
Exhibit 2

NOKIA CORPORATION v. APPLE INC. Doc. 1 Att. 3

Dockets.Justia.com

http://dockets.justia.com/docket/district-of-columbia/dcdce/1:2011mc00295/148263/
http://docs.justia.com/cases/federal/district-courts/district-of-columbia/dcdce/1:2011mc00295/148263/1/3.html
http://dockets.justia.com/

AO SSA (Rev. 06/09) Subpoena to Testify at a Deposition in a Civil Action

To:

UNITED STATES DISTRICT COURT
for the

District of Columbia

Nokia Corporation

SUBPOENA TO TESTIFY AT A DEPOSITION IN A CIVIL ACTION

Glenn J. Perry
Sterne, Kessler, Goldstein & Fox PLLC, 1100 New York Avenue N.W., Washington, DC 20005

9' Testimony: YOU ARE COMMANDED to appear at the time, date, and place set forth below to testify at a
deposition to be taken in this civil action. If you are an organization that is not a party in this case, you must designate
one or more officers, directors, or managing agents, or designate other persons who consent to testify on your behalf
about the following matters, or those set forth in an attachment:

Place.' Alston & Bird LLP, The Atlantic Building,
950 F Street, NW, Washington, D.C. 20004-1404

Date and Time:

04/22/2011 1:00 pm

The deposition will be recorded by this method: Court reporter and videographer

9(Production: You, or your representatives, must also bring with you to the deposition the following documents,
electronically stored information, or objects, and permit their inspection, copying, testing, or sampling of the
material:

See Attachment A for document requests. Please provide the requested documents to Rohan Kale's attention at Alston
& Bird LLP, 1201 West Peachtree Street, Atlanta, GA 30309-3424 by April 15, 2011.

The provisions of Fed. R. Civ. P. 45(c), relating to your protection as a person subject to a subpoena, and Rule
45 (d) and (e), relating to your duty to respond to this subpoena and the potential consequences of not doing so, are
attached.

Date: 03/24/2011
CLERK OF COURT

OR
/s/ Rohan Kale

Signature of Cleric or Deputy Clerk Attorney's signature

The name, address, e-mail, and telephone number of the attorney representing (name of party) Nokia Corporation

, who issues or requests this subpoena, are:

Rohan Kale, Esq.; Alston & Bird LLP, One Atlantic Center, 1200 W Peachtree St., Atlanta, Georgia 30309-3423; 404-
881-7000; rohan.kale@alston.com

Plaintiff
V. Civil Action No. 1:09-cv-00791-GMS

Apple Inc. (If the action is pending in another district, state where:

Defendant District of Delaware

AO 88A (Rev. 06/09) Subpoena to Testify at a Deposition in a Civil Action (Page 2)

Civil Action No. 1:09-cv-00791-GMS

PROOF OF SERVICE
(This section should not be filed with the court unless required by Fed. R. Civ. P. 45.)

This subpoena for (name of individual and title, if any)

was received by me on (date)

Date:

171 I served the subpoena by delivering a copy to the named individual as follows:

I returned the subpoena unexecuted because:

on (date) ; or

Unless the subpoena was issued on behalf of the United States, or one of its officers or agents, I have also
tendered to the witness fees for one day's attendance, and the mileage allowed by law, in the amount of

I declare under penalty of perjury that this information is true.

Server's signature

Printed name and title

Server's address

Additional information regarding attempted service, etc:

My fees are $ for travel and $ for services, for a total of $ 0.00

AO 88A (Rev. 06/09) Subpoena to Testify at a Deposition in a Civil Action (Page 3)

Federal Rule of Civil Procedure 45 (c), (d), and (e) (Effective 12/1/07)

(c) Protecting a Person Subject to a Subpoena.
(1) Avoiding Undue Burden or Expense; Sanctions. A party or

attorney responsible for issuing and serving a subpoena must take
reasonable steps to avoid imposing undue burden or expense on a
person subject to the subpoena. The issuing court must enforce this
duty and impose an appropriate sanction which may include lost
earnings and reasonable attorney's fees on a party or attorney
who fails to comply.

(2) Command lo Produce Materials or Permit Inspection.
Appearance Not Required. A person commanded to produce

documents, electronically stored information, or tangible things, or
to permit the inspection of premises, need not appear in person at the
place of production or inspection unless also commanded to appear
for a deposition, hearing, or trial.

Objections. A person commanded to produce documents or
tangible things or to permit inspection may serve on the party or
attorney designated in the subpoena a written objection to
inspecting, copying, testing or sampling any or all of the materials or
to inspecting the premises -- or to producing electronically stored
information in the form or forms requested. The objection must be
served before the earlier of the time specified for compliance or 14
days after the subpoena is served. If an objection is made, the
following rules apply:

At any time, on notice to the commanded person, the serving
party may move the issuing court for an order compelling production
or inspection.

These acts may be required only as directed in the order, and
the order must protect a person who is neither a party nor a party's
officer from significant expense resulting from compliance.

(3) Quashing or Modifring a Subpoena.
(A) When Required On timely motion, the issuing court must

quash or modify a subpoena that:
fails to allow a reasonable time to comply;
requires a person who is neither a party nor a party's officer

to travel more than 100 miles from where that person resides, is
employed, or regularly transacts business in person except that,
subject to Rule 45(c)(3)(B)(iii), the person may be commanded to
attend a trial by traveling from any such place within the state where
the trial is held;

requires disclosure of privileged or other protected matter, if
no exception or waiver applies; or

subjects a person to undue burden.
(B) When Permitted To protect a person subject to or affected by

a subpoena, the issuing court may, on motion, quash or modify the
subpoena if it requires:

disclosing a trade secret or other confidential research,
development, or commercial information;

disclosing an unretained expert's opinion or information that
does not describe specific occurrences in dispute and results from
the expert's study that was not requested by a party; or

a person who is neither a party nor a party's officer to incur
substantial expense to travel more than 100 miles to attend trial.

(C) Specibling Conditions as an Alternative. In the circumstances
described in Rule 45(c)(3)(B), the court may, instead of quashing or
modifying a subpoena, order appearance or production under
specified conditions if the serving party:

shows a substantial need for the testimony or material that
cannot be otherwise met without undue hardship; and

ensures that the subpoenaed person will be reasonably
compensated.

(d) Duties in Responding to a Subpoena.
(1) Producing Documents or Electronically Stored Information.

These procedures apply to producing documents or electronically
stored information:

Documents. A person responding to a subpoena to produce
documents must produce them as they are kept in the ordinary
course of business or must organize and label them to correspond to
the categories in the demand.

Form for Producing Electronically Stored Information Not
Specified. If a subpoena does not specify a form for producing
electronically stored information, the person responding must
produce it in a form or forms in which it is ordinarily maintained or
in a reasonably usable form or forms.

Electronically Stored Information Produced in Only One
Form. The person responding need not produce the same
electronically stored information in more than one form.

Inaccessible Electronically Stored Information. The person
responding need not provide discovery of electronically stored
information from sources that the person identifies as not reasonably
accessible because of undue burden or cost. On motion to compel
discovery or for a protective order, the person responding must show
that the information is not reasonably accessible because of undue
burden or cost. If that showing is made, the court may nonetheless
order discovery from such sources if the requesting party shows
good cause, considering the limitations of Rule 26(b)(2)(C). The
court may specify conditions for the discovery.

(2) Claiming Privilege or Protection.
(A) Information Withheld. A person withholding subpoenaed

information under a claim that it is privileged or subject to
protection as trial-preparation material must:

expressly make the claim; and
describe the nature of the withheld documents,

communications, or tangible things in a manner that, without
revealing information itself privileged or protected, will enable the
parties to assess the claim.

(B) Information Produced. If information produced in response to a
subpoena is subject to a claim of privilege or of protection as trial-
preparation material, the person making the claim may notify any
party that received the information of the claim and the basis for it.
After being notified, a party must promptly return, sequester, or
destroy the specified information and any copies it has; must not use
or disclose the information until the claim is resolved; must take
reasonable steps to retrieve the information if the party disclosed it
before being notified; and may promptly present the information to
the court under seal for a determination of the claim. The person
who produced the information must preserve the information until
the claim is resolved.

(e) Contempt. The issuing court may hold in contempt a person
who, having been served, fails without adequate excuse to obey the
subpoena. A nonparty's failure to obey must be excused if the
subpoena purports to require the nonparty to attend or produce at a
place outside the limits of Rule 45(c)(3)(A)(ii).

Attachment A

ATTACHMENT A

INSTRUCTIONS

A. These document requests are intended to cover all documents and things

in your possession, custody or control. A document or thing is deemed to be in your

possession, custody, or control if:

it is in your physical control; or

if it is in the physical control of any other person or entity and you own
the document or thing in whole or in part, have the right by contract,
statute, or otherwise to use, inspect, examine, or copy that thing or
document on any terms; or

if you have, as a practical matter, been able to use, inspect, examine,
or copy that document or thing when you have sought to do so or could
do so.

B. This subpoena includes documents that exist in electronic form

(including electronic mail, electronic files, back-up tapes, magnetic tapes, memory

sticks, PDAs, and diskettes).

C. If any document or thing requested was formerly in your possession,

custody or control and has since been lost or destroyed, you shall submit, in lieu of each

such document, a written statement which:

identifies the document by providing the author(s), addressee(s),
recipient(s), title, date, subject matter, number of pages, and identifies
all persons who ever possessed copies; and

states when and how the document was lost or destroyed, and if
destroyed, identifies each person having knowledge concerning such
destruction or loss and the person(s) requesting and performing such
destruction, the reasons for such destruction, and identifies each
document evidencing the document's prior existence and/or facts
concerning its destruction.

D. These document requests are continuous in nature under Fed. R. Civ. P.

26(e). If you subsequently obtain information or documents that render your initial

responses to these document requests incomplete or inaccurate, you are to amend your

responses and production promptly to make them complete and accurate.

E. Documents withheld pursuant to a claim of attorney-client privilege,

attorney work product, or other applicable privilege must be separately identified in a

privilege log and served on Nokia.

DEFINITIONS

"Document" is synonymous in meaning and equal in scope to the usage of

this term in Fed. R. Civ. P. 34(a) and includes, without limitation, any written, printed,

typed, electronic, photocopied, photographed, recorded, or otherwise reproduced

communication or representation. A draft or non-identical copy is a separate document

within the meaning of this term.

"Prior Art" means and refers to any reference or subject matter predating

the filing date of US Patent No. 5,315,703, December 23, 1992, and set forth in or

relevant under 35 U.S.C. § 102 and 35 U.S.C. § 103.

"Relating to" or "concerning" means, without limitation, referring to,

having any relationship to, pertaining to, reflecting, evidencing, involving, describing, or

constituting, whether directly or indirectly, in whole or in part, the subject matter of the

particular request.

The words "and" and "or" shall be construed conjunctively or

disjunctively, whichever makes this subpoena more inclusive, and "any" shall mean each

and every.

The "703 patent" means U.S. Patent No. 5,315,703 (attached as

Attachment C hereto), any other member of the 703 patent family, and any foreign

counterparts to the 703 patent.

The "782 application" means U.S. Application Serial No. 996,782 filed on

or about December 23, 1992.

"Mr. Perry," "you," and "your" mean Glenn J. Perry.

DOCUMENTS AND THINGS TO BE PRODUCED

All documents relating to the conception, actual or constructive reduction

to practice, research, development, design, structure, function, and operation of the

inventions claimed, discussed and/or described in the 703 patent.

All documents relating to the 703 patent, including, but not limited to, all

documents relating to the prosecution of the 703 patent.

All documents relating to every patent or patent application that claims

priority from a common ancestor to the 703 patent.

All documents relating to any divisional or continuation application patent

claiming priority from the 703 patent.

All invention disclosures relating to the 703 patent.

All documents relating to the respective contributions of David Anderson,

John R Matheny, Arnold Schaeffer, or Christopher White to any claimed invention of the

703 patent.

All documents and correspondence relating to David Anderson, John R

Matheny, Arnold Schaeffer, or Christopher White and to the 782 application, including

without limitation correspondence by or with David Anderson, John R Matheny, Arnold

Schaeffer, or Christopher White.

All searches, and the results of all searches, investigation, and/or analysis

for prior art or material related to the subject matter disclosed, described or claimed in the

patent application that issued as the 703 patent. This request includes without limitation

all materials or things discovered, collected, or found during or as a result of any such

searches, investigation, and/or analysis.

All Prior Art to the 703 patent.

All communications concerning Prior Art to the 703 patent.

All Documents related to the first sale, first offer for sale, first public

demonstration, first printed publication, first public use, first public disclosure of and first

use of the subject matter described, disclosed or claimed in the 703 patent.

Documents sufficient to show the first public description of the subject

matter described, disclosed or claimed in the 703.

With respect to 703 patent, all documents referring to or concerning any

decision by any Person to disclose or not to disclose to any patent examiner or office any

reference, document, or information. This request includes without limitation: (a) any

opinions or advice of counsel concerning the same, (b) any document concerning the

applicant, licensee, or assignee's knowledge or understanding of disclosure obligations,

and (c) a copy of the reference, document, or information that was not disclosed.

All documents related to any unique or specialized meaning (different

from its everyday common use) of any word or phrase contained in any of the claims of

the 703 patent.

-4-

All documents concerning the scope, validity, and/or patentability of the

703 patent. This request includes without limitation documents constituting or

concerning: (a) any validity studies or opinions regarding validity; and (b) any assertion

by any Person that the 703 patent is valid or invalid.

All documents relating to any patent or patent application claiming

priority to 782 application.

All invention disclosures relating to the 782 application.

All Prior Art to the 782 application.

All communications concerning Prior Art to the 782 application.

All documents and correspondence relating to the prosecution of the 703

patent.

Attachment B

[54] OBJECT-ORIENTED NOTTFICATION
FRAMEWORK SYSTEM

[75] Inventors: John R. Matheny; Christopher White,
both of Mountain View; David R.
Anderson, Cupertino; Arnold
Schaeffer, Belmont, all of Calif.

[73] Assignee: Tangent, Inc., Cupertino, Calif.

Appl. No.: 996,782

Filed: Dee. 23, 1992

Int. C1.5 GO6F 15/62
U.S. Cl. 395/164; 395/155

[58] Field of Search 395/155, 157, 133, 162,
395/164, 153, 154, 161, 325

[56] References Cited

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

Microsoft Systems Journal , Jan. 1990, v5, nl, p. 14(3).
Microsoft Windows- User's Guide Version 3.1 ©19-
90-1992, pp. 52, 83, 84, 85.

Primary ExamerDale M. Shaw
Assistant ExaminerKee M. Tung
Attorney, Agent, or RpmKeith Stephens

[57] ABSTRACT

A system for an object based notification system. The
notification system is designed in a flexible manner to
support change notification in an object-oriented oper-
ating system. The change notification includes a mem-
ory for storing connection information including notifi.
cation routing information and connection registration
information. The connection registration information is
stored in a connection object of the object-oriented
system and the notification system updates'the comiec-
tion object with registration information indicative of
enablement or disablement of notification. Then, when
a notification event is detected, the object-oriented
operating system selectively notifies objects in the aya-
ten based on the connection registration information
stored in the connection object in the memory of the
computer system.

14 Claims, 15 Drawing Sheets

(20

(18

I/O

(34
COMM

38

AppDe10000163

3,658,427 4/1972 DeCou 356/156
3,881,605 5/1975 Grossman 214/1 CM
4,082,188 4/1978 Grirnmell et al. 209/73
4,635,208 1/1987 Coleby et al. 364/491
4,677,576 6/1987 Berlin, Jr. et al. 395/120
4,704,694 11/1987 Czerniejewski 364/513
4,742,356 5/1988 Kuipers 342/448
4,821,220 4/1989 Duisberg 364/578
4,885,717 12/1989 Beck et al. 364/900
4,891,630 1/1990 Friedman et al. 340/706
4,939,648 7/1990 O'Neill et al. 364/422
4,953,080 8/1990 Dysart et al. 364/200
5,041,992 8/1991 Cunaigham et al. 395/135
5,050,090 9/1991 Golub et al. 364/478
5,060,276 10/1991 Morris et al. 382/8
5,075,848 12/1991 Lai et al. 395/425
5,093,914 3/1992 Coplien et al. 395/700
5,119,475 6/1992 Smith et al. 395/156

5125,091 6/1992 Staas, Jr. et al. 395/650
5,133,075 7/1992 Risch 395/800
5,136,705 8/1992 Stubbs 395/575
5,151,987 9/1992 Abraham et al. 395/575
5,168,441 1211992 Onarheim et al. 364/146
5,177,685 1/1993 Davis etal. 364/443
5,181,162 1/1993 Smitli et al. 364/419

11111111111111111111111111191101911!!111111111111111111111111111

United States Patent (19] ti Patent Number: 5,315,703

Matheny et al. [45] Date of Patent: May 24, 1994

6
28

12

22
24

DISPLAY
ADAPTER

INTERFACE
ADAPTER

CPU

(10 (16 (14

ROM RAM

24

1
/ 22

.\
IN

T
E

R
F

A
C

E
A

D
A

P
T

E
R

II

D
IS

P
LA

Y
A

D
A

P
T

E
R

36

_

7-
20 i

I I
(

34

C
O

M
M

F
IG

. '
I A

38

...
...

...
.

$1
4

"C IN P
. II v, .4
, P

32
26

28

(1
8

11
6

71
4

R
O

M
R

A
M

(-
10

C
P

U
I/0

U.S. Patent May 24, 1994 Sheet 2 of 15 5,315,703

40

ag systems p
as. Their pro
For example, in the DOS let
es he mar is concerned,

\Moue
Notes Formal Fern Si2e Style

Fou Questions Intro

200

BOLD

42

BOLD

INTERESTS
300

d, applications Pittway talc

re/Anti° n is the o ye !mine

FIG. 1B

210

FIG. 2

CONNECTION

310

FIG. 3

220

Send to Back

&tom)
Ungroup
Lock
Unlock
Align...

Rotate

VALUE

320

230

41

AppDe10000165

U.S. Patent May 24, 1994 Sheet 3 of 15 5,315,703

BOLD

510 VALUE

VALUE

NOTIFICATION

y BOLD

400

FIG. 4

VALUE

520

FIG. 5

AppDe10000166

800

VALUE/
egj BOLD

t VALUE

VALUE

VALUE

FIG. 7

FIG. 8

920

FIG. 9

COLOR EDITOR

930

AppDe10000167

255RED 0

255GREEN 0

255BLUE 0

U.S. Patent May 24, 1994 Sheet 4 of 15 5,315,703

NOTIFICATION

900

910

U.S. Patent May 24, 1994 Sheet 5 of 15 5,315,703

1000

AppDe10000168

RED O' 255
1040

TFloatControlCommand (
(APPLY)icrio float

0GREEN U 255 TSetColor
redTFloatControlCommand

float green -

blue
°COLOR"

255BWE

TFloatControlCommand 1050

1020
float

FIG. 10

1100
PAPER

PLASTIC

1110

FIG. 11

U.S. Patent May 24, 1994 Sheet 6 of 15 5,315,703

START r
1210

UPDATE MENU

rQUERY

OBJECTS

1220

1240

QUERY COMMAND r-

GREYOUT
MENU

/ INVOKE
ACTION

MODIFY STATE r-

1270

1200

1230

1280

1290

NOTIFY MENU

FIG. 12

1250

AppDe10000169

Yes /HIGHLIGHT
MENU

1260

U.S. Patent May 24, 1994 Sheet 7 of 15 5,315,703

AppDe10000170

U.S. Patent May 24, 1994 Sheet 8 of 15 5,315,703

y1400

ACTIVATE

DIALOG BOX

MANIPULATE

CONTROL

CHANGE

VALUE

RECORD

COMMAND

CONTROL

CHANGED

OK
SELECTED

1460

NO

START

1470
RERECORD
COMMAND FIG. 14

AppDe10000171

U.S. Patent May 24, 1994

TOGGLE CONTROL

FIG, 15

Sheet 9 of 15 5,315,703

1500

1510

1540

AppDe10000172

U.S. Patent May 24, 1994 Sheet 10 of 15 5,315,703

START /
V

INITIALIZE

TITLE

FIG. 16

1600

.......-- 1610

......-- 1620

DRAW TITLE

1630

TOGGLE TITLE

AppDe10000173

U.S. Patent May 24, 1994 Sheet 11 of 15 5,315,703

1700

START

1760

(STOP

FIG. 17

1710

BUTTON

DETECTED

1740

DELAY

AppDe10000174

1720
INTERACTOR

CREATED

INTEFIACTOR
1730

STARTED

U.S. Patent May 24, 1994 Sheet 12 of 15 5,315,703

START
1800

CREATE CONNECTION
1810

DEFINE INTERESTS
1820

CONNECT SOURCES
r 1830

NO

AWAIT CHANGE

1840

REGISTER CONNECTIONS

CHANGE DESCRIPTION

RECEIVE NOTIFICATON

ANOTHER

CONNECTION

1845

1885

YES

1850

DISPATCH NOTIFICATION
1860

SEND NOTIFICATION

1880

FIG. 18

AppDe10000175

U.S. Patent May 24, 1994 Sheet 13 of 15 5,315,703

START y
p.

V

REQUEST.PRESENTATION

CREATE PRESENTATION

BUILD PRESENTATION

FIG. 19

1900

910

1920

1930

AppDe10000176

U.S. Patent May 24, 1994

START

NO

NO

INITIALIZE SCROLL

COMPLETE SCROLL

Sheet 14 of 15 5,315,703

2000

2010

2020

2070
STOP

FIG. 20

r 2040

SET
POSITION

AppDe10000177

U.S. Patent May 24, 1994 Sheet 15 of 15 5,315,703

FIG. 21A

FIG. 21B

FIG. 21C

2112

2110

2122

2120

2142

2140

AppDe10000178

SUE, Files EPA
Moe.

D file I

El file 2

El file 3

Ai
13

II
0

<31 mii I 1* el

ECE Files ERN
Name

D file 4

D file 5

D file 6

0
---.
N-
M

15'
431 mu I . 14> M

EDE File.s MIZE
Name

U file 7

D file 8

D file 9

1...

E
la

431tiliii I* e

5,315,703
1 2

OBJECT-OR1ENTED NOT11FICATION BRIEF DESCRIPTION OF THE DRAWINGS

FRAMEWORK SYSTEM FIG. lA is a block diagram of a personal computer
system in accordance with the subject invention;

FIELD OF THE INVENTION 5 FIG. 1B is a display in accordance with the subject
invention;This invention generally relates to improvements in FIG. 2 illustrates the tools used to create an applica-

display systems and more particularly to global notifica- tion in accordance with the subject invention;
tion of changes occurring in a system. FIG. 3 is a flow diagram of a command process in

BACKGROUND OF THE INVENTION 10 accordance with the subject invention;
FIG. 4 is a checkbox control in accordance with the

Among develope_rs of workstation software, it is in- subject invention;
creasingly important to provide a flexible software en- FIG. s is a checkbox control activation in accordance
vironment while maintaining consistency in the user's with the subject invention;
interface. An early attempt at providing this type of an 15 FIG. 6 is a checkbox update in accordance with the
operating environment is disclosed in U.S. Pat. No. subject invention;
4,686,522 to Hernandez et al. Tisis patent discusses a FIG. 7 is a summary of checkbox control processing
combined graphic and text processing system in which in accordance with the subject invention;
a user can invoke a dynamic object at the location of the FIG. 8 is an illustration of a control panel in accor-
cursor and invoke any of a variety of functions from the 20 dance with the subject invention;
object This type of natural interaction with a user im- FIG. 9 is an illustration of a dialog box in accordance
proves the user interface and makes the application with the subject invention;
much more intuitive. FIG. 10 is an illustration of a dialog box color con-

For a system to be intuitive to a user, system changes troller in accordance with the subject invention;
must be communicated in a consistent manner regard- 25 FIG. 11 is an illustration ofa radio button in accor-
less of what application is currently active. None of the dance with the subject invention;
prior art references applicant is aware of provides the FIG. 12 is a detailed flowchart of menu state process-
innovative hardware and system software features ing in accordance with the subject invention;
which enable all applications to obtain system changes FIG. 13 is a picture of a display in accordance with
through a generic framework for notification. 30 the subject invention;

FIG. 14 illustrates the detailed log,ic of atomic execu-
SUMMARY OF THE INVENTION don in accordance with the subject invention;

Accordingly, it is a primary objective of the present FIG. 15 sets forth the detailed logic associated with
invention to provide an object based system with a smart label processing in accordance with the subject
generic framework for notification. Each object con- 35 invention;
tains status information determinative of the object's FIG. 16 presents the detailed logic of smart window
state (enabled/disabled), its name, its associated label processing in accordance with the subject inven-

graphic, and Whether its appearance is currently valid. tion;
FIG. 17 illustrates how objects are created and howNext, the invention queries a comniand object for

40 the objects communicate with each other during a typi-notification. Each command object has four methods to cal interaction with an object that can be moved andconnect for different types of notifications: selected in accordance with the subject invention;
i) notifications that affect its name, FIG. 18 is an object generating notification flowchartnotifications that affect its graphic, for a notification source object in accordance with the

notifications that affect whether its active, and 45 subject invention;
iv) notifications that affect any date it provides. FIG. 19 presents a flowchart illustrating the detailed
In this case, the object item just created for the com- logic associated with selecting the proper user interface
mand connects for active notification. It does this by element in accordance with the subject invention;
passing a connection object to the notification system. FIG. 20 is a flowchart illustrating the detailed logic
The command is then responsible for connecting the 50 associated with scrolling in accordance with the subject
connection object to notifiers affecting whether the invention; and
command is active. FIGS. 21A, 21B and 2IC illustrate window scrolling

Then, the object system queries the command for the in accordance with the subject invention.
enabled state before presenting the object item on the
display. This processing is accomplished by examining 55 DETAILED DESCRIPTION OF THE
the current system state to ascertain if the function is INVENTION
active in the current context. Then, the internal atete of The invention is preferably practiced in the context
the object item is updated and the object item is dis- of an operating system resident on a personal computer
played based on the appropriate appearance state such as the IBM ® PS/2 (:) or Apple 0 Macintosh ®
(grayed out or normal). 60 computer. A representative hardware environment is

When a user invokes a command from an object item, depicted in FIG. 1A, which illustrates a typical hard-
control or direct manipulation of an object, a document ware configuration of a workstation in accordance with
atete is modified and notification of the event is sent to the subject invention having a central processing unit
the system. Tisis event automatically informs any active 10, such as a conventional microprocessor, and a num-
object items and assures current status information is 65 ber of other units interconnected via a system bus 12.
consistent across the operating environment. The notifi- The workstation shown in FIG. lA includes a Random
cation message includes the name of the change and a Access Memory (RAM) 14, Read Only Memory
pointer to the object that sent the notification message. (ROM) 16, an I/O adapter 18 for connecting peripheral

AppDe10000179

5,315,703
3

devices such as disk units 20 to the bus, a user interface
adapter 22 for connecting a keyboard 24, a mouse 26, a
speaker 28, a microphone 32, and/or other user inter-
face devices such as a touch screen device (not shown)
to the bus, a conununication adapter 34 for connecting 5
the workstation to a data processing network and a
display adapter 36 for connecting the bus to a display
device 38. The workstation has resident thereon an
operating system such as the IBM OS/2 operating
system or the Apple System/7 (a) operating system. 10

The subject invention is a new object-oriented system
software platform comprised of an operating system
and development environment designed to revolution-
ize personal computing for end-users, developers, and
system vendors. The system is a complete, standalone, 15
native operating system and development environment
architected from the ground up for high-performance
personal computing. The invention is a fully object-ori-
ented system including a wealth of frameworks, class
/ibraries, and a new generation object programming 20
environment, intended to improve fundamentally the
economics of third party application software develop-
ment. The subject invention is a fully portable operating
system.

Traditional operating systems provide a set of ser- 25
vices which software developers can use to create their
software. Their programs are very loosely integrated
into the overall operating system environment. For
example, DOS applications take over the entire ma-
chine, This means that as far as the user is concerned, 30
the application is the operating system. In Macintosh ®
and Windows operating systems, applications feel and
look similar and they typically support cutting and
pasting between applications. This commonalty makes
it easier for users to use multiple applications in a single 35
environment. However, because the commonalty is not
factored into a set of services and frameworks, it is still
very difficult to develop software.

In the subject invention, writing an "application"
means creating a set of objects that integrate into the 40
operating system environment. Software developers
rely on the operating system for both a sophisticated set
of services and a framework to develop software. The
frameworks in the subject invention provide powerful
abstractions which allow software developers to con- 45
centrate on their problem rather than on .building up
infrastructure. Furthermore, the fundamental abstrac-
tions for the software developer are very close to the
fundamental concepts that a user must understand to
operate her software. This architecture results in easier 50
development of sophisticated applications.

This section describes four steps to writing software
employing the subject invention. A user contemplating
the developinent of an application is typically con-
cerned with the following questions: 53
o What am I modeling?

For a word processor, this is the text I am entering;
for a spreadsheet, it is the values and formulas in the
cells.
o How is the data presented? 60

Again, for a word processor, the characters are typi-
cally displayed in a what-you-see-is-what-you-get
(wysiwyg) format on the screen with appropriate line
and page breaks; in a spreadsheet it is displayed as a
table or a graph; and in a structured graphics program 65
(e.g. MacDraw), it is displayed as a set of graphics
:objects.
o What can be selected?

4
In a word processing application, a selection is typi-

cally a range of characters; in a structured graphics
program it is a set of graphic objects.
o What are the comrnands that can operate on this

selection?
A command in a word proces,sor might be to change

the style of a set of characters to bold. A command in a
structured graphic program might be to rotate a graphic
object. FIG. 1B is an illustration of a display in accor-
dance with the subject invention. A command is illus-
trated at 41 for bringing a picture to the front of a dis-
play. A presentation of graphic information is illus-
trated at 40. Finally, a selection of a particular paphic
object, a circle, is shown at 42.

A developer must answer the same four questions
asked by the user. Fortunately, the subject invention
provides frameworks and services for addressing each
of these four questions. The first question that must be
answered is: What am I modeling? In a word processing
program, the data includes the characters that make up
a document. The data in a spreadsheet includes the
values and formulas in the cells. In a calendar program,
the data includes the times and appointments associated
with a given day. The invention provides facilities that
help to model data. There are classes for modeling spe-
cific data types including: text, structured graphics,
sound and video. In addition to these specific classes,
the invention provides a number of other abstractions
that support problem modeling, including: collection
classes, concurrency control, recovery framework, and
the CA- + language, The class that encapsulates the
data model for a particular data type provides a specific
protocol for accessing and modifying the data con-
tained in the data encapsulator, support for overriding a
generic protocol for embedding other data =capsule-
tors and for being embedded in other data encapsula-
tors, generating notification to all registered objects
when the data changes, and overriding a generic proto-
col for creating presentations of the data.

The next question that must be answered is: how is.
the data presented? In a structured graphic program,
the set of graphic objects are typically rendered on a
canvas. In a spreadsheet, it is typically a table of cells or
a graph; and in a presentation program it is a set of slides
or an outline. The subject invention provides a "view"
of the data contained in a data encapsulator. The view
is created using a "view system" and graphic system
calls. However, playing a sound or video clip is also
considered a presentation of the data.

Next: what can be selected? In a word processing
program, a selection is a range of characters; in a struc-
tured gmphics program, it is a set of graphics objects;
and in a spreadsheet it is a range of cells. The invention
provides selection classes for all of the fundamental data
types that the system supports. The abstract baseclass
that represents a selection made by a user provides an
address space independent specification of the data
selected. For text, this would be a numeric range of
characters rather than a pair of pointers to the charac-
ters. This distinction is important because selections are
exchanged between other machines when collaborating
Cm real-time) with other users. The baseclass also over-
rides a generic protocol for creating a persistent selec-
tion corresponding to this selection. Persistent selec-
tions are subclasses of an anchor object and may be
heavier weight than their corresponding ephemeral
selections because persistent selections must survive
editing changes. For example, a persistent text selection

AppDe10000180

must adjust itself when text is inserted before or after it.
Anchors are used in the implementation of hypermedia
linking, dataflow linking and annotationi.

The baseclass also provides an override generic pro-
tocol for absorbing, embedding and exporting data con-
tained in a data encapsulator. Baseclasses are indepen-
dent of the user interface technique used to create them.
Selections are typically created via direct manipulation
by a user (e.g. tracking out a range of text or cells) but
can be created via a script or as a result of a command.
This orthogonality with the user interface is very im-
portant. Baseclasses also provide specific protocol for
accessing the data encapsulator. There is a very strong
relationship between a particular subclass of the encap-
sulator class and its subclass of a model selection class.

Finally: what are the commands that can operate on
this selection? In a word processing program, a com-
mand might change the style of a selected range of
characters and in a structured graphics program, a com-
mand raight rotate a graphic object. The subject inven-
tion provides a large number of built-in command ob-
jects for all of the built-in data types as well as provid-
ing generic commands for Cut, Copy, Paste, Starting
HyperMedia Links, Completing Links, Navigating
Links, Pushing Data on Links, Pulling Data on Links, as
well as many user interface commands. The abstract
baseclass that represents a command made by the user is
responsible for capturing the semantics of a user action,
determining if the command can be done, undone, and
redone. Command objects are responsible for encapsu-
lating all of the information necessary to undo a com-
mand after a command is done. Before a command is
done, command objects are very compact representa-
tions .of a user action. The baseclass is independent of
the user interface technique used to create them. Com-
mands are typically created from menus or via direct
manipulation by the user (e.g. moving a graphic object)
but could be .created via a script. This orthogonality
with the user interface is very important.

BENEFITS OF FRAMEWORKS

The benefits of plugging into the abstractions in the
invention are greater than providing a conceptual
model. Plugging into the framework provides many
sophisticated features architected into the base operat-
ing system. ThiS means that the framework implements
major user features by calling relatively small methods.
The result is that an investment in coding for the frame-
work is leveraged over several features.

MULTIPLE DATA TYPES
Once a new kind of data is implemented, the new data

type becomes a part of the system. Existing software
that can handle data encapsulators can handle your new
data type without modification. This differs from cur-
rent computer systems, such as the Macintosh computer
systern. For example, a scrapbook desk accessory can
atore any kind of data, but it can only display data that
has a text or quickdrew picture component. In contrast,
the subject invention's scrapbook displays any kind of
data, because it deals with the data in the form of an
object. Any new data type that is created behaves ex-
actly like the system-provided data types. In addition,
the data in the scrapbook is editable since an object
provides standard protocol for editing data.

The scrapbook example highlights the advantages of
data encapsulators. If software is developed such that it
can handle data encapsulators, an application can be

5,315,703
6

designed to simply handle a new data type. A new
application can display and edit the new kind of data
without modification.

AppDe10000181

5 MULTI-LEVEL UNDO
The invention is designed to support multi-level

undo. Implementing this feature, however, requires no
extra effort on the pan of a developer. The system
simply remembers all the command objects that are

10 created. As long as the corresponding command object
exist, a user can undo a particular change to the data.
Because the system takes care of saving the commands
and deciding which command to undo or redo, a user
does not implement an undo procedure.

15
DOCUMENT SAVING, RELIABILITY, AND

VERSIONING
A portion of the data encapsulator protocol deals

with filing the data into a stream and recreating the data
20 at another place and/or time. The system uses this pro-

tocol to implement document saving. By default, a
user's data objects are streamed to a file when saved.
When the document is opened, the data objects are
recreated. The system uses a data management frame-

25 work to ensure the data written to disk is in a consistent
state. Users tend to save a file often so that their data
will be preserved on disk if the system crashes. The
subject invention does not require this type of saving,
because the system keeps all the command objects. The

30 state of the document can be reconstructed by starting
from the last disk version of the document and replay-
ing the command objects since that point in time. For
reliability, the system automatically logs command ob-
jects to the disk as they occur, so that if the system

35 crashes the user would not lose more than the last com-
mand.

The invention also supports document versioning. A
user can crease a draft from the current state of a docu-
ment. A draft is an immutable "snapshot" of the doou-

40 ment at a particular point in time. (One reason to create
a draft is to circulate it to other users for comments.)
The system automatically takes care of the details in-
volved with creating a new draft.

45 COLLABORATION

As mentioned above, a document can be recon-
structed by starting with its state at some past time and
applying the sequence of command objects performed
since that time. This feature allows users to recover

50 their work in the case ofa crash, and it can also be used
to support real-time collaboration. Command objects
operate on selections, which are address-space indepen-
dent. Therefore, a selection object can be sent to a col-
laborator over the network and used on a remote ma-

55 chine. The same is true of command objects. A com-
mand performed by one collaborator can be sent to the
others and performed on their machines as well. If the
collaborators start with identical copies of the data,
then their copies will remain "in sync" as they make

60 changes. Creating a selection is done using a command
object, so that all collaborators have the same current
selection.

The system uses a feature known as "model based
tracking" so perform mouse tracking on each collabora-

65 tor's machine. The tracker object created to handle a
mouse press creates and performs a series of incremen-
tal commands as a user moves the mouse. These com-
mands are sent to collaborators and performed by each

7
collaborator. The result is that each collaborator sees
the tracking feedback as it occurs. The system also
establishes a collaboration policy. A collaboration pol-
icy decides whether users are forced to take turns when
changing data or can make changes freely. The inven-
tion handles the mechanics of collaboration which re-
moves the responsibility from an application developer.

SCRIPTING

5,315,703

Designing a system to manage the sequence of com- 10
mend objects also makes it possible to implement a
systemwide scripting facility. The sequence of com-
mand objects is equivalent to a script of the local ac-
tions. The scripting feature simply keeps track of com-
mand objects applied to any document The scripting 15
facility also uses selection objects in scripts. This feature
provides customization of a script by changing the se-
lection to which the script applies. 'Sil1CC command
objects include a protoc.ol for indicating whether they
can apply to a particular selection, the system ensures 20
that a user's script changes are valid.

HYPERMED/A LINK/NG
Persistent selections, alto known as anchors, can be

connected by link objects. A link object contains refer- 25
encesto the two anchors that form its endpoints. To the
system, the link is bidirectional; both ends have equal
capabilities. Certain higher-level uses of links may im-
pose a direction on the link. The single link object sup-
ports two standard features: navigation and data flow. 30
A user can navigate from one end of the link to the
other. Normally, this will involve opening the docu-
ment containing the destination anchor and highlighting
the persistent selection. The exact behavior is deter-
mined by the anchor object at the destination end. For 35
example, a link to an animation may play the animation.
A link to a database query may perform the query.

Links also facilitate data flow. The selected data at
one end of the link can be transferred to the other end
lo replace the selection there. In most cases, the effect is 40
the same as if the user copied the selection at one end,
used the link to navigate to the other end, and pasted the
data. The system takes care of the details involved with
navipting from one end of a link to the other (e.g.,
locating tbe destination document, opening it, scrolling 45
the destination anchor into view, etc.). Similarly, the
system handles the details of transferring data across the
link. The latter is done using the selection's protocol for
accessing and modifying the data to which it refers.

50ANNOTATIONS
The invention supports a system-wide annotation

facility. This facility allows an author to distribute a
document draft for review. Reviewers can attach
posted notes to the document, and when done, return 5$
the document to the author. The author can then exam-
ine the posted notes and take action on each. (An author
can also create posted notes in the docunsent.) A re-
viewer need not have the same software as the author.
Instead, the reviewer can use a standard annotation 60
application. This application reads the data from the
author's draft, and creates an annotatable presentation
of the data. (Creating such a presentation is part of the
standard data encapsulator protocol.)

The reviewer can create selections in the document, 65
and link posted notes to the selection. The link between
the posted note and selection allows the system to posi-
tion the posted note "near" the selection to which it

8
refers. The links also make the annotation stnicture
explicit, so that the system can irnplement standard
commands to manipulate asmotations. The contenta of
the posted note can be any data type implemented in the

5 system, not simply text or graphics. The contents of a
note is implemented using a data encapsulator, and
opening a note results in creating an editable presenta-
tion on that data.

DATA REPRF,SENTATION
Data representation is concerned with answering the

question of what is the data that I am modeling? The
subject invention provides facilities that help to model
data. There are classes for modeling specific data types,
including: text, structured graphics, sound and video. In
addition to these specific classes, the invention provides
a number of other abstractions that help to model a
problem: the collection classes, the concurrency control
and recovery framework, and the C-1- + language itself.
In the subject invention, the class that encapsulates the
data model for a particular data type is a subclass of the
encapsulator class.

THE ENCAPSULATOR CLASS
A developer creates a container for a particular type

of data representation by creating a derived class of the
encapsulator class. For each type of data in the system,
(e.g., graphic objects, styled text, spreadsheet cells) a
different derived class must exist which acts as the con-
tainer for a type's data. Each class of encapsulator pro-
vides a type specific protocol for accessing and modify-
ing the data contained therein. This protocol is typically
used by presentations for displaying the data and by
commands for modifying the data. In addition to type
specific protocol, the encapsulator class provides ge-
neric protocol that supports the embedding of data
encapsulators as "black-boxes" into other alien types.
This protocol must be implemented in the derived class
to support the creation of presentations, editors and
selections for the encapsulated data. A container need
only understand this generic protocol to support the
embedding of any alien data type.

CHOOSING A REPRESENTATION FOR DATA
The data type designer has both the C+ + object

model, and a rich set of standard classes to choose from
when designing a representation for a particular type of
data. The classes provided by the invention should
always be considered before designing unique classes to
represent the data. This minimizes any duplication of
effort which may occur by creating new classes which
provide similar or identical function to classes already
existing in the system. The most basic of these is the
C+ + object model. A designer can create a class or
classes which closely match the mental model of the
user to represent the classes the user deals with.

The invention's foundation classes provide many
standard ways to represent data. Collection classes pro-
vide a number of ways for collecting together related
objects in memory, ranging from simple sets to dictio-
naries. Disk-based collections, providing persistent,
uncorrupted collections of objects, are also available. A
data type requiring two (2 D) and three dimensional (3
D) graphic modeling, such as a graphical editor, is also
supported. Numerous 2 D and 31) modeling objects are
provided along with transformation, matrix classes and
3 D cameras. Similarly, the invention provides a sophis-
ticated test data type that supports full international

AppDe100001 82

5,315,703
9

text, aesthetic typography, and an extensible style
mechanism. The invention also provides support for
time based media such as sound and video. Sophisti-
cated time control mechanisms are available to provide
synchronization between various types of time based
media.

PRESENTATION PROTOCOL

The encapsulator class provides a protocol for the
creation of various classes of presentations on the data
contained within the encapsulator. The presentations
include a thumbnail presentation, a browse-only presen-
tation, a selectable presentation, and an editable presen-
tation. There is also u protocol for negotiating sizes for
the presentations and fitting the data into the chosen
size. Subclasses of the encapsulator class are responsible
for overriding and implementing this protocol to sup-
port the embedding of the data in other encapsulators.
The presentations currently supported include: 20

ThumbnailThis presentation is intended to give the
user a "peek" at what is contained in the encapsulator.
It is typically small in size and may scale-down and/or
clip the data to fit the size.

Browse-onlyThis presentation allows the user to 25
view the data in its normal size but the user is unable to
select or modify any of the data.

SelectableThis presentation adds the ability to se-
lect data to the capabilities provided by the browse-only
presentation. It is used in annotating to allow =note- 3°
tions to be tied to selections in the data without allow-
ing modification to the data itself. The selectable pre-
sentation is typically implemented as a subclass of the
browse-only presentation.

35
EditabieThis presentation adds the ability to mod-

ify data to the capabilities provided by the selectable
presentation. This is the presentation that allows the
user to create new data and edit existing data. Cur-
rently, this presentation provides its own window for 40
editing. It is likely that in the future support will be
added for presentations which allow editing in place.
The editable presentation is typically implemented as a
subclass of the selectable presentation.

45
CHANGE NOTIFICATION

When the data contained in an encapsulator class is
changed, it is necessary to provide clients (e.g. a view
on the data) with notification of the change. Encapsula-
tors rely on a built-in class for standard notification 5°
support to allow the encapsulator to notify clients of
changes to the data representation. A client can connect
to an encapsulator for notification on specific changes
or for all changes. When a change occurs the encapsula- 55

tor asks the model to propagate notification about the
change to all interested clients.

DATA PRESENTATION

This section addresses how the system presents data 60
to a user. Once the data has been represented to the
system, it is the role of the user interface to present the
data in an appropriate and meaningful way to a user.
The user interface establishes a dialogue between the
user and the model data. Tisis dialogue permits a user to 65
view or otherwise perceive data and gives a user the
opportunity to modify or manipulate data. This section
focuses on data presentation.

AppDe10000183

10

THE USER INTERFACE
A developer creates a class to facilitate the presenta-

tion of data to interact with a data encapsulator. By
5 separating the data model from the presentation, the

invention facilitates multiple presentations of the same
data. Some applications, like the Apple ® Macintosh
Finder, already support a limited forrn of multiple pre-
sentations of the same data. Sometimes it is useful to be
able to display different views of the same data at the
same time. These different views might be instances of
the same classas in a 3D CAD program which shows
four different view of the same data. For each kind of
presentation, a user was previously required to write a
view which can display the model and a set of trackers
and tracking commands which can select and modify
the model.

STATIC PRESENTATIONS
The simplest presentation type is the name of the

data. The name is a text string that indicates the data
content or type. Examples include "Chapter 4", "1990
Federal Income Taxes", "To Do". Another simple
presentation type, an icon, is a small graphical represen-
tation of the data. It usually indicates the data type.
Examples are a book, a report, a financial model, a
sound or video recording, a drawing. However, they
may also display status, such as a printer that is printing,
or indicate content, such as a reduced view of a draw-
ing. Finally, the thumbnail, is a smelt view of the model
data. This view may show only a portion of the data in
order to fit the available space. Examples are a shrunken
drawing, a book's table of contents, a shninken letter, or
the shrunken first page of a long document. A browse-
only presentation allows a user to view the data in its
normal size but the user is unable to select or modify
any of the data.

SELECTABLE PRESENTATIONS
Selectable presentations allow a user to view, ex-

plore, and extract information from the data. These
presentations provide context: what the data is, where
the data is, when the data was. It may help to present
the data in a structured way, such as a list, a grid, as an
outline, or spatially. It is also useful to display the rea-'
tionships among the data elements, the data's relation-
ship to its container or siblings, and any other depen-
dencies.

Selectable presentations may also display meta data.
An example is the current selection, which indicates the
data elements a user is currently manipulating. Another
type of meta data is a hypermedia link between data
elements. The view may also indicate other users who
are collaborating on the data.

Selectable presentations are usually very specific to
the type of the data. They are made up of windows,
views, and other user interface objects which may be
customized to best reflect the data type. Some examples
are:

Sound recordingA control panel would facilitate
an audible presentation. Views would display the sound
as a musical score or as a series of waveforms. Views
may include a sample number or time indications.

Financial modelThe model could be viewed as the
set of formulas and other parameters. It could display
values from the model ata particular instance of time or
with specific input values as a Spreadsheet or in various
graphical forms.

10

15

15,703
12

scribe a specific notification from a notification source
object.

NOTIFICATION PROPAGATION FLOW CHART
5 FIG. 18 is an object generating notification flowchart

for a notification source object. Processing commences
at terminal 1800 and immediately passes to function
block 1810 where a notification receiver object creates
a connection to itself. Then, at function block 1820 the

10 notification receiver object adds appropriate interests
for one or more notifications from one or more notifica-
tion sottrce objects. These interests are defmed by the
notification source object(s).

l'he client object asks the connection object to con-
15 nect to the notification source(s) for notifications speci-

fied by the interests in the connection in function block
1830. Then, in function block 1840, for each interest in
connection, the connection is registered as interested in
the notification with the notifier in thc interest. Next, at

20 function block 1845, the system enters a wait state sestil
a change is detected. When a system change occurs,
control immediately passes to 1850 where a notification
source object changes and calls notify on its notifier
with a notification describbig the change.

25 Por each connection registered with the notifier as
interested in the notification, at function block 1860, the
connection is asked to dispatch the notification. In turn,
at function block 1870, the ConnectiOn dispatches the
notification to the appropriate method of the notifica.

30 tion receiver. Finally, at function block 1880, the notifi-
cation receiver takes the appropriate action for the
notification, and a test is performed at decision block
1885 to determine if another connection is registered
with the notifier as interested in notification. If there is

35 another connection, then control passes to 1850. If there
is not =other connection to service, then control passes
to function block 1845 to await the next change.

DATA SPECIFICATION
40 Data specification addresses the selection issue of

data processing. If a user must manipulate data con-
taied in a representation, the data must be able to spec-
ify subsets of that data. The user typically calls this
specification a "selection," and the system provides a

45 base class from which all selection classes descend. The
invention also provides selection classes for all of the
fundamental data types that the system supports.

MODEL SELECTION
50 The object which contains the specification of a sub-

set of data in a representation is a model selection class.
In the case of a text representation, one possible selec-
tion specification is a pair of character offsets. In a
structured graphics model, each shape must be assigned

$5 a unique id, and the selection specification is a set of
unique ida. Neither of the specifications point directly at
the selection data and they can be applied across multi-
ple copies of the data.

ACCESSING SPECIFIED DATA60

A selection understands the representation protocol
for accessing and modifying data and knows how to
find data in a local address space. Command objects
access a representation's data through data selection,

65 and therefore require no knowledge of converting from
specification so the real data in the local model. It is the
job of the selection object to provide access to the real
data from the address space independent specification.

AppDe10000184

11
5,3

BookThe model could be viewed as a table of con-
tents, an index, a list of illustrations. It could be viewed
as a series of pages, a series of chapters, ora continuous
text flow.

Video recordingThe model could be viewed as a
series of individual trames or as a continuous presenta-
tion. Views may include track marks, . frame number,
and time indications.

Container containing other objectsThe objects
could be displayed alphabetically by name, by type or
other attribute, as a set of icons, as a set of thumbnails.

EDTTABLE PRESENTATIONS

Editable presentations are similar to interactive pre-
sentations except that they also facilitate data modifica-
tion. They do this by allowing direct manipulation of
the data with the mouse or other pointer. They also
allow the data to be manipulated symbolically through
menu items and other controls.

DATA ACCESS
Presentations interact with data encapsulators in

order to determine the data and other information to
present. Presentations query the model for the data that
is required. The presentation may present all or only
part of the data that is contained or can be derived from
the data in the data encapsulator.

CHANGE NOTIFICATION
Because there can be many presentations of a single

model active at once, the data can be changed from
many sources, including collaborators. Each presenta-
tion is responsible for keeping itself up to date with
respect to the model data. This is accomplished by
registering for notification when all or a portion of a
model changes. When a change occurs to data in which
the presentation is interested, the presentation receives
notification and updates its view accordingly. Change
notification can be generated in any of the ways listed
below. First, change notification can be generated from
the method in the data encapsulator which actually
changes the model data. Second, change notification
can be generated from the conunand which caused the
change. As mentioned earlier, there are benefits to these
two approaches. Generating the notification from
within the data encapsulator guarantees that clients will
be notified whenever the data changes. Generating the
notification from the command allows "higher-level"
notification, and reduces the flurry of notifications pro-
duced by a complicated change.

NOTIFICATION FRAMEWORK OVERVIEW
The Notification framework provides a mechanism

for propagating change information between objects.
The framework allows objects to express interest in,
and receive notification about changes in objects on
which they depend. A standard interface is provided for
classes that provide notification to clients. Notifier
classes provide notification source objects with the
means to manage lists of clients and dispatch notifica-
tions to those clients. Notifier objects require no special
knowledge of the class of objects receiving notifica.
51055. Connection objects provide the dispatchof notifi-
cations from the notifier to specific notification receiver
objects. These connection objects allow specialization
of how notifications are delivered to different classes of
receivers. Finally, Notification objects transport de-
scriptive information about a change, and interests de-

13
In a text encapsulator, this processing may require que-
rying the encapsulator for the actual characters con-
tained in a range. In a base model such as a graphMal
editor the selection will typically hold surrogates for
the real objects. The encapsulator must provide a
/cokup facility for converting the surrogate to the real
object.

STANDARD EDITING PROTOCOL

The model selection class provides a protocol for the
exchange of data between selections. By implementing
the protocol for type negotiation, absorbing, embedding
and exporting data, derived classes provide support for
most of the standard editing commands. This means that
the editing commands (Cut, Copy, Paste, Push Data,
etc.) provided by the system will function for the repre-
sented data type and will not require reimplementation
for each application. The model selection class also
provides support direct/y for the exchange of anchors
and links but relies on the derived class's implementa-
tion of several key methods to support the exchange of
the representation's data:

CopyData must be implemented by the derived class
to export a copy of the specified data. The implementa-
tion creates and returns a new data encapsulator of the
requested type containing a copy of the specified data.

AdoptData must be implemented by the derived class
to support absorbing or embedding data into the specifi-
cation's associated representation. If the data is to be
absorbed it must be of a type which can be incorporated
directly into the receiver's representation. The ab-
sorbed data is added to the representation as defined by
the specification. It is common for many data types to
replace the currently specified data with the newly
absorbed data. Any replaced data is returned in a data
encapsulator to support Undo. If the data is to be em-
bedded, the eficapsulator is incorporated as a black box
and added as a child of the representation.

ClearData must be implemented by the derived class
to delete the specified data from the associated repre-
sentation. An encapsulator of the representation's na-
tive type containing the deleted data must be returned.

USER INTERFACE

The user interface for creating specifications is typi-
cally the responsibility of a presentation on the data. A
number of mechanism are available depending on data
type and presentation style. The most favored user
interface for creating a selection is direct manipulation.
In a simple graphics model, objects may be selected by
clicking directly on the object with the mouse or drag-
ging a selection box across several objects using a
mouse tracker. In text, a selection may be created by as
the resuh of a fmd conunand. Another common way
that selections are created is as a result of a menu com-
mand such as "find." After the command is issued, the
document is scrolled to the appropriate place and the
text that was searched for is selected.

Finally, selections can Come from a script (or pro-
grammatically generated) and the result would be the
same as if a user created the selection directly. "Nam-
ing" selections for scripts involve creating a language
for describing the selection. For example, in text, a
selection could be "the second word of the fourth para-
graph on page two." The invention's architecture pro-
vides support for scripting.

5,315,703
14

DATA MODIFICATION
Data Modifications addresses the question: what are

the commands that can operate on this selection? If a
5 user is to modify the data contained in a representation,

the system must be able to specify exactly the type of
modification to be made. For example, in a word pro-
cessing program, a user may want to change the style of
a selected range of characters. Or, in a structured graph-

ic) ics program, a user may desire rotation of a graphic
object. All user actions that modify the data contained
in a data encapsulator are represented by "command
objects."

15 THE MODEL COMMAND OBJECT
The abstract base class that represents a command

made by the user is the model command object. Sub-
classes of the model command object capture the se-
mantics of user actions, such as: can be done, undone,

20 and redone. These subclasses are independent of the
user interface technique used to create them, Unlike
MacApp, as soon as the semantics of a user action is
known, device events are translated into command
objects by the system.

25
HANDLEDO, HANDLEUNDO, AND

HANDLEREDO
Creating a new class of command involves overriding

a number of methods. The most important three meth-
30 ods to override are: HandleDo, HandleUndo and Hand-

leRedo. The HandleDo method is responsible for
changing the data encapsulator appropriately based on
the type of 'command that it is and the selection the
command is applied to. For example, if the command

35 involves a style change to a range of characters in a
word processor, the HandleDo method would call a
method (or set of methods) in the data encapsulator to
specify a character range and style to change. A more
difficult responsibility of the HandleDo method is sav-

40 ing all of the information necessary to "undo" this com-
mand later. In the style change example, saving undo
hiformation involves recording the old style of the char-
acter range. The undo information for most commands
is very simple to save. However, some commands, like

45 fmd and change may involve recording a great deal of
information to undo the command at a later time. Fi-
nally, the HandleDo method is responsible for issuing
change notification describing the changes it made to
the data encapsulator.

50 The HandleUndo method is responsible for reverting
a dcicument back to the state it was in before the com-
mand was "done." The steps that must be applied are
analogous to the steps that were done in the liandleDo
method described above. The HandleRedo method is

55 responsible for "redoing" the command after it had
been done and undone. Users often toggle between two
states ola document comparing a residt of a command
using the undo/redo combination. Typically, the Hand-
leRedo method is very similar to the HandleDo method

60 except that in the Redo method, the information that
was derived the last time can be reused when this com-
mand is completed (the information doesn't need to be
recalculated since it is guaranteed to be the same).

65 USER INTERFACE
Command objects capture the semantics of a user

action. In fact, a command represents a "work request"
that is most Often created by a user (using a variety of

AppDe10000185

16

ANCHORS
Persistent selections or "anchor s" are very similar to

selections in that they are specifications of data in a
5 representation. The difference is that anchors must sur-

vive editing changes since by definition anchors persist
across changes to the data. The implementation of
graphics selections desctibed earlier in the document is
persistent. The implementation of taxi selections, how-

10 ever, is not. If a user inserts or deletes text before a
selection, then the character offsets must be adjusted.

commands and "dnvmg" the user feedback process is There are a couple of approaches for implementtng text

known as a tracker. The invention provides a rich set of
anchors. First, the text representation maintains a col-

"tracking commimds" for manipulating the built-in data
lection of markers that point within the text, similar to

The anchors include an
types. For example, there are tracking commands for

15 the way styles are maintained.

rotating, scaling and moving all the 2 D objects in Pink
unique id that refers to a marker. When the text is
changed, the appropriate markers are updated, but the

such as lines, curves, polygons, etc. anchors remain the same. Mother approach is to main-
A common user interface for issuing commands is vis tain an editing history for the text. The anchor could

controls or the menu system. Menus are created and a 20 contain a pair of character positions, as well as a time
set of related commands are added to the menu. When stamp. Eh time the text was edited, the history would
the user chooses an item in the menu, the appropriate be updated m record the change (e.g., 5 characters
command is "cloned" and the Do method of the com- deleted from position X at time T). When the anchor is
mand is called. The programmer:is never involved with used, the system would have to coffect its character
device events at all. Furthermore, because commands 25 positions based on editing changes that happened since
know what types of selections they can be applied to, the last tinte it was used. At convenient times, the his-
menu items are automatically dimmed when they are tory can be condensed and the anchors permanently
not appropriate. updated.

Finally, commands can be issued from a script (or The system provides a large number of features for
programmatically generated) and the result would be 30 "free" through the anchor facility. All of the Hy-
the same as if a user issued the command directly. The perMedia conunands (CreateLink, PushData, Punnets,
Pink architecture provides support for scripting; how- and Follow) all use anchors in their implementation.
ever, at this time, there is no user interface available for The implementation of the system wide annotation
creating these scripts, facility uses anchors in its implementation. The base

35 data encapsulator provides services for keeping track of
BUILT-IN COMMANDS . anchors and links. However, the user is responsible for

The invention provides a large number of built-in making anchors visible to the user via presentations.
command objects for all of the built-in data types as The application must also issue the proper command
well as providing generic commands for Cut, Copy, object when a user selects an anchor. After a user inter-
Paste, Starting HyperMedia Links, Completing Links, 40 face for anchors and links is nailed down, the document
Navigating Links, Pushing Data on Links, Pulling Data framework provides additional support to simplify pro-

on Links, as well as many user interface comnuinds. One cessing.
of the advantages of using the frameworks is that these FILING
built-in command objects can be used with any data

n.
.r ig s the process or saving and restong data toencapsulators.

and from permanent storage. All a user must do to make
MORE FEATURES tiling work is to implement the streaming operators for

a data encapsulator. The invention's default filing isThe previous sections of this document concentrated .
"image based. When a user opens a document, the

on the foundational features of the invention. There are 50 entire contents of the document are read into memory.many additional facilities in the invention that imple- When a user closes a document, the entire contenta ofment advanced features. Specifically, these facilities the document are written back to disk. This approach
include: model-based tracking, filing, anchors, and col- was selected because it is simple, flexible, and easy to
laboration. understand. To store data in a different format, perhaps

MODEL BASED TRACKING SS for compatibility witb a preexisting standard file format,
two approaches are possible. First, an encapsulator class

Tracking is the heart of a direct-manipulation user can stream a reference to the actual data, then use the
interface. Tracking allows users to select ranges of text, reference to fmd the actual data, or a new subclass can
drag objects, resize objects, and sketch objects. The be defined to create and return a fide subclass.
invention extends tracking to function across multiple 60 The advantage of the first approach is a data encap-
views and multiple machines by actually modifying the sulator can be encapsulated in other documents. The
model. The tracker issues commands to the model, advantage of the second approach is the complete free-
which posts change notifications to all interested views. dom afforded to exactly match an existing file format

Model based tracking is the best solution for tracking for the complete document.
in documents, but it does have the drawbacks that: (I) 65
the model's views must be optimized to provide quick COLLABORATION

response to change events and (2) the model must be Same-time network collaboration means that two or
capable of expressing the intermediate track states, more people edifthe same document at the same time.

15
user interface techniques) but could be created (and
applied) in other ways as well. The important concept is
that command objects represent the only means for
modifying the data contained in a data encapsulator. All
changes to the data encapsulator must be processed by
a command object if the benefits of infinite undo, save-
less model, and other features of the invention are to be
realized.

The most favored user interface for issuing com-
mands involves some sort of direct manipulation. An
object responsible for translating device events into

5,315,703

AppDe10000 186

5,315,703
17

The system also establishes the collaboration policy;
that is, whether users are forced to take turns when
changing the data or can make changes freely. A devel-
oper does not have to worry about the mechanics of
collaboration or the collaboration policy. 5

SUPPORTING COLLABORATOR SELECTION
STYLES

To assist in the reduction of confusion and enhance
model selection, the document architecture provides a 10
collabOrator class which contains information about the
collaborator's initials and preferred highlight bundle.

SUPPORTING MULTIPLE SELECTIONS

To support multiple selections a user must modify 15
presentation views because each collaborator has a
selection. When the active collaborator's selection
changes the standard change notification is sent. When
a passive collaborator's selection changes a different
notification event is sent. A view should register for 20
both events. Since the action taken to respond to either
event is usually the same, economy can be realized by
registering tbe same handler method for both evenu.

USER INTERFACE IN ACCORDANCE WITH
THE INVENTION

This portion of the invention is primarily focused on
innovative aspects of the user interface building upon
the foundation of the operating 'system framework pre-
viously discussed. The first aspect of the user interface 30
is a mechanism allowing a user to manage interactions
with various objects or data referred to as controls.

CONTROL
The object with which users interact to manipulate 35

other objects or data is called a control. Controls use a
command to determine the current state of the object or
data. Following appropriate interactions with the user,
the control updates the conunand's parameters and
causes it to be executed. Example controls are menus, 40
buttons, check boxes and radio buttons.

Controls use a command to determine the murent
state of the object or data. Following appropriate inter-
actions with the user, the control updates the com-
mand's parameters and causes it to be executed. For 45
example, a checkbox sets a command parameter to on
or off and then executes the command to change a data
value.

Many controls display the current value of the data
they manipulate. For example, a check box displays a 50
check only when a Boolean data value is TRUE. As the
data changes, the control's appearance is kept up to date
using a notification system described here. The process
is similar to the process used to enable/disable menu
items. 55

When a control is created a command must be speci-
fied. The control makes a copy of this command and
stores it in field fCommand. If the command supplies
any data values, a pointer to appropriate Get and Set
methods of the command must also be specified. The 60
control stores these method pointers in fields fGet-
Method and fSetMethod, respectively. Then, the con-
trol connects for notifications that indicate its data value
may be out of date. Each command provides a method
called ConnectData for this purpose. 65

Each control contains a connection object called
fDataConnection indicating the object and method to
receive the notification. This connection object passed

25

18
as an argument to the command. The command object
calls the connection object's Connect method to add
each notifier and interest that may affect its data value.
When complete, the control calls the connection ob-
ject's Connect method to establish the connections as
shown in FIG. 3. The control updates its data value
from its command. It does this by calling the Get
method of the command (fCommandKfGetMethod)(
)). The control stores this value in an appropriate field
(e.g. a checkbox stores it in a Boolean field named
fChecked) as depicted in FIG. S. Then, the control
updates its appearance. It performs this action by call-
ing the view system's invalidate method, indicating
which portion of the screen needs updating.

Finally, the data changes and notification is sent. At
some point, a command is executed which changes the
value of the data being reflected by the control. This
command could be executed from a control, menu item,
or through direct manipulation. The control receives
the notification as shown in FIG. 4, and control is
passed to await the next user selection.

CONTROL PANEL
One collection of controls is called a control panel.

The contrors in a control panel typically operate upon
actual data (this is the default, not a requirement). Their
actions are usually immediate and are independent from
one another. Control panels manage the progression of
the input focus among its controls as necessary. It is
likely that control panels will be shared across all user
interfaces in the system.

DIALOG BOX
Another collection of controls is called a dialog box.

The controls in a dialog box typically operate upon
prototypical data (this is the default, not a requirement).
Their actions are usually collected together into a group
and then performed together when the user presses an
Apply button. Dialog boxes manage the progression of
the input focus among its controls as necessary.

A CONTROL IN ACTION
We would now like to present a play in three acts to

illustrate a control in action. FIG. 2 illustrates the vari-
ous controls. A play example will be used by way of
analogy to illustrate a control (in this case a checkbox),
a command, a selection, and a data encapsulator.

Checkbox 200: The role of the checkbox is to display
a Boolean value stored in the data encapsulator and to
facilitate its change. The value is represented by the
presence or absence of a check.

Command 210: The role of the command is to obtain
the value from the data encapsulator and change it upon
direction from the checkbox.

Selection 220: The role of the selection is to be an
interface between the command and the data.

Data 230: Data is employed as a target for actions.

GETTING TO KNOW YOU
Everyone gets to lcnow each other a little better as

shown in FIG. 3. The command 310 tells the checkbox
300 which notifications the data may send in which the
control is certain to be interested (how the command
310 lcnows is none of anyone else's business). The
checkbox 300, in turn, connects to the data 320 for the
notifications.

Unlotown to anyone else, the director told the check-
box 300 the best way to interact with the command 310.

AppDe10000187

19
Specifically, it was told about the command's get value
method and a set value method. The checkbox will take
advantage of this a little bit later.

REFLECTING THE DATA
Something happens to the datait sends notifications

as depicted in FIG. 4. The checkbox 400 hears about
those for which it has expressed an interest. In FIG. 4,
the notification from the data expreues to bold the
information which is reflected by placing an X in the
checkbox.

The checkbox 510 received notification from the
data, and the processing to display the checkbox 510
correctly is depicted in FIG. S. It does this by using the
command's 520 get value method it happens to know
about. Before telling the checkbox 510 what the correct
value is, the command 520 goes through the selection to
the data to make mire it really knows the correct value.
The checkbox 510 updates itself as necessary.

CHANGING THE DATA
The user now enters the scene and gives the check-

box 600 a nudge as shown in FIG. 6. The checkbox 600
uses the command's 610 set value method to set the
data's 620 value through the selection. The entire pro-
cess is reviewed in FIG. 7.

A CONTROL PANEL IN ACTION
A control panel is nothing more than a simple win-

dow that contains a set of controls as shown in FIG. 8.
These controls contain a command that operates upon
the current selection. The control is enabled if the com-
mand is active. Following appropriate interaction with
the user, the control executes the command, causing the
data to change.

A SOUND CONTROL PANEL
As an example control panel, consider the sound

controller illustrated in FIG. 8. This control panel con-
tains four buttons 800, 802, 804 and 806 for controlling
sound playback. Each button performs as described in
the "A Control in Action" section above.

Play 800

This control contains a TPlay command. This com-
mand is active only under certain conditions, making
the control enabled only under those conditions. First, a
sound must be selected in the appropriate data encap-
sulator. Next, it must not be playing already. Finally,
the current sound position must be somewhere before
the end. When pressed, the Play button executes the
TPlay command, causing the selected sound to come
out of the speaker.

Step 802

This control contains a TPlay command, too. How is
this, you ask? Well, since I am making this up, we can
pretend that the TPlay command takes a parameter
indicating the duration it is to play. For the purposes of
the step button, it is set to a single sample. The Step
button is enabled only under the same conditions as
described for the Play button. When pressed, the Step
button executes the TPlay command, causing the se-
lected sound to come out of the speaker.

Stop 804

This control contains a TStop command. l'he Stop
button is enabled only if the selected sound is currently

5,315,703
20

playing. When pressed, the Stop button executes the
TStop command, causing the selected sound to stop
playing and to set the current sound position to the
beginning.

5
Pause 806

65

CLASSES

The following section describes the classes of the
controls and dialog areas and their primary methods.

CONTROL

A control is the user interface to one or more com-
mands. The control displays information about a com-

AppDe10000188

This control contains a TStop command, too. Unlike
the Stop button, however, this TStop command is set to
not rewind the sound to the beginning. Pressing the

10 Play or Step buttons continue from where the playback
left off.

A DIALOG BOX IN ACI1ON
A dialog box is similar to a control panel, in that it is

15 a simple window containing a set of controla. However,
instead of the controls operating upon the selected data,
they operate upon parameters of another command.
Only until the Apply button is pressed is the real data
modified.

20
A COLOR EDITOR

As an example dialog box, consider the color editor
set forth in FIG. 9. It contains three sliders, one for the
red 900, blue 910, and green 920 components of the

25 color. After adjusting the sliders to the desired values,
the user presses Apply 930 to change the color of the
selection.

Red 900, Green 910, Blue 920
30 To the user, these sliders are identical, except fo

their label. As with all controls, each slider contains a
conunand that is executed following user interaction
Unlike many controls, especially those in a contro
panel that immediately affect the selected data, the

35 command contained by these sliders displays and modi-
fies the value of a parameter of another command. In
this case, it is one of the red, greets, or blue parameters
of the command contained within the Apply button.

ao Apply 930

The Apply button contains a TSetColor command
that changes the color of the selection when executed.
It has three parameters, one for each of the red, green,
and blue components of the color. These parameters are

45 displayed and set by the sliders in response to user inter-
action. When the Apply button is pressed, this com-
mand is executed and the new color is set. The internal
actions accompanying the color editor example, are
depicted in FIG. 10. The Red 1000, Green 1010, and

50 Blue 1020 slides contain a TFloatControlCommand.
These commands contain a single floating point value
which the control displays. As the user adjusts the
slider, it updates this value and executes the command.

The selection for the TFloatControlCommand speci-
5 lies the TSetColor command within the Apply 1040

button. One of its parameters is set when each TFloat-
ControlComrnand is executed. Finally, when the user
presses the Apply 1040 button, the TSetColor com-
mand is executed and the selected color 1050 is

60 changed.

703
22

it wraps. For controls, these methods are delegated
directly to the control. When the presentation is acti-
vated, some controls connect for notifications that are
valid only when active. When deactivated, the connec-
tions are broken.

TCONTROLSELECTION

A control selection specifies a single control, and
optionally a command within it, that is wrapped in a .

control presenter and stored in a presentation.
Methods to access a command within the control.

These may return aninvalid value if no command was
specified.

TUNICONTROL
A unicontrol is the abstract base class for controls

that present a single command and causes it to be exe-
cuted following appropriate user interaction. Examples
of thiS type of control are buttons and checkboxes.

Methods to specify the command that is presented
and executed by the control. Notification is sent to
registered connections when the command is changed.

Methods the control uses to connect to and discon-
nect from notifiers that affect whether the control is
enabied ConnectEnabiedNotifiers connects to the noti-
fiers specified by commands when the control is
opened. DisconnectEnabledNotifiers breaks these con-
nections when the control is closed.

Method that receives notifications indicating that
something happened affecting whether the control
should be enabled. UpdateEnabled checks whether the
command is active and calls Enable and Disable as
appropriate.

Methods that control uses to connect to and discon-
nect from notifiers that affect the control's presentation
of a data value. ConnectDatallotifiers connects to the
notifiers specified by commands when the control is
opened. DisconnectDatallotifiers breaks these connec-
tions when the control is closed. Controls that do not
display a data value (e.g. button) may override connect
data notifiers to do nothing.

TBUTTON
A button is a tmicontrol that executes its command

when pressed. This class is normally used without sub-
classing; just set the command and away you go.

Methods that are called when the presentation is
activated and deactivated. When the presentation is
activated, some controls connect for notifications that
are valid only when active. When deactivated, these
connections are broken. When the presentation is acti-
vated, buttons register for key equivalent notification.
This connection is broken when the presentation is
deactivated.

Methods that control users connecting to and discon-
necting from notifiers that affect the control's presenta-
tion of a data value. Connect data notifiers connects to
the notifiers specified by commands when the control is
opened. Disconnect data notifiers brealcs these connec-
tions when the control is closed. Controls that do not
display a data value (e.g. button) may override connect
data notifiers to do nothing.

THE CHECKBOX

A checkbox is the user interface to a command that
sets a Boolean value. Following appropriate user inter-
action, the checkbox calls a command method to
change the value and executes the command. This class

AppDe10000189

21
5,315,

mend, such as its narne and whether it is active in the
current context. Following appropriate user interac-
tion, the control causes a command to be executed.
When appropriate, the control obtains the current value
of data the command modifies and displays it to the 5
user. It may set a command parameter that indicates a
new value of this data before executing the command.

Methods to create a selection on the control, with
additional specification of a command within the con-
trol as an option. Lookup command is a pure virtual 10
function in order to give subclasses flexibility in how
many commands they contain and how they are stored.

Methods that are called when the presentation is
opened and closed. When the presentation is opened the
control connects for notifications that may affect its 15
state. When the presentation is closed these connections
are broken.

Methods that are called when the presentation is
activated and deactivated. When the presentation is
activated, some controls connect for notifications that 20
are valid only when active. Deactivating the presenta-
tion breaks these connections.

Methods that control uses to connect to and discon-
nect from notifters that affect whether the control is
enabled. ConnectEnabledNotifiers connects to the noti- 25
fiers specified by commands when the control is
opened. DisconnectEnabledNotifiers breaks these con-
nections when the control is closed.

Methods that receive notifications indicating that
something happened affecting the control's presentation 30
of a data value. This method does nothing by default.

Methods for notification. Create interest creates an
interest specialized by the control instance. Notify is
overloaded to send a notification and swallow the inter-
est. 35

THE CONTROL INTEREST
A single notifier is shared among many subclasses of

controls. In order to express interest in a particular
control instance, the interest must be specialized. A 40
control interest is an interest that contains a pointer to a
specific control. This class is an internal clase that is
usually used as is, without subclassing.

THE CONTROL NOTIFICATION 45
A single notifier is shared among many subclasses of

controls. In order to distinguish which control sent the
notification, the notification must be specialized. A
control notification is a notification containing a pointer
to the control .that sent the notification. This class is 50
usually used as-is, without subclassing.

THE CONTROL PRESENTER
A control presenter wraps up a control so it can be

contained by a presentation data encapsulator. It imple- 55
ments standard behaviors that .211 presenter objects im-
plement. This class is usually used as-is, without sub-
classing.

Methods that are called when the presentation is .

opened and closed. They do nothing by default. A sub- 60
class must implement these methods for the object it
wraps. For controls, these methods are delegated di-
rectly to the control. When the presentation is opened,
the control connects for notifications that may affect its
state. When closed, the connections are broken. 65

Methods that are called when the presentation is
activated and deactivated. They do nothing by default.
A subclass must implement these methods for the object

23
is normally used without subclassing just set the com-
mand,. its value getter and setter, and away you go.

THE SLMER
A slider is a unicontrol that displays a single floating

point value and allows it to be changed following ap-
propriate user interaction. Examples of sliders were
presented in FIGS. 9 and 10.

TMULTICONTROL
A multicontrol is the abstract base class for controls

that present several commands and causes them to be
executed following appropriate user interaction. Exam-
ples of this type of control are radio buttons and menus.

TRADIOBUTTON
A radio button is a multicontrol that displays two or

more Boolean values and allows them to be changed
following appropriate user interaction. The radio but-
ton enforces the constraint that exactly one button is
selected as shown in FIG. 11. If Paper is selected, then
the circle at 1100 is blackened. If Plastic is selected, then
the circle at 1110 is selected. Both cannot be selected.

TCOMMAND

A command encapsulates a request to an object or set
of objects to perfornt a particular action. Commands are
usually executed in response to an end-user action, such
as pressing a button, selecting a nsenu item, or by direct
manipulation. Commands are able to provide various
pieces of information about themselves (e.g. name,
graphic, key equivalent, whether they are active) that
tnay be used by a control to determine its appearance.
Subclasses must implement a method to examine the
current selection, active user interface element, or other
parameters in order to decide whether the command is
active. Subclasses must override get active interest list
to retum notification interests that may affect whether
this command is active.

FIG. 12 is a flowchart depicting the detailed logic in
accordance with the subject invention. The flowchart
logic commences at 1200 and control passes directly so
function block 1210 where a command objects are
added tos menu. The steps carried out by this function
block are: 1) create menu item from a command, where
a menu item is another object data structure containing
a command, 2) add a menu item tos list of menu items,
and 3) mark the menu's appearance is invalid in data
structure fValid. Then, later when the menu is pulled
down, the appearance is recomputed based on the sys-
tem state.

Each menu is a view. Views contain size and location
information. Each menu contains a list of menu items.
Each menu item contains a command and variables that
reflect its current appearance. This includes whether
the menu item is enabled (Boolean !Enabled), its name
(ITextLabel fName), its graphic (TGraphicLabel
(Graphic), and whether its appearance is currently valid
(Boolean (Valid). Each of these variables are deter-
mined by asking the command when the menu item was
created.

Next, a query is sent to the command object for noti-
fication interests as depicted in function block 1220.
Each command has four methods to connect for differ-
ent types of notifications: i) notifications that affect it's
name, ii) notifications that affect a graphic, notifica-
tions that affect whether the command is active, and iv)
notifications that affect any data, In this case, the menu

5,315,703
24

item just created for the command connects for active
notification. It does this by passing a connection object
to ConnectActive. The command is then responsible for
connecting the connection object to notifiers affecting

5 whether the command is active. Then control is passed
to function block 1230 to query a conunand for the
enabled state when it is necessary to draw a menu item.
To draw a menu item, menu item calls method "IsAc-
tive" for its command. The command looks at whatever

10 system state it wants to and returns whether it is active
as depicted in decision block 1240 in the current context
(e.g. some commands only are active when a particular
type of window is in front, or when a particular type of
obje:ct is selected). Then, a menu item updates its inter-

15 nal state (a Boolean value in each menu item) and ap-
' patience as shown in function block 1230 and 1260 so

match the value returned by the command.
Whenever a user action invokes my comnumd as

shown in input block 1270, a user causes a command to
20 he executed. Tisis could be from a menu item, control,

or through direct manipulation of in object. This action
causes a document state to be modified as shown in
function block 12110, and a document sends notification
as shown in function block 1290. When a document

25 sends notification, the following steps are executed: 1)
any menu item (or other control) connected for the
notification sent by the document receives a notification
message. This message includes the name of the change
as well as a pointer to the object that sent the notifica-

30 tion) a menu item then updates its state, and control is
passed back to function block 1230 for further process-
ing.

FIG. 13 is an illustration of a display in accordance
with the subject invention. The menu item is Edit 1300

35 and has a number of sub-menu items associated with it.
Undo 1310 is an active menu item and can thus be se-
lected to carry out the associated functions. Redo1320 is
inactive and is thus presented in a greyed out fashion
and cannot be selected at this time. A checkbox is also

40 shown at 1360 as part of the debugging control panel
1350.

PRESENTATION TEMPLATES AND
PERSISTENCE

45 Data presentations are created from templates and
saved across sessions in a user interface object. The
container for all data in the system is a model. A model
contains and facilitases the manipulation of data. Date
exchange is facilitated through cut, copy, and paste

50 operations. Data reference is provided by selections,
anchors, and links. Data models may be embedded into
any other. Users interact with modela through presenta-
tions (e.g. icon, thumbnail, (aline, window, dialog, con-
trol panel) that are provided by an associated user inter-

55 face. Data models delegate all presentation creation and
access methods to another object, called the user inter-
face.

A user interface is a model containing a set of presen-
tations (e.g. icon, thumbnail, frame, window) for a pet-

it) ticuiar model. When required, presentations are se-
lected from those already created based on the type of
presentation desired, the user's name, locale, and other
criteria. If the desired presentation is not found, a new
presentation is created and added to the user interface

65 by copying one from an associated archive. Presenta-
tions raay be deleted when persistent presentation infor-
mation (e.g. window size and location, scroll positions)
is no longer required.

AppDe10000190

5,315,703
25

A presentation contains a set of presentable objects
that wrap user interface elements (e.g. menus, windows,
tools) used to view and manipulate data. Presentations
provide a reference to the data these objects present.
Presentations install or activate presentable objects 5
when the presentation is activated. Similarly, these
objects are removed or deactivated when the presenta-
tion is de,activated. Presentations are identified accord-
ing to their purpose (e.g. icon, thumbnail, frame, win-
dow) and retain yet-to-be-determined criteria (e g user. .

identity) for later selection.
A presentation is made up of a collection of present-

able objects (e.g. user interface elements) that are dis-
played on the screen orare otherwise available when
the presentation is open or active.

Presentations are created from template presentations
contained in an archive. These are made up of objects
such as user interface elements, which are, in turn, raade redone as a single group.
up of smaller objects such as graphics and text strings. 20

An archive is a model containing a set of template CANCEL
objects, including user interface elements (e.g. win-
dows, menus, controls, tools) and presentations (e.g.
icon, thumbnail, frame, window).

DIALOG BOXES AND CONTROL PANELS

By using coramand objects in different ways, we can
control two independent behaviors of a group of con-
trols. The first is whether they affect the data immedi-
ately, or whether the user must press OK before the
settings take effect. The second is whether they are
independent from one another, or whether the settings ATOMIC COMMAND EXECTJTION IN DIALOG

BOXESrepresent an atomic operation.
Controls contain commands. As the user manipulates The object with which users interact to manipulate .

the control, the control sets parameters in the com. 35 other objects or data is called a control. Example con.
mends and cause it to be executed. Commands operate trols are menus, buttons, check boxes, and radio but-
on model data specified by a selection.

IMMEDIATE
Controls that affect the data immediately contain a

command that contains a selection that specifies real
model data. As the user manipulates the control, the
command causes this data to change. As the data
changes, it sends change notification so that views and
controls depending on the state of the data can accu- 45 plete. This is the normal behavior of commands once
rately reflect the current state.

DELA'YED

C,ontrols that are designed tonal change the real data
must operate on prototypical data, instead. The real
model data is not changed until the user performs an-
other action, such as pressing the OK .button. This is
accomplished in two ways:

The control contains a command that contains a se-
lection that specifies the control itself. As the usar ma-
nipubues the control, the command causes the control's
value to change, but no other model data. When the
user presses OK, a c,ommand in the OK button changes
the real model data to match the values in each control
the user may have manipulated.

Tbe control contain' s a command that contains a se-
lection that specifies a parameter of the command con.
tained by the OK button. As the user manipulates the
control, the oommand causes the OK button's com-
mand to change. When the user presses OK button, the
OK button's command changes the real model data to
match the values contained in itself.

26

INDEPENDENT
Controls that act independently from one another

require represent actions that can be individually un-
done after the control panel or dialog session is com-
plete. This is the normal behavior of commands once
they are executed by controls.

ATOMIC
Other sets of controls are designed to work together

and should be undone and redone as an atomic opera-
tion. This is accomplished by putting a mark on the
undo stack when the dialog box or control is started.
When finished, either by dismissing the control panel or

15 when the user presses an OK button (as in II B above),
all of the commands executed since the mark was placed
on the undo stack are collected together into a single
command group. This group can then be undone or

Control panels containing a CANCEL button (usu-
ally accompanied by an OK button, as in II B above) use
a technique similar to that described III B above. A

25 mark is put on the undo stack when the dialog box or
control panel is started. If the user presses the CAN-
CEL button, all commands placed on the undo stack
since the mark are undone. This technique works re-
gardless of whether the controls affect the data immedi-

30 ately or not.

tons. F.ach control contains a command, which imple-
ments an end-user action. Commands operate on data
that is specified by a selection object As the user manip-

40 ulates the control it sets parameters in the cominand and
causes it to be executed, thus changing the data value.

Controls that act independently from one another
require represent actions that can be individually un-
done after the control panel or dialog session is com-

they are executed by c.ontrols. Other sets of controls are
designed to work together and should be undone and
redone as an atomic operation. This is the subject of this
patent.

50 The detailed logic of the atomic execution is set forth
in the flowchart presented in FIG. 14. Processing com-
mences at terminal 1400 where control is immediately
passed to function block 1410 where a dialog box is
activated. When the dialog box is activated, a mark is

55 placed on the undo stack. The undo stack is a list of all
commands the user has executed. When undo is pressed,
the command on the top of the stack is undone. If not
immediately redone, it is thrown away. Then, at func-
tion block 1410, a user manipulation of a control is

60 detected. The manipulation of a control changes the
coramand's data value, as appropriate as set forth in
function block 1430, and e,xecutes the control. For ex-
ample, a checkbox toggles the command's fChecked
field between 0 and I. Finally, the command is recorded

65 on the undo stack so it can be subsequently undone as
shown in function block 1440.

As a user subsequently manipulates each control in
the dialog box, as detected in decision block 1450, then

AppDe10000191

5,315,703
27

control passes to function block 1430. However, if a
user presses OK as detected in decision block 1460, then
control passes to function block 1420. Finally, when
each control in the dialog box is set to the user's satisfac-
tion, the user presses the OK button. All of the com- 5
manda executed since the mark was placed on the undo
stack in function block 1440 are collected together into
a single command group and placed back onto the undo
stack as depicted in function block 1470. A command
group is a command that collects many commands to- 10
gether. When executed, undone, or redone, the com-
mand group executes,undoes, or redoes each command
in sequence. The command group is then placed back
onto the undo stack where it can be undone or redone as
a single atomic operation. 15

DELAYED COMMAND EXECUTION IN
DIALOG BOXES

The object with which users hueract to manipulate
other objects or data is called a control. Example con- 20
trots are menus, buttons, check boxes, and radio but-
tons. Each control contains a command, which imple-
ments an end-user action. Commands operate on data
that is specified by a seection object. As the user manip-
ulates the control it sets parameters in the command and 25
causes it to be executed, thus changing the data value.
Delaying changing of data until the user performs an-
other action is one aspect of the subject invention. For
exam*, controls in a dialog box may not want to
change any data values until/ the user presses the OK 30
button.

When a control is created a command must be speci-
lied. The control makes a copy of this command and
stores it in field fCommand. If the command supplies
any data values, a pointer to appropriate Get and Set 3$
methods of the command must also be specified. The
control stores these method pointers in fields fGet-
Method and fSetMethod, respectively. The data that is
modified by a command is specified by a selection ob-
ject. Normally, this selection object specifies real model 40
data. Instead, a selection object that specifies the data
value within the command of the OK button.

When a user manipulates the control, the control's
command is executed and a data value within the com-
mand of the OK button is changed. As the user minim'. 45
lates each control in the dialog box, the control's com-
mand is executed and a data value within the command
of the OK button is changed. Thus, when a user presses
the OK button, the command in the OK button updates
the real mode/ data to match the data values contained 50
within itself as manipulated by the control's commands.
This processing is repeated until control processing is
compieted.

LABELS
55

Labels are graphical objects that contain a graphic or
text string. They are used to identify windows, menus,
button.s, and other controls. Labels are able to alter their
appearance according to the state of their container.
They are drawn on a medium-gray background and to
appear naturally only when no special state must be
indicated. Labels modify their appearance when inac-
tive, disabled, or selected.

/NACTIVE 65
Window titles are set to be inactive when the window

is not front-most. Similtuly, control labels are set to be
inactive when the control is not in the front-most win-

28
dow or other container. Graphic labels are blended
vvith 55% white when inactive, in order to appear
dimmed. For text labels, the inactive paint is derived
from the natural paint by manipulating the saturation
component of the HSV color model. The saturation is
multiplied by 0.45 when inactive.

DISABLED

Control labels are dimmed when the control does not
apply in a particular context. Graphic labels are blended
with 46% white when inactive, in order to appear
dimmed. For text labels, the disabled paint is derived
from the natural paint by manipulating the saturation
component of the HSV color model. The saturation is
multiplied by 0.54 when disabled.

SELECrED
Control labels are highlighted as the control is being

manipulated. Graphics and text are dravm in their natu-
ral atase, but on a white background, when highlighted.

SMART CONTROL LABELS
Controls use a command to determine the current

atete of the object or data. Following appropriate inter-
actions with the user, the control updates the com-
mand's parameters and causes it to be executed. For
exsunple, a checkbox sets a command parameter to on
or off and then executes the command to change a data
value. Controls display a label to indicate its function.
This label is a graphical object containing a graphic or
a text string. As the control changes state, the label
automatically adjusts its appearance, without requiring
the developer to write additional code. These states
include active/inactive, enabled/disabled, and selected-
lunselected.

FIG. 15 sets forth the detailed logic associated with
smart label processing which commences at the stars
terminal 1500 where control is immediately passed to
1510 for smart label initialization. When the control is
created, its label is initialized with a text string or
graphic provided by its associated command. Each
command provides methods called GetGraphic and
GetName for this purpose. The control tells the label
whether it is currently active or inactive by callin8
method SetActive. Similarly, the control calls method
SetEnabled to tell the label whether it is enabled, and
SetSelected to tell the label whether it is currently being
selected by a user.

The next step in smart label processing occurs at
function block 1520 when the label is drawn. When the
control is activated, it calls the Draw method of its
label, causing the label to appear on the screen. If inac-
tive, the label is drawn more dimly than normal. This is
done by manipulating the saturation components of the
HSV color model. The saturation is multiplied by 0.45
when inactive. If disabled, the label is drawn more
dimly than normal. This is done by manipulating the
saturation components of the HSV color model. The
saturation is multiplied by 0.54 when the label is dis-
abled. If selected, the label on a highlighted back-
ground. Labels are normally drawn on a medium-gray
background. When highlighted, labels are drawn on a
white background. Otherwise, the label is drawn nor-
mally.

The next processing occurs when a label is ac-
tivated/deactivated as shown in function block 1530.
When the control is activated or deactivated, it tells the
label by calling the SetActive method. The control then

AppDe10000 192

5,315,
29

indicates its appearance needs updating by calling In-
validate with an argument indicating the portion of the
screen that needs to be redrawn. Then, at function block
1540, processing occurs when a control is enabled/disa-
bled. When the control is enabled or disabled, it tells the 5
label by calling the SetEnabled method. Tbe control
then indicates its appearance needs updating by calling
Invalidate with an argument indicating the portion of
the screen that needs to be redrawn.

A test is then performed at decision block 1550 so 10
determine if a control is selected or unselected. When
the control is selected or unselected, it tells the label by
calling the SetSelected method. The control then indi-
cates its appearance needs updating by calling Invali-
date with an argument indicating the portion of the 15
screen that needs to be redrawn, and control is passed to
function block 1520 for further processing.

SMART WINDOW LABELS
A title is displayed in a window in order to indicate its 20

purpose. For example, the title for a window to edit a
document is usually the name of the document A label
object is used to keep track of the title. This label is a
graphical object containing a graphic or a text string.
As the window changes state, the label automatically 25
adjusts its appearance, without requiring the developer
to write additional code. Windows can be either active
or inactive. Smart Window label processing is flow-
charted in FIG. 16 and the detailed logic is explained
with reference thereto. 30

Processing commences in FIG. 16 at terminal 1600
where control is immediately passed to function block
1610 for the title to be initialized. A window title is
specified by a developer when a window is created.
Thiititle is stored in a TLabel object called fTitle. The 35
control tells the title whether it is currently active or
inactive by calling method SetActive. Then, the at
function block 1620. When a window is drawn, it calls
the Draw method of its fTitle object, causing the title to
appear on the screen. If inactive, the title is drawn dim- 40
mer than normal. This is done by manipulating the
saturation components of the HSV color model. The
saturation is multiplied by 0.45 when inactive. Other-
wise, the tide is drawn normally.

The next step is processed at function block 1630 45
when the title is activated/deactivated. When a window
is activated or deactivated, it tells its fTitle object by
calling the SetActive method. The window then indi-
cates its appearance needs updating by calling Invali-
date with an argument indicating the portion of the 50
screen that needs to be redrawn. Then, control is passed
back to function block 1620 for redrawing the title to
reflect its new state.

DECORATIONS
S5

Many of the visual aspects of user interface elements
are common among many elements. Examples are shad-
ows, borders, and labels. The individual visual features
are referred toas decorations. Decorations can be com-
bined with other graphics to form the visual appearance 60
of specific user interface elements, such as windows and
controls. The subject invention supports many different
types of decorations.

BACKGROUNDS 65
A decoration that is dmwn behind another object is

called a background. One type of background is drawn
so as to appear flush with the surrounding drawing

703
30

surface. It may be drawn with or without a frame. An-
other type of background is drawn with highlighting
and shadow so it appears to be raised above the sur-
rounding drawing surface. The final type of back-
ground is drawn with highlighting and shadow so it
appears to be recessed beneath the surrounding drawing
surface.

An example use of these backgrounds is a button.
Normally the text or graphic that describes the button is
drawn on a raised background. When pressed by the
user, the text or graphic is redrawn on a recessed back-
ground. If the button is inactive, such as when another
window is active, the text or graphic of the button
could be drawn dimly on a flush background.

BORDERS
A decoration that surrounds another object or area is

called a border. Example borders are frames and shad-
ows. A trame is a border that surrounds another
graphic, much like a frame encloses a painting in the
real world. Like backgrounds, frames can be drawn to
appear recessed below, flush with, or raised above a
surrounding drawing surface. A shadow is a special
type of border that adds a shadow around an object tO
make it appear as if it floats above the surrounding
surface.

DECORATION COLORS

Many of the visual aspects of user interface elements
are common among many elements. Examples are shad-
ows, borders, and labels. Each of these individual visual
features are referred to as a decoration. Decorations can
be combined with other graphics to form the visual
appearance of specific user interface elements, such as
windows and controls. Some decorations use highlight-
ing and shadows to appear as if they are above or below
the surrounding drawing surface. Decorations are able
to derive automatically these highlighting and shadow
paints.

FILL PAINT
The fill paint represents the decoration's primary

color. All other paints are derived from the fill paint.
The fill paint is stored by the directoration in a TColor
field called fFillPaint. The fdl paint is normally speci-
fied by the developer when the decoration is created.
However, if no color is specified, a medium gray is
selected.

FRAME PAINT
The frame paint is used to draw a line around the

decoration to provide visual contrast. The frame paint is
stored by the decoration in a TColor field called
fFramePaint. The frame paint may be specified by the
developer when the decoration is created. However, if
no frame paint is specified, it is computed automatically
from the fill paint. This is accomplished by manipulat-
ing the saturation imd value components of the HSV
color model. The saturation is multiplied by four, with
a maximum value of I. The wdue is divided by tour.

HIGHLIGHT PAINT
The highlight paint is used to draw lines where light

would hit the object if it were an actual three-dimen-
sional object. The highlight paint is stored by the deco-
ration in a TColor field called fHighlightPaint. The
highlight paint may be specified by the developer when
the decoration is created. However, if no highlight

AppDe10000193

5,315,703
31

paint is specified, it is computed automatically from the
till paint. This is accomplished by manipulating the
saturation and value components of the HSV color
model. The saturation is multiplied by 0.8. The value is
multiplied by 1.25, with a maximum value of I. 5

SHADOW PAINT

The shadow paint can be used to draw lines where
the object would be shaded if it were an actual three-di-
mensional object. The shadow paint is stored by the 10
decoration in a TColor field called fShadowPaint. The
shadow paint may be specified by the developer when
the decoration is created. However, if no shadow paint
is specified, it is computed automatically from the fill
pahtt. This is accomplished by manipulating the satura- 15
tion and value components of the HSV color model.
The saturation is multiplied by 2 with a maximum value
of 1. The value is divided by 2.

SEPARATING INPUT SYNTAX FROM 20
SEMANTICS

A graphical user interface is manipulated by moving
a mouse, clicking on objects to select them, dragging
objects to move or copy then, and double-clicking to
open them. These operations are called direct manipula- 25
tions, or interactions. The sequence of events corre-
sponding to a user pressing, moving, and releasing a
mouse is called an input syntax. Certain sequences of
events are used so indicate particular actions, called
semantic operations. 30

The separation of the code that understands the input
syntax from the code that irnplements semantic opera-
tions is the subject of this patent. This processing is
embodied in objects called Interacts and Intractable,
respectively. FIG. 17 illustrates how these objects are 35
created and how the objects communicate with each
other during a typical interaction with an object that
can be moved, and selected.

Processing commences at terminal 1700 where con-
trol is passed inunediately to function block 1710 to 40
determine if the mouse button has been pressed. An
event is sent to the object responsible for the portion of
the screen at th'e location where the mouse button was
pressed. This object is called a View. Then, at function
block 1720 the Interactor is created to parse the input 45
syntax. This is done by calling the CreateInteractor
method of the view. When the Interactor is created,
pointers to objects that implement possible user actions
are passed as parameters.

For the purposes of this discussion, assume the user 50
pressed the mouse button down on an object that can be
selected and moved. In this case, an object that imple-
ments selection and an object that implements move-
ment for the target object are passed as parameters to
the Interactiir. The initial View could implement both 55
of these behaviors, or they could be implemented by
one or two separate objects. The object or objects are
ttferred to collectively as the Interactablei

The Interactor is started at function block 1730. This
processing returns the Interactor to the View and com- 60
*stances processing of the Interactor. This is accom-
plished by calling the Interactor's Start method and
passing the initial mouse event as a parameter. The Start
method saves the initial mouse event in field flnitialE
vent. Since only one mouse event has been processed 65
thus far, the only action possible is selecting. The In-
teractor enters select mode by setting variable finterac-
tionType to constant kSelect. It asks the Interactable to

32
begin the selection operation by calling its SelectBegin
method.

Then, the Interactor waits for a short time to pass as
shown in function block 1740. A new mouse event is
sent lo the Interactor when the time is up which indi-
cates the current state of the mouse. Then, if the system
detects that the mouse is still down at decision block
1750, control is passed to function block 1740. Other-
wise, control is passed to terminal 1760. If the mouse
button is still down, the interactor makes sure it is still in
the correct state and asks the lnteractable to implement
the correct operation. The Interactor is Selecting if
fInteractionType is kSelecting. It is Moving if the fln-
teractionType is kMoving.

If selecting, the Interactor compares the current
mouse location with the initial mouse location. The
current mouse location in obtained by calling the Get-
CurrentLocation method. The initial mouse location is
obtained by calling the GetInitialLocation method. If
the two are the.same or differ by only a small amount,
the user is still selecting the object. The Interactor then
asks the Interactable to continue the selection operation
by calling its SelectRepeat method. However, if the
two points differ beyond a predetermined threshold, the
user has begun moving the object. In this case, the In-
teractor asks the Interactable to terminate the selection
operation by calling its SelectEnd method. It then asks
the Interactable to begin the move operation by callings
its MoveBegin method. In each case, the current mouse
location is passed as an argument. If Moving, the In-
teractor asks the Interactable to continue the move
operation by calling its MoveRepeat method. It passes
the current mouse location as an argument.

When the user releases the mouse button, it signals
the end of the current operation. If Selecting, the In-
teractor asks the Interactable to terminate the selection
operation by calling its SelectEnd method. If moving,
the Interactors asks the Interactable to terminate the
move operation by calling its MoveEnd method.

LOCALIZED PRESENTATIONS
Localization is the process of updating an application

to conform to unique requirements of a specific locale.
It may involve language translation, graphic substitu-
tion, and interface element reorientation. For example,
the text used in labels, titles, and messages depends upon
the selected language. Its direction and orientation may
affect the placement and orientation of a menu, menu-
bar, title, scrollbar, or toolbar. Similarly, the selection
of icons and other graphical symbols may be culturally
dependent. Unfortunately, having many localized ver-
sions of user interface elements in memory is very ex-
pensive. Instead, localized versions of user'interface
elements are kept on disk until required in memory.

Further, it is very error-prone and expensive to keep
track of all of the user interface elements and decide
which version to use. Instead, when a user interface
element is required, the appropriate one is selected auto-
matically by the system, according to the current lan-
guage and other cultural parameters, and read into
memory.

Once localized, user interface elements are stored in a
disk dictionary. A disk dictionary is an object that,
when given a key, returns a value after reading it in
from disk. This disk dictionary is managed by an object
called an archive. An archive is responsible for putting
together the individual user interface elements that
make up a particular presentation. The process of se-

AppDe10000194

5,3
33

lecting the proper user interface element is presented in
FIG. 19.

Processing commences at terminal 1900 and immedi-
ately passes to function block 1910 when a user requests
a presentation. A TOpenPresentation Command is sent
to the data model, indicating that the user wants to view
or edit this data. A command is sent to the data model
to indicate that the user wants to view or edit this data.
This command is called a TOpenPresentationCom-
mend. A presentation is a set of user interface elements
that, together, allow the user to view or edit some data.
Presentations are stored across sessions in User Inter-
face object, thus maintaining continuity for the user.
User interface elements are stored on disk until needed
in memory. They may be required as part of a data
presentation the user has requested, or they may be
needed for translation or another localization process.
Each user interface element contains an ID which
uniquety references that eiement. However, all local-
ized versions of the same user interface element share a
single ID.

In order to differentiate the loc.alized versions, the
particular language, writing direction, and other cul-
tural parameters are stored with each localized user
interface element. Together, these parameters are re-
ferred to as the locale. All of the user interface elements
are stored in a file. This file is organized like a dictio-
nary, with one or more key/value pairs. The key is an
object which combines the ID and the locale. The value
is the user interface element itself.

A new presentation must be created next at function
block 1910. If an appropriate presentation does not
already exist, a new one must be created from a tem-
plate by the user interface Archive. A new presentation
is created from a template stored in the archive by call-
ing its CreatePresentation method. A presentation type
is passed to this method as a parameter. This type in-
cludes such information as the type of data to be dis-
played, whether it is to be in its own window or part of
another presentation, and so on. Finally, at function
block 1930, an Archive builds the presentation, select-
ing user interface elements according to locale. If the
Archive is able to build a presentation of the specified
type, it oallects together each user interface element
that makes up the presentation and returns this to the
user interface object.

For each presentation the archive is able to make, it
has a list of user interface element IDs that together
make up the presentation. The user interface elements
are stored on disk maintained by a disk dictionary ob-
ject called. Given a key, the disk dictionary will return
the corresponding user interface element. The user
interface element ID makes up the primary component
of this key. A secondary component of the key is the
desired locale. A locale is an object that specifies the
natural language and other cultural attributes of the
user. The locale obtained automatically by the Archive
from a Preferences Server. This server contains all of
the individual preferences associated with the user.

The locale, as obtained from the preferences server, is
combined with the ID into a single object called a
TUserInterfaceElernentKey. This key passed as a pa-
rameter to the GetValue method of the disk dictionary.
If a user interface element with a matching ID and
locale is found, it is returned and included as part of the
presentation. Otherwise, the locale parameter must be
omitted from the key, or another locale must be speci-
fied until an appropriate user interface element is found.

AppDe10000 195

15,703
34

INTERACTION FRAMEWORK SYSTEM

Users of an object oriented operating system's graphi-
cal user interface often move a mouse, click on objects

5 to select them, drag objects to move or copy then, and
double-click to open an object. These operations are
called direct manipulations, or interactions. The se-
quence of events corresponding to a UM' pressing, mov-
ing, and releasing the mouse is called the input syntax.

10 Certain sequences of events are used to indicate particu-
lar actions, called semantic operations. This invention
discloses the method and apparatus for translating input
syntax into semantic operations for an object that sup-
ports Select, Peek, Move, AutoScroll, and Drag/Drop

15 (Copy).
The invention detects a mouse button depression and

then employs the following logic:
If an Option key was depressed when the user

pressed the mouse button, the system enters drag mode
20 by setting variable fInteractionType to constant kDrag.

The system then commences a drag operation using the
selected object as the target of the operation; or

if the Option key was not depressed, then the
system enters selection mode by setting variable fin-

25 teractionType to constant kSelect. Then, the select
operation is commenced.

If a user already had the mouse button depresses and
continues to hold the mouse button down, then the
following logic is engaged. If the system is in select

30 mode, then the system first determines whether the user
has moved the mouse beyond a certain threshold, called
the move threshold. This is done by comparing the
initial mouse location, returned by the GetlnitialLoca-
tion method, with the current mouse location, returned

35 by the GetCurrentLocation method. If the mouse has
moved beyond the move threshold, the system ends
select mode and enters move mode. It does this by
setting variable fInteractionType to constant kMove.
The system then queries the object to terminate the

40 select operation by calling its SelectEnd method. The
system then initiates a move operation by calling its
MoveBegin method.

Othenvise, if the mouse has not moved, the system
checks how long the mouse has been down. It does this

45 by comparing the initial mouse down time, returned by
the GetInitialTime method, with the current time, re-
turned by the GetCurrentTime method. If the mouse
has been dovvn beyond a certain threshold, called the
peek threshold, the system ends select mode and enters

so peek mode. It does this by setting variable fInteraction-
Type to cons-tant kPeek. It asks the object to end the
select operation by callings its SelectEnd method, and
begins a peek operation by calling its PeekBegin

' method. Otherwise, if the mouse has not moved, or it
55 has not been down beyond the peek threshold, the sys-

tem continues the select operation by calling the ob-
ject's SelectRepeat method. If the system detects that a
user is in Move mode, the system first determines
whether the user has moved the mouse within the win-

60 dow, on the border of the window, or outside the win-
dow. It does this by comparing the current :Douse loca-
tion, returned by the GetCurrentLocationMethod, with
the bounds of the object's container, returned by Get-
ContainerBounds.

65 If the mouse is still within the bounds of the window,
the system continues the move operation by calling the
object's MoveRepeat method. If the mouse is on the
border of the window, this indicates an AutoScroll

5,315,703
35

operation. The system asks the object's container to
scroll in the direction indicated by the mouse location.
This is done by calling the container's AutoScroll
method and passing the current mouse location as a
parameter. Once complete, the system continues the 5
move opemtion by calling the object's MoveRepeat
method.

If the mouse has moved outside the window, the
system ends move mode and enters drag mode. It does
this by setting Variable fInteractionType to constant 10
kDrag. It asks the object to end the move operadon by
calling its MoveEnd method. It asks the object to begin
the drag operstion by calling its DragBegin method. If
the system is in drag mode, the system continues the
drag operation by calling the object's DragRepeat 15
method. If the system is in peek mode, the sYStern rust
determines whether the user has moved the mouse be-
yond a certain threshold, caned the move threshold.
This is done by comparing the initial mouse location,
returned by the GetInitialLocation method, with the 20
current mouse location, returned by the GetCurrentLo-
cation method.

If the mouse has moved beyond the move threshold,
the system ends peek mode and enters move mode. It
does this by setting variable finteractionType to con- 25
stant kMove. h asks the object to end the peek opera-
tion by calling its PeekEnd method. It asks the object to
begin the move operation by calling its MoveBegin
method. Otherwise, if the mouse has not moved, the
system continues the peek operation by calling the ob. 30
ject's PeekRepeat method.

If the system detects that a user releases the mouse
button, then if the system is in select mode, the system
ends select mode. It does this by setting variable fln-
teractionType to constant kNone. The system queries 35
the object to end the select opemtion by calling its
SelectEnd method. If the system is in move mode, the
system ends move mode. It does this by setting variable
fInteractionType to constant kNone. Then, the system
queries the object to end the move operation by calling 40
its Moveend method and ends drag mode by setting
variable fInteractionType to constant kNone. It asks the
object to end the drag operation by calling its DragEnd
method. If the system is in peek mode, the system ends
peek mode. It does this by setting variable fInteraction- 45
Type to constant kNone. It asks the object to end the
peek operation by calling its PeekEnd method.

Accordingly, it is a primary objective of the present
invention to provide an innovative hardware and soft-
ware system which enables the contenta of a window to 50
update dynamically as a user moves a scrollbar thumb.
The system detects when a user presses dovni on a
scrollbar thumb. When the user presses down on the
scrollbar thumb, the system begins initiation of a scroll
command tà change the portion of the data that is ex- 55
posed in the window. A command is an object that
implements an end-user action, such as scrolling. A
scroll command has one parameter, the position to
which the content view should be scrolled. The system
sets this position to the current scroll position. This is 60
accomplished by calling the command's SetScrollPosi-
non and setting the scroll to position to the value re-
turned by the scrollbar's method GetScrollPosition.

When a user moves the mouse within the scrollbar,
the system continues the execution of the scroll com- 65
mend so dynamically change the portion of the data
exposed in the window. The system sets the scroll posi-
tion of the command to the new scroll position. This is

36
accomplished by calling the command's SetScrollPosi-
lion and setting the value equal so the value returned by
the scrollbar's method GetScrollPosition. The execu-
tion of the command is then repeated by calling its
DoRepeat method. This causes the content view to
scroll to the new position. This processing is continued
while a user continues to hold the raouse button down.

When a user raleases the mouse button, the system
ends the execution of the scroll command to dynanti-
cally change the portion of the data exposed in the
window. The system sets the scroll position of the com-
mand to the final scroll position. This processing is
accomplished by calling the command's SetScrollPosi-
Uon and settmg It equal to the value returned by the
scrollbar's method GetScrollPosition.

FIG. 20 is a flowchart illustrating the detailed logic
associated with scrolling in accordance with the subject
mvention. Processing commences as terminal block
2000 and immediately passes to function block 2010
where the current scrol/ position is initialized based on
the current cursor location. Then, at decision block
2020, a test is performed to detect if the scrollbar thumb
has been selected. An example of a scrollbar thumb is
shown in FIG. 21A at label 2110. If the scrollbar thumb
has been selected, then control passes to decision block
2030 to determine if the scrollbar thumb has been
moved. If so, then the scroll position is set to the new
position of the scrollbar thumb and the display is refor-
matted to reflect the immediate scroll operation and
displayed for the user. If the scrollbar thumb has not
moved, another test is performed at decision block 2050
to determine if the scrollbar thumb has been released. If
nos, then control is returned .to decision block 2030. If
the scrollbar thumb has been released, then control
passes to function block 2060 to end the scroll operation
and return the system tos non-scroll operational status
and processing is completed at terminal 2070.

FIGS. 21A, 21B and 21C illustrate window scrolling
in accordance with the subject invention. In FIG. 21A,
the scrollbar thumb 2110 is located at the top of the
window 2112. FIG. 21B shows the scrollbar thumb
2120 moved to the middle of the window and the win-
dow's contents 2122 updated accordingly. FIG. 21C
shows the scrollbar thumb 2240 moved to the bottom of
the window and the bottom most portion of the win-
dow 2142 displayed.

While the invention has been described in terms of a
preferred embodiment in a specific system environment,
those skilled in the art recognize that the invention can
be practiced, with modification, in other and different
hardware and software environments within the spirit
and scope of the appended claims.

Having thus described our invention, what we claim
as new, and desire to secure by Letters Patent is:

1. An object-oriented notification framework system,
comprising:

means for connecting a plurality of objects to a
notification source;
memory means for storing connection information

for the plurality of objects in a connection object of
an object-onented operatutg system;

means for registering connection information,
including registration information indicative of a
notification status, in the connection object of the
object-oriented operating system;
means for selectively dispatching notification to at

least one of the plurality of objects based on the

AppDe10000196

37
registration information stored in the connection
object of the object-oriented system; and

(e) means for the at least one of the plurality of ob-
jects to receive the notification and take action
based on the notification.
A system as recited in claim 1, including processor

means for notifying a plurality of objects.
A system as recited in claim 1, including processor

means for changing a color of an object as an action
based on the notification.

A system as recited in claim 1, including processor
means for highlighting an object as an action based on
the notification.

A system as recited in claim 1, including processor
means for reverse videoing an object as an action based
on the notification.

A system as recited in claim 1, including processor
means for removing an object as an action based on the
notification.

A system as recited in claim 1, including processor
means for opening a window associated with an object
as an action based on the notification.

A method for implementing an object-oriented
notification framework system, comprising the steps of:

connecting a plurality of objects to a notification
source;
storing connection information for the plurality of

objects in a connection object of an Object-oriented
operating system;

5,315,703
38

registering connection information, including re-
gistration information indicative of a notification
status, in the connection object of the object-ori-
ented operating system;

5 (d) selectively dispatching notification to at least one
of the plurality of objects based on the connection
registration information stored in the connection
object of the object-oriented operating system; and

(e) receiving the notification by the at least one of the
10 plurality of objects and taking action based on the

notification.
A method as recited in claim 8, including the step

of notifying a plurality of objects.
A method as recited in claim 8, including the step

15 of changing a color of an object as an action based on
the notification.

A method as recited in claim 11, including the step
of highlighting an object as an action based on the noti-
fication.

20 12. A method as recited in claim 8, including the step
of reverse videoing an object as an action based on the
notification.

A method as recited in claim 8, including the step
of removing an object as an action based on the notifica-

25 don.
A method as recited in claim 8, including the step

of opening a window associated with an object as an
action based on the notification.

30

35

40

45

50

55

60

65

AppDe100001 97

