representing all or part of partitioned applications
may be stored in a user's RS 400 if the objects meet certain
criteria, Such as being non-volatile, non-critical to network
integrity, or if they are critical to ensuring reasonable
response time. Such objects are either provided on diskettes
426 together with RS 400 system software used during the
installation procedure or they are automatically requested by
RS 400 when the user makes selections requiring objects not
present in RS 400. In the latter case, RS 400 requests from
cache/concentrator layer 300 only the objects necessary to
execute the desired partitioned application.

Reception system application software 426 in preferred
form is provided for IBM and IBM-compatible brands of
personal computers 405, and all partitioned applications are
constructed according to a single architecture which each
such RS 400 supports. With reference to FIG. 2, to access
network 10, a user preferably has a personal computer 405
with at least 512K RAM and a single disk drive 416. The
user typically accesses network 10 using a 1,200 or 2.400
bps modem (not shown). To initiate a session with network
10, objects representing the logon application are retrieved
from the user's personal diskette, including the R.S. appli
cation Software, which was previously set up during stan
dard installation and enrollment procedures with network
10. Once communication between RS 400 and cache/con
centrator layer 300 has been established, the user begins a
standard logon procedure by inputting a personal entry code.
Once the logon procedure is complete, the user can begin to
access various desired services (i.e., partitioned applica
tions) which provide display of requested information and/or
transaction operations.

Applications and Pages

Applications, i.e. information events, are composed of a
sequence of one or more pages opened at Screen 414 of
monitor 412. This is better seen with reference to FIGS. 3a
and 3b were a page 255 is illustrated as might appear at
screen 414 of monitor 412. With reference to FIG. 3a, each
page 255 is formatted with a service interface having page
partitions 250, 260, 280, and 290 (not to be confused with
application partitions). Window page partitions 275, well
known in the art, are also available and are opened and
closed conditionally on page 255 upon the occurrence of an
event specified in the application being run. Each page
partition 250, 260,280 and 290 and window 275 is made up
of a page element which defines the content of the partition
or window.

Each page 255 includes: a header page partition 250,
which has a page element associated with it and which
typically conveys information on the pages topic or spon
sor; one or more body page partitions 260 and window page
partitions 275, each of which is associated with a page
element which as noted gives the informational and trans
actional content of the page. For example, a page element
may contain presentation data selected as a menu option in
the previous page, and/or may contain prompts to which a
user responds in pre-defined fields to execute transactions.
As illustrated in FIG. 3b, the page element associated with
body page partition 260 includes display fields 270, 271,
272. A window page partition 275 seen in FIG.3a represents
the same informational and transactional capability as a
body partition, except greater flexibility is provided for its
location and size.

Continuing with reference to FIG. 3a, in accordance with
the invention, advertising 280 is provided over network 10,
like page elements, also includes information for display on

10

15

25

30

35

40

45

50

55

60

65

10
page 255, and may be included in any partition of a page.
Advertising 280 is presented to the user on an individualized
basis from queues of advertising object identifications (ids)
that are constructed off-line by business system 130, and
sent to file server 205 where they are accessible to each RS
400.

Individualized queues of advertising object ids are con
structed based upon data collected on the partitioned appli
cations that were accessed by a user, and upon events the
user generated in response to applications. The data are
collected and reported by RS 400 to a data collection
co-application in file server 205 for later transmission to
business system 130. In addition to application access and
use characteristics, a variety of other parameters, such as
user demographics or postal ZIP code, may be used as
targeting criteria. From Such data, queues of advertising
object ids are constructed that are targeted to either indi
vidual users or to sets of users who fall into certain groups
according to such parameters. Stated otherwise, the adver
tising presented is individualized to the respective users
based on characterizations of the respective users as defined
by the interaction history with the service and such other
information as user demographics and locale. As will be
appreciated by those skilled in the art, conventional mar
keting analysis techniques can be employed to establish the
user characterizations based on the collected application
usage data above noted and other information.

Also with reference to FIG. 3b, the service interface is
seen to include a command region 285 which enables the
user to interact with the network RS 400 and other elements
of network 10, so as to cause Such operations as navigating
from page to page, performing a transaction, or obtaining
more information about other applications. As shown in
FIG. 3b, interface region 285 includes a command bar
290 having a number of commands 291–298 which the
user can execute. The functions of commands 291–298 are
discussed in greater detail below.

Network Objects

As noted above, in conventional time-sharing computer
networks, the data and program instructions necessary to
Support user sessions are maintained at a central host com
puter. However, that approach has been found to create
processing bottlenecks as greater numbers of users are
connected to the network; bottlenecks which require
increases in processing power and complexity; e.g., multiple
hosts of greater computing capability, if the network is to
meet demand. Further, such bottlenecks have been found to
also slow response time as more users are connected to the
network and seek to have their requests for data processing
answered.
The consequences of the host processing bottlenecking is

to either compel capital expenditures to expand host pro
cessing capability, or accept longer response times; i.e., a
slower network, and risk user dissatisfaction.

However, even in the case where additional computing
power is added, and where response time is allowed to
increase, eventually the host becomes user Saturated as more
and more users are sought to be served by the network. The
network described above, however, is designed to alleviate
the effects of host-centered limitations, and extend the
network saturation point. This objective is achieved by
reducing the demand on the host for processing resources by
structuring the network so that the higher network levels act
primarily to maintain and Supply data and programs to the

US 7,072,849 B1
11

lower levels of the network, particularly RS 400, which acts
to manage and Sustain the user screen displays.
More particularly, the described network features proce

dures for parsing the network data and program instructions
required to Support the interactive user sessions into packets,
referred to as objects, and distributing them into the network
where they can be processed at lower levels, particularly,
reception system 400.

In accordance with the method of the present invention,
the screens presented at the user's monitor are each divided
into addressable partitions shown in FIG.3a, and the display
text and graphics necessary to make up the partitions, as well
as the program instructions and control data necessary to
deliver and Sustain the screens and partitions, are formulated
from pre-created objects. Further, the objects are structured
in accordance with an architecture that permits the displayed
data to be relocatable on the screen, and to be reusable to
make up other screens and other sessions, either as pre
created and stored sessions or interactive sessions, dynami
cally created in response to the user's requests.
As shown in FIG. 4c, the network objects are organized

as a family of objects each of which perform a specific
function in Support of the interactive session. More particu
larly, in accordance with the preferred form of the invention,
the network object family is seen to include 6 members:
page format objects 502, page element objects 504, window
objects 506, program objects 508, advertisement objects 510
and page template objects 500.

Within this family, page format objects 502 are designed
to define the partitioning 250 to 290 of the monitor screen
shown in FIG. 3a. The page format objects 502 provide a
means for pre-defining screen partitions and for ensuring a
uniform look to the page presented on the reception system
monitor. They provide the origin; i.e., drawing points, and
dimensions of each page partition and different values for
presentation commands such as palette and background
color.

Page format objects 502 are referenced whenever non
window data is to be displayed and as noted ensure a
consistent presentation of the page. In addition, page format
objects 502 assures proper tessellation or “tiling of the
displayed partitions.

Page element objects 504, on the other hand, are struc
tured to contain the display data; i.e., text and graphic, to be
displayed which is mapped within screen partitions 250 to
290, and to further provide the associated control data and
programs. More specifically, the display data is described
within the object as NAPLPS data, and includes, PDI,
ASCII, Incremental Point and other display encoding
schemes. Page element objects also control the functionality
within the screen partition by means of field definition
segments 516 and program call segments 532, as further
described in connection with the description of Such seg
ments hereafter. Page element objects 504 are relocatable
and may be reused by many pages. To enable the displayable
data to be relocated, display data must be created by
producers in the NAPLPS relative mode.

Continuing with reference to FIG. 4c, window objects 506
include the display and control data necessary to Support
window partitions 275 best seen in FIG. 3a. Windows
contain display data which overlay the base page and control
data which Supersede the base page control data for the
underlying screen during the duration of the window. Win
dow objects 506 contain data which is to be displayed or
otherwise presented to the viewer which is relatively inde
pendent from the rest of the page. Display data within
windows overlay the base page until the window is closed.

10

15

25

30

35

40

45

50

55

60

65

12
Logic associated with the window Supersedes base page
logic for the duration of the window. When a window is
opened, the bit map of the area covered by window is saved
and most logic functions for the overlaid page are deacti
vated. When the window is closed, the saved bit map is
Swapped onto the screen, the logic functions associated with
the window are disabled, and prior logic functions are
reactivated.
Windows are opened by user or program control. They do

not form part of the base page. Windows would typically be
opened as a result of the completion of events specified in
program call segments 532.
Window objects 506 are very similar in structure to page

element objects 504. The critical difference is that window
objects 506 specify their own size and absolute screen
location by means of a partition definition segment 528.

Program objects 508 contain program instructions written
in a high-level language called TRINTEX Basic Object
Language, i.e., TBOL, described in greater detail hereafter,
which may be executed on RS 400 to support the applica
tion. More particularly, program objects 508 include inter
pretable program code, executable machine code and param
eters to be acted upon in conjunction with the presentation
of text and graphics to the reception system monitors.

Program objects 508 may be called for execution by
means of program call segments 532, which specify when a
program is to be executed (event), what program to execute
(program pointer), and how programs should run (param
eters).

Programs are treated as objects to conform to the open
ended design philosophy of the data object architecture
(DOA), allowing the dissemination of newly developed
programs to be easily and economically performed. As noted
above, it is desirable to have as many of these program
objects staged for execution at or as close to RS 400 as
possible.

Still further, in accordance with the method of the present
invention, advertising objects 510 include the text and
graphics that may be presented at ad partition 280 presented
on the monitor screen as shown in FIG. 3b.

Finally, the object family includes page template objects
500. Page template objects 500 are designed to define the
components of the full screen presented to the viewer.
Particularly, page template objects 500 include the entry
point to a screen, the name of the page format objects which
specify the various partitions a screen will have and the page
element object that contain the display data and partitioning
parameters for the page.

Additionally, page template object 500 includes the spe
cific program calls required to execute the screens associated
with the application being presented to the user, and may
serve as the means for the user to selectively move through;
i.e., navigate the pages of interest which are associated with
various applications. Thus, in effect, page template objects
500 constitute the “recipe' for making up the collection of
text and graphic information required to make the screens to
be presented to the user.

Also in accordance with the invention, object 500 to 510
shown in FIG. 4c are themselves made up of further sub
blocks of information that may be selectively collected to
define the objects and resulting pages that ultimately con
stitute the application presented to the user in an interactive
text and graphic session.
More specifically and as shown schematically in FIG. 4a,

objects 500 to 510 are predefined, variable length records
consisting of a fixed length header 551 and one or more

US 7,072,849 B1
13

self-defining record segments 552 a list of which is pre
sented in FIG. 4c as segment types 512 to 540.

In accordance with this design, and as shown in FIG. 4b,
object header 551 in preferred form is 18 bytes in length and
contains a prescribed sequence of information which pro
vides data regarding the object's identification, its antici
pated use, association to other objects, its length and its
version and currency.
More particularly, each of the 18 bytes of object header

551 are conventional hexadecimal, 8 bit bytes and are
arranged in a fixed pattern to facilitate interpretation by
network 10. Particularly, and as shown in FIG. 4b, the first
byte of header 551; i.e., byte 1, identifies the length of the
objectID in hexadecimal. The next six bytes; i.e., bytes 2 to
7, are allocated for identifying access control to the object so
as to allow creation of closed user groups to whom the
object(s) is to be provided. As will be appreciated by those
skilled in the art, the ability to earmark objects in anticipa
tion of user requests enables the network anticipate requests
and pre-collect objects from large numbers of them main
tained to render the network more efficient and reduce
response time. The following 4 bytes of header 551: bytes 8
to 11, are used to identify the set of objects to which the
Subject object belongs. In this regard, it will be appreciated
that, again, for speed of access and efficiency of selection,
the objects are arranged in groups or sets which are likely to
be presented to user sequentially in presenting the page sets;
i.e., Screens that go to make up a session.

Following identification of the object set, the next byte in
header 551; i.e., byte 12, gives the location of the subject
object in the set. As will be appreciated here also the
identification is provided to facilitate ease of object location
and access among the many thousands of objects that are
maintained to, thereby, render their selection and presenta
tion more efficient and speedy.

Thereafter, the following bytes of header 551; i.e., byte
13, designates the object type; e.g., page format, page
template, page element, etc. Following identification of the
object type, two bytes; i.e., bytes 14, 15, are allocated to
define the length of the object, which may be of whatever
length is necessary to Supply the data necessary, and thereby
provides great flexibility for creation of the screens. There
after, a single byte; i.e., byte 16, is allocated to identify the
storage characteristic for the object; i.e., the criterion which
establishes at what level in network 10 the object will be
stored, and the basis upon which it will be updated. At least
a portion of this byte; i.e., the higher order nibble (first 4 bits
reading from left to right) is associated with the last byte;
i.e., byte 18, in the header which identifies the version of the
object, a control used in determining how often in a prede
termined period of time the object will be updated by the
network.

Following storage characteristic byte 16, header 551
includes a byte; i.e., 17, which identifies the number of
objects in the set to which the subject object belongs.
Finally, and as noted above, header 551 includes a byte; i.e.,
18, which identifies the version of the object. Particularly the
object version is a number to establish the control for the
update of the object that are resident at RS 400.
As shown in FIG. 4a, and as noted above, in addition to

header 551, the object includes one more of the various
segment types shown in FIG. 4c.

Segments 512 to 540 are the basic building blocks of the
objects. And, as in the case of the object, the segments are
also self-defining. As will be appreciated by those skilled in
the art, by making the segments self-defining, changes in the

5

10

15

25

30

35

40

50

55

60

65

14
objects and their use in the network can be made without
changing pre-existing objects.
As in the case of objects, the segments have also been

provided with a specific structure. Particularly, and as shown
in FIG. 4a, segments 552 consists of a designation of
segment type 553, identification of segment length 554,
followed by the information necessary to implement the
segment and its associated object 555; e.g., either, control
data, display data or program code.

In this structure, segment type 553 is identified with a
one-byte hexadecimal code which describes the general
function of the segment. Thereafter, segment length 554 is
identified as a fixed two-byte long field which carries the
segment length as a hexadecimal number in INTEL format;
i.e., least significant byte first. Finally, data within segments
may be identified either by position or keyword, depending
on the specific requirements of the segment.
The specific structure for the objects and segments in

shown in FIG. 4c and is described below. In that description
the following notation convention is used:

< >-mandatory item
()—optional item

... —item may be repeated
item item
< > ()—items in a column indicate eitherfor
item item
The structure for objects is:
PAGE TEMPLATE OBJECT,

<headerd (compression descriptor) <page format call>
(page element call) . . . (program call) . . . (page element
selector) (system table call) . . . external reference) (key
word/navigation) . . . ;
As noted above, page format objects 502 are designed to

define the partitioning 250 to 290 of monitor screen 414
shown in FIG. 3a.

PAGE FORMAT OBJECT,
<headerd (compression descriptor) (page defaults) <parti
tion definition>:
PAGE ELEMENT OBJECT,

<headerd (compression descriptor) (presentation data) . . .
(program call)... (custom cursor)... (custom text)... (field
definition) . . . (field-level program call) ... (custom cursor
type 2) . . . (custom graphic) . . . (field definition type
2) ... (array definition) . . . (inventory control):

Page element objects, as explained, are structured to
contain the display data; i.e., text and graphics, to be
presented at screen partitions 250 to 290.
WINDOW OBJECT,

<headerd (compression description) <partition definition>
(page element call) (presentation data) . . . (program
call)... (custom cursor)... (custom text)... (custom cursor
type 2). . . (custom graphic) . . . (field definition) . . . (field
level program call) . . . (field definition type 2) . . . (array
definition) . . . (inventory control):
As noted, window objects include display and control

data necessary to Support window partition at Screen 414.
PROGRAM OBJECTS,

<headerd (compression descriptor) <program data>
Program objects, on the other hand, contain program

instructions written in higher-level language which may be
executed at RS 400 to support the application.

US 7,072,849 B1
15

ADVERTISEMENT OBJECT,
<headerd (compression descriptor) (presentation data) . . .
(program call)... (custom cursor)... (custom text)... (field
definition). . . (field-level program call) ... (custom cursor
type 2) . . . (custom graphic) . . . (field definition type
2) ... (array definition) . . . (inventory control):

In accordance with the invention, and as can be seen,
advertisement objects are substantially the same as page
element objects, with the difference being that, as their name
implies, their subject matter is selected to concern advertis
1ng.

Continuing, the structure for the object segments follows
from the above description, and is as described more fully in
parent application Ser. No. 388,156 now issued as U.S. Pat.
No. 5,347,632, the contents of which patent are incorporated
herein by reference.

Network Messages

In addition to the network objects, and the display data,
control data, and the program instructions they contain as
previously described, network 10 also exchanges informa
tion regarding the Support of user sessions and the mainte
nance of the network as “messenger'. Specifically, messages
typically relate to the exchange of information associated
with initial logon of a reception system 400 to network 10,
dialogue between RS 400 and other elements and commu
nications by the other network elements amongst them
selves.
To facilitate message exchange internally, and through

gateway 210 to entities externally to network 10, a protocol
termed the “Data Interchange Architecture' (DIA) is used to
Support the transport and interpretation of information. More
particularly, DIA enables: communications between RS 400
units, separation of functions between network layers 100,
200, 300 and 401; consistent parsing of data; an “open’
architecture for network 10; downward compatibility within
the network; compatibility with standard industry protocols
such as the IBM System Network Architecture: Open Sys
tems Interconnections standard; Support of network utility
sessions; and standardization of common network and appli
cation return codes.

Thus DIA binds the various components of network 10
into a coherent entity by providing a common data stream
for communications management purposes. DIA provides
the ability to route messages between applications based in
IBM System Network Architecture (SNA), (well known in
the art, and more fully described in Data and Computer
Communications, by W. Stallings, Chapter 12, McMillian
Publishing, Inc. (1985)) and non-SNA reception system
applications; e.g. home computer applications. Further, DIA
provides common data structure between applications run at
RS 400 units and applications that may be run on external
computer networks; e.g. Dow Jones Services, accessed
through gateway 210. As well, DIA provides support for
utility sessions between backbone applications run within
network 10. A more detailed description of network mes
saging in provided in above noted U.S. Pat. No. 5,347,632,
the content of which is incorporated herein by reference.

Object Language

In accordance with the design of network 10, in order to
enable the manipulation of the network objects, the appli
cation programs necessary to support the interactive text/
graphic sessions are written in a high-level language referred

10

15

25

30

35

40

45

50

55

60

65

16
to as “TBOL’, (TRINTEX Basic Object Language, “TRIN
TEX' being the former company name of one of the
assignees of this invention). TBOL is specifically adapted
for writing the application programs so that the programs
may be compiled into a compact data stream that can be
interpreted by the application software operating in the user
personal computer, the application software being designed
to establish the network Reception System 400 previously
noted and described in more detail hereafter.
The Reception System application Software supports an

interactive text/graphics sessions by managing objects. As
explained above, objects specify the format and provide the
content; i.e., the text and graphics, displayed on the user's
screen so as to make up the pages that constitute the
application. As also explained, pages are divided into sepa
rate areas called “partitions” by certain objects, while certain
other objects describe windows which can be opened on the
pages. Further, still other objects contain TBOL application
programs which facilitate the data processing necessary to
present the pages and their associated text and graphics.
As noted, the object architecture allows logical events to

be specified in the object definitions. An example of a logical
event is the completion of data entry on a screen; i.e., an
application page. Logical events are mapped to physical
events such as the user pressing the <ENTER> key on the
keyboard. Other logical events might be the initial display of
a screen page or the completion of data entry in a field.
Logical events specified in page and window object defini
tions can be associated with the call of TBOL program
objects.
RS 400 is aware of the occurrence of all physical events

during the interactive text/graphic sessions. When a physical
event such as depression of the forward <TAB> key corre
sponds to a logical event such as completion of data entry in
a field, the appropriate TBOL program is executed if speci
fied in the object definition. Accordingly, the TBOL pro
grams can be thought of as routines which are given control
to perform initialization and post-processing application
logic associated with the fields, partitions and Screens at the
text/graphic sessions.
RS 400 run time environment uses the TBOL programs

and their high-level key-word commands called verbs to
provide all the system services needed to support a text/
graphic session, particularly, display management, user
input, local and remote data access.
TBOL programs have a structure that includes three

sections: a header section in which the program name is
specified; a data section in which the data structure the
program will use are defined; and a code section in which the
program logic is provided composed of one or more proce
dures. More specifically, the code section procedures are
composed of procedure statements, each of which begins
with a TBOL key word called a verb.
The name of a procedure can also be used as the verb in

a procedure statement exactly as if it were a TBOL key-word
verb. This feature enables a programmer to extend the
language Vocabulary to include customized application
oriented verb commands.

Continuing, TBOL programs have a program syntax that
includes a series of “identifiers' which are the names and
labels assigned to programs, procedures, and data structures.
An identifier may be up to 31 characters long; contain

only uppercase or lowercase letters A through Z, digits 0
through 9, and/or the special character underscore (); and
must begin with a letter. Included among the system iden
tifiers are: "header section identifiers' used in the header
section for the program name; "data section identifiers' used

US 7,072,849 B1
17

in the data section for data structure names, field names and
array names; and finally, "code section identifiers' used in
the code section for identification of procedure names and
statement labels. A more detailed description of TBOL is
provided in parent application Ser. No. 388,156 now issued
as U.S. Pat. No. 5,347,632, the contents of which patent are
incorporated herein by reference.

Reception System Operation

RS 400 of computer system network 10 uses software
called native code modules (described below) to enable the
user to select options and functions presented on the monitor
screen 414 of personal computer 405, to execute partitioned
applications and to process user created events, enabling the
partitioned application to interact with network 10. Through
this interaction, the user is able to input data into fields
provided as part of the display, or may individually select
choices causing a standard or personalized page to be built
(as explained below) for display on the monitor of personal
computer 405. Such inputs will cause RS 400 to interpret
events and trigger pre-processors or post-processors,
retrieve specified objects, communicate with system com
ponents, control user options, cause the display of adver
tisements on a page, open or close window partitions to
provide additional navigation possibilities, and collect and
report data about events, including certain types of objects
processed. For example, the user may select a particular
option, such as opening or closing window partition 275,
which is present on the monitor and follow the selection with
a completion key stroke, such as ENTER. When the comple
tion keystroke is made, the selection is translated into a
logical event that triggers the execution of a post-processor,
(i.e., a partitioned application program object) to process the
contents of the field.

Functions Supporting the user-partitioned application
interface can be performed using the command bar 290, or
its equivalent using pull down windows or an overlapping
cascade of windows. These functions can be implemented as
part of the RS native functions or can be treated as another
partition(s) defined for every page for which an appropriate
set of Supporting objects exist and remain resident at RS
400. If the functions are part of RS 400, they can be altered
or extended by verbs defined in the RS virtual machine that
permit the execution of program objects to be triggered
when certain functions are called, providing maximum flex
ibility.

To explain the functions the use of a command bar is
assumed. Command bar 290 is shown in FIGS. 3a and 3b
and includes a NEXT command 291, a BACK command
292, a PATH command 293, a MENU command 294, an
ACTION command 295, a JUMP command 296, a HELP
command 297, and an EXIT command 298.
NEXT command 291 causes the next page in the current

page set to be built. If the last page of a page set has already
been reached, NEXT command 291 is disabled by RS 400,
avoiding the presentation of an invalid option.
BACK command 292 causes the previous page of the

current page set to be built. If the present page is the first in
the page set, BACK command 292 is disabled, since it is not
a valid option.
A filter program can be attached to both the NEXT or

BACK functions to modify their implicit sequential nature
based upon the value of the occurrence in the object set id.
PATH command 293 causes the next page to be built and

displayed from a list of pages that the user has entered,
starting from the first entry for every new session.

10

15

25

30

35

40

45

50

55

60

65

18
MENU command 294 causes the page presenting the

previous set of choices to be rebuilt.
ACTION command 295 initiates an application depen

dent operation Such as causing a new application partition to
be interpreted, a window partition 275 to be opened and
enables the user to input any information required which
may result in a transaction or selection of another window or
page.
JUMP command 296 causes window partition 275 to be

opened, allowing the user to input a keyword or to specify
one from an index that may be selected for display.
HELP command 297 causes a new application partition to

be interpreted such as a HELP window pertaining to where
the cursor is positioned to be displayed in order to assist the
user regarding the present page, a particular partition, or a
field in a page element.
EXIT command 298 causes a LOGOFF page template

object (PTO) to be built, and a page logoff sequence to be
presented at RS 400 monitor screen 414.

Navigation Interface

Continuing, as a further feature, network 10 includes an
improved procedure for searching and retrieving applica
tions from the store of applications distributed throughout
network 10: e.g., server 205, cache/concentrator 302 and RS
400. More specifically, the procedure features use of pre
created search tables which represent subsets of the infor
mation on the network arranged with reference to the page
template objects (PTO) and object-ids of the available
applications so that in accordance with the procedure, the
relevant tables and associated objects can be provided to and
searched at the requesting RS400 without need to search the
entire store of applications on the network. As will be
appreciated, this reduces the demand on the server 205 for
locating and retrieving applications for display at monitor
412.

In conventional time-sharing networks that Support large
conventional databases, the host receives user requests for
data records; locates them; and transmits them back to the
users. Accordingly, the host is obliged to undertake the data
processing necessary to isolate and Supply the requested
information. And, as noted earlier, where large numbers of
users are to be served, the many user requests can bottleneck
at the host, taxing resources and leading to response slow
down.

Further, users have experienced difficulty in searching
data bases maintained on conventional time-sharing net
works. For example, difficulties have resulted from the
complex and varied way previously known database Sup
pliers have organized and presented their information. Par
ticularly, some database providers require searching be done
only in selected fields of the data base, thus requiring the
user to be fully familiar with the record structure. Others
have organized their databases on hierarchial structures
which require the user understand the way the records are
grouped. Still further, yet other database suppliers rely upon
keyword indices to facilitate searching of their records, thus
requiring the user to be knowledgeable regarding the par
ticular keywords used by the database provider.

Network 10, however, is designed to avoid such difficul
ties. In the preferred embodiment, the network includes
procedures for creating preliminary searches which repre
sent subsets of the network applications users are believed
likely to investigate. Particularly, in accordance with these
procedures, for the active applications available on network
10, a library of tables is prepared, and maintained within

US 7,072,849 B1
19

each of which a plurality of so called “keywords' are
provided that are correlated with page template objects and
object-ids of the entry screen (typically the first screen) for
the respective application. In the preferred embodiment,
approximately 1,000 tables are used, each having approxi
mately 10 to 20 keywords arranged in alphabetical order to
abstract the applications on the network. Further, the object
id for each table is associated with a code in the form of a
character string mnemonic which is arranged in a set of
alphabetically sequenced mnemonics termed the sequence
set so that on entry of a character string at an RS 400, the
object-id for the relevant keyword table can be obtained
from the sequence set. Once the table object-id is identified,
the keyword table corresponding to the desired subset of the
objects and associated applications can then be obtained
from network 10. Subsequently the table can be presented to
the user's RS 400, where the RS 400 can provide the data
processing required to present the potentially relevant key
words, objects and associated applications to the user for
further review and determination as to whether more search
ing is required. As will be appreciated, this procedure
reduces demand on server 205 and thereby permits it to be
less complex and costly, and further, reduces the likelihood
of host overtaxing that may cause network response slow
down.

As a further feature of this procedure, the library of
keywords and their associated PTOs and objects may be
generated by a plurality of operations which appear at the
user's screen as different search techniques. This permits the
user to select a search technique he is most comfortable
with, thus expediting his inquiry.
More particularly, the user is allowed to invoke the

procedure by calling up a variety of operations. The various
operations have different names and seemingly present
different search strategies. Specifically, the user may invoke
the procedure by initiating a “Jump' command at RS 400.
Thereafter, in connection with the Jump operation, the user,
when prompted, may enter a word of the user's choosing at
monitor Screen 414 relating to the matter he is interested in
locating; i.e., a subject matter search of the network appli
cations. Additionally, the users may invoke the procedure by
alternatively calling up an operation termed “Index' with
selection of the Index command. When selected, the Index
command presents the user with an alphabetical listing of
keywords from the tables noted above which the user can
select from; i.e., an alphabetical search of the network
applications. Further, the user may evoke the procedure by
initiating an operation termed "Guide.” By selecting the
Guide command, the user is provided with a series of
graphic displays that presents a physical description of the
network applications; e.g., department floor plan for a store
the user may be electronically shopping in. Still further, the
user may invoke the procedures by initiating an operation
termed “Directory.” By selecting the Directory command,
the user is presented with the applications available on the
network as a series of hierarchial menus which present the
content of the network information in commonly understood
categories. Finally, the user may invoke the procedure by
selecting the “Path” command, which accesses a list of
keywords the user has previously selected; i.e., a personally
tailored form of the Index command described above. As
described hereafter, Path further includes a Viewpath opera
tion which permits the user to visually access and manage
the Path list of keywords. In preferred form, where the user
has not selected a list of personalized keywords, a default set

10

15

25

30

35

40

45

50

55

60

65

20
is provided which includes a predetermined list and associ
ated applications deemed by network 10 as likely to be of
interest to the user.

This ability to convert these apparently different search
strategies in a single procedure for accessing pre-created
library tables is accomplished by translating the procedural
elements of the different search techniques into a single set
of procedures that will produce a mnemonic; i.e., code word,
which can first be searched at the sequence set, described
above to identify the object-id for the appropriate library
table and, thereafter, enable access of the appropriate table
to permit selection of the desired keyword and associated
PTO and object-ids. That is to say, the reception system
native code simply relates the user-entered character String,
alphabetical range, category, or list item of respectively,
“Jump”, “Index”, “Directory”, or “Path” to the table codes
through the sequence set, so that the appropriate table can be
provided to the reception system and application keyword
selected. Thus, while the search techniques may appear
different to the user, and in fact accommodate the user's
preferences and Sophistication level, they nonetheless
invoke the same efficient procedure of relying upon pre
created searches which identify related application PTOs
and object-ids so that the table and objects may be collected
and presented at the user's RS 400 where they can be
processed, thereby relieving server 205.

In preferred form, however, in order to enhance presen
tation speed the Guide operation is specially configured.
Rather than relating the keyword mnemonic to a sequence
set to identify the table object-id and range of keywords
corresponding to the entry PTO and associated object-ids,
the Guide operation presents a series of overlapping win
dows that physically describe the “store' in which shopping
is being conducted or the “building from which information
is being provided. The Successive windows increase in
degree of detail, with the final window presenting a listing
of relevant keywords. Further, the PTO and object-ids for
the application entry screen are directly related to the
graphic presentation of the keywords. This eliminates the
need to provide variable fields in the windows for each of the
keywords and enables the entry screen to be correlated
directly with the window graphic. As will be appreciated,
this reduces the number of objects that would otherwise be
required to be staged at RS 400 to support pretention of the
keyword listing at monitor screen 414, and thus speeds
network response.
A more detailed understanding of the procedure may be

had upon a reading of the following description and review
of accompanying FIGS. 2, 3a and particularly FIG. 11 which
presents a flow diagram for the Jump sequence of the search
procedure.
To select a particular partitioned application from among

thousands of such applications residing either at the RS 400
or within delivery system 20, network 10 avoids the need for
a user to know or understand, prior to a search, the organi
Zation of Such partitioned applications and the query tech
niques necessary to access them. This is accomplished using
a collection of related commands, as described below.
The Jump command 296 as seen in FIG. 3a, can be

selected, by the user from command bar 290. When Jump
command 296 is selected, a window partition 275 is opened.
In window 275, the user is presented and may select from a
variety of displayed options that include among others, the
Directory command, the Index command, and the Guide
command, which when selected, have the effect noted
above. Additionally, the user can select a command termed
Viewpath which will presents the keywords that currently

US 7,072,849 B1
21

make up the list of keywords associated with the user's Path
command, and from which list the user can select a desired
keyword. Still further, and with reference FIG. 11, which
shows the sequence where a user offers a term to identify a
Subject of interest, the user may enter a keyword at display 5
field 270 within window partition 275 as a “best guess' of
the mnemonic character String that is assigned to a parti
tioned application the user desires (e.g., the user may input
such english words as “news.’ “pet food,” “games, etcet
era). Where the user enters a character string it is displayed
in field 270, and then searched by RS 400 native code
(discussed below) against the sequence sets above noted to
identify the object-id for the appropriate table of keywords
(not shown) that RS 400 may request from host 205. While
as noted above, a table may include 10 to 20 keywords, in
the preferred embodiment, for the sake of speed and con
venience, a typical keyword table includes approximately 12
keywords.

If the string entered by the user matches a keyword
existing on one of the keyword tables, and is thus associated
with a specific PTO, RS 400 fetches and displays associated
objects of the partitioned applications and builds the entry
page in accordance with the page composition dictated by
the target PTO.

If the string entered by the user does not match a specific
keyword, RS 400 presents the user with the option of
displaying the table of keywords approximating the specific
keyword. The approximate keywords are presented as ini
tialized, cursorable selector fields of the type provided in
connection with a Index command. The user may then move
the cursor to the nearest approximation of the mnemonic he
originally selected, and trigger navigation to the PTO asso
ciated with that keyword, navigation being as described
hereafter in connection with the RS 400 native code.

If, after selecting the Jump command, the user selects the
Index command, RS 400 will retrieve the keyword table
residing at RS 400, and will again build a page with
initialized, cursorable fields of keywords. The table fetched
upon invoking the Index command will be comprised of
alphabetic keywords that occur within the range of the
keywords associated with the page template object (PTO)
from which the user invoked the Index command. As
discussed above, the user may select to navigate to any of
this range of PTOs by selecting the relevant keyword from
the display. Alternatively, the user can, thereafter, select
another range of alphabetical keywords by entering an
appropriate character string in a screen field provided or
move forward or backward in the collection by selecting the
corresponding option.
By selecting the Directory command, RS 400 can be

caused to fetch a table of keywords, grouped by categories,
to which the PTO of the current partitioned application (as
specified by the object set field 630 of the current PEO)
belongs. Particularly, by selecting the Directory command,
RS 400, is causes to displays a series of screens each of 55
which contains alphabetically arranged general Subject cat
egories from which the user may select. Following selection
of a category, a series of keywords associated with the
specified category are displayed in further screens together
with descriptive statements about the application associated 60
with the keywords. Thereafter, the user can, in the manner
previously discussed with regard to the Index command,
select from and navigate to the PTOs of keywords which are
related to the present page set by Subject.
The Guide command provides a navigation method 65

related to a hierarchical organization of applications pro
vided on network 10, and are described by a series of

10

15

25

30

35

40

45

50

22
sequentially presented overlaying windows of a type known
in the art, each of which presents an increasing degree of
detail for a particular subject area, terminating in a final
window that gives keywords associated with the relevant
applications. The Guide command makes use of the key
word segment which describes the location of the PTO in a
hierarchy (referred to, in the preferred embodiment, as the
“BFD,” or Building-Floor-Department) as well as an asso
ciated keyword character string. The BFD describes the set
of menus that are to be displayed on the screen as the
sequence of pop-up windows. The Guide command may be
invoked by requesting it from the Jump window described
above, or by selecting the Menu command on Command Bar
290. As noted above, in the case of the Guide command, the
PTO and object-ids for the application entry screen are
directly associated with the graphic of the keyword pre
sented in the final pop-up window. This enables direct access
of the application entry Screen without need to access the
sequence set and keyword table, and thus, reduces response
time by reducing the number of objects that must be pro
cessed at RS 400.

Activation of the Path command accesses the user's list of
pre-selected keywords without their display, and permits the
user to step through the list viewing the respective applica
tions by repeatedly invoking the Path command. As will be
appreciated, the user can set a priority for selecting key
words and viewing their associated applications by virtue of
where on the list the user places the keywords. More
specifically, if the user has several application of particular
interest; e.g., news, weather, etc., the user can place them at
the top of the list, and quickly step through them with the
Path command. Further, the user can view and randomly
access the keywords of his list with the Viewpath operation
noted above. On activation of Viewpath, the user's Path
keywords are displayed and the user can cursor through
them in a conventional manner to select a desired one.
Further, the user can amend the list as desired by changing
the keywords on the list and/or adjusting their relative
position. This is readily accomplished by entering the
amendments to the list presented at the screen 414 with a
series of amendment options presented in a conventional
fashion with the list. As noted, the list may be personally
selected by the user in the manner described, or created as
a default by network 10.

Collectively, the Jump command, Index command, Direc
tory command, Guide command, and Path command as
described enable the user to quickly and easily ascertain the
“location of either the partitioned application presently
displayed or the “location of a desired partitioned applica
tion. “Location,” as used in reference to the preferred
embodiment means the specific relationships that a particu
lar partitioned application bears to other such applications,
and the method for selecting particular partitioned applica
tions from Such relationships. The techniques for querying a
database of objects, embodied in network 10 is an advance
over the prior art, insofar as no foreknowledge of either
database structure or query technique or syntax is necessary,
the structure and search techniques being made manifest to
the user in the course of use of the commands.

RS Application Protocol

RS protocol defines the way the RS supports user appli
cation conversation (input and output) and the way RS 400
processes a partitioned application. Partitioned applications
are constructed knowing that this protocol will be Supported
unless modified by the application. The protocol is illus

US 7,072,849 B1
23

trated FIG. 6. The boxes in FIG. 6 identify processing states
that the RS 400 passes through and the arrows indicate the
transitions permitted between the various states and are
annotated with the reason for the transition.
The various states are: (A) Initialize RS. (B) Process

Objects, (C) Interpretively Execute Pre-processors, (D) Wait
for Event, (E) Process Event, and (F) Interpretively Execute
Function Extension and/or Post-processors.
The transitions between states are: (1a) Logon Page

Template Object Identification (PTO-id), (1b) Object Iden
tification, (2) Trigger Program Object identification (PO-id)
& return, (3) Page Partition Template (PPT) or Window
Stack Processing complete, (4) Event Occurrence, and (5)
Trigger PO-id and Return.

Transition (1a) from Initialize RS (A) to Process Objects
(B) occurs when an initialization routine passes the object-id
of the logon PTO to object interpreter 435, when the service
is first invoked. Transition (1b) from Process Event (E) to
Process Objects (B) occurs whenever a navigation event
causes a new page template object identification (PTO-id) to
be passed to object interpreter 435; or when a open window
event (verb or function key) occurs passing a window
object-id to the object interpreter 435; or a close window
event (verb or function key) occurs causing the current
top-most window to be closed.

While in the process object state, object interpreter 435
will request any objects that are identified by external
references in call segments. Objects are processed by pars
ing and interpreting the object and its segments according to
the specific object architecture. As object interpreter 435
processes objects, it builds a linked list structure called a
page processing table (PPT), shown in FIG. 10, to reflect the
structure of the page, each page partition, Page Element
Objects (PEOs) required, program objects (POs) required
and each window object (WO) that could be called. Object
interpreter 435 requests all objects required to build a page
except objects that could be called as the result of some
event, such as a HELP window object.

Transition (2) from Process Objects (B) to Interpretively
Execute Pre-processors (C) occurs when the object inter
preter 435 determines that a pre-processor is to be triggered.
Object processor 436 then passes the object-id of the pro
gram object to the TBOL interpreter 438. TBOL interpreter
438 uses the RS virtual machine to interpretively execute the
program object. The PO can represent either a selector or an
initializer. When execution is complete, a transition auto
matically occurs back to Process Objects (B).

Selectors are used to dynamically link and load other
objects such as PEOs or other PDOs based upon parameters
that they are passed when they are called. Such parameters
are specified in call segments or selector segments. This
feature enables RS 400 to conditionally deliver information
to the user base upon predetermined parameters. Such as his
personal demographics or locale. For example, the param
eters specified may be the transaction codes required to
retrieve the users age, sex, and personal interest codes from
records contained in user profiles stored at the switch/file
server layer 200.

Initializers are used to set up the application processing
environment for a partitioned application and determine
what events RS 400 may respond to and what the action will
be.

Transition (3) from Process Objects (B) to Wait for Event
(D) occurs when object interpreter 435 is finished processing
objects associated with the page currently being built or
opening or closing a window on a page. In the Wait for Event
state (D), an input manager, which in the preferred form

10

15

25

30

35

40

45

50

55

60

65

24
shown includes keyboard manager 434 seen in FIG. 8,
accepts user inputs. All keystrokes are mapped from their
physical codes to logical keystrokes by the Keyboard Man
ager 434, representing keystrokes recognized by the RS
virtual machine.
When the cursor is located in a field of a page element,

keystrokes are mapped to the field and the partitioned
external variable (PEV) specified in the page element object
(PEO) field definition segment by the cooperative action of
keyboard manager, 434 and display manager 461. Certain
inputs, such as RETURN or mouse clicks in particular fields,
are mapped to logical events by keyboard manager 434.
which are called completion (or commit) events. Comple
tion events signify the completion of some selection or
specification process associated with the partitioned appli
cation and trigger a partition level and/or page level post
processor to process the “action' parameters associated with
the user's selection and commit event.

Such parameters are associated with each possible choice
or input, and are set up by the earlier interpretive execution
of an initializer pre-processor in state (C). Parameters usu
ally specify actions to perform a calculation Such as the
balance due on an order of several items with various prices
using sales tax for the user's location, navigate to PTO-id,
open window WO-id or close window. Actions parameters
that involve the specification of a page or window object will
result in transition (1b) to the Process Objects (B) state after
the post-processor is invoked as explained below.

Function keys are used to specify one or more functions
which are called when the user strikes these keys. Function
keys can include the occurrence of logical events, as
explained above. Additionally, certain functions may be
“filtered, that is, extended or altered by SET FUNCTION
or TRIGGER FUNCTION verbs recognized by the RS
virtual machine. Function keys cause the PO specified as a
parameter of the verb to be interpretively executed whenever
that function is called. Applications use this technique to
modify or extend the functions provided by the RS.

Transition (5) from Process Event (E) to Interpretively
Execute Pre-processors (F) occurs when Process Event State
determines that a post-processor or function extension PDO
is to be triggered. The id of the program object is then passed
to the TBOL interpreter 438. The TBOL interpreter 438 uses
the RS virtual machine to interpretively execute the PO.
When execution is complete a transition automatically
occurs back to Process Event (E).

Reception System Software

The reception system 400 software is the interface
between the user of personal computer 405 and interactive
network 10. The object of reception system software is to
minimize mainframe processing, minimize transmission
across the network, and Support application extendibility
and portability.
RS 400 software is composed of several layers, as shown

in FIG. 7. It includes external software 451, which is
composed of elements well known to the art Such as device
drivers, the native operating systems; i.e., MS-DOS,
machine-specific assembler functions (in the preferred
embodiment; e.g., CRC error checking), and “C” runtime
library functions; native software 420; and partitioned appli
cations 410.

Again with reference to FIG. 7, native software 420 is
compiled from the 'C' language into a target machine
specific executable, and is composed of two components:
the service software 430 and the operating environment 450.

US 7,072,849 B1
25

Operating environment 450 is comprised of the Logical
Operating System 432, or LOS; and a multitasker 433.
Service software 430 provides functions specific to provid
ing interaction between the user and interactive network 10,
while the operating environment 450 provides pseudo mul
titasking and access to local physical resources in Support of
service software 430. Both layers of native software 420
contain kernel, or device independent functions 430 and
432, and machine-specific or device dependent functions
433. All device dependencies are in code resident at RS 400,
and are limited to implementing only those functions that are
not common across machine types, to enable interactive
network 10 to provide a single data stream to all makes of
personal computer which are of the IBM or IBM compatible
type. Source code for the native software 420 is included in
parent application Ser. No. 388,156 now issued as U.S. Pat.
No. 5,347,632, the contents of which patent are incorporated
herein by reference. Those interested in a more detailed
description of the reception system software may refer to the
source code provided in the referenced patent.

Service software 430 is comprised of modules, which are
device-independent Software components that together
obtain, interpret and store partitioned applications existing
as a collection of objects. The functions performed by, and
the relationship between, the service software 430 module is
shown in FIG. 8 and discussed further below.

Through facilities provided by LOS 432 and multitasker
433, here called collectively operating environment 450,
device-independent multitasking and access to local
machine resources, such as multitasking, timers, buffer
management, dynamic memory management, file storage
and access, keyboard and mouse input, and printer output
are provided. The operating environment 450 manages com
munication and synchronization of service software 430, by
Supporting a request/response protocol and managing the
interface between the native software 420 and external
Software 437.

Applications software layer 410 consists of programs and
data written in an interpretive language, “TRINTEX Basic
Object Language” or “TBOL,” described above. TBOL was
written specifically for use in RS 400 and interactive net
work 10 to facilitate videotext-specific commands and
achieve machine-independent compiling. TBOL is con
structed as objects, which in interaction with one another
comprise partitioned applications.
RS native software 420 provides a virtual machine inter

face for partitioned applications. Such that all objects com
prising partitioned applications 'see' the same machine. RS
native software provides support for the following functions:
(1) keyboard and mouse input; (2) text and graphics display;
(3) application interpretation; (4) application database man
agement; (5) local application storage; (6) network and link
level communications; (7) user activity data collection; and
(8) advertisement management.

With reference to FIG. 8, service software 430 is com
prised of the following modules: start-up (not shown);
keyboard manger 434; object interpreter 435: TBOL inter
preter 438; object storage facility 439; display manager 461;
data collection manager 441; ad manager 442; object/com
munications manager interface 443; link communications
manager 444; and fatal error manager 469. Each of these
modules has responsibility for managing a different aspect
of RS 400.

Startup reads RS 400 customization options into RAM,
including modem, device driver and telephone number
options, from the file CONFIG.SM. Startup invokes all RS
400 component startup functions, including navigation to

5

10

15

25

30

35

40

45

50

55

60

65

26
the first page, a logon Screen display containing fields
initialized to accept the user's id and password. Since
Startup is invoked only at initialization, for simplicity, it has
not been shown in FIG. 8.

The principal function of keyboard manger 434 is to
translate personal computer dependent physical input into a
consistent set of logical keys and to invoke processors
associated with these keys. Depending on the LOS key, and
the associated function attached to it, navigation, opening of
windows, and initiation of filter or post-processor TBOL
programs may occur as the result input events handled by the
keyboard manger 434. In addition, keyboard manger 434
determines inter and intra field cursor movement, and coor
dinates the display of field text and cursor entered by the
user with display manager 461, and sends information
regarding Such inputs to data collection manager 441.

Object interpreter 435 is responsible for building and
recursively processing a table called the "Page Processing
Table,” or PPT. Object interpreter 435 also manages the
opening and closing of windows at the current page. Object
interpreter 435 is implemented as two sub-components: the
object processor 436 and object scanner 437.

Object processor 436 provides an interface to keyboard
manger 434 for navigation to new pages, and for opening
and closing windows in the current page. Object processor
436 makes a request to object storage facility 439 for a page
template object (PTO) or window object (WO), as requested
by keyboard manger 434, and for objects and their segments
which comprise the PTO or WO returned by object storage
facility 439 to object processor 436. Based on the particular
segments comprising the object(s) making up the new PTO
or WO, object processor 436 builds or adds to the page
processing table (PPT), which is an internal, linked-list,
global data structure reflecting the structure of the page or
page format object (PFO), each page partition or page
element object (PEO), and program objects (POs) required
and each window object (WO) that could be called. Objects
are processed by parsing and interpreting each object and
its-segment(s) according to their particular structure as for
malized in the data object architecture (DOA). While in the
process object state, (state “B” of FIG. 6), object processor
436 will request any objects specified by the PTO that are
identified by external references in call segments (e.g. field
level program call 518, page element selector call 524, page
format call 526 program call 532, page element call 522
segments) of Such objects, and will, through a request to
TBOL interpreter 438, fire initializers and selectors con
tained in program data segments of all PTO constituent
program objects, at the page, element, and field levels.
Object processor 436 requests all objects required to build a
page, except objects that could only be called as the result
of some event external to the current partitioned application,
such as a HELP window object. When in the course of
building or adding to the PPT and opening/closing WOs,
object processor encounters a call to an “ADSLOT” object
id, the next advertisement object id at ad manager 442 is
fetched, and the identified advertisement object is retrieved
either locally, if available, or otherwise from the network, so
that the presentation data for the advertisement can be sent
to display manager 461 along with the rest of the presenta
tion data for the other objects to enable display to the user.
Object processor 436 also passes to data collection manager
441 all object ids that were requested and object ids that
were viewed. Upon completion of page or window process
ing, object processor 436 enters the wait for event state, and
control is returned to keyboard manger 434.

US 7,072,849 B1
27

The second component of object interpreter 435, object
scanner 437, provides a file-like interface, shared with object
storage facility 439, to objects currently in use at RS 400, to
enable object processor 436 to maintain and update the PPT.
Through facilities provided by object scanner 437, object
processor recursively constructs a page or window in the
requested or current partitioned application, respectively.

Object storage facility 439 provides an interface through
which object interpreter 435 and TBOL interpreter 438
either synchronously request (using the TBOL verb operator
“GET) objects without which processing in either module
cannot continue, or asynchronously request (using the TBOL
verb operator “FETCH) objects in anticipation of later use.
Object storage facility 439 returns the requested objects to
the requesting module once retrieved from either local store
440 or interactive network 10. Through control structures
shared with the object scanner 437, object storage facility
determines whether the requested object resides locally, and
if not, makes an attempt to obtain it from interactive network
10 through interaction with link communications manager
444 via object/communications manager interface 443.
When objects are requested from object storage facility

439, only the latest version of the object will be provided to
guarantee currency of information to the user. Object storage
facility 439 assures currency by requesting version verifi
cation from network 10 for those objects which are available
locally and by requesting objects which are not locally
available from delivery system 20 where currency is main
tained.

Version verification increases response time. Therefore,
not all objects locally available are version checked each
time they are requested. Typically, objects are checked only
the first time they are requested during a user session.
However, there are occasions, as for example in the case of
objects relating to news applications, where currency is
always checked to assure integrity of the information.
The frequency with which the currency of objects is

checked depends on factors such as the frequency of updat
ing of the objects. For example, objects that are designated
as ultrastable in a storage control parameter in the header of
the object are never version checked unless a special version
control object sent to the RS as part of logon indicates that
all Such objects must be version checked. Object storage
facility 439 marks all object entries with such a stability
category in all directories indicating that they must be
version checked the next time they are requested.

Object storage facility 439 manages objects locally in
local store 440, comprised of a cache (segmented between
available RAM and a fixed size disk file), and stage (fixed
size disk file). Ram and disk cached objects are retained only
during user sessions, while objects stored in the stage file are
retained between sessions. The storage control field, located
in the header portion of an object, described more fully
hereafter as the object “storage candidacy, indicates
whether the object is stageable, cacheable or trashable.

Stageable objects must not be subject to frequent change
or update. They are retained between user sessions on the
system, provided storage space is available and the object
has not discarded by a least-recently-used (LRU) algorithm
of a conventional type; e.g., see Operating System. Theory,
by Coffman, Jr. and Denning, Prentice Hall Publishers, New
York, 1973, which in accordance with the design of network
10, operates in combination with the storage candidacy
value to determine the object storage priority, thus rendering
the stage self-configuring as described more fully hereafter.
Over time, the self-configuring stage will have the effect of
retaining within local disk storage those objects which the

10

15

25

30

35

40

45

50

55

60

65

28
user has accessed most often. The objects retained locally
are thus optimized to each individual users usage of the
applications in the system. Response time to Such objects is
optimized since they need not be retrieved from the inter
active computer system.

Cacheable objects can be retained during the current user
session, but cannot be retained between sessions. These
objects usually have a moderate update frequency. Object
storage facility 439 retains objects in the cache according to
the LRU storage retention algorithm. Object storage facility
439 uses the LRU algorithm to ensure that objects that are
least frequently used forfeit their storage to objects that are
more frequently used.

Trashable objects can be retained only while the user is in
the context of the partitioned application in which the object
was requested. Trashable objects usually have a very high
update frequency and must not be retained to ensure that the
user has access to the most current data.
More particularly and, as noted above, in order to render

a public informational and transactional network of the type
considered here attractive, the network must be both eco
nomical to use and fast. That is to say, the network must
Supply information and transactional Support to the user at
minimal costs and with a minimal response time. These
objectives are sought to be achieved by locating as many
information and transactional Support objects which the user
is likely to request, as close to the user as possible; i.e.,
primarily at the user's RS 400 and secondarily at delivery
system 20. In this way, the user will be able to access objects
required to Support a desired application with minimal
intervention of delivery system 20, thus reducing the cost of
the session and speeding the response time.

However, the number of objects that can be maintained at
RS 400 is restricted by at least two factors: the RS 400
storage capacity; i.e., RAM and disk sizes, and the need to
maintain the stored objects current.

In order to optimize the effectiveness of the limited
storage space at RS 400, the collection of objects is
restricted to those likely to be requested by the user; i.e.,
tailored to the user's tastes—and to those least likely to be
time sensitive; i.e., objects which are stable. To accomplish
this, objects are coded for storage candidacy to identify
when they will be permitted at RS 400, and subject to the
LRU algorithm to maintain presence at RS 400. Addition
ally, to assure currency of the information and transaction
support provided at RS 400, objects are further coded for
version identification and checking in accordance with a
system of priorities that are reflected in the storage candi
dacy coding.

Specifically, to effect object storage management, objects
are provided with a coded version id made up of the storage
control byte and version control bytes identified above as
elements of the object header, specifically, bytes 16 and 18
shown in FIG. 4b. In preferred form, the version id is
comprised of bytes 16 and 18 to define two fields, a first 13
bit field to identify the object version and a second three bite
field to identify the object storage candidacy.

In this arrangement, the storage candidacy value of the
object is addressed to not only the question of Storage
preference but also object currency. Specifically, the storage
candidacy value establishes the basis upon which the object
will be maintained at RS 400 and also identifies the suscep
tibility of the object to becoming stale by dictating when the
object will be version checked to determine currency.
The version value of the object on the other hand,

provides a parameter that can be checked against predeter
mined values available from delivery system 20 to deter

US 7,072,849 B1
29

mine whether an object stored at RS 400 is sufficiently
current to permit its continued use, or whether the object has
become stale and needs to be replaced with a current object
from delivery system 20.

Still further, object storage management procedure further
includes use of the LRU algorithm, for combination with the
storage and version coding to enable discarding of objects
which are not sufficiently used to warrant retention, thus
personalizing the store of objects at RS 400 to the user's
tastes. Particularly, object storage facility 439, in accordance
with the LRU algorithm maintains a usage list for objects.
AS objects are called to Support the user's applications
requests, the objects are moved to the top of a usage list. As
other objects are called, they push previously called objects
down in the list. If an object is pushed to the bottom of the
list before being recalled, it will be forfeited from the list if
necessary to make room for the next called object. As will
be appreciated, should a previously called object be again
called before it is displaced from the list, it will be promoted
to the top of the list, and once more be subject to depression
in the list and possible forfeiture as other objects are called.
As pointed out above, in the course of building the screens

presented to the user, objects will reside at various locations
in RS 400. For example, objects may reside in the RS 400
RAM where the object is Supporting a particular application
screen then running or in a cache maintained at either RAM
or disk 424 where the object is being held for an executing
application or staged on the fixed size file on disk 424 noted
above where the object is being held for use in application
likely to be called by the user in the future.

In operation, the LRU algorithm is applied to all these
regions and serves to move an object from RAM cache to
disk cache to disk file, and potentially off RS 400 depending
on object usage.

With regard to the storage candidacy value, in this
arrangement, the objects stored at RS 400 include a limited
set of permanent objects; e.g., those Supporting logon and
logoff, and other non-permanent objects which are subject to
the LRU algorithm to determine whether the objects should
be forfeited from RS 400 as other objects are added. Thus,
in time, and based on the operation of the LRU algorithm
and the storage candidacy value, the collection of objects at
RS 400 will be tailored to the usage characteristics of the
Subscriber; i.e., self-configuring.
More particularly, the 3-bit field of the version id that

contains the storage candidacy parameter can have 8 differ
ent values. A first candidacy value is applied where the
object is very sensitive to time; e.g., news items, volatile
pricing information Such as might apply to stock quotes, etc.
In accordance with this first value, the object will not be
permitted to be stored on RS 400, and RS 400 will have to
request such objects from delivery system 20 each time it is
accessed, thus, assuring currency. A second value is applied
where the object is sensitive to time but less so than the first
case; e.g., the price of apples in a grocery shopping appli
cation. Here, while the price might change from day to day,
it is unlikely to change during a session. Accordingly the
object will be permitted to persist in RAM or at the disk
cache during a session, but will not be permitted to be
maintained at RS 400 between sessions.

Continuing down the hierarchy of time sensitivity, where
the object concerns information sufficiently stable to be
maintained between sessions, a third storage candidacy
value is set to permit the object to be stored at RS 400
between sessions, on condition that the object will be
version check the first time it is accessed in a Subsequent
session. As will be appreciated, during a session, and under

5

10

15

25

30

35

40

45

50

55

60

65

30
the effect of the LRU algorithm, lack of use at RS 400 of the
object may result in it being forfeited entirely to accommo
date new objects called for execution at RS 400.

Still further, a fourth value of storage candidacy is applied
where the object is considered sufficiently stable as not to
require version checking between sessions; e.g., objects
concerning page layouts not anticipated to change. In this
case, the storage candidacy value may be encoded to permit
the object to be retained from session to session without
version checking. Here again, however, the LRU algorithm
may cause the object to forfeit its storage for lack of use.
Where the object is of a type required to be stored at RS

400, as for example, objects needed to support standard
screens, it is coded for storage between sessions and not
subject to the LRU algorithm forfeiture. However, where
Such objects are likely to change in the future they may be
required to be version checked the first time they are
accessed in a session and thus be given a fifth storage
candidacy value. If, on the other hand, the required stored
object is considered likely to be stable and not require even
version checking; e.g., logon Screens, it will be coded with
a sixth storage candidacy value for storage without version
checking so as to create a substantially permanent object.

Continuing, where a RS 400 includes a large amount of
combined RAM and disk capacity, it would permit more
objects to be stored. However, if objects were simply coded
in anticipation of the larger capacity, the objects would
potentially experience difficulty, as for example, undesired
forfeiture due to capacity limitations if such objects were
supplied to RS 400 units having smaller RAM and disk
sizes. Accordingly, to take advantage of the increased capac
ity of certain RS 400 units without creating difficulty in
lower capacity units, objects Suitable for storage in large
capacity units can be so coded for retention between ses
sions with a seventh and eighth storage candidacy value
depending upon whether the stored large capacity object
requires version checking or not. Here, however, the coding
will be interpreted by smaller capacity units to permit only
cacheable storage to avoid undesirable forfeiture that might
result from over filling the Smaller capacity units.
Where an object is coded for no version checking need

may nonetheless arise for a version check at Some point. To
permit version checking of Such objects, a control object is
provided at RS 400 that may be version checked on receipt
of a special communication from delivery system 20. If the
control object fails version check, then a one shot version
checking attribute is associated with all existing objects in
RS 400 that have no version checking attributes. Thereafter,
the respective objects are version checked, the one shot
check attribute is removed and the object is caused to either
revert to its previous state if considered current or be
replaced if stale.

Still further, objects required to be stored at RS 400 which
are not version checked either because of lack of require
ment or because of no version check without a control
object, as described above, can accumulate in RS 400 as
dead objects. To eliminate Such accumulation, all object
having required storage are version checked over time.
Particularly, the least recently used required object is version
checked during a session thus promoting the object to the top
of the usage list if it is still to be retained at RS 400.
Accordingly, one such object will be checked per session
and over time, all required objects will be version checked
thereby eliminating the accumulation of dead objects.

However, in order to work efficiently, the version check
attribute of the object should be ignored, so that even
required object can be version checked. Yet, in certain

US 7,072,849 B1
31

circumstances, e.g., during deployment of new versions of
the reception system Software containing new objects not yet
supported on delivery system 20 which may be transferred
to the fixed storage file of RS 400 when the new version is
loaded, unconditional version checking may prematurely
deletes the object from the RS 400 as not found on delivery
system 20. To avoid this problem, a Sweeper control segment
in the control object noted above can be used to act as a
switch to turn the sweep of dead objects on and off.

With respect to version checking for currency, where an
object stored at RS 400 is initially fetched or accessed during
a session, a request to delivery system 20 is made for the
object by specifying the versionid of the object stored at RS
400.

In response, delivery system 20 will advise the reception
system 400 either that the version id of the stored object
matches the currency value; i.e., the stored object is accept
able, or deliver a current object that will replace the stored
object shown to be stale. Alternatively, the response may be
that the object was not found. If the version of the stored
object is current, the stored object will be used until verified
again in accordance with its storage candidacy. If the stored
object is stale, the new object delivered will replace the old
one and Support the desired screen. If the response is object
not found, the stored object will be deleted.

Therefore, based on the above description, network 10 is
seen to include steps for execution at storage facility 439
which enables object reception, update and deletion by
means of a combination of operation of the LRU algorithm
and interpretation of the storage candidacy and version
control values. In turn, these procedures cooperate to assure
a competent supply of objects at RS 400 so as to reduce the
need for intervention of delivery system 20, thus reducing
cost of information Supply and transactional Support so as to
speed the response to user requests.
TBOL interpreter 438 shown in FIG. 8 provides the means

for executing program objects, which have been written
using an interpretive language, TBOL described above.
TBOL interpreter 438 interprets operators and operand con
tained in program object 508, manages TBOL variables and
data, maintains buffer and stack facilities, and provides a
runtime library of TBOL verbs.
TBOL verbs provide Support for data processing, program

flow control, file management, object management, commu
nications, text display, command bar control, open/close
window, page navigation and Sound. TBOL interpreter also
interacts with other native modules through commands
contained in TBOL verbs. For example: the verb “navigate'
will cause TBOL interpreter 438 to request object interpreter
435 to build a PPT based on the PTO id contained in the
operand of the NAVIGATE verb; “fetch” or “GET' will
cause TBOL interpreter 438 to request an object from object
storage facility 439: “SET FUNCTION' will assign a filter
to events occurring at the keyboard manger 434; and “FOR
MAT,” “SEND, and “RECEIVE will cause TBOL inter
preter 438 to send application level requests to object/
communications manager interface 433.

Data areas managed by TBOL interpreter 438 and avail
able to TBOL programs are Global External Variables
(GEVs), Partition External Variables (PEVs), and Runtime
Data Arrays (RDAs).
GEVs contain global and system data, and are accessible

to all program objects as they are executed. GEVs provide
a means by which program objects may communicate with
other program objects or with the RS native code, if declared
in the program object. GEVs are character string variables
that take the size of the variables they contain. GEVs may

10

15

25

30

35

40

45

50

55

60

65

32
preferably contain a maximum of 32,000 variables and are
typically used to store such information as program return
code, system date and time, or user sex or age. TBOL
interpreter 438 stores such information in GEVs when
requested by the program which initiated a transaction to
obtain these records from the RS or user's profile stored in
the interactive system.

Partition external variables (PEVs) have a scope restricted
to the page partition on which they are defined. PEVs are
used to hold screen field data such that when PEOs and
window objects are defined, the fields in the page partitions
with which these objects are to be associated are each
assigned to a PEV. When applications are executed, TBOL
interpreter 438 transfers data between screen fields and their
associated PEV. When the contents of a PEV are modified by
user action or by program direction, TBOL interpreter 428
makes a request to display manager 461 to update the Screen
field to reflect the change. PEVs are also used to hold
partition specific application data, Such as tables of infor
mation needed by a program to process an expected Screen
input.

Because the scope of PEVs is restricted to program
objects associated with the page partition in which they are
defined, data that is to be shared between page partitions or
is to be available to a page-level processor must be placed
in GEVs or RDAs.
RDAS are internal stack and save buffers used as general

program work areas. RDAs are dynamically defined at
program object "runtime' and are used for communication
and transfer of data between programs when the data to be
passed is not amenable to the other techniques available.
Both GEVs and RDAs include, in the preferred embodi
ment, 8 integer registers and 8 decimal registers. Preferably,
there are also 9 parameter registers limited in Scope to the
current procedure of a program object.

All variables may be specified as operand of verbs used by
the virtual machine. The integer and decimal registers may
be specified as operand for traditional data processing. The
parameter registers are used for passing parameters to
“called procedures. The contents of these registers are
saved on an internal program stack when a procedure is
called, and are restored when control returns to the “calling
procedure from the “called procedure.
TBOL interpreter 438, keyboard manger 434, object inter

preter 435, and object storage facility 439, together with
device control provided by operating environment 450, have
principal responsibility for the management and execution
of partitioned applications at the RS 400. The remaining
native code modules function in Support and ancillary roles
to provide RS 400 with the ability display partitioned
applications to the user (display manager 461), display
advertisements (ad manager 442), to collect usage data for
distribution to interactive network 10 for purposes of tar
geting such advertisements (data collection manager 441),
and prepare for sending, and send, objects and messages to
interactive network 10 (object/communications manager
interface 443 and link communications manager 444)
Finally, the fatal error manager exists for one purpose: to
inform the user of RS 400 and transmit to interactive
network 10 the inability of RS 400 to recover from a system
eO.

Display manager 461 interfaces with a decoder using the
North American Presentation Level Protocol Syntax (NA
PLPS), a standard for encoding graphics data, or text code,
such as ASCII, which are displayed on monitor 412 of the
user's personal computer 405 as pictorial codes. Codes for
other presentation media, Such as audio, can be specified by

US 7,072,849 B1
33

using the appropriate type code in the presentation data
segments. Display manager 461 Supports the following
functions: send NAPLPS strings to the decoder; echo text
from a PEV move the cursor within and between fields;
destructive or non-destructive input field character deletion;
“ghost' and “unghost' fields (a ghosted field is considered
unavailable, unghosted available); turn off or on the current
field cursor, open, close, save and restore bit maps for a
graphics window; update all current screen fields by dis
playing the contents of their PEVs, reset the NAPLPS
decoder to a known State; and erase an area of the screen by
generating and sending NAPLPS to draw a rectangle over
that area. Display manager 461 also provides a function to
generate a beep through an interface with a machine-depen
dent sound driver.

In accordance with the method of the present invention,
Ad manager 442 is invoked by object interpreter 435 to
return the object id of the next available advertisement to be
displayed. Ad manager 442 maintains a queue of advertising
object id's targeted to the specific user currently accessing
interactive network 10. Advertising objects are pre-fetched
from interactive system 10 from a personalized queue of
advertising ids that is constructed using data previously
collected from user generated events and/or reports of
objects used in the building of pages or windows, compiled
by data collection manager 466 and transmitted to interac
tive system 10.

Advertising objects 510 are PEOs that, through user
invocation of a "LOOK command, cause navigation to
partitioned applications that may themselves Support, for
example, ordering and purchasing of merchandise.
An advertising object id list, or “ad queue,” is requested

in a transaction message to delivery system 20 by ad
manager 442 immediately after the initial logon response.
The logon application at RS 400 places the advertising list
in a specific RS global storage area called a SYS GEV
(system global external variable), which is accessible to all
applications as well as to the native RS code). The Logon
application also obtains the first two ad object id's from the
queue and provides them to object storage facility 439 so the
advertising objects can be requested. However, at logon,
since no advertising objects are available at RS local storage
facilities 440, ad objects, in accordance with the described
storage candidacy, not being retained at the reception system
between sessions, they must be requested from interactive
network 10.

In a preferred embodiment, the following parametric
values are established for ad manager 442: advertising
object is queue capacity, replenishment threshold for adver
tising object ids and replenishment threshold for number of
outstanding pre-fetched advertising objects. These param
eters are set up in GEVs of the RS virtual machine by the
logon application program object from the logon response
from high function system 110. The parameters are then also
accessible to the ad manager 442. Preferred values are an
advertising queue capacity of 15, replenishment value of 10
empty queue positions and a pre-fetched advertising object
threshold of 3.
Ad manager 442 pre-fetches advertising objects by pass

ing advertising object id's from the advertising queue to
object storage facility 439 which then retrieves the object
from the interactive system if the object is not available
locally. Advertising objects are pre-fetched, so they are
available in RS local store 440 when requested by object
interpreter 435 as it builds a page. The ad manager 442
pre-fetches additional advertising objects whenever the
number of pre-fetched advertising objects not called by

10

15

25

30

35

40

45

50

55

60

65

34
object interpreter 435; i.e. the number of remaining adver
tising objects, falls below the pre-fetch advertising thresh
old.
Whenever the advertising object id queue has more empty

positions than replenishment threshold value, a call is made
to the advertising object id queue application in high func
tion system 110 shown in FIG. 2, via object/communications
manager interface 443 for a number of advertising object
id's equal to the threshold value. The response message from
system 110 includes a list of advertising object id's, which
ad manager 442 enqueues.

Object interpreter 435 requests the object id of the next
advertising object from ad manager 442 when object inter
preter 435 is building a page and encounters an object call
for a partition and the specified object-id equals the code
word, “ADSLOT.” If this is the first request for an adver
tising object id that ad manager 442 has received during this
user's session, ad manager 442 moves the advertising object
id list from the GEV into its own storage area, which it uses
as an advertising queue and sets up its queue management
pointers, knowing that the first two advertising objects have
been pre-fetched.
Ad manager 442 then queries object storage facility 439,

irrespective of whether it was the first request of the session.
The query asks if the specified advertising object id pre
fetch has been completed, i.e., is the object available locally
at the RS. If the object is available locally, the object-id is
passed to object interpreter 435, which requests it from
object storage facility 439. If the advertising object is not
available in local store 440, ad manager 442 attempts to
recover by asking about the next ad that was pre-fetched.
This is accomplished by swapping the top and second entry
in the advertising queue and making a query to object
storage facility 439 about the new top advertising object id.
If that object is not yet available, the top position is Swapped
with the third position and a query is made about the new top
position.

Besides its ability to provide advertising that have been
targeted to each individual user, two very important response
time problems have been solved by ad manager 442 of the
present invention. The first is to eliminate from the new page
response time the time it takes to retrieve an advertising
object from the host system. This is accomplished by using
the aforementioned pre-fetching mechanism.
The second problem is caused by pre-fetching, which

results in asynchronous concurrent activities involving the
retrieval of objects from interactive system 10. If an adver
tising object is pre-fetched at the same time as other objects
required for a page are requested, the transmission of the
advertising object packets could delay the transmission of
the other objects required to complete the current page by
the amount of time required to transmit the advertising
object(s). This problem is solved by the structuring the
requests from object interpreter 435 to the ad manager 442
in the following way:

1. Return next object id of pre-fetched advertising object
& pre-fetch another;

2. Return next advertising object id only; and
3. Pre-fetch next advertising object only.
By separating the function request (1) into its two com

ponents, (2) and (3), object interpreter 435 is now able to
determine when to request advertising object id's and from
its knowledge of the page build process, is able to best
determine when another advertising object can be pre
fetched, thus causing the least impact on the page response
time. For example, by examining the PPT, object interpreter
435 may determine whether any object requests are out

US 7,072,849 B1
35

standing. If there are outstanding requests, advertising
request type 2 would be used. When all requested objects are
retrieved, object interpreter 435 then issues an advertising
request type 3. Alternatively, if there are no outstanding
requests, object interpreter 435 issues an advertising request
type 1. This typically corresponds to the user’s “think time”
while examining the information presented and when RS
400 is in the Wait for Event state (D).

Data collection manager 441 is invoked by object inter
preter 435 and keyboard manger 434 to keep records about
what objects a user has obtained (and, if a presentation data
segment 530 is present, seen) and what actions users have
taken (e.g. “NEXT,” “BACK,” “LOOK, etc.)

The data collection events that are to be reported during
the user's session are sensitized during the logon process.
The logon response message carries a data collection indi
cator with bit flags set to “on” for the events to be reported.
These bit flags are enabled (on) or disabled (off) for each
user based on information contained in the user's profile
stored and sent from high function host 110. A user's data
collection indicator is valid for the duration of his session.
The type of events to be reported can be changed at will in
the host data collection application. However, such changes
will affect only users who logon after the change.

Data collection manager 441 gathers information con
cerning a user's individual system usage characteristics. The
types of informational services accessed, transactions pro
cessed, time information between various events, and the
like are collected by data collection manager 441, which
compiles the information into message packets (not shown).
The message packets are sent to network 10 via object/
communication manager interface 443 and link communi
cations manager 444. Message packets are then stored by
high function host 110 and sent to an offline processing
facility for processing. The characteristics of users are
ultimately used as a means to select or target various display
objects, such as advertising objects, to be sent to particular
users based on consumer marketing strategies, or the like,
and for system optimization.

Object/communications manager interface 443 is respon
sible for sending and receiving DIA (Data Interchange
Architecture described above) formatted messages to or
from interactive network 10. Object/communications man
ager 443 also handles the receipt of objects, builds a DIA
header for messages being sent and removes the header from
received DIA messages or objects, correlates requests and
responses, and guarantees proper block sequencing. Object/
communications manager interface 443 interacts with other
native code modules as follows: object/communications
manager 443 (1) receives all RS 400 object requests from
object storage facility 439, and forwards objects received
from network 10 via link communications manager 444
directly to the requesting modules; (2) receives ad list
requests from ad manager 442, which thereafter periodically
calls object/communications manager 443 to receive ad list
responses; (3) receives data collection messages and send
requests from data collection manager 441; (4) receives
application-level requests from TBOL interpreter 438,
which also periodically calls object/communications man
ager interface 443 to receive responses (if required); and (5)
receives and sends DIA formatted objects and messages
from and to link communications manager 444.

Object/communications manager interface 443 sends and
receives DIA formatted messages on behalf of TBOL inter
preter 438 and sends object requests and receives objects on
behalf of object storage facility 439. Communication pack
ets received containing parts of requested objects are passed

10

15

25

30

35

40

45

50

55

60

65

36
to object storage facility 439 which assembles the packets
into the object before storing it. If the object was requested
by object interpreter 435, all packets received by object
storage facility 439 are also passed to object interpreter 435
avoiding the delay required to receive an entire object before
processing the object. Objects which are pre-fetched are
stored by object storage facility 439.
Messages sent to interactive network 10 are directed via

DIA to applications in network 10. Messages may include
transaction requests for records or additional processing of
records or may include records from a partitioned applica
tion program object or data collection manager 441. Mes
sages to be received from network 10 usually comprise
records requested in a previous message sent to network 10.
Requests received from object storage facility 439 include
requests for objects from Storage in interactive system 10.
Responses to object requests contain either the requested
object or an error code indicating an error condition.

Object/communications manager 443 is normally the
exclusive native code module to interface with link com
munications manager 444 (except in the rare instance of a
fatal error). Link communications manager 444 controls the
connecting and disconnecting of the telephone line, tele
phone dialing, and communications link data protocol. Link
communications manager 444 accesses network 10 by
means of a communications medium (not shown) link
communications manager 444, which is responsible for a
dial-up link on the public switched telephone network
(PSTN). Alternatively, other communications means, such
as cable television or broadcast media, may be used. Link
communications manager 444 interfaces with TBOL inter
preter for connect and disconnect, and with interactive
network 10 for send and receive.

Link communications manager 444 is Subdivided into
modem control and protocol handler units. Modem control
(a software function well known to the art) hands the modem
specific handshaking that occurs during connect and discon
nect. Protocol handler is responsible for transmission and
receipt of data packets using the TCS (TRINTEX Commu
nications Subsystem) protocol (which is a variety of OSI
link level protocol, also well known to the art).

Fatal error manager 469 is invoked by all reception
system components upon the occurrence of any condition
which precludes recovery. Fatal error manager 469 displays
a screen to the user with a textual message and an error code
through display manager 461. Fatal error manager 469 sends
an error report message through the link communications
manager 444 to a Subsystem of interactive network 10.
The source code for the reception system software as

noted above is described in parent application Ser. No.
388,156 filed Jul. 28, 1989, now issued as U.S. Pat. No.
5,347,632, the contents of which are incorporated herein by
reference.

Sample Application

Page 255 illustrated in FIG. 3b corresponds to a parti
tioned application that permit’s a user to purchase apples. It
shows how the monitor screen 414 of the reception system
400 might appear to the user. Displayed page 255 includes
a number of page partitions and corresponding page ele
mentS.
The page template object (PTO) 500 representing page

255 is illustrated in FIG.9. PTO 500 defines the composition
of the page, including header 250, body 260, display fields
270, 271, 272, advertising 280, and command bar 290. Page
element objects (PEOs) 504 are associated with page parti

US 7,072,849 B1
37

tions numbered; e.g., 250, 260, 280. They respectively,
present information in the header 250, identifying the page
topic as ABC APPLES; in the body 260, identifying the cost
of apples; and prompt the user to input into fields within
body 260 the desired number of apples to be ordered. In
advertising 280, presentation data and a field representing a
post-processor that will cause the user to navigate to a
targetable advertising, is presented.

In FIG. 9, the structure of PTO 500 can be traced. PTO
500 contains a page format call segment 526, which calls
page format object (PFO) 502. PFO 502 describes the
location and size of partitions on the page and numbers
assigned to each partition. The partition number is used in
page element call segments 522 so that an association is
established between a called page element object (PEO) 504
and the page partition where it is to be displayed. Programs
attached to this PEO can be executed only when the cursor
is in the page partition designated within the PEO.
PTO 500 contains two page element call segments 522,

which reference the PEOs 504 for partitions 250 and 260.
Each PEO 504 defines the contents of the partition. The
header in partition 250 has only a presentation data segment
530 in its PEO 504. No input, action, or display fields are
associated with that partition.
The PEO 504 for partition 260 contains a presentation

data segment 530 and field definition segments 516 for the
three fields that are defined in that partition. Two of the fields
will be used for display only. One field will be used for input
of user Supplied data.

In the example application, the PEO 504 for body parti
tion 260 specifies that two program objects 508 are part of
the body partition. The first program, shown in Display field
270, 271, 272, is called an initializer and is invoked uncon
ditionally by TBOL interpreter 438 concurrently with the
display of presentation data for the partition. In this appli
cation, the function of the initializer is represented by the
following pseudo-code:

1. Move default values to input and display fields;
2. “SEND” a transaction to the apple application that is

resident on interactive system 10:
3. “RECEIVE the result from interactive system 10; i.e.

the current price of an apple;
4. Move the price of an apple to PEV 271 so that it will

be displayed;
5. Position the cursor on the input field; and
6. Terminate execution of this logic.
The second program object 508 is a field post-processor.

It will be invoked conditionally, depending upon the user
keystroke input. In this example, it will be invoked if the
user changes the input field contents by entering a number.
The pseudo code for this post-processor is as follows:

1. Use the value in PEV 270 (the value associated with the
data entered by the user into the second input data field 270)
to be the number of apples ordered.

2. Multiply the number of apples ordered times the cost
per apple previously obtained by the initializer;

3. Construct a string that contains the message “THE
COST OF THE APPLES YOU ORDERED IS $45.34::

4. Move the string into PEV 272 so that the result will be
displayed for the user; and

5. Terminate execution of this logic.
The process by which the “APPLES” application is

displayed, initialized, and run is as follows.
The “APPLES” application is initiated when the user

navigates from the previous partitioned application, with the
navigation target being the object id of the “APPLES” PTO
500 (that is, object id ABC1). This event causes keyboard

10

15

25

30

35

40

45

50

55

60

65

38
manager 434 to pass the PTO object id, ABC1 (which may,
for example, have been called by the keyword navigation
segment 520 within a PEO 504 of the previous partitioned
application), to object interpreter 435. With reference to the
RS application protocol depicted in FIG. 6, when the par
titioned application is initiated, RS 400 enters the Process
Object state (B) using transition (1). Object interpreter 435
then sends a synchronous request for the PTO 500 specified
in the navigation event to object storage facility 439. Object
storage facility 439 attempts to acquire the requested object
from local store 440 or from delivery system 20 by means
of object/communication manager 443, and returns an error
code if the object cannot be acquired.
Once the PTO 500 is acquired by object/communications

manager 443, object interpreter 435 begins to build PPT by
parsing PTO 500 into its constituent segment calls to pages
and page elements, as shown in FIG. 4d and interpreting
such segments. PFO and PEO call segments 526 and 522
require the acquisition of the corresponding objects with
object id's <ABCF>, <ABCX> and <ABCY>. Parsing and
interpretation of object ABCY requires the further acquisi
tion of program objects <ABCI> and <ABCJ>.

During the interpretation of the PEOs 504 for partitions
250 and 260, other RS 400 events are triggered. This
corresponds to transition (2) to interpret pre-processors state
(C) in FIG. 6. Presentation data 530 is sent to display
manager 461 for display using a NAPLPS decoder within
display manager 461, and, as the PEO <ABCY> for partition
260 is parsed and interpreted by object interpreter 435,
parameters in program call segment 532 identify the pro
gram object <ABCI> as an initializer. Object interpreter 435
obtains the program object from object storage facility 439,
and makes a request to TBOL interpreter 438 to execute the
initializer program object 508 <ABCI>. The initializer per
forms the operations specified above using facilities of the
RS virtual machine. TBOL interpreter 438, using operating
environment 450, executes initializer program object 506
<ABCI>, and may, if a further program object 508 is
required in the execution of the initializer, make a synchro
nous application level object request to object storage facil
ity 439. When the initializer terminates, control is returned
to object interpreter 435, shown as the return path in
transition (2) in FIG. 6.

Having returned to the process object state (B), object
processor 435 continues processing the objects associated
with PTO <ABC1>. Object interpreter continues to con
struct the PPT, providing RS 400 with an environment for
subsequent processing of the PTO <ABC1 > by pre-proces
sors and post-processors at the page, partition, and field
levels. When the PPT has been constructed and the initializer
executed, control is returned to keyboard manager 434, and
the RS enters the wait for event (E) State, via transition (4),
as shown in FIG. 6.

In the wait for event state, the partitioned application
waits for the user to create an event. In any partitioned
application, the user has many options. For example, the
user may move the cursor to the “JUMP field 296 on the
command bar 290, which is outside the current application,
and thus cause Subsequent navigation to another application.
For purposes of this example, it is assumed that the user
enters the number of apples he wishes to order by entering
a digit in display field 271.

Keyboard manager 434 translates the input from the
user's keyboard to a logical representation independent of
any type of personal computer. Keyboard manager. 434
saves the data entered by the user in a buffer associated with
the current field defined by the location of the cursor. The

US 7,072,849 B1
39

buffer is indexed by its PEV number, which is the same as
the field number assigned to it during the formation of the
page element. Keyboard manager 434 determines for each
keystroke whether the keystroke corresponds to an input
event or to an action or completion event. Input events are
logical keystrokes and are sent by keyboard manager to
display manager 461, which displays the data at the input
field location. Display manager 461 also has access to the
field buffer as indexed by its PEV number.
The input data are available to TBOL interpreter 438 for

Subsequent processing. When the cursor is in a partition,
only the PEVs for that partition are accessible to the RS
virtual machine. After the input from the user is complete (as
indicated by a user action such as pressing the RETURN key
or entry of data into a field with an action attribute), RS400
enters the Process Event state (E) via transition (4).

For purposes of this example, let us assume that the user
enters the digit “5” in input field 270. A transition is made
to the process event state (E). Keyboard manager 434 and
display manager 437 perform a number of actions, such as
the display of the keystroke on the screen, the collection of
the keystroke for input, and optionally, the validation of the
keystroke, i.e. numeric input only in numeric fields. When
the keystroke is processed, a return is made to the wait for
event state (D) Edit attributes are specified in the field
definition segment.

Suppose the user inputs a "6' next. A transition occurs to
the PE state and after the “6” is processed, the Wait for Event
(D) state is reentered. If the user hits the “completion' key
(e.g., ENTER) the Process Event (E) state will be entered.
The action attributes associated with field 272 identify this
as a system event to trigger post-processor program object
<ABCJ>. When the interpretive execution of program object
<ABCJ> is complete, the wait for event state (D) will again
be entered. The user is then free to enter another value in the
input field, or select a command bar function and exit the
apples application.

While this invention has been described in its preferred
form, it will be appreciated that changes may be made in the
form, construction, procedure and arrangement of its various
elements and steps without departing from its spirit or Scope.
We claim:
1. A method for presenting advertising obtained from a

computer network, the network including a multiplicity of
user reception systems at which respective users can request
applications, from the network, that include interactive
services, the respective reception systems including a moni
tor at which at least the visual portion of the applications can
be presented as one or more screens of display, the method
comprising the steps of

a. Structuring applications so that they may be presented,
through the network, at a first portion of one or more
Screens of display; and

b. Structuring advertising in a manner compatible to that
of the applications so that it may be presented, through
the network, at a second portion of one or more screens
of display concurrently with applications, wherein
structuring the advertising includes configuring the
advertising as objects that include advertising data and;

c. Selectively storing advertising objects at a store estab
lished at the reception system.

2. The method of claim 1 wherein storing advertising
objects at the reception system includes replenishing the
store of advertising objects from the network when the store
of advertising objects falls below a predetermined level.

3. The method of claim 2 wherein storing advertising
objects at the reception system includes storing advertising

10

15

25

30

35

40

45

50

55

60

65

40
object identifications at the reception system, and wherein
the storing of advertising object identification is based on an
establishing of a characterization for the respective reception
system users.

4. The method of claim 3 wherein establishing the char
acterization for the respective reception system users
includes basing the characterization at least in part on the
applications requested by the respective users.

5. The method of claim 3 wherein establishing the char
acterization for the respective reception system users
includes basing the characterization at least in part on the
demographic data for the respective users.

6. The method of claim 3 wherein establishing the char
acterization for the respective reception system users
includes basing the characterization at least in part on data
concerning the geographical location of the respective user's
reception system.

7. The method of claim 3 wherein establishing the char
acterization for the respective reception system users
includes basing the characterization at least in part on a
combination of data concerning user application requests,
user demographics and geographical location of the respec
tive user's reception system.

8. A method for presenting advertising in a computer
network, the network including a multiplicity of user recep
tion systems at which respective users can request applica
tions that include interactive services, the method compris
ing the steps of

a. compiling data concerning the respective users;
b. establishing characterizations for respective users

based on the compiled data; and
c. structuring advertising so that it may be selectively

Supplied to and retrieved at the reception systems for
presentation to the respective users in accordance with
the characterizations established for the respective
reception system users, wherein structuring advertising
includes Supplying advertising data to the reception
system and storing a predetermined amount of the
advertising data in a store established at the respective
reception systems.

9. The method of claim 8 wherein supplying advertising
data to the reception system includes pre-fetching advertis
ing data from the network when the store of advertising data
falls below a predetermined level.

10. The method of claim 9 wherein pre-fetching adver
tising data is dependent on the size of the advertising data
StOre.

11. The method of claim 10 wherein storing advertising
data at the reception system includes maintaining a list
identifying the advertising data to be presented.

12. The method of claim 8 wherein the supplying of
advertising data to the reception system for presentation
includes the reception system requesting advertising data
from the network when advertising data sought to be pre
sented is unavailable at the reception system.

13. A method for presenting advertising in a computer
network, the network including a multiplicity of user recep
tion systems at which respective users can request applica
tions that include interactive services, the respective recep
tion systems including a monitor at which at least the visual
portion of the applications can be presented as one or more
screens of display, the method comprising the steps of

a. Structuring applications so that they may be presented
at a first portion of one or more screens of display;

b. configuring the advertising as objects that include
advertising data,

US 7,072,849 B1
41

c. structuring the advertising objects in a manner com
patible to that of the applications so that advertising
data from an advertising object may be presented at a
second portion of one or more screens of display
concurrently with applications, and;

d. Selectively storing advertising objects at a store estab
lished at the reception system.

14. A method for presenting advertising obtained from a
computer network, the network including a multiplicity of
user reception systems at which respective users can request
applications from the network that include interactive ser
vices, the respective reception systems including a monitor
at which at least the visual portion of the applications can be
presented as one or more screens of display, the method
comprising the steps of

a. Structuring applications so that a user requested appli
cation may be presented, through the network, at a first
portion of one or more screens of display;

b. separately structuring the advertising in a manner
compatible to that of the applications so that advertis
ing may be presented, through the network, at a second
portion of one or more screens of display concurrently
with any one of a plurality of user requested applica
tions,

c. configuring the advertising as objects that include
advertising data, and

d. Selectively storing advertising objects at a store estab
lished at the reception system.

15. The method of claim 14 wherein storing advertising
objects at the reception system includes replenishing the
store of advertising objects from the network when the store
of advertising objects falls below a predetermined level.

16. The method of claim 15 wherein storing advertising
objects at the reception system includes storing advertising
object identifications at the reception system, and wherein
the storing of advertising object identification is based on an
establishing of a characterization for the respective reception
system users.

17. The method of claim 16 wherein establishing the
characterization for the respective reception system users
includes basing the characterization at least in part on the
applications requested by the respective users.

18. The method of claim 16 wherein establishing the
characterization for the respective reception system users
includes basing the characterization at least in part on the
demographic data for the respective users.

19. The method of claim 16 wherein establishing the
characterization for the respective reception system users

10

15

25

30

35

40

45

42
includes basing the characterization at least in part on data
concerning the geographical location of the respective user's
reception system.

20. The method of claim 16 wherein establishing the
characterization for the respective reception system users
includes basing the characterization at least in part on a
combination of data concerning user application requests,
user demographics and geographical location of the respec
tive user's reception system.

21. A method for presenting advertising obtained from a
computer network, the network including a multiplicity of
user reception systems at which respective users can request,
from the network, applications that include interactive ser
vices, the method comprising the steps of:

a compiling data concerning the respective users;
b. establishing characterizations for respective users

based on the compiled data; and
c. structuring advertising separately from the applications

So that the advertising may be selectively supplied,
through the network, to and retrieved at the reception
systems for presentation to the respective users along
with a requested application in accordance with the
characterizations established for the respective recep
tion system users,

wherein Supplying advertising data to the reception sys
tem includes storing a predetermined amount of the
advertising data in a store established at the respective
reception systems.

22. The method of claim 21 wherein supplying advertis
ing data to the reception system includes pre-fetching adver
tising data from the network when the store of advertising
data falls below a predetermined level.

23. The method of claim 22 wherein pre-fetching adver
tising data is dependent on the size of the advertising data
StOre.

24. The method of claim 23 wherein storing advertising
data at the reception system includes maintaining a list
identifying the advertising data to be presented.

25. The method of claim 21 wherein the supplying of
advertising data to the reception system for presentation
includes the reception system requesting advertising data
from the network when advertising data sought to be pre
sented is unavailable at the reception system.

