
EXHIBIT 150 PART 3

Standard Specification for Copper and Copper-Alloy Seamless Condenser Tubes and Ferrule Stock¹

This standard is issued under the fixed designation B 111; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense. Replaces WW-T-756. Consult the DoD Index of Specifications and Standards for the specific year of issue which has been adopted by the Department of Defense.

1. Scope

1.1 This specification² covers seamless tube and ferrule stock of copper and various copper alloys up to 3½ in., inclusive, in diameter, for use in surface condensers, evaporators, and heat exchangers. Tubes for this application are normally made from the following coppers or copper alloys:³

_		.0 11
Copper or		
Copper	Previously	
Alloy	Used	
UNS No.	Designation	Type of Metal
C10100	OFE	Oxygen-free electronic
C10200	OF.4	Oxygen-free without residual deoxidants
C10300		Oxygen-free, extra low phosphorus
C10800		Oxygen-free, low phosphorus
C12000	DLP.4	Phosphorized, low residual phosphorus
C12200	DHP^{A}	Phosphorized, high residual phosphorus
C14200	DPA-4	Phosphorized, arsenical
C19200		Phosphorized, 1 % iron
C23000		Red Brass
C28000		Muntz Metal
C44300		Admiralty Metals, B, C, and D
C44400		
C44500		
C60800		Aluminum Bronze
C61300		•••
C61400		Aluminum Bronze, D
C68700		Aluminum Brass, B
C70400		95-5 Copper-Nickel
C70600		90-10 Copper-Nickel
C71000		80-20 Copper-Nicket
C71500		70-30 Copper-Nickel
C71640		Copper-nickel-iron-manganese
C72200		

^A Designations listed in Classification B 224.

Note 1—A complete metric companion to Specification B 111 has been developed—B 111M; therefore, no metric equivalents are presented in this specification.

NOTE 2—Warning: Mercury is a definite health hazard in use and disposal. (See 12.1.)

1.2 The following safety hazards caveat pertains only to the test methods portion, Section 18, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
 - 2.1.1 ASTM Standards:
 - B 153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing⁴
 - B 154 Test Method for Mercurous Nitrate Test for Copper and Copper Allovs⁴
 - B 170 Specification for Oxygen-Free Electrolytic Copper—Refinery Shapes⁴
 - B 224 Classification of Coppers⁴
 - E 8 Test Methods for Tension Testing of Metallic Materials⁵
 - E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications⁶
- E 53 Test Methods for Chemical Analysis of Copper⁷
- E 54 Test Methods for Chemical Analysis of Special Brasses and Bronzes⁷
- E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition⁷
- E 62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods)⁷
- E 75 Test Methods for Chemical Analysis of Copper-Nickel and Copper-Nickel-Zinc Alloys?
- E 112 Test Methods for Determining Average Grain Size⁵
- E 243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes⁸
- E 478 Test Methods for Chemical Analysis of Copper Alloys⁷
- E 527 Practice for Numbering Metals and Alloys (UNS)9

3. Terminology

3.1 Definitions:

 $^{^1}$ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.04 on Pipe and Tube.

Current edition approved June 15, 1995. Published August 1995. Originally published as B 111 - 37 T. Last previous edition B 111 - 93.

²For ASME Boiler and Pressure Vessel Code applications, see related Specification SB-111 in Section II of the Code.

³ The UNS system for copper and copper alloys (see Practice E 527) is a simple expansion of the former standard designation system accomplished by the addition of a prefix "C" and a suffix "00." The suffix can be used to accommodate composition variations of the base alloy.

⁴ Annual Book of ASTM Standards, Vol 02.01.

⁵ Annual Book of ASTM Standards, Vol. 03.01.

⁶ Annual Book of ASTM Standards, Vol 14.02.

⁷ Annual Book of ASTM Standards, Vol 03.05.

Annual Book of ASTM Standards, Vol 03.03.
 Annual Book of ASTM Standards, Vol 01.01.

TABLE 1 Chemical Requirements

					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		mour recquis					
Copper							Composition,	%				
or Cop- per Alloy UNS No.	Copper ⁴	. Tin	Alumi- num	Nickel, incl Co- balt	Lead, max	iron	Zinc	Man- ganese	Arsenic	Anti- mony	Phos Ch phorus mi	
C10100	99.99 min ^B				.0.0010		0.0001 max				0.0003 max	
C10200°	99,95 min		٠				* • •					
C10300	99.95 min ^E						* * *				0.0010.005	
C10800	99.95 min#	Constitution and a second	mi con asmed s	genterary	11.						0.005-0.012	
C12000	99.90 min	The Committee of the Co	Sant Control Section (Section)	المراجعة ا المراجعة المراجعة ا							0.004-0.012	
C12200	99.9 min	1 24 17 19									0.015-0.040	
C14200	99.40 min								0.15-0.50		0.015-0.040	
C19200	98.7 min	5 1 Sept. 30	30 . 			0.8-1.2					0.01-0.04	
C23000	84.0-86.0			40 1 to 12	0.05	0.05 max	remainder		312.2		فالأخري والمؤر المعلو	
C28000	59.0-63.0				0.30	0.07 max	remainder		* * *			
C44300	70.0-73.0	0.9 - 1.2			0.07	0.06 max	remainder		0.02-0.06			* * * * *
C44400	70.0-73.0	0.9-1.2			0.07	0.06 max	remainder			0.02-0.10		
C44500	70.0-73.0	0.9-1.2			0.07	0.06 max	remainder				0.02-0.10	ja om era er
C60800	remainder		5.0-6.5		0.10	0.10 max		*	0.02-0.35			
C61300	remainder	0.20-0.50	6.0~7.5	0.15 max	0.01	2.0-3.0	0.10 max	0.20 max	***		0.015 max	F,G
C61400	remainder	***	6.0-8.0		-0.01	1.5-3.5	0.20 max	1.0 max			·	4 N. 1944
C68700	76.0-79.0		1.8-2.5	,,,	0.07	0.06 max	remainder		0.02-0.10		4.4.4.	1. 45 127 40
C70400	remainder			4.8 - 6.2	0.05	1.3-1.7	1.0 max	0.30 - 0.8				
C70600	remainder			9.0-11.0	0.05^{H}	1.0-1.8	1.0 max ^H	1.0 max			Н	H
C71000	remainder	2 4 4 2 2		19.0-23.0	0.05 ^H	0.50~1.0	1.0 max ^H	1.0 max			н	н,
C71500	remainder			29.0-33.0	0.05H	0.40-1.0	1.0 max ^H	1.0 max			Н	H
C71640	remainder			29.0-32.0	0.05H	1.7-2.3	1.0 max ^H	1.5 - 2.5			н	
C72200	remainder			15.0-18.0	0.05 ^H	0.50-1.0	1.0 max ^H	1.0 max	****		н 0.30-	0.70
~~~~~~~~~~~		*****										

A Copper (including silver).

^B This value is exclusive of silver and shall be determined by difference of "impurity total" from 100 %. "Impurity total" is defined as the sum of sulfur, silver, lead, tin, bismuth, arsenic, antimony, iron, nickel, mercury, zinc, phosphorus, selenium, tellurium, manganese, cadmium, and oxygen present in the sample.

Impurity maximums in ppm for C10100 shall be: antimony 4, arsenic 5, bismuth 1, cadmium 1, iron 10, lead 5, manganese 0.5, mercury 1, nickel 10, oxygen 5, phosphorus 3, selenium 3, silver 25, sulfur 15, tellurium 2, tin 2, and zinc 1.

Oxygen in C10200 shall be 10 ppm max.

# Copper plus sum of named elements shall be 99.95 % min

F Silicon shall be 0.10 % max.

^G When the product is for subsequent welding applications and is so specified by the purchaser, chromium shall be 0.05 % max, cadmium 0.05 % max, zinc 0.05 % max, and zirconium 0.05 % max.

HWhen the product is for subsequent welding applications, and so specified by the purchaser, zinc shall be 0.50 % max, lead 0.02 % max, phosphorus 0.02 % max, sulfur 0.02 % max, and carbon 0.05 % max.

3.1.1 *lengths*—straight pieces of the product.

3.1.1.1 specific—straight lengths that are uniform in length, as specified, and subject to established length tolerances.

3.1.2 tube, seamless—a tube produced with a continuous periphery in all stages of the operations.

3.1.2.1 tube, condenser—See tube, heat exchanger.

3.1.2.2 tube, ferrule—a tube from which metal rings or collars (ferrules) are made for use in installing condenser tubes.

3.1.2.3 tube, heat exchanger—a tube manufactured to special requirements as to dimensional tolerances, finish, and temper for use in condensers and other heat exchangers.

3.2 Description of Term Specific to This Standard:

3.2.1 capable of—the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

#### 4. Ordering Information

- 4.1 Orders for material under this specification shall include the following information:
- 4.1.1 Quantity of each size (number of pieces and number of feet).
  - 4.1.2 Material (Section 1),
  - 4.1.3 Form (tube or ferrule stock),
  - 4.1.4 Temper (Section 7),

- 4.1.5 Whether tension test is required (Section 7).
- 4.1.6 Whether a pressure test is to be used instead of the eddy current test (see 13.1),
- 4.1.7 Dimensions, the diameter, wall thickness, whether minimum or nominal wall, and length (see Section 14).
- 4.1.8 Whether cut ends of the tube are to be deburred (see 15.1),
- 4.1.9 If the product is to be subsequently welded (see Table 1 and Footnote E).
  - 4.1.10 Specification number and year of issue,
  - 4.1.11 Certification, if required (see 22.1), and
  - 4.1.12 Mill test report, if required (see 24.1).
- 4.2 When material is purchased for agencies of the U. S. Government, this shall be specified in the contract or purchase order, and the material shall conform to the Supplementary Requirements as defined herein.

#### 5. Materials and Manufacture

5.1 The material shall be of such quality and purity that the finished product shall have the properties and characteristics prescribed in this specification, and shall be cold worked to the specified size.

#### 6. Chemical Composition

- 6.1 The material shall conform to the chemical requirements specified in Table 1.
- 6.2 These specification limits do not preclude the pres-

TABLE 2 Tensile Requirements

Connector Commun Allers LibiC big	Tempe	r Designation	Tensile	Yield	Elongation is	
Copper or Copper Alloy UNS No.	Standard	Former	Strength, min ksi	Strength, since min ksince	2 in., min %	
C10100, C10200, C10300, C10800, C12000, C12200, C14200	H55	light-drawn	36 ∵ .	30	innewsold.	
C10100, C10200, C10300, C10800, C12000, C12200, C14200	H80	hard-drawn	45	40	· · F(K)	
C19200	H55	light-drawn	40	35	4 9 4	
C19200 489	H80 . 000000	hard-drawn	48	43		
C19200 (1)	· O61	annealed	38	12		
C23000 1	O61	annealed	40	12	***	
C28000 ·	O61	annealed	50	20		
C44300, C44400, C44500	O61	annealed	45	15	1.1	
C60800 ***	O61	annealed	50	. 19	* • •	
C61300, C61400	O61	annealed	70	30	***	
C68700	Q61	annealed	50	18	• • • •	
C70400 ,"	O61	annealed	38	12		
C70400	H55	light-drawn	40	30		
C70600	O61	annealed	40	15		
C70600 11 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	H55	light-drawn ( ; )	45	8.50 1 ( <b>35</b> )		
C71000 (V	O61	annealed	45	18	***	
C71500	O61	annealed . * * * * * * * * * * * * * * * * * *	52	18		
C71500:		the second second				
Wall thicknesses up to 0.048 in., incl	HR50	drawn, stress-relieved	72	50	12	
Wall thicknesses over 0.048 in.	HR50	drawn, stress-relieved	72	50	15	
C71640	O61	annealed	63	25		
C71640	HR50	drawn, stress relieved	81		45 BOOK	
C72200	O61	annealed	45	16	***	
C72200	H55	light-drawn	50			

 $^{^{}A}$  ksi = 1000 psi.

ence of other elements. Limits for unnamed elements may be established by agreement between manufacturer or supplier and purchaser.

6.2.1 Copper Alloy UNS No. C19200—Copper may be taken as the difference between the sum of all the elements analyzed and 100 %. When all the elements in Table 1 are analyzed, their sum shall be 99.8 % minimum.

6.2.2 For copper alloys in which copper is specified as the remainder, copper may be taken as the difference between the sum of all the elements analyzed and 100 %.

6.2.2.1 When all the elements in Table 1 are analyzed, their sum shall be as shown in the following table.

Copper Alloy UNS No.				er Plus I nents, %	
C60800			5.5	99.5	3 . 3
C61300	- "	1.0		99.8	3.37,
C61400	27	2 23		99.5	
C70400		1 1786	k+	99.5	100
C70600		A 51 8 AV		99.5	a
C71000				99.5	
C71500				99.5	
C71640				99.5	
C72200				99.8	

6.2.3 For copper alloys in which zinc is specified as the remainder, either copper or zinc may be taken as the difference between the sum of all the elements analyzed and 100 %.

6.2.3.1 When all the elements in Table I are analyzed, their sum shall be as shown in the following table.

Copper Alloy UNS No.	Copper Plus Named Elements, % min				
C23000	99.8				
C28000	99.7				
C44300	99.6				
C44400	99.6				
C44500	99.6				
C68700	99.5				

#### 7. Temper

7.1 Tubes of Copper Alloy UNS Nos. C23000, C28000, C44300, C44400, C44500, C60800, C61300, C61400, C68700, and C71000 shall be furnished in the annealed (O) temper unless otherwise specified on the purchase order.

7.2 Tubes of Copper Alloy UNS Nos. C71500 and C71640 shall be supplied in one of the following tempers as specified: (1) annealed (O) or (2) drawn, stress-relieved (HR50).

7.3 Tubes of Copper Alloy UNS Nos. C10100, C10200, C10300, C10800, C12000, C12200, and C14200 shall be supplied in any one of the following tempers, one of which shall be specified: (1) light-drawn (H55), (2) hard-drawn (H80), or (3) hard-drawn, end-annealed.

7.4 Tubes of Copper Alloy UNS No. C19200 shall be supplied in any one of the following tempers, one of which shall be specified: (1) annealed (O), (2) light-drawn (H55), (3) hard-drawn (H80), or (4) hard-drawn, end-annealed.

7.5 Tubes of Copper Alloy UNS Nos. C70400, C70600, and C72200 may be supplied in either light-drawn (H55) or annealed (O) temper.

7.6 Tubes for ferrule stock shall be annealed sufficiently to be fully recrystallized.

Note 2—Some tubes, when subjected to aggressive environments, may be subjected to stress-corrosion cracking failure because of the residual tensile stresses developed in straightening. For such applications, it is suggested that tubes of Copper Alloy UNS Nos. C23000, C28000, C44300, C44400, C44500, C60800, C61300, C61400, and C68700 be subjected to a stress-relieving thermal treatment subsequent to straightening. If required, this must be specified on the purchase order or contract. Tolerances for roundness and length, and the condition of straightness, for tube so ordered, shall be to the requirements agreed upon between the manufacturer and the purchaser.

⁸ At 0.5 % extension under load.

Company of the Compan	Temper Designation			per or Copper		Expansion of Tube Outside Di- ameter, in Percent
Standard	7) Forme	r (32		lloy UNS No.		of Original Out- side Diameter
O61	annealed		C19200:	*11 /		30
			C23000			20
	6Pt	\$7.4	C28000	170.0		15
9.1	<b>#</b> R.		C44300, C44400, C4450	00' ""		20
	Đ.,		C60800	- V		20
	ĝ.	N. (*)	C61300, C61400	1.50		20
	1.4	/ Y***	C68700			20
		53	C70400		**************************************	30
		A 1	C70600			30
4.6	5.3		C71000	57.		30
	\$		C71500	1 11		30
4	3.5	* 3	C71640	100		30
	* 9		C72200	1		30
4			0.220	*		
H55	light-drawn	5	C10100, C10200, C1030	00. C10800, C120	000, C12200	20
1100	110112-01-04411	*,	C14200			20
			C19200		0	20
• •			C70400			20
f.,	4		C70600		* and the second	20
		4.35	C72200			20
4			G1 2200			20
LUDEO	dua	llas sa al	C71500			20
HR50	drawn, stress re	neved	C71500	114		20
2.5			C71640	00 040000 040	200 010000 014000	30
	hard-drawn, end	annealed	C10100, C10200, C1030	Ju, C10800, C120	JUU, C12200, C14200	30

#### 8. Mechanical Properties

8.1 Material specified to meet the requirements of the ASME Boiler and Pressure Vessel Code shall have tensile properties as prescribed in Table 2.

#### 9. Microscopical Examination

9.1 Samples of annealed-temper tubes selected for test shall be subjected to microscopical examination at a magnification of 75 diameters and shall show uniform and complete recrystallization. Materials other than Copper Alloy UNS Nos. C19200 and C28000 shall have an average grain size within the limits of 0.010 to 0.045 mm. These requirements do not apply to tubes of light-drawn (H55), hard-drawn (H80), hard-drawn, end-annealed, or drawn, stress-relieved tempers (HR50).

#### 10. Expansion Test

10.1 Tube specimens selected for test shall withstand the expansion shown in Table 3 when expanded in accordance with Test Method B 153. The expanded tube shall show no cracking or rupture visible to the unaided eye.

NOTE 3—The term "unaided eye" as used herein permits the use of corrective spectacles necessary to obtain normal vision.

10.2 Hard-drawn tubes not end-annealed are not subject to this test. When tubes are specified end-annealed, this test

is required and shall be made on the annealed ends.

10.3 Tubes for ferrule stock are not subject to the expansion test.

#### 11. Flattening Test

11.1 Test specimens at least 18 in. in length in the annealed condition shall be flattened on different elements throughout the lengths remaining after specimens for the expansion and metallographic tests have been taken. Each element shall be slowly flattened by one stroke of a press. The term "flattened" shall be interpreted as follows: a micrometer caliper set at three times the wall thickness shall pass over the tube freely throughout the flattened part except at the points where the change in element of flattening takes place. The flattened elements shall not show cracking or rupture clearly visible to the unaided eye (Note 3). When tubes are specified in a temper other than annealed this test is required but shall be made on annealed specimens.

11.2 Tubes for ferrule stock are not subject to flattening

#### 12. Mercurous Nitrate Test

12.1 Warning—Mercury is a definite health hazard and therefore equipment for the detection and removal of mercury vapor produced in volatilization is recommended.

TABLE 4 Notch Depth

****	Tube	Tube Outside Diameter, in.						
Tube Wall Thickness, in.	Over 1/4 to 3/4, incl	Over ¾ to 1¼, incl	Over 11/4 to 31/8, incl					
Over 0.017-0.032	0.005	0.006	0.007					
incl 0.032-0.049	0.006	0.006	0.0075					
incl 0.049-0.083	0.007	0.0075	800.0					
Incl 0.0830.109	0.0075	0.0085	0.0095					
Incl 0.109-0.120	0.009	0.009	0.011					

TABLE 5 Diameter of Drilled Holes

Tube Outside Diameter, in.	Diarneter of Drilled Holes, in.	Drill No.
1/4-3/4, incl	0.025	72
Over 3/4-1, incl	0.031	68
Over 1-11/4, incl	0.036	64
Over 11/4~11/2, Incl	0.042	58
Over 11/2-15/4, incl	0.046	56
Over 13/4-2, incl	0.052	55

The use of rubber gloves in testing is advisable.

regressing a property of the second of the s

12.2 The test specimens, cut 6 in. in length, shall withstand without cracking, an immersion in the standard mercurous nitrate solution prescribed in Test Method B 154. The test specimen shall include the finished tube end. The mercurous nitrate test is required only for Copper Alloy UNS Nos. C23000, C28000, C44300, C44400, C44500, C60800, C61300, C61400, and C68700.

#### 13. Nondestructive Testing

13.1 Each tube shall be subjected to the eddy-current test in 13.1.1. Tubes may be tested in the final drawn, annealed, or heat-treated temper or in the drawn temper prior to the final anneal or heat treatment unless otherwise agreed upon by the supplier and the purchaser. The purchaser may specify either of the tests in 13.1.2 or 13.1.3 as an alternative to the eddy-current test.

13.1.1 Eddy-Current Test-Each tube shall be passed through an eddy-current testing unit adjusted to provide information on the suitability of the tube for the intended application. Testing shall follow the procedures of Practice

13,1.1.1 The depth of the round-bottom transverse notches and the diameters of the drilled holes in the calibrating tube used to adjust the sensitivity of the test unit are shown in Tables 4 and 5, respectively.

13.1.1.2 Tubes that do not actuate the signaling device of the eddy-current tester shall be considered to conform to the requirements of this test. Tubes causing irrelevant signals because of moisture, soil, and like effects may be reconditioned and retested. Such tubes, when retested to the original test parameters, shall be considered to conform if they do not cause output signals beyond the acceptable limits. Tubes causing irrelevant signals because of visible and identifiable handling marks may be retested by the hydrostatic test prescribed in 13.1.2, or the pneumatic test prescribed in 13.1.3. Tubes meeting requirements of either test shall be considered to conform if the tube dimensions are within the prescribed limits, unless otherwise agreed upon between the manufacturer and the purchaser.

13.1.2 Hydrostatic Test-Each tube shall stand, without showing evidence of leakage, an internal hydrostatic pressure sufficient to subject the material to a fiber stress of 7000 psi, determined by the following equation for thin hollow cylinders under tension. The tube need not be tested at a hydrostatic pressure of over 1000 psi unless so specified.

where:

P = hydrostatic pressure, psig,

t =thickness of tube wall, in..

D =outside diameter of the tube, in., and

S = allowable stress of the material, psi.

13.1.3 Pneumatic Test-Each tube shall be subjected to an internal air pressure of 60 psig, min, for 5 s without showing evidence of leakage. The test method used shall permit easy visual detection of any leakage, such as by having the tube under water or by the pressure differential method. Any evidence of leakage shall be cause for rejection.

#### 14. Dimensions and Permissible Variations

14.1 Diameter—The outside of the tubes shall not vary from that specified by more than the amounts shown in Table 6 as measured by "go" and "no-go" ring gages. 14.2 Wall Thickness Tolerances:

14.2.1 Tubes Ordered to Minimum Wall-No tube wall at its thinnest point shall be less than the specified wall thickness. The maximum plus deviation from the specified wall at any point shall not exceed twice the values shown in Table 7.

14.2.2 Tubes Ordered to Nominal Wall—The maximum plus and minus deviation from the nominal wall at any point shall not exceed the values shown in Table 7.

14.3 Length—The length of the tubes shall not be less than that specified when measured at a temperature of 20°C, but may exceed the specified value by the amounts given in Table 8.

14.4 Squareness of Cut—The departure from squareness of the end of the tube shall not exceed the following:

> 33-8-1-21-24 Tube, Outside Diameter, in. Tolerance Up to %, incl 0.010 in. 0.016 in./in. of diameter

14.5 For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the specified limiting values for any dimensions may be cause for rejection.

#### 15. Workmanship, Finish, and Appearance

15.1 Roundness, straightness, uniformity of the wall thickness, and inner and outer surface of the tube shall be such as to make it suitable for the intended application. Unless otherwise specified on the purchase order, the cut

			TABLE	6 Diamete	r Tolerances		
.,					Wall Thickness, in.	*	in the second second second second
:1	Outside Diameter, in.		0.020 ⁴ 0.022 0.025 0.028	0.032	0.035	0.042	0.049 and Over
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	,		Diarneter Tolerance, Plus and N	linus, in.	Minimum and the second of the
	Up to 0.500, incl		0.003	0.0025	0.0025	0.0025	0.0025
	Over 0.500-0.740, incl		0.0040	0.004	0.004	0.0035	0.003
	Over 0.740-1.000, incl		0.0060	0.006	0.005	0.0045	0.004
	Over 1.000-1.250, incl			0.009	0.008	0.006	0.0045
	Over 1.250-1.375, incl		and the second second			0.008	0.005
	Over 1.375-2.000; incl:	-	the Armen State of		Service Control (Control (Cont		0.006

A Tolerances in this column are applicable to light drawn and drawn tempers only. Tolerances for annealed tempers shall be as agreed upon between the manufacturer and the purchaser.

TABLE 7 Wall Thickness Tolerances, Plus and Minus in.

	Outs	ide Diameter, in	
Wall Thickness, in.	Over 1/s to 5/s, incl	Over % to	Over 1 to 2, incl
0.020, incl to 0.032	0.003	0.003	Maria de la
0.032, incl to 0.035	0.003	0.003	0.004
0.035, incl to 0.058	0.004	0.0045	0.0045
0.058, incl to 0.083	0.0045	0.005	0.005
0.083, incl to 0.120	0.005	0.0065	0.0065
30.0.120, incl to 0.134	<b>0.007</b> , no.1.30.	0.007	0.0075
9 00 00 00 00 00 00 00 00 00 00 00 00 00	and a second contract	S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Anana

ends of the tubes shall be deburred by use of a rotating wire wheel or other suitable tool.

15.2 Annealed-temper or stress-relieved tubes shall be clean and smooth but may have a superficial, dull iridescent film on both the inside and the outside surface. Drawn-temper tubes shall be clean and smooth, but may have a superficial film of drawing lubricant on the surfaces.

#### 16. Sampling

- 16.1 Sampling—The lot size, portion size, and selection of sample pieces shall be as follows:
- 16.1.1 Lot Size—600 tubes or 10 000 lb or fraction of either, whichever constitutes the greater weight.
- 16.1.2 Portion Size—Sample pieces from two individual lengths of finished product.
- 16.2 Samples taken for the purpose of the tests prescribed in the specification shall be selected in a manner that will represent correctly the material furnished and avoid needless destruction of finished material when samples representative of the material are available from other sources.

#### 17. Number of Tests and Retests

17.1 Chemical Analysis—Samples for chemical analysis shall be taken in accordance with Practice E 55. Drillings, millings, etc., shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 16.1.2 and combined into one composite sample. The minimum weight of the composite sample that is to be divided into three equal parts shall be 150 g.

17.1.1 Instead of sampling in accordance with Practice E 55, the manufacturer shall have the option of determining conformance to chemical composition as follows: Conformance shall be determined by the manufacturer by analyzing samples taken at the time the castings are poured or samples taken from the semi-finished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product. The number of samples

TABLE 8 Length Tolerances

 Specified Length, ft	Tolerance, all Plus, in.
 Up to 15	3/32
Over 15-20, incl	1/8
Over 20-30, incl	5/32
Over 30-60, incl	3/8
Over 60-100, incl ^A	1/2

^A Condenser tubes in lengths over 100 ft are not in present demand. Tolerance values for the lengths will be developed as experience dictates. Tolerance values for lengths in wall thicknesses of 0.020, incl. to 0.032 shall be as agreed upon between the manufacturer or supplier and the purchaser.

taken for determination of chemical composition shall be as follows:

- 17.1.1.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.
- 17.1.1.2 When samples are taken from the semi-finished product, a sample shall be taken to represent each 10 000 lb or fraction thereof, except that not more than one sample shall be required per piece.
- 17.1.1.3 Due to the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific casting analysis with a specific quantity of finished material.
- 17.1.1.4 In the event that heat identification or traceability is required, the purchaser shall specify the details desired.
- 17.2 Other Tests—For tests specified in Sections 8 to 12 inclusive, specimens shall be taken from each of the pieces selected in accordance with 16.1.2.
- 17.3 If any test specimen representing a lot fails to conform to the requirements of Sections 6, 7, 8, 9, 10, 11, and 12, two additional specimens, at the option of the manufacturer, may be taken as before, and submitted for check analysis or subjected to any tests in which the original specimen failed, but each of these specimens shall conform to the requirements specified.

#### 18. Test Methods

18.1 The properties and chemical compositions enumerated in this specification shall, in case of disagreement, be determined in accordance with the following ASTM methods:

ASTM Designation					
B 170,4 E 53, E 54, E 62, E 75, E	478				
E 112					
B 153	. **				
B 154					
E 8	1. 1				
E 243					
	E 112 B 153 B 154 E 8				

- A Reference to Specification B 170 is to the suggested chemical methods in the annex thereof. When E-1 Committee has tested and published methods for assaying the low-level impurities in copper, the Specification B 170 annex will be eliminated.
- 18.2 The surface of the test specimen for microscopical examination shall approximate a radial longitudinal section of the tube.
- 18.3 Tubes selected for test shall be subjected to the tension test which shall, in case of disagreement, be made in accordance with Test Methods E 8. Tension test specimen shall be of the full section of the tube and shall conform to the requirements of the section, Specimens for Pipe and Tube, of Test Methods E 8, unless the limitations of the testing machine preclude the use of such a specimen. Test specimens conforming to Type No. 1 of Fig. 13, Tension Test Specimens for Large-Diameter Tubular Products, of Test Methods E 8, may be used when a full section specimen cannot be tested.
- 18.4 Whenever tension test results are obtained from both full size and from machined specimens and they differ, the results obtained from full-size test specimens shall be used to

determine conformance to the specification requirements.

18.5 Tension test results on material covered by this specification are not seriously affected by variations in speed of testing. A considerable range of testing speed is permissible; however, the range of stressing to the yield strength should not exceed 100 ksi/min. Above the yield strength the movement per minute of the testing machine head under load should not exceed 0.5 in./in. of gage length (or distance between grips for full-section specimens).

#### 19. Significance of Numerical Limits

19.1 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E 29:

Property

Chemical composition
Tensile strength
Yield strength
Elongation

or Calculated Value
nearest unit in the last right-hand place of figures
nearest ksi, for over 10 to 100 ksi, incl
nearest 1 %
nearest multiple of 0.005 mm

Rounded Unit for Observed

#### 20. Inspection

20.1 The manufacturer shall inspect and make necessary tests to verify that the tubes furnished conform to the requirements of this specification.

20.2 If in addition the purchaser elects to perform his own inspection, the manufacturer shall afford the inspector all reasonable facilities to satisfy him that the tubes are being furnished in accordance with this specification. All tests (except check analysis) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere with the operation of the works. When automated finishing and inspection equipment is available at a facility, purchaser and supplier may by mutual agreement accomplish the final inspection simultaneously.

#### 21. Rejection and Rehearing

21.1 Material that fails to conform to the requirements of this specification when inspected or tested by the purchaser or his agent may be rejected. Rejection should be reported to the manufacturer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the manufacturer or supplier may make claim for a rehearing.

#### 22. Certification

22.1 When specified on the purchase order the manufacturer shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification and has met the requirements. When material is specified to meet the requirements of ASME Boiler and Pressure Vessel Code, the certification requirements are mandatory.

#### 23. Packaging and Package Marking

- 23.1 The material shall be separated by size, composition, and temper, and prepared for shipment in such a manner as to ensure acceptance by common carrier for transportation and to afford protection from the normal hazards of transportation.
- 23.2 Each shipping unit shall be legibly marked with the purchase order number, metal or alloy designation, temper, size, shape, total length or piece count, or both, and name of supplier. The specification number shall be shown, when specified.

#### 24. Mill Test Report

24.1 When specified on the purchase order, the manufacturer shall furnish to the purchaser a test report showing results of tests required by the specification.

#### 25. Keywords

25.1 condenser tube; copper; copper alloys; evaporator; ferrule stock; heat exchanger; seamless tube

#### SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

#### S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

\$1.1.1 Federal Standards: 10

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.2 Military Standard: 10

MIL-STD-129 Marking for Shipment and Storage

MIL-C-3993 Packaging of Copper and Copper-Base Alloy Mill Products

#### S2. Quality Assurance

S2.1 Responsibility for Inspection:

S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material

S1.1.3 Military Specification:¹⁰

¹⁰ Available from Standardization Documents Order Desk, Bidg. 4, Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, Atm: NPODS.

conforms to prescribed requirements.

#### S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used.

## S4. Preparation for Delivery

STATE OF STREET

S4.1 Preservation, Packaging, Packing:

S4.1.1 Military Agencies—The material shall be separated by size, composition, grade or class and shall be preserved

and packaged, Level A or C, packed Level A, B, or C as specified in the contract or purchase order, in accordance with the requirements of MIL-C-3993.

S4.1.2 Civil Agencies—The requirements of Fed. Std. No.102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

S4.2.1 Military Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.2.2 Civil Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

#### APPENDIX

(Nonmandatory Information)

#### X1. DENSITY OF COPPER AND COPPER ALLOYS

X1.1 The densities of the alloys covered by this specification are given in Table X1.1.

TABLE X1.1. Densities

Copper or Copper Alloy UN	IS No.	Density, lb/in.3	
C10100, C10200, C10300, C1080	00, C12000,	0.323	
C12200, C14200			
C19200		0.320	
C23000		0.316	
C28000	1.7	0.303	
C44300, C44400, C44500		0.308	
C60800		0.295	
C61300, C61400	the state of the state of	0.285	
C68700	*4	0.301	
C70400		0.323	
C70600		0.323	
C71000	7	0.323	
C71500		0.323	
C71640		0.323	
C72200		0.323	

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 1916 Race St., Philadelphia, PA 19103.

# Standard Specification for Copper and Copper-Alloy Seamless Condenser Tubes and Ferrule Stock [Metric]¹

This standard is issued under the fixed designation B 111M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense. Consult the DoD Index of Specifications and Standards for the specific year of issue which has been adopted by the Department of Defense.

#### 1. Scope

11000

1.1 This specification² covers seamless tube and ferrule stock of copper and various copper alloys up to 79 mm, inclusive, in diameter, for use in surface condensers, evaporators, and heat exchangers. Tubes for this application are normally made from the following coppers or copper alloys:

•		0
Copper or Copper Alloy UNS No.3	Previously Used Designation	Type of Metal
C10100	OFE	Oxygen-free electronic
C10200	OF _A	Oxygen-free without residual deoxidants
C10300		Oxygen-free, extra low phosphorus
C10800	***	Oxygen-free, low phosphorus
C12000	$DLP^A$	Phosphorized, low residual phosphorus
C12200	$DHP^{A}$	Phosphorized, high residual phosphorus
C14200	DPA.	Phosphorized, arsenical
C19200	* 2 +	Phosphorized, 1 % iron
C23000		Red Brass
C28000		Muntz Metal
C44300		Admiralty Metals, B, C, and D
C44400		
C44500		***
C60800	11444	Aluminum Bronze
C61300		
C61400		Aluminum Bronze, D
C68700	•••	Aluminum Brass, B
C70400		95-5 Copper-Nickel
C70600	***	90-10 Copper-Nickel
C71000		80-20 Copper-Nickel
C71500		70-30 Copper-Nickel
C71640		Copper-nickel-iron-manganese
C72200		***

A Designations listed in Classification B 224.

safety and health practices and determine the applicability of regulatory limitations prior to use.

#### 2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
  - 2.1.1 ASTM Standards:
  - B 153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing⁴
  - B 154 Method for Mercurous Nitrate Test for Copper and Copper Alloys⁴
  - B 170 Specification for Oxygen-Free Electrolytic Copper—Refinery Shapes⁴
  - B 224 Classification of Coppers⁴
  - E 8 Test Methods for Tension Testing of Metallic Materials⁵
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications⁶
- E 53 Methods for Chemical Analysis of Copper⁷
- E 54 Test Methods for Chemical Analysis of Special Brasses and Bronzes⁷
- E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition⁷
- E 62 Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods)⁷
- E 75 Test Methods for Chemical Analysis of Copper-Nickel and Copper-Nickel-Zinc Alloys⁷
- E 112 Test Methods for Determining Average Grain Size⁵
- E 243 Practice for Electromagnetic (Eddy-Current) Examination of Copper and Copper-Alloy Tubes⁸
- E 478 Test Methods for Chemical Analysis of Copper Alloys⁷
- E 527 Practice for Numbering Metals and Alloys (UNS)⁹

#### 3. Terminology

- 3.1 Definitions:
- 3.1.1 lengths—straight pieces of the product.
- 3.1.1.1 specific-straight lengths that are uniform in

NOTE 1—This specification is the metric companion to Specification B 111.

NOTE 2—Warning: Mercury is a definite health hazard in use and disposal. (See 12.1.)

^{1.2} The following safety hazards caveat pertains only to the test methods portion, Section 18, of this specification: This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate

¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05,04 on Pipe and Tube.

Current edition approved Jan. 15, 1992. Published March 1992. Originally published as B 111M - 83. Last previous edition B 111M - 92.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SB-111 in Section 11 of the code.

Fig. 3 The UNS system for copper and copper alloys (see Practice E 527) is a simple expansion of the former standard designation system accomplished by the addition of a prefix "C" and a suffix "00." The suffix can be used to accommodate composition variations of the base alloy.

⁴ Annual Book of ASTM Standards, Vol 02.01.

⁵ Annual Book of ASTM Standards, Vol 03.01.

⁶ Annual Book of ASTM Standards, Vol 14.02.

⁷ Annual Book of ASTM Standards, Vol 03.05.

⁸ Annual Book of ASTM Standards, Vol 03.03. ⁹ Annual Book of ASTM Standards, Vol 01.01.

collars (ferrules) are made for use in installing condenser tubes.

3.1.2 *lengths*—straight pieces of the product.

3.1.2.1 specific—straight lengths that are uniform in length, as specified, and subject to established length tolerances.

3.2 Description of Term Specific to This Standard:

3.2.1 capable of—the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

#### 4. Ordering Information

4.1 Orders for material under this specification shall include the following information:

4.1.1 Quantity of each size (number of pieces and number of metres),

4.1.2 Material (Section 1),

4.1.3 Form (tube or ferrule stock),

4.1.4 Temper (Section 7),

4.1.5 Whether tension test is required (Section 7),

4.1.6 Whether a pressure test is to be used instead of the eddy-current test (see 13.1),

4.1.7 Dimensions, the diameter, wall thickness, whether minimum or nominal wall, and length (see Section 14),

4.1.8 Whether cut ends of the tube are to be deburred (see 15.1).

4.1.9 If the product is to be subsequently welded (see Table 1 and Footnote H),

4.1.10 Specification number and year of issue,

4.1.11 Certification, if required (see 22.1), and

4.1.12 Mill test report, if required (see 24.1).

4.2 When material is purchased for agencies of the U. S. Government, this shall be specified in the contract or purchase order, and the material shall conform to the Supplementary Requirements as defined herein.

#### 5. Materials and Manufacture

5.1 The material shall be of such quality and purity that the finished product shall have the properties and characteristics prescribed in this specification, and shall be cold worked to the specified size.

#### 6. Chemical Composition

6.1 The material shall conform to the chemical requirements specified in Table 1.

6.2 These specification limits do not preclude the presence of other elements. Limits for unnamed elements may be established by agreement between manufacturer or supplier and purchaser.

6.2.1 Copper Alloy UNS No. C19200—Copper may be taken as the difference between the sum of all the elements

**TABLE 1 Chemical Requirements** 

Copper or				•			Compositio	n, %		4 - 1			
Copper Alloy UNS No.	T	Tîn	Aluminum	Nickel, incl Cobalt	Lead, max	Iron	Zinc	Manganese	Arsenic	Antimony	Phosphorus	Chromium	Other Named Elements
C10100	99.99 min ⁸	4 + +			0.0010	- 4 7	0.0001 max				0.0003 max		C
C10200P	99.95 min												
C10300	99.95 min [£]										0.001~0.005		
C10800	99.95 min#		4.20	1.25	127						0.005-0.012		
C12000	99.90 min			***			* * *				0.004-0.012		
C12200	99.9 min									*,* *	0.015-0.040	***	4 * *
C14200	99,40 min			***	* * * .				0.15~0.50		0.0150.040		
C19200	98.7 min					0.8-1.2					0.01-0.04		
C23000	84.0-86.0				0.05	0.05 max	remainder						
C28000	59.0-63.0		,		0.30	0.07 max	remainder				1		```
C44300	70.0-73.0	0.9-1.2			0.07	0.06 max	remainder		0.02-0.06			***,	
C44400	70.0-73.0	0.9-1.2	1.1.		0.07	0.06 max	remainder			0.02-0.10		11V	***
C44500	70.0~73.0	0.9~1.2			0.07	0.06 max	remainder		***		0.02-0.10	,	
C60800	remainder		5.0-6.5		0.10	0.10 max			0.02-0.35				
C61300	remainder	0.20~0.50	6.0-7.5	0.15 max	0.01	2.0-3.0	0.10 max	0.20 max			0.015 max		F,G
C61400	remainder		6.0-8.0		0.01	1.5-3.5	0.20 max	1.0 max		الرام وفعفر		,	
C68700	76.0-79.0		1.8-2.5		0.07	0.06 max	remainder		0.02-0.10				
C70400	remainder			4.8-6.2	0.05	1.3–1.7	1.0 max	0.30-0.8			1.		
C70600	remainder		7.7.4	9.0-11.0	,0.05 ^H	1.0-1.8	1.0 max [⊬]	1.0 max		1.00	- 1 × , a	***	Н.
C71000	remainder			19.0-23.0	$0.05^{H}$	0.50-1.0	1.0 max#	1.0 max	1.5.7			***	H
C71500	remainder			29.0-33.0	0.05 ^H	0.40-1.0	1.0 max ^H	1.0 max	• • •				
C71640	remainder			29.0~32.0	0.05 ^H	1.7-2.3	1.0 max ^H	1.5 - 2.5					, H
C72200	remainder			15.0-18.0	0.05#	0.501.0	1.0 max ^H	1.0 max	* * *			0.30-0.70	н

A Copper (including silver).

[®] This value is exclusive of silver and shall be determined by difference of "impurity total" from 100 %. "Impurity total" Is defined as the sum of silver, lead, tin, bismuth, arsenic, antimony, iron, nickel, mercury, zinc, phosphorus, selenium, tellurium, manganese, cadmium, and oxygen present in the sample.

c Impurity maximums in ppm for C101000 shall be: antimony 4, arsenic 5, bismuth 1, cadmium 1, iron 10, lead 5, manganese 0.5, mercury 1, nickel 10, oxygen 5, phosphorus 3, selenium 3, silver 25, sulfur 15, tellurium 2, tin 2, and zinc 1.

^D Oxygen in C10200 shall be 10 ppm max.

E Copper plus sum of named elements shall be 99.95 % min.

F Silicon shall be 0.10 % max.

^Q When the product is for subsequent welding applications and is so specified by the purchaser, chromium shall be 0.05 % max, cadmium 0.05 % max, zinc 0.05 % max, and zirconium 0.05 % max.

"When the product is for subsequent welding applications, and so specified by the purchaser, zinc shall be 0.50 % max, lead 0.02 % max, phosphorus 0.02 % max, sulfur 0.02 % max, and carbon 0.05 % max.

analyzed and 100 %. When all the elements in Table 1 are analyzed, their sum shall be 99.8 % minimum.

- 6.2.2 For copper alloys in which copper is specified as the remainder, copper may be taken as the difference between the sum of all the elements analyzed and 100 %.
- 6.2.2.1 When all the elements in Table 1 are analyzed, their sum shall be as shown in the following table.

Copper Alloy UNS No.	1 27.19	Copper Plus Named Elements, % min.
C60800	1	99.5
C61300		99.8
C61400	and the second second	99.5
C70400		99.5
C70600		99.5
C71000	the state of the s	7.99.5
C71500	and the stage of	99.5
C71640		99.5
C72200	٠, ,	99.8

- 6.2.3 For copper alloys in which zinc is specified as the remainder, either copper or zinc may be taken as the difference between the sum of all the elements analyzed and 100 %.
- 6.2.3.1 When all the elements in Table 1 are analyzed, their sum shall be as shown in the following table.

Copper Alloy UNS No.	· ·			Copper Plus Named Elements, % min
C23000				99.8
C28000	1			<b>9</b> 9.7
C44300	:			99.6
C44400				99.6
C44500				99.6
C68700				99.5

#### 7. Temper

7.1 Tubes of Copper Alloy UNS Nos. C23000, C28000, C44300, C44400, C44500, C60800, C61300, C61400,

C68700, and C71000 shall be furnished in the annealed (O) temper unless otherwise specified on the purchase order.

7.2 Tubes of Copper Alloy UNS Nos. C71500 and C71640 shall be supplied in one of the following tempers as specified: (1) annealed (O) or (2) drawn, stress-relieved (HR 50)

7.3 Tubes of Copper Alloy UNS Nos. C10100, C10200, C10300, C10800, C12000, C12200, and C14200 shall be supplied in any one of the following tempers, one of which shall be specified: (1) light-drawn (H55), (2) hard-drawn (H80), or (3) hard-drawn, end-annealed.

7.4 Tubes of Copper Alloy UNS No. C19200 shall be supplied in any one of the following tempers, one of which shall be specified: (1) annealed (0), (2) light-drawn (H55), (3) hard-drawn (H80), or (4) hard-drawn, end-annealed.

7.5 Tubes of Copper Alloy UNS Nos. C70400, C70600, and C72200 may be supplied in either light-drawn (H55) or annealed (O) temper.

7.6 Tubes for ferrule stock shall be annealed sufficiently to be fully recrystallized.

Note 2—Some tubes, when subjected to aggressive environments, may be subjected to stress-corrosion cracking failure because of the residual tensile stresses developed in straightening. For such applications, it is suggested that tubes of Copper Alloy UNS Nos. C23000, C28000, C44300, C44400, C44500, C60800, C61300, C61400, and C68700 be subjected to a stress-relieving thermal treatment subsequent to straightening. If required, this must be specified on the purchase order or contract. Tolerances for roundness and length, and the condition of streightness, for tube so ordered, shall be to the requirements agreed upon between the manufacturer and the purchaser.

#### 8. Mechanical Properties

8.1 Material specified to meet the requirements of the ASME Boiler and Pressure Vessel Code shall have tensile properties as prescribed in Table 2.

TABLE 2 Tensile Requirements

Copper or Copper Alloy UNS No.	Tem	per Designation	Tensile Strength, min	Yield Strength, ⁴ min	Elongation in 50	
	Standard	Former	MPa	MPa .	mm, min, %	
C10100, C10200, C10300, C10800, C12000,	H55	light-drawn	250	205		
C12200, C14200		**			A CONTRACTOR OF THE SAME	
C10100, C10200, C10300, C10800, C12000,"	H80	hard-drawn	310	275	and a second of the	
C12200, C14200		And the second second		1.2		
C19200	H55	light-drawn	275	240		
C19200	H80	hard-drawn	330	295		
C19200	O61	annealed	260	85		
C23000	O61	annealed	275	85		
C28000	O61	annealed	345	140		
C44300, C44400, C44500	O61	annealed	310	105	1.1.1	
C60800	O61 ···	annealed	345	130	1 * 1	
C61300, C61400	O61	annealed	480	205	***	
C68700	O61	annealed	345	125	117	
C70400	Ö61	annealed	260	85	•••	
C70400	H55	light-drawn	275	205		
C70600	O61	annealed	275	105	Control of the Control of	
C70600	H55	light-drawn	310	240		
C71000	O61	annealed	310	110	***	
C71500	061	annealed	360	125	* * *	
C71500:		di il lecilera	550	120	***	
Wall thicknesses up to 1.21 mm, incl	LIDEO	denius strang ratio ad	495	345	12	
	HR50	drawn, stress-relieved		and the same of th	15	
Wall thicknesses over 1.21 mm	HR50	drawn, stress-relieved	495	345		
C71640	O61	annealed	435	170	the state of the s	
C71640	HR50	drawn, stress-relieved	560	400		
C72200	O61	annealed	310	110	ing the grade was a series	
C72200	H55	flight-drawn	345	310		

A At 0.5 % extension under load.

#### 9. Microscopical Examination

9.1 Samples of annealed-temper tubes selected for test shall be subjected to microscopical examination at a magnification of 75 diameters and shall show uniform and complete recrystallization. Materials other than Copper Alloy UNS Nos. C19200 and C28000 shall have an average grain size within the limits of 0.010 to 0.045 mm. These requirements do not apply to tubes of light-drawn (H55), hard-drawn (H80), hard-drawn, end-annealed, or drawn, stress-relieved tempers (HR50).

#### 10. Expansion Test

10.1 Tube specimens selected for test shall withstand the expansion shown in Table 2 when expanded in accordance with Test Method B 153. The expanded tube shall show no cracking or rupture visible to the unaided eye.

NOTE 3—The term "unaided eye" as used herein permits the use of corrective spectacles necessary to obtain normal vision.

10.2 Hard-drawn tubes not end-annealed are not subject to this test. When tubes are specified end-annealed, this test is required and shall be made on the annealed ends.

10.3 Tubes for ferrule stock are not subject to the expansion test.

#### 11. Flattening Test

11.1 Test specimens at least 450 mm in length in the annealed condition shall be flattened on different elements throughout the lengths remaining after specimens for the expansion and metallographic tests have been taken. Each element shall be slowly flattened by one stroke of a press. The term "flattened" shall be interpreted as follows: a micrometer caliper set at three times the wall thickness shall

TABLE 3 Expansion Requirements

	Temper Designation		Expansion of Tube Outside
	\$ 1000 1	Copper or Copper Alloy UNS	Diameter,
		No.	in Percent
Stand	ard Former		of Original
Juni	ald Tollies		Outside
	S		Diameter
O61	annealed	C19200	30
		C23000	20
	3.5-	C28000	15
	3 - 1	C44300, C44400, C44500	20
	A.77	C60800	20
		C61300, C61400	20
		C68700	20
	4 V	C70400	30
	** *** Z.	C70600	30
		C71000	30
	* *	C71500	30
	# 5	C71640	30
	W + 2	C72200	30
H55	light-drawn		20
		C10800, C12000, C12200	20
		C14200	20
	V - 2	C19200	20
		C70400	20
		C70600	20
	311	C72200 🔩 ⊱	200
HR50	, drawn, stress-relieved	C71500	20
	· ·	C71640	20
	hard-drawn, end-an-	C10100, C10200, C10300,	30
	nealed	C10800, C12000, C12200,	
	en a	C14200	

pass over the tube freely throughout the flattened part except at the points where the change in element of flattening takes place. The flattened elements shall not show cracking or rupture clearly visible to the unaided eye (Note 4). When tubes are specified in a temper other than annealed this test is required but shall be made on annealed specimens.

11.2 Tubes for ferrule stock are not subject to flattening test.

#### 12. Mercurous Nitrate Test

12.1 Warning—Mercury is a definite health hazard and therefore equipment for the detection and removal of mercury vapor produced in volatilization is recommended. The use of rubber gloves in testing is advisable.

12.2 The test specimens, cut 150 mm in length, shall withstand without cracking, an immersion in the standard mercurous nitrate solution prescribed in Test Method B 154. The test specimen shall include the finished tube end. The mercurous nitrate test is required only for Copper Alloy UNS Nos. C23000, C28000, C44300, C44400, C44500, C60800, C61300, C61400, and C68700.

#### 13. Nondestructive Testing

13.1 Each tube shall be subjected to the eddy-current test in 13.1.1. Tubes may be tested in the final drawn, annealed, or heat-treated temper or in the drawn temper prior to the final anneal or heat treatment unless otherwise agreed upon by the supplier and the purchaser. The purchaser may specify either of the tests in 13.1.2 or 13.1.3 as an alternative to the eddy-current test.

13.1.1 Eddy-Current Test—Each tube shall be passed through an eddy-current testing unit adjusted to provide information on the suitability of the tube for the intended application. Testing shall follow the procedures of Practice F 243

13.1.1.1 The depth of the round-bottom transverse notches and the diameters of the drilled holes in the calibrating tube used to adjust the sensitivity of the test unit are shown in Tables 7 and 8 respectively. The notch depth

TABLE 4 Notch Depth

Tube Wall Thickness.		Tube Outside Diameter, mm				
	mm	Over 6 to 19, incl	Over 19 to 32, incl	Over 32 to 79, incl		
Τ	Over 0.43-0.81	0.13	0.15	0.18		
	Incl 0.81-1.3†	0.15	0.15	0.19		
	Incl 1.3-2.1	0.18	0.19	0.20		
	Incl 2.1-2.8	0.19	0.22	0.24		
خىپىد	Incl 2.8-3.0	0.23	0.23	0.28		

† Editorially corrected.

TABLE 5 Diameter of Drilled Holes

Tube Outside Diameter	Diameter of Drilled Holes	Drill No.
mm	mm ,	
6.0-19.0, incl	0.635	72
Over 19.0-25.4, incl	0.785	68
Over 25.4-31.8, incl	0.915	64
Over 31.8-38.1, incl	1.07	58
Over 38.1-44.4, incl	1.17	56
Over 44.4-50.8, incl	1.32	55 -

shall not vary from the prescribed by more than  $\pm 0.015$  mm when measured at the center of the notch, and the diameter of the drilled hole shall not vary by more than  $\pm 0.025$ ,  $\pm 0.005$  mm of the hole diameter specified.

13.1.1.2 Tubes that do not actuate the signaling device of the eddy-current tester shall be considered to conform to the requirements of this test. Tubes causing irrelevant signals because of moisture, soil, and like effects may be reconditioned and retested. Such tubes, when retested to the original test parameters, shall be considered to conform if they do not cause output signals beyond the acceptable limits. Tubes causing irrelevant signals because of visible and identifiable handling marks may be retested by the hydrostatic test precribed in 13.1.2, or the pneumatic test prescribed in 13.1.3. Tubes meeting requirements of either test shall be considered to conform if the tube dimensions are within the prescribed limits, unless otherwise agreed upon between the manufacturer and the purchaser.

13.1.2 Hydrostatic Test—Each tube shall stand, without showing evidence of leakage, an internal hydrostatic pressure sufficient to subject the material to a fiber stress of 48 MPa, determined by the following equation for thin hollow cylinders under tension. The tube need not be tested at a hydrostatic pressure of over 6.9 MPa unless so specified.

$$P = 2St/(D - 0.8t)$$

where:

P = hydrostatic pressure, MPa,

t =thickness of tube wall, mm,

D =outside diameter of the tube, mm, and

S = allowable stress of the material, MPa.

13.1.3 Pneumatic Test—Each tube shall be subjected to an internal air pressure of 400 kPa, min, for 5 s without showing evidence of leakage. The test method used shall permit easy visual detection of any leakage, such as by having the tube under water or by the pressure differential method. Any evidence of leakage shall be cause for rejection.

#### 14. Dimensions and Permissible Variations

14.1 Diameter—The outside of the tubes shall not vary from that specified by more than the amounts shown in Table 6 as measured by "go" and "no-go" ring gages.

14.2 Wall Thickness Tolerances:

14.2.1 Tubes Ordered to Minimum Wall—No tube wall at its thinnest point shall be less than the specified wall thickness. The maximum plus deviation from the specified wall at any point shall not exceed twice the values shown in Table 7.

TABLE 6 Diameter Tolerances

4		Wat	l Thickness,	mm · ·	.,			
Outside Diameter, mm	0.508 ^A 0.559 0.635 0.711	0.813	0.589	1.07	1.24 and Over			
	Diameter Tolerance, Plus and Minus, mm							
Up to 12, incl	0.076	0.064	0.064	0.064	0.064			
Over 12-18, incl	0.10	0.10	0.10	0.089	0.076			
Over 18-25, incl	0.15	0.15	0.13	0.11	0.10			
Over 25-35, incl				0.20	0.13			
Over 35-50, incl					0.15			

A Tolerances in this column are applicable to light drawn and drawn tempers only. Tolerances for annealed tempers shall be as agreed upon between the manufacturer and the purchaser.

TABLE 7 Wall Thickness Tolerances, Plus and Minus, mm

Wall Thickness, mm	Outside Diameter, mm				
wan mickness, inn	Over 12 to 25, incl	Over 25 to 50, incl			
0.506, incl to 0.813†	0.076	11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
- 0.813, incl to 0.889-	0.076	0.10			
0.889, incl to 1.47	0.11	0.11			
1.47, incl to 2.11	0.13	0.13			
2.11, incl to 3.05	0.17	0.17			
3.05, incl to 3.40	0.18	0.19			

+ Editorially corrected.

14.2.2 Tubes Ordered to Nominal Wall—The maximum plus and minus deviation from the nominal wall at any point shall not exceed the values shown in Table 7.

14.3 Length—The length of the tubes shall not be less than that specified when measured at a temperature of 20°C, but may exceed the specified value by the amounts given in Table 8.

14.4 Squareness of Cut—The departure from squareness of the end of the tube shall not exceed the following:

Tube, Outside		
Diameter, mm		Tolerance
Up to 15.9, incl		0.25 mm
Over 15.9	1 1 1 1 1 1 1	0.016 mm/mm of diamete

14.5 For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the specified limiting values for any dimension may be cause for rejection.

#### 15. Workmanship, Finish, and Appearance

15.1 Roundness, straightness, uniformity of the wall thickness, and inner and outer surface of the tube shall be such as to make it suitable for the intended application. Unless otherwise specified on the purchase order, the cut ends of the tubes shall be deburred by use of a rotating wire wheel or other suitable tool.

15.2 Annealed-temper or stress-relieved tubes shall be clean and smooth but may have a superficial, dull iridescent film on both the inside and the outside surface. Drawn-temper tubes shall be clean and smooth, but may have a superficial film of drawing lubricant on the surfaces.

#### 16. Sampling

16.1 Sampling—The lot size, portion size, and selection of sample pieces shall be as follows:

16.1.1 Lot Size—600 tubes or 4550 kg or fraction of either, whichever constitutes the greater weight.

TABLE 8 Length Tolerances

Specified Length, mm	Tolerance, all Plus, mm
Up to 4500 Over 4500-6000, incl	
Over 6000-10 000, incl	4.0
Over 10 000–18 000, incl Over 18 000–30 000, incl ⁴	(* 100) (* 27 10) (* 25 10) (* 37 10) (* 37 10) 13

^A Condenser tubes in lengths over 30 000 mm are not in present demand. Tolerance values for the lengths will be developed as experience dictates. Tolerance values for lengths in wall thicknesses of 0.508, inclusive to 0.813 shall be as agreed upon between the manufacturer or supplier and the purchaser.

16.1.2 Portion Size—Sample pieces from two individual lengths of finished product.

16.2 Samples taken for the purpose of the tests prescribed in the specification shall be selected in a manner that will represent correctly the material furnished and avoid needless destruction of finished material when samples representative of the material are available from other sources.

#### 17. Number of Tests and Retests

17.1 Chemical Analysis—Samples for chemical analysis shall be taken in accordance with Practice E 55. Drillings, millings, etc., shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 16.1.2 and combined into one composite sample. The minimum weight of the composite sample that is to be divided into three equal parts shall be 150 g.

17.1.1 Instead of sampling in accordance with Practice E 55, the manufacturer shall have the option of determining conformance to chemical composition as follows: Conformance shall be determined by the manufacturer by analyzing samples taken at the time the castings are poured or samples taken from the semifinished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product. The number of samples taken for determination of chemical composition shall be as follows:

17.1.1.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.

17.1.1.2 When samples are taken from the semi-finished product, a sample shall be taken to represent each 4550 kg or fraction thereof, except that not more than one sample shall be required per piece.

17.1.1.3 Due to the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific casting analysis with a specific quantity of finished material.

17.1.1.4 In the event that heat identification or trace-ability is required, the purchaser shall specify the details desired.

17.2 Other Tests—For tests specified in Sections 8 to 12 inclusive, specimens shall be taken from each of the pieces selected in accordance with 16.1.2.

17.3 If any test specimen representing a lot fails to conform to the requirements of Sections 6, 7, 8, 9, 10, 11, and 12, two additional specimens, at the option of the manufacturer, may be taken as before, and submitted for check analysis or subjected to any tests in which the original specimen failed, but each of these specimens shall conform to the requirements specified.

#### 18. Test Methods

18.1 The properties and chemical compositions enumerated in this specification shall, in case of disagreement, be determined in accordance with the following ASTM

methods:

Test	ASTM Designation						
Chemical analysis	E 53, E 54, E 62, E 75, E 478						
Grain size	E 112						
Expansion (pin test)	B 153						
Mercurous nitrate	B 154						
Tension	E8						
Nondestructive test	E 243						

18.2 The surface of the test specimen for microscopical examination shall approximate a radial longitudinal section of the tube.

18.3 Tubes selected for test shall be subjected to the tension test which shall, in case of disagreement, be made in accordance with Test Methods E 8. The tension test specimen shall be of the full section of the tube and shall conform to the requirements of the section, Specimens for Pipe and Tube, of Test Methods E 8, unless the limitations of the testing machine preclude the use of such a specimen. Test specimens conforming to Type No. 1 of Fig. 13, Tension Test Specimens for Large-Diameter Tubular Products, of Test Methods E 8 may be used when a full-section specimen cannot be tested.

18.4 Whenever tension test results are obtained from both full-size and from machined specimens and they differ, the results obtained from full-size test specimens shall be used to determine conformance to the specification requirements.

18.5 Tension test results on material covered by this specification are not seriously affected by variations in speed of testing. A considerable range of testing speed is permissible; however, the range of stressing to the yield strength should not exceed 690 MPa/min. Above the yield strength the movement per minute of the testing machine head under load should not exceed 0.5 mm/mm of gage length (or distance between grips for full-section specimens).

#### 19. Significance of Numerical Limits

19.1 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E 29:

1-177 1-0-01----1

Property	or Calculated Value
Chemical composition Tensile strength Yield strength	nearest unit in the last right-hand place of figures nearest 5 MPa
Elongation Grain size	nearest 1 % nearest multiple of 0.005 mm

#### 20. Inspection

20.1 The manufacturer shall inspect and make necessary tests to verify that the tubes furnished conform to the requirements of this specification.

20.2 If in addition the purchaser elects to perform his own inspection, the manufacturer shall afford the inspector all reasonable facilities to satisfy him that the tubes are being furnished in accordance with this specification. All tests (except check analysis) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise

specified, and shall be so conducted as not to interfere with the operation of the works. When automated finishing and inspection equipment is available at a facility, purchaser and supplier may by mutual agreement accomplish the final inspection simultaneously.

#### 21. Rejection and Rehearing

21.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the manufacturer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the manufacturer or supplier may make claim for a rehearing.

#### 22. Certification

22.1 When specified on the purchase order the manufacturer shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification and has met the requirements. When material is specified to meet the requirements of

ASME Boiler and Pressure Vessel Code, the certification requirements are mandatory.

#### 23. Packaging and Package Marking

23.1 The material shall be separated by size, composition, and temper, and prepared for shipment in such a manner as to ensure acceptance by common carrier for transportation and to afford protection from the normal hazards of transportation.

23.2 Each shipping unit shall be legibly marked with the purchase order number, metal or alloy designation, temper, size, shape, total length or piece count, or both, and name of supplier. The specification number shall be shown, when specified.

#### 24. Mill Test Report

24.1 When specified on the purchase order, the manufacturer shall furnish to the purchaser a test report showing results of tests required by the specification.

#### SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U. S. Government.

#### S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels¹⁰

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)¹⁰

Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products¹⁰

S1.1.2 Military Standard:

MIL-STD-129 Marking for Shipment and Storage 10

S1.1.3 Military Specification: 10

MIL-C-3993 Packaging of Copper and Copper-Base Alloy Mill Products¹⁰

#### S2. Quality Assurance

S2.1 Responsibility for Inspection:

S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the preformance of the inspection and

#### S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used.

#### S4. Preparation for Delivery

S4.1 Preservation, Packaging, Packing:

S4.1.1 Military Agencies—The material shall be separated by size, composition, grade or class and shall be preserved and packaged, Level A or C, packed, Level A, B, or C, as specified in the contract or purchase order, in accordance with the requirements of MIL-C-3993.

S4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

S4.2.1 Military Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.2.2 Civil Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to ensure that the material conforms to prescribed requirements.

¹⁰ Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, ATTN: NPODS.



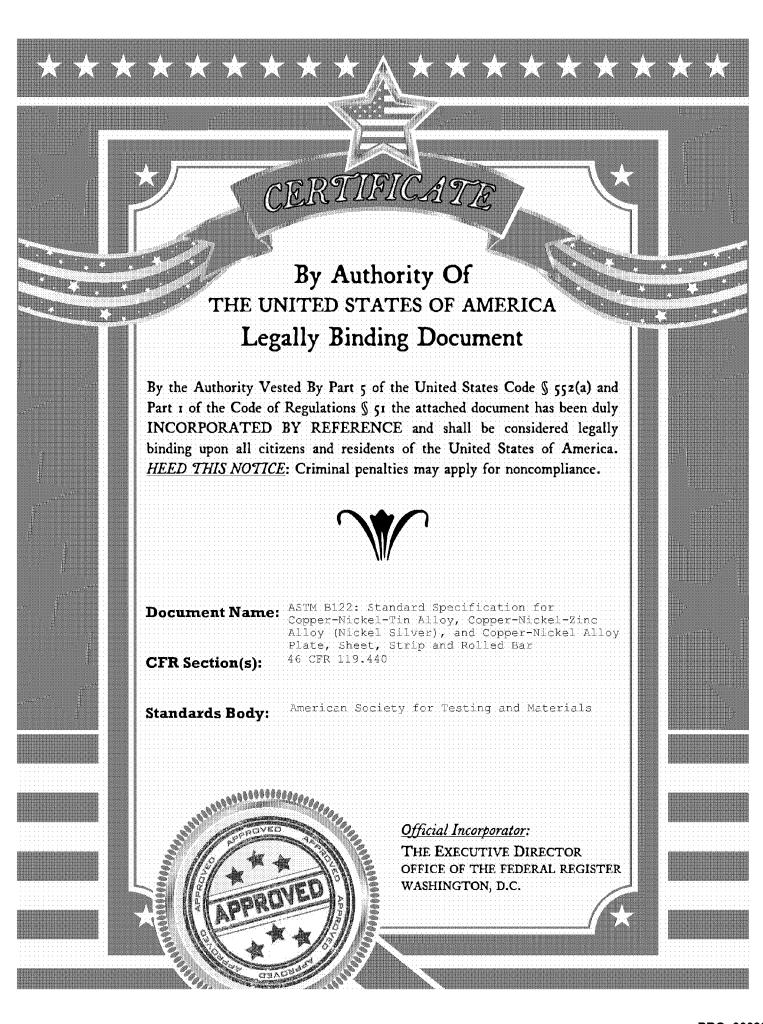
, resintentions with refinestations as New American (Nonmandatory Information)

### and the second of the second s X1. DENSITY OF COPPER AND COPPER ALLOYS

The second secon

 $(\pm \gamma^{-1})_{\alpha} = (\gamma^{-1})_{\alpha} = \gamma^{-1}$ 

X1.1 The densities of the alloys covered by this specification are given in Table X1.1.


TABLE X1.1 Densities

		E X1.1 Densities	
i de la companya de La companya de la co	Copper or Copper All	oy UNS No.	Density, g/cm ^a
	C10100, C10200, C10300, C12200, C14200	C10800, C12000,	8.94
	C19200 C23000 C28000 C44300, C44400, C44500 C60800	and the second s	8.86 8.75 8.39 8.53 8.17
	C61300, C61400 C68700 C70400 C70600		7.89 8.33 8.94 8.94
1.44 <u>1</u> .414.4	C71000 C71500 C71640 C72200	en en fransk fan Armen (og sk Station om en fan e	8.94 8.94 8.94 8.94

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and If not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 1916 Race St., Philadelphia, PA 19103.

The State of the S



# Standard Specification for Copper-Nickel-Tin Alloy, Copper-Nickel-Zinc Alloy (Nickel Silver), and Copper-Nickel Alloy Plate, Sheet, Strip, and Rolled Bar¹

This standard is issued under the fixed designation B 122/B 122M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This specification has been approved for use by agencies of the Department of Defense. Consult the DoD Index of Specifications and Standards for the specific year of issue which has been adopted by the Department of Defense.

#### 1. Scope

1.1 This specification covers copper-nickel-tin alloy, copper-nickel-zinc alloy (nickel silver), and copper-nickel alloy plate, sheet, strip, and rolled bar. The following alloys are covered:

Copper Alloy	Previously Used	w ^a	Nominal	Com	osition.	***
UNS No.2	Designation			%	min pr	
A contract of the second		Copper	Nickel	Zinc	Tin	Chro- mium
C 70600		90	10			
C 71000	ું 6	80	20			,
C 71500	- 5	70	30			
C 72200		85	15			0.5
C 72500		89	9		2	
C 73500	1 1	72	18	10		
C 74000	9	70	10	20		
C 74500	3	65	10	24		• • •
C 75200	2	65	18	17		
C 76200	8	59	12	29		
C 77000	4	55	18	.27		

NOTE 1—Plates of copper-nickel alloy Copper Alloy UNS Nos. C 70600, C 71500, and C 72200 for use as tube plates in surface condensers and heat exchangers are covered by Specification B 171.

1.2 The values stated in either inch-pound units of SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used in independently of the other. Combining values from the two systems may result in nonconformance with the specification.

1.2.1 When the product is ordered in inch-pound units, the inch-pound units are to be regarded as the standard except grain size is always specified in millimeters.

1.2.2 When the product is ordered in SI units, the SI units are to be regarded as the standard.

#### 2. Referenced Documents

2.1 The following documents of the issue in effect on date

of material purchase form a part of this specification to the extent referenced herein:

- 2.1.1 ASTM Standards:
- B 171 Specification for Copper-Alloy Plate and Sheet for Pressure Vessels, Condensers, and Heat Exchangers³
- B 248 Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled Bar³
- B 601 Practice for Temper Designations for Copper and Copper Alloys—Wrought and Cast³
- E 527 Practice for Numbering Metals and Alloys (UNS)4

#### 3. Ordering Information

- 3.1 Orders for material under this specification should include the following information:
  - 3.1.1 Alloy number (Section 1),
- 3.1.1.1 Whether the alloy ordered will be used in applications requiring it to be welded (see Table 1, Footnote B),
  - 3.1.2 Temper (Section 6),
- 3.1.3 Dimensions: thickness and width (see 10.2 and 10.3)
- 3.1.4 Type of edge, if required: slit, sheared, sawed, square corners, rounded corners, rounded edges, or full rounded edges (see 10.6).
  - 3.1.5 How furnished: flat or rolls,
  - 3.1.6 Length (see 10.4), and
  - 3.1.7 Weight: total for each size.
  - 3.1.8 ASTM Specification B 122/B 122M, year of issue.
- 3.2 In addition, when material is purchased for agencies of the U.S. Government, it shall conform to the Supplementary Requirements as defined in Specification B 248 when specified in the contract or purchase order.

#### 4. General Requirements

- 4.1 Products furnished under this specification in inchpound units shall conform to the applicable requirements of the current edition of Specification B 248,
- 4.2 Products furnished under this specification in SI Units shall conform to the applicable requirements of the current edition of Specification B 248M.

¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys, and is the direct responsibility of Subcommittee B05.01 on Plate, Sheet, and Strip.

Current edition approved Nov. 10, 1995. Published January 1996. Originally published as B 122 - 39 T. Last previous edition B 122 - 92a.

² The UNS system for copper and copper alloys (see Practice E 527) is a simple expansion of the former standard designation system accomplished by the addition of a prefix "C" and a suffix "00." The suffix can be used to accommodate composition variations of the base alloy.

Annual Book of ASTM Standards, Vol 02.01.

⁴ Armual Book of ASTM Standards, Vol 01.01.

#### 5. Chemical Composition

5.1 The material shall conform to the chemical composition prescribed in Table 1.

5.2 These specification limits do not preclude the presence of other elements. Limits may be established for unnamed elements by agreement between manufacturer or supplier and purchaser.

5.2.1 For copper alloys for which copper is specified as a remainder, copper may be taken as the difference between the sum of all the elements analyzed and 100 %. When all the elements in Table 1 are analyzed, their sum shall be as follows:

Coppe	r Alloy UN	S No.	.,			plus Named nts, % min	
	C70600					99.5	
Carl Property	C71000		201	1.3.5	11.68	99.5	
	C71500				e., 5	99.5	
	C72200					99.5	
	C72500			,		99.8	B

5,2.2 For copper alloys for which zinc is specified as a remainder, either copper or zinc may be taken as the difference between the sum of all elements analyzed and 100 %. When all elements in Table 1 are analyzed, their sum shall be as follows:

•	Copper Alloy UNS No.	19.7	Copper plus Named El ments, % min	e- +
	C73500		99.5	
•	C74000		99.5	
	C74500		99.5	
	C75200		99.5	
	C76200	,	99.5	
	C77000		99.5	

#### 6. Temper

6.1 As Hot-Rolled (M20) Material—The standard temper of sheet and plate produced by hot rolling and is as designated in Table 2.

6.2 Rolled (H) Material—The standard tempers of rolled material are as designated in Table 2 with the prefix "H". Former designations and the standard designations as defined in Practice B 601 are shown. Special or nonstandard tempers are subject to negotiation between manufacturer and purchaser (See 3.1.2).

6.3 Annealed—The standard temper is O60 (soft), as indicated in Table 2.

#### 7. Mechanical Properties of Rolled Tempers

7.1 Tensile Strength:

7.1.1 Products ordered to this specification in inch-pound units shall conform to the tensile strength requirements prescribed in ksi units in Table 2.

7.1.2 Products ordered to this specification in SI units shall conform to the tensile strength requirements prescribed in MPa units [bracketed] in Table 2.

7.1.3 Acceptance or rejection based on mechanical properties shall depend only on the tensile strength.

7.1.4 The tension test specimens shall be taken so the longitudinal axis of the specimen is parallel to the direction of rolling.

#### 8. Grain Size Requirements of Annealed Tempers

8.1 Grain size shall be the standard test for material of all thicknesses in annealed tempers, and acceptance or rejection shall depend on the grain sizes. The average grain size of each of two samples of annealed material as determined on a plane parallel to the surface of the material shall be within the limits prescribed in Table 3.

#### 9. Rockwell Hardness

9.1 Rockwell hardness tests offer a quick and convenient method of checking copper-nickel-zinc and copper-nickel alloys of any temper for general conformity to the requirements for tensile strength or grain size. The approximate Rockwell hardness values for the rolled tempers are given in Table 2 and those for the annealed tempers of material 0.015 in. and over in thickness are given in Table 4, for general information and assistance in testing.

#### 10. Dimensions and Permissible Variations

10.1 The inch-pound dimensions and tolerances for products covered by this specification shall be as prescribed in the current edition of Specification B 248, and the SI dimensions and tolerances covered by this specification shall be as prescribed in the current edition of Specification B 248M, with particular reference to Section 5 and the following tables of that specification:

10.2 Thickness—See 5.2, Tables 1 and 2. when special thickness tolerances for Copper Alloy UNS No. C 72500 are required see 5.2.3 and Table 3.

TABLE 1 Chemical Requirements

					 	Composition, %	1			pi s	1.1.1.1
Copper Alloy UNS No.	Copper, incl Silver	Nickel, incl Cobalt		Lead, max	 iron, max	Manganese, max	Zine	Tjn: .		Chro- mium	Other Named Elements
C 70600	remainder	9.0-11.0 ^A		0.05 ^B	1.0-1.8	1.0	1.0 ⁸ max		,		В
C 71000	remainder	19.0-23.0	5.7	$0.05^{B}$	1.0 max	1.0	1.0 ^B max				<b>B</b> ****
C 71500	remainder	29.0-33.0 ^A		0.05B	0.40-1.0	nga <b>j.0</b> 00, 755	1.0 ^a max	10000		100	B
C 72200	remainder	15.0-18.0		$0.05^{B}$	0.50-1.0	1.0	1.0 ⁸		0.	30-0.70	B
C 72500	remainder	8.5-10.5		0.05	0.6	0.2	0.5 max	1.8-2.8			
C 73500	70.5-73.5	16.519.5		0.10	0.25 max	0.50	remainder				
C 74000	69.0-73.5	9.0-11.0		0.10	0.25 max	0.50	remainder			32.0	
C 74500	63.5-66.5	9.011.0		0.10	0.25 max	0.50	remainder		**	"-	
C 75200	63.5-66.5	16.5-19.5		0.05	0.25 max	0.50	remainder				
C 76200	57.0-61.0	11.0-13.5		0.10	0.25 max	0.50	remainder		*		
C 77000	53.5~56.5	16.5-19.5		0.05	0.25 max	0.50	remainder		200		ara sa cui a c

A Copper plus elements with specific limits, 99.5 % min.

[#] When the product is for subsequent welding applications and so specified by the purchaser, zinc shall be 0.50 % max, lead 0.02 % max, phosphorus 0.02 % max, sulfur 0.02 % max, and carbon 0.05 % max.

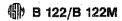



TABLE 2 Tensile Strength Requirements and Approximate Rockwell Hardness Values for Rolled Tempers

NOTE—Plate is generally available in only the as hot-rolled (M20) tempers. Required properties for other tempers shall be agreed upon between manufacturer and purchaser at the time of placing the order.

Temper D	esignation	Tensile Strength, ksi ⁴ (MPa ⁸ )	Appro	Approximate Rockwell Hardness ^c			
Standard	Former	Min Max	G Scale	B Scale	Superficial 30-T		
187 July 1981 July 19	A Private Communication of the	Copper Alloy U	INS No. C 70600†				
M20 ""	as hot-rolled	40 [275] 62 [425]	4.4.	***			
H01 🖂	quarter hard	51 [350] 67 [460]		51- <b>78</b>	52-70		
H02	half hard	58 [400] 72 [495]	And the second of the second o	66-81	61-72		
H04	hard	71 [490] 83 [570]		76-86	67-74		
H06	extra hard	73 [505] 85 [585]	in the total of the second	80-88	71-77		
H08	spring	78 [540]	Jane 1985 to the second	83-91	72-78		
		Copper Alloy U	JNS No. C 71000		1 2 1		
M20	as hot-rolled	38 [260] 56 [385]			40.05		
H01	quarter hard	47 [325] 63 [435]	***	45-72	46-65		
H02	half hard	56 [385] 70 [485]	eee Jaac Jack	64–78	59-69		
H04	hard	67 [460] 79 [545]	**************************************	76-84	67-73		
H06 H08	extra hard	72 [495] 84 [580]	and the state of t	79-87	69-75		
rius	spring	76 [525] 87 [600]	JNS No. C 71500	82-88	71–75		
M20	as hot-rolled	45 [310] 65 [450]	JNO NO. O / TOOU	<u>"</u>			
H01	quarter hard	58 [400] 72 [495]		67-81	6171		
H02							
	haif hard	66 [455] 80 [550]	e e e e e e e e e e e e e e e e e e e	7 <b>6-8</b> 5	67-74		
H04	hard	75 [515] 88 [605]	A AMA	83-89	72-76		
H06	extra hard	80 [550] 92 [635]	***	85-91	73–77		
H08	spring	84 [580] 94 [650]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87-91	74–77		
	-		INS No. C 72200	- mentu - mit	<u></u>		
M20	as hot-rolled	42 [290] 62 [425]	•••	and the second second			
H01	quarter hard	55 [380] 67 [460]	***	63-78	5870		
H02	half hard	58 [400] 72 [495]	المراك فالمسال والمعقفين المعاط	66-85	61-73		
H04	hard	71 [490] 85 [585]	The second secon	76–88	67-78		
H06	extra hard	73 [505] 90 [620]	1000 999 1000	79–90	69-78		
H08	spring	78 [540] 91 [625]	* * * * * * * * * * * * * * * * * * *	81-91	- 71 <del>-</del> 79		
			INS No. C 72500				
M20 H01	as hot-rolled quarter hard	50 [345] 70 [485] 55 [380] 75 [515]	P. C. T. W. J. ARM TALAMA	Up to 85			
H02	half hard				Up to 72		
H04		65 [450] 80 [550]	****	70-90	62-75		
H06	hard	75 [515] 90 [620]	•••	75-90	66-75		
	extra hard	80 [550] 95 [655]	***	80-95	70-80		
H08	spring	85 [585] 100 [690]	the second of the second of the	85-95	72-80		
H10	extra spring	90 [620] 105 [725]	***	8795	76-80		
H14	super spring	100 [690] 125 [860]	* • •	92 and over	78 and over		
			INS No. C 73500	the state of the s	· · · · · · · · · · · · · · · · · · ·		
M20	as hot-rolled	48 [330] 63 [435]	_:::_	_1''1_			
H01	quarter hard	56 [385] 69 [475]	20–47	66–80	60-70		
HQ2	half hard	63 [435] 75 [515]	38-53	75–84	67-73		
H04	hard	73 [505] 84 [580]	51-61	83–88	72-75		
H06	extra hard	79 [545] 90 [620]	57–65	· 8690	74-76		
		Copper Alloy U	NS Na. C 74000		1 11 11 11		
M20	as hot-rolled	48 [330] 63 [435]	• • •	• • •			
H01	quarter hard	55 [380] 70 [485]		60-80	** ' / i'		
H02	half hard	63 [435] 77 [530]		70~85			
H04	hard	73 [505] 87 [600]	***	79-91	: 1, mil		
H06	extra hard	79 [545] 91 [625]	* ( )	83-93			
			NS No. C 74500				
M20	as hot-rolled	48 [330] 65 [450]	• • •				
H01	hard	56 [385] 73 [505]		51-80	50-70		
H02	half hard	67 [460] 82 [565]	***	72-87	6575		
		DO FERMI AL TARAL		95 00	73-78		
H04	hard	80 [550] 94 [650]	***	85-92			
	extra hard spring	89 [615] 94 [650] 95 [655] 108 [740]	***	90-94 92-96	76–79 77–80		

# (III) B 122/B 122M

Tempe	r Designation	Tensile Stre		Approxim	ate Rockwell Hardness	<b>o</b>
Standard	Power Former, 1996 Communication		Max	G Scale	B Scale	Superficial 30-T
Section 1.	Company of the Control of the Contro		Copper Alloy UNS	No. C 75200		
M20 H01 H02	as hot-rolled quarter hard half hard hard	52 [355] 58 [400] 66 [455] 78 [540]	65 [450] 72 [495] 80 [550] 91 [625] 98 [675]		5075 6882 80-90 87-94	49-67 62-72 70-76 74-79
H06 H08	extra hard spring	86 [595] 90 [620]	101 [700]		89-96	75-80
		· · · · · · · · · · · · · · · · · · ·	Copper Alloy UNS	3 No. C 76200		
M20 H01 H02 H04 H06 H08	as hot-rolled quarter hard half hard hard extra hard spring	55 [380] 65 [450] 75 [515] 90 [620] 99 [685] 107 [740]	75 [515] 81 [560] 91 [625] 105 [720] 114 [790] 122 [840]	 2 No. C 77000	61–85 78–91 90–95 94–98 97–100	57-74 69-77 76-79 79-81 80 and over
3.5			Copper Alloy UNS	5 NO. C 77000		
M20 H01 H02 H04 H06 H08	as hot-rolled quarter hard half hard hard extra hard spring	60 [415] 69 [475] 78 [540] 92 [635] 102 [700] 108 [740]	80 [550] 87 [600] 95 [655] 109 [750] 117 [810] 123 [850]	23–62 51–69 67–76 73–80 77–83	70-88 81-92 90-96 95-99 97100	63-75 71-78 76-80 79-82 80 and over

^A ksi = 1000 psi.

TABLE 3 Grain Size Requirements for Annealed Material

A	Standard	Grain Size, mm				
Copper Alloy UNS No.	Temper Designa- tion ^a	Nomi- nal	Min	Max		
C 70600, C 71000,		-				
C 71500, C 72200,	OS035	0.035	0.025	0.050		
C 72500, C 73500, and C 76200	OS015	0.015	A .	0.025		
C 74000, C 74500,	OS070	0.070	0.050	0.100		
C 75200, and	. OS035	0.085	0.025	0.050		
C 77000	08015	0.015	, <b>A</b> ,	0.025		

Although no minimum grain size is required, this material shall be fully recrystallized.

10.3 Width:

10.3.1 Slit Metal and Slit Metal with Rolled Edges-See 5.3, Table 4.

10.3.2 Square-Sheared Metal—See 5.3, Table 5.

10.3.3 Sawed Metal-See 5.3, Table 6.

10.4 Length:

10.4.1 Specific and Stock Lengths With and Without Ends—See Section 5.4, Table 7.

10.4.2 Schedule of Lengths (Specific and Stock) with Ends—See 5.4, Table 8.

10.4.3 Length Tolerances for Square-Sheared Metal—See 5.4, Table 9.

10.4.4 Length Tolerances for Sawed Metal-See 5.4, Table 10.

10.5 Straightness:

10.5.1 Slit Metal or Slit Metal Either Straightened or Edge-Rolled—See 5.5, Table 11.

10.5.2 Square-Sheared Metal—See 5.5, Table 12. 10.5.3 Sawed Metal—See 5.5, Table 13.

10.6 Edges-See 5.6.

10.6.1 Square Edges—See 5.6.1, Table 14.

10.6.2 Rounded Corners—See 5.6.2, Table 15.

10.6.3 Rounded Edges—See 5.6.3, Table 16.

10.6.4 Full-Rounded Edges—See 5.6.4, Table 17.

#### 11. Keywords

11.1 copper-nickel plate; copper-nickel rolled bar; coppernickel sheet; copper-nickel strip; copper-nickel-tin plate; copper-nickel-tin rolled bar; copper-nickel-tin sheet; coppernickel-tin strip; copper-nickel-zinc plate; copper-nickel-zinc rolled bar; copper-nickel-zinc sheet; copper-nickel-zinc strip

B See Appendix.

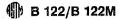
Prockwell hardness values apply as follows: The B and G scale hardness values apply to metal 0.020 in. (0.508 mm) and over in thickness, and the 30-T scale hardness values apply to metal 0.012 in. (0.305 mm) and over in thickness. ^D Standard designation defined in Practice B 601.

^B Standard designation defined in Practice B 601.

TABLE 4 Approximate Rockwell Hardness of Annealed Material

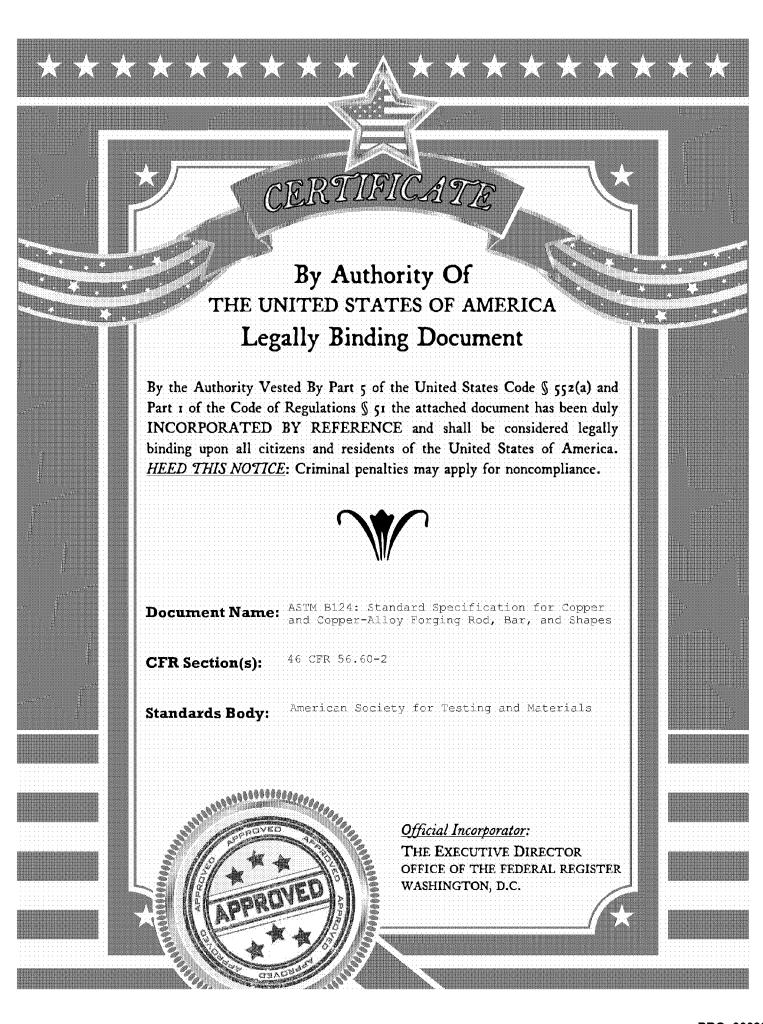
in many and health of the color of a	Ten	nper	Approximate Flockwell Hardness ^A			
States the second section of the second	Standard Designation	Nominal Grain Size, mm	B Scale	F Scale	Superficial 30-T	
manager man state of the same of the		Сор	per Alloy UNS No	o. C 70600		
මැතුය යුතුව දුනුවෙනුම සංවේ වඩි අතර යුතුව දුනුවෙනුම සංවේ වඩි අතර යුතුව දුනුවේ දැන්නුවේ	OS035 OS015	0.035 0.015	10–27 16–48	55–72 65–83	15–34 25–45	
. "	mannesses was a	Cop	per Alloy UNS No	o. C 71000	,	
,	OS035 OS015	0.035 0.015	18-35 35-58	67-76 76-90	28-40 40-55	
		16-14	per Alloy UNS No		40-05	
	OS035	0.035	23-45	70-85	31-46	
	OS015	0.015	37-63	74-93	40-58	
		Copp	er Alloy UNS No	. C 72200		
	OS035 OS015	0.035 0.015	14–31 18–42	,	24-36	
	00010		per Alloy UNS No	 C 72500	26-41	
•	OS035	0.035	24–39	70-81	00.40	
	OS015	0.015	37–61	78–92	32-42 41-58	
		Copp	er Alloy UNS No	. C 73500	W 14 140-	
•	OS035 OS015	0.035 0.015	20-35	7080	29-40	
	00010		28-55 er Alloy UNS No	76-90	34-53	
-	OS070	0.070	5-20	. C 74000	***************************************	
	OS035	0.035	5–20 20–40	• • •	* * *	
	OS015	0.015	35-55			
		Сорр	er Alloy UNS No.	C 74500		
_	OS070	0.070	15-30	63-73	26-36	
•	OS035	0.035	23-41	7080	31-44	
-	OS015	0.015	41-59	80-90	44-56	
-	OS070		er Alloy UNS No.	******		
	OS035	0.070 0.035	25-40 35-55	70-80 75-88	32-43 40-53	
_	OS015	0.015	45-70	83-93	4664	
_	1100	Copp	er Alloy UNS No	. 76200		
	OS035	0.035	20-35	7080	* * *	
-	OS015	0.015	28-55	76-90	4	
•		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	er Alloy UNS No.		***************************************	
	OS070 OS035	0.070	29-45	72-83	35-46	
4	OS015	0.035 0.015	3760 47-73	7691 8498	41–57 47–65	

A Rockwell hardness values apply as follows: The B and F scale hardness values apply to metal 0.020 in. (0.508 mm) and over in thickness and the 30-T scale hardness values apply to metal 0.015 in. (0.381 mm) and over in thickness.


#### APPENDIX

# (Nonmandatory Information)

### X1. METRIC EQUIVALENTS


X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared  $(N = kg \cdot m/s^2)$ . The derived SI unit for pressure or

stress is the newton per square metre (N/m2), which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6894757 Pa the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m² and N/mm².



The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA 19428.



# Standard Specification for Copper and Copper Alloy Forging Rod, Bar, and Shapes¹

This standard is issued under the fixed designation B 124; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense. Consult the DoD Index of Specifications and Standards for the specific year of issue which has been adopted by the Department of Defense.

#### 1. Scope*

el satel

10008

1.1 This specification establishes the requirements for copper and copper alloy rod, bar, and shapes intended for hot forging. The following copper and copper alloys are included:

	Copper UNS Nos.			Copper Alloy UNS Nos	i.
44,000	C11000	1		C36500	
A	C14500		4.4	C37700	
. **	C14700	7 T 1	£ .	C46400	
1.5	4	* * * *		C48200	
\ B	en de membre appagnante de la company de la	egi.	and the second	C48500	
				C61900	
				C62300	4
				C63000	
				C63200	
				C64200	
				C64210	
				C65500	
				C67500	
			*	C77400	

- 1.2 The values stated in inch-pound units are the standard
- 1.3 This specification is the companion to SI Specification B 124M; therefore, no SI equivalents are presented in this specification.

### 2. Referenced Documents

- 2.1 ASTM Standards:
- B 124M Specification for Copper and Copper-Alloy Forging Rod, Bar, and Shapes [Metric]²
- B 249 Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar, Shapes, and Forgings²
- B 283 Specification for Copper and Copper-Alloy Die Forgings (Hot-Pressed)²
- B 601 Practice for Temper Designations for Copper and Copper Alloys-Wrought and Cast²
- E 54 Test Methods for Chemical Analysis of Special Brasses and Bronzes³
- E 62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Method)³

- E 76 Test Methods for Chemical Analysis of Nickel-Copper Alloys³
- E 121 Test Methods for Chemical Analysis of Copper-Tellurium Allovs³
- E 478 Test Methods for Chemical Analysis of Copper
- 2.2 ISO Standard:
- No. 3110, Part 2 (TC 26 Ref. No. N 670 E/F) Determination of Aluminum Content: Flame Atomic Absorption Spectrometric Method⁴

#### 3. Ordering Information

- 3.1 The contract or purchase order for product under this specification should include the following information:
  - 3.1.1 ASTM designation and year of issue (B 124-XX),
  - 3.1.2 Copper or Copper Alloy UNS No. (Section 5),
  - 3.1.3 Form (Section 10),
- 3.1.4 Diameter or distance between parallel surfaces (Section 10),
  - 3.1.5 Tolerances (Section 10),
  - 3.1.6 Length (Section 10),
  - 3.1.7 Quantity; total weight for each size and form,
- 3.1.8 When purchase is intended for a U.S. Government
- 3.2 The following options are available and should be specified in the contract or purchase order when required:
  - 3.2.1 Temper,
  - 3.2.2 Mechanical properties,
  - 3.2.3 Certification, and
  - 3.2.4 Test report.

#### 4. General Requirements

- 4.1 The following sections of Specification B 249 form a part of this specification:
  - 4.1.1 Terminology,
  - 4.1.2 Material and Manufacture,
  - 4.1.3 Workmanship, Finish, and Appearance,
  - 4.1.4 Sampling,
  - 4.1.5 Number of Tests and Retests,
- 4.1.6 Specimen Preparation,
- 4.1.7 Test Methods.
- 4.1.8 Significance of Numerical Limits,
- 4.1.9 Inspection,

meneta di en

¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.02 on Rod, Bar, Wire, Shapes and Forgings.

Current edition approved Sept. 10, 1996. Published November 1996. Originally published as B 124 - 39 T. Last previous edition B 124 - 94.

² Annual Book of ASTM Standards, Vol 02.01.

³ Annual Book of ASTM Standards, Vol 03.05.

⁴ Available from American National Standards Institute, 11 W, 42nd St., 13th Floor, New York, NY 10036.

^{*} A Summary of Changes section appears at the end of this specification.

- 4.1.10 Rejection and Rehearing,
- 4.1.11 Certification,
- 4.1.12 Mill Test Report,
- 4.1.13 Packaging and Package Marking, and
- 4.1.14 Supplementary Requirements.
- 4.2 An identical section in this specification supplements the referenced section of Specification B 249.

#### 5. Material and Manufacture

- 5.1 Material:
- 5.1.1 Product under this specification shall be produced from one of the following Copper or Copper Alloy UNS Nos.: C11000, C14500, C14700, C36500, C37700, C46400, C48200, C48500, C61900, C62300, C63000, C63200, C64200, C64210, C65500, C67500, C77400.

#### 6. Chemical Composition

- 6.1 The material shall conform to the requirements in Table 1 for the specified copper or copper alloy.
- 6.1.1 These specification limits do not preclude the presence of other elements. Limits may be established and analysis required for unnamed elements by agreement between the manufacturer or supplier and the purchaser.
- 6.2 When the value of an element for a specified copper alloy is identified as the "Remainder," that "Remainder" value shall be determined as the difference between the sum of results for specified elements and 100 %.
- 6.3 When all elements in Table 1 for the specified copper alloy are determined the sum of results shall be as follows:

Copper Alloy UNS No.	•	Sum	of R	esults Per	cent, %	min
6500, C46400, C48200, C48500		24		99.6		
7700, C61900, C62300, C63000,			2.42	99.5		
C63200, C64200, C64210, C65500,	×	*	•		100	10
C67500, C77400	, ,	1000		100 July 1		4 - 4

#### 7. Temper

C36

- 7.1 Product temper shall be subject to agreement between the manufacturer and the purchaser.
- 7.1.1 Product tempers normally available under this specification and as defined in Practice B 601 are M30, M20, and M50.

#### 8. Mechanical Property Requirements

8.1 Mechanical properties, if any, are subject to agreement between the manufacturer and the purchaser.

#### 9. Purchases for U.S. Government

9.1 When specified in the contract or purchase order, product purchased for agencies of the U.S. Government shall conform to the special government regulations specified in the Supplemental Requirements section.

#### 10. Dimensions, Mass, and Permissible Variations

- 10.1 Except for shapes, length, and straightness, the dimensions and tolerances for product produced under this specification shall be as prescribed in the section titled "Diameter or Distance Between Parallel Surfaces" in Specification B 249 as follows:
  - 10.1.1 Diameter or Distance Between Parallel Surfaces:
- 10.1.1.1 For M30 rod, Copper Alloy UNS Nos. C36500, C37700, C46400, C48200, C48500, C61900, C62300,

A Silver counts as copper.

⁸ This includes oxygen-free tellurium copper which contains phosphorus in an amount agreed upon.

C This includes copper + silver + tellurium.

^D Other deoxidizers may be used as agreed upon, in which case phosphorus need not be present.

E Includes oxygen-free or deoxidized grades with deoxidizers (such as phosphorus, boron, lithium, or others) in amount agreed upon.

 $^{{\}it F}$  This includes copper plus silver plus sulfur.

⁶ Iron content shall not exceed nickel content.

C63000, C63200, C64200, C64210, and C67500, refer to Table 4.

10.1.1.2 For M30 rod, Copper UNS Nos. C11000, C14500, and C14700 and Copper Alloy UNS Nos. C65500 and C77400, refer to Table 5.

10.1.1.3 For M20, round rod, refer to Table 6.

10.1.1.4 For M30, bar, refer to Table 4 for width tolerances for Copper Alloy UNS Nos. C36500, C37700, C46400, C48200, C48500, C61900, C62300, C63000, C63200, C64200, C64210, and C67500.

10.1.1.5 For M30 bar refer to Table 5 for width tolerances for Copper UNS Nos. C11000, C14500, and C14700 and Copper Alloy UNS Nos. C65500 and C77400.

10.1.1.6 For H50, rod, refer to Table 1 for Copper Alloy UNS Nos. C11000, C14500, C14700, C46400, C48200, and C48500.

10.1.1.7 For H50, rod, refer to Table 2 for Copper Alloy UNS Nos. C36500, C37700, C61900, C62300, C63000, C63200, C64200, C65500, C67500, and C77400.

10.1.1.8 For H50, bar, refer to Tables 7 and 10 for Copper Alloy UNS Nos. C11000, C14500, and C14700.

10.1.1.9 For H50, bar, refer to Tables 8 and 10 for Copper Alloy UNS Nos. C46400, C48200, and C48500.

10.1.1.10 For H50, bar, refer to Tables 9 and 11 for Copper Alloy UNS Nos. C36500, C37700, C61900, C62300, C63000, C63200, C64200, C65500, C67500, and C77400.

10.2 Shapes—The dimensional tolerances for shapes shall be agreed upon between the manufacturer and the purchaser and shall be specified in the order.

10.3 Length—Rod, bar, and shapes for forging when ordered to any length will be furnished in stock lengths, unless it is specifically stated in the purchase order that the lengths are to be specific.

10.3.1 Stock lengths for all rod, bar, and shapes for forging up to and including 1 in. (25.4 mm) in diameter shall be as listed in Table 2 but the weight of lengths less than the length ordered shall not exceed 40 % of any one shipment.

TABLE 2 Stock Lengths

Ordered Length	Shortest Permissible Length			
ft	ft			
12	6			
10	6			
8	4			
6	4			

The tolerance for the full-length pieces shall be plus 1 in. (25.4 mm).

10.3.2 For rod and bar for forging over 1 in. (25.4 mm) up to and including 2 in. (50.8 mm) in diameter the lengths shall be random lengths, from 4 to 12 ft (1.22 to 3.66 m).

10.3.3 Rod and bar for forging over 2 in. (50.8 mm) in diameter shall be ordered in special lengths.

10.4 Straightness—The material shall be straight, within 1 in. (25.4 mm) maximum depth of arc in 6 ft (1.83 m).

#### 11. Test Methods

11.1 The test method(s) used for quality control or production control, or both, for the determination of conformance with product property requirements are discretionary.

11.1.1 The test method(s) used to obtain data for the preparation of certification or test report, or both, shall be made available to the purchaser on request.

11.2 Chemical Analysis:

11.2.1 Chemical composition shall, in case of disagreement, be determined as follows:

Element	Range, %	Test Method
Aluminum	0.005-12	ISO No. 3110 (AA)
4	6-12	E 478
Arsenic	0-0.15	E 62
Copper	43-99.9	E 478
Iron	0.155	E 54
Lead	0.02-3	E 478 (AA)
Manganese	0.10-2.0	E 62
Phosphorus	0.004-0.7	E 62
Silicon	0.10-4	E 62
Sulfur	0-0.5	E 76 (Gravimetric)
Tellurium	0.40-1	E 121
Tin	0.2-1.5	E 478 (Photometric)
Zinc	0.3-1.5	E 478 (AA)
	2-40	E 478 (Titrametric)

11.2.2 Test methods for the determination of elements resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and the purchaser.

#### 12. Keywords

12.1 brass forging shapes; brass forgings; bronze forging shapes; bronze forgings; copper alloy forging bar; copper alloy forging materials; copper alloy forging rod; copper alloy forgings; copper forging bar; copper forging materials; copper forging rod; copper forging shapes; copper forgings; nickel silver forgings

(Nonmandatory Information)

X1. FÖRGING PRACTICE

X1.1 The data in Table X1.1 do not constitute a part of this specification. The suggested forging temperatures give the range suitable for hot forging of the alloys and the forgeability ratings illustrate the relative difference in ease of

British ( & C. C. C. Cost, Oct. A.

Select First inspirately of the material and a con-

forging with forging brass being the most readily forgeable. For the relative strength of these alloy forgings, as hot pressed, see Specification B 283, Appendix 2, Table 4.

TABLE X1.1 Forging Temperatures and Forgeability

Copper or Copper Alloy	The state of the s	Suggested	Forging Temp	peratures	***; .	Canacatilla	Detical
UNS No.	Name	°F		K		Forgeability	raung"
C 11000	Copper	1400-1700		1030-1200		65	17 17 17 17 17
C 14500	Copper-tellurium	1350-1650	·	1010-1170	A	. 65	amilia Militaria. Militaria de la constanta
. C 14700	Copper-sulfur	1400-1600	* ,	750-875	.'	65	
C 36500	Leaded muntz metal, uninhibited	1200-1450	4	920-1060	11 1 1 1 1	100	15 July 1980
C 37700	Forging brass	1200-1450		920-1060	11.	100	g 1 4 5
C 46400	Naval brass	1200-1500		920-1090	the specific to	90	and the second
C 48200	Medium leaded naval brass	1200-1500		920-1090	T 104,5	90	15000
C 48500	Leaded naval brass	1200-1500	*	920-1090	91.5	90	jani ja
C 61900	Aluminum bronze	1300-1600	Samuel Control	980-1140	Na.	75	(
C 62300	Aluminum bronze, 9 %	1300-1600	and the second	980-1140		75	ar e e e e e e e e e e e e e e e e e e e
C 63000	Aluminum-nickel bronze	1450-1700		1060-1200	4 4 4 7 7	75	
C 63200	Aluminum-nickel bronze	1450-1700	1.0	1060-1200		75	for the Co
C 64200	Aluminum-silicon bronze	1300-1600	n 1	980-1140		75	
C 64210	Aluminum-silicon bronze, 6.7 %	1300-1600		9801140		75	
C 65500	High-silicon bronze(A)	13001600		980-1140		40	and the second
C 67500	Manganese bronze (A)	1350-1550		1010-1120		80	1 Tr. 1883
G 77400	Nickel silver, 45-10	1300-1500	1. 2	980-1090		<b>8</b> 5	6

A Relative forgeability rating takes into consideration such variable factors as pressure, die wear, and plasticity (hot). Since it is impractible to reduce these variables to common units, calibration in terms of a percentage of the most generally used alloy, forging brass (100 %), is considered the most practical basis for such ratings. The values shown represent the general opinion and are intended for information to enable the designer to better understand the forging characteristics of these various alloys. Intricate parts are more likely to be available in alloys having a high rating.

# SUMMARY OF CHANGES

The section identifies the location of selected changes to this specification that have been incorporated since the 1994 issue.

(1) A change was made in the composition of lead for C36500 in Table 1.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA 19428.

# Standard Specification for Copper and Copper Alloy Forging Rod, Bar, and Shapes [Metric]1

This standard is issued under the fixed designation B 124M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense. Consult the DoD Index of Specifications and Standards for the specific year of issue which has been adopted by the Department of Defense.

#### 1. Scope*

1.1 This specification establishes the requirements for copper and copper alloy rod, bar, and shapes intended for hot forging. The following copper and copper alloys are included:

Copper UNS Nos.	Copper Alloy UNS N
C11000	C36500
C14500	C37700
C14700	C46400
	C48200
	C48500
	C61900
	C62300
	C63000
	C63200
	C64200
	C64210
•	C65500
1 27 (Page 1)	C67500
	C77400

- 1.2 The values stated in SI units are the standard.
- 1.3 This specification is the companion to inch-pound Specification B 124.

# 2. Referenced Documents

- 2.1 ASTM Standards:
- B 124 Specification for Copper and Copper Alloy Forging Rod, Bar, and Shapes²
- B 249M Specification for General Requirements for Wrought Copper and Copper Alloy Rod, Bar, Shapes, and Forgings [Metric]²
- B 283 Specification for Copper and Copper-Alloy Die Forgings (Hot-Pressed)²
- B 601 Practice for Temper Designations for Copper and Copper Alloys-Wrought and Cast²
- E 54 Test Methods for Chemical Analysis of Special Brasses and Bronzes³
- E 62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Method)³

- E 76 Test Methods for Chemical Analysis of Nickel-Copper Alloys3
- E 121 Test Methods for Chemical Analysis of Copper-Tellurium Alloys³
- E 478 Test Methods for Chemical Analysis of Copper Alloys3
- 2.2 ISO Standard:
- No. 3110, Part 2 (TC 26 Ref. No. N 670 E/F)4

#### 3. Ordering Information

- 3.1 The contract or purchase order for product under this specification should include the following information:
- 3.1.1 ASTM designation and year of issue (B 124M -XX),
  - 3.1.2 Copper or Copper Alloy UNS No. (Section 5).
  - 3.1.3 Form (Section 10),
- 3.1.4 Diameter or distance between parallel surfaces (Section 10).
  - 3.1.5 Tolerances (Section 10),
  - 3.1.6 Length (Section 10),
- 3.1.7 Quantity; total weight for each size and form, and
- 3.1.8 When purchase is intended for a U.S. Government agency.
- 3.2 The following options are available and should be specified in the contract or purchase order when required:
  - 3.2.1 Temper,
  - 3.2.2 Mechanical properties,
  - 3.2.3 Certification, and
  - 3.2.4 Test report.

#### 4. General Requirements

- 4.1 The following sections of Specification B 249M form a part of this specification:
  - 4.1.1 Terminology,
  - 4.1.2 Material and Manufacture,
  - 4.1.3 Workmanship, Finish, and Appearance,
  - 4.1.4 Sampling,
  - 4.1.5 Number of Tests and Retests.
- 4.1.6 Specimen Preparation,
- 4.1.7 Test Methods,
- 4.1.8 Significance of Numerical Limits,
- 4.1.9 Inspection,

¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.02

on Rod, Bar, Wire, Shapes and Forgings. Current edition approved Sept. 10, 1996. Published November 1996. Originally published as B 124M - 87. Last previous edition B 124M - 94.

² Annual Book of ASTM Standards, Vol 02.01.

³ Annual Book of ASTM Standards, Vol 03.05.

⁴ Available from American National Standards Institute, 11 W. 42nd St., 13th Floor, New York, NY 10036.

^{*} A Summary of Changes section appears at the end of this specification.

**TABLE 1 Chemical Requirements** 

Copper or							Compositio	7, %	ette -doct i <del>et teel e</del> tk <del>ed in eel eel</del>	,		, <u> </u>	***************************************
Copper Alloy UNS No.	Copper	Lead	Tin	Iron	Nickel (incl Co)	Aluminum	Silicon	Manganese	Zinc	Sulfur	Tellurium	Phosphorus	Arsenic
C11000	99.90 min ^A	33533	5	9	lain ga	J	Ly and the second	1	1	ļ	ļ	l	1
C14500 ^B	99.90 min ^c	1					l			l	0.40-0.7	0.004-0.012 ^D	1
C14700 ^E .	99.90 min ^F								i	0.20-0.50			
C36500	58.061.0	0.25-0.7	0.25 max	0.15 max					remainder		* * *		
C37700	58.0-61.0	1.5-2.5	a salahan makan	0.30 max					remainder				
C46400	59.0-62.0	0.20 max.	0.5-1.0	0.15 max					remainder				
C48200		0.40-1.0	0.50-1.0	0.15 max					remainder				
C48500	59.0-62.0	1.3-2.2	0.5-1.0	0.15 max		* * *			remainder				
C61900	remainder	0.02 max	0.6 max	3.0-4.5	was great	8.5-10.0		x	0.8 max				
C62300	remainder		0.6 max	2.0-4.0	1.0 max	8.5-11.0	0.25 max	0.50 max				***	
C63000	remainder		0.20 max	2.0-4.0	4.0-5.5	9.0~11.0	0.25 max		0.30 max		* * *		
C63200	remainder	0.02 max		3.5-4.3G	4.0-4.8	8.7-9.5	0.10 max	1.2~2.0					
C64200	remainder			0.30 max	0.25 max	6.3-7.6	1.5-2.2		0.50 max				0.15 max
C64210	remainder	0.05 max	0.20 max	0.30 max	0.25 max	6.3-7.0	1.5-2.0	0.10 max	0.50 max				0.15 max
C65500	remainder	0.05 max		0.08 max	0.6 max		2.8-3.8	0.50-1.3	1.5 max				
C67500	57.0-60.0		0.5-1.5	0.08-2.0		0.25 max		0.05-0.5	remainder				
C77400	43.0-47.0	0.20 max			9.0-11.0				remainder				

A Silver counts as copper.

^B This includes oxygen-free tellurium copper which contains phosphorus in an amount agreed upon.

C This includes copper "silver" tellurium.

 $^{\it D}$  Other deoxidizers may be used as agreed upon, in which case phosphorus need not be present.

E Includes oxygen-free or deoxidized grades with deoxidizers (such as phosphorus, boron, lithium, or others) in amount agreed upon.

^F This includes copper plus silver plus sulfur.

^G Iron content shall not exceed nickel content.

4.1.10 Rejection and Rehearing,

4.1.11 Certification.

4.1.12 Mill Test Report,

4.1.13 Packaging and Package Marking, and

4.1.14 Supplementary Requirements.

4.2 An identical section in this specification supplements the referenced section of Specification B 249.

#### 5. Material and Manufacture

5.1 Material:

5.1.1 Product under this specification shall be produced from one of the following Copper or Copper Alloy UNS Nos.: C11000, C14500, C14700, C36500, C37700, C46400, C48200, C48500, C61900, C62300, C63000, C63200, C64200, C64210, C65500, C67500, and C77400.

#### 6. Chemical Composition

6.1 The material shall conform to the requirements in Table 1 for the specified copper or copper alloy.

6.1.1 These specification limits do not preclude the presence of other elements. Limits may be established and analysis required for unnamed elements by agreement between the manufacturer or supplier and the purchaser.

6.2 When the value of an element for a specified copper alloy is identified as the "Remainder," that "Remainder" value shall be determined as the difference between the sum of results for specified elements and 100 %.

6.3 When all elements in Table 1 for the specified copper alloy are determined the sum of results shall be as follows:

Copper Alloy UNS No.	um of Results ercent, % min
C36500, C46400, C48200, C48500	99.6
C37700, C61900, C62300, C63000, C63200, C64200,	99.5
C64210, C65500, C67500, C77400	14.2

#### 7. Temper

7.1 Product temper shall be subject to agreement between

the manufacturer and the purchaser.

7.1.1 Product tempers normally available under this specification and as defined in Practice B 601 are M30, M20, and M50.

#### 8. Mechanical Property Requirements

8.1 Mechanical properties, if any, are subject to agreement between the manufacturer and the purchaser.

#### 9. Purchases for U.S. Government

9.1 When specified in the contract or purchase order, product purchased for agencies of the U.S. Government shall conform to the special government regulations specified in the Supplemental Requirements section.

#### 10. Dimensions, Mass, and Permissible Variations

10.1 Except for shapes, length, and straightness, the dimensions and tolerances for product produced under this specification shall be as prescribed in the section titled "Diameter or Distance Between Parallel Surfaces" in Specification B 249 as follows:

10.1.1 Diameter or Distance Between Parallel Surfaces:

10.1.1.1 For M30, rod, Copper Alloy UNS Nos. C36500, C37700, C46400, C48200, C48500, C61900, C62300, C63000, C63200, C64200, C64210, and C67500, refer to Table 4.

10.1.1.2 For M30, rod, Copper Alloy UNS Nos. C11000, C14500, C14700, C65500, and C77400, refer to Table 5.

10.1.1.3 For M20, round rod, refer to Table 6.

10.1.1.4 For M30, bar, refer to Table 4 for width toler-

TABLE 2 Stock Lengths

rdered	Lengt	h, m	1	Shortes	t F	ossible	Length,	m	·
	4	_,	 	·		2 .			
	3					2			
 100	2	٠.				1			

ances for Copper Alloy UNS Nos. C36500, C37700, C46400, C48200, C48500, C61900, C62300, C63000, C63200, C64200, C64210, and C67500.

10.1.1.5 For M30, bar, refer to Table 5 for width tolerances for Copper Alloy UNS Nos. C11000, C14500, C14700, C65500, and C77400.

10.1.1.6 For H50, rod, refer to Table 1 for Copper Alloy UNS Nos. C11000, C14500, C14700, C46400, C48200, and C48500.

10.1.1.7 For H50, rod, refer to Table 2 for Copper Alloy UNS Nos. C36500, C37700, C61900, C62300, C63000, C63200, C64200, C65500, C67500, and C77400.

10.1.1.8 For H50, bar, refer to Tables 7 and 10 for Copper Alloy UNS Nos. C11000, C14500, and C14700.

10.1.1.9 For H50, bar, refer to Tables 8 and 10 for Copper Alloy UNS Nos. C46400, C48200, and C48500.

10.1.1.10 For H50, bar, refer to Tables 9 and 11 for Copper Alloy UNS Nos. C36500, C37700, C61900, C62300, C63000, C63200, C64200, C65500, C67500, and C77400.

10.1.2 Shapes—The dimensional tolerances for shapes shall be agreed upon between the manufacturer and the purchaser and shall be specified in the order.

10.2 Length—Rod, bar, and shapes for forging when ordered to any length will be furnished in stock lengths; unless it is specifically stated in the purchase order that the lengths are to be specific.

10.2.1 Stock lengths for all rod, bar, and shapes for forging up to and including 25 mm in diameter shall be as listed in Table 3 but the weight of lengths less than the length order shall not exceed 40 % of any one shipment. The tolerance for the full-length pieces shall be +25 mm.

10.2.2 For rod and bar for forging over 25 mm up to and including 50 mm in diameter the lengths shall be random lengths, from 1.2 to 3.7 m.

10.2.3 Rod and bar for forging over 50 mm in diameter shall be ordered in special lengths.

10.3 Straightness—The material shall be straight, within 25 mm maximum depth of arc in 1.8 m.

#### 11. Test Methods

11.1 The test method(s) used for quality control or production control, or both, for the determination of conformance with product property requirements are discretionary.

11.1.1 The test method(s) used to obtain data for the preparation of certification or test report, or both, shall be made available to the purchaser on request.

11.2 Chemical Analysis:

11.2.1 Chemical composition shall, in case of disagreement, be determined as follows:

Element	Range, %	Test Method
Aluminum	0.005-12	ISO No. 3110 (AA)
	6-12	E 478
Arsenic	0-0.15	E 62
Copper	43-99.9	E 478
Iron	0.15-5	E 54
Lead	0.023	E 478 (AA)
Manganese	0.10-2.0	E 62
Phosphorus	0.004-0.7	E 62
Silicon	0.10-4	E 62
Sulfur	0-0.5	E 76 (Gravimetric)
Tellurium	0.40-1	E 121
Tin	0.2-1.5	E 478 (Photometric)
Zinc	0.3-1.5	E 478 (AA)
	2-40	E 478 (Titrimetric)

11.2.2 Test Methods for the determination of elements resulting from contractual or purchase order agreement shall be as agreed upon between the manufacturer or supplier and the purchaser.

#### 12. Keywords

12.1 brass forging shapes; brass forgings; bronze forging shapes; bronze forgings; copper alloy forging bar; copper alloy forging materials; copper alloy forging rod; copper alloy forging shapes; copper alloy forgings; copper forging bar; copper forging materials; copper forging rod; copper forging shapes; copper forgings; nickel silver forging shapes; nickel silver forgings

#### APPENDIX

(Nonmandatory Information)

### X1. FORGING PRACTICE

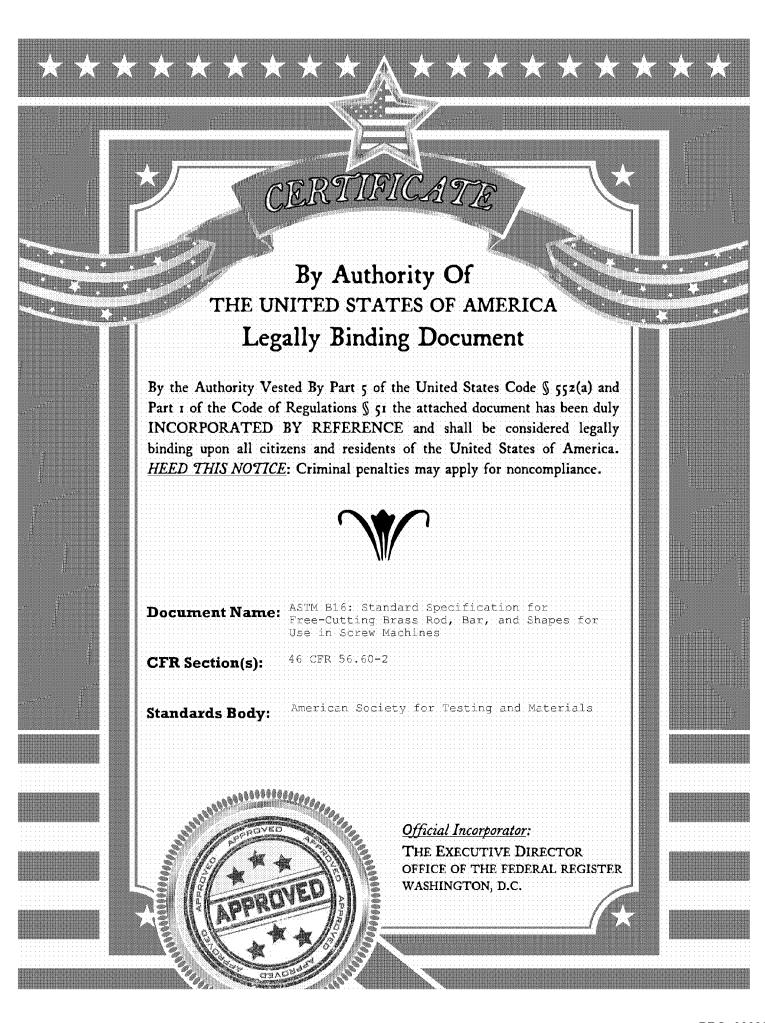
X1.1 The data in Table X1.1 do not constitute a part of this specification. The suggested forging temperatures give the range suitable for hot forging of the alloys and the forgeability ratings illustrate the relative difference in ease of

uin til ette etti us unnu tilailut et linin uinte to naturat

forging with forging brass being the most readily forgeable. For the relative strength of these alloy forgings, as hot pressed, see Specification B 283, Appendix X2, Table X2.1.

TABLE X1.1 Forging Temperatures and Forgeability

Copper or Copper Alloy UNS	Name	Suggested Forging Temperatures	Forgeability Rating ^A
No.	. •	ĸ	
C11000	Copper	1030-1200	65
C14500	Copper-tellurium	1010-1170	65
C14700	Copper-sulfur	750-875	· 65
C36500	Leaded muntz metal, uninhibited	920-1060	100
C37700	Forging brass	920-1060	100
C46400	Naval brass	920-1090	90
C48200	Medium leaded naval brass	920~1090	90
C48500	Leaded naval brass	920-1090	90
C61900	Aluminum bronze	980-1140	75
C62300	Aluminum bronze, 9 %	980-1140	75
C63000	Aluminum-nickel bronze	1060-1200	75
C63200	Aluminum-nickel bronze	1060-1200	75
C64200	Aluminum-silicon bronze	980-1140	75
C64210	Aluminum-silicon bronze, 6.7 %	980-1140	75
C65500	High-silicon bronze (A)	980-1140	40
C67500	Manganese bronze (A)	1010-1120	80
C77400	Nickel silver, 45–10	980-1090	85


A Relative forgeability rating takes into consideration such variable factors as pressure, die wear, and plasticity (hot). Since it is Impractible to reduce these variables to common units, calibration in terms of a percentage of the most generally used alloy, forging brass (100 %), is considered the most practical basis for such ratings. The values shown represent the general opinion and are intended for information to enable the designer to better understand the forging characteristics of these various alloys. Intricate parts are more likely to be available in alloys having a high rating.

### SUMMARY OF CHANGES

The section identifies the location of selected changes to this specification that have been incorporated since the 1994 issue. (1) A change was made in the composition of lead for C 36500 in Table 1.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA 19428.



# Standard Specification for Free-Cutting Brass Rod, Bar and Shapes for Use in Screw Machines¹

This standard is issued under the fixed designation B 16; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense. Consult the DoD Index of Specifications and Standards for the specific year of issue which has been adopted by the Department of Defense.

### 1. Scope

1.1 This specification covers free-cutting brass rod, bar, wire, and shapes of any specified cross section suitable for high-speed screw machine work. The material is Copper Alloy UNS No. C36000.2

1.2 Most rods made to this specification are furnished as straight lengths. However, sizes 1/2 in. and under may be furnished in coil form when requested.

Note 1-A complete metric companion, B 16M, has been developed. Therefore, no metric equivalents are presented in this specifica-

#### 2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein.
  - 2.1.1 ASTM Standards:
  - B 249 Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar and Shapes³
  - B 250 Specification for General Requirements for Wrought Copper-Alloy Wire³
  - B 601 Practice for Temper Designations for Copper and Copper Alloys-Wrought and Cast³
  - E 478 Test Methods for Chemical Analysis of Copper Allovs4
  - E 527 Practice for Numbering Metals and Alloys (UNS)⁵

### 3. Ordering Information

- 3.1 Material ordered to this specification shall contain information listed in the "Ordering Information" section of Specification B 249, plus the following:
  - 3.1.1 Certification, when required,
  - 3.1.2 Mill Test Report, when required, and
- 3.1.3 Quantity—Total weight, footage or number of pieces for each size.
- ¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.02 on Rod, Bar, Shapes, Wire, and Forgings.
- Current edition approved June 15, 1992. Published August 1992. Originally published as B 16 - 17 T. Last previous edition B 16 - 8561
- ² Refer to Practice E 527 for a description of the United Numbering System [UNS].
  - ³ Annual Book of ASTM Standards, Vol 02.01.
  - 4 Annual Book of ASTM Standards, Vol 03.05.
  - 5 Annual Book of ASTM Standards, Vol 01.01.

### 4. General Requirements

4.1 Material supplied shall conform to the applicable requirements of the current edition of Specifications B 249 or B 250 unless otherwise prescribed in this specification.

### 5. Material and Manufacture

5.1 Refer to Specification B 249 for rod, bar and shape items and to Specification B 250 for wire products.

#### 6. Chemical Composition

- 6.1 The material shall conform to the requirements of
- 6.2 Either copper or zinc may be given as the remainder and may be taken as the difference between the sum of all elements analyzed and 100 %.
- 6.3 When all elements in the table are analyzed, their sum shall be 99.5 % minimum.
- 6.4 The specified limits do not preclude the presence of other elements. Limits may be established for unnamed elements by agreement between the manufacturer and the purchaser.

### 7. Temper

- 7.1 Material is available in the following tempers as defined in Practice B 601 as 060 (soft annealed), H02 (half hard) and H04 (hard).
- 7.2 HO2 (half hard) temper rods and bars shall be furnished unless otherwise specified in the contract or purchase order. Metal for applications requiring thread rolling should be so specified in the contract or purchase order. Mechanical requirements of drawn shapes shall be agreed upon between manufacturer and the purchaser.

## 8. Mechanical Properties

- 8.1 Tensile—The material shall conform to the requirement of Table 2.
- 8.2 Rockwell Hardness-The material shall conform to the requirements of Table 3.
- 8.3 The hardness test results, as far as they are specified, shall be the basis for acceptance based on mechanical properties. However, in case of disagreement, final acceptance or rejection shall be determined by the tensile test

# 9. Dimensions, Mass and Permissible Variations

9.1 Refer to the appropriate paragraphs in Specifications

Element	Composition,
Copper	60.063.0
Lead	2.5—3.7
Iron, max	0.35
Zinc	remainder `

B 249 or B 250 with particular reference to the following tables of those specifications.

- 9.2 Diameter or Distance between Parallel Surfaces:
- 9.2.1 Rod in Lengths: Round, Hexagonal, Octagonal—Refer to Table 1 in Specification B 249.
- 9.2.2 Rod in Coils: Round—Refer to Table 1 in Specification B 250.
- 9.2.3 Bar: Rectangular and Square—Refer to Tables 8 and 10 in Specification B 249.
- 9.3 Shapes—The dimensional tolerances for shapes shall be by agreement between the manufacturer and the purchaser and shall be specified in the purchase order or contract.
- 9.4 Length of Rod, Bar and Shapes—Refer to Table 13 in Specification B 249.
- 9.5 Straightness of Rod and Bar—Refer to Table 16 in Specification B 249.
- 9.6 Edge Contours—Refer to the section of Specification B 249 entitled, "Edge Contours" and to Figs. 1, 2 and 3 of that specification.

# 10. Workmanship, Finish and Appearance

10.1 Refer to Specification B 249 for rod, bar, and shape

items and to B 250 for wire products.

### 11. Sampling

11.1 Refer to Specification B 249 for rod, bar, and shape items and to Specification B 250 for wire products.

### 12. Number of Tests and Retests

12.1 Refer to Specification B 249 for rod, bar, and shape items and to Specification B 250 for wire products.

### 13. Specimen Preparation

13.1 Refer to Specification B 249 for the preparation of the appropriate rod, bar, and shape test specimen and to Specification B 250 for the appropriate wire test specimen.

#### 14. Test Methods

14.1 Refer to Specification B 249 for the appropriate test method to be used for rod, bar, and shape items and to Specification B 250 for the appropriate test method to be used for wire products.

14.2 Chemical composition shall, in case of disagreement, be determined as follows:

Element	Test Methods
Copper	E 478
Lead	E 478 Atomic absorption
Iron	E 478
Zinc	E 478 Titrimetric

# 15. Significance of Numerical Limits

15.1 Refer to Specification B 249 for rod, bar, and shape items and to Specification B 250 for wire products.

TABLE 2 Tensile Requirements

Temper Designation			3	Tensile	Yield Strength	Elongation in 4×
Stand- ard	Former	Diameter or Distance Bety	veen Parallel Surfaces, in.	Strength min ksi ^A	at 0.5 % Ex- tension under load min ksi ^A	Diameter or Thickness of Speci- men, min, % ⁸
		N Hymr I V	Flod	The second second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 71 7 7
O60	soft anneal	1 and ur over 1 to over 2		48 44 40	20 18 15	15 20 25
H02	And the second		o 1, incl <i>P</i>	45	25 25 20 15 15	7° 10 15 20 20
H04 .	hard	1/16 to 3/1 over 3/16 over 1/2 t	s, incl to ½, incl	80 70 65	45 35 30	 4 6
			Bar		.,,,,,	
	-	Thickness, in.	Width, in.		44, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<b>O</b> 60	soft anneal	1 and under over 1	6 and under 6 and under	44 40	18 15	20 25
H02	half-hard	1/2 and under 1/2 and under over 1/2 to 2 over 1/2 to 2 over 2	1 and under over 1 to 6 2 and under over 2 to 6 over 2 to 4	50 45 45 40 40	25 17 17 15 15	10 15 15 20 20

A ksi = 1000 psi.

B In any case a minimum gage length of 1 in. shall be used.

^c For material furnished in coils the elongation shall be 4 %, min.

^D If specified for thread rolling applications the minimum tensile strength shall be 52 ksi.

### **TABLE 3** Hardness Requirements

Note-Rockwell tests are not established for diameters less than 1/2 in.

Temper Designation		Diameter or Distance Between Parallel Sur- faces, in.		Rockwell B Hardness Determined on the Cross- Section Midway Between	
Standard	Former			Surface a	and Center
w. ************************************		Rod			
- Andrew				Round	Hexagona and Octagonal
O60	soft anneal	soft anneal ½ and over		10-45	10-45
H02	half-hard	1/2 to 1, in	60-80	55-80	
MU2	Train-Train	over 1 to		55-75	45-80
		over 2 to		45-70	40-65
		over 3 to		40-65	35-60
		over 4		25 min	25 min
		Bar			
10.00		Thickness, in.	Width, In.		
O60	soft anneal	1/2 and over	1/2 and over		0-35
H02	half-hard	1/2 and under	1 and under		5-85
HUZ	Hall Hall	1/2 and under	over 1 to 6		5–70
		over 1/2 to 2, incl	2 and under		0–80
		72 10 -7 177	over 2 to 6	38	570
		over 2	over 2 to 4	38	5–70

A If specified for thread rolling application the Rockwell B hardness shall be 55 to 75.

### 16. Inspection

16.1 Refer to Specification B 249 for rod, bar, and shape items and to Specification B 250 for wire products.

### 17. Rejection and Rehearing

17.1 Refer to Specification B 249 for rod, bar, and shape items and to Specification B 250 for wire products.

### 18. Certification

18.1 Refer to Specification B 249 for rod, bar, and shape items and to Specification B 250 for wire products.

# 19. Mill Test Reports

19.1 Refer to Specification B 249 for rod, bar, and shape

items and to Specification B 250 for wire products.

# 20. Packaging and Package Marking

20.1 Refer to Specification B 249 for rod, bar, and shape items and to Specification B 250 for wire products.

### 21. Supplementary Requirements

21.1 Refer to Specification B 249 for rod, bar, and shape items and to Specification B 250 for wire products.

### 22. Keywords

22.1 free-cutting brass bar; free-cutting brass rod; free-cutting brass shapes; screw machine rod

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 1916 Race St., Philadelphia, PA 19103.

# Standard Specification for Free-Cutting Brass Rod, Bar, and Shapes for Use in Screw Machines [Metric]¹

This standard is issued under the fixed designation B 16M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense. Consult the DoD Index of Specifications and Standards for the specific year of issue which has been adopted by the Department of Defense.

#### 1. Scope

- 1.1 This specification covers free-cutting brass rod, bar, wire and shapes of any specified cross section suitable for high-speed screw machine work. The material is Copper Alloy UNS No. C36000.2
- 1.2 Most rods made to this specification are furnished as straight lengths. However, sizes 12 mm and under may be furnished in coil form when requested.

Note 1—This specification is the metric companion to Specification as the B 16.

### 2. Referenced Documents

- 2.1 The following documents of the issue in effect on the date of material purchase form a part of this specification to the extent referenced herein:
  - 2.1.1 ASTM Standards:
  - B 249M Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar and Shapes (Metric)3
  - B 250M Specification for General Requirements for Wrought Copper-Alloy Wire (Metric)³
  - B 601 Practice for Temper Designations for Copper and Copper Alloys-Wrought and Cast³
  - E 478 Test Methods for Chemical Analysis of Copper
  - E 527 Practice for Numbering Metals and Alloys (UNS)⁵

## 3. General Requirements

- 3.1 For the following information, refer to Specification B 249M for rod, bar and shape items and to Specification B 250M for wire items:
  - 3.1.1 Terminology,
  - 3.1.2 Ordering information,
  - 3.1.3 Materials and manufacture,
  - 3.1.4 Workmanship, finish, and appearance,
  - 3.1.5 Sampling,
  - 3.1.6 Number of tests and retests,

3.1.10 Inspection. 3.1.11 Rejection and rehearing.

3.1.7 Specimen preparation, 3.1.8 Test methods,

- 3.1.12 Certification,
- 3.1.13 Mill test reports,
- 3.1.14 Product marking,
- 3.1.15 Packaging and package marking, and
- 3.1.16 Supplementary requirements.

3.1.9 Significance of numerical limits.

### 4. Chemical Composition

- 4.1 The material of manufacture shall conform to the requirements of Table 1.
- 4.2 Either copper or zinc may be given as the remainder and may be taken as the difference between the sum of all elements analyzed and 100 %.
- 4.3 When all elements in the table are analyzed, their sum shall be 99.5 % minimum.
- 4.4 The specified limits do not preclude the presence of other elements. Limits may be established for unnamed elements by agreement between the manufacturer and the purchaser.

### 5. Physical Properties

- 5.1 Temper—Material is available in the following tempers as defined in Practice B 601 as O60 (soft annealed), H02 (half hard), and H04 (hard).
- 5.2 H02 (half hard) temper rods and bars shall be furnished unless otherwise specified in the contract or purchase order. Metal for applications requiring thread rolling should be so specified in the contract or purchase order. Mechanical requirements of drawn shapes shall be agreed upon between the manufacturer and the buyer.

### 6. Mechanical Properties

- 6.1 Tensile—The material shall conform to the requirements of Table 2.
- 6.2 Rockwell Hardness—The material shall conform to the requirements of Table 3. 1976 of the second of the sec

TABLE 1 Chemical Requirements

Element	Composition, %
Copper	60.0-63.0
Lead Iron, max	2.5-3.7 41 10 20 4 5 10 10 10 0.850 2 5 10 10 10 10 10 10 10 10 10 10 10 10 10
Zinc	remainder

¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.02

on Rod, Bar, Wire Shapes and Forgings.

Current edition approved Nov. 15, 1992. Published January 1993. Originally published as B 16M - 80. Last previous edition B 16M - 85.

² Refer to Practice E 527 for a description of the Unified Numbering System

³ Annual Book of ASTM Standards, Vol 02.01, 4 Annual Book of ASTM Standards, Vol 03.05.

⁵ Annual Book of ASTM Standards, Vol 01.01.

Temper Designation			eter or Distance Parallel Surfaces, mm	Tensile Strength, min, MPa	Yield Strength at, 0.5 % Ex- tension Under Load, min, MPa	Elongation, ^A min, %
Standard	Former		Rod		<u> </u>	
O60	soft anneal	25 and over 25 over 50	to 50, incl	330 305 275	140 125 105	15 20 25
H02	half hard	over 25	! to 25, incl 5 to 50, incl ) to 100, incl	395 380 345 310 275	170 170 140 105 105	7 <i>=</i> 10 15 20 20
H04	hard		4, incl to 12, incl (13) 2 to 18, incl	550 480 450	310 240 205	4 6
		10	Bar		*.	
Standard	Former	Thickness, mm	Width, mm			
O60	soft anneal	25 and under over 25	15 and under 15 and under	305 275	125 105	20 25
H02	half hard	12 and under 12 and under over 12 to 50 over 12 to 50 over 50	25 and under over 25 to 150 50 and under over 50 to 150 over 50 to 100	345 310 310 275 275	170 115 115 105 105	10 15 15 <b>2</b> 0 <b>2</b> 0

A Elongation values are based on a gage length of 5.65 times the square root of the area for dimensions greater than 2.5 mm.

For material furnished in coils the elongation shall be 4 %, min.

If specified for thread rolling applications the minimum tensile strength shall be 350 MPa.

TABLE 3 Hardness Requirements

	Ten	nper Design	ation	Diameter of	Distance Betwee Surfaces, mm	een Parallel		mined on	II B Hardnes the Cross Se een Surface a	ection Mid-
			5/3	 	Rod			V	1	
-0.	Standard		Former	 136	e1		, ¥\$ ,	Round		Hexagonal and Octagonal
1	O60 H02	. ,	soft anneal half hard		12 and over 12 to 25, incl ^A 25 to 50, incl 50 to 75, incl 75 to 100, incl over 100	,		10 to 45 60 to 80 55 to 75 45 to 70 40 to 65 25 min		10 to 45 55 to 80 45 to 80 40 to 65 35 to 60 25 min
	X	<del></del>	1 12		Bar		4 . '			
<del></del>	Standard		Former	 Thickness, mm		Width, mm			1.12	N
:	O60 H02		soft anneal half hard	12 and over 12 and under 12 and under over 12 to 50, in	cl	12 and over 25 and under over 25 to 150 50 and under over 50 to 150 over 50 to 100		,	10 to 35 45 to 85 35 to 70 40 to 80 35 to 70 35 to 70	

A If specified for thread rolling application, the Rockwell B hardness shall be 55 to 75.

6.3 The hardness test results, as far as they are specified, shall be the basis for acceptance based on mechanical properties. However, in case of disagreement, final acceptance or rejection shall be determined by the tensile test results.

# 7. Dimensions, Mass, and Permissible Variations

7.1 Refer to the appropriate paragraphs in Specifications

B 249M or B 250M with particular reference to the following tables of those specifications.

- 7,2 Diameter or Distance between Parallel Surfaces:
- 7.2.1 Rod in Lengths: Round, Hexagonal, Octagonal-Refer to Table 1 in Specification B 249M.
- 7.2.2 Rod in Coils: Round-Refer to Table 1 in Specification B 250M.
- 7.2.3 Bar: Rectangular and Square-Refer to Tables 8 and 10 in Specification B 249M.

- 7.3 Shapes—The dimensional tolerances for shapes shall be as agreed upon between the manufacturer and the purchaser and shall be specified in the purchase order or contract.
- 7.4 Length of Rod, Bar and Shapes—Refer to Table 13 in Specification B 249M.
- 7.5 Straightness of Rod and Bar—Refer to Table 16 in Specification B 249M.
- 7.6 Edge Contours—Refer to the "Edge Contours" section of Specification B 249M and to Figs. 1, 2, and 3.

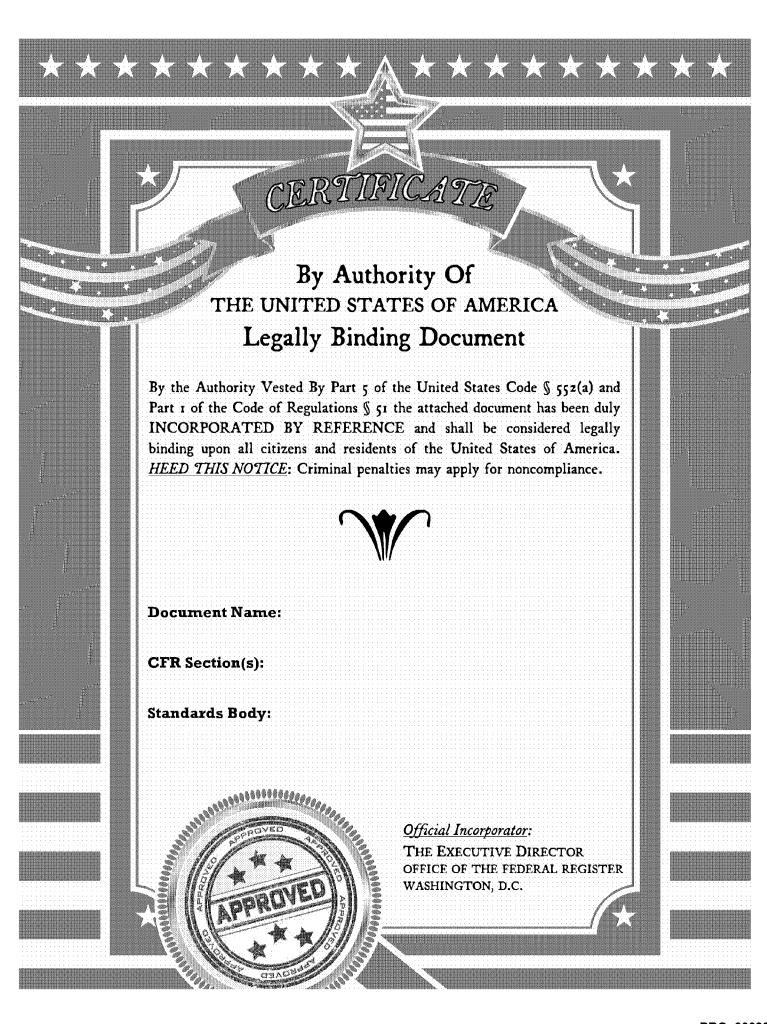
#### 9. Test Methods

9.1 Refer to Specification B 249M for the appropriate

Mine Section 1997年 A Mine Se

mechanical and physical test method, or both, to be used for Rod, Bar and Shape items and to Specification B 250M for the appropriate test method to be used for Wire products.

9.2 Chemical composition shall, in case of disagreement, be determined as follows:


Element		Test Method
Copper :		E 478
Lead		E 478 Atomic absorption
Iron :	100	E 478
Zinc		E 478 Titrimetric

### 10. Keywords

10.1 free-cutting brass bar; free-cutting brass rod; free-cutting brass shapes; screw machine rod

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 1916 Flace St., Philadelphia, PA 19103.





Designation: B 209 - 96

# Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate¹

This standard is issued under the fixed designation B 209; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

### 1. Scope*

- 1.1 This specification² covers aluminum and aluminumalloy flat sheet, coiled sheet, and plate, in the alloys (Note 1) and tempers shown in Tables 2 and 3, and in the following finishes:
- 1.1.1 Plate in all alloys and sheet in heat-treatable alloys: mill finish.
- 1.1.2 Sheet in nonheat-treatable alloys: mill finish, one-side bright mill finish, standard one-side bright finish, and standard two-sides bright finish.
- Note 1-Throughout this specification use of the term alloy in the general sense includes aluminum as well as aluminum alloy.
  - Note 2-See Specification B 632 for tread plate.
- 1.2 Alloy and temper designations are in accordance with ANSI H35.1. The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E 527.
- 1.3 A complete metric companion to Specification B 209 has been developed—B 209 M; therefore, no metric equivalents are presented in this specification.
- 1.4 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.

### 2. Referenced Documents

- 2.1 The following documents of the issue in effect on the date of material purchase, unless otherwise noted, form a part of this specification to the extent referenced herein:
  - 2.2 ASTM Standards:
  - B 548 Method for Ultrasonic Inspection of Aluminum-Alloy Plate for Pressure Vessels³
  - B 557 Test Methods of Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products³

- B 594 Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products for Aerospace Applications³
- B 597 Practice for Heat Treatment of Aluminum Alloys³
- B 660 Practices for Packaging/Packing of Aluminum and Magnesium Products³
- B 666/B 666M Practice for Identification Marking of Aluminum Products³
- E 3 Methods of Preparation of Metallographic Specimens⁴
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications⁵
- E 34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys⁶
- E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition⁶
- E 101 Test Method for Spectrographic Analysis of Aluminum and Aluminum Alloys by the Point-to-Plane Technique7
- E 227 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Point-to-Plane Technique⁶
- E 290 Test Method for Semi-Guided Bend Test for Ductility of Metallic Materials4
- E 407 Test Methods for Microetching Metals and Alloys⁴
- E 527 Practice for Numbering Metals and Alloys (UNS)⁸
- E 607 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Point-to-Plane Technique, Nitrogen Atmosphere⁹
- E 716 Practices for Sampling Aluminum and Aluminum Alloys for Spectrochemical Analysis9
- E 1004 Test Method for Electromagnetic (Eddy-Current) Measurements of Electrical Conductivity¹⁰
- E 1251 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Argon

¹ This specification is under the jurisdiction of ASTM Committee B-7 on Light Metals and Alloys, and is the direct responsibility of Subcommittee B07.03 on Aluminum-Afloy Wrought Products.

Current edition approved Aug. 10, 1996. Published September 1996. Originally published as B 209-46 T. Last previous edition B 209-95.

For ASME Boiler and Pressure Vessel Code applications see related Specification SB-209 in Section II of that Code.

³ Annual Book of ASTM Standards, Vol 02.02.

⁴ Annual Book of ASTM Standards, Vol 03.01.

⁵ Annual Book of ASTM Standards, Vol 14.02.

⁶ Annual Book of ASTM Standards, Vol 03.05.

⁷ Discontinued. See 1995 Annual Book of ASTM Standards, Vol 03.05.

⁸ Annual Book of ASTM Standards, Vol 01.01.

⁹ Annual Book of ASTM Standards, Vol 03.06.

¹⁰ Annual Book of ASTM Standards, Vol 03.03.

Atmosphere, Point-to-Plane, Unipolar Self-Initiating Capacitor Discharge⁹

- G 47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking of High Strength Aluminum Alloy Products¹¹
- G 66 Test Method for Visual Assessment of Exfoliation Corrosion Susceptibility of 5XXX Series Aluminum Alloys (Asset Test)¹¹
- Method of Test for Exfoliation Corrosion Susceptibility in 7XXX Series Copper-Containing Aluminum Alloys (Exco Test) (G34-72)¹²
- 2.3 ANSI Standards:
- H35.1 Alloy and Temper Designation Systems for Aluminum¹³
- H35.2 Dimensional Tolerances for Aluminum Mill Products¹³
- 2.4 Military Standard:
- MIL-STD-129 Marking for Shipment and Storage¹⁴
- 2.5 Military Specification:
- MIL-H-6088 Heat Treatment of Aluminum Alloys¹⁴
- 2.6 Federal Standard:
- Fed. Std. No. 123 Marking for Shipment (Civil Agencies)¹⁴

### 3. Terminology

- 3.1 Definitions:
- 3.1.1 sheet—a rolled product that is rectangular in cross section with thickness less than 0.250 in. but not less than 0.006 in. and with slit, sheared, or sawed edges.
- 3.1.2 alclad sheet—composite sheet comprised of an aluminum-alloy core having on both surfaces (if on one side only, alclad one-side sheet) a metallurgically bonded aluminum or aluminum-alloy coating that is anodic to the core, thus electrolytically protecting the core against corrosion.
- 3.1.3 coiled sheet—sheet in coils with slit edges.
- 3.1.4 flat sheet—sheet with sheared, slit, or sawed edges, which has been flattened or leveled.
- 3.1.5 mill finish sheet—sheet having a nonuniform finish which may vary from sheet to sheet and within a sheet, and may not be entirely free from stains or oil.
- 3.1.6 one-side bright mill finish sheet—sheet having a moderate degree of brightness on one side, and a mill finish on the other.
- 3.1.7 standard one-side bright finish sheet— sheet having a uniform bright finish on one side, and a mill finish on the other.
- 3.1.8 standard two-sides bright finish sheet—sheet having a uniform bright finish on both sides.
- 3.1.9 *plate*—a rolled product that is rectangular in cross section with thickness not less than 0.250 in., and with sheared or sawed edges.
- 3.1.10 alclad plate—composite plate comprised of an aluminum-alloy core having on both surfaces (if on one side

only, alclad one-side plate) a metallurgically bonded aluminum or aluminum alloy coating that is anodic to the core, thus electrolytically protecting the core against corrosion.

- 3.1.11 parent coil or plate—a coil of sheet or a plate that has been processed to final temper as a single unit and subsequently cut into two or more smaller coils or individual sheets or into smaller plates to provide the required width or length, or both.
- 3.1.12 producer—the primary manufacturer of the material.
- 3.1.13 *supplier*—includes only the category of jobbers and distributors as distinct from producers.
  - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 capable of—The term capable of as used in this specification means that the test need not be performed by the producer of the material. However, should testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

#### 4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),
  - 4.1.2 Quantity in pieces or pounds,
  - 4.1.3 Alloy (7.1),
  - 4.1.4 Temper (9.1),
- 4.1.5 Finish for sheet in nonheat-treatable alloys (Section 1),
  - 4.1.6 For sheet, whether flat or coiled,
  - 4.1.7 Dimensions (thickness, width, and length or coil size),
- 4.1.8 Tensile property limits and dimensional tolerances for sizes not covered in Table 2 or Table 3 of this specification and in ANSI H35.2, respectively.
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether supply of one of the pairs of tempers where shown in Table 2, H14 or H24, H34 or H24 is specifically excluded (Table 2, footnote D),
- 4.2.2 Whether heat treatment in accordance with Practice B 597 is required (8.2),
  - 4.2.3 Whether bend tests are required (12.1),
- 4.2.4 Whether testing for stress-corrosion cracking resistance of alloy 2124-T851 is required (13.1),
- 4.2.5 Whether ultrasonic inspection for aerospace or pressure vessel applications is required (Section 17),
- 4.2.6 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (18.1),
  - 4.2.7 Whether certification is required (Section 22),
- 4.2.8 Whether marking for identification is required (20.1), and
- 4.2.9 Whether Practices B 660 applies and, if so, the levels of preservation, packaging, and packing required (23.121.1).

# 5. Responsibility for Quality Assurance

5.1 Responsibility for Inspection and Tests—Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test

¹¹ Annual Book of ASTM Standards, Vol 03.02.

¹² The applicable edition in the use of this specification is G34–72—available in the Related Materials section (gray pages) of the *Annual Book of ASTM Standards*, vol. 20.

¹³ Available in the Related Materials section (gray pages) of the Annual Book of ASTM Standards, Vol 02.02.

¹⁴ Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, Attn: NPODS.

TABLE 1 Chemical Composition Limits^{A,B},C

A.II	09		0			Olemeneters	71	Therefore	Other E	lements $^{\!D}$	A la sura la susa
Alloy	Silicon	Iron	Copper	Manganese	Magnesium	Chromium	Zinc	Titanium	Each	Total [∉]	- Aluminum
1060	0.25	0.35	0.05	0.03	0.03	•/•	0.05	0.03	0.03 ^F	***	99.60 min ^G
1100	0.95 Si	+ Fe	0.05 - 0.20	0.05			0.10		0.05	0.15	99.00 min [©]
1230 ^H	0.70 SI	+ Fe	0.10	0.05	0.05	***	0.10	0.03	$0.03^{F}$	***	99.30 min ^G
2014	0.50-1.2	0.7	3.9-5.0	0.40-1.2	0.20-0.8	0.10	0.25	0.15	0.05	0.15	remainder
Alclad 2014					201	14 clad with 6	003				
2024	0.50	0.50	3.8-4.9	0.30-0.9	1.2-1.8	0.10	0.25	0.15	0.05	0.15	remainder
Nolad 2024						24 clad with 1					
2124	0.20	0.30	3.8-4.9	0.30-0.9	1.2-1.8	0.10	0.25	0.15	0.05	0.15	remainder
2219	0.20	0.30	5.8-6.8	0.20-0.40	0.02	***	0.10	0.02-0.10	0.05	$0.15^{t}$	remainder
Alclad 2219	01140	0.00	0.0 0.0			19 clad with 7					
3003	0.6	0.7	0.05-0.20	1.0-1.5		***	0.10	***	0.05	0.15	remainder
Alclad 3003	0.0	0.,	0.00 0.20	110 110		33 clad with 7		•••	0.00	0.10	(Officeration
3004	0.30	0.7	0.25	1.0-1.5	0.8-1.9		0.25	,	0.05	0.15	remainder
Alclad 3004	5.55	0.7	0,20	.,0 1.0		 04 clad with 7		•••	J. 00	3.10	, 5(4) (40)
3005	0.6	0.7	0.30	1.01.5	0.20-0.6	0.10	0.25	0.10	0.05	0.15	remainder
3105	0.6	0.7	0.30	0.30-0.8	0.20-0.8	0.20	0.40	0.10	0.05	0.15	remainder
5 <b>00</b> 5	0.30	0.7	0.20	0.20	0.50-1.1	0.10	0.25		0.05	0.15	remainder
5003 5010	0.40	0.7	0.25	0.100.30	0.20-0.6	0.15	0.20	0.10	0.05	0.15	remainder
5050	0.40	0.7	0.20	0.10-0.30	1.1-1.8	0.10	0.30		0.05	0.15	remainder
5050 5052	0.40		0.20	0.10	2.2-2.8	0.150.35	0.10	***	0.05	0.15	remainder
		0.40				0.15-0.35	0.10	0.45		0.15	
5083	0.40	0.40	0.10	0.40-1.0	4.0-4.9			0.15	0.05		remainder
5086	0.40	0.50	0.10	0.20-0.7	3.5-4.5	0.05-0.25	0.25	0.15	0.05	0.15	remainder
5154	0.25	0.40	0.10	0.10	3.1-3.9	0.15-0.35	0.20	0.20	0.05	0.15	remainder
5252	80.0	0.10	0.10	0.10	2.2-2.8		0.05		0.03 ^F	0.10 ^F	remainder
5254	0.45 Si		0.05	0.01	3.1-3.9	0.15-0.35	0.20	0.05	0.05	0.15	remainder
3454	0.25	0.40	0.10	0.501.0	2.4-3.0	0.05-0.20	0.25	0.20	0.05	0.15	remainder
5456	0.25	0.40	0.10	0.50-1.0	<b>4.7–5.</b> 5	0.05-0.20	0.25	0.20	0.05	0.15	remainder
5457	80.0	0.10	0.20	0.15-0.45	0.8-1.2	***	0.05	***	$0.03^{F}$	0.10	remainder
5652	0.40 Si		0.04	0.01	2.2-2.8	0.150.35	0.10	***	0.05	0.15	remainder
5657	80.0	0.10	0.10	0.03	0.6-1.0	***	0.05	414	$0.02^{J}$	$0.05^{J}$	remainder
3003 ^H	0.351.0	0.6	0.10	8.0	0.8~1.5	0.35	0.20	0.10	0.06	0.15	remainder
6061	0.400.8	0.7	0.15-0.40	0.15	0.8-1.2	0.04 - 0.35	0.25	0.15	0.05	0.15	remainder
Alciad 6061						31 clad with 7	072				
7008 ^H	0.10	0.10	0.05	0.05	0.7-1.4	0.12-0.25	4.5-5.5	0.05	0.05	0.10	remainder
7011 [#]	0.15	0.20	0.05	0.10-0.30	1.0~1.6	0.050.20	4.05.5	0.05	0.05	0.15	remainder
7072 ^H	0.7 Si +	Fe	0.10	0.10	0.10	***	0.81.3	***	0.05	0.15	remainder
7075	0.40	0.50	1.2-2.0	0.30	2.1-2.9	0.18-0.28	5.1-6.1	0.20	0.05	0.15	remainder
Alclad 7075						75 clad with 7					
7008 Alclad 7075						75 clad with 7					
7011 Alclad 7075						75 clad with 7					
7178	0.40	0.50	1.6-2.4	0.30	2.4-3.1	0.18-0.28	6.37.3	0.20	0.05	0.15	remainder
Alclad 7178	31.0	0.00		2.00		78 clad with 7			2.00	2	

ALimits are in weight percent maximum unless shown as a range or stated otherwise.

requirements specified herein. The producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to ensure that material conforms to prescribed requirements.

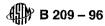
- 5.2 Lot Definition— An inspection lot shall be defined as follows:
- 5.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and thickness traceable to a heat-treat lot or lots, and subjected to inspection at one time.

^B Analysis shall be made for the elements for which limits are shown in this table.

^C For purposes of determining conformance to these limits, an observed value or a calculated value attained from analysis shall be rounded to the nearest unit in the last righthand place of figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E 29.

^D Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered nonconforming.

E Other Elements—Total shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.


F Vanadium 0.05 max. The total for other elements does not include vanadium.

^o The aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

Tomposition of dadding alloy as applied during the course of manufacture. Samples from finished sheet or plate shall not be required to conform to these limits.

Vanadium 0.05-0.15, zirconium 0.10-0.25. The total for other elements does not include vanadium and zirconium.

 $^{^{\}prime}$  Gallium 0.03 max, vanadium 0.05 max. The total for other elements does not include vanadium or gallium.



5.2.2 For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and thickness subjected to inspection at one time.

### 6. General Quality

- 6.1 Unless otherwise specified, the material shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Any requirement not so covered is subject to negotiation between producer and purchaser.
- 6.2 Each sheet and plate shall be examined to determine conformance to this specification with respect to general quality and identification marking. On approval of the purchaser, however, the producer may use a system of statistical quality control for such examinations.

### 7. Chemical Composition

7.1 Limits—The sheet and plate shall conform to the chemical composition limits specified in Table 1. Conformance shall be determined by the producer by analyzing samples taken at the time the ingots are poured, or samples taken from the finished or semifinished product. If the producer has determined the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product.

Note 3—It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

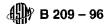
- 7.2 Number of Samples—The number of samples taken for determination of chemical composition shall be as follows:
- 7.2.1 When samples are taken at the time the ingots are poured, at least one sample shall be taken for each group of ingots poured simultaneously from the same source of molten metal.
- 7.2.2 When samples are taken from the finished or semifinished product, a sample shall be taken to represent each 4000 lb, or fraction thereof, of material in the lot, except that not more than one sample shall be required per piece.
- 7.3 Methods of Sampling—Samples for determination of chemical composition shall be taken in accordance with one of the following methods:
- 7.3.1 Samples for chemical analysis shall be taken by drilling, sawing, milling, turning, or clipping a representative piece or pieces to obtain a prepared sample of not less than 75 g. Sampling shall be in accordance with Practice E 55.
- 7.3.2 Sampling for spectrochemical analysis shall be in accordance with Practices E 716. Samples for other methods of analysis shall be suitable for the form of material being analyzed and the type of analytical method used.

Note 4—It is difficult to obtain a reliable analysis of each of the components of clad materials using material in its finished state. A reasonably accurate determination of the core composition can be made if the cladding is substantially removed prior to analysis. The cladding composition is more difficult to determine because of the relatively thin layer and because of diffusion of core elements to the cladding. The correctness of cladding alloy used can usually be verified by a combina-

tion of metallographic examination and spectrochemical analysis of the surface at several widely separated points.

7.4 Methods of Analysis—The determination of chemical composition shall be made in accordance with suitable chemical (Test Methods E 34), or spectrochemical (Test Methods E 101, E 227, E 607, and E 1251) methods. Other methods may be used only when no published ASTM method is available. In case of dispute, the methods of analysis shall be agreed upon between the producer and purchaser.

### 8. Heat Treatment


- 8.1 Unless specified in 8.2, producer or supplier heat treatment for the applicable tempers in Table 3 shall be in accordance with MIL-H-6088.
- 8.2 When specified, heat treatment of applicable tempers in Table 3 shall be in accordance with Practice B 597.

### 9. Tensile Properties of Material as Supplied

- 9.1 Limits—The sheet and plate shall conform to the requirements for tensile properties as specified in Table 2 and Table 3 for nonheat-treatable and heat-treatable alloys, respectively.
- 9.1.1 Tensile property limits for sizes not covered in Table 2 or Table 3 shall be as agreed upon between the producer and purchaser and shall be so specified in the contract or purchase order.
- 9.2 Number of Samples—One sample shall be taken from each end of each parent coil, or parent plate, but no more than one sample per 2000 lb of sheet or 4000 lb of plate, or part thereof, in a lot shall be required. Other procedures for selecting samples may be employed if agreed upon between the producer and purchaser.
- 9.3 Test Specimens— Geometry of test specimens and the location in the product from which they are taken shall be as specified in Test Methods B 557.
- 9.4 Test Methods— The tension test shall be made in accordance with Test Methods B 557.

# 10. Producer Confirmation of Heat-Treat Response

- 10.1 In addition to the requirements of 9.1, material in the O or F temper of alloys 2014, Alclad 2014, 2024, Alclad 2024, 1½ % Alclad 2024, Alclad one-side 2024, 1½ % Alclad one-side 2024, 6061, and Alclad 6061 shall, upon proper solution heat treatment and natural aging at room temperature, develop the properties specified in Table 3 for T42 temper material. The natural aging period at room temperature shall be not less than 4 days, but samples of material may be tested prior to 4 days aging, and if the material fails to conform to the requirements of T42 temper material, the tests may be repeated after completion of 4 days aging without prejudice.
- 10.2 Also, material in the O or F temper of alloys 2219, Alclad 2219, 6061, 7075, Alclad 7075, Alclad one-side 7075, 7008 Alclad 7075, 7178, and Alclad 7178 shall, upon proper solution heat treatment and precipitation heat treatment, develop the properties specified in Table 3 for T62 temper material.
- 10.3 Mill-produced material in the O or F tempers of 7008 Alclad 7075 shall, upon proper solution heat treatment and



stabilizing, be capable of attaining the properties specified in Table 3 for the T76 temper.

10.4 Number of Specimens—The number of specimens from each lot of O temper material and F temper material to be tested to verify conformance with 10.1-10.3 shall be as specified in 9.2.

### 11. Heat Treatment and Reheat-Treatment Capability

11.1 Mill-produced material in the O or F temper of alloys 2014, Alclad 2014, 2024, Alclad 2024, 11/2 % Alclad 2024, Alclad one-side 2024, 11/2 % Alclad one-side 2024, 6061, and Alclad 6061 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and natural aging at room temperature, develop the properties specified in Table 3 for T42 temper material. The natural aging period at room temperature shall be not less than 4 days, but samples of material may be tested prior to 4 days aging, and if the material fails to conform to the requirements of T42 temper material, the tests may be repeated after completion of 4 days aging without prejudice.

11.2 Mill-produced material in the O or F temper of alloys 2219, Alclad 2219, 6061, 7075, Alclad 7075, Alclad one-side 7075, 7008 Alclad 7075, 7178, and Alclad 7178 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and precipitation heat treatment, develop the properties specified in Table 3 for T62 temper material.

11.3 Mill-produced material in the O or F temper of 7008 Alclad 7075 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and stabilizing, be capable of attaining the properties specified in Table 3 for the T76 temper.

11.4 Mill-produced material in the following alloys and tempers shall, after proper resolution heat treatment and natural aging for four days at room temperature, be capable of attaining the properties specified in Table 3 for the T42 temper.

Alloys	temporo
2014 and Alclad 2014	T3, T4, T451, T6, T65
2024 and Alclad 2024	T3, T4, T351, T81,

T851 T3, T351, T81, T851 11/2 % Alciad 2024, Alciad One-side 2024 and 11/2 % Alclad One-side 2024

Note 5-Beginning with the 1974 revision 6061 and Alclad 6061 T4, T451, T6, and T651 were deleted from this paragraph because experience has shown that reheat-treated material may develop large recrystallized grains and may fail to develop the tensile properties shown in Table 3.

11.5 Mill-produced material in the following alloys and tempers shall, after proper resolution heat treatment and precipitation heat treatment, be capable of attaining the properties specified in Table 3 for the T62 temper.

Alloys	Tempers

2219 and Alclad 2219	T31, T351, T81, T851
7075	T6, T651, T73, T7351, T76, T7651
Alclad 7075, 7008 Alclad 7075,	T6, T651, T76, T7651
7178, and Alclad 7178	
Alciad One-side 7075	T6, T651

11.6 Mill-produced material in the following alloys and tempers and T42 temper material shall, after proper precipitation heat treatment, be capable of attaining the properties specified in Table 3 for the aged tempers listed below.

Alloy and Temper

2014 and Alclad 2014-T3, T4, T42, T451 2024, Alclad 2024, 11/2 % Alclad 2024, Alclad T81, T851, T861, T62 or T72, One-side 2024 and 11/2 % Alclad One-

T6, T6, T respectively respectively

2024-T3, T351, T361, T42 2219 and Alclad 2219-T31, T351, T37 6061 and Alclad 6061-T4, T451, T42

T81, T851, T87, respectively T6, T651, T62, respectively

#### 12. Bend Properties

12.1 Limits—Sheet and plate shall be capable of being bent cold through an angle of 180° around a pin having a diameter equal to N times the thickness of the sheet or plate without cracking, the value of N being as prescribed in Table 2 for the different alloys, tempers, and thicknesses. The test need not be conducted unless specified on the purchase order.

12.2 Test Specimens— When bend tests are made, the specimens for sheet shall be the full thickness of the material, approximately 3/4 in. in width, and when practical, at least 6 in. in length. Such specimens may be taken in any direction and their edges may be rounded to a radius of approximately 1/16 in. if desired. For sheet less than ¾ in. in width, the specimens should be the full width of the material.

12.3 Test Methods- The bend tests shall be made in accordance with Test Method E 290 except as stated otherwise in 12.2.

### 13. Stress-Corrosion Resistance

13.1 When specified on the purchase order or contract, alloy 2124-T851, 2219-T851, and 2219-T87 plate shall be subjected to the test specified in 13.3 and shall exhibit no evidence of stress-corrosion cracking. One sample shall be taken from each parent plate in each lot and a minimum of three adjacent replicate specimens from this sample shall be tested. The producer shall maintain records of all lot acceptance test results and make them available for examination at the producer's

13.2 Alloy 7075 in the T73-type and T76-type tempers, and alloys Alclad 7075, 7008 Alclad 7075, 7178, and Alclad 7178 in the T76-type tempers, shall be capable of exhibiting no evidence of stress-corrosion cracking when subjected to the test specified in 13.3.

13.2.1 For lot-acceptance purposes, resistance to stresscorrosion cracking for each lot of material shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.

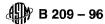
13.2.2 For surveillance purposes, each month the producer shall perform at least one test for stress-corrosion resistance in accordance with 13.3 on each applicable alloy-temper for each thickness range 0.750 in. and over listed in Table 3, produced that month. Each sample shall be taken from material considered acceptable in accordance with lot-acceptance criteria of Table 4. A minimum of three adjacent replicate specimens shall be taken from each sample and tested. The producer shall maintain records of all lots so tested and make them available for examination at the producer's facility.

13.3 The stress-corrosion cracking test shall be performed on plate 0.750 in. and over in thickness as follows:

- 13.3.1 Specimens shall be stressed in tension in the short transverse direction with respect to grain flow and held at constant strain. For alloy 2124-T851, the stress levels shall be 50 % of the specified minimum long transverse yield strength. For alloy 2219-T851 and T87, the stress levels shall be 75 % of the specified minimum long transverse yield strength. For T73-type tempers, the stress level shall be 75 % of the specified minimum yield strength and for T76-type it shall be 25 ksi.
- 13.3.2 The stress-corrosion test shall be made in accordance with Test Method G 47.
- 13.3.3 There shall be no visual evidence of stress-corrosion cracking in any specimen, except that the retest provisions of 19.2 shall apply.

### 14. Exfoliation-Corrosion Resistance

14.1 Alloys 5083, 5086, and 5456 in the H116 temper shall be capable of exhibiting no evidence of exfoliation corrosion when subjected to the test described in Test Method G 66.


Note 6—Alloys 5083, 5086, and 5456 should not be used for continuous service at temperatures exceeding 150°F because of susceptibility to stress corrosion cracking. In addition, stress corrosion susceptibility is increased by cold forming.

14.1.1 For lot-acceptance purposes, the acceptability of each lot of material in the alloys and temper listed in 14.1 shall be determined by the producer by metallographic examination of one sample per lot selected from midsection at one end of a random sheet or plate. The microstructure of the sample from each production lot shall be compared to that of a producerestablished reference photomicrograph of acceptable material in the same thickness range which is characterized by being predominantly free of a continuous grain boundary network of aluminum-magnesium (Mg 2Al3) precipitate. A reference photomicrograph taken at 500× shall be established for each of the thickness ranges shown in Table 2 in which materials are produced and shall be taken from a sample within that thickness range. A longitudinal section perpendicular to the rolled surface shall be prepared for metallographic examination (see Methods E 3, symbol E in Fig. 1) and shall be microetched for metallographic examination using 40 % phosphoric acid etch for 3 min at 95°F or using etchant No. 6 in accordance with Test Methods E 407, Table 2, for 2 min. The metallographic examination shall be conducted at 500× magnification. If the microstructure shows evidence of aluminummagnesium precipitate in excess of the producer-established reference photomicrograph of acceptable material, the lot is either rejected or tested for exfoliation-corrosion resistance in accordance with 14.1. The sample for corrosion test should be selected in the same manner specified for metallographic tests and shall be taken from the same sheet or plate used for metallographic test. Specimens prepared from the sample shall be full section thickness, except that for material 0.101 in. or more in thickness, 10 % of the thickness shall be removed, by machining, from one as-rolled surface. Both the machined surface and the remaining as-rolled surface shall be evaluated after exposure to the test solution. Production practices shall not be changed after establishment of the reference micrograph except as provided in 14.1.3.

- 14.1.2 The producer shall maintain at the producing facility all records relating to the establishment of reference photomicrographs and production practices.
- 14.1.3 Significant changes in production practices that alter the microstructures of the alloy shall require qualification of the practice in accordance with 14.1.1.
- 14.2 Alloys 7075, Alclad 7075, 7008 Alclad 7075, 7178, and Alclad 7178, in the T76-type tempers, shall be capable of exhibiting no evidence of exfoliation corrosion equivalent to or in excess of that illustrated by Category B in Fig. 2 of Method of Test for Exfoliation Corrosion Susceptibility in 7XXX Series Copper Containing Aluminum Alloys (Exco Test) (G34-72)¹⁴ when subjected to the test in 14.3.
- 14.2.1 For lot-acceptance purposes, resistance to exfoliation corrosion for each lot of material in the alloys and tempers listed in 14.2 shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.
- 14.2.2 For surveillance purposes, each month the producer shall perform at least one test for exfoliation-corrosion resistance for each alloy for each thickness range listed in Table 3, produced that month. The samples for test shall be selected at random from material considered acceptable in accordance with the lot-acceptance criteria of Table 4. The producer shall maintain records of all surveillance test results and make them available for examination.
- 14.3 The test for exfoliation-corrosion resistance shall be made in accordance with Method of Test for Exfoliation Corrosion Susceptibility in 7XXX Series Copper Containing Aluminum Alloys (Exco Test) (G34-72)¹⁴ and the following:
- 14.3.1 The specimens shall be a minimum of 2 in. by 4 in. with the 4-in. dimension in a plane parallel to the direction of final rolling. They shall be full-section thickness specimens of the material except that for material 0.101 in. or more in thickness, 10 % of the thickness shall be removed by machining one surface. The cladding of alclad sheet of any thickness shall be removed by machining the test surface; the cladding on the back side (nontest surface) of the specimen for any thickness of alclad material shall also either be removed or masked off. For machined specimens, the machined surface shall be evaluated by exposure to the test solution.

### 15. Cladding

- 15.1 Preparatory to rolling alclad sheet and plate to the specified thickness, the aluminum or aluminum-alloy plates which are bonded to the alloy ingot or slab shall be of the composition shown in Table 1 and shall each have a thickness not less than that shown in Table 5 for the alloy specified.
- 15.2 When the thickness of the cladding is to be determined on finished material, not less than one transverse sample approximately 3/4 in. in length shall be taken from each edge and from the center width of the material. Samples shall be mounted to expose a transverse cross section and shall be polished for examination with a metallurgical microscope. Using 100× magnification, the maximum and minimum cladding thickness on each surface shall be measured in each of five fields approximately 0.1 in. apart for each sample. The average of the ten values (five minima plus five maxima) on each sample surface is the average cladding thickness and shall



meet the minimum average and, when applicable, the maximum average specified in Table 5.

### 16. Dimensional Tolerances

16.1 Thickness—The thickness of flat sheet, coiled sheet, and plate shall not vary from that specified by more than the respective permissible variations prescribed in Tables 3.1 and Tables 3.13 of ANSI H35.2. Permissible variations in thickness of plate specified in thicknesses exceeding 6 in. shall be the subject of agreement between the purchaser and the producer or the supplier at the time the order is placed.

16.2 Length, Width, Lateral Bow, Squareness, and Flatness—Coiled sheet shall not vary in width or in lateral bow from that specified by more than the permissible variations prescribed in Tables 3.5 and Tables 3.6, respectively, of ANSI H35.2. Flat sheet and plate shall not vary in width, length, lateral bow, squareness, or flatness by more than the permissible variations prescribed in the following tables of ANSI H35.2 except that where the tolerances for sizes ordered are not covered by this standard the permissible variations shall be the subject of agreement between the purchaser and the producer or the supplier at the time the order is placed:

Table No.	Title
3.2	width, sheared flat sheet and plate
3.3	width and length, sawed flat sheet and plate
3.4	length, sheared flat sheet and plate
3.7	lateral bow, flat sheet and plate
3.8	squareness, flat sheet and plate
3.11	flatness, flat sheet
3.12	flatness, sawed or sheared plate

16.3 Dimensional tolerances for sizes not covered in ANSI H35.2 shall be as agreed upon between the producer and purchaser and shall be so specified in the contract or purchase order.

16.4 Sampling for Inspection—Examination for dimensional conformance shall be made to ensure conformance to the tolerance specified.

### 17. Internal Quality

17.1 When specified by the purchaser at the time of placing the order, plate 0.500 in. to 4.500 in. in thickness and up to 2000 lb in maximum weight in alloys 2014, 2024, 2124, 2219, 7075, and 7178, both bare and Alclad where applicable, shall be tested in accordance with Practice B 594 to the discontinuity acceptance limits of Table 6.

17.2 When specified by the purchaser at the time of placing the order, plate 0.500 in. in thickness and greater for ASME pressure vessel applications in alloys 1060, 1100, 3003, Alclad 3003, 3004, Alclad 3004, 5052, 5083, 5086, 5154, 5254, 5454, 5456, 5652, 6061, and Alclad 6061 shall be tested in accordance with Method B 548. In such cases the material will be subject to rejection if the following limits are exceeded unless it is determined by the purchaser that the area of the plate containing significant discontinuities will be removed during the subsequent fabrication process or that the plate may be repaired by welding:

17.2.1 If the longest dimension of the marked area representing a discontinuity causing a complete loss of back reflection (95 % or greater) exceeds 1.0 in.

17.2.2 If the length of the marked area representing a discontinuity causing an isolated ultrasonic indication without a complete loss of back reflection (95 % or greater) exceeds 3.0 in

17.2.3 If each of two marked areas representing two adjacent discontinuities causing isolated ultrasonic indications without a complete loss of back reflection (95 % or greater) is longer than 1.0 in., and if they are located within 3.0 in. of each other.

#### 18. Source Inspection

18.1 If the purchaser desires that his representative inspect or witness the inspection and testing of the material prior to shipment, such agreement shall be made by the purchaser and producer as part of the purchase contract.

18.2 When such inspection or witness of inspection and testing is agreed upon, the producer shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary interference with the producer's operations.

### 19. Retest and Rejection

19.1 If any material fails to conform to all of the applicable requirements of this specification, the inspection lot shall be rejected.

19.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All specimens so selected for retest shall meet the requirements of the specification or the lot shall be subject to rejection.

19.3 Material in which defects are discovered subsequent to inspection may be rejected.

19.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of material to the purchaser. As much as possible of the rejected material shall be returned to the producer or supplier by the purchaser.

### 20. Identification Marking of Product

20.1 When specified on the purchase order or contract, all sheet and plate shall be marked in accordance with Practice B 666.

20.2 In addition, alloys in the 2000 and 7000 series in the T3-, T4-, T6-, T7-, and T8-type tempers and, when specified, 6061-T6 and T651 shall be marked with the lot number in at least one location on each piece.

20.3 The requirements specified in 20.1 and 20.2 are minimum; marking systems that involve added information, larger characters, and greater frequencies are acceptable under this specification.

### 21. Packaging and Package Marking

21.1 The material shall be packaged to provide adequate protection during normal handling and transportation and each package shall contain only one size, alloy, and temper of material unless otherwise agreed. The type of packaging and gross weight of containers shall, unless otherwise agreed, be at

the producer's or supplier's discretion, provided that they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.

21.2 Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.

21.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practices B 660. The applicable levels shall be as specified in the contract or order. Marking for shipment of such material shall be in accordance with Fed. Std. No. 123 for civil agencies and MIL-STD-129 for military agencies.

### 22. Certification

22.1 The producer or supplier shall, on request, furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification, and has met the requirements.

### 23. Keywords

23.1 aluminum alloy; aluminum-alloy plate; aluminum-alloy sheet

TABLE 2 Mechanical Property Limits for Nonheat-Treatable Alloy^A,^B

Temper	Specified Thickness, in.	Tensile 8	Strength, ksi	Yield Strength (0		Elongation in 2 in. or 4 × Diameter,	Bend Diameter Factor, N
		(IIII)	max	mln	max	min, %	i dolon, (Y
	- Landard National Association Control of the Contr		Aluminum	1060			
0	0.006-0.019	8.0	14.0	2.5	***	15	***
	0.020-0.050	8.0	14.0	2.5	***	22	***
	0.051-3.000	0.8	14.0	2.5	•••	25	•••
H12 ^o	0.0170.050	11.0	<b>16.</b> 0	9.0	***	6	
or	0.051-2.000	11.0	16.0	9.0	444	12	***
H22°				0.0	***	12	***
H14 ^C	0.009-0.019	12.0	17.0	10.0		4	
or	0.020-0.050	12.0	17.0	10.0	***	1	•••
H24 ^C	0.051-1.000	12.0	17.0	10.0	***	5	
. 12-7	0.001 1.000	12.0	17.0	10.0	131	10	***
H18 ^C	0.006-0.019	14.0	19.0	11.0	111	1	***
or	0.0200.050	14.0	19.0	11.0	***	4	***
H26 ^C	0.051-0.162	14.0	19.0	11.0	***	5	***
H18 ^C	0.006-0.019	16.0	/11	12.0		1	
or	0.020-0.050	16.0	***	12.0	***	3	1+1
H28 ^C	0.051-0.128	16.0	***	12.0	***	4	***
H112	0.250-0.499	11.0		7.0		40	
11114	0.500-1.000	10.0	***	7.0 5.0	***	10	***
	1.001-3.000	9.0	***	4.0	***	20 25	***
F	0.250-3.000	291	***				
		***	Aluminum	1100	¥.4 ¥	\$ 1.4	***
<u> </u>	0.006-0.019	11.0					
J	0.020~0.031	11.0	15.5 15.5	3.5	***	15	0
	0.032-0.050	11.0	15.5 15.5	3.5 3.5	***	20 25	0
	0.051-0.249	11.0	15.5	3.5	***	30	0
	0.250-3.000	11.0	15.5	3.5	***	28	0
uaC							
112 ⁰	0.017-0.019	14.0	19.0	11.0	***	3	O
Oľ Joo <i>C</i>	0.020-0.031	14.0	19.0	11.0	***	4	O.
122°	0.032-0.050	14.0	19.0	11.0	***	6	0
	0.051-0.113	14.0	19.0	11.0	***	8	0
	0.1140.499 0.5002.000	14.0 14.0	19.0 19.0	11.0 11.0	***	9 12	0
	V.000-2.000	14.0	19.0	11.0	1+4	12	0
114 ^C	0.009-0.012	16.0	21.0	14.0	***	1	0
or la 4G	0.013-0.019	16.0	21.0	14.0	***	2	0
124 ^C	0.020-0.031	16.0	21.0	14.0	***	3	О
	0.0320.050	16.0	21.0	14.0	***	4	0
	0.051-0.113	16.0	21.0	14.0	***	5	0
	0.114~0.499 0.500–1.000	16,0 16.0	21.0 21.0	14.0 14.0		6 10	0 0
or							
116 ⁰	0.0060.019	19.0	24.0	17.0	.434	1	4



TABLE 2 Continued

			TABLE 2	Continued			
Temper	Specified Thickness, in.	Tensile Si	trength, ksi	Yield Strength (0.	2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
tempe		min	max	min	max	Diameter, min, %	Factor, N
or	0.020-0.031	19.0	24.0	17.0	F#1	2	4
126 ^C	0.032-0.050	19.0	24.0	17.0	**1	3	4
	0.051-0.162	19.0	24.0	17.0	•••	4	4
118 [©]	0.006-0.019	22.0	***	***	***	1	
or	0.020-0.031	22.0	***	***	***	2	
-128 ^C	0.032-0.050	22.0	***	***	***	3	
11.0	0.051-0.128	22.0	***	•••	•••	4	***
1112	0,250-0,499	13.0	***	7.0	***	9	***
1112.	0.500-2.000	12.0	***	5.0	***	14	***
	2.001-3.000	11.5	***	4.0	***	20	
⊒D	0.250-3.000		***		•••	114	***
*****			Alloy 30	003	E = co) ###################################		
)	0.006-0.007	14.0	19.0	5.0	***	14	0
	0.008-0.012	14,0	19.0	5.0	***	18	0
	0.013-0.031	14.0	19.0	5.0	***	20	0
	0.032-0.050	14.0	19.0	5.0	***	23	0
	0.051-0.249	14.0	19.0	5.0	***	25	0
	0.250-3.000	14.0	19.0	5.0	***	23	***
H12 ^C	0.0170.019	17.0	23.0	12.0	4+4	3	0
or	0.020-0.031	17.0	23.0	12.0	***	4	Ö
H22 ^C	0.032-0.050	17.0	23.0	12.0	***	5	Ö
12-2-	0.051-0.113	17.0	23.0	12.0	•••	6	ő
	0.114-0.161	17.0	23.0	12.0		7	ō
		17.0	23.0	12.0	144	8	ŏ
	0.162-0.249	17.0	23.0	12.0	***	9	
	0.2500.499 0.5002.000	17.0	23.0	12.0	***	10	***
		50.0	20.0	470		1	0
H14 ^C	0.009-0.012	20.0	26.0	17.0	***		
or	0.013-0.019	20.0	26.0	17.0		2	0
H24 ^C	0.020-0.031	20.0	26.0	17.0	***	3	0
	0.0320.050	20.0	26.0	17.0	***	4	0
	0.051-0.113	2 <b>0</b> .0	26.0	17.0	•••	5	0
	0,1140.161	20.0	26.0	17.0	***	6	2
	0.162-0.249	20.0	26.0	17.0	***	7	2
	0.250-0.499	20.0	26.0	17.0	***	8	***
	0.500-1.000	20.0	26.0	17.0	***	10	
H16 [©]	0.006-0.019	24.0	30.0	21.0	***	1	4
or	0.020-0.031	24.0	30.0	21.0	***	2	4
H26 ^C	0.032-0.050	24.0	30.0	21.0	***	3	4
	0.051-0.162	24.0	30.0	21.0	***	4	6
H18 ^C	0.006-0.019	27.0	***	24.0	213	1	
or	0.020-0.031	27.0	***	24.0	***	2	***
H28 ^C	0.032-0.050	27,0	***	24.0		3	***
	0.051-0.128	27.0	•••	24.0	***	4	***
H112	0.250-0.499	17.0	***	10.0	>11	8	
	0.500-2.000	15.0		6.0	***	12	***
	2.001-3.000	14.5	***	6.0		18	***
F ^D	0.250-3.000	***	***	***		***	***
			Alclad Allo				
0	0.006-0.007	13.0	18.0	4.5	211	14	
-	0.008-0.012	13.0	18.0	4.5	*1*	18	***
	0.013-0.031	13.0	18.0	4.5	*14	20	***
	0.032-0.050	13.0	18.0	4.5	***	23	***
	0.051-0.249	13.0	18.0	4.5	***	25	***
	0.250-0.499	13.0	18.0	4.5	***	28	***
	0,250-0.499	14.0 ^E	19.0 ^E	5.0€	***	23	***
H12 [©]	0.0170.031	16.0	22.0	11.0		4	
		16.0	22.0	11.0	•••	5	***
Or Lloo <i>G</i>	0.032-0.050			11.0	***	6	***
H22 ^C	0.051-0.113	16.0	22.0		***	7	
	0.114-0.161 0.162-0.249	16.0 16.0	22.0 22.0	11.0 11.0	4+4	8	***
					***		1+4




TABLE 2 Continued

			TABLE 2	Continued				
Temper	Specified Thickness, in.	Tensile :	Strength, ksi	Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 ×	Bend Diameter	
tember		min	max	min	max	Diameter, min, %	Factor, N	
	0.250-0.499	16,0	22,0	11.0	112	9	***	
	0.500-2.000	17.0 [€]	23.0€	12.0 ^E		10	***	
H14 [©]	0.009-0.012	19.0	25.0	16.0	***	1		
or	0.0130.019	19.0	25.0	16.0	***	2	***	
H24 [©]	0.020-0.031	19.0	25.0	16.0	***	3	***	
	0.032-0.050	19.0	25.0	16.0		4 .	_	
	0.051-0.113	19,0	25.0	16.0	***	5	,**	
	0.114-0.161	19.0	25.0	16.0	169	6	***	
	0.1620.249	19.0	25.0	16.0	107	7	***	
		19.0	25.0				***	
	0.250-0.499 0.500-1.000	20.0€	26,0 ^E	16.0 17.0 ⁵	***	8 10	***	
	0.000-1.000	20.0	20,0	(7,0	***	10	394	
-116 ^C	0.006-0.019	23.0	29.0	20.0	***	1	***	
or loog	0.020-0.031	23.0	29.0	20.0	***	2	***	
126 ⁰	0.032-0.050	23.0	29.0	20.0	***	3	***	
,	0.051-0.162	23.0	29.0	20.0	•••	4	•••	
<b>-1</b> 18	0.0060.019	26.0	***	***	***	1	***	
	0.020~0.031	26.0	***	***	***	2	•••	
	0.032-0.050	26.0	***	***	***	. 3	•••	
	0.051-0.128	26.0	***	•••	•••	4	•••	
1112	0.250-0.499	16.0		9.0	***	8	***	
	0.500-2.000	15.0≝		6.0 E	***	12	•••	
	2.001-3.000	14.5 ^E	•••	6.0 ^E	***	18	***	
≅D	0.250-3.000	411	***	***	***	***	271	
	rammicrotisticani carrii ini, committi, rid. 11		Alloy 30	04				
)	0.0060.007	22.0	29.0	8.5		441	144	
	0.008-0.019	22.0	29.0	8.5	***	10	0	
	0.020-0.031	22.0	29.0	8.5	***	. 14	0	
	0.032-0.050	22.0	29.0	8.5	***	16	0	
	0.051-0.249	22.0	29.0	8.5	***	18	Ö	
	0.250-3.000	22.0	29.0	8.5	,,,,	16	***	
132°	0.0170.019	28.0	35.0	21.0	***	1	0	
or	0.020-0.031	28.0	35.0	21.0	***	3	1	
220	0.032-0.050	28.0	35.0	21.0	***	4	i	
14-14-14	0.051-0.113	28.0	35.0	21.0		5	ż	
	0.114-2.000	28.0	35.0	21.0	***	6		
34 ^C	0.0090.019	32.0	38.0	25.0		1	2	
	0.020-0.050	32.0	38.0		***			
or 24 ^c				25.0	***	3	3	
4.7	0.051-0.113	32.0	38.0	25.0	***	4	4	
	0.114–1.000	32.0	38.0	25.0	•••	5	***	
36 [©]	0.006-0.007	35.0	41.0	28.0	***	***	***	
or	0.008~0.019	35.0	41.0	28.0	***	1	6	
26 ^{<i>G</i>}	0.020-0.031	35.0	41.0	28.0	***	2	6	
	0.0320.050	35.0	41.0	28,0	***	3	6	
	0.051-0.162	35.0	41.0	28.0	•••	4	8	
38 ⁰	0,006~0,007	38.0		31.0	***	***	***	
or	0.008-0.019	38.0	***	31.0	***	1	***	
28 ^c	0.020-0.031	38.0	***	31.0	444	2	***	
	0.032-0.050	38.0	111	31.0		3	***	
	0.051-0.128	38.0	***	31.0	***	4	***	
112	0.250-3.000	23.0	***	9.0	***	7	***	
o .	0.250-3.000	***	***	***	***	***		
			Alciad Alloy			19	***	
	0.0060.007	21.0	28.0	8.0	114	***	***	
	0.0080.019	21.0	28.0	8,0	***	10	***	
	0.020-0.031	21.0	28.0	8.0	***	14		
	0.032-0.050	21.0	28.0	8.0	***	16	***	
				44.40		. ~	***	
		21.0		8.0		. 18		
	0.051-0.249 0.250-0.499	21.0 21.0	28.0 28.0	8.0 8.0	***	- 18 16		



TABLE 2 Continued

Tananar	Chariffed Thisleres In	Tensile St	rength, ksi	Yield Strength (0.	2 % offset), ksi	Elonga <b>tion</b> in 2 in. or 4 ×	Bend Diameter
Temper	Specified Thickness, In.	min	max	min	max	Diameter, min, %	Factor, N
H32 ^C	0.017~0.019	27.0	34.0	20.0		1	***
or	0.020-0.031	27.0	34.0	20.0	***	à	
22°		27.0	34.0	20.0	***	4	***
ieze."	0.032-0.050				***		***
	0.051-0.113	27.0	34.0	20.0	***	5	***
	0.114-0.249	27.0	34.0	20.0	4114	6	***
	0.250-0.499	27.0	34.0	20.0	***	6	***
	0.500-2.000	28.0 ^Æ	35.0≝	21.0 [€]	***	6	***
134 ⁰	0.009-0.019	31.0	37.0	24.0		1	***
or	0.020-0.050	31.0	37.0	24.0	***	3	***
124 ^C	0.051-0.113	31.0	37.0	24.0	•••	4	***
	0.114-0.249	31.0	37.0	24.0	***	5	***
	0.250-0.499	31.0	37.0	24.0	***	5	***
	0.500-1.000	32.0 [#]	38.0 [#]	25.0 ^{ee}	***	5	***
136 ⁰	0.0060.007	34.0	40.0	27.0		***	***
or	0.008-0.019	34.0	40.0	27.0	***	1	***
126 ^C	0.0200.031	34.0	40.0	27.0	***	2	
	0.032-0.050	34.0	40.0	27.0	104	3	•••
	0.0510.162	34.0	40.0	27.0		4	***
138	0.0060.007	37.0					
100	0.0080.019	37.0	***	167	***	, 1	***
	0.0200.031	37.0	***	***	***	2	•••
			177		***		***
	0.032-0.050	37.0	***	•••		3	•••
	0.051-0.128	37.0	***	***	***	4	***
1112	0.250-0.499	22.0	***	8.5	444	7	***
	0.500-3.000	$23.0^{E}$	255	9.0€	249	7	***
:D	0.250-3.000	***	4.4	***			434
			Alloy 30	005	*1* ***		
)	0.006-0.007	17.0	24.0	6.5		10	***
	0.0080.012	17.0	24.0	6.5	***	12	•••
	0.013-0.019	17.0	24.0	6.5	***	14	
	0.0200.031	17.0	24.0	6.5		16	***
	0.032-0.050	17.0	24.0	6.5	***	18	***
	0.0510.249	17.0	24.0	6.5		20	
112	0.017-0.019	20.0	27.0	17.0	***	1	
	0.020-0.050	20.0	27.0	17.0	***	2	***
	0.051~0.113	20.0	27.0	17.0	***	3	
	0.114-0.161	20.0	27.0	17.0	•••	4	
	0.162-0.249	20.0	27.0	17.0	***	5	***
114	0.009-0.031	24.0	31.0	21.0		1	
117	0.0320.050	24.0	31.0	21.0	***	2	***
		24.0	31.0	21.0	•••	3	***
	0.0510.113				***	4	***
116	0.114-0.249	24.0	31.0	21.0	***		***
116	0.006-0.031	28.0	35.0	25.0	•••	1	***
	0.032-0.113 0.114-0.162	28.0 28.0	35.0 35.0	25.0 25.0	192	2 3	***
			2010		-84		***
118	0.006-0.031	32.0	•••	29.0	***	1	***
	0.032-0.128	32.0	***	29.0	***	2	***
119	0.006-0.012	34.0	***	***	,,,,	***	***
	0.0130.063	34.0	F+1	***	***	1	***
125	0.016-0.019	26.0	34.0	22.0	•••	1	***
	0.020-0.031	26.0	34.0	22.0	***	2	***
	0.032-0.050	26.0	34.0	22.0	144	3	199
	0.0510.080	26.0	34.0	22.0	133	4	***
127	0.016-0.019	29.5	37.5	25.5		1	***
	0.020-0.031	29.5	37.5	25.5	***	2	
	0.032-0.050	29.5	37.5	25.5	***	ร์	***
	0.051-0.080	29.5	37.5	25.5		4	***



TABLE 2 Continued

			TABLE 2	Continued			
Temper	Specified Thickness, in.		Strength, ksi	Yield Strength (0.2 % offset), ksl		Elongation in 2 in. or 4 ×	Bend Diameter
		min	. max	min	max	Diameter, mln, %	Factor, N
H28	0.0160.019	31,0	444	27.0	***	1	4+1
	0.0200.031	31.0	***	27.0		2	***
	0.032-0.050	31.0	***	27.0	***	3	***
	0.051-0.080	31.0	377	27.0	100	4	***
129	0.025-0.031	33.0		28.0	an .	1	
IEN	0.032-0.050	33.0	***	28.0	***	2	***
	0.051~0.071	33.0	***	28.0	***	3	***
			Alloy 3	105			The state of the s
)	0,013-0,019	14.0	21,0	5.0	£1.	16	***
	0.0200.031	14.0	21,0	5.0	•••	18	***
	0.032-0.080	14.0	21.0	5.0	44.9	20	***
112	0.017-0.019	19.0	26.0	15 <b>.0</b>	>14	1	***
	0.020-0.031	19.0	26.0	15.0		1	***
	0.032-0.050	19.0	26.0	15.0	***	2	***
	0.051-0.080	19.0	26.0	15.0	•••	3	
1.4	0.040-0.040	20.0	90.0	400		4	
14	0.013-0.019 0.020-0.031	22.0 22.0	29.0 29.0	18.0 18.0	***	1	***
		22.0 22.0			***		***
	0.032-0.050		29.0	18.0	***	2 2	***
	0.0510.080	22.0	29.0	18.0	***	2	•••
116	0.013-0.031	25.0	32.0	21.0	1#*	1	***
	0.032-0.060	25.0	32.0	21.0	***	2	
	0.051-0.080	25.0	32.0	21.0	***	2	194
18	0.013-0.031	28.0	***	24.0		1	***
	0.0320.050	28.0		24.0	***	1	•••
	0.0510.080	28.0	***	24.0	***	2	
125	0.013-0.019	23.0		19.0	***	2	***
	0.020-0.031	23.0	***	19.0	***	3	
	0.032-0,050	23.0	***	19,0	***	4	***
	0.051-0.080	23.0	***	19.0	***	6	***
			Alloy 50	05			
)	0,0060.007	15.0	21.0	5.0	***	12	
	0.008-0.012	15.0	21.0	5.0	***	14	•••
	0.013-0.019	15.0	21.0	5.0	**:	16	***
	0.020-0.031	15.0	21.0	5.0	•••	18	•••
	0.032-0.050	15.0	21.0	5.0	***	20	
	0,051-0.113	15.0	21.0	5.0	***	21	***
	0.114-0.249	15.0	21.0	5.0	•••	22	***
	0.250-3.000	15.0	21.0	5.0	***	22	***
12	0.017-0.019	18.0	24.0	14.0	***	2	139
	0.020-0.031	18,0	24.0	14.0	1/1	3	***
	0.032-0.050	18.0	24.0	14.0	***	4	***
	0.051-0.113	18.0	24.0	14.0	111	6	***
	0.114-0.161	18.0	24.0	14.0	•••	7	***
	0.162-0.249	18.0	24.0	14.0	***	8	***
	0.250-0.499	18.0	24.0	14.0	***	9	
	0.500-2.000	18.0	24.0	14.0	***	10	***
14	0.0090.031	21.0	27.0	17.0	•••	1	
	0.0320.050	21.0	27.0	17.0	***	2	
	0.051-0.113	21.0	27.0	17.0		3	,
	0.114-0.161	21.0	27.0	17.0	***	5	***
	, 0.162-0.249	21.0	27.0	17.0	***	6	***
	0.250-0.499	21.0	27.0	17.0	*3*	8	***
	0.500-1.000	21.0	27.0	17.0	***	10	***
16	0.006-0.031	24.0	30.0	20.0	***	1	**1
	0.032-0.050	24.0	30.0	20.0	***	2	***
	0.051-0.162	24.0	30.0	20.0	•••	3	***
18	0.0060.031	27.0	***	***	•••	1	
	0.032-0.050	27.0				2	
	ひんりつと一つんりつり	21.0	***	***	***	<u>-</u>	***



TABLE 2 Continued

Tomas	On walfland Third to the	Tensile Strength, ksi		Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
H32 ^C	0.0170.019	17.0	23.0	12.0	***	3	
or	0.020-0.031	17.0	23.0	12.0	***	4	343
H22 ^C	0.032-0.050	17.0	23.0	12.0		5	
* Maria	0.051-0.113	17.0	23.0	12.0	***	7	***
					***	8	
	0.114-0.161	17.0	23.0	12.0	***		***
	0.162-0.249	17.0	23.0	12.0	***	9	•••
	0.2502.000	17.0	23.0	12.0	***	10	***
H34 [©]	0.009-0.012	20.0	26.0	15.0	***	2	***
or H24 [©]	0.013-0.031	20.0	26.0	15.0	***	3	***
D24 **	0.0320.050	20.0	26.0	15.0	***	4	***
	0.051-0.113	20.0	26.0	15.0	***	5	***
	0.1140.161	20.0	26.0	15.0	***	6	***
	0.162-0.249	20.0	26.0	15.0	***	7	***
	0.250-0.499	20.0	26.0	15.0	***	8	***
	0.500-1.000	20.0	26.0	15.0	478	10	***
H36 ^C	0.0060.007	23.0	29.0	18.0	***	1	***
or	0.0080.019	23.0	29.0	18.0	289	2	***
H26 ^C	0.020-0.031	23.0	29.0	18.0	***	3	***
	0.032-0.162	23.0	29.0	18.0	178	4	444
H38	0.0060.012	26.0				1	
100	0.0130.019	26.0	***	***	***	2	***
	0.0200.031	26.0 26.0	***	***	***	3	
	0.032-0.128	26.0	***	+#1	388	4	***
	0.032-0.126	∠0.0	***	171	***	4	***
H112	0.2500.499	17.0		•••	***	8	***
	0.5002.000	15.0	***	•••	***	12	
	2.001-3.000	14.5	***	***	48.0	18	***
F [₽]	0.250-3.000	•••		•••	***	***	
			Alloy 50	10	***************************************		
0	0.010-0.070	15.0	21.0	5.0	***	3	>+>
H22	0.010-0.070	17.0	23.0	14.0		2	
					***		,,,
H24	0.010-0.070	20.0	26.0	17.0	***	1	***
H26	0.010-0.070	23.0	29.0	21.0	***	1	***
H28	0.0100.070	26.0	***	***	***	***	***
	-		Alloy 50	50			
0	0.006-0.007	18.0	24.0	6.0	***	***	0
	0.0080.019	18.0	24.0	6.0	***	16	0
	0.020-0.031	18.0	24.0	6.0	***	18	0
	0.0320.050	18.0	24.0	6.0	***	20	0
	0.051-0.113	18.0	24.0	6.0	***	20	0
	0.114-0.249	18.0	24.0	6.0	***	22	0
	0.250-3.000	18.0	24.0	6.0	***	20	2
H32 ^C	0.017-0.050	22.0	28.0	16.0	***	4	1
or	0.051-0.249	22.0	28.0	16.0		6	2
H22 ^C	5.00; V.ZTU	22.0	20.0	10.0	***	•	2
Н34 ^С	0.0090.031	25.0	31.0	20.0		3	1
	0.032-0.050				***		
		25.0	31.0	20.0	444	4	1
or Lov <i>e</i>	0.0510.249	25.0	31.0	20.0	•••	5	3
or H24 ^C		27.0	33.0	22.0	•••	2	3
H24 ^c H36 ^c	0.006-0.019			00.0	***	3	3
H24 ^C H36 ^C or	0.020-0.050	27.0	33.0	22.0	•••		
H24 ^C H36 ^C or			33.0 33.0	22.0	***	4	4
H24 ^C H36 ^C or H26 ^C	0.020-0.050	27.0					
H24 ^C H36 ^C or H26 ^C	0.020-0.050 0.051-0.162	27.0 27.0	33.0	22.0	***	4	4
H24 ^c H36 ^c	0.020-0.050 0.051-0.162 0.006-0.007	27.0 27.0 29.0	33.0	22.0	***	4	4 



TABLE 2 Continued

		0-04-04-04-04-04-04-04-04-04-04-04-04-04	TABLE 2	Continued			reco ·
Temper	Specified Thickness, in.	Tensile Strength, ksi		Yield Strength (0		Elongation in 2 in. or 4 ×	Bend Diameter Factor, <i>N</i>
,		min	max	min	max	Diameter, min, %	1 actor, 14
H112	0.250-3.000	20.0	1-3	8.0	***	12	131
F ^D	0.250-3.000	.,,	***		***	414	***
			Alloy 50	052			
0	0.006-0.007	25.0	31.0	9.5	***	411	0
•	0.008-0.012	25.0	31.0	9.5	•••	14	0
	0.013-0.019	25.0	31.0	9.5	***	15	0
	0,020-0.031	25.0	31.0	9.5	***	16	0
	0.0320.050	25.0	31.0	9.5	***	18	0
	0.051-0.113	25.0	31.0	9.5	***	19	0
	0.114-0.249	25.0	31.0	9.5	***	20	0
	0.250-3.000	25.0	31.0	9.5	***	18	***
H32 ^C	0.017-0.019	31.0	38.0	23.0	***	4	0
or	0.020-0.050	31.0	38.0	23.0	101	5	1
H22 ^C	0.051-0.113	31.0	38.0	23.0	***	7	2
	0.114-0.249	31.0	38.0	23,0	444	9	3
	0.250-0.499	31.0	38.0	23.0	***	11	***
	0.500-2.000	81.0	38.0	23.0	***	12	**1
H34 ^C	0.009-0.019	34.0	41.0	26.0	***	3	1
or or	0.020-0.050	34.0	41.0	26.0	111	4	2
H24 ⁰	0.051-0.113	34.0	41.0	26.0	***	6	3
157	0.114-0.249	34.0	41.0	26.0	***	7	4
	0.250-1.000	34.0	41.0	26.0	***	10	***
0						2	
H3 [©]	0.006-0.007	37.0	44.0	29.0		2	4
or	0.008-0.031	37.0	44.0	29.0	***	3	4
126 ^C	0.032-0.162	37.0	44.0	29.0	***	4	5
H38 ^C	0.006-0.007	39.0	•••	32.0	***	2	144
or	0.008-0.031	39.0	•••	32.0	***	3	***
H28 ^C	0.032-0.128	39.0	***	32.0	•••	4	***
H112	0.2500.499	28.0	***	16.0	***	7	
	0.500-2.000	25.0	***	9.5	***	12	
	2.001-3.000	25.0	•••	9.5	***	16	***
D	0.250-3.000	***		***	***		
			Alloy 50				
)	0,051-1,500	40.0	51.0	18.0	29.0	16	
	1.501-3.000	39.0	50.0	17.0	29.0	16	***
	3,001-4.000	38.0	44.	16.0	100	16	
	4,001–5,000	38.0	***	16.0	100	14	•••
	5.001-7.000	37.0	***	15.0	***	14	***
	7.001-8.000	36.0	***	14.0	***	12	144
1321	0.188-1.500	44.0	56,0	31.0	43.0	12	
	1.501-3.000	41.0	56.0	29.0	43.0	12	141
1112	0.250-1.500	40.0		18.0		12	
1116	1.501-3.000	39.0	***	17.0		12	***
IAADE	0.000 0.400	44.0		24.0		10	
1116 ^F	0.0630.499	44.0	***	31.0 31.0	***	12	***
	0.500-1.250 1.351-1.500	44.0	***	31.0	•••	12	***
	1,2511.500 1,5013,000	44.0 41.0	***	29.0	***	12	***
	1.0012-3.000	41.0	***	20,0	*1*	1.5	***
D.	0.250-8.000	194	***	***	444	111	101
			Alloy 50	86			veranivales will all the second
)	0.020-0.050	35.0	44.0	14.0	***	15	***
	0.051-0.249	35.0	44.0	14.0	***	18	***
	0.250-2.000	35.0	44.0	14.0	***	16	***
132°	0.020-0.050	40.0	47.0	28.0	***	6	***
or	0.051-0.249	40.0	47.0	28.0	***	8	***
122°	0.250-2.000	40.0	47.0	28.0	***	12	***



TABLE 2 Continued

			TABLE 2	Co <b>nti</b> nued			
Tamper	Specified Thickness, in.	Tensile St	trength, kel	Yield Strength (0	.2 % offeet), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
Temper	Spedilled Thickness, In.	min	max	min	max	Diameter, min, %	Factor, N
H34 ^C	0.009-0.019	44.0	51.0	34.0	***	4	
or	0.0200.050	44.0	51.0	34.0	***	5	***
H24 ^C	0.051-0.249	44.0	51.0	34.0		6	
	0.250-1.000	44.0	51.0	34.0		10	***
H36 ^C	0.006-0.019	47.0	E4.0	30.0		0	
or	0.020-0.019	47.0 47.0	54.0 54.0	38.0	***	3	•••
H26 ^C	0.051-0.162	47.0	54.0	38.0 38.0	***	4 6	***
i ino <i>C</i>	0.000.0.000	<b>"0</b> 0					
H38 ^C or	0.006-0.020	50.0	***	41.0		3	***
H28 ^C							
H112	0.188-0.499	36.0		18.0		8	
	0.500-1.000	35.0	***	16.0	***	10	***
	1.001-2.000	35.0	***		***		•••
			***	14.0	***	14	***
	2.001-3.000	34.0	***	14.0	***	14	
H116 ^F	0.063-0.249	40.0	***	28.0	***	8	***
	0.2500.499	40.0	***	28.0	***	10	•••
	0.500-1.250	40.0	***	28.0		10	
	1.251-2.000	40.0	***	28.0	***	10	***
ĘD.	0.250-3.000	***					
	A Company of the Comp	* 1 *	Alloy 51		***	>11	***
0	0.030.0.031	an n				40	
J	0.020-0.031	30.0	41.0	11.0	•••	12	
	0.032-0.050	30.0	41.0	11.0	***	14	***
	0.051-0.113	30.0	41.0	11.0	***	16	***
	0.114-3.000	30.0	41.0	11.0	494	18	***
Н <b>32</b> С	0.020-0.050	36.0	43.0	26.0	***	5	
or	0.051-0.249	36.0	43.0	26.0		8	
H22 ⁰	0.250-2.000	36.0	43.0	26.0	***	12	***
H34 ^C	0.009-0.050	39.0	46.0	29.0	***	4	•••
or	0.051-0.161	39.0	46.0	29.0	***	6	4.4
H24 ^C	0.162-0.249	39.0		29.0	***		***
I III	0.250-1.000	39.0	46.0 46.0	29.0	***	7 10	***
· · · · · · ·							
H36 ⁰	0.006-0.050	42.0	49.0	32.0	•••	3	***
or	0.0510.113	42.0	49.0	32.0	•••	4	***
H26 [©]	0.114-0.162	42.0	49.0	32.0	***	5	***
Н <b>38</b> С	0.0060.050	45.0		35.0	•••	3	144
or	0.051-0.113	45.0		35.0	***	4	
H28 ^C	0.114-0.128	45.0	***	35.0	***	5	
H112	0.250-0.499	32.0		18.0		o	
	0.500-2.000	30.0	***		***	8	***
	0.500-2.000 2.001-3.000	30.0 30.0	***	11.0	•••	11	***
	≥.44 (****3.buV	30.0	A 844	11.0	***	15	
;D	0.250-3.000	***	114	***	٠	144	
			Alloy 52	52			
H24	0.030-0.090	30.0	38.0	***	>1×	10	***
H <b>2</b> 5	0.030-0.090	31.0	39.0	***	***	9	***
128	0.0300.090	38.0					
	0.000-0.000	JO.U	Alloy 52		***	3	
<u> </u>	0.054 0.410	00.0	······································				erward were remaind were remaind use parabolish.
0	0.051-0.113 0.114-3.000	30.0 30.0	41.0 41.0	11.0 11.0	•••	16 18	***
					•••		***
132 ^C	0.051-0.249	36.0	43.0	26.0	***	8	***
or -122 [©]	0.250-2.000	36.0	43.0	26.0		12	***
434 ^C	0.051~0.161	39.0	46.0	29.0	***	6	***
Oř	0.162-0.249	39.0	46.0	29.0	***	7	***
124°	0.250-1.000	39.0	46.0	29.0		10	

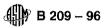



TABLE 2 Continued

			TABLE 2	Continued				
Temper	Specified Thickness, in.	Tensile S	trength, ksi	Yield Strength (0	.2 % offset), ksl	Elongation in 2 in. or 4 ×	Bend Diameter	
, ompo		min	max	min	max	Diameter, min, %	Factor, N	
Н36 [©]	0.051-0.113	42.0	49.0	32.0		4		
01	0.114-0.162	42.0	49.0	32.0	***	5	111	
H26 [©]	0.114 0.102	12.0	70.0	02.0	•••	Ü	***	
H38 ^C	- 0.051-0.113	45.0	***	35.0	***	. 4	***	
or	0.114-0.128	45.0	***	35.0	***	5	***	
H28 [©]	31111 3111113	1.2.4	•••	55.5		J		
H112	0.250-0.499	32.0	***	18.0		8		
, , , , , , , , , , , , , , , , , , , ,	0.500-2.000	30.0	***	11.0	***	11	***	
	2.001-3,000	30.0	•••	11.0	1111	15	***	
FD	0.250-3.000	***	***	***	171	121		
			Alloy 54					
0	0.020-0,031	31.0	41.0	12.0	,,,	12	177	
	0.0320.050	31.0	41.0	12.0	***	14	***	
	0.0510.113	31.0	41.0	12.0	***	16	***	
	0.114-3.000	31.0	41.0	12.0	***	18	***	
H32 ^C	0.020-0.050	36.0	44.0	26,0	•••	5	***	
or	0.051-0.249	36.0	44.0	26.0	***	8	***	
1220	0.250-2.000	36.0	44.0	26.0	·	12	•••	
134 ⁰	0.020-0.050	39.0	47.0	29.0	***	4	***	
or	0.051-0.161	39.0	47.0	29.0	***	6	•••	
H24 [©]	0.162-0.249	39.0	47.0	29.0	***	7	***	
, (m. )	0.250-1.000	39.0	47.0	29.0	***	10		
H112	0.250-0.499	32.0	111	18.0	***	8	***	
	0.500-2.000	31.0	***	12.0	***	11		
	2.001-3.000	31.0	191	12.0	***	15		
F ^C	0.250-3.000	***	,,,,				•••	
			Alloy 54	56				
0	0.051-1.500	42.0	53.0	19.0	30.0	16	***	
	1,501-3,000	41.0	52.0	1 <b>8.</b> 0	30.0	16	***	
	3.001-5.000	40.0		17.0	434	14	***	
	5.001-7.000	39.0	***	16.0	***	14	***	
	7.001~8.000	38.0	***	15.0	***	12	***	
H321	0.188-0.499	46.0	59.0	33.0	46.0	12	***	
	0.500-1.500	44.0	56.0	31.0	44.0	12		
	1.501-3.000	41.0	54.0	29.0	43.0	12	***	
1112	0.250-1.500	42.0	***	19.0	***	12	***	
	1.501-3.000	41.0	***	18.0	•••	12	***	
4116 ^F	0.063-0.499	46.0	***	33.0		10	h#1	
	0.500-1.250	46.0	***	33.0	***	12		
	1.251-1.500	44.0	***	31.0	***	12	***	
	1.501-3.000	41.0	***	29.0	***	12		
	3,001-4,000	40.0	***	25.0	***	12		
:G	0.250-8.000	***		***		***	4+4	
			Alloy 54	57				
)	0.0300.090	16.0	22.0	***	4.44	20	,114	
	The same of the sa	AIL MARKETAN	Alloy 56	52				
)	0.051-0.113	25.0	31.0	9,5	r++	19.	0	
	0.114-0.249 0.250-3.000	25.0 25.0	31.0 31.0	9.5 9.5	***	20 18	0	
					***	,	***	
132 ^D	0.051-0.113	31.0	38.0	23.0	***	7	2	
or loo?	0.114-0.249	31.0	38.0	23.0	***	9	3	
1 <b>22</b> ^D	0.250-0.499 0.500-2.000	31.0 31.0	38.0 38.0	28.0 23.0	***	11 12	***	
in in								
134 ^D	0.051-0.113	34.0	41.0	26.0	***	6	3	

TABLE 2 Continued

_	Specified Thickness, in.	Tensile Strength, ksi		Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 ×	Bend Diameter
Temper		min	max	min	max	Diameter, min, %	Factor, N
or	0.1140.249	34.0	41.0	26.0	**1	7	4
H24 ^D	0.250-1.000	34.0	41.0	26.0	•••	10	•••
H112	0.250-0.499	28.0	,	16.0	***	7	
	0.500-2.000	25.0	•••	9.5	***	12	***
	2.001-3.000	25.0	***	9.5	***	16	***
FO	0.250-3.000			***	***	•••	
			Alloy 56	357			
H241 ^G	0.030-0.090	18.0	26.0	***	***	13	***
H25	0.030-0.090	20.0	28.0	349	***	8	
H26	0.0300.090	22.0	30.0	<b>~</b>	•••	7	***
H28	0.030-0.090	25.0	194	***	***	5	***

A To determine conformance to this specification each value for tensile strength and for yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E 29.

B The basis for establishment of mechanical property limits is shown in Annex A1.

TABLE 3 Tensile Property Limits for Heat-Treatable Alloys^A,^B

Temper	Specified Thickness, in.	Tensile Str	rength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter	
remper	етрет ореаней пискова, п.		max	min	max	Diameter, min, %	Factor, N	
			Alloy 20	14				
0	0.020-0.124	***	32.0	#1#	16.0	16	0	
	0.1250.249		32.0	•••	16.0	16	1	
	0.2500.499	***	32.0	***	16.0	16	2	
Т3	0.0200.039	59.0	***	35.0	***	14	3	
	0.040-0.124	59.0	***	36.0	***	14	3	
	0.125-0.249	59.0	***	36.0		14	4	
T4°	0.020-0.124	59.0	***	35.0	***	14	3	
	0.125-0.249	59.0	***	35.0	***	14	4	
	31(20 3)210	0012	•••	00.0	•••	• •	•	
T42 ^D	0.0200.124	58.0	494	34.0	***	14	3	
	0.125-0.249	58.0	***	34.0	***	14	4	
	0.250-0.499	58.0	•••	34.0	100	14	5	
	0.500-1.000	58.0		34.0	***	14		
T451 ^E	0.250-1.000	58.0	***	36.0	***	14	***	
	1.001-2.000	58.0	***	36.0		12		
	2.001-3.000	57.0	•••	36.0	***	8	***	
T6, T62 ^D	0.020-0.039	64.0	***	57.0		6	4	
,	0.0400.050	66.0		58.0	***	7	5	
	0.051-0.124	66.0	***	58.0	***	7	6	
	0.125-0.249	66.0	***	58.0	***	7	8	
T62 ^D , T651 ^E	0.250-0.499	67.0	•••	59.0	***	7	10	
	0.500-1.000	67.0	***	59.0	***	6		
	1.001-2.000	67.0		59.0	***	4	***	
	2.001-2.500	65.0	***	58.0	н,	2	114	
	2.501-3.000	63.0	***	57,0	***	2	***	
	3.001-4.000	59.0	***	55.0	***	1	***	
F ^F	0.250-1.000	***	***	•••	***	***	***	

Material in either of these tempers (H32 or H22), (H34 or H24), (H36 or H26), (H38 or H28), (H12 or H22), (H14 or H24), (H16 or H26), (H18 or H28), may be supplied Material in either of these tempers (H32 or H22), (H34 or H24), (H36 or H26), (H38 or H28), (H12 or H22), (H14 or H24), (H16 or H26), (H18 or H28), may be supplied at the option of the supplier, unless one is specifically excluded by the contract or purchase order. When ordered as H2x tempers, the maximum tensile strength and minimum yield strength do not apply. When H2x tempers are supplied instead of ordered H1x or H3x tempers, the supplied H2x temper material shall meet the respective H1x or H3x temper tensile property limits.

P Tests of F temper plate for tensile properties are not required.

F The tension test specimen from plate 0.500 in. and thicker is machined from the core and does not include the cladding alloy.

F The -H116 temper designation now also applies to products previously designated -H117.

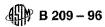



TABLE 3 Continued

T	Constitution Thinks are in	Tensile St	rength, ksi	Yield Strength (	).2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
			Alclad Alloy	2014			
0	0.020-0.499	***	30,0	•••	14.0	16	***
	0.500-1.000	***	32.0 ⁹	***	***	10	27+
гз	0.0200.039	54.0	***	93.0	***	14	***
	0.040-0.124	55.0	•••	34.0	***	14	111
	0.125-0.249	57.0	•••	35.0	***	15	199
T4 ⁰	0.0200.124	54.0	4+4	31.0	***	14	***
14	0.125-0.249	55,0	***	32.0	***	14	
	0.040-0.249	57.0	***	34.0		15	***
T42 ^D	0.020-0.124	54.0		31.0		14	
142"	0.125-0.249	55.0	***	32.0	***	14	***
		57.0	***	34.0	199	15	
	0,250-0,499	58.0 ^a	***	34.0 ^G	***	14	***
	0.500-1.000	56.0	•••	34.0	***	17	444
T451 ^E	0.250-0.499	57.0	***	36.0	***	15	***
	0.500-1.000	58.0 ^Q	***	36.0 ^{<i>a</i>}	144	14	•11
	1.001-2.000	58.0 ^G		36.0 ^{<i>G</i>}	***	12	•••
	2.0013.000	57.0 ^{ca}	***	36.0 ^G	***	8	***
T6, T62 ^D	0.0200.039	62.0		54.0	***	7	***
10, 102	0.040-0.050	63.0		55.0		7	***
	0.0510.124	64.0		57.0	•••	8	***
	0.125-0.249	***		***	***	491	
T62 ^D ,	0,250-0.499	64.0		57.0		8	***
T651 ^E			,		***		
	0.5001.000	67.0 ^G	194	59.0 [€]	***	6	***
	1.001-2.000	67.0 ^G	7.0	59.0 [©]	***	4	***
	2.001-2.500	65.0 ^G	171	58.0 ^G	***	2	***
	2,501-3,000	63.0 ^G	***	57.0 ^G	***	2	
	3.001-4.000	59.0 ^G		55,0 ^G	***	1	***
F ^r	0.250-1.000	***		124	***		***
		***************************************	Alloy 202	24			
0	0.010-0.032	***	32.0	***	14.0	12	0
	0.033-0.063	***	32.0	***	14.0	12	1
	0.064-0.128	***	32.0	***	14.0	12	4
	0.129-0.499	***	32.0	***	14.0	12	6
тз	0.008-0.009	63.0	***	42.0	***	10	4
. ~	0.010-0.020	63.0	***	42.0	***	12	4
	0.021-0.051	63.0	***	42.0		15	5
	0.052-0.128	63.0	•••	42.0		15	6
	0.129-0.249	64.0	***	42.0	***	15	8
T351 ^E	0.2500.499	64.0		42.0		12	***
1001	0,500-1,000	63.0	***	42.0	***	8	*14
	1.001-1.500	62.0	***	42.0	•••	7	>14
		62.0	***	42.0	***	6	***
	7 5(17		***	1 500 4 707			
	1.501–2.000 2.001–3.000			42.0		4	***
	2.001–2.000 2.001–3.000 3.001–4.000	60.0 57.0	***	42.0 41.0	***	4 4	***
racill	2.001–3.000 3.001–4,000	60.0 57.0		41.0	***	4	
T361#	2.0013.000 3.0014.000 0.020-0.051	60.0 57.0 67.0	***	<b>41.</b> 0 5 <b>0</b> .0	441 442	4 8	4
T361 [#]	2.001–3.000 3.001–4.000 0.020–0.051 0.052–0.062	60.0 57.0 67.0 67.0	 	41.0 50.0 50.0	441 411 417 525	4 8 8	4 8
Г361 ^Н	2.001–3.000 3.001–4.000 0.020–0.051 0.052–0.062 0.063–0.249	60.0 57.0 67.0 67.0 68.0		41.0 50.0 50.0 51.0	***	4 8 8 9	4 8 8
1361#	2.001–3.000 3.001–4.000 0.020–0.051 0.052–0.062	60.0 57.0 67.0 67.0	 	41.0 50.0 50.0	441 411 417 525	4 8 8	4 8
	2.001–3.000 3.001–4.000 0.020–0.051 0.052–0.062 0.063–0.249 0.250–0.499 0.500	60.0 57.0 67.0 67.0 68.0 66.0 66.0		41.0 50.0 50.0 51.0 49.0 49.0		4 8 8 9 9	4 8 8 
	2.001–3.000 3.001–4.000 0.020–0.051 0.052–0.062 0.063–0.249 0.250–0.499 0.500	60.0 57.0 67.0 67.0 68.0 66.0 66.0		41.0 50.0 50.0 51.0 49.0 49.0		4 8 8 9 9 10	4 8 8  
	2.001–3.000 3.001–4.000 0.020–0.051 0.052–0.062 0.063–0.249 0.250–0.499 0.500	60.0 57.0 67.0 67.0 68.0 66.0 66.0		41.0 50.0 50.0 51.0 49.0 49.0 40.0	10 10 10 10 10 10 10	4 8 9 9 10 12 15	4 8 8   4 5
	2.001–3.000 3.001–4.000 0.020–0.051 0.052–0.062 0.063–0.249 0.250–0.499 0.500 0.010–0.020 0.021–0.051 0.052–0.128	60.0 57.0 67.0 67.0 68.0 66.0 66.0 62.0 62.0		41.0 50.0 50.0 51.0 49.0 49.0 40.0 40.0 40.0		4 8 9 9 10 12 15 15	4 8 8  
Г4 ^С	2.001–3.000 3.001–4.000 0.020–0.051 0.052–0.062 0.063–0.249 0.250–0.499 0.500 0.010–0.020 0.021–0.051 0.052–0.128 0.129–0.249	60.0 57.0 67.0 67.0 68.0 66.0 66.0 62.0 62.0 62.0		41.0 50.0 50.0 51.0 49.0 40.0 40.0 40.0 40.0	10 10 10 10 10 10 10	4 8 9 9 10 12 15 15	4 8 8  4 5 6
Г4 ^С	2.001–3.000 3.001–4.000 0.020–0.051 0.052–0.062 0.063–0.249 0.250–0.499 0.500 0.010–0.020 0.021–0.051 0.052–0.128 0.129–0.249	60.0 57.0 67.0 68.0 66.0 66.0 62.0 62.0 62.0 62.0		41.0 50.0 50.0 51.0 49.0 49.0 40.0 40.0 40.0 38.0	10 10 10 10 10 10 10 10 10 10	4 8 9 9 10 12 15 15	4 8 8   4 5 6 8
T361# T4 [©] T42 ^D	2.001–3.000 3.001–4.000 0.020–0.051 0.052–0.062 0.063–0.249 0.250–0.499 0.500 0.010–0.020 0.021–0.051 0.052–0.128 0.129–0.249	60.0 57.0 67.0 67.0 68.0 66.0 66.0 62.0 62.0 62.0		41.0 50.0 50.0 51.0 49.0 40.0 40.0 40.0 40.0		4 8 9 9 10 12 15 15	4 8 8   4 5 6

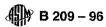



TABLE 3 Continued

		Tensile St	rength, ksi	Yield Strength (C	0.2 % offset), ksi	Elongation in	Bend Diameter	
Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4 × Diameter, min, %	Factor, N	
	0.2500.499	62.0	444	38.0	***	12	10	
	0.500-1.000	61.0	***	38.0	471	8	***	
	1.0011.500	60.0	***	38.0	***	7	***	
	1.501-2.000	60.0	•••	38.0	44.	6	***	
	2.001-3.000	58.0	***	38.0	***	4		
T62 [©]	0.0100.499	64.0	•	50.0	***	5	***	
	0.500-2.000	63.0	***	50.0	***	5	***	
T72 ^{DI}	0.010-0.249	60.0	***	46.0	***	5	***	
T81	0.010-0.249	67.0	***	58.0	***	5	***	
T851 ^E	0,2500,499	67.0		58.0		5		
	0.500~1.000	66.0	***	58.0	***	5	***	
	1.0011.499	66.0	***	57.0	***	5	***	
		00.0	***	07.0	***	J	***	
T861 ^H	0.0200.062	70.0	***	62.0		3	***	
	0.063-0.249	71.0	***	66.0	***	4	***	
	0.250-0.499	70.0	***	64.0	***	4	***	
	0.500	70.0	***	64.0	***	4	•••	
F ^F	0,250-3.000	***	•••	***		***	***	
	***************************************		Alclad Alloy	2024	***************************************			
0	0.0080.009	b. 10	30.0	241	14.0	10	0	
	0.010-0.032		30.0	***	14.0	12	Ō	
	0.033-0.062	***	30.0	***	14.0	12	1	
	0.063-0.249	***	32.0	***	14.0	12	2	
	0.250-0.499	***	32.0	***	14.0	12	3	
	0.5001.750	444	32.0 ^G	***	***	12		
Т3	0.0080.009	58.0	***	39.0		10	4	
	0.010-0.020	59.0	***	39.0	100	12	4	
	0.021-0.040	59.0		39.0	,	15	4	
	0.041-0.062	59.0	***	39.0	***	15	5	
	0.0630.128	61.0	***	40.0	***	15	5	
	0.129-0.249	62.0	***	40.0	***	15	8	
T351 [©]	0.250-0.499	62.0		40.0	1**	12		
	0.5001.000	63.0 ^{<i>a</i>}		42.0 ^G	***	8	***	
	1.001-1.500	62.0 ^G	***	42.0 ^G		7	***	
	1.501-2.000	62.0 [©]		42.0 ^G	***	6	***	
	2.0013.000	60.0 ^G	***	42.0 ^G	/11	4		
	3.0014.000	57.0 ^G		41.0 ^G		4	***	
T361 ^H	0.0200.062	61.0		47.0	184	8	4	
	0.083-0.187	64.0	***	48.0		9	6	
	0.188~0.249	64.0	***	48.0	194	9	8	
	0.250-0.499	64.0		48.0	***	9		
	0.500	66.0 ^G	***	49.0 ^G	***	10	•••	
T4 ^C	0.010-0.020	58.0	***	36.0	***	12	4	
	0.021-0.040	58.0	***	36.0	***	15	4	
	0.041-0.062	58.0	***	36.0	***	15	5	
	0.063-0.128	61.0	*4*	38.0	•••	15	5	
T42 ^D	0.008-0.009	55.0	•••	34.0	***	10	4	
	0.010-0.020	57.0		34.0	***	12	4	
	0.021-0.040	57.0	***	34.0	***	15	4	
	0.0410.062	57.0	***	34.0	484	15	5	
	0.063-0.128	60.0	***	36.0	***	15	5	
	0.129-0.187	60.0	•••	36.0	***	15	8	
	0.188-0.249	60.0	***	36.0		15	8	
	0.250-0.499	60.0	414	36.0	***	12	10	
	0.5001.000	61.0 [©]	***	38.0 ^G	***	8	***	
	1.0011.500	60.0 ^G	***	38.0 ^G	***	7		
	1.501-2.000	60.0 ^G	***	38.0 ^G	***	6		
	2.001~3.000	58.0 [@]	***	38.0 <i>a</i>	···	4	***	
Г62 ^D	0.010-0.062	60.0	***	47.0	***	5		
· ~~								



TABLE 3 Continued

		Tensile St	rength, ksi	Yield Strength (	0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter	
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N	
T72 ^{DI}	0.0100.062	56.0		43.0		5		
7 %.	0.063-0.249	58.0	***	45.0	***	5	***	
T81	0.010-0.062	62.0		54.0	***	5	***	
	0.063-0.249	65.0	• • •	56.0	***	.5	***	
Γ851 [⊭]	0.2500.499	65.0	***	56.0	***	5	***	
	0.500-1.000	66.0 ^G	***	58.0 ^{cg}	•••	5	***	
'861 ^H	0.0200.062	64.0	***	58.0	***	3	***	
	0.063-0.187	69.0	***	64.0	***	4	***	
	0.1880.249	69.0	***	64.0	***	4		
	0.2500.499	68,0		62.0	***	4	114	
	0.500	70.0 ^Q	***	64.0 ^G	***	4	• • •	
:F	0,250~3,000	***	414	1.64	***	***	,	
			1/2 % Alclad Al	loy 2024		erenen erene er		
)	0.188-0.499	144	32,0	***	14.0	12	(1)	
	0.5001.750		32.0 ^a		•,,,	12		
-3	0.188~0.249	63,0		41.0	***	15	***	
361	0.188-0.249	65.0		49.0	***	9		
<b>55</b> 1	0.250-0.499	65.0	***	48.0	***	ğ	112	
	0.500	66.0 <i>a</i>		49.0 ^G		10	***	
351 ^E	0.250-0.499	63.0	***	41.0	*14	12		
201	0.500~1.000	63.0 ^G	***	42.0 ⁹	***	. 8	***	
		62.0 ⁻⁹	•••	42.0°	***	7	***	
	1.001-1.500	62.0 ^G	•••	42.0 ^G	***			
	1.501-2.000		***		***	6	***	
	2.001-3.000 3.001-4.000	60.0 <i>ଫ</i> 57.0 ^ଫ	***	42.0 ^G 41.0 ^G	***	4 4	***	
	0.001-4.000	07.0	***	1110	***	••		
420	0.1880.249	61.0		37.0	100	15	***	
176	0.2500.499	61.0	•••	37.0		12	***	
	0.5001.000	61.0 ^G	•••	38.0 ^a		8		
	1.001-1.500	60.0 ^G	•••	38.0 ^G	***	7	***	
	1,501–2.000	60.0 ^G	***	38.0 ^G	*21	6		
	2,001–3.000	58.0 ^G	***	38.0 ^G	111	4	***	
,	2,001-3,000	30.0	***	30.0		**	***	
62 ^D	0.188-0.499	62.0	***	49.0		5		
72 ^{DI}	0.188-0.249	59.0	***	45.0	***	5		
T81	0.188-0.249	66.0		57.0		5		
			***		***		***	
ſ851 [#]	0.250-0.499	66.0	***	57.0	***	5	***	
	0.5001.000	66.0 ^G	***	58.0 ^d	***	5	***	
861	0.188-0.249	70.0		65.0		4		
OU I	0.250-0.499	69.0	•••	63.0	***	4	•••	
	0.500	70.0 ^G	***	64.0 [@]		4		
F	0.250-3.000							
	0.200 0.000	Aic	lad One-Side A	 Mov 2024	111	¥17		
)	0.008-0.009		31.0		14.0	10		
•	0.010-0.062	***	31.0	***	14.0	12	***	
	0.063-0.499	***	32.0	***	14.0	12	***	
•	0.0100.020	61.0		40.0		12		
3			•••		***		***	
	0.021~0.062	61.0	***	40.0	***	15		
	0.063-0.128	62.0	***	41.0	***	15	***	
	0.129-0.249	63.0	***	41.0	***	15		
	0.050.0.400	63.0		41.0	484	12	***	
351 ^E	0.250-0.499	00.0	• • • • • • • • • • • • • • • • • • • •					
351 [#] 361	0.250-0.469 0.020-0.062 0.063-0.249	64.0 66.0	***	48.0 49.0	***	8 9	4+1	

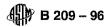



TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Str	rength, ksi Yield Strength		).2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
temper	Specified Intekness, in.	min	max	min	max	Diameter, min, %	Factor, N
T42 ^D	0.010~0.020	59.0	•••	35.0		12	184
	0.021-0.062	59.0	•••	36.0	•••	15	
	0.063-0.249	61.0	***	37.0	***	15	
	0.250-0.499	61.0	•••	37.0	***	12	184
T62 ^D	0.0100.062	62.0	•••	48.0	***	5	
	0.063-0.249	63.0	***	49.0	***	5	
T72 ^{DI}	0.010-0.062	58.0	***	44.0	***	5	
	0.063-0.499	59.0	***	45.0	***	5	***
T81	0.010-0.062	64.0	473	56.0	***	5	
	0.063-0.249	66.0	•••	57.0	***	5	118
T851 [€]	0.250-0.499	66.0		57.0		5	
T861	0.020-0.062	67.0	***	60.0	***	3	***
1001	0.063-0.249	70.0		65.0	***	4	***
	0.250-0.499	69.0	•••	63.0	***	4	***
FF.	0.250-0.499		***	***	•••	***	***
······································		11/2 %	Alclad One-S	ide Alloy 2024			
o .	0.188-0.499	***	32.0	***	14.0	12	***
тз	0.188-0.249	63.0	***	41.0	•••	15	***
T351 [≝]	0.250~0.499	63.0	***	41.0		12	
T361	0.1880.249	66.0	***	49.0	***	9	5#4
	0.250-0.499	65.0	***	48.0	***	9	
T42 ⁿ	0.188-0.249	61.0	***	37.0	***	15	121
	0.250-0.499	61.0	***	37.0	***	12	
T62 ^D	0.188-0.499	63.0	***	49.0	***	5	***
172 ^{DI}	0.188-0.249	59.0	•••	45.0	***	5	
T81	0.188-0.249	66.0		57.0		5	***
T851 [∉]	0.250~0.499	66.0		57.0		5	
T861	0.188-0.249	70.0		65.0		4	
1	0.250-0.499	69.0	***	63.0	•••	4	

empar	Specified			Tensile Strength, ksi		Yield Strength (0.2 % offset), ksi		Bend Diameter	
	Thickness, in.	Test Specimen	min	max	min	max	— Diameter, min, %	Factor, N	
	******			Alloy 2124					
T851 ^E	1.0002. <b>00</b> 0 ^J	Longitudinal	66.0	***	57.0	***	6		
		Long Transverse	66.0	***	57.0	•••	5	***	
		Short Transverse	64.0	***	55.0	•••	1.5	444	
	2.001-3.000	Longitudinal	65.0	***	57.0	•••	5		
		Long Transverse	65.0	***	57.0	•••	4	111	
		Short Transverse	63.0		55.0	***	1.5		
	3.001-4.000	Longitudinal	65.0	***	56.0	***	5	491	
		Long Transverse	65.0	•••	56.0	***	4	***	
		Short Transverse	62.0	***	54.0	•••	1.5	***	
	4.001-5.000	Longitudinal	64.0		55.0	***	5	***	
		Long Transverse	64.0	•••	55.0	***	4		
		Short Transverse	61.0	,,,	53.0	***	1.5	***	
	5.001-6.000	Longitudinal	63.0	***	54.0		5		
		Long Transverse	63.0	***	54.0	***	4	***	
		Short Transverse	58.0	***	51.0	***	1.5	***	

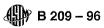



TABLE 3 Continued

Temper	Specified	Tensile Strength	, ksi	Yield Strength	(0.2 % offset), ksi	Elongation in	Bend
	Thickness, in.	min	max	min	max	2 in. or 4 × Dlameter, min, %	Diameter Factor, N
			Alloy 221	9	,		l desentato destantato destant-to della be-b dibb
0	0.020-0.250	***	32.0	***	16.0	12	4
	0.251-0,750	***	32.0	***	16.0	12	6
	0.7511.000	***	32.0	***	16.0	12	8
	1.001-2.000		32.0		16.0	12	***
	0.020-0.039	46.0	*1*	29.0	471	8	***
T31K (flat	0.040-0.249	46.0	***	28.0	***	10	***
sheet)							
T351 ^{E,K} plate	0.2502.000	46.0	***	28.0	***	10	***
(formerly T31						40	
plate)	2.0013.000	44.0	***	28.0	***	10	•••
	3.001-4.000	42.0	***	27,0	***	9	***
	4.001-5.000	40.0	***	26.0	***	9	
	5.0016.000	39.0	***	25.0	***	8	***
T37 ^K	0,020-0.039	49.0	***	38.0	•••	6	***
	0.040-2.500	49.0	1114	37.0	141	6	***
	2.501-3.000	47.0	***	36.0	***	6	***
	3.001-4.000	45.0	***	35.0	***	5	***
	4.001-5.000	43.0	•••	34.0	***	4	***
T62 ^D	0.020-0.039	54.0	***	36.0	137	6	118
1 100.00	0.0400.249	54.0	***	36.0	•••	7	•••
	0.250-1.000	54.0	***	36.0	***	8	
	1.001-2.000	54,0	***	36.0	***	7	
T81 sheet	0.020-0.039	62.0		46.0	***	6	***
101 91660	0.040-0.249	62.0	***	46.0	***	7	***
The Fire to	0.050.4.000	en n		46.0		8	
T851 ^E plate (formerly T81	0.250-1.000	62.0	***	46.0		0	. 144
plate)	1.001-2.000	62,0	***	46.0	***	7	***
, , , ,	2.001-3.000	62.0	***	45.0		6	
	3.001-4.000	60.0	•••	44.0	***	5	***
	4.001-5.000	59.0	•••	43.0	444	5	***
	5.001-6.000	57.0	***	42.0	***	4	m
T87	0.020-0.039	64.0	***	52.0	***	5	***
	0.040-0.249	64.0		52.0		6	
	0.250-1.000	64.0	•••	51.0	***	7	***
	1.001-2.000	64.0	***	51.0	***	. 6	•••
	2.001-3.000	64.0	***	51.0	***	6	•••
	3.001-4.000	62.0	***	50,0		4	***
	4.001-6.000	61.0	***	49.0	***	3	***
Ę <b>F</b>	0.250-2.000	371	***	***	***	•••	***
			Alclad Alloy 2				
O	0,0200.200	***	32.0 ^G	***	16.0 ^G	12	•••
						40	
T31 (flat sheet) ^K	0.0400.099 0.1000.249	42.0 44.0	***	25.0 26.0	***	10 10	***
·	U, 100-U.248		***		***		***
T351 ^{E,K} plate (formerly T31 plate)	0,250-0.499	44.0	•••	26.0	•••	10	***
T37 ^K	0.040-0.099	45.0	***	34.0	100	6	
	0.100-0.499	47.0		35.0	•••	6	***
T62 ^D	0.0200.039	44.0	***	29.0	***	6	***
7 Vm	0.040-0.099	49.0	•••	32.0		7	***
	0.100-0.249	51.0	***	34.0	***	7	***
	0.250-0.499	51.0	***	34.0	***	8	***
	0.500-1.000	54.0 [©]	,,,	36.0 ⁴	***	8	***
	1.0012,000	54.0 ^G	***	36.0 ^{ca}	•••	7	***
T81 (flat	0.020-0.039	49.0	***	37.0	***	6	***
sheet)	0.0400.099	55.0	***	41.0	•••	7	•••
	0.100-0.249	58.0	***	43.0	***	7	



TABLE 3 Continued

em.	TABLE 3 Continued										
Temper	Specified Thickness, in.	Tensile Strength	, ksi	Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 ×	Bend Diameter				
		min	max	min	max	Diameter, min, %	Factor, A				
Γ851 ^E plate	0.250-0.499	58.0		40.0							
(formerly T81 plate)	0.200-0,498	56.0	***	42.0		8	•••				
T87	0.040-0.099	57.0		46.0	***	6					
	0.100-0.249	<b>60.</b> 0	***	48.0	+**	6					
	0.250-0.499	60.0	***	48.0	***	7	•••				
F ^F	0.250-2.000	***	,,,	133	***	***					
			Alloy 606								
)	0.006-0.007	***	22.0	144	12.0	10	0				
	0.008-0.009	414	22.0	***	12.0	12	0				
	0.0100.020	***	22.0	***	12.0	14	0				
	0.021-0.128	***	22.0	***	12.0	16	1				
	0.129-0.249	***	22.0	***	12.0	18	2				
	0.250-0.499	***	22.0	***	12.0	18	3				
	0.500-1.000	***	22.0	***	***	18	***				
	1.001-3.000	***	22.0	***	•	16	#1 t				
T4	0.006-0.007	30.0		16.0	***	10	2				
	0.0080.009	30.0	***	16.0	***	12	2				
	0.0100.020	30.0		16.0	144	14	2				
	0.021-0.249	30.0		16.0	•••	16	3				
T451 [∉]	0.250-0.499	30.0	•••	16.0	>**	18	4				
	0.500-1.000	30.0	***	16.0	***	18	***				
	1.001-3.000	30.0	•••	16.0		16	A311				
T42 ^D	0.006-0.007	30.0	•••	14.0	***	10	2				
	0.008-0.009	30.0	***	14.0		12	2				
	0.0100.020	30.0	•	14.0	***	14	2				
	0.0210.249	30.0	***	14.0	***	16	3				
	0.2500.499	30.0	***	14.0	***	18	4				
	0.5001.000	30.0	***	14.0	***	18	AH				
	1.001-3.000	30.0	744	14.0	***	16	***				
T6, T62 ^D	0.0060.007	42.0		35.0	***	4	2				
	0.0080.009	42.0	***	35.0	***	6	2				
	0.010-0.020	42.0	•••	35.0	***	8	2				
	0.0210.036	42.0	***	35.0	***	10	3				
	0.037-0.064	42.0	***	35.0	***	10	4				
	0.065-0.128	42.0	***	35.0	***	10	5				
	0.129-0.249	42.0	***	35.0	944	10	6				
T62 ^D , T651 ^E	0.250-0.499	42.0	***	35.0	414	10	7				
	0.500-1.000	42.0	***	35.0	***	9					
	1.0012.000	42.0	441	35.0	***	8	•••				
	2.001-4.000 4.001-6.000 ^L	42.0 40.0	307	35.0 35.0	•••	6 6	***				
F ^F	0.050, 0.000					-					
	0.250-3.000	***	Alalad Allau G			473	•••				
0	0.0100.020		Alclad Alloy 6		40.0	w A					
•	0.021-0.128	***	20.0 20.0	***	12.0	14	***				
	0.129-0.499	•••	20.0	***	12.0	16	144				
	0.500-1.000	***	22.0 ^G	***	12.0	18	***				
	1.001-3.000	•••	22.0 ^G	•••	***	18 16					
Т4	0.0100.020	27.0		14.0		14					
•	0.021-0.249	27.0	• • •	14.0	***	16	***				
T451 ^E	0.250-0.499	27.0		14.0	•••	18	• • •				
	0.500-1.000	30.0 ^G		16.0 ^G	***	18	***				
	1.001-3.000	30.0 ^a	***	16.0 ⁹	***	16	***				
T42 ^D	0.0100.020	27.0		12.0		1.4					
T42 ^D	0.0100.020 0.0210.249	27.0 27.0	***	12.0 12.0	***	14 16	111				
T42 ^D	0.0100.020 0.0210.249 0.2500.499	27.0 27.0 27.0		12.0 12.0 12.0	•••	14 16 18	***				



TABLE 3 Continued

	TABLE 3 Continued										
Temper	Specified Thickness, In.	Tensile Strength,		Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 ×	Bend Diameter				
		min	max	min	max	Diameter, mln, %	Factor, A				
. "	1.001-3.000	30.0 ^G		14.0 ^G	***	16	***				
T6, T62 ^D	0.010-0.020	38.0	***	32.0	***	8	***				
	0.021-0.249	38.0	***	32.0	***	10	***				
TODO TOTAE	0.050.0.400	62.0		20.0		40					
T62 ⁰ , T651 ^E	0,250-0,499 0,500-1,000	38.0 42.0 ⁶	***	32.0 35.0 ^G	***	10 9	***				
	1.0012.000	42.0 ^G	***	35.0 ^G	177	8	***				
	2.0014.000	42.0°	***	35.0 ^a	***	6	***				
	4.001-5.000	40.0 ^G	•••	35.0 ^a	***	6	***				
F ^D ·	0.250~3.000										
	0.230~3.000	***	Alloy 7079	***	***	***	***				
		***************************************	AND THE PROPERTY OF THE PROPER								
0	0.015-0.020	***	40.0	166	21.0	10	1				
	0.021-0.062 0.063-0.091	141	40,0 40.0	(11	21.0 21.0	10 10	2 3				
	0.092-0.125	•••	40.0	***	21.0	10	4				
	0.126-0.249	***	40.0	***	21.0	10	5				
	0.250-0.499	***	40.0	***	21.0	10	6				
	0.500-2.000	***	40.0	***	***	10					
TO TOO!	0.000.0044	~4.0		20.0			~				
T6, T62 [©]	0.008-0.011	74.0	1.4	63.0 67.0	***	5 7	7 7				
	0.0120.020 0.0210.039	76.0 76.0	***	67.0	***	7	8				
	0.040-0.062	78.0	***	67.0 68.0	***	8	8				
	0.063-0.091	78.0		68.0	***	. 8	9				
	0.092-0.125	78.0	***	68.0	***	. 8	10				
	0.126-0.249	78.0	•••	69.0		8	11				
T62 ^D , T651 ^E	0.250-0.499	70.0		07.0							
102, 1001	0.500-1.000	78.0 78.0	•••	67.0 68.0	***	9 7	14				
	1.001-2.000	77.0	***	67.0	***	6	•••				
	2.001-2.500	76.0	***	64.0	) + t t	5	***				
	2.501-3.000	72.0	***	61.0	*** ***	5	***				
	3.001-3.500	71.0	***	58.0	***	5					
	3.501-4.000	67.0	***	54.0		3					
T73 sheet	0.040-0.249	67.0	•••	56.0	***	. 8					
T7351 ^E plate	0.250-1.000	69.0		57.0		7					
17301 piate	1,001-2.000	69.0	***	57.0 57.0	***	6	•••				
	2.001-2.500	66.0	***	52.0	***	6	***				
	2.501-3.000	64.0	***	49.0		6	***				
	3.001-4.000	61.0	***	48.0	***	6	***				
***************************************	0.000.0.101	ma a				_					
T76 sheet	0.0630.124 0.1250.249	73.0 73.0	***	62.0 62.0	***	8 8	***				
					•••		***				
T7651 plate ^E	0.250-0.499	72.0	***	61.0	***	8					
	0.500-1.000 1.001-2.000	71.0 71.0		60.0 60.0	***	6 5					
	1.001-2.000	71,0	***	00.0	***	J					
=F	0.250-4.000	***	***	166	***	***	***				
			Alclad Alloy 70	075							
0	0.0080.014	***	36.0	110	20.0	9	1				
	0.0150.032	***	36.0		20.0	10	1				
	0.033-0.062	***	36.0	***	20.0	10	2				
	0.0630.125	***	38.0	•••	20.0	10	3				
	0.126-0.187	***	38.0	***	20.0	10	4				
	0.1880.249 0.2500.499	•••	39.0 39.0	•••	21.0 21.0	10 10	4 6				
	0.250-0.499	***	40.0 ^G	131		10					
г6, Т <b>6</b> 2 [©]	0.008-0.011	68.0		5 <b>8.</b> 0	***	5	 6				
,	0.012-0.020	70,0	***	60.0	***	7	6				
	0.021-0.039	70.0	***	60.0	***	7	7				
	0.040-0.062	72.0	***	62.0	***	8	7				
	0.063-0.091	73.0		63.0	***	8	8				
	0.0920.125	73.0	***	63.0	**1	8	9				
	0.126-0.187	73.0	***	63.0	***	8	10				



TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength,	ksi	Yield Strength (	0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, A
	0.1880.249	75.0	•••	64.0		8	10
T62 ^D , <b>T6</b> 51 ^E	0.250~0.499	75.0	***	65.0	***	9	12
,	0.500-1.000	78.0 ^G	***	68.0 ^G	***	7	
	1.001-2.000	77.0 ^G		67.0 ⁶		6	
	2.001-2.500	76.0 ^G	***	64.0 ^G	***	5	***
			***	61.0 ^G	***	5	4**
	2.501-3.000	72.0 ^G	•••		***		***
	3.001-3.500	71.0 ^G	***	58.0 ^G	***	5	***
	3.5014.000	67.0 ^a	***	54.0 ^e	***	3	•••
T76 sheet	0.040-0.062	67.0	***	56.0	***	8	***
	0.063-0.124	68.0	***	57.0	***	8	
	0.125-0.187	0.86	***	57.0	***	8	***
	0.188-0.249	70.0	***	59.0	•••	8	•••
T7651 ^E plate	0.250-0.499	69.0	•••	58.0		8	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.5001.000	71.0 ^{<i>G</i>}		60.0 ^G	***	6	•••
<b>F</b> ^F	0.250-4.000						
Г	0.230-4.000	Λ1.	alad One Side A	 llov 7076			***
0	0.015.0.000			-	01.0	10	4
0	0.015-0.032	***	38.0	•••	21.0	10	1
	0.033-0.062	***	38.0	***	21.0	10	2
	0.063-0.091	***	39.0	***	21.0	10	3
	0.092-0.125	***	39.0	***	21.0	10	4
	0.126-0.187	***	39.0	***	21.0	10	5
	0.188-0.249	***	39.0	***	21.0	10	5
	0.250-0.499	***	39.0	•••	21.0	10	6
	0.500-1.000	***	40.0 ^G	***	***	10	***
T6, T <b>6</b> 2 ^D	0.0080.011	71.0		60.0		5	
10, 102	0.012-0.014	74.0	***	64.0	***	8	***
			444		Fa 5		,,,
	0.015-0.032	74.0	***	64.0	***	8	7
	0.033-0.039	74.0	***	64.0	***	8	8
	0.040-0.062	75.0	•••	65.0	***	9	8
	0.0630.091	76.0	***	66.0	***	9	9
	0.092-0.125	76.0	***	66.0	***	9	10
	0.126~0.187	77.0	***	67.0	***	9	11
	0.188-0.249	78.0	***	67.0	***	9	11
T62 ^D , T651 ^E	0.250-0.499	76.0		66.0		9	13
102 , 1001	0.500-1.000	78.0 ^G	***	68.0 ^G	***	7	
	1.001-2.000	77.0 ^a	***	67.0 ^G	***	6	***
	1.001-2.000	77.0	***	07.0	***	U	***
F ^F	0.250-2.000		***	***	***	141	***
			7008 Alclad Allo	y 7075			
0	0.015-0.499	***	40.0	•••	21.0	10	***
	0.500-2.000	***	40.0 ^G	***	***	10	***
T6, T62 ^D	0.015-0.039	73.0	***	63.0	***	7	***
	0.040-0.187	75.0		65.0		8	
	0.188-0.249	76.0	***	66.0	***	8	***
T62 ^D , T651 ^E	0.250-0.499	76.0		66.0		9	
, 1001	0.500-1.000	78.0 ^G	***	68.0 ^G	***	7	***
			•••		***		
	1.001-2.000	77.0 ^G	***	67.0 ^G	***	6	***
	2.001-2.500	76.0 ^G	•••	64.0 ^G	•••	5	***
	2.501-3.000	72.0 ^G	***	61.0 ^G	***	5	***
	3.001-3.500	71.0 [©]	***	58.0 [©]	***	5	***
	3.501-4.000	67.0 ^G	121	54.0 [©]		3	•••
T76 sheet	0.040-0.062	70.0	***	59.0	***	8	,
	0.063-0.187	71.0	***	60.0	***	8	•••
	0.188-0.249	72.0	***	61.0	***	8	
T76516 mints	0.050 0.400	74.0		<b>6</b> 0.0		0	
T7651 [#] plate	0.250-0.499 0.500-1.000	71.0 71.0 ⁰	***	60.0 60.0	***	8 6	***
		1 1 44	***	~ ~ ~ ~	***	~	***
FF.	0.250-4.000	***	444	117	1**	***	***



			TABLE 3 Co	ontinued			
Temper	Specified Thickness, in.	Tensile Strength	, ksi	Yield Strength	ı (0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
0	0.0150.020		40.0	***	21,0	10	1
•	0.021-0.062	***	40.0	***	21.0	10	2
	0.0630.091	141	40.0	***	21,0	10	3
	0.0920.125	***	40.0	***	21.0	10	4
	0.126-0.249	141	40.0	***	21.0	10	5
	0.250-0.499	111	40.0	***	21.0	10	6
	0.500-2.000		40.0 ^G		21.0 ^G	10	111
T6, T62 ^D	0.015-0.020	73,0	***	63.0	***	7	7
	0.0210.039	73.0	***	63.0	***	7 8	8 8
	0,0400,062 0.0630,091	75.0 75.0	127	66.0 65.0	***	8	9
	0.092-0.125	75.0	. ***	65,0	***	8	10
	0.126-0.187	75.0	***	65.0	***	8	11
	0.188-0.249	<b>76.</b> 0	***	66.0	***	8	11
T62 ^D , T651	0.250-0.499	76.0	***	66.0	***	9	14
, , , , , , , , , , , , , , , , , , , ,	0.500-1.000	78.0 ^G	•••	68.0 [⇔]	***	7	***
	1.001-2.000	77.0 ^G	•••	67.0 ^G	***	6	
	2.001-2.500	76.0 ^G	***	64.0 ^G	***	5	***
	2.501-3.000	72.0 ^G	***	61,0 ^G	***	5	***
	3.001-3.500	71.0 ^G	***	58.0 [⊕]	n	5	***
	3.501-4.000	67.0 ^G	***	54.0 ^{<i>G</i>}	***	3	***
176	0.040-0.062	70.0	***	59.0	791	8	8
	0.063-0.091	71.0		60.0	***	8	9
	0.092-0.125	71.0	***	60.0	***	8	10
	0.126-0.187	71.0	•••	60.0	•••	8	11
Trace	0.188-0.249	72.0	***	61.0	•••	8 . 8	11
T7651	0.2500.499 0.5001.000	71.0 71.0 [©]	***	60.0 60.0 ^ഒ	***	6	•••
F	All	71.0	***		***		***
**************************************			Alloy 7178				
0	0.015-0.499		40.0		21.0	10	***
J.	0.500		40.0	***		10	***
T6, T62 ^D	0.0150.044	83.0		72,0	***	7	***
10, 102	0.045-0.249	84.0		73.0		8	***
T62 ^D ,T651 ^E	0.250-0.499	84.0		73.0		8	***
102 ,1001	0.5001.000	84.0	***	73.0	***	6	***
	1,001-1,500	84.0	***	73.0	. 210 240	4	***
	1,501-2,000	0.08	***	70.0	,,,	3	***
T76	0.045-0.249	75.0	1/4	64.0		8	***
T7651 [€]	0.250-0.499	74.0		63.0		8 .	
17051"	0.500-1.000	73.0	•••	62.0	100	6	***
≅F	0.2502.000	***	***	***	,,,	***	***
	11.11.11.11.11.11.11.11.11.11.11.11.11.		Alclad Alloy 7				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
)	0.015-0.062	***	36.0	***	20.0	10	***
	0.063-0.187	***	38.0	***	20.0	10	***
	0.188-0.499	***	40.0	F2-0	21.0	10	***
	0.500	***	40.0 ^G	***	***	10	111
Г6, Т62 ^D	0.015-0.044	76.0	***	66.0	144	7	***
	0.045-0.062	78.0	***	68.0	***	8	***
	0.063-0.187	80.0	***	70.0	***	8	
	0.188-0.249	82.0		71.0		8	***
'62 ^P , T651 ^E	0.2500.499	82.0	***	71.0	***	8	
	0.500-1.000	84.0 [©]	•••	$73.0^{G}$	***	6	***
	1.001-1.500	84.0 ^{<i>G</i>}	***	73.0 ^a	***	4	
	1.501-2.000	80.0 ^G	•••	70.0 ^G	***	3	***
76	0.045-0.062	71.0	***	60.0	121	8	
	0.063-0.187	71.0	***	60.0	***	8	•••
	0.1880.249	73.0	***	61.0	•••	8	
Γ7651 ^E	0.250-0.499	72.0	***	60.0	***	8	***
	0.500-1.000	73.0 G	***	62.0 ^G	***	6	444

#### TABLE 3 Continued

		**	MUNICIPAL OF CO	munuec			
Temper	Specified Thickness, in.	Tensile Strength, ksi Yleld Strength (0.2 % offset), ksi		(0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter	
		min	max	min	max	Diameter, min, %	Factor, N
F	0.250-2.000	•••	***			**1	· · · ·
			7011 Alclad Allo	y 7178	71. 47.		
O	0.015-0.020	* 44	40.0	***	21.0	10	1
	0.021-0.062	124	40.0		21.0	10	2
	0.063-0.091	***	40.0	***	21.0	10	3
	0.0920.125	***	40.0	***	21.0	10	4
	0.126-0.249	***	40.0	***	21.0	10	5
	0.250-0.499		40.0	***	21.0	10	6
	0.500-2.000	***	40.0 ^G		***	10	
T6, T62 ^D	0.015-0.020	79.0	***	69.0	341	7	7
	0.021-0.044	79.0		69.0	711	7	8
	0.045-0.062	81.0	***	70.0	***	8	8
	0.063-0.091	82.0		71.0	***	8	9
	0.0920.125	82.0		71.0	***	8	10
	0.126-0.187	82.0	***	71.0	***	8	11
	0.188-0.249	83.0	***	72.0	***	8	14
T62 ^D , T651	0.250-0.499	83.0	***	72.0	***	8	14
	0.500-1.000	84.0 ^G		73.0 ^G		6	
	1.001-1.500	84.0 ^{<i>G</i>}	***	73.0 ^a	***	4	
	1.501~2.000	80.0 [©]	.,,	70.0 ^a		3	***
T76	0.045-0.062	73.0		62.0		8	8
	0.063-0.091	73.0	•••	62.0	***	8	9
	0.092-0.125	73.0	•••	62.0	***	8	10
	0.126~0.187	73.0	***	62.0	***	8	11
	0.188-0.249	74.0	•••	63.0	***	8	11
T7651	0.250-0.499	73.0	***	61.0	111	8	
	0.500-1.000	73.0 ^G	•••	62.0 [©]	***	6	
F	All	*44	***	***	***		

^A To determine conformance to this specification, each value for tensile strength and for yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E 29.

^B The basis for establishment of mechanical property limits is shown in Annex A1.

^C Coiled sheet.

^D Material in the T42, T62, and T72 tempers is not available from the material producer.

For stress-relieved tempers (T351, T451, T651, T7351, T7651, and T851), characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic temper.

First for tensile properties in the F temper are not required.

The tension test specimen from plate 0.500 in. and thicker is machined from the core and does not include the cladding.

The tension test specimen from place 0.000 in. and fillings a filling test and plate only.

The T72 temper is applicable only to Alloys 2024 and Alciad 2024 sheet solution heat treated and artificially overaged by the user to develop increased resistance to stress-corrosion cracking.

Short transverse tensile property limits are not applicable to material less than 1.500 in. in thickness.

Sus of Alloys 2219 and Alciad 2219 in the T31, T361, and T37 tempers for finished products is not recommended.

#### TABLE 4 Lot Acceptance Criteria for Resistance to Stress Corrosion and Exfoliation Corrosion

		Lot Acceptance Criteria				
Alloy and Temper	Electrical Conductivity, ^A %, IACS	Level of Mechanical Properties	- Lot Acceptance Status			
7075-T73 and T7351	40.0 or greater	per specified requirements	acceptable			
	38.0 through 39.9	per specified requirements yield strength does not exceed minimum by more than 11.9 ksi	acceptable			
	38.0 through 39.9	per specified requirements but yield strength exceeds minimum by 12.0 ksi or more	unacceptable ^B			
	less than 38.0	any level	unacceptable ⁸			
7 7075—T76 and T7651 Alclad 7075—T76 and T7651	38.0 or greater 36.0 through 37.9	per specified requirements per specified requirements	acceptable unacceptable ⁸			
and 7008 Alclad 7075—776 and —77651	less than 36.0	any level	un <b>accept</b> able ^B			
7178— <i>T76 and T76</i> 51 <i>Alciad 7</i> 178— <i>T76 and T76</i> 51 7011 Alciad 7178-T76 and T7651	38.0 or greater 35.0 through 37.9 less than 35.0	per specified requirements per specified requirements any level	acceptable unacceptable ^B unacceptable ^B			

A The electrical conductivity shall be determined in accordance with Test Method E 1004 in the following locations:

Alloy-Temper

Thickness, in.

Location surface of tension-test sample

7075-T73 and T7351 7075 – T76 and T7651 7178 – T76 and T7651

up through 0.100 0.101 and over

surface of tension-test sample sub-surface after removal of approximately

10 % of the thickness

TABLE 5 Components of Clad Products

	Component Alloys ^A		Total Composite Thickness		Cladding Thickness per Side, percei of Composite Thickness		
Alloy	Core Cladding	Cladding	of Finished Sheet and Plate, in.	Sides Clad	Nominal -	Ave	∍rage ^B
			22.2.7.2.7, 2.7.		HOHIME!	min	max
Alclad 2014	2014	6003	up through 0.024	both	10	8	
			0.025-0.039	both	7.5	6	
			0.040-0.099	both	5	4	
			0.100 and over	both	2.5	2	
Alclad 2024	2024	1230	up through 0.062	both	5	4	
			0.063 and over	both	2.5	2	
11/2 % Alclad 2024	2024	1230	0.188 and over	both	1.5	1.2	3 [©]
Alclad one-side 2024	2024	1230	up through 0.062	one	5	4	
			0.063 and over	one	2.5	. 2	
1½ % Alclad one-side 2024	2024	1230	0.188 and over	one	1.5	1.2	$\mathfrak{Z}^C$
Alclad 2219	2219	7072	up through 0.039	both	10	8	
			0.0400.099	both	5	4	
			0.100 and over	boih	2.5	2	
Alclad 3003	3003	7072	al!	both	5	4	$6^D$
Alclad 3004	3004	7072	all	both	5	4	6 ^D
Alclad 6061	6061	7072	all	both	5	4	$6^D$
Alciad 7075 and	7075	7072	( up through 0,062	both	4	3.2	
7008 Alclad 7075	7075	7008	0.063-0.187	both	2.5	2	
			0.188 and over	both	1.5	1.2	3 ^C
Alclad one-side 7075	7075	7072	up through 0.062	one	4	3.2	
			0.063-0.187	one	2.5	2	
			0.188 and over	one	1.5	1.2	3 [©]
Holad 7178	7178	7072	Cum through 0 000	both	4	3.2	
7011 Alclad 7178	7178	7011	( up through 0.062 { 0.0630.187	both	2.5	2	
			0.188 and over	both	1.5	1.2	$3^C$

A Cladding composition is applicable only to the aluminum alloy bonded to the alloy ingot or slab preparatory to rolling to the specified composite product. The

For alcad products, the cladding must be removed and the electrical conductivity determined on the core alloy.

^B When material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment or re-solution heat treatment, stress relieving and precipitation heat treatment, when applicable)...

Composition of the cladding may be altered subsequently by diffusion between the core and cladding due to thermal treatment.

Average thickness per side as determined by averaging cladding thickness measurements when determined in accordance with the procedure specified in 15.2.

For thicknesses of 0.500 in. and over with 1.5% of nominal cladding thickness, the average maximum thickness of cladding per side after rolling to the specified thickness of plate shall be 3% of the thickness of the plate as determined by averaging cladding thickness measurements taken at a magnification of 100 diameters on the cross section of a transverse sample polished and etched for examination with a metallurgical microscope.

Applicable for thicknesses of 0.500 in. and greater.

TABLE 6 Ultrasonic Discontinuity Limits for Plate^A

Alloy	Thickness, In.	Maximum Weight Per Piece, lb ^B	Discontinuity Class ^C
2014 ^D 2024 ^D	0.500-1.499	2000	В
2124 2219 ⁰	1.500–3.000	2000	A
7075 ^D 71 <b>78</b> ^D	3.001–6.000	2000	В

A Discontinuities in excess of those listed in this table shall be allowed if it is established that they will be removed by machining or that they are in noncritical areas.

B The maximum weight is either the ordered weight of a plate of rectangular shape or the planned weight of a rectangular plate prior to removing metal to produce a

#### **ANNEXES**

#### (Mandatory Information)

#### A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

A1.1 Limits are established at a level at which a statistical evaluation of the data indicates that 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits for the respective size ranges are based on the analyses of at least 100 data from standard production material with no

more than ten data from a given lot. All tests are performed in accordance with the appropriate ASTM test methods. For informational purposes, refer to "Statistical Aspects of Mechanical Property Assurance" in the Related Material section of the *Annual Book of ASTM Standards*, Vol 02.02.

## A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1. The Aluminum Association¹⁵ holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1. A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- A2.2.4 The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.

- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.
- A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

Loss than 0.001 %	0.000X
0.001 to but less than 0.01 %	X00.0
0.01 to but less than 0.10 %	
Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a refining process	0.0X
0.10 through 0.55 %	0.XX
(It is customary to express limits of 0.30 through 0.55 % as	
0.X0 or 0.X5.)	
Over 0.55 %	0.X, X.X, etc.
(except that combined SI + Fe limits for 99.00 % minimum	
aluminum must be avarageed as 0 XX or 1 XX	

A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc (Note A2.1); Titanium; Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).

Note A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between zine and titanium, or are specified in footnotes.

Note A2.2—Aluminum is specified as *minimum* for unalloyed aluminum and as a *remainder* for aluminum alloys.

part or plate shape to a drawing.

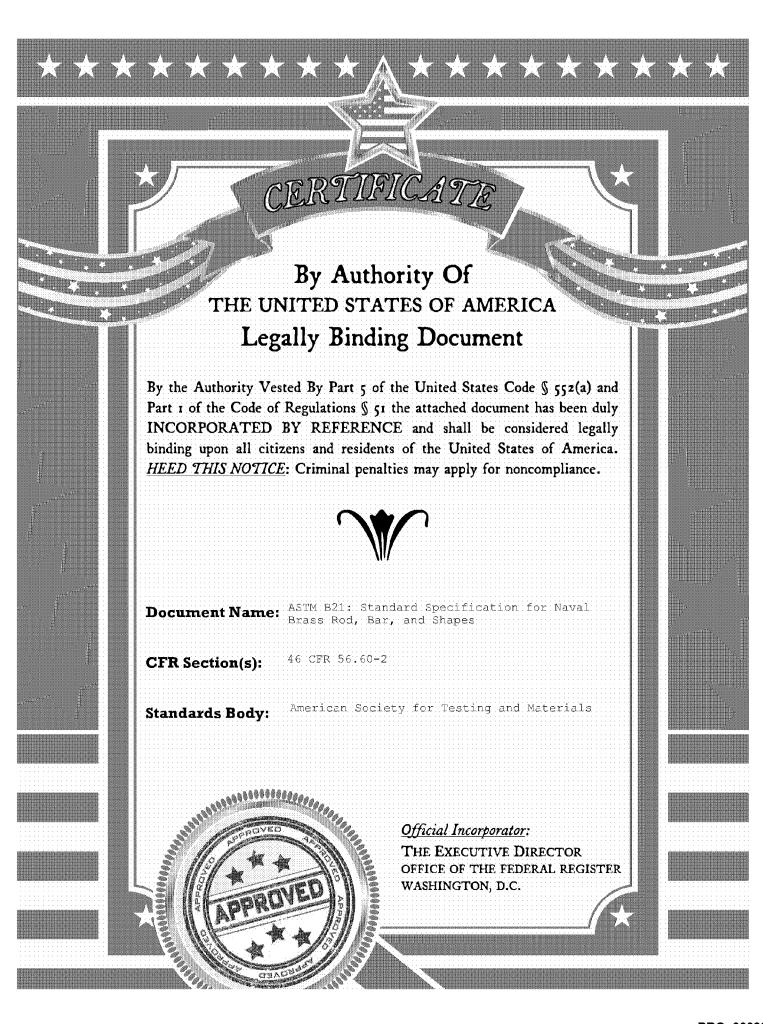
C The discontinuity class limits are defined in Section 11 of Practice B 594.

D Also applies for alclad plate.

¹⁵ The Aluminum Association, 900 19th Street, NW, Washington, DC 20006.

#### SUMMARY OF CHANGES

This section identifies the principal changes to this standard that have been incorporated since the last issue.


- (1) Paragraphs 4.1.8, 9.1.1 and 16.3 have been added.
- (2) Paragraph 11.2 has been revised to add alloy 6061.
- (3) Paragraphs 13.1 and 13.3.1 have been revised to add 2219-T851 and -T87.
- (4) Note 6 has been added under 14.1.
- (5) Paragraph 20.2 has been revised to add T3, T4, and 6061-T6 and T651.
- (6) Table 2, bend diameter factors have been added for several alloy-temper-thickness combinations.
- (7) Table 3, bend diameter factors have been added for many heat-treatable alloys.
- (8) Table 3, superscript "K" has been added to T361 and T861 tempers for 2024 and Alclad 2024.

- (9) Table 3, minimum elongation for Alclad 2024-T4, 0.021-0.062 in has been revised.
- (10) Table 3, 2124-T851 thickness range has been extended downward to 1.000 in.
- (11) Table 3, 7075-T7351 tensile property limits have been added for 3.001-4.000 in.
- (12) Table 3, 7011 Alclad 7075 and 7011 Alclad 7178 have been added.
- (13) Table 6, plate thickness for ultrasonic inspection has been extended to 6.000 in.
- (14) The tensile property limits for 7075-T76 sheet 0.063-0.124 in., 7075-T7651 plate 1.001-2.000 in., and Alclad 7075-T76 sheet 0.040-0.124 in. have been added.
- (15) The tensile property limits for Alclad One Side 7075-T6 and T62 have been revised.

ASTM international takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM international Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).



# Standard Specification for Naval Brass Rod, Bar, and Shapes¹

This standard is issued under the fixed designation B 21; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This specification has been approved for use by agencies of the Department of Defense. Consult the DoD Index of Specifications and Standards for the specific year of issue which has been adopted by the Department of Defense.

#### 1. Scope*

- 1.1 This specification establishes the requirements for naval brass rod, bar, and shapes produced from Copper Alloys UNS No. C46200, C46400, C47940, C48200, or C48500.
  - 1.1.1 For piston-finish rod or shafting refer to Section 9.
- 1.2 This specification is the companion to SI Specification B 21M; therefore no SI equivalents are shown.
- 1.3 Warning—Mercury is a definite health hazard in use and disposal (see 8.1).

Note 1-For hot forging material, refer to Specification B 124.

#### 2. Referenced Documents

- 2.1 ASTM Standards:
- B 124 Specification for Copper and Copper-Alloy Forging Rod, Bar, and Shapes²
- B 154 Test Method for Mercurous Nitrate Test for Copper and Copper Alloys²
- B 249 Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar, and Shapes²
- B 601 Practice for Temper Designations for Copper and Copper Alloys—Wrought and Cast²
- E 8 Test Methods for Tension Testing of Metallic Materials³
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials³
- E 478 Test Methods for Chemical Analysis of Copper Alloys⁴

#### 3. Ordering Information

- 3.1 Orders for product under this specification are to include the following information:
  - 3.1.1 ASTM designation and year of issue.
  - 3.1.2 Copper Alloy UNS No. designation (Section 1.1),
  - 3.1.3 Temper (Section 6),
- 3.1.4 Form: cross-section such as round, hexagonal, square, etc.,

- 3.1.5 Diameter or distance between parallel surfaces (Section 11.2),
  - 3.1.6 Length (Section 11.4),
  - 3.1.7 Edge contours (Section 11.6),
- 3.1.8 Number of pieces or total weight, for each size and form, and
- 3.1.9 When product is specified for agencies of the U.S. Government (Section 10).
- 3.2 The following are options available under this specification and are to be specified in the contract or purchase order when required:
  - 3.2.1 Mercurous Nitrate Test (Section 8),
  - 3.2.2 Piston finish rod or shafting (Section 9).
  - 3.2.3 Certification (Specification B 249), and
  - 3.2.4 Mill test report (Specification B 249).

#### 4. General Requirements

- 4.1 The following sections of Specification B 249 constitute a part of this specification:
  - 4.1.1 Terminology,
  - 4.1.2 Materials and Manufacture,
  - 4.1.3 Workmanship, Finish, and Appearance,
  - 4.1.4 Sampling,
  - 4.1.5 Number of Tests and Retests,
  - 4.1.6 Specimen Preparation,
  - 4.1.7 Test Methods,
  - 4.1.8 Significance of Numerical Limits.
  - 4.1.9 Inspection,
  - 4.1.10 Rejection and Rehearing,
  - 4.1.11 Certification,
  - 4.1.12 Mill Test Report,
  - 4.1.13 Packaging and Product Marking, and
  - 4.1.14 Supplementary Requirements.
- 4.2 In addition, when a section with a title identical to that referenced in 4.1, above, appears in this specification, it contains additional requirements which supplement those appearing in Specification B 249.

#### 5. Chemical Composition

- 5.1 The product shall conform to the chemical composition requirements specified in Table 1 for the Copper Alloy UNS No. designation specified in the ordering information.
- 5.2 These composition limits do not preclude the presence of other elements. Limits may be established and analysis required for unnamed elements by agreement between the manufacturer or supplier, and purchaser.
  - 5.3 For copper alloys in which zinc is specified as the
- ¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.02 on Rod, Bar, Wire, Shapes and Forgings. Current edition approved April 10, 1996. Published June 1996. Originally
- published as B 21 18T. Last previous edition B 21 90⁶¹.

  ² Annual Book of ASTM Standards, Vol 02.01.
  - ³ Annual Book of ASTM Standards, Vol 03.01. ⁴ Annual Book of ASTM Standards, Vol 03.05.
    - * A Summary of Changes section appears at the end of this specification.

**TABLE 1 Chemical Requirements** 

Element,	Copper Alloy UNS No.							
%	C46200	C46400	C47940	C48200	C48500			
Copper	62.0-65.0	59.0-62.0	63.0-66.0	59.0-62.0	59.0-62.0			
Tin	0.50-1.0	0.50-1.0	1.2-2.0	0.50-1.0	0.50-1.0			
Lead	0.20 max	0.20 max	1.0-2.0	0.40-1.0	1.3-2.2			
Zinc	remainder	remainder	remainder	remainder	remainder			
Iron	0.10 max	0.10 max	0.10-1.0	0.10 max	0.10 max			
Nickel			0.10-0.50	• • •				

remainder, either copper or zinc is permitted to be taken as the difference between the sum of results determined for all elements analyzed and 100 %. When copper is so determined, that difference value shall conform to the requirements given in Table 1.

5.4 When all elements listed in Table 1 for the Copper Alloy UNS No. specified in the ordering information are analyzed, the sum of results shall be 99.6 % minimum.

#### 6. Temper

6.1 Tempers, as defined in Practice B 601, available under this specification are shown in Table 2.

#### 7. Mechanical Property Requirements

- 7.1 The product shall conform to the mechanical property requirements given in Tables 2 and 3 for the Copper Alloy UNS No. designation specified in the ordering information.
- 7.1.1 Rockwell Hardness—For the alloys and tempers listed, the product ½ in. and over in diameter or distance between parallel surfaces shall conform with the requirements given in Table 3, when tested in accordance with Test Methods E 18.
- 7.1.1.1 For the alloys and tempers listed in Table 3, Rockwell hardness shall be the basis of acceptance or rejection for mechanical properties except when the tensile test is specified in the contract or purchase order.
- 7.1.2 Tensile Strength—The product shall conform with the requirements of Table 2, when tested in accordance with Test Methods E 8.

#### 8. Mercurous Nitrate Test

- 8.1 When specified in the contract or purchase order, the test specimens, cut at least 6 in. in length, shall be totally immersed for 30 min in the standard mercurous nitrate solution specified in Test Method B 154. There shall be no cracks in the specimen when examined immediately after it is removed from the solution, rinsed and wiped.
- NOTE 2: Caution—Mercury is a definite health hazard, and therefore equipment for the detection and removal of mercury vapor produced in volatilization is recommended. The use of rubber gloves in testing is advisable.
- NOTE 3—Bars that have been properly straightened or sprung will have internal stresses so broken up as not to be in danger of splitting or cracking. The mercurous nitrate test is designed to determine whether the internal stresses have been properly broken up and rendered safe.

#### 9. Piston-Finish Rod and Shafting

- 9.1 When so specified in the contract or order, round rods over ½-in. diameter shall be furnished as piston-finish rods or shafting.
- 9.2 Piston-finish rods shall have a special surface produced by turning or grinding and shall comply with the

special diameter tolerances specified in 11.2.3.

9.3 The straightness tolerances for piston-finish rod are subject to agreement between the manufacturer or supplier and the purchaser.

#### 10. Purchases for U.S. Government

10.1 Product purchased for agencies of the U.S. Government shall conform to the additional requirements prescribed in the Supplemental Requirements section of Specification B 249.

#### 11. Dimensions, Mass, and Permissible Variations

- 11.1 The dimensions and tolerances for material covered by this specification shall be as specified in the current edition of Specification B 249, with particular reference to Section 5 and the following tables of that specification:
  - 11,2 Diameter or Distance Between Parallel Surfaces:
- 11.2.1 Rod: Round, Hexagonal, Octagonal—See 5.2, Table 1.
  - 11.2.2 Rod, M30 (As-Hot Extruded)-See 5.2, Table 4.
  - 11.2.3 Piston-Finish Rod-See 5.2, Table 3.
- 11.2.4 Bar: Rectangular and Square—See 5.2, Tables 8 and 10.
  - 11.2.5 Bar, M30 (As-Hot Extruded)—See 5.2, Table 4.
- 11.3 Shapes—The dimensional tolerances for shapes shall be as agreed upon by the manufacturer or supplier and the purchaser, and shall be specified in the order.
- 11.4 Length of Rod, Bar, and Shapes—See 5.3, Tables 13 and 14.
  - 11.5 Straightness:
  - 11.5.1 Rod and Bar—See 5.4.1, Table 16.
- 11.5.2 Shafting Rod—See 5.4.2, Table 17.
- 11.5.3 M30 (as-hot extruded) rod, bar, and shapes shall be commercially straight.
- 11.6 Edge Contours—See 5.5.

#### 12. Specimen Preparation.

- 12.1 In the tension test all material shall be pulled in full size when practicable. Full-size or machined test specimens shall be as specified in Test Methods E 8. Whenever tension test results are obtained from both full-size and from machined test specimens and they differ, the results obtained from full-size test specimens shall be used to determine conformance to the requirements of this specification.
- Note 4—The tension test specimens shall conform to the dimensions specified in Section 6 of Test Methods E 8.
- 12.2 Mercurous nitrate test specimens shall be of the full size of the material, and without bending, springing, polishing, or any other preparation.

#### 13. Test Methods

- 13.1 Chemical Analysis:
- 13.1.1 Chemical composition shall be determined, in case of disagreement, as follows:

Element	ASTM Test Method
Copper	E 478
Iron	E 478
Lead	E 478 (AA)
Nickel	E 478
Tin	E 478 (Titrimetric)
Zinc	E 478 (Titrimetric)

TABLE 2 Tensile Requirements

Standard	per Designation Former	Diameter of Distance Between Parallel Surfaces, in.	Tensile Strength, min, ksi	0.5 % Exte	trength at Insion Under Min, ksi	of Thickness	n 4 × Dian s of Specir n, % ^A
		Copper Alloy UNS	No. C46200		2: :: .		
М30	as-hot extruded	all forms, all sizes	50		20	* :	30
Q60	soft anneal	rods and bars, all sizes	49		16		30
O50	light anneal	rods and bars:	. **	to the second		F 7	
		0.500 and under	58		27		22
		over 0.500 to 1.000, incl	56		27		25
,		over 1.000 to 2.000, incl	54		26		25
		over 2.000 to 3.000, incl	52		25		27
		over 3.000 to 4.000, incl	50		22		30
		over 4.000	50		20		30.
H60	cold heading, forming	rods, all sizes	48		18		22
H02	half-hard	rods and bars:	40		10		22
1102	Hall-Hard	0.500 and under	58		27		22
	and the second second	over 0.500 to 1.000, incl	56		27 27		25
		over 1.000 to 2.000, incl	54		26		
	i i i i i i i i i i i i i i i i i i i						25
	*	over 2.000 to 3.000, incl	52		25		27
		over 3.000 to 4.000, incl	50		22		30
		over 4.000	50	:	20		30
H04	hard	rods and bars:					
		0.500 and under	64		40		13
		over 0.500 to 1.000, incl	62		38		13
		over 1.000 to 2.000, incl	58	· · · · · · · · · · · · · · · · · · ·	34		18
	100	Copper Alloy UNS	3 No. C46400				
M30	as-hot extruded	all forms, all sizes	52		20		30
O60	soft anneal	rods and bars:					
		1.000 and under	54		20		30
		over 1.000 to 2.000, incl	52		20		30
		over 2.000	50	• :	20		30
		shapes, all sizes	52	:	20		30
O50	light anneal	rods and bars:					
		0.500 and under	60	•	27		22
		over 0.500 to 1.000, incl	60		27		25
		over 1.000 to 2.000, incl	58		26		25
		over 2.000 to 3.000, incl	54		25		25
		over 3.000 to 4.000, incl	54		22		27
		over 4.000	5 <del>4</del>		22		30
H50 ⁸	extruded and drawn ^B	shapes, all sizes	58		25		20
H02	half-hard	rods and bars:	30	•	20	. , e	20
1102	Hall-Hard	0.500 and under	60		27		22
		over 0.500 to 1.000, incl	60		27		25
		over 1.000 to 2.000, incl	58		26		25
		over 2.000 to 3.000, incl	54		25		25
	,	over 3.000 to 4.000, incl	54		22		27
		over 4.000	54	;	22		30
H04	hard	rods and bars:					
	:	1.000 and under	67		45		13
	<u> </u>	over 1.000 to 2.000, incl	62		37		18
	a a same a same	Copper Alloy UNS	No. C47940	, · · · · · ·			
м30	as-hot extruded	all forms, all sizes	50		20		30
O60	soft anneal	rods and bars, all sizes	48		20		30
O50	light anneal	rods and bars:					
1	1	0.500 and under	58		30		18
	7	over 0.500 to 1.000, incl	56		30		20
		over 1.000 to 2.000, incl	54		25		22
		over 2.000	50		25		25
H50 ⁸	extruded and drawn ^B	shapes, all sizes	56		25		20
H02	half-hard	rods and bars:	•				
		0.500 and under	58	\$	30		18
		over 0.500 to 1.000, incl	56		30		20
		over 1.000 to 2.000, incl	54		25		22
		over 2.000	50		25		25
H04	hard	rods and bars:		•			
	The Control of the Co	0.500 and under	70		55		10
100	. V s . V	over 0.500 to 1.000, incl	65		52 52	2000	10 13
	rie :	over 1.000 to 2.000, incl	62		45		15
/1	,	The state of the s	2 85 H. L				
		11		in the second		n in TV Digit 11 Mark an Twi	*
17			* * * * * * * * * * * * * * * * * * * *	. '		++ 2 VI	
							+ 1 = 4
			19.4	· .	4	W. C	

TABLE 2 Continued

Temper Designation		Designation	Diameter or Distance  Between Parallel	Tensile Stre			rength at nsion Under			× Diameter Specimen,	
	Standard	Former	Surfaces, in.	min, k	si .		min, ksi	Of THICK	min, %		
Copper Alloy UNS No. C48200											
	M30 O60	as-hot extruded	all forms, all sizes rods and bars:	52		2	20		25		
	060	soft anneal	1:000 and under	54			:0		25		
			over 1.000 to 2.000, incl	52			:0		25		
			over 2.000	50			.0		25 25		
			shapes, all sizes	52 52	1.4		0	L.	25		
	O50	light anneal	rods and bars:	, OL					- 20		
	000	ig.it cambon	1.000 and under	60		2	7		18		
			over 1.000 to 2.000, incl	58			6		20		
			over 2.000 to 3.000, incl	54			5		20		
		*	over 3.000 to 4.000, incl	54			2		20		
	•		over 4.000	54		2	2	·	25		
	H50 ^B	extruded and drawn®	shapes, all sizes	58			5		15		
	H02	half-hard	rods and bars:								
			1.000 and under	60	34	2	7		18		
			over 1.000 to 2.000, incl	. 58	100	2	6		20	4.1	
			over 2.000 to 3.000, incl	54		2	5		- 20		
			over 3.000 to 4.000, incl	54		2	2		20		
			over 4.000	54		2	2		25		
	H04	hard	rods and bars:		100	17.4					
		(x,y) = (x,y) + (x,y	1.000 and under	67		4	5	17	11		
			over 1.000 to 2.000, incl	62			7		15		
			Copper Alloy UNS	No. C48500							
	M30	as-hot extruded	all forms, all sizes	52		2	0		20		
	O60	soft anneal	rods and bars:								
			1.000 and under	54		2			20		
			over 1.000 to 2.000, incl	52	and the same	. 2		- 1	20		
			over 2.000	50		2			20		
			shapes, all sizes	52		2	כ		20		
	O50	light anneal	rods and bars:								
			1.000 and under	60		2			12		
			over 1.000 to 2.000, incl	58		2			20		
			over 2.000 to 3.000, incl	54		2			20		
			over 3.000 to 4.000, incl	54		2:			20		
			over 4.000	54		2:			20		
	H50 ⁸	extruded and drawn ^B	shapes, all sizes	58		2:	,		15		
	H02	half-hard	rods and bars: 1.000 and under	60		Α.	,		10		
			over 1.000 to 2.000, incl	60 58		2°			12 20		
			over 2.000 to 3.000, incl	54		29			20		
			over 3.000 to 4.000, incl	54 54		2:			20		
			over 4.000	54 54		2:			20		
	H04	hard	rods and bars:	J-4			•		20		
	1107	TILLIG	1.000 and under	67		48	;		10		

A In any case, a minimum gage length of 1 in. shall be used. B This temper does not apply to hollow shapes.

TABLE 3 Rockwell Hardness Requirements

Copper Alloy	Temper Designation		Diameter or Distance	Rockwell B Hardness Determined on the Cross
UNS No.	Standard	Former	Between Parallel Surfaces, in.	Section Midway Between Surface and Center
C46400	H02	half-hard	over 0.500 to 1.000, incl	60-80
			over 1.000	55-80
	H04	hard	over 0.500 to 1.000, incl	70-90
			over 1.000	65-90
C48200	H02	half-hard	over 0.500 to 1.000, incl	<b>65–8</b> 5
			over 1.000	60-85
	H04	hard	over 0.500 to 1.000, incl	70–90
			over 1.000	<b>6</b> 5– <b>9</b> 0
C48500	H02	half-hard	over 0.500 to 1.000, incl	65-85
			over 1.000	60-85
	H04	hard	over 0.500 to 1.000, incl	70~90
			over 1.000	65-90



13.1.2 Test method(s) to be followed for the determination of element(s) resulting from contractural or purchase order agreement shall be agreed upon between the supplier and purchaser.

#### 14. Keywords

14.1 naval brass; naval brass bar; naval brass rod; piston-finish rod; piston-finish shafting

#### SUMMARY OF CHANGES

The following is a summary of the changes that have been incorporated since the printing of B 21 - 90:

- 1. The Scope section was revised, and the previously used alloy designation deleted.
- 2. The Ordering information section revised to more clearly delineate purchasing options.
- 3. The General Requirements section revised to identify the specific sections in Specification B 249 which constitute a part of this specification.
- 4. Table 2 was revised to more clearly state the mechanical property requirements.
- 5. A Test Methods section was added to identify individual test methods for the determination of chemical composition.
- 6. Table 3 was added to show the Rockwell hardness requirements for the alloys and tempers listed.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 100 Barr Herbor Drive, West Conshohocker, PA 19428.



## Standard Specification for Naval Brass Rod, Bar, and Shapes [Metric]¹

This standard is issued under the fixed designation B 21M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This specification has been approved for use by agencies of the Department of Defense. Consult the DoD Index of Specifications and Standards for the specific year of issue which has been adopted by the Department of Defense.

#### 1. Scope*

- 1.1 This specification establishes the requirements for naval brass rod, bar, and shapes produced from Copper Alloys UNS Nos. C46200, C46400, C47940, C48200, or C48500.
  - 1.1.1 For piston-finish rod or shafting, refer to Section 9.
- 1.2 This specification is the companion to inch-pound Specification B 21.
- 1.3 Warning—Mercury is a definite health hazard in use and disposal (see 8.1).

NOTE 1-For hot forging material, refer to Specification B 124.

#### 2. Referenced Documents

- 2.1 ASTM Standards:
- B 124M Specification for Copper and Copper-Alloy Forging Rod, Bar, and Shapes [Metric]²
- B 154 Test Method for Mercurous Nitrate Test for Copper and Copper Alloys²
- B 249M Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar, and Shapes [Metric]²
- B 601 Practice for Temper Designations for Copper and Copper Alloys—Wrought and Cast²
- E 8M Test Methods for Tension Testing of Metallic Materials [Metric]³
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness³
- E 478 Test Methods for Chemical Analysis of Copper Alloys⁴

#### 3. Ordering Information

- 3.1 Orders for product under this specification are to include the following information:
  - 3.1.1 ASTM designation and year of issue,
  - 3.1.2 Copper Alloy UNS No. designation (Section 1.1),
  - 3.1.3 Temper (Section 6),
- 3.1.4 Form: cross-section such as round, hexagonal, square, etc.,

- 3.1.5 Diameter or distance between parallel surfaces (Section 11.2),
  - 3.1.6 Length (Section 11.4),
  - 3.1.7 Edge contours (Section 11.6),
- 3.1.8 Number of pieces or total weight, for each size and form, and
- 3.1.9 When product is specified for agencies of the U.S. Government (Section 10).
- 3.2 The following are options available under this specification and are to be specified in the contract or purchase order when required:
  - 3.2.1 Mercurous Nitrate Test (Section 8),
  - 3.2.2 Piston finish rod or shafting (Section 9),
  - 3.2.3 Certification (Specification B 249M), and
  - 3,2,4 Mill test report (Specification B 249M).

#### 4. General Requirements

- 4.1 The following sections of Specification B 249M constitute a part of this specification:
  - 4.1.1 Terminology,
  - 4.1.2 Materials and Manufacture,
  - 4.1.3 Workmanship, Finish, and Appearance,
  - 4.1.4 Sampling,
  - 4.1.5 Number of Tests and Retests,
  - 4.1.6 Specimen Preparation,
  - 4.1.7 Test Methods,
  - 4.1.8 Significance of Numerical Limits,
  - 4.1.9 Inspection,
  - 4.1.10 Rejection and Rehearing,
  - 4.1.11 Certification,
  - 4.1.12 Mill Test Report,
  - 4.1.13 Packaging and Product Marking, and
  - 4.1.14 Supplementary Requirements.
- 4.2 In addition, when a section with a title identical to that referenced in 4.1, above, appears in this specification, it contains additional requirements which supplement those appearing in Specification B 249M.

#### 5. Chemical Composition

- 5.1 The product shall conform to the chemical composition requirements specified in Table 1 for the Copper Alloy UNS No. designation specified in the ordering information.
- 5.2 These composition limits do not preclude the presence of other elements. Limits may be established and analysis required for unnamed elements by agreement between the manufacturer or supplier, and purchaser.
  - 5.3 For copper alloys in which zinc is specified as the
- ¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.02 on Rod, Bar, Wire, Shapes and Forgings.
- Current edition approved April  $1\overline{0}$ , 1996. Published June 1996. Originally published as B 21M-80. Last previous edition B 21M-90.
  - ² Annual Book of ASTM Standards, Vol 02.01.
  - 3 Annual Book of ASTM Standards, Vol 03.01.
  - ⁴ Annual Book of ASTM Standards, Vol 03.05.

**TABLE 1 Chemical Requirements** 

Element,	Copper Alloy UNS No.							
%	C46200	C46400	C47940	C48200	C48500			
Copper	62.0-65.0	59.0-62.0	63.0-66.0	59.0-62.0	59.0-62.0			
Tin	0.50-1.0	0.50-1.0	1.2-2.0	0.50-1.0	0.50-1.0			
Lead	0.20 max	0.20 max	1.0-2.0	0.40-1.0	1.3-2.2			
Zinc	remainder	remainder	remainder	remainder	remainder			
Iron	0.10 max	0.10 max	0.10-1.0	0.10 max	0.10 max			
Nickel			0.10-0.50					

remainder, either copper or zinc is permitted to be taken as the difference between the sum of results determined for all elements analyzed and 100 %. When copper is so determined, that difference value shall conform to the requirements given in Table 1.

5.4 When all elements listed in Table 1 for the Copper Alloy UNS No. specified in the ordering information are analyzed, the sum of results shall be 99.6 % minimum.

#### 6. Temper

6.1 Tempers, as defined in Practice B 601, available under this specification are shown in Table 2.

#### 7. Mechanical Property Requirements

- 7.1 The product shall conform to the mechanical property requirements given in Tables 2 and 3 for the Copper Alloy UNS No. designation specified in the ordering information.
- 7.1.1 Rockwell Hardness-For the alloys and tempers listed, the product 12 mm and over in diameter or distance between parallel surfaces shall conform with the requirements given in Table 3, when tested in accordance with Test Methods E 18.
- 7.1.1.1 For the alloys and tempers listed in Table 3, Rockwell hardness shall be the basis of acceptance or rejection for mechanical properties except when the tensile test is specified in the contract or purchase order.
- 7.1.2 Tensile Strength—The product shall conform with the requirements of Table 2, when tested in accordance with Test Methods E 8M.

#### 8. Mercurous Nitrate Test

8.1 When specified in the contract or purchase order, the test specimens, cut at least 150 mm in length, shall be totally immersed for 30 min in the standard mercurous nitrate solution specified in Method B 154. There shall be no cracks in the specimen when examined immediately after it is removed from the solution, rinsed, and wiped.

NOTE 2: Precaution-Mercury is a definite health hazard, and therefore equipment for the detection and removal of mercury vapor produced in volatilization is recommended. The use of rubber gloves in testing is advisable.

NOTE 3—Bars that have been properly straightened or sprung will have internal stresses so broken up as not to be in danger of splitting or cracking. The mercurous nitrate test is designed to determine whether the internal stresses have been properly broken up and rendered safe.

#### 9. Piston-Finish Rod and Shafting

- 9.1 When so specified in the contract or order, round rods over 12 mm in diameter shall be furnished as piston-finish rods or shafting.
- 9.2 Piston-finish rods shall have a special surface produced by turning or grinding and shall comply with the

special diameter tolerances specified in 11.2.3.

9.3 The straightness tolerances for piston-finish rod are subject to agreement between the manufacturer or supplier and the purchaser.

#### 10. Purchases for U.S. Government

10.1 Product purchased for agencies of the U.S. Government shall conform to the additional requirements prescribed in the Supplemental Requirements section of Specification B 249M.

#### 11. Dimensions, Mass, and Permissible Variations

- 11.1 The dimensions and tolerances for material covered by this specification shall be as specified in the current edition of Specification B 249M, with particular reference to Section 5 and the following tables of that specification.
  - 11.2 Diameter or Distance Between Parallel Surfaces:
- 11.2.1 Rod: Round, Hexagonal, Octagonal—See 5.2, Table 1.
- 11.2.2 Rod, M30, (As-Hot Extruded)—See 5.2, Table 4.
- 11.2.3 Piston-Finish Rod—See 5.2, Table 3.
- 11.2.4 Bar: Rectangular and Square-See 5.2, Tables 8
  - 11.2.5 Bar, M30, (As-Hot Extruded)—See 5.2, Table 4.
- 11.3 Shapes—The dimensional tolerances for shapes shall be as agreed upon by the manufacturer or supplier and the purchaser, and shall be specified in the order.
- 11.4 Length of Rod, Bar, and Shapes—See 5.3, Tables 13
  - 11.5 Straightness:
  - 11.5.1 Rod and Bar—See 5.4.1, Table 16.
- 11.5.2 Shafting Rod—See 5.4.2, Table 17. 11.5.3 M30 (As-Hot Extruded) rod, bar, and shapes shall be commercially straight.
  - 11.6 Edge Contours—See 5.5.

#### 12. Test Specimens

12.1 In the tension test all material shall be pulled in full size when practicable. Full-size or machined test specimens shall be as specified in Test Methods E 8. Whenever tension test results are obtained from both full-size and from machined test specimens and they differ, the results obtained from full-size test specimens shall be used to determine conformance to the requirements of this specification.

Note 4—The tension test specimens shall conform to the dimensions specified in Section 6 of Test Methods E 8M.

12.2 Mercurous nitrate test specimens shall be of the full size of the material, and without bending, springing, polishing, or any other preparation.

#### 13. Test Methods

- 13.1 Chemical Analysis:
- 13.1.1 Chemical composition shall be determined, in case of disagreement, as follows:

Element	ASTM Test Method
Copper	E 478
Iron	E 478
Lead	E 478 (AA)
Nickel	E 478
Tin	E 478 (Titrimetric)
Zinc	E 478 (Titrimetric)

⊕ B 21M

**TABLE 2** Tensile Requirements

Standard   Former   Surfaces, mm   Min	M30 as-h O60 soft O50 light	ot extruded anneal	Surfaces, mm  Copper Alloy U all forms, all sizes rods and bars, all sizes rods and bars: 12 and under over 12 to 25, incl	JNS Nos. C46200 345 330	min, MPa 140	min, %
M80	O60 soft O50 light	anneal	all forms, all sizes rods and bars, all sizes rods and bars: 12 and under over 12 to 25, incl	345 330		
OBO         each anneal         rode and bars:         330         110         30           050         light enneal         rode and bars:         12 and under         400         185         25           over 25 to 50, lind         395         185         25           over 25 to 50, lind         370         180         25           H60         cold heading, forming         140         30         140         30           H02         half-hard         12 and under         400         186         22           100         rode and bars:         12 and under         400         186         22           12 and under         400         186         22         22           over 12 to 25, lind         396         185         25         22           rode and bars:         12 and under         400         186         22         22           rode and bars:         12 and under         400         186         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22	O60 soft O50 light	anneal	rods and bars, all sizes rods and bars: 12 and under over 12 to 25, incl	330		
OBO         each anneal         rode and bars:         330         110         30           050         light enneal         rode and bars:         12 and under         400         185         25           over 25 to 50, lind         395         185         25           over 25 to 50, lind         370         180         25           H60         cold heading, forming         140         30         140         30           H02         half-hard         12 and under         400         186         22           100         rode and bars:         12 and under         400         186         22           12 and under         400         186         22         22           over 12 to 25, lind         396         185         25         22           rode and bars:         12 and under         400         186         22         22           rode and bars:         12 and under         400         186         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22	O60 soft O50 light	anneal	rods and bars, all sizes rods and bars: 12 and under over 12 to 25, incl	330		
Common	O50 light	anneal	rods and bars: 12 and under over 12 to 25, incl		1.44	35()
12 and under			12 and under over 12 to 25, incl			•
Over 12 to 25, Incl			over 12 to 25, incl	400	185	22
Over 25 to 50, Incl	. "	* 4				
New Process of Control   100 per			OVER ZO TO DU, INCI			
He0			over 50 to 75, incl	360		
He			over 75 to 100, incl	345	150	30
H02   half-hard   rods and bars:   12 and under   400   185   22   25   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186   265   186			over 100	345	140	30
12 and under	H60 cold	heading, forming	rods, all sizes	330	125	22
Nover 25 to 50, Incl	H02 half-	hard		A Company of the Comp		
Note				400	185	22
H04						25
H04					180	25
Hotal   Hard   Part	*					
H04						
12 and under	1104	-" ₄		345	140	30
Name	H04 hard	r		1.2		
Name						
M30						
M30         as-hot extruded soft anneal         all forms, all sizes         360         140         30           O60         soft anneal         rods and bars:         25 and under         370         140         30           0 ver 25 to 50, lock         360         140         30           0 ver 50         345         140         30           0 ver 20         10         145         145         145           1 ver 50         10         140         140         30           0 ver 25 to 50, lock         400         150         25           0 ver 50 to 75, lock         370         150         30           9 ver 50 ver 50 to 75, lock         370         150         30           1 H02         1 half-hard         415         185         22           0 ver 50 to 75, lock		4 -	over 25 to 50, incl	. 400	235	18
O60   Soft anneal   rodds and bars:   25 and under   370   140   30   30   30   345   140   30   30   30   345   140   30   30   30   345   346   340   30   30   30   30   345   346   340   30   30   30   30   30   30   3			Copper A	illoy UNS No. C46400		
25 and under   370	M30 as-he	ot extruded	all forms, all sizes	360	140	30
Over 25 to 50, Incl   380   140   30   30   345   140   30   30   345   346   340   30   345   346   340   30   345   346   340   30   345   346   340   30   345   346   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   340   34	O60 soft	anneal	rods and bars:	and the second		1 1
O50   light anneal   France   Shapes, all sizes   360   140   30   30   30   30   30   30   30			25 and under	370	140	30
Shapes, all sizes   360   140   30   30   30   30   30   30   30		+ V	over 25 to 50, incl	360	140	30
D50	Property of the second	.5	over 50	f . 345	140	30
12 and under	•		shapes, all sizes	360	140	30
Over 12 to 25, Incl	O50 light	anneal				
Over 25 to 50, Incl   400   180   25						
Cover 50 to 75, Incl   370   170   25	. *	77V1				
H50	7 T					
H50	•					
H50		.4				
H02 half-hard rods and bars:  12 and under 415 185 22  over 12 to 25, incl 415 185 25  over 25 to 50, incl 400 180 25  over 50 to 75, incl 370 170 25  over 100 370 150 30  H04 hard rods and bars:  25 and under 460 310 13  over 25 to 50, incl 425 255 18  Copper Alloy UNS No. C47940  M30 as extruded all forms, all sizes 345 140 30  O60 soft anneal rods and bars:  12 and under 400 210 18  over 12 to 25, incl 390 210 20  over 25 to 50, incl 375 175 22  over 50 345 175 25  H60 extruded and drawn shapes, all sizes 390 175 26  H02 half-hard shapes, all sizes 390 175 20  over 12 to 25, incl 390 210 20  over 25 to 50, incl 375 175 22  over 50 345 175 25  H04 hard extruded and drawn shapes, all sizes 390 175 20  over 12 to 25, incl 390 210 20  over 25 to 50, incl 375 175 25  H04 hard extruded and drawn shapes, all sizes 390 175 20  over 50 345 175 25  H04 hard extruded and drawn shapes, all sizes 390 175 25  H04 hard extruded and drawn shapes, all sizes 390 175 25  H04 hard extruded and drawn shapes, all sizes 390 210 20  over 25 to 50, incl 375 175 25  over 50 345 175 25  H04 hard extruded and drawn shapes 345 380 10  over 12 to 25, incl 390 345 175 25  H04 hard extruded 400 210 18  over 50 345 175 25  H04 hard extruded 400 210 18  over 50 345 175 25  H04 hard extruded 485 380 10  over 12 to 25, incl 485 380 10						
12 and under				400	170	20
Name	HU2 nait-n	iard		:		•
Name						
H04   hard   over 50 to 75, Incl   370   170   25   27   27   27   27   27   28   28   28	· ·					
H04 hard	• •					
H04   Hard   Part   P						
H04		1.1.				
25 and under over 25 to 50, incl over 25 to	HOA hard			3/0	150	30
N30	rio4 liaiu			460	910	40
M30		The second of the second				
M30         as extruded soft anneal rods and bars, all sizes         345         140         30           O60         soft anneal rods and bars, all sizes         330         140         30           O50         light anneal rods and bars:         12 and under 400         210         18           0 ver 12 to 25, incl over 25 to 50, incl over 25 to 50, incl over 25 to 50, incl over 375         375         175         22           0 ver 50         345         175         25           H508         extruded and drawn ^B shapes, all sizes         390         175         25           H02         half-hard rods and bars:         12 and under 400         210         18           0 ver 12 to 25, incl over 12 to 25, incl over 25 to 50, incl over 375         375         175         22           0 ver 25 to 50, incl over 25 to 50, incl over 375         375         175         22           0 ver 25 to 50, incl over 25 to 50, incl over 375         375         175         22           0 ver 50         345         175         25           H04         hard         rods and bars:         12 and under 485         380         10           12 and under over 12 to 25, incl over 12 to 25,		<del>- 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</del>	· · · · · · · · · · · · · · · · · · ·	— <del>in a did in land</del>	200	
O60   Soft anneal   rods and bars, all sizes   330   140   30	1400	August and				
Company   Comp						
12 and under over 12 to 25, incl over 12 to 25, incl over 25 to 50, incl over 25 to 50, incl over 345 175 22 over 50 345 175 25     H50				330	140	30
over 12 to 25, incl 390 210 20 over 25 to 50, incl 375 175 22 over 50 345 175 25 175 25 175 25 175 25 175 25 175 25 175 20 175 20 175 175 20 175 175 175 175 175 175 175 175 175 175	OSO light s	uneai		400	040	40
Over 25 to 50, incl over 375 175 22 over 50 345 175 25 175 25 175 25 175 175 25 175 175 25 175 175 175 175 175 175 175 175 175 17						
Over 50 345 175 25  H50.8 extruded and drawn shapes, all sizes 390 175 20  H02 half-hard rode rods and bars:  12 and under 400 210 18  Over 12 to 25, Incl 390 210 20  Over 25 to 50, Incl 375 175 22  Over 50 345 175 25  H04 hard rods and bars:  12 and under 485 380 10  Over 12 to 25, Incl 450 360 13	and the second second second	200	over 05 to 50 incl	975		
H50# extruded and drawn# shapes, all sizes 390 175 20 H02 half-hard shapes, all sizes rods and bars:  12 and under 400 210 18 over 12 to 25, incl 390 210 20 over 25 to 50, incl 375 175 22 over 50 345 175 25  H04 hard rods and bars: 12 and under 485 380 10 over 12 to 25, incl 450 360 13						
H02 half-hard rods and bars:  12 and under 400 210 18 over 12 to 25, incl 390 210 20 over 25 to 50, incl 375 175 22 over 50 345 175 25  H04 hard rods and bars: 12 and under 485 380 10 over 12 to 25, incl 450 360 13	H50# Avtru	ded and drawn®				
12 and under 400 210 18 over 12 to 25, incl 390 210 20 over 25 to 50, incl 375 175 22 over 50 345 175 25  H04 hard rods and bars: 12 and under 485 380 10 over 12 to 25, incl 450 360 13				380	173	- 20
Over 12 to 25, Incl     390     210     20       over 25 to 50, Incl     375     175     22       over 50     345     175     25       H04     hard     rods and bars:       12 and under     485     380     10       over 12 to 25, Incl     450     360     13	50	u		400	210	10
over 25 to 50, incl 375 175 22 over 50 345 175 25  H04 hard rods and bars: 12 and under 485 380 10 over 12 to 25, incl 450 360 13	** * * *					
over 50         345         175         25           H04         hard         rods and bars:         12 and under         485         380         10           over 12 to 25, incl         450         360         13	•					
H04 hard rods and bars:  12 and under 485 380 10 over 12 to 25, incl 450 360 13	e e e					
12 and under 485 380 10 over 12 to 25, incl 450 360 13	H04 hard			340	113	20
over 12 to 25, incl 450 360 13	naiu			495	380	10
	Zir No.					
	\$					



#### TABLE 2 Continued

Temper Designation Standard Former		Diameter or Distance Between Parallel	Tensile Strength,	Yield Strength at 0.5 % Extension Under Load.	Elongation
Standard Former		Surfaces, mm	min, MPa	min, MPa	min, %
		Copper Alloy UNS	No. C48200		
M30	as-hot extruded	all forms, all sizes	360	140	25
O60	soft anneal	rods and bars:			
		25 and under	370	140	25
		over 25 to 50, incl	360	140	25
		over 50	345	140	25
		shapes, all sizes	360	140	25
O50	light anneal	rods and bars:			
		25 and under	415	185	18
		over 25 to 50, incl	400	180	20
		over 50 to 75, incl	370	170	204
		over 75 to 100, incl	370	150	20
		over 100	370	150	25
H50 ^B	extruded and drawn ^B	shapes, all sizes	400	170	15
H02 half-hard		rods and bars:			
		25 and under	415	185	18
		over 25 to 50, incl	400	180	20
		over 50 to 75, incl	370	170	204
		over 75 to 100, incl	370	150	20
		over 100	370	150	25
H04	hard	rods and bars:	•		
		25 and under	460	310	11
		over 25 to 50, incl	425	255	15
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Copper Alloy	UNS No. C48500	,	
M30	as-hot extruded	all forms, all sizes	360	140	20
O60	soft anneal	rods and bars:			
		25 and under	370	140	20
		over 25 to 50, incl	<b>36</b> 0	140	20
		over 50	345	140	20
		shapes, all sizes	360	140	20
O50	light anneal	rods and bars:			
		25 and under	415	185	12
		over 25 to 50, incl	400	180	20
		over 50 to 75, incl	370	170	20
		over 75 to 100, incl	370	150	20
		over 100	370	150	20
H50 ⁸	extruded and drawn [®]	shapes, all sizes	<b>40</b> 0	170	15
H02 half-hard		rods and bars:			
		25 and under	415	185	12
		over 25 to 50, incl	400	180	20
		over 50 to 75, incl	370	170	20
		over 75 to 100, incl	370	150	20
		over 100	370	150	20
H04	hard	rods and bars:	9		
		25 and under	460	310	10
		over 25 to 50, incl	425	<b>25</b> 5	13

^A Elongation values are based on a gage length of 5.85 times the square root of the area for dimensions greater than 2.5 mm. ^B This temper does not apply to hollow shapes.

TABLE 3 Rockwell Hardness Requirements

Note-Rockwell hardnesses are not established for diameters below 12 mm.

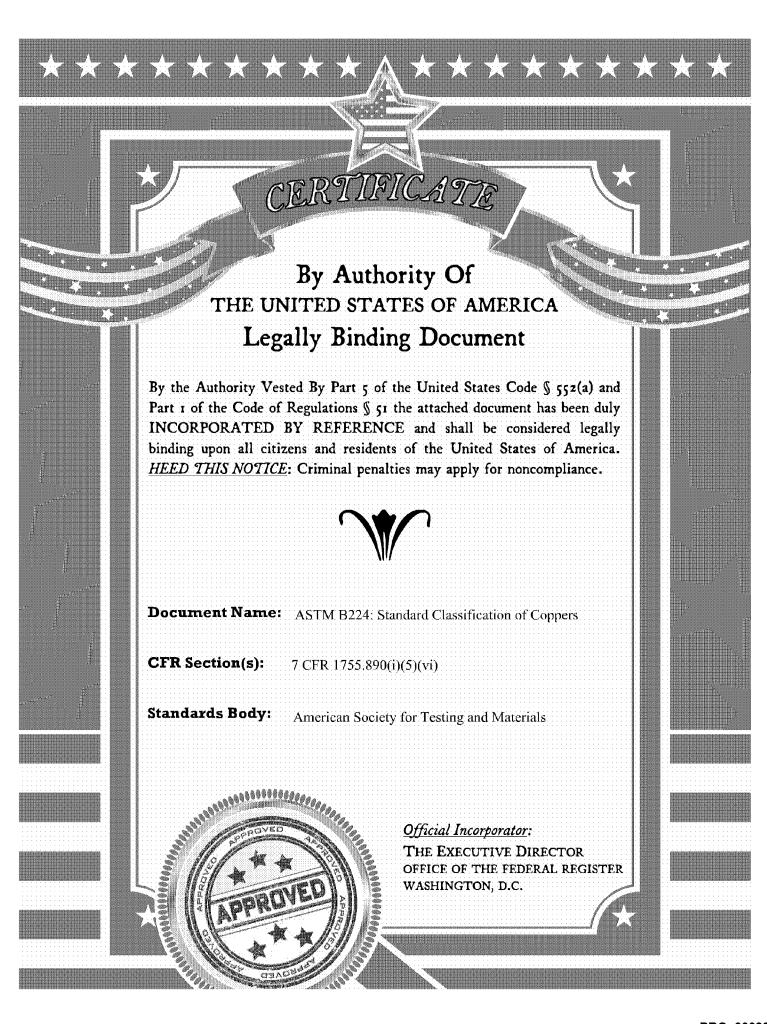
Copper Alloy	Temper D	esignation	Diameter or Distance Between	Rockwell B Hardness Determined or
UNS No.	Standard	Former	Parallel Surfaces, mm	the Cross-Section Midway Between Surface and Center
C46400	H02	half-hard	over 12 to 25, incl	60-80
			over 25	55-80
	H04	hard	over 12 to 25, incl	70-90
			over 25	65–90
C48200	H02	haif-hard	over 12 to 25, incl	65-85
			over 25	60-85
	H04	hard	over 12 to 25, incl	70-90
			over 25	65-90
C48500	H02	half-hard	over 12 to 25, incl	65-85
			over 25	60-85
	H04	hard	over 12 to 25, incl	70-90
			over 25	65-90



13.1.2 Test method(s) to be followed for the determination of element(s) resulting from contractural or purchase order agreement shall be agreed upon between the supplier and purchaser.

#### 14. Keywords

14.1 naval brass; naval brass bar; naval brass rod; piston-finish rod; piston-finish shafting


#### **SUMMARY OF CHANGES**

The following is a summary of the changes that have been incorporated since the printing of B 21M - 90:

- 1. The Scope section was revised, and the previously used alloy designation deleted.
- 2. The Ordering information section revised to more clearly delineate purchasing options.
- 3. The General Requirements section revised to identify the specific sections in Specification B 249M which constitute a part of this specification.
- 4. Table 2 was revised to more clearly state the mechanical property requirements.
- 5. A Test Methods section was added to identify individual test methods for the determination of chemical composition.
- 6. Table 3 was added to show the Rockwell hardness requirements for the alloys and tempers listed.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA 19428.



## Standard Classification of COPPERS¹

This standard is issued under the fixed designation B 224; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon ( $\epsilon$ ) indicates an editorial change since the last revision or reapproval.

This classification has been approved for use by agencies of the Department of Defense and for listing in the DoD Index of Specifications and Standards.

** Note—Reference to "lake copper" has been deleted from Table A1 in October 1982 because such terminology is no longer used.

#### 1. Scope

- 1.1 This is a classification of the various types of copper currently available in refinery shapes and wrought products in commercial quantities. It is not a specification for the various types of copper.
- 1.2 In this classification, use is made of the standard copper designations in use by the copper industry.
- 1.3 Although this classification includes certain UNS designations as described in Practice E 527, these designations are for cross-reference only and are not requirements. Therefore, in case of conflict, this ASTM classification shall govern.
- 1.4 This classification does not attempt to differentiate between all compositions that could be termed either coppers or copper-base alloys, but in conformance with general usage in the trade, includes those coppers in which the copper is specified as 99.85 % or more, silver being counted as copper.

Note 1—Coppers may contain small amounts of certain elements intentionally permitted to impart specific properties, without excessively lowering electrical conductivity. The total copper plus specific permitted elements is usually specified as 99.85 % or more. These intentionally permitted elements normally include, but are not limited to, arsenic, cadmium, chromium, lead, magnesium, silver, sulfur, tellurium, tin, zinc, and zirconium, plus deoxidizers, up to specific levels adopted by the International Standards Organization.

#### 2. Applicable Documents

- 2.1 ASTM Standards:
- B 30 Specification for Copper-Base Alloys in Ingot Form²
- B 170 Specification for Oxygen-Free Electrolytic Copper—Refinery Shapes⁸

- B 379 Specification for Phosphorized Coppers—Refinery Shapes³
- B 584 Specification for Copper Alloy Sand Castings for General Applications²
- E 527 Practice for Numbering Metals and Alloys (UNS)⁴

#### 3. Basis of Classification

- 3.1 Table A1 lists the standard designations, and the refinery shapes and fabricators' products currently produced. The listed coppers are not necessarily available in the complete range of sizes in the form shown, nor from any one supplier in all forms.
- 3.2 Existing ASTM specifications for refinery copper and for wrought copper products may cover more than one of the coppers listed in Table A1 or may include only part of the range covered by any one of the coppers shown in this classification.

#### 4. Description of Terms

- 4.1 Appendix A2 describes the terms used in designating the various coppers listed.
- 4.2 Appendix A3 describes the refinery shapes.
- 4.3 Appendix A4 describes the fabricators' forms.

¹This classification is under the jurisdiction of ASTM Committee B-2 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.01 on Refined Copper.

Current edition approved Jan. 25, 1980. Published March 1980. Originally published as B 224 - 48 T. Last previous edition B 224 - 73.

² Annual Book of ASTM Standards, Vol 02.01.

³ Annual Book of ASTM Standards, Vol 02.04.

⁴ Annual Book of ASTM Standards, Vols 02.01, 02.02, 02.03, 02.04, 02.05, and 03.01.

Note 2—Copper, as applied to castings other than refinery cast shapes, cakes, billets, wire bars, ingots,

and ingot bars, is described in Specifications B 30 and B 584.

## APPENDIXES

#### A1. CLASSIFICATION OF COPPERS

Al.1 Table Al lists the standard designations, refinery shapes, and fabricator's products.

#### A2. TERMS USED TO DESIGNATE THE COPPERS

(Alphabetical listing of these terms does not necessarily indicate relative order of commercial importance.)

#### A2.1 Terms Relating to Method of Refining

A2.1.1 chemically refined copper—copper recovered from an aqueous solution by other than electrolytic means. Usually when this term is used alone it refers to chemically refined tough pitch cop-

per. This designation applies to the following:
A2.1.1.1 Copper cast in refinery shapes suitable for hot or cold working or both, and by extension, to

fabricators products made therefrom.

A2.1.1.2 Ingots or ingot bars suitable for remelt-

A2.1.2 electrolytic copper—copper of any origin, refined by electrolytic deposition including electrowinning. Usually when this term is used alone it refers to electrolytic tough pitch copper. This designation applies to the following:

A2.1.2.1 Cathodes that are the direct product of

the refining operation.
A2.1.2.2 Electrodeposited copper cast in refinery shapes suitable for hot or cold working or both, and by extension, to fabricators' products made there-

A2.1.2.3 Electrodeposited copper cast into ingots

or ingot bars suitable for remelting.

A2.1.3 fire-refined copper—copper of any origin or type finished by furnace refining without having been processed at any stage by electrolytic or chemical refining. Usually when the term fire-refined copper is used alone it refers to fire-refined tough pitch copper. This designation applies to the following:

A2.1.3.1 Copper cast in refinery shapes suitable for hot or cold working or both, and by extension, to

fabricators' products made therefrom.

A2.1.3.2 Ingots or ingot bars suitable for remelt-

#### A2.2 Terms Relating to Characteristics Determined by Method of Casting or Processing

A2.2.1 deoxidized copper—copper cast in the form of refinery shapes, produced free of cuprous oxide, as determined by metallographic examination at 75× under polarized light, by the use of metallic or metalloidal deoxidizers. Oxygen may be present as residual deoxidation products. By extension, the term applies to fabricators' products made therefrom.

A2.2.2 oxygen-free copper—electrolytic copper produced free of cuprous oxide, as determined by metallographic examination at 75× under polarized light, without the use of metallic or metalloidal deoxidizers. By extension, the term applies to fabricators' products made therefrom.

A2.2.3 tough pitch copper—copper of any origin cast in the form of refinery shapes, containing a controlled amount of oxygen in the form of cuprous oxide. By extension the term is also applicable to

fabricators' products made therefrom.

#### A2.3 Terms Relating to Specific Kinds of Copperand to Products Made Therefrom

A2.3.1 deoxidized copper, high-residual phosphorus—copper deoxidized with phosphorus residual in amounts 0.015 to 0.04 %. The copper is not susceptible to hydrogen embrittlement, as determined in Specification B 379. The copper is of relatively lowelectrical conductivity due to the amount of phosphorus present.

NOTE-International Standards Organization specifications permit up to 0.050 % phosphorus.

A2.3.2 deoxidized copper, low-residual phosphorus—copper deoxidized with phosphorous residual in amounts 0.004 to 0.012 %. The copper is not readily susceptible to hydrogen embrittlement, as determined in Specification B 379. The copper in the annealed condition has a minimum conductivity of 98.16 %

A2.3.3 high-conductivity copper—copper that in the annealed condition has a minimum electrical

conductivity of 100 % IACS.

A2.3.4 oxygen-free electronic copper—high-purity, high-conductivity oxygen-free copper normally intended for electronic applications. The copper has high resistance to hydrogen embrittlement, as determined in Specification B 170. The copper in the annealed condition has a minimum electrical conductivity of 101 % IACS.

A2.3.5 oxygen-free copper, extra low phosphorus oxygen-free copper containing 0.001 to 0.005 % phosphorus. The copper is not readily susceptible to hydrogen embrittlement, as determined in Specification B 379. The copper in the annealed condition has a minimum conductivity of 98.16 % IACS.

A2.3.6 oxygen-free copper, low phosphorus—oxygen-free copper containing 0.005 to 0.012 % phosphorus. The copper is not susceptible to hydrogen embrittlement, as determined in Specification B 379. The copper in the annealed condition has a minimum conductivity of 90 % IACS.

A2.3.7 deoxidized, phosphorus-arsenical copper. A2.3.8 arsenical, tough-pitch copper.

A2.3.9 silver-bearing copper.

A2.3.10 sulfur-bearing copper.

A2.3.11 deoxidized, phosphorus-tellurium copper.

A2.3.12 zirconium-bearing copper.

Note—Coppers listed in A2.3.7 through A2.3.12 contain the designated element or elements in amounts as agreed upon between the manufacturer or supplier and the purchaser.

#### A3. DEFINITIONS OF REFINERY SHAPES

A3.1 billet—refinery shape used for piercing or extrusion into tubular products or for extrusion into rods, bars, and shapes. Circular in cross section, usually 3 to 16 in. (76 to 406 mm) in diameter, normally ranging in weight from 100 to 4200 lb (45 to 1905 kg).

A3.2 cake—refinery shape used for rolling into plate, sheet, strip, or shape. Rectangular in cross section and of various sizes, normally ranging in weight from 140 to 62 000 lb (63 to 28 200 kg).

A3.3. cathode—unmelted, electrodeposited, and somewhat rough flat plate normally used for melting. The customary size is about 3 ft (0.914 m) square, about ½ to % in. (12.7 to 22.2 mm) thick, weighing up to about 300 lb (136 kg), and may have hanging loops attached. Cathodes may also be cut to smaller

A3.4 ingot and ingot bar—refinery shapes used for remelting (not fabrication). Ingots normally range in weight from 20 to 35 lb (9 to 16 kg) and ingot bars from 50 to 70 lb (23 to 32 kg). Both are usually notched to facilitate breaking into smaller pieces.

A3.5 wire bar-refinery shape used for rolling into rod or flat product for subsequent processing into wire, strip, or shape. Approximately 3½ to 5 in. (89 to 127 mm) square in cross section, usually 54 in. (1.56 m) in length and ranging in weight from 200 to 420 lb (91 to 191 kg). Usually tapered at both ends.

#### A4. DEFINITIONS OF FABRICATORS' COPPER PRODUCTS

A4.1 flat product—a rectangular or square solid section of relatively great length in proportion to thickness. Included in the designation "flat product" depending on the width and thickness, are plate, sheet, strip, and bar. Also included is the product known as "flat wire."

A4.2 pipe—tube conforming to the particular dimensions commerically known as "Standard Pipe Sizes."

A4.3 rod—a solid section, round, hexagonal, or octagonal in straight lengths. Round rod for further processing into wire (known as "hot-rolled rod,"

"wire-rod," "redraw wire," or "drawing stock") is furnished coiled.

A4.4 shape—a solid section, other than flat product, rod or wire, furnished in straight lengths. Shapes are usually made by extrusion but may also be fabricated by drawing.

A4.5 tube-a unidirectionally elongated hollow product of uniform round or other cross section

having a continuous periphery.

A4.6 wire—a solid section, including rectangular flat wire but excluding other flat products, furnished in coils or on spools, reels, or bucks.

Coppers
Classification of
TABLE AI

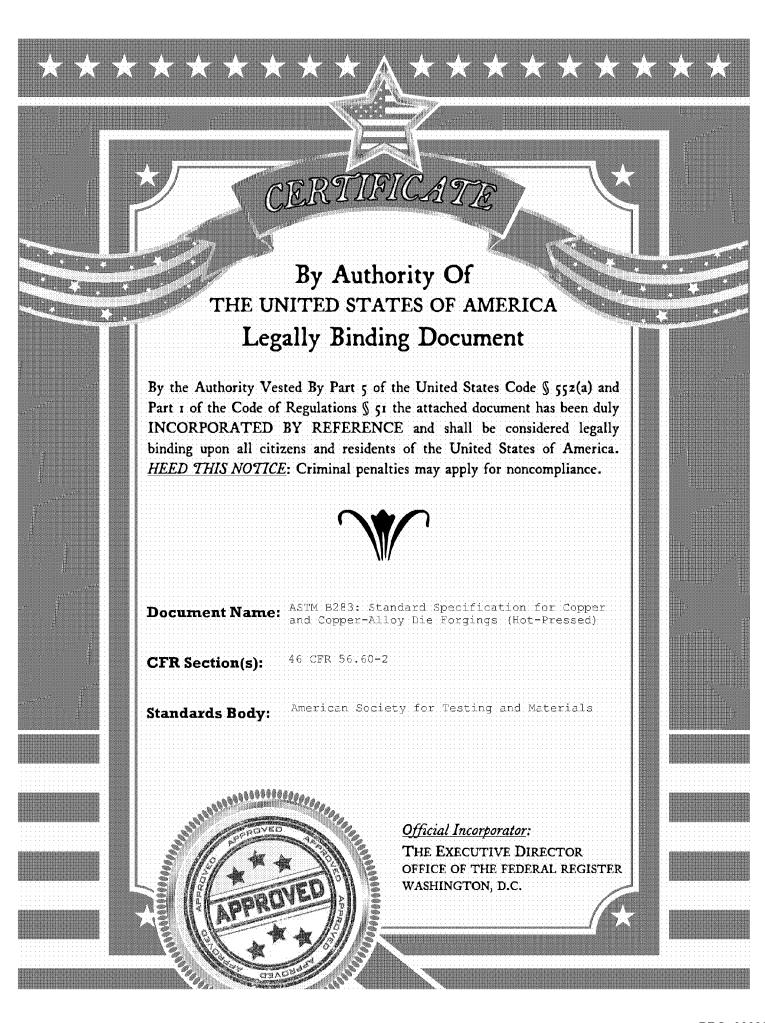
	The state of the s				orm in	which Co	pper is A	Form in which Copper is Available ^c		
				From Refiners ^D	finers			From Fabricators ^E	ricators ^E	
Designations	Type of Cooper	UNS Nos. ^B	Wire Bars	Billets	·Cakes	Ingots and Ingot Bars	Flat Prod- ucts	Pipe and Tube	Rod and Wire	Shapes
CATH	Electrolytic cathode			Cathodes only	s only					
		Tough-Pitch Coppers								
ETP	Electrolytic tough-pitch	C11000	×	×	×	×	×	×	×	×
RHC	Remelted, high-conductivity tough pitch	C11010	×	×	×	×	×	×	×	×
ETP	Electrolytic tough-pitch (anneal resist)	C11100	×	×	×		×	×	×	×
CRTP	Chemically refined tough-pitch	C11030	×	×	×	×	×	×	×	×
FRHC	Fire-refined, high-conductivity tough-	C11020	×	×	×	×	x	×	×	×
$\mathrm{ETP}^F$	Silver-bearing, tough-pitch	C11300, C11400, C11500, C11600	×	×	×	×	x	×	×	×
FRTP	Fire-refined tough-nitch	C12500		*	×	×	×	>	>	>
FRSTP	Fire-refined tough-pitch with silver	C12700, C12800, C12900,		×	×	×	×	•	č	×
	Oxygen	Oxygen-Free Coppers (Without use of Deoxidants)	Deoxidant	୍ଦ						
OFE	Oxvgen-free, electronic	C10100	×	×	×		×	×	×	×
OF	Oxygen-free	C10200	X	X	×	•	×	×	×	×
OFS	Oxygen-free, silver-bearing	C10400, C10500, C10700	: : ×	×	×		×	×	×	×
OFXI.P	Oxygen-free, extra low phosphorus	C10300	×	×	×		×	×	×	×
OFLP	Oxygen-free, low-phosphorus	C10800	×	×	×		×	×	×	×
		Deoxidized Coppers					-	,		
DLP	Phosphorized, low-residual phosphorus	C12000 .		×	×		×	×	×	×
$DLPS^{\sigma}$	Phosphorized, low-residual phosphorus	C12100		×	×		×	×	×	×
$\mathrm{DHP}^E$	Suver-bearing Phosphorized, high-residual phosphorus	C12200		×	· ×		×	×	×	×
DHPS ⁶	Phosphorized, high-residual phosphorus	C12300		×	×		×	×	X	×
	silver-bearing									
DPA	Phosphorized, arsenic-bearing	C14200		×		•	×	×		
DPTE'	Phosphorized, tellurium-bearing	C14500		×				,	x	
		Other Coppers								
	Sulfur-bearing	C14700	4	×	ľ				×	
	Zirconium-bearing	C15000		×	×		×		×	

# TABLE A1 Continued

^B The chemical compositions associated with these numbers are listed in the product specifications and in the Standard Designations for Copper and Copper Alloys that appear in this publication under "Related Material".

^CThe "X" in the table indicates commercial availability,

D See Appendix A3.


E See Appendix A4.
F This includes Types ETP, CRTP, and FRHC coppers to which silver has been added in amounts agreed upon.
^Q This includes oxygen-free copper to which phosphorus and silver have been added in amounts agreed upon.

H This includes oxygen-free copper to which phosphorus has been added.

'This includes oxygen-free tellurium-bearing copper to which phosphorus has been added in amounts agreed upon.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 1916 Race St., Philadelphia, Pa. 19103.



# Standard Specification for Copper and Copper-Alloy Die Forgings (Hot-Pressed)¹

This standard is issued under the fixed designation B 283; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (s) indicates an editorial change since the last revision or reapproval.

This specification has been approved for use by agencies of the Department of Defense. Consult the DoD Index of Specifications and
Standards for the specific year of issue which has been adopted by the Department of Defense.

#### 1. Scope* The state of the state of the state of

1.1 This specification covers the requirements for copper and copper alloy die forgings produced by the hot pressing method. The following copper and copper alloys are included:

Copper or Copper Alloy	6.11(1)(1)
UNS No.	Name
C11000 C 14500 C 14700 C 36500	copper copper-tellurium copper-sulfur leaded Muntz metal
C 37700 C 46400 C 48200 C 48500	forging brass naval brass medium leaded naval brass leaded naval brass
C 61900 C 62300 C 63000	aluminum bronze aluminum bronze, 9 % aluminum-nickel bronze
C 63200 C 64200	aluminum-nickel bronze aluminum-silicon bronze
C 64210 C 65500 C 67500	aluminum-silicon bronze, 6,7 % high-silicon bronze (A) manganese bronze (A)
C 67600 C 77400	nickel silver, 45-10

1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are provided for information only.

1.3 The following safety caveat pertains only to Section 10 of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Note 1—Nominal composition and relative forgeability ratings are given in Appendix X1.

#### 2. Referenced Documents

2.1 ASTM Standards:

B 249 Specification for General Requirements for Wrought Copper and Copper Alloy Rod, Bar, Shapes and Forgings²

B 601 Practice for Temper Designations for Copper and Copper Alloys—Wrought and Cast² B 846 Terminology for Copper and Copper Alloys²

E 8 Test Methods for Tension Testing of Metallic Materials³

E 54 Test Methods for Chemical Analysis of Special Brasses and Bronzes⁴

E 62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Method)⁴

E 76 Test Method for Chemical Analysis of Nickel-Copper Alloys⁴

E 478 Test Methods for Chemical Analysis of Copper Alloys⁴

2.2 ISO Standard:

7602 Determination of Tellurium Content (High Content)—Flame Atomic Absorption Spectrometric Method⁵

### 3. General Requirements

- 3.1 The following sections of Specification B 249 are a part of this specification:
  - 3.1.1 Terminology,
  - 3.1.2 Materials and Manufacture,
  - 3.1.3 Workmanship, Finish and Appearance,
  - 3.1.4 Sampling,
  - 3.1.5 Number of Tests and Retests,
  - 3.1.6 Specimen Preparation,
  - 3.1.7 Test Methods,
  - 3.1.8 Significance of Numerical Limits,
  - 3.1.9 Inspection,
  - 3.1.10 Rejection and Rehearing,
  - 3.1.11 Certification,
  - 3.1.12 Test Reports,
  - 3.1.13 Packaging and Package Marking, and
  - 3.1.14 Supplementary Requirements.
- 3.1.15 In addition, when a section with a title identical to one of those referenced in 3.1 appears in this specification, it contains additional requirements that supplement those appearing in Specification B 249.

#### 4. Terminology

4.1 Definitions:

¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.02 on Rod, Bar, Wire, Shapes, and Forgings.

Current edition approved Sept. 10, 1996. Published December 1996. Originally published as B 283 - 53 T. Last previous edition B 283 - 94.

² Annual Book of ASTM Standards, Vol 02.01.

Annual Book of ASTM Standards, Vol 03.01.
 Annual Book of ASTM Standards, Vol 03.05.

⁵ Available from American National Standards Institute, 11 W. 42nd St., 13th Floor, New York, NY 10036.

^{*} A Summary of Changes section appears at the end of this specification.

4.1.1 For definition of terms related to copper and copper alloys refer to Terminology B 846.

4.2 Definition of Term Specific to This Standard:

4.2.1 hot pressed forging, n—a product made by pressing a heated blank or section of wrought copper or copper alloy in a closed impression die.

#### 5. Ordering Information

5.1 Orders for product to this specification should include the following information:

5.1.1 ASTM designation and year of issue,

- 5.1.2 Copper or Copper Alloy UNS No. designation (Section 1),
- 5.1.3 Drawing showing the shape dimensions and tolerances (Section 11),

5.1.4 Temper (Section 8),

5.1.5 Quantity; total weight or number of pieces for each form, temper and copper or copper alloy,

5.1.6 When product is purchased for agencies of the U.S. Government (Section 12), and

5.1.7 When product must adhere to the requirements of ASME Boiler and Pressure Vessel Code (Section 9).

5.2 The following options are available under this specification and should be included in the contract or purchase order when required:

5.2.1 Certification (Section 14 and Supplementary Requirements), and

5.2.2 Mill Test Report (Specification B 249).

#### 6. Material and Manufacture

6.1 Materials:

6.1.1 The starting material shall be rods, billets or blanks cut from cast or wrought material of one of the copper or copper alloys listed in Section 1.1 of this specification.

6.2 Manufacture:

6.2.1 The product shall be manufactured by hot pressing between the upper and lower sections of a set of dies into which cavities have been formed to the configuration defined by the purchaser's submitted drawings.

6.2.2 Product of Copper Alloy UNS No. C 63200 shall be heat treated (Section 10).

#### 7. Chemical Composition

7.1 The materials shall conform to the requirements specified in Table 1 for the Copper or Copper Alloy UNS No. designated in the ordering information.

7.2 These composition limits do not preclude the presence of other elements when limits for unnamed elements are required, they shall be established by agreement between manufacturer or supplier and the purchaser.

7.2.1 For copper alloys in which zinc is specified as a remainder, either copper or zinc is permitted to be taken as the difference between the sum of results for all the elements analyzed and 100 %. When copper is so determined, that difference value shall conform to the requirements given in Table 1.

7.2.2 For copper alloys for which copper is specified as the remainder, copper may be taken as the difference between the sum of all the elements analyzed and 100 %.

7.3 When all the elements in Table 1 are determined for the individual alloy, the sum of results shall be 99.6 % min for Copper Alloy UNS No. C36500, C46400, C48200,

C48500 and 99.5 % for all others.

#### 8. Temper

8.1 Tempers, as defined in Practice B 601, available under this specification are M10 (as hot forged-air cooled), M11 (as forged-quenched) and TQ50 (quench hardened and temper annealed).

#### 9. Mechanical Property Requirements

9.1 Mechanical property requirements are subject to agreement between the manufacturer and the purchaser.

9.2 Product specified to meet the requirements of the ASME Boiler and Pressure Vessel Code shall have tensile properties as prescribed in Table 2 when tested in accordance with Test Methods E 8.

#### 10. Heat Treatment

10.1 Product produced from Copper Alloy UNS No. C63200 shall be heat treated as follows:

10.1.1 Heat to 1550°F (843°C) minimum for 1 h minimum and quench in water or other suitable medium.

10.1.2 Temper at 1300+ and -25°F (704+ and -14°C) for 3 to 9 hrs as required to meet mechanical properties.

#### 11. Purchases for U.S. Government

11.1 Product purchased for agencies of the U.S. Government shall conform to the additional requirements prescribed in the Supplementary Requirements section of this specification.

#### 12. Dimensions and Permissible Variations

12.1 The dimensions and tolerances for forgings shall be those agreed upon between the manufacturer and the purchaser and such dimensions and tolerances shall be specified on the drawings which form a part of the contract or purchase order.

Note 2—Typical tolerances commonly used for forgings are shown in Appendix X2 (Table X2.1).

#### 13. Test Methods

13.1 Chemical Analysis:

13.1.1 Chemical composition shall, in case of disagreement, be determined as follows:

1.7			
•			ASTM Test Method
			E 478
			E 62
			E 478
<1.3 %			E 478
>1.3 %		i.	E 54
			E 478 (AA)
			E 62
<5 %			E 478 (Photometric)
>5 %			E 478 (Gravimetric)
			E 62
•			E 54 (Perchloric Acid)
<1.3 %			E 478
>1.3 %			E 54
<2 %			E 478 (AA)
>2 %			E 478 (Titrimetric)
			ISO Test Method
			7602
	<5 % >5 % <1.3 % >1.3 % <2 %	>1.3 % <5 % >5 % <1.3 % >1.3 % >1.3 % >2 %	>1.3 % <5 % >5 % >1.3 % <1.3 % >1.3 % <2 %

NOTE--< = less than; > = greater than

13.1.2 Test method(s) to be followed for the determination of element(s) required by contractual or purchase order oli on oli filosa vietet ani oli viete forma aire i avyou asquatet i elle into silato i descrit

e de 1968, mustr de les este (1). des dus elles este elles este (1968)

n with light of the second of

Chemical Requirements

TABLE

Copper							Composition, %	%	- 198 - 198	, , , , , , , , , , , , , , , , , , ,	1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10		
Copper Alloy UNS No.	Copper	Lead	TI.	iron :	Nickel (incl Co)	Akminum	Silicon	Man- ganese	Zinc	Sulfur	Tellu-	Phosphorus	Arsenic
C11000 C14500 ⁸	99.90 ⁴ min 99.90 ^c min	::	::	::		::	* :		::		0.40-0.7	0.004-0.0129	
C 14700 ⁸ C 36500	99.90 [£] min 58.0–61.0	0.25-0.7	 0.25 max	0.15 max	: :	: :	: :	: :	remainder	0.20-0.50		0.002-0.0050	* 1
C 37700	58.0-61.0	1.5-2.5	:	0.30 max	:	:	:	:	remainder	:			
C 48400	59.0-62.0	0.20 max	0.5-1.0	0.15 max	•			;	remainder				
C48200	59.0-62.0	0.40-1.0	0.50-1.0	0.15 max			:	:	remainder				
C 48500	59.0-62.0	1.3-2.2	0.5-1.0	0.15 max		:	:		remainder	-			
C 61900	remainder	0.02 max	0.6 max	3.0-4.5F	:	8.5-10.00	:		0.8 max	:	•		:
C 62300	remainder	:	0.6 max	2.0-4.0	1.0 max	8.5-11.0 G	0.25 max	0.50 max	:	÷	;	;	:
C 63000	remainder		0.20 max	2.0-4.0	4.0-5.5	9.0-11.0	0.25 max	1.5 max	0.30 max	: 1	:		
C 63200	remainder	0.02 max	:	3.5-4.3#	4.0-4.8	8.7-9.5	0.10 max	1.2~2.0	:		•		***
C 64200	remainder	0.05 max	0.20 max	0.30 max	0.25 max	6.3-7.6	1.5-2.2	0.10 mex	0.50 max	:	***	:	0.15 max
C 65500	remainder	0.05 max	U.AU IIIIAA	0.30 max	0.6 max	0.7-0.0	2.8-3.8	0.50-1.3	0.00 max	:		;	J.To max
C 67500	57.0-60.0	0.20 max	0.5-1.5	0.8-2.0		0.25 max		0.05-0.5	remainder			i i	•
C 67600	67.0-60.0	0.5-1.0	0.5-1.0	0.4-1.3	•			0.05-0.5	remainder			:::	• • • · · · · · · · · · · · · · · · · ·
C 77400	43.0-47.0	0.20 max	:		9.0-11.0		:		remainder	:		* * * * * * * * * * * * * * * * * * * *	
A Silver coun	A Silver counting as copper.									-			

Britisties Consulta as cupper, and as a constituent grades with deoxidizers (such as phosphorus, boron, lithium, or others) in amount agreed upon.

This includes copper plus silver plus tellurium.

Other deoxidizers may be used as agreed upon, in which case phosphorus need not be present.

Finis includes copper plus silver plus suffur plus phosphorus.

For boiler code application maximum iron content shall be 4.0 %.

For boiler code application maximum aluminum content shall be 10.0 %.

**TABLE 2** Tensile Requirements

	ection Thickness, . (mm)	Tensile St	rength, min		at 0.5% Extension Under Load, min	Elongation in 4 × Diameter or		
> 116-	. (cram)	ksi	MPa ^A	ksi	MPa ^A	- Thickness of Specimen, min, %		
	62 4270 6		Copper Alloy UNS No	. C 37700				
Up to 1½ (38.1), inc Over 1½ (38.1)	k	50 46	345 317	18 15	124 103	25 30		
			Copper Alloy UNS No	. C 64200				
Up to 11/2 (38.1), inc Over 11/2 (38.1)	K	70 68	483 469	25 23	172 156	30 35		
		Copper A	Alloy UNS Nos. C 46400,	C 48200 and C 485	600	Man y quant		
All Sizes		52	358	22	152	25		

agreement shall be as agreed upon between the supplier and -14. Certification the purchaser.

Property	Rounded Unit for Observed or Calculated Value
Chemical composition Tensile strength	nearest unit in the last right-hand place of figures nearest ksi, nearest 5 MPa for over 10 to 100 ksi,
Yield strength  Elongation	incl nearest 1 %

14.1 Certification to this specification is mandatory for product purchased for ASME Boiler and Pressure Vessel applications.

#### 15. Keywords

15.1 copper and copper alloy die forgings (hot pressed); die forgings (hot pressed)

#### SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract or order, for agencies of the U.S. Government.

#### S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 Federal Standards.6

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.2 Military Standards: 6

MIL-STD-105 Sampling Procedures and Tables for Inspection by Attributes

MIL-STD-129 Marking for Shipment and Storage S1.1.3 Military Specification: 6

MIL-C-3993 Packaging of Copper and Copper-Base Alloy Mill Products

#### S2. Quality Assurance

S2.1 Responsibility for Inspection:

S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

#### S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be

#### S4. Preparation for Delivery

S4.1 Preservation, Packaging, Packing:

S4.1.1 Military Agencies—The material shall be separated by size, composition, grade or class and shall be preserved and packaged, Level A or C, packed Level A, B, or C as specified in the contract or purchase order, in accordance with the requirements of MIL-C-3993.

S4.1.2 Civil Agencies—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

S4.2.1 Military Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.2.2 Civil Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

⁶ Available from Standardization Documents Order Desk, Bldg. ⁴ Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, ATTN: NPODS.

#### APPENDIXES

(Nonmandatory Information)

#### X1. NOMINAL COMPOSITION AND RELATIVE FORGEABILITY RATINGS

X1.1 The nominal composition of the various forging materials are shown in Table X1.1.

TABLE X1.1 Nominal Compositions and Forgeability Ratings

		Y.,.			Nomir	al Compos	ition, %					Forgeability
Copper of Copper of Alloy UNS No.	Copper	Lead	Tin	Iron	Nickel	Alumi- num	Silicon	Man- ganese	Zinc	Sulfur	Tellu- rium	Rating ^A
C 11000	100			+++	44.						:	65
C 14500	99.45										0.55	65
C 14700	99.5									0.35		65
C 36500	60	0.6		V			***		39.4	***	***	***
C 37700	60	2							38		***	100
C 46400	60		8.0						39.2		***	90
C 48200	60	0.7	0.8						38.5		• • •	121 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
C 48500	60	1.8	8.0						37.4			90
C 61900				3.5	• • •	9	* * *					75
C 62300	88	***	144	3		9						75
C 63000	81		177	3	5	10		1			***	75
C 63200	81			4	4.5	9		1.5			* * *	. 75
C 64200	91					7	2					75
C 64210	91.3					6.7	2					75
C 65500	96			В			3	B	B	•••		40
C 67500	58.5		1	1				0.10	39.4			80
C 67600	58.5	0.75	i	0.8				0.10	39.6			80
C 77400	45				10				45	***		85

A Relative forgeability rating takes into consideration such variable factors as pressure, die wear, and plasticity (hot). Since it is impracticable to reduce these variables to common units, calibration in terms of a percentage of the most generally used alloy, forging brass (100 %), is considered the most practical basis for such ratings. The values shown represent the general opinion and are intended for information to enable the designer to better understand the forging characteristics of these various alloys. Intricate parts are more likely to be available in alloys having a high rating.

Done or more of these elements may be present as specified in Table 2.

#### X2. DIMENSIONAL TOLERANCES

X2.1 The data in Table X2.1 do not constitute a part of this specification. They are given merely to indicate to the purchaser the various forging types and some dimensional tolerances fused one commercially designed hot-pressed

Tolerances fused one commercially designed hot-pressed

Tolerances fused for the second of the second fused for the second fused fused for the second fused fused for the second fused f

forgings up to 2 lb (0.91 kg) in weight. For tolerances applicable to heavier forgings, the manufacturers should be consulted.

Little Color of the Color of th

sang menerim entre mang til om med fra skale sagerim entre generale skale sagerim fra skale sagerim entre fra Harri Barra skili form milligger skale skale skiliger en skale skiliger skale skiliger skale skiliger skilige Harri skale skiliger i skiliger en skiliger skale skiliger skale skiliger skale skiliger skale skiliger skale

Alba Levi Agrification (17) in minimizer out or ability of paymination of 17 in Activity and Malabagury from an arrange for the first base of magnification of the arrange for the control of the first base of the control of the first base of the control of the c

the area to the beautiful and the state of the state of the	1 / Market	AL: 1 DITTOTO		01411000			
	* · · · · · · · · · · · · · · · · · · ·	, v	nd minus, in. (mm) Indicated ^A				
di grand de sono di la companio di La companio di la co	A STATE OF THE STATE OF		1.3	Copper or Copper Alloy UNS Nos.		**	
المنظلية المنظلة المنظ المنظلة المنظلة		C 11000	<del></del>	C 36500			
		C 14500	1.14	C 37700			
er i de la companya d		C 14700		C 46400	war and the second	C 63000	
	100 may 110	C 61900		C 48200	C 77400	C 63200	
\$18 (1971)		C 62300	100	C 48500	, 017-100	C 65500	
	• •	C 64200	A .	C 67500	and the second	2 00000	
The second of th		C 64210	•	C 67600	- MARK # 1.0	Charles and American	
Forging types:					<del></del>	C. V.	
Solid		0.010 (0.25)	33.5	0.008 (0.20)	0.008 (0.20)	0.012 (0.30)	
Solid, with symmetrical cavity		0.010 (0.25)	9.1	0.008 (0.20)	0.008 (0.20)	0.012 (0.30)	
Solid, with eccentric cavity		0.012 (0.30)	15	0.008 (0.20)	0.008 (0.20)	0.012 (0.30)	
Solid, deep extrusion	9	0.012 (0.30)	6.0	0.010 (0.25)	0.010 (0.25)	0.014 (0.36)	
Hollow, deep extrusion	.**	0.012 (0.30)	7.1	0.010 (0.25)	0.010 (0.25)	0.014 (0.36)	
Thin section, short (up to 6 in. (152 mm) incl.)	1	0.012 (0.30)	. 5	0.010 (0.25)	0.010 (0.25)	0.014 (0.36)	
Thin section, long (over 6 in. (152 mm) to 14 in. (	356 mm) incl.)	0.015 (0.38)	771.5	0.015 (0.38)	0.015 (0.38)	0.020 (0.51)	
Thin section, round	, , , , , , ,	0.012 (0.30)	- 3	0.010 (0.25)	0.010 (0.25)	0.014 (0.36)	
Draft angles, outside and inside 1 to 5°		1/20	80	1/20	1/20	1/20	
Machining allowance (on one surface)	č.	1/32 (0.79)	7	1/32 (0.79)	1/32 (0.79)	1/32 (0.79)	
Flatness (maximum deviation per inch)	i	0.005 (0.13)	15	0.005 (0.13)	0.005 (0.13)	0.005 (0.13)	
Concentricity (total indicator reading)	4.5	0.030 (0.76)	15	0.020 (0.51)	0.030 (0.76)	0.030 (0.76)	
Nominal web thickness:		5/aa (4.0)	3	1/a (3.2)	1/s (3.2)	3/16 (4.8)	
Tolerance	4.3	1/64 (0.40)	87.	1/64 (0.40)	1/84 (0.40)	1/84 (0.40)	
Nominal fillet and radius:	75	3/32 (2.4)		1/1s (1.6)	1/1s (1.6)	1/6 (3.2)	
Tolerance	34	1/64 (0.40)		1/64 (0.40)	1/64 (0.40)	1/64 (0.40)	
Approximate flash thickness		1/16 (1.6)		3/64 (1.2)	3/64 (1.2)	5/64 (2.0)	

A if tolerances all plus or all minus are desired, double the values given.

on 1865 - Tomor Mallower, Formal Popular (1865), 1865, 1971 Tomor More estimate and selection of the 1871 - Mar Tomor Mallower, 1882, 1881 - 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 1885, 188

. Line of the second of the se

Batha Janah Ian I. A. Aramini ya 🗀

na og af hingford hadi helt fæggerf om agnum fætermatin. Mulla i flætfind og dasse ett i Hud Daglade i 191 ett bøde

and the second

#### X3. TYPICAL MECHANICAL PROPERTIES

X3.1 Mechanical properties of any forging are influenced by shape and size. Unless otherwise specified in the purchase order or specifically guaranteed by the manufacturer, acceptance of forgings under this specification shall not depend on the mechanical properties determined by tension or hardness tests. (Frequently, the design of forgings will not permit adequate test sections.) Therefore, the data in Table X3.1 do not constitute a part of this specification, and are given for general information only. They are typical of forgings up to 2 lb (0.91 kg) in weight.

TABLE X3.1 Typical Mechanical Properties of Forgings as Hot Pressed, Temper M10, M11, or TQ50^G

	0.505-ln, (128-mm) Diameter Test Section							Rockwell Hardness (Filed Surface, 1/a-in. (3.18-mm) chord, min)				
Copper or Copper Alloy UNS No.	75.	Tensile Strength			Yield Strength (0.5 % Extension Under Load)		Elongation in 4 × Diameter, %		F Scale	e	B Scale	
	ksi ^A		MPa ^B	ksi ^A	, MPa ^B							
G 11000		33	230	11		75	. 40		. 37.			
C 14500		34	<b>23</b> 5	12		85	35		40		والمراكب ووقعا	
C 14700		34	235	12		85	35		40			
C 36500		- 58	4 <b>0</b> 0	23		160	40		***	the state of the state of	45	
C 37700	. **	58	4 <b>0</b> 0	23		160	40				45	
C 46400		64	440	26		180	40				55	
C 48200		64	440	26	1000	180	40				55	
C 48500		62	425	24	1. 1. 1.	165	40		والمعارف والمعارف	property of	55	
C 61900		82	565	37		255	32	. •			82	
C 62300		82	565	37	(35.0)	255	32			1.6	82	
C 63000		95	655	48		330	15			100	90	
C 63200	1	92	635	45		310	18			100	88	
C 64200		83	570	41		285	35				77	
C 64210		83	570	41		285	35		***		77	
C 65500		52	360	18		125	70				62	
C 67500	4.	72	495	34		235	33		***		69	
C 67600		72	495	34		235	33			73.3	69	
C 77400		83	570	36		250	25			***	73	

^A ksi = 1000 psi.

#### X4. METRIC EQUIVALENTS

X4.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared ( $N = kg \cdot m/s^2$ ). The derived SI unit for pressure or

stress is the newton per square metre  $(N/m^2)$ , which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa the metric equivalents are expressed as megapascal (MPa), which is the same as  $MN/m^2$  and  $N/mm^2$ .

#### SUMMARY OF CHANGES

This section identifies the location of selected changes to this specification that have been incorporated since the 1994 issue as follows:

- (1) Scope: Revised and safety caveat added as required.
- (2) General Requirements: A new section which enables the specification to utilize Specification B 249. This is a new section.
- (3) Terminology: Revised to reference Terminology B 846.
- (4) Ordering Information: Reorganized and expanded for greater clarity.
- (5) Material and Manufacture: Revised to better define material.
  - (6) Chemical composition: Revised.
- (7) Mechanical Property Requirements: Revised for greater clarity.
- (8) Heat Treatment: A new section. Information previously in the Materials and Manufacture section.
  - (9) Test Methods: Individual test methods identified.

⁸ See Appendix X4.

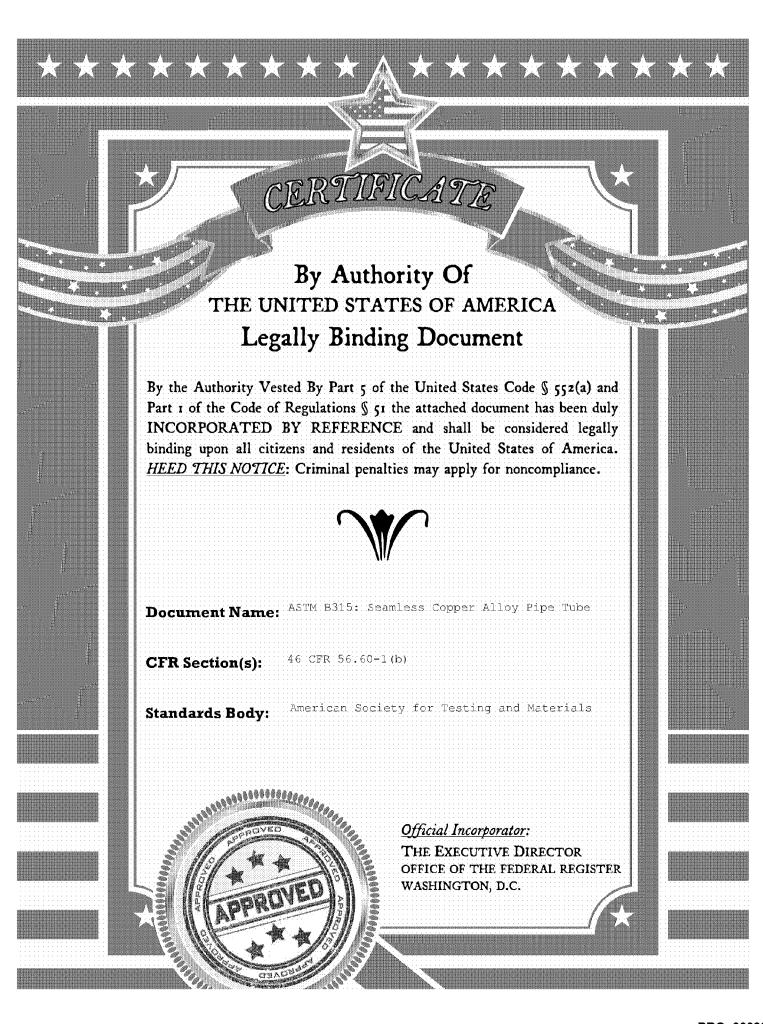
^o For Copper Alloy UNS Nos. C 63000 and C 63200.



The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend if you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA 19428.

tum in yw i fiwn ab alae i . Tu i w a tal alae a tal alae i mwas


Whater the weakers for the result of the result.

Let The Text to the Control of the C

Andrew State (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (19

er i verkomen erungske Varietier

anaget 👊 🔑 🕾 👝 and a



# Standard Specification for Seamless Copper Alloy Pipe and Tube¹

This standard is issued under the fixed designation B 315; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This specification has been approved for use by agencies of the Department of Defense. Consult the DoD Index of Specifications and
Standards for the specific year of issue which has been adopted by the Department of Defense.

#### 1. Scope

1.1 This specification² covers seamless copper alloy pipe in nominal or standard pipe sizes, both regular and extrastrong, and seamless tube in straight lengths for general engineering purposes. Pipe and tube are commercially available in the following alloys:

Copper Alloy UNS No.3	Designation.
C61300	•••
C61400	Aluminum Bronze D
C63020	그러 되어 하는 사람들은 사람들이 가득하다는 건물하
C65100	Low-Silicon Bronze B
C65500	High-Silicon Bronze A

1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

#### 2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
  - 2.1.1 ASTM Standards:
  - B 601 Practice for Temper Designations for Copper and Copper Alloys—Wrought and Cast⁴
  - E 8 Test Methods of Tension Testing of Metallic
  - E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials⁵
  - E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications⁶
  - E 54 Test Methods for Chemical Analysis of Special Brasses and Bronzes⁷
  - E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition⁷

E 243 Practice for Electromagnetic (Eddy-Current) Examination of Copper and Copper-Alloy Tubes⁸

E 527 Practice for Numbering Metals and Alloys (UNS)9

#### 3. Terminology

- 3.1 Definitions:
- 3.1.1 *tube*—a hollow product of round or any other cross section having a continuous periphery.
- 3.1.1.1 *tube, seamless*—a tube produced with a continuous periphery in all stages of the operations.
- 3.1.1.2 *pipe*—a seamless tube conforming to the particular dimensions commercially known as Nominal or Standard Pipe Sizes.
- 3.1.2 average diameter (for round tubes only)—the average of the maximum and minimum outside diameters, or maximum and minimum inside diameters, whichever is applicable, as determined at any one cross section of the tube.
  - 3.1.3 lengths—straight pieces of the product.
- 3.1.3.1 ends—straight pieces, shorter than the nominal length, left over after cutting the product into mill lengths, stock lengths, or specific lengths. They are subject to minimum length and maximum weight requirements.
- 3.1.3.2 specific—straight lengths that are uniform in length, as specified, and subject to established length tolerances.
- 3.1.3.3 specific with ends—specific lengths, including ends.
- 3.1.3.4 stock—straight lengths that are mill cut and stored in advance of orders. They are usually 10, 12, or 20 ft (3.05, 3.66, or 6.10 m) and subject to established length tolerances.
  - 3.1.3.5 stock with ends—stock lengths, including ends.
  - 3.2 Description of Term Specific to This Standard:
- 3.2.1 capable of—as used in this specification, means that the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

#### 4. Ordering Information

- 4.1 Orders for material under this specification shall include the following information:
  - 4.1.1 Alloy (Section 6, Table 1),
  - 4.1.2 Temper (Section 7),
  - 4.1.3 Pipe size (regular or extra-strong) (see 10.2), or tube

¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.04 on Pipe and Tube.

Current edition approved Dec. 15, 1993. Published February 1994. Originally published as B 315 - 57 T. Last previous edition B 315 - 91.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SB-315 in Section II of that Code.

³ The UNS system for copper and copper alloys (see Practice E 527) is a simple expansion of the former standard designation system accomplished by the addition of a prefix "C" and a suffix "00." The suffix can be used to accommodate composition variations of the base alloy.

⁴ Annual Book of ASTM Standards, Vol 02.01.

⁵ Annual Book of ASTM Standards, Vol 03.01

⁶ Annual Book of ASTM Standards, Vol 14.02. ⁷ Annual Book of ASTM Standards, Vol 03.05.

⁸ Annual Book of ASTM Standards, Vol 03.03.

⁹ Annual Book of ASTM Standards, Vol 01.01.

TABLE 1 Chemical Requirements

process of the contract of the			noon responsements		8 19	grade the second second	
	C61300s	C61400	C63020°	C65100		C65500	
Copper Alloy UNS No.	See a sinisi ila yena.		Composition, % Max (Unless Shown as a Range or Minimum)		ja Length	serie ( Litera Li	
Copper ^A	remainder	remainder	12 - 27 - 74.5 min	remainder		remainder	
Lead " Lead " San		0.01	0.03	0.05		0.05	
Iron	2.0-3.0	1.5~3.5	4.0-5.5	0.8		0.8	
Zino	30.0.10	0.20	0.30	1.5		1.5	
Aluminum Caraca Aluminum	6.0-7.5	6.0-8.0	10.511.5	***		Add the same of	
Manganese Manganese	ე იი0.20	1.0	1,5	0.7	10	0.50-1.3	
Silicon	0.10		and the second of the second	0.8-2.0		2.8-3.8	
Tin	0.20-0.50		0.25			1.5	
Nickel (including cobalt)	0.15		4.2-6.0			0.6	
Phosphorus	0.015	0.015			an in gra		

A including silver.

TABLE 2 Tensile Requirements

Copper Alloy UNS No.	C61300 and C61400	C63020		, · · ·.c	C65500	
Temper Designation	M30 (Extruded) or O61 (Annealed)	TQ30 (Quench Hardened and Tempered)	11	O61 (Annealed)	H80 (Hard Drawn)	O61 (Annealed)
Tensile strength, min, ksl ^A (MPa) ^B Yield strength at 0.5 % extension under load, ksl ^A (MPa) ^B	65 (447) 28 (193) min	130 (896) 89 (621)	- 141 .	40 (275) 10 (69) min	50 (345) 40 (275) min	50 (345) 15 to 29 (103 to 200)
Elongation in 2 in. or 50 mm, min, %	30	6		35	. 7.	35

 $^{^{}A}$  ksi = 1000 psi.

dimensions (diameter and wall thickness) (see 10.3 and 10.4),

- 4.1.4 Length (see 10.5),
- 4.1.5 Total length of each size,
- 4.1.6 Whether the product is to be subsequently welded (see Table 1 and Footnote B),
  - 4.1.7 Finish (see 11.2 and 11.3), and
- 4.1.8 When Copper Alloy UNS No. C63020 is ordered under this specification, tube diameter, wall thickness and length, sizes, and tolerances shall be a part of the purchase order as agreed upon between the supplier and the purchaser.
- 4.2 In the case of material to be used for welding or brazing, orders shall specify "Specially Cleaned."

# 5. Materials and Manufacture

- 5.1 The material shall be of such quality and purity that the finished product shall have the properties and characteristics prescribed in this specification.
- 5.2 The material shall be produced by either hot- or coldworking operations, or both. It shall be finished, unless otherwise specified, by such cold working and annealing or heat treatment as may be necessary to meet the properties specified.

# 6. Chemical Composition

- 6.1 The material shall conform to the chemical requirements specified in Table 1.
- 6.2 These specification limits do not preclude the presence of other elements. Limits for unnamed elements may be established by agreement between the manufacturer or supplier and the purchaser.
- 6.2.1 For copper alloys in which copper is specified as the remainder, copper may be taken as the difference between

the sum of all the elements analyzed and 100 %.

6.2.1.1 When all the elements in Table 1 are analyzed, their sum shall be as shown in the following table.

	Copper Plus Named Elements, %	
Copper Alloy UNS No.	min	
C61300	99.8	
C61400	99.5	
.C63020	99.5	
 C65100	99.5	
C65500	99.5	
	N. A. A. P. M. M.	

#### 7. Temper

- 7.1 Tempers available under this specification and as prescribed in Practice B 601 are as follows: Copper Alloy UNS Nos. C61300 and C61400 shall be furnished in the hot-extruded (M30), hot-extruded and annealed (O30), or cold-worked and annealed (O61) condition. Copper Alloy UNS No. C63020 shall be furnished in the quench hardened and temperd (TO30) condition to a hardness of 26 HRC minimum (see Test Method E 18). Copper Alloy UNS No. C65500 shall be furnished in the extruded and annealed (O30), or cold-worked and annealed condition (O61). Copper Alloy UNS No. C65100 shall be furnished in the extruded and annealed (O30), extruded and cold-worked (H50), or cold-worked and annealed condition (O61). Copper Alloy UNS Nos. C65100 and C65500, which are supplied in the cold-worked and annealed condition (O61) shall show complete recrystallization.
- 7.2 Copper Alloy UNS No. C63020 tube shall be quench hardened and tempered (TQ30) as follows:
- 7.2.1 Heat to 1550 to 1650°F for 2-h minimum and quench in water:

B When the product is for subsequent welding applications and is so specified by the purchaser, chromium shall be 0.05 % max, cadmium 0.05 % max, zinc 0.05 % max, and zirconium 0.05 % max.

Chromium shall be 0.05 max and cobalt 0,20 max.

^B See appendix.

C Yield Strength at 0.2 % offset, min, ksi^A (MPa).8

7.2.2 Temper at 900 to 1000°F for 2-h minimum and air cool to room temperature.

#### 8. Tensile Properties

8.1 The material shall conform to the requirements of Table 2 as the tensile properties.

#### 9. Nondestructive Testing

9.1 The pipe or tube may be tested, in the final drawn, annealed, or specified temper or in the drawn temper prior to the final anneal, unless otherwise agreed upon between the supplier and the purchaser. Unless otherwise specified, the manufacturer shall have the option of testing the pipe or tube by one of the following tests:

9.1.1 Eddy-Current Test—Each tube, and each pipe in nominal or standard sizes from 1/s in. up to and including 21/2 in. regular and extra strong, shall be subjected to an eddy-current test. Testings shall follow the procedures of Practice E 243 except for the determination of "end effect." The pipe or tube shall be passed through an eddy-current testing unit adjusted to provide information on the suitability of each piece for the intended application.

9.1.1.1 Notch-depth standards, rounded to the nearest 0.001 in. (0.025 mm) shall be 10 % of the wall thickness. Notch-depth tolerances shall be  $\pm 0.0005$  in. (0.013 mm). Alternatively, when a manufacturer uses speed-insensitive equipment that can select a maximum unbalance signal, a maximum unbalance signal of 0.3 % may be used.

9.1.1.2 Pipes or tubes that do not activate the signalling device of the eddy-current tester shall be considered as conforming to the requirements of this test. Lengths with discontinuities indicated by the testing unit may, at the option of the manufacturer, be reexamined or retested to determine whether the discontinuity is cause for rejection. Signals that are found to have been caused by minor mechanical damage, soil, or moisture shall not be cause for rejection provided the pipe or tube dimensions are still within the prescribed limits and the pipe or tube is suitable for its intended application.

9.1.2 *Pressure Tests*—Each pipe or tube selected in accordance with 13.3 shall withstand the pressure test of 9.1.2.1 or 9.1.2.2

9.1.2.1 Hydrostatic Test—Each pipe or tube shall stand, without showing evidence of leakage, an internal hydrostatic pressure sufficient to subject the material to a fiber stress of 7000 psi (48 MPa), determined by the following equation for thin hollow cylinders under tension. The pipe or tube need not be tested at a hydrostatic pressure of over 1000 psi (6.9 MPa) unless so specified. At the option of the manufacturer, annealed pipe with wall thickness up to 0.083 in. (2.11 mm) inclusive may be tested in the drawn condition, prior to annealing.

$$P = 2 St/(D - 0.8t)$$

where:

P = hydrostatic pressure, psi (MPa),

t =thickness of pipe or tube wall, in. (mm),

D =outside diameter of the pipe or tube, in. (mm), and S =allowable fiber stress of the material, psi (MPa).

9.1.2.2 Pneumatic Test—Each pipe or tube shall stand an internal air pressure of 60 psi (415 kPa), min., for 5 s without showing evidence of leakage. The test method used shall

permit easy visual detection of any leakage, such as by having the tube under water or by pressure differential method.

# 10. Dimensions, Weights, and Permissible Variations

10.1 General:

10.1.1 The standard method of specifying wall thickness shall be in decimal fractions of an inch.

10.1.2 For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the specified limiting values for any dimension may be cause for rejection.

10.1.3 Tolerances on a given tube may be specified with respect to any two, but not all three, of the following: outside diameter, inside diameter, wall thickness.

Note—Blank spaces in the tolerance tables indicate either that the material is not generally available or that no tolerances have been established.

10.2 Dimensions—Dimensions and theoretical weights of nominal or standard pipe sizes shall be in accordance with Table 3.

10.3 Wall Thickness Tolerances—Wall thickness tolerances for pipe shall be in accordance with Tables 4 and 5. Wall thickness tolerances for tube shall be in accordance with Tables 6, 7, and 8.

10.4 Diameter Tolerances—Diameter tolerances for pipe shall be as follows:

10.4.1 Nominal or Standard Pipe Size 1½ in, and Under—+0.016, -0.031 in. (+0.40, -0.79 mm).

10.4.2 Nominal or Standard Pipe Size over 1½ in. -±1 % of specified diameter.

10.4.3 The dimensional limits of nominal or standard pipe sizes are shown in Tables 4 and 5.

10.4.4 Diameter tolerances for tube shall be in accordance with Table 9.

10.5 Length Tolerances:

10.5.1 Length tolerances shall be in accordance with Table 10.

10.5.2 Schedule of Tube Lengths—Specific and stock lengths with ends shall be in accordance with Table 11,

10.6 Squareness of Cut—For pipe and tube in straight lengths, the departure from squareness of the end of any pipe or tube shall not exceed the following:

Tolerance

10.6.1 Pipe:

Outside Diameter, in. (mm)

Up to % (15.9) incl	0.010 in. (0.25 mm)
Over 5/8 (15.9)	0.016 in./in. (0.016 mm/mm)
	of diameter
7.4	
10.6.2 Tube:	
Outside Diameter, in. (mm)	Tolerance
Up to % (15.9) incl	0.010 in. (0.25 mm)
Over % (15.9)	0.016 in./in. (0.016 mm/mm)

10.7 The density of the materials covered by this specification shall be taken to be as follows:

Copper Alloy	2	1	Density,
UNS No.			lb/in.3 (g/cm3)
C61300			0.285 (7.89)
C61400		2.5	0.285 (7.89)
C63020			0.269 (7.45)
C65100			0.316 (8.78)
C65500 11			0.308 (8.53)

TABLE 3 Dimensions and Weights of Copper Alloy Pipe, Standard Pipe Sizes

Nominal or	Dimension, in. (mm)							Theoretical Weight, lb/ft (kg/m)							
Standard					Cross-Sec			-	***************************************	V4.400-1-0-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-	Copper A	lloy UNS	No.		11.5
Pipe Size, in.	Outside Diameter	Inside Diameter	Wall Thickness		Bore, i	1.8 (cm²	F) .:	(	C6130	00 and 400	C6	5500	e ,	C6	5100
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	71 3223	The gas of the		· .	Regular					- A-144					
11/a (11/4) (10	0.405 (10.3)	0,269 (6.83)	0.068 (1.73)	1 : .		7 (0.367				(0.366)		(0.395)	·		3 (0.406)
14 1000	0.540 (13.7)	0.364 (9.25)	0.088 (2.24)		0.10	4 (0.670	))		0.427	(0.634)		(0.686)			4 (0.704)
3/8	0.675 (17.1)	0.493 (12.5)	0.091 (2.31)	200	0.19	1 (1.23)	$-\lambda_{1}\rightarrow$	- 1	0.571	(0.849)		(0.917)			3 (0.941)
1/2	0.840 (21.3)	0.622 (15.8)	0.109 (2.77)	,	. 0.30	4 (1.96)	. 1	1	0.856	(1.27)	0.925	(1.37)	٠.,		9 (1.41)
3/4	1.050 (26.7)	0.824 (20.9)	0.113 (2.87)	and the second	0.53	3 (3.44)			1.14	(1.69)	1.23	(1.83)			(1.88)
1	1.315 (33.4)	1.049 (26.6)	0.133 (3.38)	C1.5		4 (3.57)	1.7			(2.51)	1.83	(2.72)			(2.79)
11/4	1.660 (42.2)	1.380 (35.1)	0.140 (3.56)	7 11		3 (9.66)	٠,			(3.40)	2.47			2.53	
11/2	1.900 (48.3)	1.610 (40.9)	0.145 (3.68)			3 (13.1)				(4.07)	2.95	(4.40)		3.03	
2	2.375 (60.3)	2.067 (52.5)	0.154 (3.91)		3.35	(21.7)		- 1		(5.45)	3.97	(5.91)		4.07	(6.06)
21/2	2.875 (73.0)	2.469 (62.7)	0.203 (5.16)	1.	4.78	3 (30.9)	**			(8.66)	6:30	(9.37)		6.46	
3 "	3.500 (88.9)	3.068 (77.9)	0.216 (5.49)		7.39	3 (47.7)				(11.3)	8.24	(12.3)		8.45	
31/2	4.000 (102)†	3.548 (90.1)	0.226 (5.74)		9.88	7 (63.8)	)		9.16	$(13.6)^{-1}$	9.90	(14.7)	,	10.2	(15.1)
4	4.500 (114)	4.026 (102)	0.237 (6.02)		12.73	3 (82.1)	,	11	0.9	(16.2)	. 11.7	(17.5)		12.0	(17.9)
5	5.562 (141)	5.046 (128)	0.258 (6.55)		19.99	3 (129)		1.	4.7	(21.8)	15.9	(23.6)		16.3	(24.3)
6	6.625 (168)	6.065 (154)	0.280 (7.11)			(186)		15		(28.4)	20.6	(30.7)		21.2	(31.5)
8	8,625 (219)	7.981 (203)	0.322 (8.18)			323)				(42.7)	31.0	(46.2)	,	31.9	(47.4)
10	10.750 (273)	10.020 (255)	0.365 (9.27)		78.8	(508)				(90.1)	44.1	(65.6)	1	45.2	(67.3)
12	12.750 (324)	12.000 (305)	0.375 (9.52)		113.0	(729)		4	9.9	(74.1)	53.9	(80.2)	**	55.3	(82.3)
-				Е	xtra Strong										
¹∕e	0.405 (10.3)	0.215 (5.46)	0.095 (2.41)			(0.232)				(0.470)		(0.508)			(0.522)
1/4	0.540 (13.7)	0.302 (7.67)	0.119 (3.02)			(0.464)				(0.799)		(0.865)			7 (0.887)
3∕e	0.675 (17.1)	0.423 (10.7)	0.126 (3.20)			(0.909)	1.5			(1.10)		(1.19)			(1.22)
1/2	0.840 (21.3)	0.546 (13.9)	0.147 (3.73)		0.234					(1.63)		(1.76)			(1.80)
3/4	1.050 (26.7)	0.742 (18.8)	0.154 (3.91)		0.432					(2.20)		(2.39)			(2.45)
1 .	1.315 (33.4)	0.957 (24.3)	0.179 (4.55)		0.719	(4.64)			2.19	(3.25)	2.36	(3.52)		2.42	
11/4	1.660 (42.2)	1.278 (32.5)	0.191 (4.85)		1.283	(8.28)		;	3.01	(4.47)	3.26	(4.85)		3.34	
11/2	1.900 (48.3)	1.500 (38.1)	0.200 (5.08)		1.767	(11.4)		;		(5.42)	3.95	(5.88)		4.05	
2	2.375 (60.3)	1.939 (49.3)	0.218 (5.54)		2,953			- '!	5.05	(7.50)	5.46	(8.12)	**	5.60	(8.34)
21/2	2.875 (73.0)	2.323 (59.0)	0.276 (7.01)		4.238					(11.4)	8.33	(12.4)		8.55	(12.7)
3	3.500 (88.9)	2.900 (73.7)	0.300 (7.62)		6.605					(15.3)	11.1	(16.6)		11.4	(17.0)
31/2	4.000 (102)	3.364 (85.5)	0.318 (8.08)		8.888					(18.7)	13.6	(20.2)		13.9	(20.8)
4	4.500 (114)	3.826 (97.2)	0.337 (8.56)		11.497	(74.)				(22.4)	16.3	(24.2)		16.7	(24.9)
5	5.562 (141)	4.812 (122)	0.375 (9.53)		18.186	(117)				(31.1)	22.6	(33.6)	, (	23.2	(34.5)
6	6.625 (168)	5.761 (146)	0.432 (10.9)		26.067	(168)		21		(42.6)	31.1	(46.2)		31.9	(47.4)
8	8.625 (219)	7.625 (194)	0.500 (12.7)		45.664					(64.8)	47.2	(70.2)		48.4	(72.0)
10	10.750 (273)	9.750 (248)	0.500 (12.7)		74.7	(482)		5	5.1	(81.9)	59.5	(88.5)		61.1	(90.9)

TABLE 4 Dimensional Limits for Standard Pipe Sizes
Copper Alloy UNS No. C61300 and C61400

Nominal or				opper Alloy Orto	Regular			Extra Stroi	na i i i i i i i i i i i i i i i i i i i
Standard Pipe Size	Pipe ter, in. (mm)	Min	Max	Wall Thick- ness, in. (mm)	Min	Max	Wall Thick- ness, in. (mm)	Min	Max
1/8	0.405 (10.3)	0.374 (9.50)	0.421 (10.7)	0.068 (1.73)	0.061 (1.55)	0.075 (1.91)	0.095 (2.41)	0.086 (2.18)	0.105 (2.67)
1/4	0.540 (13.7)	0.509 (12.9)	0.556 (14.1)	0.088 (2.24)	0.079 (2.01)	0.097 (2.46)	0.119 (3.02)	0.107 (2.72)	0.131 (3.33)
3/8	0.675 (17.1)	0.644 (16.4)	0.691 (17.6)	0.091 (2.31)	0.082 (2.08)	0.100 (2.54)	0.126 (3.20)	0.113 (2.87)	0.139 (3.53)
1/2	0.840 (21.3)	0.809 (20.5)	0.856 (21.7)	0.109 (2.77)	0.098 (2.49)	0.120 (3.05)	0.147 (3.73)	0.132 (3.35)	0.162 (4.11)
3/4	1.050 (26.7)	1.019 (25.9)	1.066 (27.1)	0.113 (2.87)	0.102 (2.59)	0.124 (3.15)	0.154 (3.91)	0.139 (3.53)	0.169 (4.29)
1	1.315 (33.4)	1.284 (32.6)	1.331 (33.8)	0.133 (3.38)	0.120 (3.05)	0.146 (3.71)	0.179 (4.55)	0.161 (4.09)	0.197 (5.00)
11/4	1.660 (42.2)	1.629 (41.4)	1.676 (42.6)	0.140 (3.56)	0.126 (3.20)	0.154 (3.91)	0.191 (4.85)	0.172 (4.37)	0.210 (5.33)
11/2	1.900 (48.3)	1.869 (47.5)	1.916 (48.7)	0.145 (3.68)	0.131 (3.33)	0.160 (4.06)	0.200 (5.08)	0.180 (4.57)	0.220 (5.59)
2	2.375 (60.3)	2.351 (59.7)	2.399 (60.9)	0.154 (3.91)	0.139 (3.53)	0.169 (4.29)	0.218 (5.54)	0.196 (4.98)	0.240 (6.10)
21/2	2.875 (73.0)	2.846 (72.3)	2.904 (73.8)	0.203 (5.16)	0.183 (4.65)	0.223 (5.66)	0.276 (7.01)	0.248 (6.30)	0.304 (7.72)
3	3.500 (88.9)	3.465 (88.0)	3.535 (89.8)	0.216 (5.49)	0.194 (4.93)	0.238 (6.05)	0.300 (7.62)	0.270 (6.86)	0.330 (8.38)
31/2	4.000 (102)	3.960 (101)	4.040 (103)	0.226 (5.74)	0.203 (5.16)	0.249 (6.32)	0.318 (8.08)	0.286 (7.26)	0.350 (8.89)
4	4,500 (114)	4.455 (113)	4.545 (115)	0.237 (6.02)	0.213 (5.41)	0.261 (6.63)	0.337 (8.56)	0.303 (7.70)	0.371 (9.42)*
5	5.562 (141)	5.506 (140)	5.618 (143)	0.258 (6.55)	0.232 (5.89)	0.284 (7.21)	0.375 (9.53)	0.338 (8.59)	0.413 (10.5)
6	6.625 (168)	6.559 (167)	6.691 (170)	0.280 (7.11)	0.252 (6.40)	0.308 (7.82)	0.432 (11.0)	0.389 (9.88)	0.475 (12.1)
8	8.625 (219)	8.539 (217)	8.711 (221)	0.322 (8.18)	0.290 (7.37)	0.354 (8.99)	0.500 (12.7)	0.450 (11.4)	0.550 (14.0)
10	10.750 (273)	10.643 (270)	10.858 (276)	0.365 (9.27)	0.329 (8.36)	0.402 (10.2)	0.500 (12.7)	0.450 (11.4)	0.550 (14.0)
12	12.750 (324)	12.623 (321)	12.878 (327)	0.375 (9.53)	0.338 (8.59)	0.413 (10.5)	***		***

#### TABLE 5 Dimensional Limits for Standard Pipe Sizes

Copper Alloy UNS No. C65100 and C65500

Nominal or	Outside		v 1 m 1	* - VA - *	Regular	-		Extra Strong	
Standard Pipe Size	Diameter, in. (mm)	Min	Max	Wall Thickness, in. (mm)	Min	Max	Wall Thickness, in. (mm)	Min	Max
1/8 1/4 3/6 1/2 3/4 1 11/4 11/2 2 21/2 3	0.405 (10.3) 0.540 (13.7) 0.675 (17.1) 0.840 (21.3) 1.050 (26.7) 1.315 (33.4) 1.660 (42.2) 1.900 (48.3) 2.375 (60.3) 2.875 (73.0) 3.500 (88.9) 4.000 (102) 4.500 (114)	0.374 (9.4 0.509 (12 0.644 (16 0.809 (20 1.019 (25 1.629 (41 1.889 (47 2.351 (59 2.846 (72 3.465 (88 3.960 (10	.9) 0.555 (14.1) .4) 0.691 (17.6) .5) 0.855 (27.7) .9) 1.066 (27.1) .6) 1.331 (33.8) .4) 1.676 (42.6) .5) 1.916 (48.7) .7) 2.399 (60.9) .3) 2.904 (73.8) .0) 3.535 (89.8) 1) 4.040 (103)	0.068 (1.73) 0.088 (2.24) 0.091 (2.31) 0.109 (2.77) 0.113 (2.87) 0.133 (3.38) 0.140 (3.56) 0.145 (3.68) 0.154 (3.91) 0.203 (5.16) 0.216 (5.49) 0.226 (5.74) 0.237 (6.02)	0.065 (1.65) 0.084 (2.13) 0.086 (2.18) 0.104 (2.64) 0.107 (2.72) 0.126 (3.20) 0.133 (3.38) 0.138 (3.51) 0.146 (3.71) 0.193 (4.90) 0.205 (5.21) 0.215 (5.46) 0.225 (5.72)	0.083 (2.11). 0.102 (2.59) 0.103 (2.62) 0.122 (3.10) 0.124 (3.15) 0.145 (3.68) 0.151 (3.84) 0.156 (3.96) 0.164 (4.17) 0.217 (5.51) 0.230 (5.84) 0.240 (6.10) 0.252 (6.40)	0.095 (2.41) 0.119 (3.02) 0.126 (3.20) 0.147 (3.73) 0.154 (3.91) 0.179 (4.55) 0.191 (4.85) 0.200 (5.08) 0.218 (5.54) 0.276 (7.01) 0.300 (7.62) 0.318 (8.08) 0.337 (8.56)	0.090 (2.29) 0.107 (2.72) 0.120 (3.05) 0.146 (3.56) 0.146 (3.71) 0.170 (4.32) 0.181 (4.60) 0.190 (4.83) 0.207 (5.26) 0.262 (6.65) 0.285 (7.24) 0.302 (7.67) 0.320 (8.13)	0.123 (3.12) 0.144 (3.66) 0.146 (3.71) 0.166 (4.22) 0.171 (4.34) 0.196 (4.98) 0.207 (5.26) 0.216 (5.49) 0.233 (5.92) 0.295 (7.49) 0.321 (8.15) 0.340 (8.64) 0.360 (9.14)
5 6 8 10	5.562 (141) 6.625 (168) 8.625 (219) 10.750 (273)	5.506 (14 6.559 (16 8.539 (21 10.643 (27	5.618 (143) 6.691 (170) 7) 8.711 (221)	0.257 (0.02) 0.258 (6.55) 0.280 (7.11) 0.322 (8.18) 0.365 (9.27)	0.245 (6.22) 0.266 (6.76) 0.299 (7.59) 0.336 (8.53)	0.275 (6.99) 0.298 (7.57) 0.349 (8.86) 0.400 (10.2)	0.375 (9.53) 0.432 (11.0) 0.500 (12.7) 0.500 (12.7)	0.356 (9.04) 0.410 (10.4) 0.465 (11.8) 0.460 (11.7)	0.400 (10.2) 0.461 (11.7) 0.544 (13.8) 0.548 (13.9)
12	12.750 (273)	12.623 (32		0.375 (9.53)	0.345 (8.76)	0.410 (10.4)	0.500 (12.7)	0.400 (11.7)	0.040 (10.8)

# TABLE 6 Wall Thickness Tolerances for Copper Alloy UNS No. C61300 and C61400 Tube (Not Applicable to Pipe)

Note-Maximum Deviation at Any Point-The following tolerances are plus and minus; if tolerances all plus or all minus are desired, double the values given.

74	Outside Diameter, in. (mm)						
over 0.034 (0.864) to 0.057 (1.45), incl over 0.057 (1.45) to 0.082 (2.08), incl over 0.082 (2.08) to 0.119 (3.02), incl	Over 5% to 1 (15.9 to 25.4) incl	Over 1 to 2 (25.4 to 50.8) incl	Over 2 to 4 (50.8 to 102) incl				
Over 0.024 (0.610) to 0.034 (0.864), incl	0.003 (0.076)	0.004 (0.10)	0.004 (0.10)				
Over 0.034 (0.864) to 0.057 (1.45), incl	0.0045 (0.11)	0.005 (0.13)	0.006 (0.15)				
Over 0.057 (1.45) to 0.082 (2.08), incl	0.005 (0.13)	0.006 (0.15)	0.008 (0.20)				
Over 0.082 (2.08) to 0.119 (3.02), incl	0.007 (0.18)	0.008 (0.20)	0.009 (0.23)				
Over 0.119 (3.02) to 0.164 (4.17), incl	0.009 (0.23)	0.010 (0.25)	0.012 (0.30)				

# TABLE 7 Wall Thickness Tolerances for Copper Alloy UNS No. C65500 Tube (Not Applicable to Pipe)

Note-Maximum Deviation at Any Point-The following tolerances are plus and minus: if tolerances all plus or all minus are desired, double the values given.

			Outside	Diameter, ^A in. (mr	n)		
Wall Thickness, in. (mm)	1/92 to 1/8 (0.792 to 3.18), incl	Over 1/e to 5/e (3.18 to 15.9), incl	Over % to 1 (15.9 to 25.4), incl	Over 1 to 2 (25.4 to 50.8), incl	Over 2 to 4 (50.8 to 102), incl	Over 4 to 7 (102 to 173), incl	Over 7 to 10 (173 to 251), incl
Up to 0.017 (0.432), incl	0.0025 (0.064)	0.0015 (0.038)	0.002 (0.051)	0.0025 (0.064)		4 + 4	
Over 0.017 (0.432) to 0.024 (0.610), incl	0.004 (0.10)	0.0025 (0.064)	0.0025 (0.064)	0.003 (0.076)		4.4	
Over 0.024 (0.610) to 0.034 (0.864), incl	0.004 (0.10)	0.003 (0.076)	0.003 (0.076)	0.004 (0.10)	0.005 (0.13)	***	
Over 0.034 (0.864) to 0.057 (1.45), incl	0.004 (0.10)	0.001 (0.10)	0.0045 (0.11)	0.0045 (0.11)	0.0065 (0.17)	0.009 (0.23)	
Over 0.057 (1.45) to 0.082 (2.08), incl		0.0045 (0.11)	0.005 (0.13)	0.005 (0.13)	0.0075 (0.19)	0.010 (0.25)	0.013 (0:33)
Over 0.082 (2.08) to 0.119 (3.02), incl		0.005 (0.13)	0.0065 (0.17)	0.0065 (0.17)	0.009 (0.23)	0.011 (0.28)	0.014 (0.36)
Over 0.119 (3.02) to 0.164 (4.17), incl		0.007 (0.18)	0.007 (0.18)	0.0075 (0.19)	0.010 (0.25)	0.013 (0.33)	0.015 (0.38)
Over 0.164 (4.17) to 0.219 (5.56), incl			0.009 (0.23)	0.010 (0.25)	0.012 (0.30)	0.015 (0.38)	0.018 (0.46)
Over 0.219 (5.56) to 0.283 (7.19), incl			0.012 (0.30)	0.013 (0.33)	0.015 (0.38)	0.018 (0.46)	0.020 (0.51)
Over 0.283 (7.19) to 0.379 (9.62), incl Over 0.379 (9.62)	***		0.014 (0.36)	6 <i>8</i>	6 <i>8</i> 6₽	8 ⁸	88 88

A When tube is ordered by outside and inside diameters, the maximum plus and minus deviation of the wall thickness from the nominal at any point shall not exceed the values given in this table by more than 50 %.

# Percent of the specified wall thickness expressed to the nearest 0.001 in. (0.025 mm).

TABLE 8 Wall Thickness Tolerances for Copper Alloy UNS No. C65100 Tube (Not Applicable to Pipe)

Note-Maximum Deviation at Any Point-The following tolerances are plus and minus: if tolerances all plus or all minus are desired, double the values given.

		•	Out	side Diameter, in. ^A	(mm)						
Wall Thickness, in. (mm)	1⁄3₂ (0.792) to 11⁄a (3.18), incl	Over 1/8 (3.18) to 5/8 (15.9), incl	Over % (15.9) to 1 (25.4), incl	Over 1 (25.4) to 2 (50.8), incl	Over 2 (50.8) to 4 (102), incl	Over 4 (102) to 7 (213), incl	Over 7 (213) to 10 (254), incl				
Up to 0.017 (0.432), incl Over 0.017 (0.432) to 0.024 (0.610), incl Over 0.024 (0.610) to 0.034 (0.864), incl		0.001 (0.025) 0.002 (0.051)	0.0015 (0.038) 0.002 (0.051)	0.002 (0.051) 0.0025 (0.064)	0.004.00400	. 7.1- %					
Over 0.034 (0.864) to 0.057 (1.45), incl Over 0.057 (1.45) to 0.082 (2.08), incl	0.003 (0.076) 0.003 (0.076)	0.0025 (0.064) 0.003 (0.076) 0.0035 (0.089)	0.0025 (0.064) 0.0035 (0.089) 0.004 (0.10)	0.003 (0.076) 0.0035 (0.089) 0.004 (0.10)	0.004 (0.10) 0.005 (0.13) 0.006 (0.15)	0.007 (0.18) 0.008 (0.20)	0.010 (0.26)				
Over 0.082 (2.08) to 0.119 (3.02), incl Over 0.119 (3.02) to 0.164 (4.17), incl Over 0.164 (4.17) to 0.219 (5.56), incl	of Table 11.	0.004 (0.10) 0.005 (0.13)	0.005 (0.13) 0.006 (0.15)	0.005 (0.13) 0.006 (0.15)	0.007 (0.18) 0.008 (0.20)	0.009 (0.23) 0.010 (0.25)	0.011 (0.28) 0.012 (0.30)				
Over 0.219 (5.56) to 0.283 (7.19), incl Over 0.283 (7.19) to 0.379 (9.62), incl	31 41 41 31 41 41 32 41 41	0.007 (0.18)	0.0075 (0.19) 0.009 (0.23) 0.012 (0.30)	0.008 (0.20) 0.010 (0.25) 5 ⁸	0.010 (0.25) 0.012 (0.30) 5#	0.012 (0.30) 0.014 (0.36) 6#	0.014 (0.36) 0.016 (0.44)				
Over 0.379 (9.62), incl		10 144 have		5 ⁸	5₿	. 6 ^B	6 ^a				

A When round tube is ordered by outside and inside diameters, the maximum plus and minus deviation of the wall thickness from the nominal at any point shall not exceed the values given in the table by more than 50 %.

TABLE 9 Average Diameter Tolerances for Tube (Not Applicable to Pipe)

Copper Alloy UNS No.	Tolerance, $\pm$ in. (mm) ^A				
Specified Diameter, In. (mm)	C61300 and C65100		C65500		
Up to 1/s (3.18), incl		0.002 (0.051) ^B	0.003 (0.076) B		
Up to 1/8 (3.18), incl		0.002 (0.051)	0.0025 (0.064)		
Over 1/a (3.18) to 5/a (15.9), incl	0.004 (0.10)	0.002 (0.051)	0.0025 (0.064)		
Over % (15.9) to 1 (25.4), incl	0.005 (0.13)	0.0025 (0.064)	0.003 (0.076)		
Over 1 (25.4) to 2 (50.8), incl	0.006 (0.15)	0.003 (0.076)	0.004 (0.10)		
Over 2 (50.8) to 3 (76.2), incl	0.007 (0.18)	0.004 (0.10)	0.005 (0.13)		
Over 3 (76.2) to 4 (102), incl		0.005 (0.13)	0.006 (0.15)		
Over 4 (102) to 5 (127), incl		0.006 (0.15)	0.008 (0.20)		
Over 5 (127) to 6 (152), incl		0.007 (0.18)	0.009 (0.23)		
Over 6 (152) to 8 (203), incl		0.008 (0.20)	0.010 (0.25)		
Over 8 (203) to 10 (254), incl		0.010 (0.25)	0.013 (0.33)		

A Tolerance applies to inside or outside diameters, except as noted.

#### 11. Workmanship, Finish, and Appearance

- 11.1 The material shall be free from defects of a nature that interfere with normal commercial applications and shall be free of heavy oxides and dirt.
- 11.2 Copper Alloy UNS Nos. 65100 and 65500 may be supplied in the following finishes:
- 11.2.1 Specially Cleaned—Commercially free of all oxides, this material has the golden color of the alloy. It is intended for brazing and welding operations.
- 11.2.2 Plain pickled, or with dull iridescent film on both the inside and outside surfaces. Plain pickled material normally has a brick red color with cuprous and silicon oxides still adherent.
- 11.3 Copper Alloy UNS Nos. C61300 and C61400 shall be supplied with the normal as-extruded or annealed tarnish unless otherwise specified on the purchase order.

#### 12. Sampling

- 12.1 Sampling—The lot size, portion size, and selection of sample pieces shall be as follows:
- 12.1.1 Lot Size—For tube, the lot size shall be 10 000 lb (4550 kg) or fraction thereof. For pipe, the lot size shall be as follows:

TABLE 10 Length Tolerances

Note—Tolerances are all plus—If all minus tolerances are desired, use the same value. If tolerances plus and minus are desired, halve the values given.

	Tolerances, i	n. (mm), Applicabl Length Pieces	e Only to Full
Length	Outside Diameters up to 1 in. (25.4 mm), incl	(25 4 mm) to 4	Outside Diame- ters over 4 in. (102 mm)
Specific lengths:	***		
Up to 6 in. (152 mm), incl	1/32 (0.79)	1/16 (1.6)	
Over 6 in. (152 mm) to 2 ft (610 mm), incl	1/16 (1.6)	3/82 (2.4)	1/a (3.2)
Over 2 ft (610 mm) to 6 ft (1.83 m), incl	3/32 (2.4)	. 1/8 (3.2)	1/4 (6.4)
Over 6 ft (1.83 m) to 14 ft (4.27 m), incl	1/4 (6.4)	1/4 (6.4)	1/4 (6.4)
Over 14 ft (4.27 m)	1/2 (13)	1/2 (13)	1/2 (13)
Specific lengths with ends	1 (25)	1 (25)	1 (25)
Stock lengths with or without ends	14 (25)	14 (25)	1 ^A (25)

As stock lengths are cut and placed in stock in advance of orders, departure from this tolerance is not practicable.

TABLE 11 Schedule of Tube Lengths (Specific and Stock) with Ends

Outside Dimensions, in. (mm)	Specific Length, ft (m)	Shortest Permissible Length, A % of Specific Length	ele Permissible of Weight of Ends, %	
Up to 1 (25.4), incl	6 (1.83) to 20 (6.10), incl	70	20	
Over 1 (25.4) to 2 (50.8), incl	6 (1.83) to 20 (6.10), incl	60	25	
Over 2 (50.8) to 3 (76.2), incl	6 (1.83) to 20 (6.10), incl	55	30′	
Over 3 (76.2) to 4 (102), incl	6 (1.83) to 20 (6,10), incl	50	40	

A Expressed to nearest 1/3 ft

Nominal or Standard	:
Pipe Size, in.	Lot Weight, lb (kg)
Up to 4, incl	10 000 (4550) or
Over 4	fraction thereof 40 000 (18 100) or
	fraction thereof

12.1.2 Portion Size—Sample pieces shall be taken for test purposes from each lot according to the following schedule:

^e Percent of the specified wall thickness expressed to the nearest 0.001 in. (0.025 mm).

^a On inside diameter. ^c On outside diameter.

[.] 

Number of Pieces in Lot	Number of Sample Pieces to be Taken				
1 to 50					
51 to 200	2				
201 to 1500 Over 1500	0.2 % of total number of				
GVEI 1500	pieces in the lot				

#### 13. Number of Test and Retests

13.1 Chemical Analysis—Samples for chemical analysis shall be taken in accordance with Practice E 55. Drillings, millings, etc., shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 12.1.2 and combined into one composite sample. The minimum weight of the composite sample that is to be divided into three equal parts shall be 150 g.

13.1.1 Instead of sampling in accordance with Practice E 55, the manufacturer shall have the option of determining conformance to chemical composition as follows: Conformance shall be determined by the manufacturer by analyzing samples taken at the time the castings are poured or samples taken from the semifinished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product. The number of samples taken for determination of chemical composition shall be as follows:

13.1.1.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.

13.1.1.2 When samples are taken from the semifinished product, a sample shall be taken to represent each 10 000 lb (4550 kg) or fraction thereof for all tube and for pipe sizes up to 4 in., inclusive and 40 000 lb (18 100 kg) for pipe sizes over 4 in., except that not more than one sample shall be required per piece.

13.1.1.3 Due to the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific casting analysis with a specific quantity of finished material.

13.1.1.4 In the event that heat identification or traceability is required, the purchaser shall specify the details desired.

13.2 Tension Tests—For the tension tests, a specimen shall be taken from each of the pieces selected in accordance with 12.1. The required tension test shall be made on each of the specimens so selected.

13.3 Pressure Tests—For the purpose of pressure testing only, a number of lengths of pipe or tube to be tested as described in 9.1.2 shall be randomly selected from the lot as follows:

Number of Pipe or Tubes

1-8	5
9-50	7 .
51150	20
151-280	32
281-500	50
501-1200	80
1201-3200	125

13.4 Retests:

13.4.1 If any test specimen shows defective machining or

develops flaws, it may be discarded and another specimen substituted.

13.4.2 If the percentage elongation of any tension test specimen is less than that specified and any part of the fracture is outside the middle two thirds of the gage length or in a punched or scribed mark within the reduced section, a retest shall be allowed.

13.4.3 If the results of any test made to determine the physical properties fail to meet the specified limits, this test shall be repeated on each of two additional specimens taken from different pieces and the results of both of these tests shall comply with the specified requirements.

13.4.4 If the chemical analysis fails to conform to the specified limits, analysis shall be made on a new composite sample prepared from additional pieces selected in accordance with 12.1. The results of this retest shall comply with the specified requirements.

13.4.5 If any test specimen representing a lot fails to conform to the requirements of 9.1.2, two additional specimens, at the option of the manufacturer, may be taken as before, and submitted for check analysis or subjected to any tests in which the original specimen failed, but each of these specimens shall conform to the requirements specified.

#### 14. Test Methods

14.1 The properties enumerated in this specification shall, in case of disagreement, be determined in accordance with the following applicable methods of the American Society for Testing and Materials:

Test	ASTM Designation
Chemical analysis	E 54 E 8
Tension test (See also 14.2, 14.3, and 14.	

14.2 Tension test specimens shall be of the full section of the tube and shall conform to the requirements of Specimens for Pipe and Tube section, of Test Methods E 8, unless the limitations of the testing machine preclude the use of such a specimen. Test specimens conforming to Type No. 1 of Fig. 13, Tension Test Specimens for Large-Diameter Tubular Products, of Test Methods E 8 may be used when a full-section specimen cannot be tested.

14.3 Whenever tension test results are obtained from both full-size and from machined test specimens and they differ, the results obtained from full-size test specimens shall be used to determine conformance to the specification requirements.

14.4 Tension test results on material covered by this specification are not seriously affected by variations in speed of testing. A considerable range of testing speed is permissible; however, the rate of stressing to the yield strength should not exceed 100 ksi (690 MPa)/min. Above the yield strength the movement per minute of the testing machine head under load should not exceed 0.5 in./in. (0.5 mm/mm) of gage length (or distance between grips for full-section specimens).

#### 15. Significance of Numerical Limits

15.1 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value

shall be rounded as indicated in accordance with the rounding method of Practice E 29.

Rounded Unit for Observed or Calculated

Property

Chemical composition

Value
nearest unit in the last righthand place of figures of the
specified limit

Tensile strength
Yield strength
Elongation

nearest ksi (nearest 5 MPa)

#### 16. Inspection

16.1 The manufacturer shall afford the inspector representing the purchaser all reasonable facilities to satisfy him that the material is being furnished in accordance with the specified requirements.

#### 17. Rejection and Rehearing

17.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the manufacturer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the manufacturer or supplier may make claim for a rehearing.

#### 18. Packaging and Package Marking

18.1 The material shall be separated by size, composition, and temper, and prepared for shipment in such a manner as to ensure acceptance by common carrier for transportation and to afford protection from the normal hazards of transportation.

18.2 Each shipping unit shall be legibly marked with the purchase order number, metal or alloy designation, temper, size, shape, gross and net weight, and name of supplier. The specification number shall be shown, when specified.

#### 19. Certification

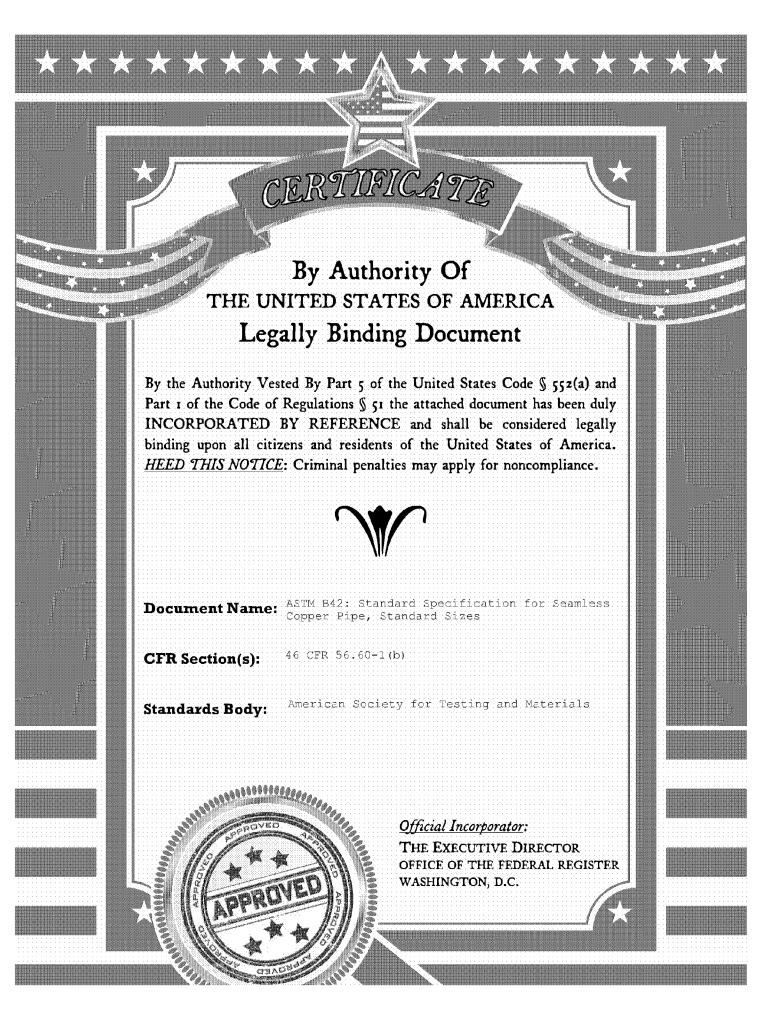
19.1 When specified in the purchase order or contract, a manufacturer's certificate of compliance shall be furnished to the purchaser stating that each lot has been sampled, tested, and inspected in accordance with this specification and the requirements have been met. When material is specified to meet the requirements of ASME Boiler and Pressure Vessel Code, the certification requirements are mandatory.

#### 20. Test Report

20.1 When specified in the purchase order or contract, the manufacturer or supplier shall furnish to the purchaser a manufacturer's test report showing the results of the required tests.

#### APPENDIX

(Nonmandatory Information)


# X1. METRIC EQUIVALENTS

X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared ( $N = kg \cdot m/s^2$ ). The derived SI unit for pressure or

stress is the newton per square metre  $(N/m^2)$ , which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa the metric equivalents are expressed as megapascal (MPa), which is the same as  $MN/m^2$  and  $N/mm^2$ .

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 1916 Race St., Philadelphia, PA 19103.



# Standard Specification for Seamless Copper Pipe, Standard Sizes¹

This standard is issued under the fixed designation B 42; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This specification has been approved for use by agencies of the Department of Defense. Replaces WW–P–377. Consult the DoD Index of Specifications and Standards for the specific year of issue which has been adopted by the Department of Defense.

#### 1. Scope

1.1 This specification² covers seamless copper pipe in all nominal or standard pipe sizes, both regular and extrastrong, suitable for use in plumbing, boiler feed lines, and for similar purposes.³

1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.

#### 2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
  - 2.1.1 ASTM Standards:
  - B 153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing⁴
  - B 170 Specification for Oxygen-Free Electrolytic Copper Refinery Shapes⁴
  - B 601 Practice for Temper Designations for Copper and Copper Alloys—Wrought and Cast⁴
  - E 8 Test Methods for Tension Testing of Metallic Materials⁵
  - E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications⁶
  - E 53 Test Methods for Chemical Analysis of Copper⁷
  - E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition⁷
  - E 62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods)⁷
  - E 243 Practice for Electromagnetic (Eddy-Current) Examination of Copper and Copper-Alloy Tubes⁸
  - E 478 Test Methods for Chemical Analysis of Copper Alloys⁷

E 527 Practice for Numbering Metals and Alloys (UNS)9

#### 3. Terminology

- 3.1 Definitions:
- 3.1.1 lengths—straight pieces of the product.
- 3.1.1.1 standard—uniform lengths recommended in a Simplified Practice Recommendation or established as a Commercial Standard.
- 3.1.2 tube, seamless—a tube produced with a continuous periphery in all stages of the operations.
- 3.1.2.1 pipe—a seamless tube conforming to the particular dimensions commercially known as Nominal or Standard Pipe Sizes.
  - 3.2 Description of Term Specific to This Standard:
- 3.2.1 capable of—as used in this specification, the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements the material shall be subject to rejection.

# 4. Ordering Information

- 4.1 Orders for material under this specification shall include the following information:
  - 4.1.1 Type of copper, if required,
  - 4.1.2 Temper (see 6.1),
  - 4.1.3 Pipe size, regular or extra-strong, (see 10.2),
  - 4.1.4 Length (see 10.3),
  - 4.1.5 Total length of each size,
- 4.1.6 If material is required to meet ASME Boiler and Pressure Vessel Code,
  - 4.1.7 Certification, if required (see 19.1),
  - 4.1.8 Mill test report, if required (see 20.1),
  - 4.1.9 Hydrostatic test, if required, and
  - 4.1.10 Pneumatic test, if required.
- 4.2 In addition, when material is purchased for agencies of the U.S. Government, it shall conform to the Supplementary Requirements as defined herein when specified in the contract or purchase order.

#### 5. Chemical Composition

5.1 The material shall conform to the following chemical requirements:

Copper (incl silver), min, % Phosphorus, max, % 99.9

0.04

¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.04 on Pipe and Tube.

Current edition approved April 10, 1996. Published June 1996. Originally

Current edition approved April 10, 1996. Published June 1996. Originally published as B 42 - 22 T. Last previous edition B 42 - 93.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SB-42 in Section II of that Code.

³ The UNS system for copper and copper alloys (see Practice E 527) is a simple expansion of the former standard designation system accomplished by the addition of a prefix "C" and a suffix "00." The suffix can be used to accommodate composition variations of the base alloy.

⁴ Annual Book of ASTM Standards, Vol 02.01.

⁵ Annual Book of ASTM Standards, Vol 03.01.

⁶ Annual Book of ASTM Standards, Vol 14.02.

⁷ Annual Book of ASTM Standards, Vol 03.05.

^{**}Annual Book of ASTM Standards, Vol 03.03.

**Annual Book of ASTM Standards, Vol 03.03.

**TABLE 1 Chemical Requirements** 

	•	
 Copper UNS No.	Copper (incl Silver), min, %	Phosphorus, %
 C10200 ^A	99.95	
C10300	99,95 ⁸	0.001 to 0.005
C10800	99.95 ^B	0.005 to 0.012
C12000	99.90	0.004 to 0.012
C12200	99.9	0.015 to 0.040

A Oxygen in C10200 shall be 10 ppm max.

5.2 The pipe shall be produced from one of the following coppers, and unless otherwise specified, anyone of them is permitted to be furnished:

Copper UNS No.	Previously Used Designation	Type of Copper
C10200	OF	Oxygen-free without residual deoxidants
C10300		Oxygen-free, extra-low phosphorus
C10800	•	Oxygen-free, low phosphorus
C12000	DLP	Phosphorized, low residual phos- phorus
C12200	DHP	Phosphorized, high residual phos-

- 5.3 When the copper is specified, the material shall conform to the chemical requirements specified in Table 1.
- 5.4 These specification limits do not preclude the possible presence of other elements. When required, limits for unnamed elements are to be established by agreement between manufacturer or supplier and purchaser.
- 5.4.1 The major element that is not analyzed shall be determined by difference between the sum of those elements analyzed and 100 %. By agreement between manufacturer and purchaser, it is permitted to establish limits and required analysis for elements not specified.

#### 6. Temper

- 6.1 All pipe shall normally be furnished in the O61 (annealed), H55 (light drawn), or H80 (hard drawn) temper, as prescribed in Practice B 601, and shall have the properties shown in Table 2.
- 6.2 When pipe is required for bending, it shall be so specified in the purchase order, and the pipe shall be furnished in the temper agreed upon between the manufacturer or supplier and the purchaser.

#### 7. Expansion Test

7.1 Pipe ordered in the annealed (O) condition, selected for test, shall withstand an expansion of 25% of the outside diameter when expanded in accordance with Test Method B 153. The expanded pipe shall show no cracking or rupture visible to the unaided eye. Pipe ordered in the drawn (H) condition is not subject to this test.

NOTE 1—The term "unaided eye," as used herein, permits the use of corrective spectacles necessary to obtain normal vision.

7.2 As an alternative to the expansion test for pipe over 4 in. (102 mm) in diameter in the annealed condition, a section 4 in. in length shall be cut from the end of one of the lengths for a flattening test. This 4-in. specimen shall be flattened so that a gage set at three times the wall thickness will pass over the pipe freely throughout the flattened part. The pipe so tested shall develop no cracks or flaws visible to the unaided eye (Note 1) as a result of this test. In making the

TABLE 2 Tensile Requirements

Temper Designation		Pipe Size	Tensile	Yield Strength, ^A	
Standard	Former	Nominal or Standard, in.	Strength, min, ksi ^B (MPa) ^C	min, ksi [®] (MPa) [©]	
O61	annealed	ali	30 (294)	9 (88) <i>p</i>	
H80	hard drawn	1/e-2, incl	45 (310)	40 (280)	
H55	light drawn	2-12, incl	36 (250)	30 (210)	

A At 0.5 % extension under load.

flattening test the elements shall be slowly flattened by one stroke of the press.

#### 8. Microscopical Examination

8.1 The pipe shall be made from copper that is free of cuprous oxide as determined by microscopical examination at a 75× magnification. When Copper UNS No. C12200 is supplied, microscopical examination for cuprous oxide is not required.

#### 9. Nondestructive Testing

- 9.1 The material shall be tested in the final size but is permitted to be tested prior to the final anneal or heat treatment, when these thermal treatments are required, unless otherwise agreed upon by the manufacturer or supplier and purchaser.
- 9.2 Eddy-Current Test—Each piece of material from 1/8 in. up to and including 21/2 in. nominal outside diameter, or within the capabilities of the eddy-current tester, shall be subjected to an eddy-current test. Testing shall follow the procedures of Practice E 243, except for determination of "end effect." The material shall be passed through an eddy-current testing unit adjusted to provide information on the suitability of the material for the intended application.
- 9.2.1 Notch-depth standards rounded to the nearest 0.001 in. (0.025 mm) shall be 10 % of the nominal wall thickness. The notch depth tolerance shall be ±0.0005 in. (0.013 mm). Alternatively, when a manufacturer uses speed insensitive equipment that allows the selection of a maximum imbalance signal, a maximum imbalance signal, a maximum imbalance signal of 0.3 % is permitted to be used.
- 9.2.2 Material that does not actuate the signaling device of the eddy-current test shall be considered as conforming to the requirements of this test. Material with discontinuities indicated by the testing unit is permitted to be reexamined or retested, at the option of the manufacturer, to determine whether the discontinuity is cause for rejection. Signals that are found to have been caused by minor mechanical damage, soil or moisture shall not be cause for rejection of the material provided the dimensions of the material are still within prescribed limits and the material is suitable for its intended application.
- 9.3 Hydrostatic Test—When specified, the material shall stand, without showing evidence of leakage, an internal hydrostatic pressure sufficient to subject the material to a fiber stress of 6000 psi (41 MPa), determined by the following equation for thin hollow cylinders under tension. The material need not be tested at a hydrostatic pressure of over 1000 psi (6.9 MPa) unless so specified.

$$P = 2St/(D - 0.8t)$$

B Copper + silver + phosphorus.

^B ksi = 1000 psi.

^c See Appendix X1.

D Light straightening operation is permitted.

TABLE 3 Standard Dimensions, Weights, and Tolerances
Note—All tolerances plus and minus except as otherwise indicated.

Nominal or Standard Pipe Size, in.	Outside Diameter, in. (mm)	Average Outside Diameter Tolerance, ^A in. (mm) All Minus	1 	Wall Thickness, in. (mm)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance, ⁸ in. (mm)	Theoretical Weight, lb/ft (kg/m)
16 14-1-1	· · · · · · · · · · · · · · · · · · ·	Section 201	Reg	gular	1.	<i>y. 11</i>	
1/8	0.405 (10.3)	0.004 (0.10)		0.062 (1.57)		0.004 (0.10)	0.259 (0.385)
1/4	0.540 (13.7)	0.004 (0.10)		0.082 (2.08)		0.005 (0.13)	0.457 (0.680)
3/6	0.675 (17.1)	0,005 (0.13)*	4	0.090 (2.29)		0.005 (0.13)	0.641 (0.954)
1/2	0.840 (21.3)	0.005 (0.13)		0.107 (2.72)		0.006 (0.15)	0.955 (1.42)
3/4	1.050 (26.7)	0.006 (0.15)	*	0.114 (2.90)		0.006 (0.15)	1.30 (1.93)
î	1.315 (33.4)	0.006 (0.15)		0.126 (3.20)	, 4,	0.007 (0.18)	1.82 (2.71)
11/4	1.660 (42.2)	0.006 (0.15)		0.146 (3.71)		0.008 (0.20)	2.69 (4:00)
11/2	1.900 (48.3)	0.006 (0.15)	7 × 54	0.150 (3.81)		0.008 (0.20)	3.20 (4.76)
2	2.375 (60.3)	0.008 (0.20)		0.156 (3.96)		0.009 (0.23)	4.22 (6.28)
21/2	2.875 (73.0)	0.008 (0.20)		0.187 (4.75)	13.4	0.010 (0.25)	6.12 (9.11)
3	3.500 (88.9)	0.010 (0.25)	31	0.219 (5.56)		0.012 (0.30)	8.76 (13.0)
31/2	4.000 (102)	0.010 (0.25)	,	0.250 (6.35)		0.013 (0.33)	11.4 (17.0)
4	4.500 (114)	0.012 (0.30)		0.250 (6.35)		0.014 (0.36)	12.9 (19.2)
5	5.562 (141)	0.014 (0.36)	•	0.250 (6.35)	-5	0,014 (0.36)	16.2 (24.1)
6	6.625 (168)	0.016 (0.41)		0.250 (6.35)		0.014 (0.36)	19.4 (28.9)
8	8.625 (219)	0.020 (0.51)		0.312 (7.92)		0.022 (0.56)	31.6 (47.0)
10	10.750 (273)	0.022 (0.56)		0.365 (9.27)		0.030 (0.76)	46.2 (68.7)
12	12.750 (324)	0.024 (0.61)	7. t	0.375 (9.52)		0.030 (0.76)	56.5 (84.1)
		1	Extra	Strong	·		**
1/8	0.405 (10.3)	0.004 (0.10)		0.100 (2.54)		0.006 (0.15)	0.371 (0.552)
1/4	0.540 (13.7)	0.004 (0.10)		0.123 (3.12)		0.007 (0.18)	0.625 (0.930)
s/a	0.675 (17.1)	0.005 (0.13)	+	0.127 (3.23)		0.007 (0.18)	0.847 (1.26)
1/2	0.840 (21.3)	0.005 (0.13)		0.149 (3.78)	,	0.008 (0.20)	1.25 (1.86)
3/4	1.050 (26.7)	0.006 (0.15)	1.0	0.157 (3.99)		0.009 (0.23)	1.71 (2.54)
1	1.315 (33.4)	0.006 (0.15)		0.182 (4.62)		0.010 (0.25)	2.51 (3.73)
11/4	1.660 (42.2)	0.006 (0.15)		0.194 (4.93)		0.010 (0.25)	3.46 (5.15)
11/2	1.900 (48.3)	0.006 (0.15)		0.203 (5.16)		0.011 (0.28)	4.19 (6.23)
2	2.375 (60.3)	0.008 (0.20)	t s	0.221 (5.61)	4 .	0.012 (0.30)	5.80 (8.63)
21/2	2.875 (73.0)	0.008 (0.20)		0.280 (7.11)		0.015 (0.38)	8,85 (13.2)
3	3.500 (88.9)	0.010 (0.25)		0.304 (7.72)		0.016 (0.41)	11.8 (17.6)
31/2	4.000 (102)	0.010 (0.25)	* **	0.321 (8.15)	"	0.017 (0.43)	14.4 (21.4)
4	4.500 (114)	0.012 (0.30)		0.341 (8.66)		0.018 (0.46)	17.3 (25.7)
5	5,562 (141)	0.014 (0.36)	100	0.375 (9.52)		0.019 (0.48)	23.7 (35.3)
ő	6.625 (168)	0.016 (0.41)	.8	0.437 (11.1)		0.027 (0.69)	32.9 (49.0)
8	8.625 (219)	0.020 (0.51)		0.500 (12.7)		0.035 (0.89)	49.5 (73.7)
10	10.750 (273)	0.022 (0.56)	the order to the	0.500 (12.7)	100	0.040 (1.0)	62.4 (92.9)

A The average outside diameter of a tube is the average of the maximum and minimum outside diameters as determined at any one cross section of the pipe.

B Maximum deviation at any one point.

#### where:

P = hydrostatic pressure, psi (or MPa),

t = wall thickness of the material, in. (or mm),

D = outside diameter of the material in. (or mm), and

S = allowable stress of the material, psi (or MPa).

9.4 Pneumatic Test—When specified, the material shall be subjected to an internal air pressure of 60 psi (415 kPa) minimum for 5 s without showing evidence of leakage. The test method used shall permit easy visual detection of any leakage, such as by having the material under water or by the pressure-differential method. Any evidence of leakage shall be cause for rejection.

# 10. Dimensions and Permissible Variations

10.1 For the purpose of determining conformance with the dimensional requirements prescribed in this specification, any measured value outside the limiting values for any dimensions shall be sufficient cause for rejection.

10.2 Standard Dimensions, Wall Thickness, and Diameter Tolerances—The standard dimensions, wall thickness, and diameter tolerances shall be in accordance with Table 3.

10.3 Length and Length Tolerances—The standard length of copper pipe is 12 ft (3.66 m) with a tolerance of  $\pm \frac{1}{2}$  in. (13 mm).

10.4 Roundness:

10.4.1 For drawn unannealed pipe in straight lengths, the roundness tolerances shall be as follows:

			dness Tolera	
t/d (ratio of			of Outside	
Wall Thickness to			essed to the	
Outside Diameter)		1 0.00	1 in. (0.025	mm))
0.01 to 0.03, incl	V (1)	17	1.5	1.5
Over 0.03 to 0.05, incl		. 1	1.0	is
Over 0.05 to 0.10, incl			0.8	
Over 0.10			0.7	

10.4.2 Compliance with the roundness tolerance shall be determined by taking measurements on the outside diameter only, irrespective of the manner in which the pipe dimensions are specified.

10.4.3 The deviation from roundness is measured as the difference between major and minor diameters as determined at any one cross section of the tube.

10.5 Squareness of Cut—The departure from squareness of the end of any pipe shall not exceed the following:

Outside Diameter, in. (mm)

Tolerance

0.010 in. (0.25 mm)

Up to 3/8 (15.9), incl Over 1/8 (15.9) 0.016 in./in. (0.016 mm/mm) of diameter

#### 11. Workmanship, Finish, and Appearance

11.1 The material shall be free of defects of a nature that interfere with normal commercial applications. It shall be well cleaned and free of dirt.

#### 12. Sampling

12.1 Sampling—The lot size, portion size, and selection of sample pieces shall be as follows:

12.1.1 Lot Size—The lot size shall be as follows:

Pipe Size, in.

Lot Weight, lb (kg)

Up to 11/2, incl Over 11/2 to 4, incl Over 4

5 000 (2270) or fraction thereof 10 000 (4550) or fraction thereof 40 000 (18 100) or fraction thereof

12.1.2 Portion Size—Sample pieces shall be taken for test purposes from each lot according to the following schedule:

Number of Pieces in Lot

Number of Sample Pieces to be Taken⁴

1 to 50 51 to 200 201 to 1500

Over 1500

0.2 % of total number of pieces in the lot, but not to exceed 10 sample pieces

⁴ Each sample piece shall be taken from a separate tube.

#### 13. Number of Tests and Retests

- 13.1 Chemical Analysis—Samples for chemical analysis shall be taken in accordance with Practice E 55. Drillings, millings, etc., shall be taken in approximately equal weight from each of the sample pieces selected in accordance with 12.1.2 and combined into one composite sample. The minimum weight of the composite sample that is to be divided into three equal parts shall be 150 g.
- 13.1.1 Instead of sampling in accordance with Practice E 55, the manufacturer shall have the option of determining conformance to chemical composition as follows: Conformance shall be determined by the manufacturer by analyzing samples taken at the time the castings are poured or samples taken from the semi-finished product. If the manufacturer determines the chemical composition of the material during the course of manufacture, he shall not be required to sample and analyze the finished product. The number of samples taken for determination of chemical composition shall be as follows:
- 13.1.1.1 When samples are taken at the time the castings are poured, at least one sample shall be taken for each group of castings poured simultaneously from the same source of molten metal.
- 13.1.1.2 When samples are taken from the semi-finished product, a sample shall be taken to represent each 10 000 lb (4550 kg) or fraction thereof, except that not more than one sample shall be required per piece.
- 13.1.1.3 Due to the discontinuous nature of the processing of castings into wrought products, it is not practical to identify specific casting analysis with a specific quantity of finished material.
- 13.1.1.4 In the event that heat identification or traceability is required, the purchaser shall specify the details desired.

13.2 Retests:

- 13.2.1 If any test specimen shows defective machining or develops flaws, it shall be discarded and another specimen substituted.
- 13.2.2 If a bend test specimen fails, due to conditions of bending more severe than required by the specification, a retest shall be permitted on a new sample piece or on the remaining portion of the first sample piece.
- 13.2.3 If the results of the test on one of the specimens fail to meet the specified requirements, two additional specimens shall be taken from different sample pieces and tested. The results of the tests on both of these specimens shall meet the specified requirements. Failure of more than one specimen to meet the specified requirements for a particular property shall be cause for rejection of the entire lot.
- 13.2.4 If the chemical analysis fails to conform to the specified limits, analysis shall be made on a new composite sample prepared from additional pieces selected in accordance with 12.1. The results of this retest shall comply with the specified requirements.

#### 14. Test Methods

14.1 The properties enumerated in this specification shall. in case of disagreement, be determined in accordance with the following applicable test methods:

Test	ASTM Designation [⊿]
Chemical analysis	B 170 ^B , E 53, E 62, E 478
Tension	E 8
Expansion (pin test)	B 153
Eddy current	E 243

4 Sec 2.1.

^B Reference to Specification B 170 is to the suggested chemical methods in the annex thereof. When Committee E-1 has tested and published methods for assaying the low level impurities in copper, the Specification B 170 annex will be

- 14.2 Tension test specimens shall be of the full section of the pipe and shall conform to the requirements of the Specimens for Pipe and Tube section, of Test Methods E 8, unless the limitations of the testing machine preclude the use of such a specimen. Test specimens conforming to Type No. 1 of Fig. 13, Tension Test Specimens for Large-Diameter Tubular Products, of Test Methods E 8 is permitted to be used when a full section specimen cannot be tested.
- 14.3 Whenever tension test results are obtained from both full size and machined test specimens and they differ, the results obtained from full size test specimens shall be used to determine conformance to the specification requirements.
- 14.4 Tension test results on material covered by this specification are not seriously affected by variations in speed of testing. A considerable range of testing speed is permissible; however, it is recommended that the rate of stressing to the yield strength not exceed 100 ksi (700 MPa)/min. Above the yield strength it is recommended that the movement per minute of the testing machine head under load not exceed 0.5 in./in. (0.5 mm/mm) of gage length (or distance between grips for full-section specimens).

# 15. Significance of Numerical Limits

15.1 For purposes of determining compliance with the specified limits for requirements of the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E 29.

Property

Rounded Unit for Observed or Calculated Value

Chemical composition

nearest unit in the last right-hand place of figures of the specified limit

Tensile strength Yield strength

nearest ksi (nearest 5 MPa)

#### 16. Inspection

16.1 The manufacturer shall afford the inspector representing the purchaser all reasonable facilities, without charge, to satisfy him that the material is being furnished in accordance with the specified requirements.

#### 17. Rejection and Rehearing

17.1 Material that fails to conform to the requirements of this specification shall be subject to rejection. Rejection is to be reported to the manufacturer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the manufacturer or supplier shall have the option to make claim for a rehearing.

#### 18. Packaging and Package Marking

18.1 The material shall be separated by size, composition,

and temper, and prepared for shipment in such a manner as to ensure acceptance by common carrier for transportation and to afford protection from the normal hazards of transportation.

18.2 Each shipping unit shall be legibly marked with the purchase order number, metal or alloy designation, temper, size, total length or piece count or both, and name of supplier. The specification number shall be shown, when specified.

#### 19. Certification

19.1 When specified on the purchase order the manufacturer shall furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification and has met the requirements. When material is specified to meet the requirements of ASME Boiler and Pressure Vessel Code, the certification requirements are mandatory.

#### 20. Mill Test Report

20.1 When specified on the purchase order, the manufacturer shall furnish to the purchaser a test report showing results of tests required by the specification.

#### 21. Keywords

21.1 copper pipe; extra strong; regular; standard sizes

# SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U. S. Government.

#### S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 Federal Standards: 10

Fed. Std. No. 102 Preservation, Packaging and Packing Levels

Fed. Std. No. 123 Marking for Shipment (Civil Agencies) Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.2 Military Standard:10

MIL-STD-129 Marking for Shipment and Storage

S1.1.3 Military Specification:10

MIL-C-3993 Packaging of Copper and Copper-Base Alloy Mill Products

#### S2. Quality Assurance

S2.1 Responsibility for Inspection:

S2.1.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified. Except as otherwise specified in the contract or purchase order, the manufacturer shall use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the

time the order is placed. The purchaser shall have the right to perform any of the inspections or tests set forth when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

#### S3. Identification Marking

S3.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number and the alloy number shall be used.

#### S4. Preparation for Delivery

S4.1 Preservation, Packaging, Packing:

S4.1.1 Military Agencies—The material shall be separated by size, composition, grade, or class and shall be preserved and packaged, Level A or C, and packed, Level A, B, or C, as specified in the contract or purchase order, in accordance with the requirements of MIL-C-3993.

S4.1.2 *Civil Agencies*—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

S4.2.1 Military Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.2.2 Civil Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

¹⁰ Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, ATTN: NPODS.



#### APPENDIX

#### (Nonmandatory Information)

#### X1. METRIC EQUIVALENTS

X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared (N =  $kg \cdot m/s^2$ ). The derived SI unit for pressure or

of some simple.

(2) The Charles of Real Conference Same and Conference of the C

stress is the newton per square metre (N/m2), which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m² and N/mm².

The second of th

militaria wake gilimba a sama masa iliku na sama na masa iliku na sama na masa iliku na sama na masa iliku na Na masa na kata iliku na kata na masa n

នាក្រស់ស្នែនសាក្រេស ត្រូវបាន ស្គ្រាស់ ប្រែក្រុស ស្គ្រាស់ ប្រុ

STEEL AND A STEEL AND SEE THE CASE PARTICLES FOR THE PARTY FOR THE SECOND SECON

The first section of the section of

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

er selven er 1900 – State Britanis og skrivet for til state for til 1900 – State for til state

A more many states in the contract of the contract of

A company of the comp

en i 1966 en 1960 de en 1900 i 1900 en 1900. POR 1969 en 1960 i 1960 de de gelle Rechard de la companier de la companier de la companier de la companier de POR 1969 en 1960 de la companier d

Commence of the control of the contr

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and If not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA 19428.