NOKIA CORPORATION v. APPLE INC. Doc. 1 Att. 3

Exhibit 2

Dockets.Justia.com

http://dockets.justia.com/docket/district-of-columbia/dcdce/1:2011mc00295/148263/
http://docs.justia.com/cases/federal/district-courts/district-of-columbia/dcdce/1:2011mc00295/148263/1/3.html
http://dockets.justia.com/

AO~88A"L (Rev. 06/09) Subpoena to Testify at a Deposition in a Civil Action

UNITED STATES DISTRICT COURT

for the
District of Columbia
Nokia Corporation)
Plaintiff)
V.) Civil Action No. 1:09-cv-00791-GMS

)

Apple Inc.) (If the action is pending in another district, state where:

Defendant) District of Delaware)

SUBPOENA TO TESTIFY AT A DEPOSITION IN A CIVIL ACTION

To: Glenn J. Perry
Sterne, Kessler, Goldstein & Fox PLLC, 1100 New York Avenue N.W., Washington, DC 20005

dTestimony: YOU ARE COMMANDED to appear at the time, date, and place set forth below to testify at a
deposition to be taken in this civil action. If you are an organization that is not a party in this case, you must designate
one or more officers, directors, or managing agents, or designate other persons who consent to testify on your behalf
about the following matters, or those set forth in an attachment:

Place: Date and Time:

Alston & Bird LLP, The Atlantic Building,
950 F Street, NW, Washington, D.C. 20004-1404 04/22/2011 1:00 pm

The deposition will be recorded by this method: _Court reporter and videographer

dProduction: You, or your representatives, must also bring with you to the deposition the following documents,
electronically stored information, or objects, and permit their inspection, copying, testing, or sampling of the
material:

See Attachment A for document requests. Please provide the requested documents to Rohan Kale's attention at Alston
& Bird LLP, 1201 West Peachtree Street, Atlanta, GA 30309-3424 by April 15, 2011.

The provisions of Fed. R. Civ. P. 45(c), relating to your protection as a person subject to a subpoena, and Rule
45 (d) and (e), relating to your duty to respond to this subpoena and the potential consequences of not doing so, are
attached.

Date: 03/24/2011

CLERK OF COURT
OR
/s/ Rohan Kale
Signature of Clerk or Deputy Clerk Attorney’s signature
The name, address, e-mail, and telephone number of the attorney representing (name of party) Nokia Corporation

, Who issues or requests this subpoena, are:

Rohan Kale, Esq.; Alston & Bird LLP, One Atlantic Center, 1200 W Peachtree St., Atlanta, Georgia 30309-3423; 404-
881-7000; rohan.kale@alston.com

AO 88A (Rev. 06/09) Subpoena to Testify at a Deposition in a Civil Action (Page 2)

Civil Action No. 1:09-cv-00791-GMS

PROOF OF SERVICE
(This section should not be filed with the court unless required by Fed. R. Civ. P. 45.)

This subpoena for (name of individual and title, if any)

was received by me on (date)

O3 Iserved the subpoena by delivering a copy to the named individual as follows:

on (date) ; or

O3 I returned the subpoena unexecuted because:

Unless the subpoena was issued on behalf of the United States, or one of its officers or agents, I have also
tendered to the witness fees for one day’s attendance, and the mileage allowed by law, in the amount of

$

My fees are $ for travel and $ for services, for a total of $ 0.00

I declare under penalty of perjury that this information is true.

Date:

Server’s signature

Printed name and title

Server’s address

Additional information regarding attempted service, etc:

AO 88A (Rev. 06/09) Subpoena to Testify at a Deposition in a Civil Action (Page 3)

Federal Rule of Civil Procedure 45 (c), (d), and (e) (Effective 12/1/07)

(c) Protecting a Person Subject to a Subpoena.

(1) Avoiding Undue Burden or Expense; Sanctions. A party or
attorney responsible for issuing and serving a subpoena must take
reasonable steps to avoid imposing undue burden or expense on a
person subject to the subpoena. The issuing court must enforce this
duty and impose an appropriate sanction — which may include lost
earnings and reasonable attorney’s fees — on a party or attorney
who fails to comply.

(2) Command to Produce Materials or Permit Inspection.

(A) Appearance Not Required. A person commanded to produce
documents, electronically stored information, or tangible things, or
to permit the inspection of premises, need not appear in person at the
place of production or inspection unless also commanded to appear
for a deposition, hearing, or trial.

(B) Objections. A person commanded to produce documents or
tangible things or to permit inspection may serve on the party or
attorney designated in the subpoena a written objection to
inspecting, copying, testing or sampling any or all of the materials or
to inspecting the premises — or to producing electronically stored
information in the form or forms requested. The objection must be
served before the earlier of the time specified for compliance or 14
days after the subpoena is served. If an objection is made, the
following rules apply:

(i) At any time, on notice to the commanded person, the serving
party may move the issuing court for an order compelling production
or inspection.

(ii) These acts may be required only as directed in the order, and
the order must protect a person who is neither a party nor a party’s
officer from significant expense resulting from compliance.

(3) Quashing or Modifying a Subpoena.

(A) When Required. On timely motion, the issuing court must
quash or modify a subpoena that:

(i) fails to allow a reasonable time to comply;

(ii) requires a person who is neither a party nor a party’s officer
to travel more than 100 miles from where that person resides, is
employed, or regularly transacts business in person — except that,
subject to Rule 45(c)(3)(B)(iii), the person may be commanded to
attend a trial by traveling from any such place within the state where
" the trial is held;

(iii) requires disclosure of privileged or other protected matter, if
no exception or waiver applies; or

(iv) subjects a person to undue burden.

(B) When Permitted. To protect a person subject to or affected by
a subpoena, the issuing court may, on motion, quash or modify the
subpoena if it requires:

(i) disclosing a trade secret or other confidential research,
development, or commercial information;

(ii) disclosing an unretained expert’s opinion or information that
does not describe specific occurrences in dispute and results from
the expert’s study that was not requested by a party; or

(iii) a person who is neither a party nor a party’s officer to incur
substantial expense to travel more than 100 miles to attend trial.

(C) Specifying Conditions as an Alternative. In the circumstances
described in Rule 45(c)(3)(B), the court may, instead of quashing or
modifying a subpoena, order appearance or production under
specified conditions if the serving party:

(i) shows a substantial need for the testimony or material that
cannot be otherwise met without undue hardship; and

(ii) ensures that the subpoenaed person will be reasonably
compensated.

(d) Duties in Responding to a Subpoena.

(1) Producing Documents or Electronically Stored Information.
These procedures apply to producing documents or electronically
stored information:

(A) Documents. A person responding to a subpoena to produce
documents must produce them as they are kept in the ordinary
course of business or must organize and label them to correspond to
the categories in the demand.

(B) Form for Producing Electronically Stored Information Not
Specified. If a subpoena does not specify a form for producing
electronically stored information, the person responding must
produce it in a form or forms in which it is ordinarily maintained or
in a reasonably usable form or forms.

(C) Electronically Stored Information Produced in Only One
Form. The person responding need not produce the same
electronically stored information in more than one form.

(D) Inaccessible Electronically Stored Information. The person
responding need not provide discovery of electronically stored
information from sources that the person identifies as not reasonably
accessible because of undue burden or cost. On motion to compel
discovery or for a protective order, the person responding must show
that the information is not reasonably accessible because of undue
burden or cost. If that showing is made, the court may nonetheless
order discovery from such sources if the requesting party shows
good cause, considering the limitations of Rule 26(b)(2)(C). The
court may specify conditions for the discovery.

(2) Claiming Privilege or Protection.

(A) Information Withheld. A person withholding subpoenaed
information under a claim that it is privileged or subject to
protection as trial-preparation material must:

(i) expressly make the claim; and

(ii) describe the nature of the withheld documents,
communications, or tangible things in a manner that, without
revealing information itself privileged or protected, will enable the
parties to assess the claim.

(B) Information Produced. If information produced in response to a
subpoena is subject to a claim of privilege or of protection as trial-
preparation material, the person making the claim may notify any
party that received the information of the claim and the basis for it.
After being notified, a party must promptly return, sequester, or
destroy the specified information and any copies it has; must not use
or disclose the information until the claim is resolved; must take
reasonable steps to retrieve the information if the party disclosed it
before being notified; and may promptly present the information to
the court under seal for a determination of the claim. The person
who produced the information must preserve the information until
the claim is resolved.

(e) Contempt. The issuing court may hold in contempt a person
who, having been served, fails without adequate excuse to obey the
subpoena. A nonparty’s failure to obey must be excused if the
subpoena purports to require the nonparty to attend or produce at a
place outside the limits of Rule 45(c)(3)(A)(ii).

Attachment A

ATTACHMENT A
INSTRUCTIONS
A. These document requests are intended to cover all documents and things
in your possession, custody or control. A document or thing is deemed to be in your
possession, custody, or control if:
a. itis in your physical control; or
b. ifitis in the physical control of any other person or entity and you own
the document or thing in whole or in part, have the right by contract,
statute, or otherwise to use, inspect, examine, or copy that thing or
document on any terms; or
c. if you have, as a practical matter, been able to use, inspect, examine,

or copy that document or thing when you have sought to do so or could
do so.

B. This subpoena includes documents that exist in electronic form
(including electronic mail, electronic files, back-up tapes, magnetic tapes, memory

sticks, PDAs, and diskettes).

C. If any document or thing requested was formerly in your possession,
custody or control and has since been lost or destroyed, you shall submit, in lieu of each

such document, a written statement which:

1. identifies the document by providing the author(s), addressee(s),
recipient(s), title, date, subject matter, number of pages, and identifies
all persons who ever possessed copies; and

2. states when and how the document was lost or destroyed, and if
destroyed, identifies each person having knowledge concerning such
destruction or loss and the person(s) requesting and performing such
destruction, the reasons for such destruction, and identifies each
document evidencing the document’s prior existence and/or facts
concerning its destruction.

D. These document requests are continuous in nature under Fed. R. Civ. P.

26(¢). If you subsequently obtain information or documents that render your initial
responses to these document requests incomplete or inaccurate, you are to amend your
responses and production promptly to make them complete and accurate.

E. Documents withheld pursuant to a claim of attorney-client privilege,
attorney work product, or other applicable privilege must be separately identified in a

privilege log and served on Nokia.

DEFINITIONS

I. “Document” is synonymous in meaning and equal in scope to the usage of
this term in Fed. R. Civ. P. 34(a) and includes, without limitation, any written, printed,
typed, electronic, photocopied, photographed, recorded, or otherwise reproduced
communication or representation. A draft or non-identical copy is a separate document

“ within the meaning of this term.

2. “Prior Art” means and refers to any reference or subject matter predating
the filing date of US Patent No. 5,315,703, December 23, 1992, and set forth in or
relevant under 35 U.S.C. § 102 and 35 U.S.C. § 103.

3. “Relating to” or “concerning” means, without limitation, referring to,
having any relationship to, pertaining to, reflecting, evidencing, involving, describing, or
constituting, whether directly or indirectly, in whole or in part, the subject matter of the
particular request.

4. The words “and” and “or” shall be construed conjunctively or
disjunctively, whichever makes this subpoena more inclusive, and “any” shall mean each

and every.

5. The “703 patent” means U.S. Pafent No. 5,315,703 (attached as
Attachment C hereto), any other member of the 703 patent family, and any foreign
counterparts to the 703 patent.

6. The “782 application” means U.S. Application Seriél No. 996,782 filed on
or about December 23, 1992.

7. “Mr. Perry,” “you,” and “your” mean Glenn J. Perry.

DOCUMENTS AND THINGS TO BE PRODUCED

I. All documents relating to the conception, actual or constructive reduction
to practice, research, development, design, structure, function, and operation of the
inventions claimed, discussed and/or described in the 703 patent.

2. All documents relating to the 703 patent, including, but not limited to, all
documents relating to the prosecution of the 703 patent.

3. All documents relating to every patent or patent application that claims
priority from a common ancestor to the 703 patent.

4. All documents relating to any divisional or continuation application patent
claiming priority from the 703 patent.

5. All invention disclosures relating to the 703 patent.

6. All documents relating to the respective contributions of David Anderson,
John R Matheny, Arnold Schaeffer, or Christopher White to any claimed invention of the
703 patent.

7. All documents and correspondence relating to David Anderson, John R

Matheny, Arnold Schaeffer, or Christopher White and to the 782 application, including

without limitation correspondence by or with David Anderson, John R Matheny, Arnold
Schaeffer, or Christopher White;

8. All searches, and the results of all searches, investigation, and/or analysis
for prior art or material related to the subject matter disclosed, described or claimed in the
patent application that issued as the 703 patent. This request includes without limitation
all materials or things discovered, collected, or found during or as a result of any such
searches, investigation, and/or analysis.

9. All Prior Art to the 703 patent.

10. All communications concerning Prior Art to the 703 patent.

11. All Documents related to the first sale, first offer for sale, first public
demonstration, first printed publication, first public use, first public disclosure of and first
use of the subject matter described, disclosed or claimed in the 703 patent.

12. Documents sufficient to show the first public description of the subject
matter described, disclosed or claimed in the 703.

13. With respect to 703 patent, all documents referring to or concerning any
decision by any Person to disclose or not to disclose to any patent examiner or office any
reference, document, or information. This request includes without limitation: (a) any
opinions or advice of counsel concerning the same, (b) any document concerning the
applicant, licensee, or assignee's knowledge or understanding of disclosure obligations,
and (c) a copy of the reference, document, or information that was not disclosed.

14. All documents related to any unique or specialized meaning (different
from its everyday common use) of any word or phrase contained in any of the claims of

the 703 patent.

15.

All documents concerning the scope, validity, and/or patentability of the

703 patent. This request includes without limitation documents constituting or

concerning: (a) any validity studies or opinions regarding validity; and (b) any assertion

by any Person that the 703 patent is valid or invalid.

16.

All documents relating to any patent or patent application claiming

priority to 782 application.

17.

18.

19.

20.

patent.

All invention disclosures relating to the 782 application.
All Prior Art to the 782 application.
All communications concerning Prior Art to the 782 application.

All documents and correspondence relating to the prosecution of the 703

Attachment B

A OO

US005315703A

.
United States Patent 9 (111 Patent Number: 5,315,703
Matheny et al. 45} Date of Patent: May 24, 1994
[54) OBJECT-ORIENTED NOTIFICATION 5,125,091 6/1992 Staas, Jr.etal. . 395/650
FRAMEWORK SYSTEM 5,133,075 7/1992 Risch ... 395/800
. 5,136,705 8/1992 Stubbs ... 395/575
[75) Inventors: Jokn R. Matheny; Christopher White, 5,151,987 9/1992 Abraham et al. . 395/575
both of Mountain View; David R. 5,168,441 12/1992 Onarheim et al.
Anderson, Cupertino; Arnold 5,177,685 1/1993 Davis et al. ...
Schaeffer, Belmont, all of Calif. 5,181,162 1/1993 Smith et al. ...
[73]) Assignee: Taligent, Inc,, Cupertino, Calif. OTHER PUBLICATIONS
[21] Appl. No.: 996,782 grgcrosog S\:ﬁtzms J_o%mal , .gn.dl99‘(l), vs, ::llé ;lv %(139)
) Ccrosof indows User's Guide Version 3. -
[22) Filed: Dec. 23,1992 90-1992, pp. 52, 83, 84, 85.
[3;1 3" C‘d’ Primary Examiner—Dale M. Shaw
[58] Flsd g Assistant Examiner—Kee M. Tung
{38] Field of Search .. 195,164 155, 154 161, 535 Amorney, Agens, or Firm—Keith Stephens
T 57 ABSTRACT
=) References Clted IA X tem fi bject based notificati tem. The
system for an object based notification system. The
us. ?ATENT DOCUMENTS notification system is designed in a fiexible manner to
3,658,427 4/1972 DeCou support change notification in an object-oriented oper-
3,881,605 5/1975 Grossman .. ating system. The change notification includes a mem-
4.082,188 4/1978 gonmmell et ol ory for storing connection information including notifi-
:2%22 é;gg; Beilei‘: Je: “Jl cation routing information and connection registration .
4704694 1171987 Czemieje;.veski i information. The connection registration information is
4742356 5/1988 Kuipers .. stored in a connection object of the object-oriented
4,821,220 4/1989 Dulsberg system and the notification system updates the connec-
4,885,717 12/1989 Beck et al. ., tion object with registration information indicative of
4,891,630 171990 Friedman et al b] or disabl of notification. Then, when
:3:?8:3 ;;ggg g’b:::’_l(lex :ll E a notification event is detected, the object-oriented
993, ysart et . operating system selectively notifies objects in the sys-
:g:ég’;g g;ggi g‘;’l‘““f:‘ﬁ etal tem based on the connection registration information
5060276 1071991 Mm:is eral stored in the connection object in the memory of the
5,075,848 12/1991 Laietal. computer system.
5,093,914 3/1992 Coplien et al.
5,119,475 6/1992 Smith et al. 14 Claims, 15 Drawing Sheets
20
/10 /16 /14 /18
CPU ROM RAM (o]
k'S
w/
COMM
2
24 \
| rearace DISPLAY
A ADAPTER ADAPTER

26

<

38 ’ 38

28

AppDel0000163

U.S. Patent May 24, 1994 Sheet 1 of 15 5,315,703

4
COMM
38

//18

4/,20
/0

FIG. 1A

/f14

RAM
DISPLAY
ADAPTER

3 - |
% 28

/,16

ROM

INTERFACE
ADAPTER

CPU

/,10
' 12‘//
22.\

24

AppDel0000164

U.S. Patent May 24, 1994 Sheet 2 of 15 5,315,703

Style IRIaLHIG

Bring to Front
end to Bac

broup
Uagroup
| Lock
saioek
| Rlign...

Rotate

42

300 310

320
FIG.3

AppDel0000165

U.S. Patent May 24, 1994 Sheet 3 of 15 5,315,703

NOTIFICATION

FIG. 4

FIG.5
VALUE
BOLD VALUE VALUEA -
f ;
80 610 620
FIG. 6

AppDel0000166

U.S. Patent May 24, 1994 Sheet 4 of 15 5,315,703

NOTIFICATION

VALUE
VALUE |)

FIG. 7

O SOUND CONTROLLER

2888~
choycyey

~1

@ o |

800
804 806
FIG. 8
o GOW//QOO
RED 0 == — 25 | o0
GREEN 0 == 255
BLUE 0 « i} 2 255
@D
/ 930
920
FIG.9

AppDel0000167

U.S. Patent May 24, 1994

Sheet 5 of 15 5,315,703
10Q2\\
RED 0 —})
i 255 © 1040
TFloatControlCommand
1030 float
GREEN 0 «c 4} 255 i TSetColor
TFloatControiCommand ~ ~ === red -
float - green ---+------- *COLOR"
: I e blug -+
BLUE 0 ——} 5 255
TFloatControlCommand 1050
1020 float
FiG. 10

-1100 :
\© PAPER
/o PLASTIC

1110

FIG. 11

AppDel0000168

U.S. Patent May 24, 1994 Sheet 6 of 15 5,315,703

(START j/ 1200
!

1210
UPDATE MENU | .

‘ _—1220
QUERY OBJECTS

>l _— 1230

QUERY COMMAND

1240

HIGHLIGHT
ENA?BLED MENU

1280
MODIFY STATE |
£ 1200
NOTIFY MENU
FIG. 12

AppDel0000169

- % _

//////

U.S. Patent May 24, 1994 . Sheet 8 of 15 5,315,703

1400
START

activate 40
DIALOG BOX

r

MANIPULATE
CONTROL

>l 140

CHANGE
VALUE

1420

‘ 1440

RECORD
COMMAND

CONTROL
CHANGED

1470

RE-RECORD
O N
COMMAND FIG. 14

AppDel0000171

U.S. Patent May 24, 1994 Sheet 9 of 15 5,315,703

INTITIALIZE
LABEL

>l

DRAW LABEL

l

TOGGLE LABEL

:

TOGGLE CONTROL

1540

CONTROL
SELECTED

FIG. 15

AppDel0000172

U.S. Patent May 24, 1994 Sheet 10 of 15 5,315,703

INITIALIZE | 1610
TITLE

—

DRAW TITLE

l 1630

TOGGLE TITLE

FIG. 16 .

AppDel0000173

U.S. Patent May 24, 1994 Sheet 11 of 15

1700
START
1710
BUTTON -
DETECTED

'

1720
INTERACTOR -
CREATED

!

NTEracToR 170

FIG. 17

STARTED
‘ 1740
. e
DELAY -

5,315,703

AppDel0000174

U.S. Patent

May 24, 199% Sheet 12 of 15 5,315,703

START 1800

!

!

CREATE CONNECTION | 1810

1820
DEFINE INTERESTS |

_—— 1830
CONNECT SOURCES
v a0
REGISTER CONNECTIONS
™y —— 1845
AWAIT CHANGE

] 1850

CHANGE DESCRIPTION |
v 1860

DISPATCH NOTIFICATION |
! 1870

!

CONNECTION
?

SEND NOTIFICATION [~

: 1880
RECEIVE NOTIFICATON
1885
ANOTHER YES

FIG. 18

AppDel0000175

U.S. Patent May 24, 1994 Sheet 13 of 15 5,315,703

1900
(START Y

’ .
1 1910
REQUEST PRESENTATION
Y - 1920
CREATE PRESENTATION |
) 1930
| _—
 BUILD PRESENTATION
FIG. 19

AppDel0000176

U.S. Patent May 24, 1994 - Sheet 14 of 15 5,315,703

INITIALIZE SCROLL

2020

THUMB

SELECTED
?

2040
’
SET
POSITION
THUMB
RELEASED
?
2060

COMPLETE SCROLL

l | FIG. 20

: 2070
Q STOP Y

AppDel0000177

- US. Patent May 24, 1994 Sheet 15 of 15,

FIG. 21A

_FIG.21B

FIG. 21C

E0= Files =[5
_Name 2112
Dmer - —TH
T
D file 2 LY 2110
ez o
<] [l

EE= Flles =008

T Files EEHIE

5,315,703

Nm .
) fite 7 g _— 2142
Dres | 2140
[ties B

2 [G

AppDel0000178

5,315,703

1

OBJECT-ORIENTED NOTIFICATION
FRAMEWORK SYSTEM

FIELD OF THE INVENTION

This invention generaily relates to improvements in
display systems and more particularly to global notifica-
tion of changes occurring in a system.

BACKGROUND OF THE INVENTION

Among developers of workstation software, it is in-
creasingly important to provide a flexible software en-
vironment while maintaining consistency in the user’s
interface. An early attempt at providing this type of an
operating environment is disclosed in U.S. Pat. No.
4,686,522 to Hernandez ct al. This patent discusses a
combined graphic and text processing system in which
a user can invoke a dynamic object at the location of the
cursor and invioke any of a variety of functions from the
object. This type of natural interaction with a user im-
proves the user interface and makes the application
much more intuitive.

For a system to be intuitive to a user, system changes
must be d in a consi regard-
less of what application is currently active. None of the
prior art references applicant is aware ‘of provides the
innovative hardware and system software features
which enable all applications to obtain system changes
through a generic framework for notification.

SUMMARY OF THE INVENTION

Accordingly, it is a primary objective of the present
invention to provide an object based system with a
generic framework for notification. Each object con-
tains status information determinative of the object’s
state (enabled/disabled), its name, its associated
graphic, and whether its appearance is currently valid.

Next, the invention. queries a command object for
. notification. Each command object has four methods to
connect for different types of notifications:

i) notifications that affect its name,

ii) notifications that affect its graphic,

iif) notifications that affect whether its active, and

iv) notifications that affect any data it provides.

In this case, the object item just created for the com-
mand connects for active notification. It does this by
passing & connection object to the notification system.

The command is then responsible for connecting the

connection object to notifiers affecting whether the
command is active.)

‘Then, the object system queries the command for the
enabled state before prueming the object item on the
display. This prc ng is accomplished by exammmg
the current system state to escertain if the function is
active in the current context. Then, the internal state of
the object item is updated and the object item is dis-
played based on the appropriate appearance state
(grayed out or normal).

“When a user invokes a command from an object item,
control or direct manipulation of an objéct, a document
state is modified and notification of the event is sent to
the system. This event automatically informs any active
object items and assures current status information is
consistent across the operating environment. The notifi-
cation message includes the name of the change and a
pointer to the object that sent the notification message.

5

30

2

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a block diagram of a personal computer
system in accordance with the subject invention;

FIG. 1B is a display in accordance with the subject
invention;

FIG. 2 illustrates the tools used to create an applica-
tion in accordance with the subject invention;

FIG. 3 is a flow diagram of a command process in
accordance with the subject invention;

FIG. 4 is a checkbox control in accordance with the
subject invention;

FIG. 5 is a checkbox control activation in accordance
with the subject invention;

FIG. 6 is a checkbox update in accordance with the
subject invention;

FIG. 7 is a summary of checkbox control processing
in accordance with the subject invention;

FIG. 8 is an illustration of a control panel in accor-
dance with the subject invention;

FIG. 9 is an illustration of a dialog box in accordance

with the sub_]ect invention;

FIG. 10 is an illustration of a dialog box color con-
troller in accordance with the subject invention;

FIG. 11 is an illustration of a radio button in accor-
dance with the subject invention;

FIG. 12 is a detailed flowchart of menu state process-
ing in accordance with the subject invention;

FIG. 13 is a picture of a display in accordance with
the subject invention;

FIG. 14 illustrates the detailed logic of atomic execu-
tion in accordance with the subject invention;

FIG. 15 sets forth the detailed logic associated with
smart label processing in accordance with the subject
invention;

FIG. 16 presents the detailed loglc of smart window
label processing in accordance with the subject inven-
tion;

FIG. 17 illustrates how objects are created and how

40 the objects communicate with each other during a typi-

H
o

55

o
>

cal interaction with an object that can be moved and
selected in accordance with the subject invention;

FIG. 18 is an object generating notification flowchart
for a notification source object in accordance with the
subject invention;

FIG. 19 presents a flowchart illustrating the detailed
logic associated with selecting the proper user interface
element in accordance with the subject invention;

FIG. 20 is a flowchart illustrating the detailed logic
associated with scrolling in accordance with the subject
invention; and

FIGS. 21A, 21B and 21C illustrate window scrolling
in accordance with the subject invention.

DETAILED DESCRIPTION OF THE
INVENTION

The invention is preferably practiced in the context
of an operating system resident on a personal computer
such as the IBM ® PS/2 ® or Apple ® Macintosh ®

Ar ive hardware environment is
deplcted in FIG. 1A, which illustrates a typical hard-
ware configuration of a workstation in accordance with
the subject invention having a central processing unit
10, such as a conventional microprocessor, and a num-
ber of other units interconnected via a system bus 12.
The workstation shown in FIG. 1A includes a Random
Access Memory (RAM) 14, Read Only Memory
(ROM) 16, an 1/0 adapter 18 for connecting peripheral

AppDel0000179

5,315,703

3
devices such as disk units 20 to the bus, a user interface
adapter 22 for connecting a keyboard 24, a mouse 26, a
speaker 28, a microphone 32, and/or other user inter-
face devices such as a touch screen device (not shown)
to the bus, a communication adapter 34 for connecting 5
the workstation to a data processing network and &

.display adapter 36 for cc ing the bus to a display
. device 38. The workstation has resident thereon an

operating system such as the IBM 0S/2 @ operating
system or the Apple System/7 ® operating system. 10
The subject invention is a new ob_]ect-onented system
software platform comprised of an operating system
and development environment designed to revolution-
ize personal computing for end-users, developcts, and

system vendors. The sy is & comp lone, 15
native operating system and development environment
architected from the ground up for high-performance
personal computing. The invention is a fully object-ori-
ented system including a wealth of frameworks, class
libraries, and a2 new generation object programming 20
environment, intended to improve fundamentally the
economics of third party application software develop-
ment. The subject invention is a fully portable operating
system.

Traditional operating systems provide a set of ser- 2.
vices which software developers can use to create their
software. Their programs are very joosely integrated
into the overall operating system environment. For
example, DOS applications take over the entire ma-
chine. This means that as far as the user is concerned, 30
the application is the operating system. In Macintosh ®
and Windows operating systems, spplications feel and
look sxmllar and they typically support cutting and

ions. This commonalty makes
it easier for users o use multiple applications in a smgle 35
environment. However, because the commonaity is not -
factored into a set of services and frameworks, it is still
very difficult to develop software.

In the subject invention, writing an “application”
means creating a set of objects that integrate into the 40
operating system environment. Software developers
rely on the operating system for both a sophisticated set
of services and a framework to develop software. The
frameworks in the subject invention provide powerful
abstractions which allow software developers to con- 4
centrate on their problem rather than on . building up
infrastructure. Furthermore, the fundamental abstrac-
tions for the software developer are very close to the
fundamental concepts that & user must understand to
operate her software. This architecture results in easier 50
developmcnt of sophisticated applications.

This section describes four steps to writing sonware
employing the subject invention. A user cc
the development of an application is typxcally con-
cermed with the following questions: 55
© What am I modeling?

For a word processor, this is the text] am entenng,
for a spreadsheet, it is the values and formulas in the
cells.
© How is the data presented? 60

Apgain, for a word processor, the characters are typi-
cally displayed in a what-you-see-is-what-you-get
(wysiwyg) format on the screen with appropriate line
and page breaks; in a spreadsheet it is displayed as a
table or a graph; and in a structured graphics program 65
(e-g MacDraw), it is displayed as a set of graphics

o

w

_objects.

© What can be selected?

In a word processing application, & selection is typi-
cally a range of characters; in a structured graphics
program it is a set of graphic objects.
© What are the commands that can operate on this

selection?

A command in 2 word processor might be to change
the style of a set of characters to bold. A command ina
structured graphic program might be to rotate a graphic
object. FIG. 1B is an illustration of a display in accor-
dance with the subject invention. A command is illus-
trated at 41 for bringing a picture to the front of a dis-
play. A presentation of graphic information is illus-
trated at 40. Finglly, a selection of a particular graphic
object, a circle, is shown at 42.

A developer must answer the same four questions
asked by the user. Fortunately, the subject invention
provides frameworks and services for addressing each
of these four questions. The first question that must be
answered is: What am I modeling? In a8 word p
program, the data includes the characters that make up
a document. The data in a8 spreadsheet includes the
values and formulas in the cells. In a calendar program,
the data includes the times and appointments associated
with & given day. The invention provides facilities that
help to model data. There are classes for modeling spe-
cific data types including: text, structured graphics,
sound and video. In addition to these specific classes,
the invention provides s number of other abstractions
that support problem modeling, including: collection
classes, concurrency control, recovery framework, and
the C++ language. The class that encapsulates the

- data model for a particular data type provides a specific
‘protocol for accessing and modifying the data con-

tained in the data encapsulator, support for overriding a
generic protocol for embedding other data encapsula-
tors and for being embedded in other data encapsula-
tors, generating notification to all registered objects
when the data changes, and overriding a generic proto-
col for creating presentations of the data. -

The next question that must be answered is: how is,
the data presented? In a structured graphic program,
the set of graphic objects are typically rendered on a
canvas. In a spreadsheet, it is typically a table of cells or
a graph; and in a presentation program it is a set of slides
or an outline. The subject invention provides a “view"
of the data contained in a data lator. The view
is created using a'“view system" and graphic system
calls. However, playing a sound or video clip is also
considered a presentation of the data.

Next: what can be selected? In a word processing
program, a selection is a range of characters; in a struc-
tured graphics program, it is a set of graphics objects;
and in a spreadsheet it is & range of cells. The invention
provides selection classes for all of the fundamental data
types that the system supports. The abstract baseclass
that represents a selection made by a user provides an
address space independent specification of the data
selected. For text, this would be a numeric range of
characters rather than a pair of pointers to the charac-
ters. This distinction is important because selections are
exchanged between other machines when collaborating
(in real-time) with other users. The baseclass also over-
rides a generic protocol for creating a persistent selec-
tion corresponding to this selection. Persistent selec-
tions are subclasses of an anchor object and may be
heavier weight than their corresponding ephemeral
selections because persistent selections must survive
editing changes. For example, a persistent text selection

AppDel0000180

5,315,703

must adjust itself when text is inserted before or after it.
Anchors are used in the implementation of hypermedia
linking, dataflow linking and annotations. .

The baseclass also provides an-override generic pro-
tocol for absorbing, embedding and exporting data con- &
tained in a data encapsulator. Baseclasses are indepen-
dent of the user interface technigue used to create them.
Selections are typically created via direct manipulation
by a user (e.g. tracking out a range of text or cells) but
can be created via a script or as a result of a command. 10
This orthogonality with the user interface is very im-
portant. Baseclasses also provide specific protocol for
ac ing the data psulator. There is a very strong
relationship between 2 particular subclass of the encap-
sulator class and its subclass of a model selection class. 15

Finally: what are the commands that can operate on
this selection? In a word processing program, a com-
mand might change the style of a selected range of
characters and in a structured graphics program, a com-
mand might rotate a graphic object. The subject inven- 20
tion provides a large number of built-in command ob-
Jects for all of the built-in data types as well as provid-
ing generic commands for Cut, Copy, Paste, Starting
HyperMedia Links, Completing Links, Navigating
Links, Pushing Data on- Links, Pulling Data on Links, as 25
well as many user interface commands. The abstract
baseclass that represents a command made by the user is
responsible for capturing the semantics of a user action,
determining if the command can be done, undone, and
redone. Command objects are responsible for encapsu- 30
lating all of the information necessary to undo a com-
mand after a command is done. Before 2 command is -
done, command objects are very compact representa-
tions .of a user action. The baseclass is independent of
the user interface technique used to create them. Com- 35
mands are typically created from menus or via direct
manipulation by the user (e.g. moving a graphic object)
but could be-created via a script. This orthogonality
with the user interface is very important.

BENEFITS OF FRAMEWORKS

The benefits of plugging into the abstractions in the
invention are greater than providing a conceptual
model. Plugging into the framework provides many
sophisticated features architected into the base operat- 45
ing system. This means that the framework implements
major user features by calling relatively small methods.
The result is that an investment in coding for the frame-
work is leveraged over several features.

MULTIPLE DATA TYPES

Once a new kind of data is implemented, the new data
type becomes a part of the system. Existing software
that can handle data encapsulators can handle your new
data type without modification. This differs from cur-
rent computer systems, such as the Macintosh computer
system. For example, a scrapbook desk accessory can
store any kind of data, but it can only display data that
has a text or quickdraw picture component. In contrast,
the subject invention’s scrapbook displays any kind of 60
data, because it deals with the datz in the form of an
object. Any new data type that is created behaves ex-
actly like the system-provided data types. In addition,
the data in the scrapbook is editable since an object
provides standard protocol for editing data. 3

The scrapbook example highlights the advantages of
data encapsulators. If software is developed such that it
can handle data tators, an application can be

o {2

40

S0

w
by

-

designed to simply handle a new data type. A new
application can display and edit the new kind of data
without modification.

MULTI-LEVEL UNDO

The invention is designed to support multi-level
undo. Implementing this feature, however, requires no
extra effort on the part of a developer. The system
simply remembers all the command objects that are
created. As long as the corresponding command object
exist, a user can undo a particular change to the data.
Because the system takes care of saving the commands

. and deciding which command to undo or redo, a user

does not impl an undo procedure.
DOCUMENT SAVING, RELIABILITY, AND
VERSIONING

A portion of the data encapsulator protocol deals
with filing the data into a stream and recreating the data
at another place and/or time. The system uses this pro-
tocol to implement document saving. By default, a
user’s data objects are streamed to a file when saved.
When the document is opened, the data objects are
recreated. The system uses a data management frame-
work 10 ensure the data written to disk is in a consistent
state. Users tend to save a file often so that their data

will be preserved on disk if the system crashes. The -

subject invention does not require this type of saving,
because the system keeps all the command objects. The
state of the document can be reconstructed by starting
from the last disk version of the document and replay-
ing the comtmand objects since that point in time. For
reliability, the system automatically logs command ob-
jects to the disk as they occur, so that if the system
crashes the user would not lose more than the last com-
mand. ’

The invention also supports document versioning. A
user can create a draft from the current state of a docu-
ment. A draft is an immutable “snapshot” of the docu-
ment at a particular point in time. (One reason to create
a draft is to circulate it to other users for comments.)

The system automatically takes care of the details in-,

volved with creating a new draft.

COLLABORATION

As mentioned above, a document can be recon-
structed by starting with its state at some past time and
applying the sequence of command objects performed
since that time. This feature allows users to recover
their work in the case of a crash, and it can also be used
to support real-time collaboration. Command objects
operate on selections, which are address-space indepen-
dent. Therefore, a selection object can be sent to a col-
laborator over the network and used on a remote ma-
chine. The same is true of command objects. A com-
mand performed by one collaborator can be sent to the
others and performed on their machines as well. If the
collaborators start with identical copies of the data,
then their copies will remain “in sync” as they make
changes. Creating a selection is done using 2 command
object, so that all collaborators have the same current
selection.

The system uses a feature known as “mode] based
tracking” to perform mouse tracking on each collabora-
tor's-machine. The tracker object created to handie a
mouse press creates and performs a series of incremen-
tal commands as a user moves the mouse. These com-
mands are sent to collaborators and performed by each

AppDel0000181

5,315,703

7
collaborator. The result is that each collaborator sees
the tracking feedback as it occurs. The system also
establishes a collaboration policy. A collaboration pol-
icy decides whether users are forced to take turns when
changing data or can meke changes freely. The inven-
tion handles the mechanics of collaboration which re-
moves the responsibility from an application developer.

SCRIPTING

" Designing & system to manage the sequence of com-
mand objects also makes it possible to implement a
systemwide scripting facility. The sequence of com-
mand objects is equivalent to a script of the local ac-
tions. The acnptmg feamre sxmply keeps track of com-
mand objects applied to any The scripting
facility also uses s selection objects in scripts. This feature
provides customization of a script by changing the se-

lecuon to whxch the script applies. ‘Since command’

"

ap] for i ng whether they
an apply to A particular selection, the s system ensures
that a user's script changes are valid.

HYPERMEDIA LINKING

Persistent selections, also known as anchors, can be
connected by link objects. A link object contains refer-
ences to the two anchors that form its endpoints. To the
system, the link is bidirectional; both ends have equal
capabilities. Certain higher-level uses of links may im-
pose a direction on the link. The single link object sup-
ports two dard features: navigation and data flow.
A user can navigate from one end of the link to the
other. Normally, this will involve opening the docu-
ment containing the destination anchor and hlghlxghtmg
the persistent selection. The exact behavior is deter-
mined by the anchor object at the destination end. For
example, a link to an animation may play the animation.
A link to a database query may perform the query.

Links also facilitate data flow. The selected data at
one end of the link can be transferred to the other end
1o replace the selection there. In most cases, the effect is

the same as if the user copied the selection at one end,”

used the link to navigate to the other end, and pasted the
data. The system takes care of the details involved with
navigating from one end of a link to the other (e.g.,
locating the destination document, opening it, scrolling
the destination anchor into view, etc.). Similarly, the
system handles the details of transferring data across the
link. The latter is done using the selection’s protocol for
accessing and modifying the data to which it refers.

ANNOTATIONS

The invention supports a system-wide annotation
facility. This facility allows an author to distribute a
document draft for review. Reviewers can attach
posted notes to the document, and when done, return
the document to the author. The author can then exam-
ine the posted notes and take action on each. (An author
can also create posted notes in the document.) A re-
viewer need not have the same software as the author.
Instead, the reviewer can use a standard annotation

pp ion. This application reads the data from the
author’s draft, and creates an annotatable presentation
of the data. (Creating such a presentation is part of the
standard data encapsulator protocol.)

The reviewer can create selections in the dc
and link posted notes to the selection. The link between
the posted note and selection allows the system to posi-
tion the posted note “near” the selection to which it

5

[

25

30

8

refers. The links also make the annotation structure
explicit, so that the system can implement standard
commands to manipulate annotations. The contents of
the posted note can be any data type implemented in the
system, not simply text or graphics. The contents of a
note is implemented using a data encepsulator, and
opening a note results in creating an editable presenta-
tion on that data.

DATA REPRESENTATION

Data representation is concerned with answering the
question of what is the data that 1 am modeling? The
subject invention provides facilities that help to model
data. There are classes for modeling specific data types,
including: text, structured graphics, sound and video. In
addition to these specific classes, the invention provides
a number of other abatractions that help to model a
problem: the collection classes, the concurrency control
and recovery framework, and the C+ + language itself.
In the subject invention, the class that encapsulates the
data model for a particular data type is a subclass of the
encapsulator class.

THE ENCAPSULATOR CLASS

A developer creates a container for a particular type
of data representation by creating a derived class of the
encapsulator class. For each type of data in the system,
(c.g., Braphic objects, styled text, spreadsheet cells) a
different derived class must exist which acts as the con-
tainer for a type's data. Each class of encapsulator pro-
vides a type specific protocol for accessing and modify-

" ing the data contained therein. This protocol is typically

KH

40

4

50

55

60

65

used by presentations for displaying the data and by
commands for modifying the data. In addition to type
specific protocol, the encapsulator class provides ge-
neric protocol that supports the embedding of data
encapsulators as “black-boxes” into other alien types.
This protocol must be implemented in the derived class
1o support the creation of presentations, editors and
selections for the encapsulated data. A container need
only understand this generic protocol to support the
embedding of-any alien data type.

CHOOSING A REPRESENTATION FOR DATA

The data type designer has both the C+ + object
model, and a rich set of standard classes to choose from
when designing a representation for a particular type of
data. The classes provided by the invention should
always be considered before ds:gmng unigue classes to
represent the dsta. This minimizes any duplication of
effort which may occur by creating new classes which
prov:de similar or identical function to classes already
existing in the system. The most basic of these is the
C+ + object model. A designer can create a class or
classes which closely match the mental model of the
user to represent the classes the user deals with.

The invention's foundation classes provide many
standard ways to represent data. Collection classes pro-
vide a number of ways for collecting together related
objects in memory, ranging from simple sets to dictio-
naries. Disk-based collections, providing persistent,
uncorrupted collections of objects, are also available. A
data type requiring two (2 D) and three dimensional (3
D) graphic modeling, such as a graphical editor, is also
supported. Numerous 2 D and 3 D modeling objects are
provided along with transformation, matrix classes and
3 D cameras. Similarly, the invention provides a sophis-
ticated text data type that supports full international

AppDel0000182

5,315,703

9
text, aesthetic typography, and an -extensible style
-mechanism. The invention also provides support for
time based media such as sound and video. Sophisti-
cated time control mechanisms are available to provide
synchronization between various types of time based
media. -

PRESENTATION PROTOCOL

The encapsulator class provides a protocol for the
creation of various classes of presentations on the data
contained within the encapsulator. The presentations
include a thumbnail presentation, a browse-only presen.
tation, a selectable presentation, and an editable presen-
tation. There is also a protocol for negotiating sizes for
the presentations and fitting the data into the chosen
size. Subcl, of the encap or class are responsible
for overriding and implementing this protocol to sup-
port the cmbedding of the data in other encapsulators.
The presentations currently supported include:

Thumbnail—This presentation is intended to give the
user & “‘peek” at what is contained in the psulator.
It is typically small in size and may scale-down and/or
clip the data to fit the size.

Browse-only—This presentation allows the user to
view the data in its normal size but the user is unable to
select or modify any of the data.

Selectable—This presentation adds the ability to se.
lect data to the capebilities provided by the browse-only
presentation. It is used in annotating to allow annota-
tions to be tied to selections in the data without allow-
ing modification to the data itself. Thé selectable pre-
sentation is typically implemented as a subclass of the
browse-only presentation.

Editable—This presentation adds the ability to mod-
ify data to the capabilities provided by the selectable
presentation. This is the presentation that allows the
user to create new data and edit existing data. Cur-
rently, this presentation provides its own window for
editing. It is likely that in the future support will be
added for presentations which allow editing in place.
The editable presentation is typically implemented as a

belass of the selectabl :

P

CHANGE NOTIFICATION

When the data contained in an encapsulator class is
changed, it is necessary to provide clients (e.g. a view
on the data) with notification of the change. Encapsula-
tors rely on a built-in class for standard notification
support to allow the encapsulator to notify clients of
changes to the data representation. A client can connect
to an encapsulator for notification on specific changes
or for all changes. When a change occurs the p
tor asks the model to propagate notification about the
change to all interested clients.

DATA PRESENTATION

This section addresses how the system presents data
to a user. Once the data has been represented to the
system, it is the role of the user interface to present the
data in an appropriate and meaningful way to a user.
The user interface establishes a dialogue b the

5

1

o

'3

20

w
n

40

4

>

50

w
by

10

THE USER INTERFACE

A developer creates a class to facilitate the presenta-
tion of data to interact with a data encapsulator. By
separating the data model from the presentation, the
invention facilitates multiple presentations of the same
data. Some applications, like the Apple ® Macintosh
Finder, already support a limited form of multiple pre-

sentations of the same data. Sometimes it is useful tobe .

able to display different views of the same data at the
same time. These different views might be instances of
the same class—as in 8 3 D CAD program which shows
four different view of the same data. For each kind of
presentation, a user was previously required to write a
view which can display the model and a set of trackers
and tracking commands which can select and modify
the model.

STATIC PRESENTATIONS

The simplest presentation type is the name of the
data. The name is a text string that indicates the data
content or type. Examples include “Chapter 4”, “1990
Federal Income Taxes”, “To Do”. Another simple
presentation type, an icon, is a small graphical represen-
tation of the data. It usually indicates the data type.
Examples are a book, a report, a financial model, a
sound or video recording, a drawing. However, they
may also display status, such as a printer that is printing,
or indicate content, such as a reduced view of a draw-
ing. Finally, the thumbnal, is 2 small view of the model
data. This view may show only a portion of the data in
order to fit the available space. Examples are a shrunken
drawing, a book’s table of contents, a shrunken letter, or
the shrunken first page of a long document. A browse-
only presentation allows a user to view the data in its
normal size but the user is unable to select or modify
any of the data.

SELECTABLE PRESENTATIONS

Selectable presentations allow a user to view, ex-
plore, and extract information from the data. These
presentations provide context: what the data is, where
the data is, when the data was. It may help to present
the data in a structured way, such as a list, a grid, as an
outline, or spatially. It is also useful to display the rela-
tionships among the data elements, the data’s relation-
ship to its container or siblings, and any other depen-
dencies.

Selectable presentations may also display meta data.
An example is the current selection, which indicates the
data elements a user is currently manipulating. Another
type of meta data is 2 hypermedia link between data
elements. The view may also indicate other users who
are collaborating on the data.

Selectable presentations are usually very specific to
the type of the data. They are made up of windows,
views, and other user interface objects which may be
customized to best reflect the data type. Some examples
are:
Sound recording—A control panel would facilitate

" an audible presentation. Views would display the sound

as a musical score or as a series of waveforms. Views
may include a sample number or time indications.

user and the model data. This dialogue permits a user to
view or otherwise perceive data and gives a user the
opportunity to modify or manipulate data. This section
focuses on data presentation.

F ial model—The mode] could be viewed as the
set of formulas and other parameters. It could display
values from the model at a particular instance of time or
with specific input values as a spreadsheet or in various
graphical forms.

AppDel0000183

5,315,703

11

Book-~The model could be viewed as a table of con-
tents, an index, a list of illustrations. It could be viewed
as a series of pages, a series of chapters, or a continuous
text flow.

Video recording—The model could be viewed as a §
series of individual frames or as a continuous presenta.
tion. Views may include track marks, frame number,
and time indications.

Contginer containing other objects-——The objects
could be displayed alphabetically by name, by type or 10
other attribute, as a set of icons, as a set of thumbnails.

EDITABLE PRESENTATIONS

Editable presentations are similar to interactive pre-
sentations except that they also facilitate data modifica- 15
tion. They do this by allowing direct manipulation of
the data with the mouse or other pointer. They also
allow the data to be manipulated symbohcally through
menu items and other controls.

DATA ACCESS

Presentations interact with data encapsulators in
order to determine the data and other information to
present. Presentations query the model for the data that
is required. The presentation may present ali or only 2
part of the data that js contained or can be derived from
the data in the data encapsulator.

CHANGE NOTIFICATION

Because there can be many presentations of a single 30
mode] active at once, the data can be changed from
many sources, including collab ors. Each p
tion is responsible for keeping itself up to date with
respect to the ‘model data. This is accomphshcd by
registering for notification when all or a portion of a 3
model changes. When a change occurs to data in which
the presentation is interested, the presentation receives
notification and updates its view accordingly. Change
notification can be generated in any of the ways listed
below. First, change notification can be generated from 40
the method in the data encapsulator which actually
changes the model data. Second, change notification
can be generated from the command which caused the
change. As mentioned earlier, there are benefits to these
two approaches. Generating the notification from 45
within the data encapsulator guarantees that clients will
be notified whenever the data changes. Generating the
notification from the command allows *“higher-level”
notification, and reduces the flurry of notifications pro-
duced by a complicated change. 50

NOTIFICATION FRAMEWORK OVERVIEW

The Notification framework provides a mechanism
for propagating change information between objects

20

a9

w

12

scribe a specific notification from a notification source

object.
NOTIFICATION PROPAGATION FLOW CHART
FIG. 18 is an object generating notification flowchart

" for a notification source object. Processing commences

st terminal 1800 and immediately passes to function
block 1810 where & notification receiver object creates
a connection to itself. Then, at function block 1820 the
notification receiver object adds appropriate interests
for one or more notifications from one or more notifica-
tion source objects. These interests are defined by the
notification source object(s).

The client object asks the connection object to con-
nect to the notification source(s) for notifications speci-
fied by the interests in the connection in function block
1830. Then, in function block 1840, for each interest in
connection, the connection is registered as interested in
the notification with the notifier in the interest. Next, at
function block 1845, the system enters a wait state until
a change is detected. When & sy change occurs,
control immediately passes to 1880 where a notification
source object changes and calls notify on its notifier
with a notification describing the change.

For each connection registered with the notifier as
interested in the notification, at function block 1860, the
connection is asked to dispatch the notification. In turn,
at function block 1870, the connection dispatches the
notification to the appropriate method of the notifica-
tion receiver. Finally, at function block 1880, the notifi-
cation receiver takes the appropriate action for the
notification, and a test is performed at decision block
1885 to determine if another connection is registered
with the notifier as interested in notification. If there is
another connection, then contro! passes to 1850. If there
is not another connection to service, then control passes
to function block 1848 to await the next change.

DATA SPECIFICATION

Data specification addresses the sclection issue of
data processing. If a user must manipulate data con-
tained in a representation, the data must be able to spec-
ify subsets of that data. The user typically calls this
specification a “‘selection,” and the system provides a
base class from which all selection classes descend. The
invention also provides selection classes for all of the
fundamental data types that the system supports.

MODEL SELECTION

The object which contains the specification of a sub-
set of data in a rep ion is a model selection class.
In the case of a text representation, one possible selec-
tion specification is a pair of character offsets. In a
structured graphics model, each shape must be assigned

The framework allows objects to exp i in, 53
and receive notification about changes in objects on
which they depend. A standard interface is provided for
classes that provide notification to clients. Notifier
classes provide notification source objects with the
means to manage lists of clients and dispatch notifica- 60
tions to those clients. Notifier objects require no special
knowledge of the class of objects receiving notifica-
tions. Connection objects provide the dispatch of notifi-
cations from the notifier to specific notification receiver
objects. These connection objects allow specialization 65
of how notifications are delivered to different classes of
receivers. Finally, Notification objects transport de-
scriptive information about a change, and interests de-

a unique id, and the selection specification is a set of
unique ids. Neither of the specifications point directly at
the selection data and they can be spplied across multi-
ple copies of the data.

ACCESSING SPECIFIED DATA

A selection und ds the repr ion protocol -

for accessing and modifying data and knows how to
find data in a local address space. Command objects
access a representation’s data through data selection,
and therefore require no knowledge of converting from
specification to the real data in the local model. It is the
job of the selection object to provide access to the real
data from the address space independent specification.

AppDel0000184

5,315,703

13

In a text encapsulator, this processing may require que-
rying the encapsulator for the actual characters con-
tained in a range. In a base model such as a graphical
editor the selection will typically hold surrogates for
the real objects. The encapsulator must provide a 3
lookup facility for converting the surrogate to the real
object.

STANDARD EDITING PROTOCOL

The model selection class provides a protocol for the 1o
exchange of data between selections. By implementing
the protocol for type negotiation, absorbing, embedding
and exporting dats, derived classes provide support for
most of the standard editing commands. This means that
the editing commands (Cut, Copy, Paste, Push Data,
etc.) provided by the system will function for the repre-
sented data type and will not require reimplementation
for each application. The model selection class also
provides support directly for the exchange of anchors 2
and links but relies on the derived class’s implementa-
tion of several key methods to support the exchange of
the representation’s data:

CopyData must be implemented by the derived class
to export a copy of the specified data. The implementa- 35
tion creates and returns a new data encapsulator of the
requested type containing a copy of the specified data.

AdoptData must be implemented by the derived class
to support absorbing or embedding data into the specifi-
cation’s associated representation. If the data is to be 30
absorbed it-must be of a type which can be incorporated
directly into the receiver’s representation. The ab-
sorbed data is added to the representation as defined by
the specification. It is common for many data types to
replace the currently specified data with the newly 35
absorbed data. Any replaced data is returned in a data
encapsulator to support Undo. If the data is to be em-
bedded, the encapsulator js incorporated as a black box
and added as a child of the representation,

ClearData must be implemented by the derived class 40
to delete the specified data from the associated repre-

jon. An psulator of the representation’s na-
tive type containing the deleted data must be returned.
USER INTERFACE 45

The user interface for creating specifications is typi-
cally the responsibility of a presentation on the data. A
number of mechanism are available depending on data
type and presentation style. The most favored user
interface for creating a selection is direct manipulation.
In a simple graphics model, objects may be selected by
clicking directly on the object with the mouse or drag-
ging a selection box across several objects using a
mouse tracker. In text, a selection may be created by as 5
the result of a find command. Another common way
that selections are created is as a result of a menu com-
mand such as “find.” After the command is issued, the
document is scrolled to the appropriate place and the
text that was searched for is selected. 60

Finally, selections can come from a script (or pro-
grammatically generated) and the result would be the
same as if a user created the selection directly. “Nam-
ing" selections for scripts involve creating a language
for describing the selection. For example, in text, a 65
selection could be “the second word of the fourth para-
graph on page two.” The invention’s architecture pro-
vides support for scripting.

by

14
DATA MODIFICATION

Data Modifications addresses the question: what are
the commands that can operate on this selection? If a
user is to modify the data contained in a representation,
the system must be able to specify exactly the type of
modification to be made. For example, in a word pro-
cessing program, a user may want to change the style of
aselected range of characters. Or, in a structured graph-
ics program, a user may desire rotation of a graphic
object. All user actions that modify the data contained

in & data encapsulator are represented by “command -

objects.”
THE MODEL COMMAND OBJECT

The abstract base class that represents a command
made by the user is the model command object. Sub-

" classes of the model command object capture the se-

mantics of user actions, such as: can be done, undone,
and redone. These subclasses are independent of the
user interface technique used to create them, Unlike
MacApp, as soon as the semantics of a user action is
known, device events are translated into command
objects by the system.

HANDLEDO, HANDLEUNDO, AND
- HANDLEREDO

Creating a new class of command involves overriding
a number of methods. The most important three meth-
ods to override are: HandleDo, HandleUndo and Hand-
leRedo. The HandleDo method is responsibie for
changing the data encapsulator appropriately based on
the type of command that it is and the selection the
command is applied to. For example, if the command
involves a style change to a range of characters in a
word processor, the HandleDo method would call a
method (or set of methods) in the data encapsulator to
specify a character range and style to change. A more
difficult responsibility of the HandleDo method is sav-
ing all of the information necessary to *undo” this com-
mand later. In the style change example, saving undo
information involves recording the old style of the char-
acter range. The undo information for most commands
is very simple to save. However, some commands, like
find and change may involve recording a great deal of
information to undo the command at a later time. Fi.
nally, the HandleDo method is responsible for issuing

change notification describing the changes it made to -

the data encapsulator. .

The HandleUndo method is responsible for reverting
a document back to the state it was in before the com-
mand was “done.” The steps that must be applied are
analogous to the steps that were done in the HandleDo
method described above. The HandleRedo method is
responsible for “redoing” the command after it had
been done and undone. Users often toggle between two
states of a document comparing a result of a command
using the undo/redo combination. Typically, the Hand-
leRedo method is very similar to the HandleDo method
except that in the Redo method, the information that
was derived the last time can be reused when this com-
mand is completed (the information doesn’t need to be
recalculated since it is guaranteed to be the same).

USER INTERFACE

Command objects capture the semantics of a user
action. In fact, a command represents a “work request”
that is most often created by a user (using a variety of

AppDel0000185

5,315,703

15 :

user interface techniques) but could be created (and
applied) in other ways as well. The important concept is
that command objects represent the only means for
modifying the data contained in a data psulator. All
changes to the data encapsulator must be processed by $
8 command object if the benefits of infinite undo, save-
less model, and other features of the invention are to be
realized.

The most favored user interface for issuing com-
mands involves some sort of direct manipulation. An
object responsible for translating device events into
commands and “driving” the user feedback process is
known as a tracker. The invention provides a rich set of
‘“tracking commands” for manipulating the built-in data
types. For example, there are tracking commands for
rotating, scaling and moving all the 2 D objects in Pink
such as lines, curves, polygons, etc.

A common user interface for issuing commands is via
controls or the menu Menus are d and a 9
set of related commands are added to the menu. When
the user chooses an item in the menu, the appropriate
command is “‘cloned” and the Do method of the com-
mand is called. The programmer is never involved with
device events at all. Furthermore, because commands 3
know what types of selections they can be applied to,
menu items are sutomatically dimmed when they are
not appropriate.

Finally, commands can be issued from a script (or
programmatically generated) and the result would be 30
the same as if a user issued the command directly. The
Pink architecture provides support for scripting; how-
ever, at this time, there is no user interface availabie for
creating these scripts.

BUILT-IN COMMANDS

The invention provides a large number of built-in
command objects for all of the built-in data types as
well as providing generic commands for Cut, Copy,
Paste, Starting HyperMedia Links, Completing Links,
Navigating Links, Pushing Data on Links, Pulling Data
on Links, as well as many user interface commands. One
of the advantages of using the frameworks is that these
built-in command objects can be used with any data
encapsulators.

L

3

by

4

o

MORE FEATURES

The previous sections of this document concentrated
on the foundational features of the invention. There are
many additional facilities in the invention that imple-
ment advanced features. Specifically, these facilities’
include: model-based tracking, filing, anchors, and col-
laboration. .

MODEL BASED TRACKING s

Tracking is the heart of a direct-manipulation user
interface. Tracking allows users to select ranges of text,
drag objects, resize objects, and sketch objects. The
invention extends tracking to function across multiple g9
views and multiple machines by actually modifying the
model. The tracker issues commands to the model,
which posts change notifications to all interested views.

Mode! based tracking is the best solution for tracking
in documents, but it does have the drawbacks that: (1) 65
the model’s views must be optimized to provide quick
.response to change events and (2) the model must be

ble of ing the intermediate track states.

P) 4

>

16

ANCHORS

Persistent selections or “anchors” are very similar to
selections in that they are specifications of data in &
representation. The difference is that anchors must sur-
vive editing changes since by definition anchors persist
across changes to the data. The implementation of
graphics selections described earlier in the document is
persistent. The implementation of text selections, how-
ever, is not. If a user inserts or deletes text before a
selection, then the character offsets must be adjusted.
There are a couple of approaches for implementing text
anchors. First, the text representation maintains & col-
lection of markers that point within the text, similar to
the way styles are maintained. The anchors include an
unique id that refers to & marker. When the text is
changed, the appropriate markers are updated, but the
anchors remain the same. Another approach is to main-
tain an editing history for the text. The anchor could
contgin a pair of character positions, as well as 2 time
stamp. Each time the text was edited, the history would
be updated to record the change (e.g., 5 characters
deleted from position X at time T). When the anchor is
used, the system would have to correct its character
positions based on editing changes that happened since
the last time it was used. At convenient times, the his-
tory can be condensed and the anchors permanently
updated.

The system provides a large number of features for
"free” through the anchor facility. All of the Hy-
perMedia commands (CreateLink, PushData, PullData,
and Follow) all use anchors in their implementation.
The implementation of the system wide annotation
facility uses anchors in its implementation. The base
data encapsulator provides services for keeping track of
anchors and links. However, the user is responsible for
making anchors visible to the uvser via presentations.

. The application must also issue the proper command

object when a user selects an anchor. After a user inter-

40 face for anchors and links is nailed down, the document

framework provides additional support to simplify pro-
cessing.

FILING

Filing is the process of saving and restoring data to
and from permanent storage. Al a user must do to make
filing work is to implement the streaming operators for
a data encapsulator. The invention’s default filing is
“image" based. When a user opens s document, the
entire contents of the document are read into memory.
When & user closes a document, the entire contents of
the document are written back to disk. This approach
was selected because it is simple, flexible, and easy to
understand. To store data in & different format, perhaps
for compatibility with a preexisting standard file format,
two approaches are possible. First, an encapsulator class
can stream a reference to the actual data, then use the
reference to find the actual data, or a new subclass can
be defined to create and return a file subclass.

The advantage of the first approach is a data encap-
sulator can be encapsulated in other documents. The
advantage of the second approach is the complete free-
dom afforded to exactly match an existing file format
for the complete document.

COLLABORATION

Same-time network collaboration means that two or
more people edit the same document at the same time.

AppDel0000186

5,315,703

. 1
The system also establishes the collaboration policy;
that is, whether users are forced to take turns when
changing the data or can make changes freely. A devel-
oper does not have to worry about the mechanies of
collaboration or the collaboration policy. 5

SUPPORTING COLLABORATOR SELECTION
STYLES

To assist in the reduction of confusion and enhance
model selection, the d archi e provides a 10
collaborator class which contains information about the
collaborator’s initials and preferred highlight bundle.

SUPPORTING MULTIPLE SELECTIONS

To support multiple selections a user must modify 15
presentation views because each collaborator has a
selection. When the active collaborator’s selection
changes the standard change notification is sent. When
u passive collaborator’s selection changes a different
notification event is sent. A view should register for 20
both events. Since the action taken to respond to either
event is usually the same, economy can be realized by
registering the same handler method for both events.

USER INTERFACE IN ACCORDANCE WITH 25
THE INVENTION

This portion of the invention is primarily focused on
innovative aspects of the user interface building upon
the foundation of the operating system framework pre-
viously discussed. The first aspect of the user interface 30
is 8 mechanism allowing a user to manage interactions
with various objects or data referred to as controls.

CONTROL

The object with which users interact to manipulate 35
other objects or data is called a control. Controls use a
command to determine the current state of the object or
data. Following appropriate interactions with the user,
the control updates the command’s parameters and
causes it to be executed. Example controls are menus, 40
buttons, check boxes and radio buttons.

Controls use a command to determine the current
state of the object or data. Following appropriate inter-
actions with the user, the control updates the com-
mand’s parameters and causes it to be executed. For ‘4
example, a checkbox sets 2 command parameter to on
or off and then executes the command to change 2 data
value.

Many controls display the current value of the data
they manipulate. For example, a check box displays a 50
check only when a Boolean data value is TRUE, As the
data changes, the control's appearance is kept up to date
using a notification system described here. The process
is similar to the process used to enable/disable menu
items. ' 55

When a control is created a command must be speci-
fied. The control makes a copy of this command and
stores it in field fCommand. If the command supplies
any data values, a pointer to appropriate Get and Set
methods of the command must also be specified. The 60
. control stores these method pointers in fields fGet-
Method and fSctMethod, respectively. Then, the con-
trol connects for notifications that indicate its data value
may be out of date. Each command provides a method
called ConnectData for this purpose. 6

Each control contains a connection object called
fDataConnection indicating the object and method to
receive the notification. This connection object passed

»

>

18

as an argument to the command. The command object
calls the connection object’s Connect method to add
each notifier and interest that may affect its data value.
When complete, the control calls the connection ob-
ject’s Connect method to establish the connections as
shown in FIG. 3. The control updates its data value
from its command. It does this by calling the Get
method of the command (fCommand—(*{GetMethod)(
)). The control stores this value in an appropriate field
{e.g. a checkbox stores it in a Boolean field named
fChecked) as depicted in FIG. 8. Then, the control
updates its appearance. It performs this action by call-
ing the view system's invalidate method, indicating
which portion of the screen needs updating.

Finally, the data changes and notification is sent. At
some point, a command is executed which changes the
value of the data being reflected by the control. This
command could be executed from a control, menu item,
or through direct manipulation. The contro] receives
the notification as shown in FIG. 4, and control is
passed to await the next user selection.

" CONTROL PANEL
One collection of controls is called a control panel.
The controls in a control panel typically operate upon
actual data (this is the default, not a requirement). Their

actions are usually immediate and are independent from*

one another. Control panels manage the progression of
the input focus among its controls as necessary. It is
likely that control panels will be shared across all user
interfaces in the system.

DIALOG BOX

Another collection of controls is called a dialog box.
The controls in a dialog box typically operate upon
prototypical data (this is the default, not a requirement).
Their actions are usbally collected together into a group
and then performed together when the user presses an
Apply button. Dialog boxes manage the progression of
the input focus among its controls as necessary.

A CONTROL IN ACTION

We would now like to present a play in three acts to
illustrate a control in action. FIG. 2 illustrates the vari.
ous controls. A play example will be used by way of
analogy to illustrate a control (in this case a checkbox),
a command, a selection, and 2 data encapsulator.

Checkbox 200: The role of the checkbox is to display
2 Boolean value stored in the data encapsulator and to
facilitate its change. The value is represented by the
presence or absence of a check.

Command 210: The role of the command is to obtain
the value from the data encapsulator and change it upon
direction from the checkbox.

Selection 220: The role of the selection is to be an
interface between the command and the data.

Data 230: Data is employed as z target for actions.

GETTING TO KNOW YOU

Everyone gets to know each other a little better as
shown in FIG. 3. The command 310 tells the checkbox
300 which notifications the data may send in which the
control is certain to be interested (how the command
310 knows is none of anyone else’s business). The
checkbox 300, in turn, connects to the data 320 for the
notifications.

Unknown to anyone else, the director told the check-
box 300 the best way to interact with the command 310.

AppDel0000187

5,315,703

19
Specifically, it was told about the command’s get value
method and & set value method. The checkbox will take
advantage of this a little bit later.

REFLECTING THE DATA s

Something happens to the data—it sends notifications
as depicted in FIG. 4. The checkbox 400 hears sbout
those for which it has expressed an interest. In FIG. 4,
the notification from the data expresses to bold the
information which is reflected by placing an X in the 10
checkbox.

The checkbox $10 received notification from the
data, and the processing to display the checkbox 510
correctly is depicted in FIG. 8. It does this by using the
command’s $20 get value method it happens to know 15
about. Before telling the checkbox 510 what the correct
value is, the command 520 goes through the selection to
the data to make sure it really knows the correct value.
The checkbox $10 updates itself as y.

CHANGING THE DATA

The user now enters the scene and gives the check-
box 600 a nudge as shown in FIG. 6. The checkbox 600
uses the command’s 610 set value method to set the
data’s 620 value through the selection. The entire pro- 2!
cess js reviewed in FIG. 7.

A CONTROL PANEL IN ACTION

A control panel is nothing more than a simple win-
dow that contains a set of controls as shown in FIG. 8. 30
These controls contain & command that operates upon
the current selection. The control is enabled if the com-
mand is active. Following appropriate interaction with

20

O

the user, the control the cc d ing the
data to change. 35
A SOUND CONTROL PANEL

As an example control panel, consider the sound
controller illustrated in FIG. 8. This control panel con-
tains four buttons 800, 802, 804 and 806 for controlling 40
sound playback. Each button performs as described in
the “A Control in Action” section above.

Play 800

This control contains a TPlay command. This com- 45
mand is active only under certain conditions, making
the control enabled only under those conditions. First, a
sound must be selected in the appropriate data encap-
sulator. Next, it must not 'be playing already. Finally,
the current sound position must be somewhere before 50
the end. When pressed, the Play button executes the
TPlay command, causing the selected sound to come
out of the speaker.

Step 802 s

‘This control contains &8 TPlay command, too. How is
this, you ask? Well, since I am making this up, we can
pretend that the TPlay command takes a parameter
indicating the duration it is to play. For the purposes of
the step button, it is set to a single sample. The Step 60
button is enabled only under the same conditions as
described for the Play button. When pressed, the Step
button executes the TPlay command, causing the se-
lected sound to come out of the speaker.

Stop 804

This contro! contains a TStop command. The Stop
button is enabled only if the selected sound is currently

Dy

65

20
playing. When pressed, the Stop button executes the
TStop cc d ing the selected sound to stop

playing and to set the current sound position to the
beginning. :
Pause 806

This control contains a TStop command, too. Unlike
the Stop button, however, this TStop command is set to
not rewind the sound to the beginning. Pressing the
Play or Step buttons continue from where the playback
left off.

A DIALOG BOX IN ACTION

A dialog box is similar to a control panel, in that it is
a simple window containing a set of controls. However,
instead of the controls operating upon the selected data,
they operate upon parameters of gnother command.
Only until the Apply button is pressed is the real data
modified.

A COLOR EDITOR

As an example dialog box, consider the color editor
set forth in FIG. 9. It contains three sliders, one for the
red 900, blue 910, and green 920 components of the
color. After adjusting the sliders to the desired values,
the user presses Apply 930 to change the color of the
selection.

Red 900, Green 910, Blue 920

To the user, these sliders are identical, except for
their label. As with all controls, each slider contains a
command that is executed following user interaction.
Unlike many controls, especially those in a control
panel that immediately affect the selected data, the
command contained by these sliders displays and modi-
fies the value of a f of another d. In
this case, it is one of the red, green, or blue parameters
of the command contained within the Apply button.

Apply 930

The Apply button contains & TSetColor command
that changes the color of the selection when executed.
It has three parameters, one for each of the red, green,
and blue components of the color. These parameters are
displayed and set by the sliders in response to user inter-
action. When the Apply button is pressed, this com-
mand is executed and the new color is set. The internal
actions accompanying the color editor example, are
depicted in FIG. 10. The Red 1000, Green 1010, and
Blue 1020 slides contain a TFioatControlCommand.
These commands contain a single floating point value
which the control displays. As the user adjusts the
slider, it updates this value and executes the command.

The selection for the TFloatControlCommand speci-
fies the TSetColor command within the Apply 1040
button. One of its parameters is set when each TFloat-
ControlCommand is executed. Finally, when the user
presses the Apply 1040 button, the TSetColor com-
mand is executed and the selected color 1050 is
changed.

CLASSES

The following section describes the classes of the
controls and dinlog areas and their primary methods.

CONTROL

A contro! is the user interface to one or more com-
mands. The control displays information about 2 com-

AppDel0000188

- 5,315,703

21
mand, such as its name and whether it is active in the
current context. Following appropnate user mterac-
tion, the control causes & c« d to be d
‘When appropriate, the control obtains the current value
of data the command modifies and displays it to the §
user. It may set a command parameter that indicates a
new value of this data before executing the command.

Methods to create a selection on the control, with
additional specification of 2 command within the con-
trol as an option. Lookup command is a pure virtual 10
function in order to give subclasses flexibility in how
many commands they contain and how they are stored.

Methods that are called when the presentation is
opened and closed. When the presentation is opened the
control connects for notifications that may affect its 15
state. When the presentation is closed these connections
are broken.

Methods that are called when the presentation is
activated and deactivated. When the presentation is
activated, some controls connect for notifications that 20
are valid only when active. Deactivating the presenta-
tion breaks these connections.

Methods that contro! uses to connect to and discon-
nect from notifiers that affect whether the control is
enabled. ConnectEnabledNotifiers connects to the noti- 25
fiers specified by commands when the control is
opened. DisconnectEnabledNotifiers breaks these con-
nections when the control is closed.

Methods that receive notifications indicating that
something happened affecting the control's presentation 30
of a data value. This method does nothing by default.

Methods for notification. Create interest creates an
interest specialized by the control instance. Notify is
overloaded to send a notification and swallow the inter-
est. 3

THE CONTROL INTEREST

A single notifier is shared among many subclasses of
controls. In order to express interest in a particular
control instance, the interest must be specialized. A 40
control interest is an interest that contains a pointer to a
specific control. This class is an internal class that is
usually used as is, without subclassing.

THE CONTROL NOTIFICATION 45

A single notifier is shared among many subclasses of
controls. In order to distinguish which control sent the
notification, the notification must be specialized. A
control notification is a notification containing a pointer
to the control.that sent the notification. This class is 50
usually used as-is, without subclassing.

THE CONTROL PRESENTER

A control.presenter wraps up a control so it can be
contained by a presentation data encapsulator, It imple- 55
ments standard behaviors that all presenter objects im-
plement. This class is usually used as-is, without sub-
. classing.

Methods that are called when the presentation is
opened and closed. They do nothing by default. A sub- 60
class must implement these methods for the object it
wraps. For controls, these methods are delegated di-
rectly to the control. When the presentation is opened,
the control connects for notifications that may affect its
state. When closed, the connections are broken. 6

Methods that are called when the presentation is
activated and deactivated. They do nothing by default.
A subclass must implement these methods for the object

w

o

22

it wraps. For controls, these methods are delegated -

directly to the control. When the presentation is acti-
vated, some controls connect for notifications that.are
valid only when active. When deactivated, the connec-
tions are broken.

TCONTROLSELECTION
A control selection specifies a single control, and

optionally a command within it, that is wrapped in a .

control presenter and stored in a presentation.
Methods to access a command within the control.

These may return an.invalid value if 1o command was

specified.
TUNICONTROL

A unicontrol is the abstract base class for controls
that present a single command and causes it to be exe-
cuted following appropriate user interaction. Examples
of this type of control are buttons and checkboxes.

Methods to specify the d that is pr d
and executed by the control. Notification is sent to
registered connections when the command is changed.

Methods the control uses to connect to and discon-
nect from notifiers that affect whether the control is

bled. ConnectEnabledNotifiers to the noti-
fiers specified by commands when the control is
opened. DisconnectEnabledNotifiers breaks these con-
nections when the control is closed.

Method that receives notifications indicating that
something happened affecting whether the control
should be enabled. UpdateEnabled checks whether the
command is active and calls Enable and Disable as
appropriate.

Methods that control uses to connect to and discon-
nect from notifiers that affect the control’s presentation
of a data value. ConnectDataNotifiers connects to the
notifiers specified by commands when the control is
opened. DisconnectDataNotifiers breaks these connec-

tions when the control is closed. Controls that do not

display a data value (e.g. button) may override connect
data notifiers to do nothing.

TBUTTON

A button is a unicontrol that executes its command
when pressed. This class is normally used without sub-
classing; just set the command and away you go.

Methods that are called when the presentation is
activated and deactivated. When the presentation is
activated, some controls connect for notifications that
are valid only when active. When deactivated, these
connections are broken. When the presentation is acti-
vated, buttons register for key equivalent notification.
This connection is broken when the presentation is
deactivated.

Methods that control users connecting to and discon-
necting from notifiers that affect the control’s presenta-
tion of a data value. Connect data notifiers connects to
the notifiers specified by commands when the control is

- opened. Disconnect data notifiers breaks these connec-

tions when the control is closed. Controls that do not
display a data value (e.g. button) may override connect
data notifiers to do nothing.

THE CHECKBOX

A checkbox is the user interface to a command that
sets a Boolean value. Following appropriate user inter-
action, the checkbox calls a command method to
change the value and executes the command. This class

AppDel0000189

23

is normally used without subclassing; just set the com-
mand, its value getter and setter, and away you go.

THE SLIDER

A slider is a-unicontrol that displays a single floating §
point value and allows it to be changed following ap-
propriate user interaction. Examples of sliders were
presented in FIGS. 9 and 10.

TMULTICONTROL 0

A multicontrol is the abstract base class for controls
that present several commands and causes them to be
executed following appropriate user interaction. Exam-
ples of this type of control are radio buttons and menus.

TRADIOBUTTON !

A radio button is a multicontrol that displays two or
more Boolean values and allows them to be changed
following appropriate user interaction. The radio but-
ton enforces the constraint that exactly one button is 20
sclected as shown in FIG. 11. If Paper is selected, then
the circle at 1100 is blackened. If Plastic is selected, then
the circle at 1110 is selected. Both cannot be selected.

TCOMMAND 25

A command encapsulates a request to an object or set
of objects to perform a particular action. Commands are
usually executed in response to an end-user action, such
as pressing a button, selecting a menu item, or by direct
manipulation. Commands are able to provide various 30
pieces of information about themselves (e.g. name,
graphic, key equivalent, whether they are active) that
may be used by a control to determine its appearance.
Subcl must impl a method to examine the
current selection, active user interface element, or other 35
parameters in order to decide whether the command is
active. Subclasses must override get active interest list
to return notification interests that may affect' whether
this command is active.

FIG. 12 is a flowchart depicting the detailed logic in 40
accordance with the subject invention. The flowchart
logic commences at 1200 and contro! passes directly to
function block 1210 where 2 command objects are
added to 2 menu. The steps carried out by this function
block are: 1) create menu item from a command, where 45
a menu item is another object data structure containing
a command, 2) add a menu item to & list of menu items,
and 3) mark the menu's appearance is invalid in data
structure fValid. Then, later when the menu is pulled
down, the appearance is recomputed based on the sys- 50
tem state.)

Each menu is a view. Views contain size and location
information. Each menu contains a list of menu items.
Each menu item contains a command and variables that
reflect its current appearance. This includes whether
the menu item is enabled (Boolean fEnabled), its name
(TTextLabel fName), its graphic (TGraphicLabel
fGraphic), and whether its appearance is currently valid
(Boolean fValid). Each of these variables are deter-
mined by asking the command when the menu item was 60
created.

Next, a query is sent to the command object for noti-
fication interests as depicted in function block 1220.
Each command has four methods to connect for differ-
ent types of notifications: i) notifications that affect it's
name, ii) notifications that affect a graphic, iii) notifica-
tions that affect whether the command is active, and iv)
notifications that affect any data. In this case, the menu

15

w
[y

-3

S

5,315,703

24

item just created for the command connects for active
notification. It does this by passing a connection object
to ConnectActive. The command is then responsible for
[T ing the c« ion object to notifiers affecting
whether the command is active. Then control is passed
to function block 1230 to query a command for the
enabled state when it is necessary to draw s menu item.
To draw & menu item, menu item calls method “IsAc-
tive” for its command. The command looks at whatever
system state it wants to and returns whether it is active
as depicted in decision block 1240 in the current context
(e.g. some commands only are active when a particular

type of window is in front, or when a particulsr type of

object is selected). Then, a menu item updates its inter-
nal state (a Boolean value in each menu item) and ap-

" pearance as shown in function block 1250 and 1260 to

match the value returned by the command.

‘Whenever a user action invokes any command as

shown in input block 1270, a user causes 8 command to
be executed. This could be from a menu item, control,
or through direct manipulation of an object. This action
causes a document state to be modified as shown in
function block 1280, and a document sends notification
as shown in function block 1290. When a document
sends notification, the following steps are executed: 1)
any menu item (or other control) connected for the
notification sent by the docuinent receives s notification
message. This message includes the name of the change
as well as a pointer to the object that sent the notifica-
tion) a menu item then updates its state, and control is
passed back to function block 1230 for further process-
ing.
FIG. 13 is an illustration of a display in accordance
with the subject invention. The menu item is Edit 1300
and has a number of sub-menu items associated with it.
Undo 1310 is an active menu item and can thus be se-
lected to carry out the associated functions. Redo1320 is
inactive and is thus presented in & greyed out fashion
and cannot be selected at this time. A checkbox is also
shown at 1360 as part of the debugging control panel
1350.

PRESENTATION TEMPLATES AND
PERSISTENCE :

Data presentations are created from templates and
saved across sessions in a user interface object. The
container for all data in the system is a model. A model
contains and facilitates the manipulation of data. Data
exchange is facilitated through cut, copy, and paste
operations. Data reference is provided by selections,
anchors, and links. Data models may be embedded into
any other. Users i with models through p.
tions (e.g. icon, thumbnail, frame, window, dialog, con-
trol panel) that are provided by an associated user inter-
face. Data models delegate all presentation creation and
access methods to another object, called the user inter-
face.

A user interface is a model containing a set of presen-
tations (e.g. icon, thumbnail, frame, window) for a par-
ticular model. When required, presentations are se-

lected from those already created based on the type of

presentation desired, the user's name, locale, and other
criteria. If the desired presentation is not found, a new
presentation is created and added to the user interface
by copying one from an associated archive. Presenta-
tions may be deleted when persistent presentation infor-
mation (e.g. window size and location, scroll positions)
is no longer required.

AppDel0000190

5,315,703

25

A presentation contains a set of presentable objects
that wrap user interface elements (e.g. menus, windows,
tools) used to view and manipulate data. Presentations
provide a reference to the data these objects present.
Presentations install or activate presentable objects
when the presentation is activated. Similarly, these
objects are removed or deactivated when the presenta-
tion is deactivated. Presentations are identified accord-
ing to their purpose (e.g. icon, thumbnail, frame, win.
dow) end retain yet-to-be-determined criteria (e.g. user
identity) for later selection.

A presentation is made up of a collection of present-
able objects (e.g. user interface elements) that are dis-
played on the screen or are otherwise available when
the presentation is open or active.

Presentations are created from template presentations
contained in an archive. These are made up of objects
such as user interface elements, which are, in turn, made
up of smaller objects such as graphics and text strings.

An archive is a model containing a set of template
objects, including user interface elements (e.g. win-
dows, menus, controls, tools) and presentations (e.g.
icon, thumbnail, frame, window).

DIALOG BOXES AND CONTROL PANELS

By using command objects in different ways, we can
control two independent behaviors of a group of con-
trols. The first is whether they affect the data immedi-
ately, or whether the user must press OK before the
settings take effect. The second is whether they are
independent from one another, or whether the settings
represent an atomic operation.

Controls contain c« ds. As the user ipul
the control, the control sets parameters in the com-
mands and cause it to be executed. Commands operate
on model data specified by a selection.

IMMEDIATE

Controls that affect the data immediately contain a
command that contains a selection that specifies real
model data. As the user manipulates the control, the
command causes this data to change. As the data
changes, ‘it sends change notification so that views and
controls depending on the state of the data can accu-
rately reflect the current state.

DELAYED

Controls that are designed to not change the real data
must operate on prototypical data, instead. The real
model data is not changed until the user performs an-
other action, such as pressing the OK button. This is
sccomplished in two ways:

The control contains a command that contains a se-
lection that specifies the control itself. As the user ma-

* nipulates the control, the command causes the control’s
value to change, but. no other model data. When the
user presses OK, a command in the OK button changes
the real model data to match the values in each control
the user may have manipulated.

The control contains a command that contains a se-
lection that specifies a parameter of the command con-
tained by the OK button. As the user manipulates the
control, the command causes the OK button’s com-
mand to change. When the user presses OK button, the
OK button's command changes the real mode] data to
match the values contained in itself.

10

25

35

40

45

50

60

26

INDEPENDENT

Controls that act independently from one another
require represent actions that can be individually un-
done after the control panel or dialog session is com-
plete. This is the normal behavior of commands once
they are executed by controls.

ATOMIC

Other sets of controls are designed to work together
and should be undone and redone as an atomic opera-
tion. This is accomplished by putting a mark on the
undo stack when the dialog box or control is started.
‘When finished, either by dismissing the control panel or
when the user presses an OK button (as in II B above),
all of the commands executed since the mark was placed
on the undo stack are collected together into a single
command group. This group can then be undone or
redone as a single group.

CANCEL

Control panels containing a CANCEL button (usu-
ally accompanied by an OK button, as in II B above) use
2 technique similar to that described III B above. A
mark is put on the undo stack when the dialog box or
control panel is started. If the user presses the CAN-
CEL button, all commands placed on the undo stack
since the mark are undone. This technique works re-
gardless of whether the controls affect the data immedi-
ately or not.

ATOMIC COMMAND EXECUTION IN DIALOG
BOXES

The object with which users interact to manipulate .

other objects or data is called a control. Example con-
trols are menus, buttons, check boxes, and radio but-
tons. Each control contains a cornmand, which imple-
ments an end-user action. Commands operate on data
that is specified by a selection object. As the user manip-
ulates the control it sets parameters in the command and
causes it to be executed, thus changing the data value.

Controls that act independently from one another
require represent actions that can be individually un-
done after the control panel or dialog session is com-

plete. This is the normal behavior of commands once

they are executed by controls. Other sets of controls are
designed to work together and should be undone and
redone as an atomic operation. This is the subject of this
patent. ’

The detailed logic of the atomic execution is set forth
in the flowchart presented in FIG. 14. Processing com-
mences at terminal 1400 where control is immediately
passed to function block 1410 where a dialog box is
activated. When the dialog box is activated, a mark is
placed on the undo stack. The undo stack is a list of all
commands the user has executed. When undo is pressed,
the command on the top of the stack is undore. If not
immediately redone, it is thrown away. Then, at func-
tion block 1410, a user manipulation of a control is
d d. The ipulation of a control changes the
command’s data value, as appropriate as set forth in
function block 1430, and executes the control. For ex-
ample, a checkbox toggles the command’s fChecked
field between O and 1. Finally, the command is recorded
on the undo stack 5o it can be subsequently undone as
shown in function block 1440.

As a user subsequently manipulates each control in
the dialog box, as detected in decision block 1450, then

AppDel0000191

5,315,703

27

control passes to function block 1430, However, if a
user presses OK as detected in decision block 1460, then
control passes to function block 1420. Finally, when
each control in the dialog box is set to the user’s satisfac-
tion, the user presses the OK button. All of the com-
mands executed since the mark was placed on the undo
stack in function block 1440 are collected together into
a single command group and placed back onto the undo
stack as depicted in function block 1470. A command
group is a command that collects many commands to-
gether. When executed, undone, or redone, the com-
mand group executes,-undoes, or redoes each command
in sequence. The command group is then placed back
onto the undo stack where it can be undone or redone as
a single atomic operation,

DELAYED COMMAND EXECUTION IN
DIALOG BOXES -

The object with which users interact to ipulate

10

15

28
dow or other container. Graphic labels are blended
with $5% white when inactive, in order to appear
dimmed. For text labels, the inactive paint is derived
from the natural paint by manipulating the saturation
component of the HSV color model. The saturation is
multiplied by 0.45 when inactive,

DISABLED

Control labels are dimmed when the control does not
apply in a particular context. Graphic labels are blended
with 46% white when inactive, in order to appear
dimmed. For text labels, the disabled paint is derived
from the natural paint by manipulating the saturation
component of the HSV color model. The saturation is
multiplied by 0.54 when disabled.

SELECTED
Control labels are highlighted as the control is being

other objects or data is called a control. Example con-
trols are menus, buttons, check boxes, and radio but-
tons. Each control contains a command, which imple-

20

ments an end-user action. Commands operate on data

that is specified by a selection object. As the user manip-
ulates the control it sets parameters in the command and
causes it to be. executed, thus changing the data value.
Delaying changing of data until the user performs an-
other action is one aspect of the subject invention. For
example, controls in & dialog box may not want to
change any data values until the user presses the OK
button.

‘When a control is created 8 command must be speci-
fied. The control makes a copy of this command and
stores it in field fCommand. If the command supplies
any data values, a pointer to appropriate Get and Set
methods of the command must also be specified. The

25

30

a5

control stores these method pointers in fields fGet. -

Method and fSetMethod, respectively. The data that is
modified by a command is specified by a selection ob-
ject. Normally, this selection object specifies real model
data. Instead, a selection object that specifies the data
value within the command of the OX button.
When a user manipulates the control, the control’s
command is executed and a data value within the com-
- mand of the OK button is changed. As the user manipu-
lates each control in the dialog box, the control’s com-
mand is executed and a data value within the command
of the OK button is changed. Thus, when a user presses
the OK button, the command in the OK button updates
the real model data to match the data values contained
within itself as manipulated by the control’s commands.
This processing is repeated until control processing is
completed.

LABELS

Labels are graphical objects that contain a graphic or
text string. They are used to identify windows, menus,
buttons, and other controls. Labels are able to alter their
appearance according to the state of their container.
They are drawn on a medium-gray background and
appear naturally only when no special state must be
indicated. Labels modify their appearance when inac-
tive, disabled, or selected.

INACTIVE
Window titles are set to be inactive when the window
is not front-most. Similarly, control labels are set to be
inactive when the control is not in the front-most win-

40

45

50

55

60

65

lated. Graphics and text are drawn in their natu-
ral su!e, but on a white background, when highlighted.

SMART CONTROL LABELS

Controls us¢ a command to determine the current
state of the object or data. Following appropriate inter-
actions with the user, the control updates the com-
mand’s parameters and causes it to be executed. For
example, a checkbox sets a command parameter to on
or off and then the d to change a data
value. Controls display a label to indicate its function.
This label is a graphical object containing & graphic or
a text string. As the control changes state, the label
automatically adjusts its appearance, without requiring
the developer to write additional code. These su!es
include active/inactive, enabled/disabled, and sel
/Junselected.

FIG. 15 sets forth the detailed logic associated with
smart label processing which c« at the start
terminal 1500 where control is immediately passed to
1510 for smart label initialization. When the contro] is
created, its label is inijtialized with a text string or
graphic provided by its sssociated command. Each
command provides methods called GetGraphic and
GetName for this purpose. The control tells the label
whether it is currently active or inactive by calling
method SetActive. Similarly, the control calls method
SetEnabled to tell the label whether it is enabled, and
SetSelected to tell the Jabe! whether it is currently being
selected by a user.

The next step in smart label processing occurs at
function block 1320 when the label is drawn. When the
control is activated, it calls the Draw method of its
label, causing the label to appear on the screen. If inac-
tive, the Jabel is drawn more dimly than normal. This is
done by manipulating the saturation components of the
HSV color model. The saturation is multiplied by 0.45
when inactive. If disabled, the label is drawn more
dimly than normal. This is done by manipulating the
saturation components of the HSV color model. The
satucation is multiplied by 0.54 when the label is dis-
abled. If selected, the label on 2 highlighted back-
ground. Labels are normally drawn on a medium-gray
background. When highlighted, labels are drawn on a
white background. Otherwise, the label is drawn nor-
mally.

The next processing occurs when a label is nc-
tivated/deactivated as shown in function block 1530,
‘When the control is activated or deactivated, it tells the
label by calling the SetActive method. The control then

AppDel0000192

5,315,703

29
indicates its appearance needs updating by calling In-
validate with an argument indicating the portion of the
screen that needs to be redrawn. Then, at function block

30
surface. It may be drawn with or without a frame. An-
other type of background is drawn with highlighting
and shndow so it appears to be raised above the sur-

1540, processing occurs when 2 control is enabled/disa-
bled. When the control is enabled or disabled, it tells the 5
label by calling the SetEnabled method. The control
then indicates its appearance needs updating by calling
Invalidate with an argument indicating the portion of
the screen that needs to be redrawn.

A test is then performed at decision block 1550 to 10
determine if a control is selected or unselected. When
the control is selected or unselected, it tells the label by
calling the SetSelected method. The control then indi-
cates its appearance needs updating by calling Invali-
date with an argument indicating the portion of the 15
screen that needs to be redrawn, and control is passed to
function block 1520 for further processing.

SMART WINDOW LABELS

A title is displayed in a window in order to indicate its 20
purpose. For example, the title for a window to edit a
document is usually the name of the document. A label
* object is used to keep track of the title. This label is a
graphical object containing a graphic or a text string.
As the window changes state, the label automatically 2
Ed_]llS'S its appearance, without requiring the developer
to write additional code. Windows can be either active
or inactive. Smart Window label processing is flow-
charted in FIG. 16 and the detailed logic is explained
with reference thereto, 30

Processing commences in FIG. 16 at terminal 1600
where control is immediately passed to function block
1610 for the title to be initialized. A window title is
specxﬁed by a developer when a window is created.
This title is stored in a TLabel object called fTitle. The' 35
control tells the title whether it is currently active or
inactive by calling method SetActive. Then, the at
function block 1620. When a window is drawn, it calls
the Draw method of its fTitle object, causing the title to
appear on the screen. If inactive, the title is drawn dim- 40
mer than normal. This is done by manipulating the
saturation components of the HSV color model. The
saturation is multiplied by 0.45 when inactive. Other-
wise, the title is drawn normally.

‘The next step is processed at function block 1630 45
when the title is activated/deactivated. When a window
is activated or deactivated, it tells its fTitle object by
calling the SetActive method. The window then indi-
cates its appearance needs updating by calling Invali-
date with an argumeni indicating the portion of the 50
screen that needs to be redrawn. Then, control is passed
back to function block 1620 for redrawing the title to
reflect its new state.

DECORATIONS

Many of the visual aspects of user interface elements
are common among many elements. Examples are shad-
ows, borders, and labels. The individual visuai features
are referred to as decorations. Decorations can be com-
bined with other graphics to form the visual appearance 60
of specific user interface elements, such as windows and
controls. The subject invention supports many different
types of decorations.

BACKGROUNDS

A decoration that is drawn behind another object is
called a background. One type of background is drawn
so as to appear flush with the surrounding drawing

G

5.

prs

6

»

¢ ing surface. The final type of back-
ground is drawn with highlighting and shadow so it
appears to be recessed beneath the surrounding drawing
surface.

An example use of these backgrounds is a button.
Normally the text or graphic that describes the button is
drawn on a raised background. When pressed by the
user, the text or graphic is redrawn on a recessed back-
ground. If the button is inactive, such as when another
window is active, the text or graphic of the button
could be drawn dimly on a flush background.

BORDERS

A decoration that surrounds another object or area is
called a border. Example borders are frames and shad-
ows. A frame is a border that surrounds another
graphic, much like a frame encloses a painting in the
real world. Like backgrounds, frames can be drawn to
appear recessed below, flush with, or raised above a
surrounding drawing surface. A shadow is a special
type of border that adds a shadow around an object to
make it appear as if it floats above the surrounding
surface.

DECORATION COLORS

Many of the visual aspects of user interface elements
are common among many elements. Examples are shad-
ows, borders, and labels. Each of these individual visual
features are referred to as a decoration. Decorations can
be combined with other graphics to form the visual
appearance of specific user interface elements, such as
windows and controls. Some decorations use highlight-
ing and shadows to appear as if they are above or below
the surrounding drawing surface. Decorations are able
to derive automnucally these highlighting and shadow
paints.

FILL PAINT

The fill paint represents the decoration’s primary
color. All other paints are derived from the fill paint.
The fill paint is stored by the directoration in a TColor
field called fFillPaint. The fill paint is normally speci-
fied by the developer when the decoration is created.
However, if no color is specified, a medium gray is
selected.

FRAME PAINT

The frame paint is used to draw a line around the
decoration to provide visual contrast. The frame paint is
stored by the decoration in a TColor field called
fFramePaint. The frame paint may be specified by the
developer when the decoration is created. However, if
no frame paint is specified, it is computed automatically
from the fill paint. This is accomplished by manipulat-
ing the saturation and value components of the HSV
color model. The saturation is multiplied by four, with
a maximum value of 1. The value is divided by four.

HIGHLIGHT PAINT

The highlight paint is used to draw lines where light
would hit the object if it were an actual three-dimen-
sional object. The highlight paint is stored by the deco-
ration in a TColor field called fHighlightPaint. The
highlight paint may be specified by the developer when
the decoration is created. However, if no highlight

AppDel0000193

5,315,703

31
paint is specified, it is computed automatically from the
fill paint. This is accomplished by manipulating the
saturation and value components of the HSV color
model. The saturation is multiplied by 0.8. The value is
multiplied by 1.25, with a maximum value of 1. H

SHADOW PAINT

The shadow paint can be used to draw lines where
the object would be shaded if it were an actual three-di-
mensional object. The shadow paint is stored by the 10
decoration in a TColor field called fShadowPaint. The
shadow paint may be specified by the developer when
the decoration is created. However, if no shadow paint
is specified, it is computed automatically from the fill
paint. This is accomplished by manipulating the satura- 1
tion and value componeats of the HSV color model.
The saturstion is multiplied by 2 with a maximum value
of 1. The value is divided by 2.

SEPARATING INPUT SYNTAX FROM 2
SEMANTICS

A graphical user interface is manipulated by moving
2 mouse, clicking on objects to select them, dragging
objects to move or copy then, and double-clicking to
open them. These operations are called direct manipula. 25
tions, or interactions. The sequence of events corre- -
sponding to a user pressing, moving, and releasing a
mouse is called an input syntax. Certain sequences of
events are used to indi particular acti called
semantic operations. 30

The separation of the code that understands the input
syntax from the code that implements semantic opera-
tions is the subject of this patent. This processing is
embodied in objects called Interacts and Intractable,
respectively. FIG. 17 illustrates how these objects are 35
created and how the objects communicate with each
other during a typical interaction with an object that
can be moved.and selected.

Processing commences at terminal 1700 where con.
trol is passed immediately to function block 1710 to 40
determine if the mouse button has been pressed. An
event is sent to the object responsible for the portion of
the screen at the location where the mouse button was
pressed. This object is called a View. Then, at function
block 1720 the Interactor is created to parse the input 45
syntax. This is done by calling the CreateInteractor
method of the view. When the lnternctor is created,

P s to obj that imp p user
are passed as parameters.

For the purposes of this discussion, assume the user 50
pressed the mouse button down on an object that can be
selected and moved. In this case, an object that imple-
ments selection and an object that implements move-
ment for the target object are passed as parameters to
the Interactor. The initial View could implement both
of these behaviors, or they could be implemented by
one or two separate objects. The object or objects are
referred to collectively as the I

The Interactor is started at function block 1730. This
p ing returns the I to the View and com- 60

pr ing of the I . ‘This is accom-
plished by callmg the Interactor's Smrt method and
passing the initial mouse event as a parameter. The Start
method saves the initial mouse event in field fInitialE-
vent. Since only one mouse event has been processed 65
thus far, the only action possible is selecting. The In.
teractor enters select mode by setting variable fInterac-
tionType to constant kSelect. It asks the Interactable to

w

w
by

.

32
begin the selection operation by calling its SelectBegin
method.

Then, the Interactor waits for a short time to pass as
shown in function block 1740. A new mouse event is
sent to the Interactor when the time is up which indi-
cates the current state of the mouse. Then, if the system
detects that the mouse is still down at decision block
1750, control is passed to function block 1740. Other-
wise, control is passed to inal 1760. If the mouse
button is still down, the interactor makes sure it is still in
the correct state and asks the [ntencuble to nnplement
the correct op n. The 1 is S ing if
ﬂnlencuon'l'ype is kSelecting. It is Moving if the fIn-
teractionType is kMoving.

If selecting, the Interactor compares the current
mouse location with the initial mouse location. The
current mouse location is obtained by calling the Get-
CurrentLocation method. The initial mouse location is
obtained by calling the GetlnitialL.ocation method. If
the two are the same or differ by only & small amount,
the user is still selecting the object. The Interactor then
asks the Interactable to continue the selection operation
by calling its SelectRepeat method. However, if the
two points differ beyond a predetermined threshold, the
user bas begun moving the object. In this case, the In-
teractor asks the Interactable to terminate the selection
operation by calling its SelectEnd method. It then asks
the Interactable to begin the move operation by callings
its MoveBegin method. In each case, the current mouse
location is passed as an argument. If Moving, the In-
teractor asks the Interactable to continue the move
operation by calling its MoveRepeat method. It passes
the current mouse location as an argument.

When the user releases the mouse buston, it signals
the end of the current operation. If Selecting, the In-
teractor asks the Interactable to terminate the selection
operation by calling its SelectEnd method. If moving,
the Interactors asks the Interactable to terminate the
move operation by calling its MoveEnd method.

LOCALIZED PRESENTATIONS

Localization is the process of updating an application
to conform to unique requirements of a specific locale.
It may involve language translation, graphic substitu-
tion, and interface element reorientation. For example,
the text used in labels, titles, and messages depends upon
the selected language. Its direction and orientation may
affect the placement and orientation of 8 menu, menu-
bar, title, scrolibar, or toolbar. Similarly, the selection
of icons and other graphical symbols may be culturally
dependent. Unfortunately, having many localized ver-
sions of user interface clements in memory is very ex-
pensive. Instead, localized versions of user<interface
clements are kept on disk until required in memory.

Further, it is very error-prone and expensive to keep
track of all of the user interface elements and decide
which version to use. Instead, when a user interface
element is required, the appropriate one is selected auto-
matically by the system, according to the current lan-
guage and other cultura] parameters, and read into
memory.

Once localized, user interface elements are stored ina
disk dictionary. A disk dictionary is an object that,
when given a key, returns a value after reading it in
from disk. This disk dictionary is managed by an object
called an archive. An archive is responsible for putting
together the individual user interface elements that
make up a particular presentation. The process of se-

AppDel0000194

: 5,315,703

33
lecting the proper user interface element is presented in
FIG. 19.

Processing commences at terminal 1900 and immedi-
ately passes to function block 1910 when a user requests
 presentation. A TOpenPresentation Command is sent
to the data model, indicating that the user wants to view
or edit this data. A command is sent to the data model
to indicate that the user wants to view or edit this data.
This command is called a TOpenPresentationCom-
mand. A presentation is a set of user interface elements
that, together, allow the user to view or edit some data.
Presentations are stored across sessions in User Inter-
face object, thus maintaining continuity for the user.
User interface elements are stored on disk until needed
in memory. They may be required as part of a data
presentation the user has requested, or they may be

- needed for translation or another localization process.

Each user interface element contains an ID which
uniquely references that element. However, all local-
ized versions of the same user interface element share a
single ID. :

In order to differentiate the localized versions, the
particular language, writing direction, and other cul-
tural parameters are stored with each localized user
interface element. Together, these parameters are re-
ferred to as the locale. All of the user interface elements
are stored in a file. This file is organized like a dictio-
nary, with one or more key/value pairs. The key is an
object which combines the ID and the locale. The value
is the user interface element itself.

A new presentation must be created next at function
block 1920. If an appropriate presentation does not
already exist, a new one must be created from a tem-
plate by the user interface Archive. A new presentation
is created from a template stored in the archive by call-
ing its CreatePresentation method. A presentation type
is passed to this method as a parameter. This type in-
cludes such information as the type of data to be dis-
played, whether it is to be in its own window or part of
another presentation, and so on. Finally, at function
block 1930, an Archive builds the presentation, select-
ing user interface elements according to locale. If the
Archive is able to build a presentation of the specified
type, it collects together each user interface element
that makes up the presentation and returns this to the
user interface object.

For each presentation the archive is able to make, it
has a list of user interface element IDs that together
make up the presentation. The user interface elements
are stored on disk maintained by a disk dictionary ob-
ject called. Given 8 key, the disk dictionary will return
the corresponding user interfice clement. The user
interface element ID makes up the primary component

5

20

25

30

40

45

S0

of this key. A secondary component of the key is the -

desired locale. A locale is an object that specifies the
natural language and other cultural attributes of the
user. The locale obtained automatically by the Archive
from a Preferences Server. This server contains all of
the individual preferences associated with the user.
The locale, as obtained from the preferences server, is
combined with the ID into a single object called 2
TUserInterfaceElementKey. This key passed as a pa-
rameter to the GetValue method of the disk dictionary.
If a user interface el with a hing ID and
locale is found, it is returned and included as part of the
presentation. Otherwise, the locale parameter must be
omitted from the key, or another locale must be speci-
fied until an appropriate user interface element is found.

55

60

65

A4
INTERACTION FRAMEWORK SYSTEM

Users of an object oriented operating system’s graphi-
cal user interface often move a mouse, click on objects
to select them, drag objects to move or copy then, and
double-click to open an object. These operations are
called direct ipulations, or i ions. The se-
quence of events corresponding to a user pressing, mov-

ing, and releasing the mouse is called the input syntax.

Certain sequences of events are used to indicate particu-
lar actions, called semantic operations. This invention
discloses the method and apparatus for translating input
syntax into semantic operations for an object that sup-
ports Select, Peek, Move, AutoScroll, and Drag/Drop
(Copy).

The invention detects a mouse button depression and
then employs the following logic:

(2) If an Option key was depressed when the user
pressed the mouse button, the system enters drag mode
by setting variable fInteractionType to constant kDrag.
The system then commences a drag operation using the
selected object as the target of the operation; or

(b) if the Option key was not depressed, then the
system enters selection mode by setting variable fIn-
teractionType to constant kSelect. Then, the select
operation is commenced.

If a user already had the mouse button depresses and
continues to hold the mouse button down, then the
following logic is engaged. If the system is in select
mode, then the system first determines whether the user
has moved the mouse beyond a certain threshold, called
the move threshold. This is done by comparing the
initial mouse location, returned by the GetlnitialLoca.
tion method, with the current mouse location, returned
by the GetCurrentLocation method. If the mouse has
moved beyond the move threshold, the system ends
select mode and enters move mode. It does this by
setting variable fInteractionType to constant kMove.
The system then queries the object to terminate the
select operation by calling its SelectEnd method. The
system then initiates a move operation by calling its
MoveBegin method.

Otherwise, if the mouse has not moved, the system
checks how long the mouse has been down. It does this
by comparing the initial mouse down time, returned by
the GetlnitialTime method, with the current time, re-
turned by the GetCurrentTime method. If the mouse
has been down beyond a certain threshold, calied the
peek threshold, the system ends select mode and enters
peek mode. It does this by setting variable fInteraction-
Type to constant kPeck. It asks the object to end the
select operation by callings its SelectEnd method, and
begins a peek operation by calling its PeckBegin
method. Otherwise, if the mouse has not moved, or it
has not been down beyond the peek threshold, the sys-
tem continues the select operation by calling the ob-
Jject's SelectRepeat method. If the system detects that a
user is in Move mode, the system first determines
whether the user has moved the mouse within the win-
dow, on the border of the window, or outside the win-
dow. It does this by comparing the current mouse Joca-
tion, returned by the GetCurrentLocationMethod, with
the bounds of the object’s container, returned by Get-
ContainerBounds.

If the mouse is still within the bounds of the window,
the system continues the move operation by calling the
object’s MoveRepeat method. If the mouse is on the
border of the window, this indicates an AutoScroll

AppDel0000195

5,315,703

: 35 .
operation. The system asks the object’s container to
scroll in the direction indicated by the mouse location.
This is done by .calling the container’s AutoScroll
method and passing the current mouse location &s a
parameter. Once complete, the system continues the
move operation by calling the object’s MoveRepeat
method.

If the mouse has moved outside the window, the
system ends move mode and enters drag mode. It does
this by setting variable fInteractionType to constant
kDrag. It asks the object to end the move operation by
calling its MoveEnd method. It asks the object to begin
the drag operstion by calling its DragBegin method. If
. the system is in drag mode, the system continues the
drag operation by calling the object's DragRepeat
method. If the system is in peek mode, the system first
determines whether the user has moved the mouse be-
yond a certain threshold, called the move threshold.
This is done by comparing the initial mouse location,
returned by the GetlnitialLocation method, with the
current mouse location, returned by the GetCurrentLo-
cation method.

If the mouse has moved beyond the move threshold,
the system ends peek mode and enters move mode. It
does this by setting variable fInteractionType to con-
stant kMove. It asks the object to end the peek opera-
tion by calling its PeekEnd method. It asks the object to
begin the move operation by calling its MoveBegin
method. Otherwise, if the mouse has not moved, the
system conti the peek operation by calling the ob-
ject’s PeekRepeat method.

If the system detects that a user releases the mouse
button, then if the system is in select mode, the system
ends select mode. It does this by setting variable fIn-
teractionType to constent kNone. The system queries
the object to end the select operation by calling its
SelectEnd method. If the system is in move mode, the
system ends move mode. It does this by setting variable
fInteractionType to constant kNone. Then, the system
queries the object to end the move operation by calling
its MoveEnd method and ends drag mode by setting
variable fInteractionType to constant kNone. It asks the
object to end the drag operstion by calling its DragEnd
method. If the system is in peek mode, the system ends
peek mode. It does this by setting variable fInteraction-
Type to constant kNone. It asks the object to end the
peek operation by calling its PeekEnd method.

Accordingly, it is a primary objective of the present
invention to provide an innovstive hardware and soft-
ware sy which enables the of a window to
update dynamically as a user moves a scrollbar thumb,
The system detects when a user presses down on a
scrollbar thumb. When the user presses down on the
scrollbar thumb, the system begins initiation of & scroll
command to change the portion of the data that is ex-
posed in the window. A command is an object that
implements an end-user action, such as scrolling. A
scroll command has one parameter, the position to
which the content view should be scrolled. The system

s

10

15

20

28

30

35

40

45

50

35

accomplished by calling the command’s SetScrollPosi-
tion and setting the value equal to the value returned by
the scrollbar’s method GetScrollPosition. The execu-
tion of the command is then repeated by calling its
DoRepeat method. This causes the content view to
scroll to the new position. This processing is continued
while a user continues to hold the mouse button down.

When a user relesses the mouse button, the system
ends the execution of the scroll command to dynami-
cally change the portion of the data exposed in the
window. The system sets the scroll position of the com-
mand to the final scroll position. This processing is
accomplished by calling the command’s SetScrollPosi-
tion and setting it equal to the value returned by the
scrollbar’s method GetScrollPasition.

FIG. 20 is a flowchart illustrating the detsiled logic
associsted with scrolling in accordance with the subject
invention. Processing commences at terminal block
2000 and immedistely passes to function block 2010
where the current scroll position is initialized based on
the current cursor location. Then, at decision block
2020, a test is performed to detect if the scrollbar thumb
has been selected. An example of a scrollbar thumb is
shown in FIG. 21A at 1abel 2110. If the scrollbar thumb
has been selected, then control passes to decision block
2030 to determine if the scrollbar thumb has been
moved. If 50, then the scroll position is set to the new
position of the scrollbar thumb and the display is refor-
matted to reflect the immediate scroll operation and
displayed for the user. If the scrollbar thumb has not
moved, another test is performed at decision block 2050

to determine if the scrollbar thumb has been released. If -

not, then control is returned to decision block 2030, If
the scrollbar thumb has been released, then control
passes to function block 2060 to end the scroll operation
and return the system to & non-scrol}l operational status
and processing is completed at terminal 2070.

FIGS. 21A, 21B and 21C illustrate window scrolling
in accordance with the subject invention. In FIG. 21A,
the scrollbar thumb 2110 is located at the top of the
window 2112. FIG. 21B shows the scrolibar thumb
2120 moved to the middie of the window and the win-
dow’s contents 2122 updated accordingly. FIG. 21C
shows the scrollbar thumb 2140 moved to the bottom of
the window and the bottom most portion of the win-
dow 2142 displayed.

While the invention has been described in terms of a
preferred embodiment in a specific system environment,
those skilled in the art recognize that the invention can
be practiced, with modification, in other and different
hardware and software environments within the spirit
and scope of the appended claims.

Having thus described our invention, what we claim
as new, and desire to secure by Letters Patent is:

1. An object-oriented notification framework system,
comprising:

{8) means for connecting a plurality of objects to a

notification source;

sets this position to the current scroll position. This is 60 {b) memory means for storing connection information

accomplished by calling the command’s SetScrollPosi-
tion and setting the scroll to position to the value re-
turned by the scrollbar’s method GetScrollPosition.
When a user moves the mouse within the scrollbar,
the system continues the execution of the scroll com-
mand to dynamically change the portion of the data
exposed in the window. The system sets the scroll posi-
tion of the command to the new scroll position. This is

65’

for the plurality of objects in a connection object of
an object-oriented operating system;

(c) means for registering connection information,
including registration information indicative of a
notification status, in the connection object of the
object-oriented operating system;

(d) means for selectively dispatching notification to at
least one of the plurality of objects based on the

AppDel0000196

5,315,703

37
registration iriformation stored in the connection
object of the object-oriented system; and

(¢) means for the at Jeast one of the plurality of ob-

jects to receive the notification and take action
based on the notification. .

2. A system as recited in claim 1, including processor
means for notifying a plirality of objects.

3. A system as recited in claim 1, including processor
means for changing a color of an object as an action
based on the notification.

4. A system as-recited in claim 1, including processor
means for highlighting an object as an action based on
the notification,

5. A system as recited in claim 1, including processor
means for reverse videoing an object as an action based
on the notification. .

6. A system as recited in claim 1, including processor
means for removing an object as an action based on the
notification.

7. A system as recited in claim 1, including processor
means for opening a window associated with an object
as an action based on the notification.

8. A method for implementing an object-oriented
notification framework system, comprising the steps of:

(a) connecting a plurality of objects to a notification

source;)

{b) storing connection information for the plurality of

objects in a connection object of an object-oriented
operating system;

5

10

25

30

35

45

50

55

65

38

(c) registering connection information, including re-
gistration information indicative of a notification
status, in the connection object of the object-ori-
ented operating system;

(d) selectively dispatching notification to at least one
of the plurality of objects based on the connection
registration information stored in the connection
object of the object-oriented operating system; and

(e) receiving the notification by the at least one of the
plurality of objects and taking action based on the
notification.

9. A method as recited in claim 8, including the step

of notifying a plurality of objects.

10. A method as recited in claim 8, including the step
of changing a color of an object as en action based on
the notification. :

11. A method as recited in claim 8, including the step
of highlighting an object as an action based on the noti-
fication.

12. A method as recited in claim 8, including the step
of reverse videoing an object as an action based on the
notification.

13. A method as d in claim 8, i ing the step
of removing an object as an action based on the notifica-
tion.

14. A method as recited in claim 8, including the step
of opening a window associated with an object as an

action based on the notification.
* 9 . % %

CEY

AppDel0000197

