E B T 19

US006983370B2

(12) United States Patent

Eaton et al.

(10) Patent No.: US 6,983

US 6,983,370 B2

(45) Date of Patent:

Jan. 3, 2006

(54) SYSTEM FOR PROVIDING CONTINUITY BETWEEN MESSAGING CLIENTS AND METHOD THEREFOR

(75) Inventors: Eric Thomas Eaton, Lake Worth, FL (US); David Jeffery Hayes, Lake Worth, FL (US); Von Alan Mock, Boynton Beach, FL (US)

(73) Assignee: Motorola, Inc., Schaumberg, IL (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 875 days.

(21) Appl. No.: 09/995,338

(22) Filed: Nov. 27, 2001

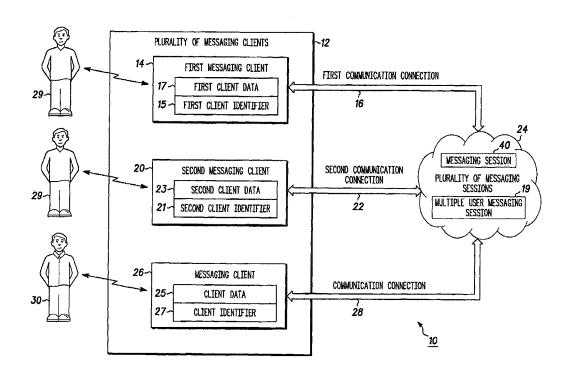
(65) **Prior Publication Data**US 2003/0101343 A1 May 29, 2003

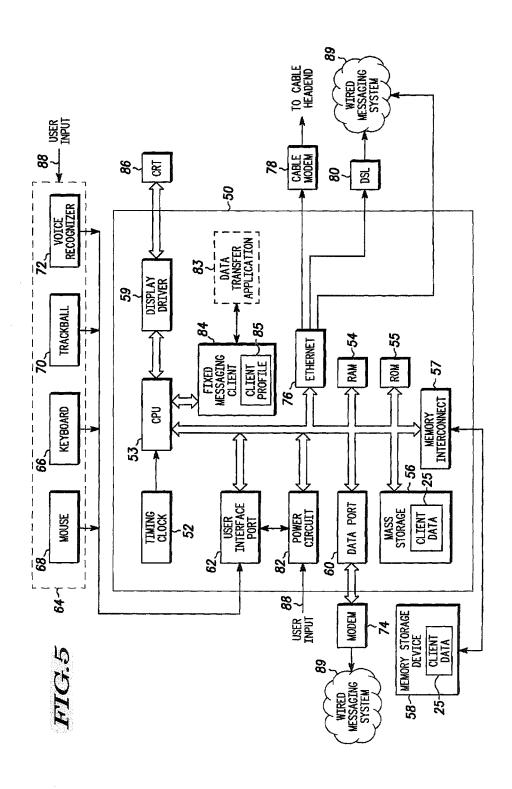
(51) Int. Cl. *G06F 1/26* (2006.01)

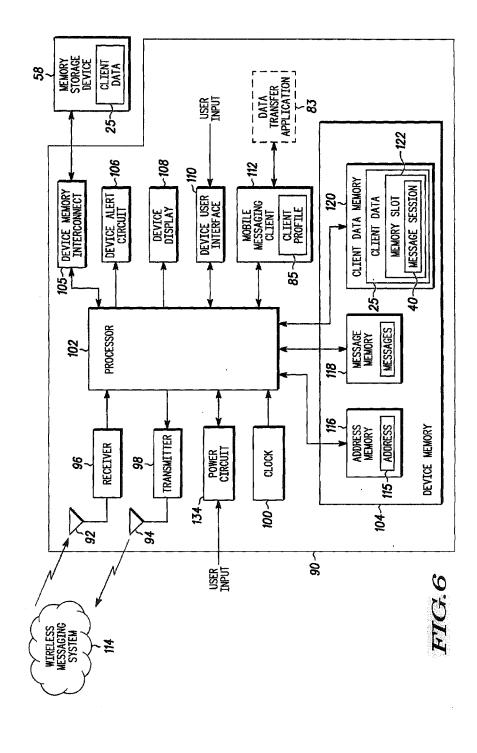
(56) References Cited

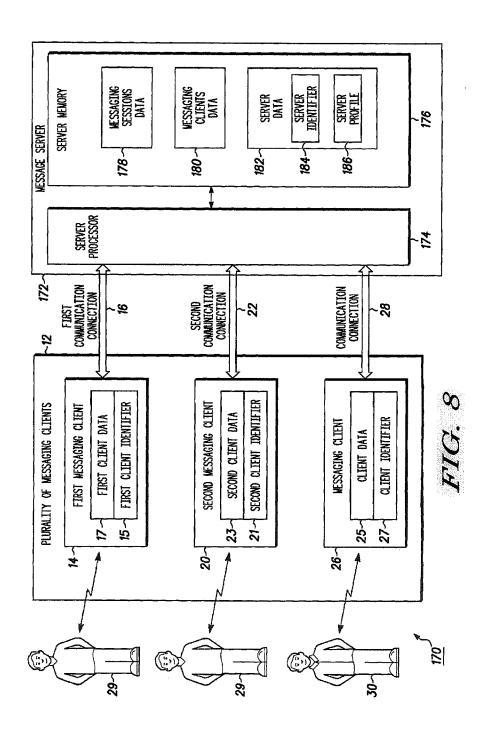
U.S. PATENT DOCUMENTS

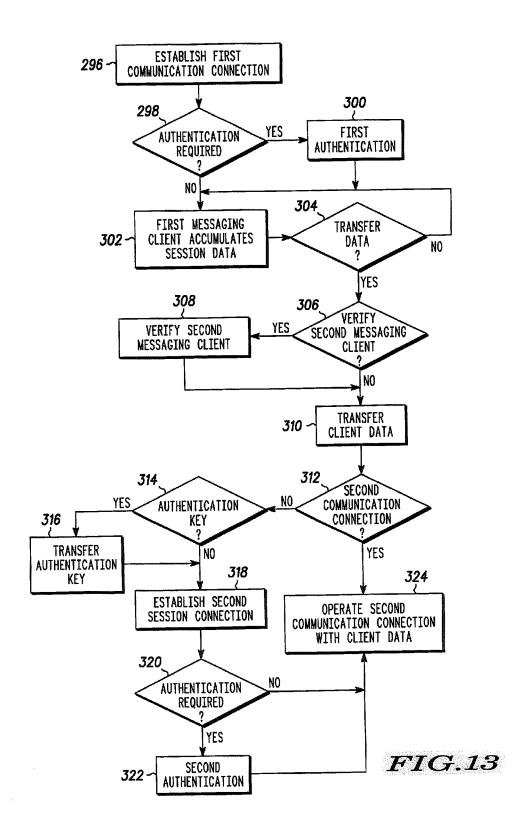
4,811,377 A 5,535,436 A		Krolopp et al. Yoshida et al.
6,038,296 A 6,041,229 A	3/2000 3/2000	Brunson et al.
6,101,531 A *		Eggleston et al 709/206
6,189,098 B1 *	2/2001	Kaliski, Jr 713/168


* cited by examiner


Primary Examiner—Thomas R. Peeso (74) Attorney, Agent, or Firm—Randi L. Karpinia; Sylvia Chen


(57) ABSTRACT


A messaging communication system (10) includes a plurality of messaging clients (12). A first messaging client (14) establishes a first communication connection (16) operating using a plurality of client data (25). The first messaging client (14) transfers the plurality of client data (25) to a second messaging client (20). The second messaging client (20) establishes a second communication connection (22) operating using the plurality of client data (25).


67 Claims, 24 Drawing Sheets

SYSTEM FOR PROVIDING CONTINUITY BETWEEN MESSAGING CLIENTS AND METHOD THEREFOR

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates in general to communication systems and in particular to communication systems incorporating capabilities to provide continuity between messaging 10 clients.

2. Description of the Related Art

With the proliferation of the Internet, the way people communicate is changing. Electronic communication such as electronic mail (email), and real time electronic messag- 15 ing (e.g. instant messaging and chat messaging) is quickly replacing traditional telephonic communication and handwritten letters. Real time electronic messaging allows the simultaneous access to a message or a plurality of messages by multiple account users, with each account user capable of inputting a message or a plurality of messages to a messaging session. Each inputted message is relayed to messaging clients operating on messaging devices (such as computers) of the other account users who have chosen to participate in that messaging session. The other session participants can 25 respond with their own messages, which are likewise relayed to all the participating devices. These messages are typically text messages that are delivered to the intended recipient(s) of the message in a real time manner. However, these messages may be in a variety of different media 30 formats or combinations thereof such as audio, animation, video, images, etc. A session history of the messages received and transmitted by all participants involved in the messaging session is typically maintained on the individual participants' devices and typically presented on the screen of 35 the respective device in the form of a scrolling dialog. This text history constitutes one of the attributes of the look and feel of the real time electronic messaging experience.

There are currently several standard methods available for account users to participate in messaging communications. 40 For example, personal instant messaging typically occurs between two individuals. An individual can establish a private chat room so that multiple users can participate in a common on-line conversation. Participants gain access to the private chat room by accepting an invitation from the 45 creator of the private chat room. Non-restricted public chat rooms are available to anyone interested in the topic being discussed by simply selecting the desired chat room descriptor on the account user's device. In addition to the nonrestricted public chat rooms there are limited access public 50 chat rooms. An example of one such restriction is the limiting of the number of account users allowed to participate in the chat room. Electronic gaming is available to participants who register and login to join at least one other participant in playing one or more games. Communication 55 of participants' "moves" are made through electronic message communications in messaging sessions.

Each messaging session can have various types of session attributes such as session type, session connection info, participants, filter settings, colors, relative font sizes, etc. 60 The account user can also have various types of preferences such as colors, relative font sizes, buddy lists, nicknames, and parental control settings. These are only a few examples of the attributes and preferences that can effect a messaging session.

Several different devices, such as personal computers, interactive broadcast receivers and mobile communication

2

devices, can be utilized to participate in messaging communications. Although these different devices can be utilized to participate in a messaging communication they all do not have the same set of features and capabilities. For example, display size, support for different media types, and cost of sending messages can all be different for different devices. Some messaging service providers maintain the same user preference settings such as screen names, buddy list groups, electronic mailboxes, and parental control settings regardless of which device is used to access the service. By having this capability the service providers are providing continuity of user preferences from device to device, which simplifies the use of multiple devices in the messaging system.

In order to utilize real time electronic messaging, a device is pre-configured with, or the user installs, application client software distributed by a particular service provider. The client software connects to a message server for communication. To access the message server, via a logon procedure, the client sends the routing information (e.g. IP address and number of the port assigned to the client, mobile phone number) of the device being used, the account user's username, the account user's password, and the account user's current availability setting to the message server. The message server temporarily stores the routing and availability information for the account user's device. In response to the account user's login information (username and password), the message server provides the messaging client with the account user's contact list. The message server then determines the presence and availability of the account users in that contact list. If the message server finds any of the contacts logged in (i.e. presence setting is online), it sends a message back to the messaging client on the account user's device with the presence and availability information for that account user. The message server also sends the account user's presence and availability information to the people that have the account user in their contact list. The account user can click on the name of a person in his/her contact list who is online, and a window is created in which the account user can enter a message. The account user enters a message and clicks "send" to communicate with that person. The other person gets the message and can respond. Messages between account users may be addressed directly to the account user's device or may be addressed to the username and sent via the message server.

The window that the session participants see on their respective messaging devices typically includes a scrolling dialog of the session history. Each participant's messages appear in this window on all participating devices. Messages can have different attributes such as message formatting, sender identification, timestamps and others. For example, messages related to a particular electronic game could contain graphics enhancing the "look and feel" of the electronic game for the participants.

When the messaging session is complete, the account users close the message window for that messaging session. When the account user signs off, his/her messaging client sends a message to the message server to terminate the account user's participation in the plurality of messaging sessions. The message server then sends an update of the account user's presence and availability information to the people that have the account user in their contact list to indicate the account user has signed off. Finally, the message server discards the routing and availability information for the account user's device.

Some messaging services support access of a single account from multiple devices. Further, some messaging services also support simultaneous login of devices on the

same account. Still further, some messaging services utilize a resource extension to describe the device that is being utilized to communicate. For example an account user logging in with a mobile device can choose to use "mobile device" as their resource extension while logging into the 5 same account from the home personal computer may utilize a resource extension of "home computer".

When using messaging services that allow access from multiple devices, an account user can log on with a first account users and later log on with a second messaging device. For example, users of mobile devices would typically benefit if a messaging session in progress on a fixed network device could be continued on a mobile device. This would allow the account user to continue the messaging 15 session when the account user is no longer in proximity to the fixed network device. In addition the account user would benefit if a messaging session that was in progress on a mobile device could be continued on a fixed network device that may have a superior user interface.

In order to switch to a different device with existing technology, the account user may have to cause the currently connected device to disconnect from the message server. The account user would then have to cause the second the account user would have to re-initiate each messaging session (one-to-one, public chat, private chat, electronic game) that was in progress on the first device. The disadvantage of this method is the numerous manual operations required of the account user to change devices. A further 30 disadvantage is the lack of messaging session continuity. For example, the second device will not have the session history that was available on the first device, and the second device may not be able to re-connect to chat rooms that restrict the number of active account users since another account user 35 may have connected to the chat room after the account user's first device disconnected.

What is needed is a system and method for maintaining continuity between messaging clients.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described by way of exemplary embodiments, but not limitations, illustrated in the accompanying drawings in which like references denote 45 similar elements, and in which:

FIG. 1 is an electronic block diagram of a messaging communication system, in accordance with the preferred embodiment of the present invention;

FIG. 2 illustrates client data for use within the messaging communication system of FIG. 1, in accordance with the preferred embodiment of the present invention;

FIGS. 3 and 4 illustrate more detail of the client data of present invention;

FIGS. 5, 6, and 7 are electronic block diagrams of various embodiments of a messaging device in which a messaging client of FIG. 1 operates;

FIG. 8 is an electronic block diagram of an alternate 60 embodiment of a messaging communication system, in accordance with the preferred embodiment of the present invention;

FIGS. 9 to 12 are electronic block diagrams of various embodiments of the messaging communication system of 65 FIGS. 1 and 8, in accordance with the preferred embodiment of the present invention;

FIGS. 13 to 18 are flowcharts illustrating the operation of the messaging communication system of FIGS. 1 and 8, in accordance with the preferred embodiment of the present invention;

FIG. 19 illustrates a message for use within the messaging communication system of FIGS. 1 and 8, in accordance with the preferred embodiment of the present invention; and

FIGS. 20 to 24 are signaling flow diagrams illustrating the interaction between the elements of the messaging commumessaging device and engage in conversations with other 10 nication system of FIGS. 1 and 8, in accordance with the preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. device to connect to the message server and login. Finally, 25 Further, the terms and phrases used herein are not intended to be limiting; but rather, to provide an understandable description of the invention.

Referring to FIG. 1, an electronic block diagram of a messaging communication system 10 in accordance with the present invention is shown. As illustrated, the messaging communication system 10 preferably includes a plurality of messaging clients 12 for participation within a plurality of messaging sessions 24. As illustrated, the plurality of messaging sessions 24 can include a messaging session 40 and/or a multiple user messaging session 19. The plurality of messaging sessions 24, for example, can include the communication of a plurality of electronic messages such as chat sessions, instant message sessions, and electronic mail, facilitating substantially real time communication among 40 the plurality of messaging clients 12. Similarly, the plurality of messaging sessions 24 can include communication of gaming messages for one or more gaming sessions (e.g. battleship, checkers, chess, tic tac toe and doom). It will be appreciated by one of ordinary skill in the art that the plurality of messaging sessions 24 can include any of the messaging sessions mentioned herein or an equivalent. Each of the plurality of messaging clients 12 such as a first messaging client 14 and a second messaging client 20 includes client software to interface within the messaging communication system 10. The client software, for example, can include a software application for communication through an Internet service provider. Further, the client software can include a software application for participation in one or more electronic games offered by a gaming FIG. 2, in accordance with the preferred embodiment of the 55 software provider. It will be appreciated by one of ordinary skill in the art that the client software can be any of those mentioned herein or an equivalent. Further, it will be appreciated by one of ordinary skill in the art that in accordance with the present invention, the interface capabilities of the client software can also be designed into client hardware of a messaging client. Each messaging client 26 of the plurality of messaging clients 12 further includes a client identifier 27. For example, the first messaging client 14 includes a first client identifier 15 and the second messaging client 20 includes a second client identifier 21. The client identifier 27 of the messaging client 26 is a unique identification within the messaging communication system 10 for directing mes-

sages to a particular messaging client. For example, the client identifier 27 can be an address of a mobile device or an IP address and number of the port of a fixed network device. To communicate within at least one of the plurality of messaging sessions 24 the messaging client 26 establishes 5 a communication connection 28. For example, the first messaging client 14 establishes a first communication connection 16 for communication within at least one of the plurality of messaging sessions 24. Similarly, the second messaging client 20 establishes a second communication 10 connection 22 for communication within at least one of the plurality of messaging sessions 24. It will be appreciated by one of ordinary skill in the art that the communication connection 28, the first communication connection 16, and the second communication connection 22 can be a physical 15 connection, or alternatively can be a logical connection where the act of connecting and disconnecting is a logical one. Each messaging client 26 of the plurality of messaging clients 12 is operated by at least one account user 30. The account user 30 is an individual who uses one or more 20 messaging clients to communicate with other account users within the plurality of messaging sessions 24. It will be appreciated by one of ordinary skill in the art that the account user 30 can communicate using one or more messaging clients. For example, a first account user 29 can 25 establish communication within the plurality of messaging sessions 24 using the first messaging client 14, and, in accordance with the present invention, also using the second messaging client 20.

Each messaging client 26 preferably includes a plurality 30 of client data 25. The plurality of client data 25 includes data associated with the messaging client 26 and data associated with each messaging session for which the messaging client 26 is currently participating, has participated in, or plans to participate in. The plurality of client data 25 can be divided 35 up into one or more client data portions 18 as illustrated in FIG. 2. The first messaging client 14 includes a first client data 17 and the second messaging client 20 includes a second client data 23. FIG. 2 illustrates the plurality of client data 25 included within the messaging client 26 of FIG. 1. 40 It will be appreciated by one of ordinary skill in the art that the plurality of client data 25 as illustrated in FIG. 2 can be the first client data 17 or the second client data 23. As illustrated, the plurality of client data 25 preferably includes a client version identifier (not shown), an account identifier 45 31, a server identifier 32, an authentication key 33, a plurality of contact data 34, a plurality of user preferences 35, and a plurality of session data 36. It will be appreciated by one of ordinary skill in the art that the plurality of client data 25 can include any of the client data mentioned herein 50 or an equivalent.

The client version identifier is preferably the name and version or other similar indication of the messaging client being used. The account identifier 31 is preferably a user name or other identification of the account user 30 currently 55 using the messaging client 26. In an embodiment of the present invention in which a message server is utilized to manage the plurality of messaging sessions 24, the server identifier 32 identifies the message server. For example, the server identifier 32 can be a wireless address, an IP (internet 60 protocol) address, or an IP address accompanied by a number of the port assigned to the message server. The authentication key 33 preferably includes a code that is used to authenticate the account user 30 to the messaging communication system 10. For example, the authentication key 65 33 could be derived from a password known only to the account user 30 and the messaging communication system

10. The plurality of contact data 34 is a listing of information relating to the various account users in which the account user 30 currently using the messaging client 26 communicates, plans to communicate, or has communicated with in the past. For example, the plurality of contact data 34 can be a "buddy list" for the account user 30. The plurality of contact data 34 preferably includes a plurality of account information 37 for each of a plurality of accounts. For example, the plurality of account information 37 for an Nth account can include an Nth account identifier 38 and further can include an Nth account contact information 39 associated with the Nth account identifier 38. The Nth account contact information 39, for example, can include Nth account user presence, Nth account user availability, Nth account phone number, Nth account mailing address, or Nth account user preferred communication means. It will be appreciated by one of ordinary skill in the art that the Nth account contact information can be any of the contact information mentioned herein or an equivalent. The plurality of account information 37 can further include, for example, billing information, favorite topics, associates, group lists, age, obscenity rating, and optional services. It will be appreciated by one of ordinary skill in the art that the plurality of account information 37 can include any of the information mentioned herein or an equivalent. In one embodiment of the present invention, each of the plurality of messaging clients 12 of FIG. 1 operates using at least one account. Further, each account user can have one or more accounts. For example, the account user 30 can have a business account and a personal account both operated using the messaging client 26.

The plurality of user preferences 35 defines certain attributes settable by the account user 30 for communicating within the plurality of messaging sessions 24 using the messaging client 26. The plurality of user preferences 35, for example, can include text font attributes, filter settings, blocking settings, screen names per account identifier, alert settings per screen name, buddy list groups, electronic mailboxes, electronic voice mail, and parental control settings. It will be appreciated by one of ordinary skill in the art that the plurality of user preferences 35, in accordance with the present invention, can include any of those preferences mentioned herein or an equivalent.

The plurality of session data 36 included within the plurality of client data 25 contains information relating to each of the plurality of messaging sessions 24 for which the account user 30 is currently participating, has previously participated, or plans to participate in, using the messaging client 26. FIG. 3 illustrates a preferred embodiment of the plurality of session data 36 in accordance with the present invention. As illustrated in FIG. 3, for each messaging session 40, the plurality of session data 36 includes a session identifier 41, a session priority 42, a plurality of session preferences 43, a plurality of session participants 44, and a session history 45. It will be appreciated by one of ordinary skill in the art that the plurality of session data 36, in accordance with the present invention, can include any of the session data mentioned herein or an equivalent.

Preferably, the session identifier 41 identifies the messaging session 40 of the plurality of messaging sessions 24. In one embodiment, the messaging session 40 is assigned the session priority 42. The session priority 42 determines or identifies the priority of the messaging session 40 within the plurality of messaging sessions 24 for which the account user 30 is currently participating. The session priority 42 can be set manually by the account user 30 or through a predetermined algorithm in the messaging client 26 taking

directly to the power circuit 82, the user input 88 to the user interface 64, or alternatively automatically via the programming of the CPU 53.

In a preferred embodiment of the present invention, the fixed network device 50 of FIG. 5 includes a fixed messaging client 84. It will be appreciated by one of ordinary skill in the art that the fixed messaging client 84 can be the first messaging client 14, the second messaging client 20, or any other of the plurality of messaging clients 12 of FIG. 1. The fixed network device 50 performs messaging functions 10 within the fixed messaging client 84 using a plurality of messages stored in the electronic memory of the fixed network device 50. The fixed messaging client 84 may be hard coded or programmed into the fixed network device 50 during manufacturing, may be programmed over-the-air 15 upon customer subscription, or may be a downloadable application. It will be appreciated that other programming methods can be utilized for programming the fixed messaging client 84 into the fixed network device 50. It will be further appreciated by one of ordinary skill in the art that the 20 fixed messaging client 84 can be hardware circuitry within the fixed network device 50.

Preferably the fixed messaging client 84 automatically updates a CRT 86 when a new message has been sent or received by sending a command to the display driver 59. 25 This allows the message to be updated while the device user is reading it without disturbing the CRT 86. The fixed messaging client 84 uses the plurality of client data 25 stored in the electronic memory or stored in the memory storage device 58 to perform functions relating to various received 30 and/or sent messages. It will be appreciated by one of ordinary skill in the art that fixed networked devices having software-programming capabilities may include client data that is specialized and personalized such as the plurality of user preferences 35 including display options and screens 35 for each account user, or similarly may include the plurality of session preferences 43 for each messaging session 40. Alternatively, fixed networked devices that do not include software-programming capabilities may include the plurality of client data 25 including the plurality of user prefer- 40 ences 35 that are standard, pre-defined display options and screens for the plurality of messaging sessions 24.

The plurality of user preferences 35 of the plurality of client data 25 used by the fixed messaging client 84 further includes various alert options. In one embodiment, the fixed 45 first antenna 92, a second antenna 94, a receiver 96, a messaging client 84 notifies the CPU 53 to send a command to an alert circuit (not shown) when a new message is received. In another embodiment, the fixed messaging client 84 notifies the CPU 53 to send a command to the alert circuit when an unread message is to be deleted from the memory. 50 Alternatively, no alert may be sent when a new message is received and stored in the memory. It will be appreciated by one of ordinary skill in the art that other alerting schemes are within the scope of the present invention. Further, the CPU 53, in response to the user input 88 to the user interface 64 55 through to the user interface port 62, such as a device user depressing a button or series of buttons, or in response to receipt of a message initiates an input signal to the fixed messaging client 84. The fixed messaging client 84, in response to the input signal, accesses a plurality of messages 60 stored in the electronic memory for use in operation of the fixed messaging client 84.

Preferably, the fixed messaging client 84 includes a client profile 85. The client profile 85 includes information regarding the capabilities and limitations of the fixed messaging client 84 and also of the fixed network device 50. For example, the client profile 85 can include indication of the

media supported by the fixed messaging client 84 (e.g. audio, video), indication of which features are supported by the fixed messaging client 84, device type, device display, device battery life, device battery capacity, device processing power, and access to alternate networks. It will be appreciated by one of ordinary skill in the art that the client profile 85 can include any of those mentioned above in any combination or an equivalent.

In accordance with the present invention, the fixed messaging client 84 includes software capability for transferring all or a portion of the plurality of client data 25 to one or more other messaging clients for use by the other messaging client to participate within one or more of the plurality of messaging sessions 24. The fixed messaging client 84, in accordance with the present invention, further includes software capability for receiving all or a portion of the plurality of client data 25 from at least one other messaging client to participate within one or more of the plurality of messaging sessions 24. As illustrated in FIG. 5, the software capability for transferring and/or the capability for receiving the plurality of client data 25 can be incorporated into the fixed messaging client 84, or alternatively can be contained within a separate data transfer application 83. The data transfer application 83, for example can be a third party software add-on that is compatible with existing messaging software applications (e.g. the fixed messaging client 84) already programmed into the fixed network device 50. Maintaining the data transfer software on a separate data transfer application 83 minimizes incorporation timeframes and also the cost of upgrading the fixed network device 50 to include this feature.

FIG. 6 is an electronic block diagram of one embodiment of a messaging device in which a messaging client of FIG. 1 operates. Specifically, FIG. 6 illustrates a mobile device 90. It will be appreciated by one of ordinary skill in the art that the mobile device 90 in accordance with the present invention, can be a mobile cellular telephone, a mobile radio data terminal, a mobile cellular telephone having an attached data terminal, or a two way pager, such as the "Pagewriter 2000X" manufactured by Motorola Inc. of Schaumburg, Ill. In the following description, the term "mobile device" refers to any of the messaging devices mentioned above or an

As illustrated in FIG. 6, the mobile device 90 includes a transmitter 98, a clock 100, a processor 102, a device memory 104, a device memory interconnect 105, a device alert circuit 106, a device display 108, a device user interface 110 and a mobile messaging client 112.

The first antenna 92 intercepts transmitted signals from a wireless messaging system 114. It will be appreciated by one of ordinary skill in the art that the wireless messaging system 114, in accordance with the present invention, can function utilizing any wireless RF channel, for example, a one or two-way pager channel, a mobile cellular telephone channel, or a mobile radio channel. Similarly, it will be appreciated by one of ordinary skill in the art that the wireless messaging system 114 can function utilizing other types of communication channels such as infrared channels. In the following description, the term "wireless messaging system" refers to any of the wireless messaging systems mentioned above or an equivalent.

The first antenna 92 is coupled to the receiver 96, which employs conventional demodulation techniques for receiving the communication signals transmitted by the wireless messaging system 114. Coupled to the receiver 96, is the processor 102 utilizing conventional signal-processing tech-

12

niques for processing received messages. Preferably, the processor 102 is similar to the MC68328 micro-controller manufactured by Motorola, Inc. of Schaumburg, Ill. It will be appreciated by one of ordinary skill in the art that other similar processors can be utilized for the processor 102, and 5 that additional processors of the same or alternative type can be utilized as required to handle the processing requirements of the processor 102. The processor 102 decodes an address in the demodulated data of the received message, compares the decoded address with one or more addresses 115 stored 10 in an address memory 116 of the device memory 104; and when a match is detected, proceeds to process the remaining portion of the received message.

To perform the necessary functions of the mobile device which preferably includes a random access memory (RAM), a read-only memory (ROM), and an electrically erasable programmable read-only memory (EEPROM)(not shown). The device memory 104 includes the address memory 116, a message memory 118, and a client data memory 120.

Once the processor 102 has processed a received message, it stores the decoded message in the message memory 118 of the device memory 104. It will be appreciated by one of ordinary skill in the art that the message memory 118, in accordance with the present invention, can be a voicemail 25 box or a group of memory locations in a data storage device. In the following description, the term "message memory" refers to any of the memory means mentioned above or an equivalent. Preferably, when the received message is a message for participation in one of the plurality of messag- 30 ing sessions 24, for example the session message 46 of the messaging session 40, the processor 102 stores the decoded message in the client data memory 120.

In one embodiment, the mobile device 90 includes the device memory interconnect 105 for operatively connecting 35 the memory storage device 58 to the mobile device 90. The device memory interconnect 105 can, for example, comprise a structure for physically engaging external contacts on the memory storage device 58 so that the memory storage device 58 is directly connected to the mobile device 90. It 40 will be appreciated by one of ordinary skill in the art that the device memory interconnect 105 can also be a wireless connection such as an infrared, Bluetooth or radio frequency interface. When the device memory interconnect 105 is connected to the memory storage device 58, the mobile 45 device 90 can access a plurality of memory information such as the plurality of client data 25 from the memory storage device 58.

The client data memory 120 includes the plurality of client data 25 as described previously in FIGS. 2 to 4. The 50 client data memory 120 includes a memory slot 122 for each messaging session 40 in which the mobile device 90 has subscribed. The memory slot 122, in accordance with the present invention, includes the plurality of session data 36 as illustrated in FIG. 2. The plurality of session messages 61 55 associated with the messaging session 40 is stored together in chronological order in the memory slot 122 similar to the session history 45 of FIG. 4. The memory slot 122 is allocated a fixed amount of memory for storing associated plurality of session messages 61. The memory slot 122 holds 60 multiple session messages in a single message memory slot. Any session message 46 received for the messaging session 40 along with its associated session message information is appended at the end of the plurality of session messages 61 already in the memory slot 122. If the amount of allocated 65 memory for the memory slot 122 is exceeded, the older session messages are deleted. It will be appreciated by one

of ordinary skill in the art that, in accordance with the present invention, the client data memory 120 and associated operation herein described, in accordance with the present invention, can be included in the fixed network device 50 of FIG. 5, a cable box 136 of FIG. 7 or any other messaging device in which the messaging client 26 operates.

Upon receipt and processing of a message, the processor 102 preferably generates a command signal to the device alert circuit 106 as a notification that the message has been received and stored. The device alert circuit 106 can include a speaker (not shown) with associated speaker drive circuitry capable of playing melodies and other audible alerts, a vibrator (not shown) with associated vibrator drive circuitry capable of producing a physical vibration, or one or 90, the processor 102 is coupled to the device memory 104, 15 more LEDs (not shown) with associated LED drive circuitry capable of producing a visual alert. It will be appreciated by one of ordinary skill in the art that other similar alerting means as well as any combination of the audible, vibratory, and visual alert outputs described can be used for the device 20 alert circuit 106.

> Upon receipt and processing of a message, the processor 102 preferably also generates a command signal to the device display 108 to generate a visual notification of the receipt and storage of the message. When the device display 108 receives the command signal from the processor 102 that the message has been received and stored in the device memory 104, a message indication is displayed. The message indication, for example can be the activation of one of a plurality of message icons on the device display 108. The device display 108 can be, for example, a liquid crystal display utilized to display text. It will be appreciated by one of ordinary skill in the art that other similar displays such as cathode ray tube displays can be utilized for the device display 108.

> The mobile device 90 preferably further includes the clock 100. The clock 100 provides timing for the processor 102. The clock 100 can include the current time for use in the operation of the mobile device 90. The clock 100 also provides a source for timing of feature enhancements such as active and inactive periods of operation or periods of

> In a preferred embodiment, the mobile device 90 includes the mobile messaging client 112. It will be appreciated by one of ordinary skill in the art that the mobile messaging client 112 can be the first messaging client 14, the second messaging client 20, or any other of the plurality of messaging clients 12 of FIG. 1. The mobile messaging client 112 performs messaging functions within the mobile device 90 using the plurality of client data 25 stored in the client data memory 120. The mobile messaging client 112 may be hard coded or programmed into the mobile device 90 during manufacturing, may be programmed over-the-air upon customer subscription, or may be a downloadable application. It will be appreciated that other programming methods can be utilized for programming the mobile messaging client 112 into the mobile device 90. It will be further appreciated by one of ordinary skill in the art that the mobile messaging client 112 can be hardware circuitry within the mobile device 90. Preferably the mobile messaging client 112 automatically updates the device display 108 when a new session message has been sent or received. This allows the session history 45 to be updated while the account user 30 is reading it without disturbing the device display 108. The mobile messaging client 112 uses the plurality of client data 25 stored in the electronic memory or stored in the memory storage device 58 to perform functions relating to various received and/or sent session messages. It will be appreciated

by one of ordinary skill in the art that mobile devices having software-programming capabilities may include specialized and personalized display options and screens for each messaging session 40. Alternatively, mobile devices that do not include software-programming capabilities may include 5 standard, pre-defined display options and screens for the plurality of messaging sessions 24. In accordance with the present invention, the display options for the plurality of messaging sessions 24 in which the messaging client 26 within the mobile device 90 is participating can be included 10 in the plurality of session preferences 43 for each messaging session 40 or alternately, the display options can be stored independently within the plurality of user preferences 35 of the plurality of client data 25

various alert options. In one embodiment, the mobile messaging client 112 notifies the processor 102 to send a command to the device alert circuit 106 when a new session message is added to the memory slot 122 of the client data memory 120 for the messaging session 40. In another 20 embodiment, the mobile messaging client 112 notifies the processor 102 to send a command to the device alert circuit 106 when an unread session message is to be deleted from the memory slot 122. Alternatively, no alert may be sent when a new session message is received and stored in the 25 client data memory 120. It will be appreciated by one of ordinary skill in the art that other alerting schemes are within the scope of the present invention. In accordance with the present invention, the alert options for the plurality of messaging sessions 24 in which the messaging client 26 30 within the mobile device 90 is participating can be included in the plurality of session preferences 43 for each messaging session 40 or alternately, the alert options can be stored independently within the plurality of user preferences 35 of the plurality of client data 25.

In accordance with the present invention, the mobile messaging client 112 includes software capability for transferring all or a portion of the plurality of client data 25 to at least one other messaging client for use by the other messaging client to participate within one or more of the 40 plurality of messaging sessions 24. The mobile messaging client 112, in accordance with the present invention, further includes software capability for receiving all or a portion of the plurality of client data 25 from another messaging client to participate within one or more of the plurality of messaging sessions 24. As illustrated in FIG. 6, the software capability for transferring and receiving client data can be incorporated into the mobile messaging client 112 or alternatively contained within a separate data transfer application 83. The data transfer application 83, for example can be a 50 third party software add-on that is compatible with existing messaging software applications (e.g. the mobile messaging client 112) already programmed into the mobile device 90. Maintaining the data transfer software on a separate data transfer application 83 minimizes incorporation timeframes 55 and also the cost of upgrading a messaging device to include

Preferably, the device user interface 110 is coupled to the processor 102. The device user interface 110 can be one or more buttons used to generate a button press, a series of 60 button presses, a voice response from the device user, or some other similar method of manual response initiated by the device user (such as the account user 30) of the mobile device 90. The processor 102, in response to the device user interface 110, such as a device user depressing a button or 65 series of buttons, or in response to receipt of a session message, initiates an input signal to the mobile messaging

client 112. The mobile messaging client 112, in response to the user input signal, accesses the plurality of session messages 61 stored in the client data memory 120 for use in operation of the mobile messaging client 112.

Preferably, the mobile messaging client 112 includes the client profile 85. The client profile 85 includes information regarding the capabilities and limitations of the mobile messaging client 112 and also of the mobile device 90. For example, the client profile 85 can include indication of the media supported by the mobile messaging client 112 (e.g. audio, video), indication of which features are supported by the mobile messaging client 112, device type, device protocol usage, device display, device battery life, device battery capacity, device processing power, and access to alter-The mobile messaging client 112 further operates using 15 nate networks. It will be appreciated by one of ordinary skill in the art that the client profile 85 can include any of those mentioned above in any combination or an equivalent.

The transmitter 98 is coupled to the processor 102 and is responsive to commands from the processor 102. When the transmitter 98 receives a command from the processor 102, the transmitter 98 sends a signal via the second antenna 94 to the wireless messaging system 114.

In an alternative embodiment (not shown), the mobile device 90 includes one antenna performing the functionality of the first antenna 92 and the second antenna 94. Further, the mobile device 90 alternatively includes a transceiver circuit performing the functionality of the receiver 96 and the transmitter 98. It will be appreciated by one of ordinary skill in the art that other similar electronic block diagrams of the same or alternate type can be utilized for the mobile device 90 to handle the requirements of the mobile device

The mobile device 90 can be changed from an active state to an inactive state or from an inactive state to an active state through a user input to the power circuit 134. The power circuit 134 can be operated manually via the user input to the power circuit 134, the user input to the user interface 110, or alternatively automatically via the programming of the processor 102.

FIG. 7 is an electronic block diagram of one embodiment of a messaging device in which a messaging client of FIG. 1 operates. Specifically, FIG. 7 illustrates an interactive broadcast receiver such as the cable box 136. The cable box 136 preferably allows network operators to deploy a wide range of interactive television broadcast services and applications on their networks. Further the cable box 136 preferably offers cable operators a combined, all-in-one, hardware and software solution for deploying interactive television services on their networks, thereby creating the ability for real time electronic message communication using television sets and networks.

As illustrated in FIG. 7, the cable box 136 preferably includes a controller 138 for controlling the operation of the cable box 136. Preferably, the controller 138 is similar to the MC68328 micro-controller manufactured by Motorola, Inc. of Schaumburg, Ill. It will be appreciated by one of ordinary skill in the art that other similar processors can be utilized for the controller 138, and that additional processors of the same or alternative type can be utilized as required to handle the processing requirements of the controller 138. Preferably, the controller 138 is programmed to function with the cable messaging client 140. The cable messaging client 140, in accordance with the present invention, operates similarly to the fixed messaging client 84 of FIG. 5 and the mobile messaging client 112 of FIG. 6 as described above. It will be appreciated by one of ordinary skill in the art that the cable messaging client 140 illustrated in FIG. 7 can be the first

16

messaging client 14, the second messaging client 20, or any other of the plurality of messaging clients 12 of FIG. 1.

In accordance with the present invention, the cable messaging client 140 includes software capability for transferring all or a portion of the plurality of client data 25 to at 5 least one other messaging client for use by the other messaging client to participate within one or more of the plurality of messaging sessions 24. The cable messaging client 140 further includes software capability for receiving all or a portion of the plurality of client data 25 from another 10 messaging client to participate within one or more of the plurality of messaging sessions 24. As illustrated in FIG. 7, the software capability for transferring and receiving client data can be incorporated into the cable messaging client 140 or alternatively contained within a separate data transfer 15 application 83. The data transfer application 83, for example can be a third party software add-on that is compatible with existing messaging software applications (e.g. the cable messaging client 140) already programmed into the cable box 136. Maintaining the data transfer software on a separate data transfer application 83 minimizes incorporation timeframes and also the cost of upgrading a device to include this feature.

Preferably, the cable messaging client 140 includes the client profile 85. The client profile 85 includes information 25 regarding the capabilities and limitations of the cable messaging client 140 and of the cable box 136. For example, the client profile 85 can include indication of the media supported by the cable messaging client 140 (e.g. audio, video), indication of which features are supported by the cable 30 messaging client 140, device type, device protocol usage, device display, device battery life, device battery capacity, device processing power, and access to alternate networks. It will be appreciated by one of ordinary skill in the art that the client profile 85 can include any of those mentioned 35 above in any combination or an equivalent.

The cable box 136 further includes an up/down converter 142 coupled to the controller 138 for communicating with a cable headend. To perform the necessary functions of the cable box 136, the controller 138 is further coupled to a 40 cable box memory 144, which preferably includes a cable box random access memory (RAM) 146, a cable box readonly memory (ROM) 148, and an electrically erasable programmable read-only memory (EEPROM) (not shown). The cable box memory 144 of the cable box 136 preferably 45 includes the client data memory 120 as previously described and illustrated in FIG. 6.

In one embodiment, the cable box 136 includes a cable box memory interconnect 149 for operatively connecting the memory storage device 58 to the cable box 136. The cable 50 box memory interconnect 149 can, for example, comprise a structure for physically engaging external contacts on the memory storage device 58 so that the memory storage device 58 is directly connected to the cable box 136. It will be appreciated by one of ordinary skill in the art that the 55 cable box memory interconnect 149 can also be a wireless connection such as an infrared, Bluetooth or radio frequency interface. When cable box memory interconnect 149 is connected to the memory storage device 58, the cable box 136 can access a plurality of memory information such as 60 the plurality of client data 25 from the memory storage device 58.

Further coupled to the controller 138 is a first cable box I/O 150 for driving a remote control transceiver 152 and further for driving a radio frequency transceiver 154 connected to a cable box antenna 156. A second cable box I/O 158 for inputs from a user input via a cable box user

interface 160 is further coupled to the controller 138. Also coupled to the controller 138 are an audio driver 162 and a radio frequency/video driver 164 for communicating with a television 166.

The cable box 136 can be changed from an active state to an inactive state or from an inactive state to an active state through a user input to the cable box power circuit 168. The cable box power circuit 168 can be operated manually via the user input to the cable box power circuit 168, the user input to the cable box user interface 160 or alternatively automatically via the programming of the controller 138.

FIG. 8 is an electronic block diagram of an alternate embodiment of a messaging communication system 170 in accordance with the present invention. The messaging communication system 170 includes the plurality of messaging clients 12 and a message server 172.

The message server 172 manages the communication of a plurality of electronic messages among the plurality of messaging clients 12, facilitating substantially real time communication among the plurality of messaging clients 12 within the messaging communication system 170. The message server 172 provides numerous services to manage the plurality of messaging sessions 24. The message server 172 also offers various options to the plurality of session participants 44 to reduce cost or enhance the features of the plurality of messaging sessions 24.

Each messaging client 26 of the plurality of messaging clients 12 such as the first messaging client 14 and the second messaging client 20 includes client software to interface within the messaging communication system 10. It will be appreciated by one of ordinary skill in the art that in accordance with the present invention, the interface capabilities of the client software can also be designed into client hardware of a messaging client. Each mess aging client 26 of the plurality of messaging clients 12 further includes the client identifier 27. For example, the first messaging client 14 includes the first client identifier 15 and the second messaging client 20 includes the second client identifier 21. The client identifier 27 of the messaging client 26 is a unique identification within the messaging communication system 170 for providing individualized messages to be directed to a particular messaging client. For example, the client identifier 27 can be an address of the mobile device 90 or an IP address and number of the port of the fixed network device 50. To communicate within the messaging communication system 170, the messaging client 26 establishes the communication connection 28 via the message server 172. For example, the first messaging client 14 establishes the first communication connection 16 via the message server 172 for communication within at least one of the plurality of messaging sessions 24. Similarly, the second messaging client 20 establishes the second communication connection 22 via the message server 172 for communication within at least one of the plurality of messaging sessions 24. It will be appreciated by one of ordinary skill in the art that the communication connection 28, the first communication connection 16, and the second communication connection 22 can be a physical connection, or alternatively can be a logical connection where the act of connecting and disconnecting is a logical one. Each of the plurality of messaging clients 14 belongs to the account user 30. The account user 30 is an individual who uses one or more of the plurality of messaging clients 12 to communicate with other account users within the plurality of messaging sessions 24. It will be appreciated by one of ordinary skill in the art that the account user 30 can communicate using one or more of the plurality of messaging clients 12. For example, the first account user 29 can establish communication within the plurality of messaging sessions 24 using the first messaging client 14, and, in accordance with the present invention, also using the second messaging client 20.

Each messaging client 26 preferably includes the plurality of client data 25. The plurality of client data 25 includes data associated with the messaging client 26 and data associated with each messaging session for which the messaging client 26 is currently participating, has participated in, or plans to participate in. The first messaging client 14 includes the first client data 17 and the second messaging client 20 includes the second client data 23.

The message server 172 includes a server processor 174 and a server memory 176. The server processor 174 utilizes conventional signal processing techniques for processing 15 received electronic messages. Preferably, the server processor 174 is similar to the MC68328 micro-controller manufactured by Motorola, Inc. of Schaumburg, Ill. It will be appreciated that other similar processors can be utilized for the server processor 174, and that additional processors of 20 the same or alternative type can be added as required to handle the processing requirements of the server processor 174

To perform the necessary functions of the message server 172, the server processor 174 is coupled to the server 25 memory 176, which preferably includes a random access memory (RAM), a read-only memory (ROM), an electrically erasable programmable read-only memory (EE-PROM), and/or a magnetic storage memory (for example a hard drive). The server memory 174 preferably includes a 30 messaging sessions data memory 178, a messaging clients data memory 180, and a server data memory 182. The messaging sessions data memory 178 stores the plurality of session data for all messaging sessions for which the message server 172 is managing. The plurality of session data 35 stored for each messaging session for which the message server 172 is managing is similar to the plurality of session data 36 as illustrated in FIGS. 3 and 4 and described previously. The messaging clients data memory 178 stores the plurality of client data 25 for each of the messaging 40 clients 26 that have established the communication connection 28 with the message server 172. For example, the plurality of client data 25 can include the type of device being utilized by each messaging client 26, the account user 30 utilizing each messaging client 26, the plurality of user 45 preferences 35 for each messaging client 26, and the messaging sessions for which each messaging client 26 is participating. It will be appreciated by one of ordinary skill in the art that the messaging client data memory 178 can store any of the plurality of client data 25 mentioned herein 50 or an equivalent. The server memory 176 further includes the server data memory 182. The server data memory 182 preferably includes a server identifier 184 for the message server 172. The server identifier 184 can be, for example, a unique selective call address in the wireless messaging system 114. Alternatively, the server identifier 184 can be an IP address, or an IP address and associated number of the port assigned to the message server 172 of the wired messaging system 89. It will be appreciated by one of ordinary skill in the art that the server identifier 184 can be 60 one mentioned herein or an equivalent. The server identifier 184 enables the communication between the plurality of messaging clients 12 and the message server 172 using the communication connections such as the communication connection 28, the first communication connection 16, and 65 the second communication connection 22. The server data memory 182 also preferably includes a server profile 186.

The server profile 186 includes information regarding the capabilities of the message server 176. For example, the server profile 186 can include server processing power, server client capability, server messaging session capability, and server access to secondary networks. It will be appreciated by one of ordinary skill in the art that the server profile 186 can include any of those mentioned above in any combination or an equivalent.

FIG. 9 is an electronic block diagram of one embodiment of the messaging communication system 10, 170 of FIGS. 1 and 8 respectively. Specifically, FIG. 9 illustrates an embodiment of the present invention in which the messaging communication system 10, 170 is the wireless messaging system 114 of FIG. 6.

The wireless messaging system 114, as illustrated in FIG. 9 includes a message input device for initiating messages into the wireless messaging system 114. The message input device can be, for example, a telephone 204, a computer 206, a desktop messaging unit 208, or the message server 172 connected through a conventional public switched telephone network (PSTN) 210 through a plurality of telephone links 212 to a wireless system controller 214. The telephone links 212, for example, can be a plurality of twisted wire pairs, a fiber optic cable, or a multiplexed trunk line.

The wireless system controller 214 is coupled to and oversees the operation of at least one radio frequency (RF) transmitter 216 and at least one radio frequency (RF) receiver 218 through one or more communication links 220. The communication links 220 typically are twisted pair telephone wires, and additionally can include radio frequency (RF), microwave, or other communication links. The RF transmitter 216 and the RF receiver 218 typically are used with message store and forward stations that encode and decode inbound and outbound messages into formats that are compatible with landline message switched computers and personal radio addressing requirements, such as cellular messages, short messaging service, or paging protocols. The wireless system controller 214 can also function to encode and decode wireless messages that are transmitted to or received by the RF transmitter 216 or the RF receiver 218. Telephony signals are typically transmitted to and received from the wireless system controller 214 by telephone sets such as the telephone 204 or a mobile device. The wireless system controller 214 encodes and schedules outbound messages such as a downlink message 222. The wireless system controller 214 then transmits the encoded outbound messages through the RF transmitter 216 via a transmit antenna 224 to a plurality of mobile devices 226 such as the mobile device 90 of FIG. 6 on at least one outbound radio frequency (RF) channel 234. The plurality of mobile devices 226, for example, includes a first mobile device 228, a second mobile device 230, and a third mobile device 232 each communicating through a wireless connection such as the outbound RF channel 234 and an inbound RF channel 240. The downlink message 222 can be, for example, a data message or a voice call such as the session message 46. Similarly, the wireless system controller 214 receives and decodes inbound messages such as an uplink message 236 received by the RF receiver 218 via a receive antenna 238 on at least one inbound radio frequency (RF) channel 240 from one of the plurality of mobile devices 226. The uplink message 236 can be, for example, a data message, a reply to a data message, a response message based on at least one data message, a voice call, or a reply to a voice call, such as the session message 46.

Each of the plurality of mobile devices 226 assigned for use in the wireless messaging system 114 has an address or

identity assigned thereto which is a unique selective call address in the wireless messaging system 114. For example, the first mobile device 228 has a first address 242, the second mobile device 230 has a second address 244, and the third mobile device 232 has a third address 246. It will be 5 appreciated by one of ordinary skill in the art that other mobile devices assigned for use in the wireless messaging system 114 have an address assigned thereto which is a unique selective call address in the wireless messaging system 114. The address enables the transmission of the 10 downlink message 222 from the wireless system controller 214 only to the mobile device having the address, and identifies the messages and responses received at the wireless system controller 214 from the mobile device with the address. In one embodiment, each of the plurality of mobile 15 devices 226 also has a pin number assigned thereto, the pin number being associated with a telephone number within the PSTN 210. A list of the assigned addresses and correlated telephone numbers for each of the plurality of mobile devices 226 is stored in the wireless system controller 214 20 in the form of a subscriber database 248.

Preferably, at least one messaging client operates within a mobile device. For example, as illustrated in FIG. 9, the first messaging client 14 operates within the first mobile device 228 and the second messaging client 20 operates 25 within the second mobile device 230. Similarly, a plurality of messaging clients can operate within the same mobile device. For example, a third messaging client 250 and a fourth messaging client 252 operate within the third mobile device 232. It will be appreciated by one of ordinary skill in 30 the art that, in accordance with the present invention, a mobile device can include no messaging client, one messaging client, or a plurality of messaging clients.

In one embodiment of the present invention, the message server 172 is coupled to the wireless system controller 214 35 of the wireless messaging system 114. The message server 172 provides a means for real time electronic message communication with the plurality of mobile devices 226. The message server 172, for example, receives a request and can in response to such receipt, sends a response, both via 40 the wireless system controller 214. The wireless system controller 214 then routes the response to the requesting device which may be a message input device, such as the telephone 204, the computer 206, or the desktop messaging unit 208, or alternatively may be an individual or one of the 45 plurality of mobile devices 226. In the following description, the term requester refers to any of the requesting devices mentioned above or an equivalent.

Preferably, the message server 172 includes a server address 254, which is a unique selective call address in the 50 wireless messaging system 114. The server address 254 enables the transmission, via the inbound RF channel 240, to the message server 172 of various real time electronic communication messages such as conversation service requests, subscription requests, conversation messages, availability settings, and other information. The message server 172 similarly sends real time electronic communication messages such as sending an availability setting or the forwarding of a session message to the plurality of mobile the message server 172 can also have a pin number assigned thereto, the pin number being associated with a telephone number within the PSTN 210. The server address 254 and correlated telephone number is stored in the in the subscriber database 248 of the wireless system controller 214.

The coupling of the message server 172 to the wireless messaging system 114 enhances the operation of the wire-

less messaging system 114 by adding intelligence for multiple mobile devices to communicate in substantially real time. The message server 114 interactively manages the messaging traffic associated with the plurality of messaging sessions 24 in an efficient manner.

FIG. 10 is an electronic block diagram of one embodiment of the messaging communication system 10, 170 of FIGS. 1 and 8 respectively. Specifically, FIG. 10 illustrates an embodiment of the present invention in which the messaging communication system 10, 170 is the wired messaging system 89 of FIG. 5. The wired messaging system 89, for example, can include a LAN 256 (local area network), a WAN 258 (wide area network), or a combination of LAN 256 and WAN 258 networks. It will be appreciated that while only a single LAN 256 and a single WAN 258 are shown, multiple LAN 256 networks and/or WAN 258 networks can be interconnected in a manner well known to one of ordinary skill in the art for the transfer of electronic communication such as electronic mail (email), and real time electronic messaging (i.e.: instant messaging and chat messaging) including the plurality of session messages 61.

The general function and operation of the LAN 256 is one of allowing spatially co-located computers which are typically located within a room, building or campus of buildings to communicate with each other and/or share common resources on a computer network in a manner well known to one of ordinary skill in the art. The spatially co-located computers are represented pictorially in FIG. 10 as a plurality of messaging devices, such as the fixed network device 50 of FIG. 5, three of which are shown by example. (a first network device 260, a second network device 262, and a third network device 264) Each of the plurality of messaging devices communicates using a network connection 265. Preferably, at least one messaging client operates within a network device. For example, as illustrated in FIG. 10, the first messaging client 14 operates within the first network device 260 and the second messaging client 20 operates within the second network device 262. Similarly, a plurality of messaging clients can operate within the same network device. For example, the third messaging client 250 and the fourth messaging client 252 operate within the third network device 264. It will be appreciated by one of ordinary skill in the art that, in accordance with the present invention, a network device can include no messaging client, one messaging client, or a plurality of messaging clients.

Typical resources shared on the LAN 256 through a LAN server 266 are files on a file server, printers on a print server, and electronic message (email) services on an email server. The LAN 256 uses a physical network such as ARCNET, Ethernet, Token-ring, Local Talk or other network media to connect the computers, which represent wired network nodes into the network. The LAN 256 can employ any one of a number of networking protocols, such as TCP/IP (Transmission Control Protocol/Internet Protocol), Apple-Talk™, IPX/SPX (Inter-Packet Exchange/Sequential Packet Exchange), Net BIOS (Network Basic Input Output System) or any other packet structures to enable the communication between E-mail clients and the E-mail server. In the followdevices 226 via the outbound RF channel 234. Furthermore, 60 ing description, the term "local area network" refers to a network utilizing any of the networking protocols mentioned above or an equivalent. The LAN 256 can also use routers (not shown) to subnet the LAN 256 organizationally or physically. In this context, the definition of the LAN 256 as described herein refers to a geographic locality of computers and the type of wired media used to interconnect the computers for communication.

wireless messaging devices, a plurality of wired messaging devices, a plurality of networked devices, or any combination thereof.

FIG. 13 is a flowchart illustrating the operation of the messaging communication system 10,170 in accordance 5 with the present invention. Beginning with Step 296, the first messaging client 14 establishes the first communication connection 16 for communication within at least one of the plurality of messaging sessions 24 within the messaging communication system 10,170. For example, when the first 10 messaging client 14 operates within the fixed network device 50, the first messaging client 14 accesses the appropriate network and notifies the messaging communication system 10,170 of its connection information (i.e.: IP address and number of the port assigned to the first messaging client 15 14). Next, in Step 298, the process determines whether or not an authentication is required. It will be appreciated by one of ordinary skill in the art that an authentication can be required of the first messaging client 14, of the first account user 29 utilizing the first messaging client 14, or of the 20 messaging device in which the first messaging client 14 operates, or an equivalent. In Step 300, when an authentication is required in Step 298, a first authentication is performed. The first authentication of Step 300 checks that the first account user 29 or alternatively the first messaging 25 client 14 is authorized to establish the first communication connection 16 and/or authorized to participate within one or more of the plurality of messaging sessions 24. Next, in Step 302, when the first authentication of Step 300 is completed, and also when the authentication is not required in Step 298, 30 the first messaging client 14 operates using the first communication connection 16 and accumulates the plurality of session data 36 for each messaging session 40 for which the first messaging client 14 is participating. In accordance with the present invention, the plurality of session data 36 can 35 include the session identifier 41, the session priority 42, the session preferences 43, the session participants 44, or the session history 45. It will be appreciated by one of ordinary skill in the art that the plurality of session data 36 can include any of the items mentioned herein or an equivalent. Next, in 40 Step 304, the process determines whether a data transfer is required or requested. A data transfer, in accordance with the present invention, is the capability for a first account user 29 to change communication means within the messaging communication system 10, 170 from the first messaging client 14 45 to the second messaging client 20. For example, when the first account user 29 establishes the first communication connection 16 using the fixed network device 50 and thereafter needs to become mobile, the first account user 29 can transfer the first client data 17 including the plurality of 50 session data 36 accumulated for the first communication connection 16 to the second messaging client 20 which for example can operate on the mobile device 90. When no data transfer is required or requested in Step 304, the first communication connection 16 is maintained in Step 302. 55 whereby the first messaging client 14 continues to accumulate the plurality of session data 36 for each messaging session 40 for which the first messaging client 14 participates. In Step 306, when a data transfer is required or requested in Step 304, the process determines if it is nec- 60 essary to verify the second messaging client 20 prior to transferring the first client data 17 including the plurality of session data 36 to the second messaging client 20. When verification of the second messaging client 20 is required, the second messaging client 20 is verified in step 308. For 65 example, the first messaging client 14 and the second messaging client 20 can both be pre-configured with a

private value and the first messaging client 14 can exchange messages with the second messaging client 20 that verify that the second messaging client 20 has the correct private value. Next, in Step 310, after the second messaging client 20 is verified in Step 308 or when no verification is required in Step 306, the first client data 17 including the plurality of session data 36 is transferred from the first messaging client 14 to the second messaging client 20. It will be appreciated by one of ordinary skill in the art that a portion of the first client data 17 can alternatively be transferred in Step 310. It will further be appreciated by one of ordinary skill in the art that the transfer of the first client data 17 can be accomplished using a direct connection between the first messaging client 14 and the second messaging client 20 or a connection through the message server 172, both either via a network connection, a wireless connection such as through the wireless communication system 114, a Bluetooth connection, or IRDA connection, a wired connection such as through the wired communication system 89, a network connection separate from the wireless communication system, an RS-232 connection or the broadcast messaging system 274, or an equivalent.

Next, in Step 312, the process determines whether or not the second communication connection 22 has already been established. For example, the second messaging client 20 can establish the second communication connection 22 independently from the establishment of the first communication connection 16 by the first messaging client 14. The second messaging client 20 can establish the second communication connection 22 but not yet be participating in a messaging session. Alternatively, the second messaging client 20 can independently be participating in one or more messaging session of the plurality of messaging session 24 which can be the same or different messaging sessions from the ones that the first messaging client 14 is participating. In Step 314, when no second communication connection 22 has been established for the second messaging client 20, the process determines whether or not the authentication key 33 is required. In Step 316, when the authentication key 33 is required in Step 314, the first messaging client 14 transfers the authentication key 33 to the second messaging client 20. It will be appreciated by one of ordinary skill in the art that the second messaging client 20 can include a plurality of authentication keys and that in step 316 the first messaging client 14 can send an indicator of which of the plurality of authentication keys should be used. It will be appreciated by one of ordinary skill in the art that an authentication key can be required of the second messaging client 20, of the first account user 29, or any other account user 30 utilizing the second messaging client 20, or of the particular messaging device in which the second messaging client 20 operates, or an equivalent. It will further be appreciated by one of ordinary skill in the art that the transfer of the authentication key 33 can be accomplished using a direct connection between the first messaging client 14 and the second messaging client 20 or a connection through the message server 172, both either via a network connection, a wireless connection such as through the wireless communication system 114, a Bluetooth connection, or IRDA connection, a wired connection such as through the wired communication system 89, a network connection separate from the wireless communication system, an RS-232 connection or the broadcast messaging system 274, or an equivalent. Next, in Step 318, when no authentication key is required in Step 314 or after the transfer of the authentication key in Step 316, the second communication connection 22 is established. The second messaging client 20 establishes the second commua plurality of response messages. Further, although the interaction of two account users and two messaging clients is illustrated by way of example in FIG. 20, it will be appreciated by one of ordinary skill in the art that the messaging session 40 can include a plurality of messaging clients and an associated plurality of account users. Further, it will be appreciated by one of ordinary skill in the art that the session message 394 can be sent directly from the first messaging client 14 to the messaging client 26; and similarly the response message 398 can be sent directly from the 10 messaging client 26 to the first messaging client 14, without the interface of the message server 170, in accordance with the present invention.

According to the present invention, an account user can the first account user 29 via the first messaging client 14 sends a transfer request signal 402 including at least a portion of the first client data 17 such as the plurality of session data 36 currently contained on the first account user's first messaging client 14 to the message server 172. 20 The transfer request signal 402 preferably also includes a request to the message server 172 to transfer at least a portion of the first client data 17 including the plurality of session data 36 to a new messaging client such as the second messaging client 20. For example, the first messaging client 25 14 can be a fixed personal computer such as the fixed network device 50 in the office of the first account user 29. The first account user 29 has the need to become mobile. The second messaging client 20 can be a cellular telephone such as the mobile device 90. The first account user 29, according 30 to the present invention, can pass the current messaging session from his/her personal computer to his/her cellular telephone with no loss of communication or of session data. Similarly, the transfer request signal 402 can include a request for the message server 172 to pass the plurality of 35 session data 36 for more than one messaging session. In response to receiving the transfer request signal 402, the message server 172 determines whether the second messaging client 20 is currently connected onto the message server 172. (not shown) For example, the message server 172 40 determines whether the second messaging client 20 has established the second communication connection 22. When the second messaging client 20 is not currently connected with the message server 172, the message server 172 stores the plurality of session data 36 and/or the first client data 17 45 if so requested until the second messaging client 20 is connected. (not shown) When the second messaging client 20 is connected to the message server 172, the message server 172 sends the data signal 404 including the plurality of session data 36 and/or any portion of the first client data 50 17 received from the first messaging client 14 within the transfer request signal 404 to the second messaging client 20. The second messaging client 20 stores the plurality of session data 36 and/or the portion of the first client data 17 in memory and displays the session history 45 for access and 55 use by the first account user 29 on the display of the messaging device in which the second messaging client 20 operates. It will be appreciated by one of ordinary skill in the art that the data signal 404 can include the plurality of session data 36 for one messaging session or for a plurality 60 of messaging sessions, or can include the first client data 17 or the client data portion 18 of the first client data 17 for the first messaging client 14. Similarly the messaging device in which the second messaging client 20 operates can store one messaging session or a plurality of messaging sessions, the 65 first client data 17 or the client data portion 18 of the first client data 17 in its memory in response to receiving the data

signal 404. Preferably, in response to receiving the data signal 404, the second messaging client 20 sends an acknowledgement signal 406 to the message server 172. The message server 172 also preferably sends a transfer acknowledgement signal 410 to the first account user's first messaging client 14. The messaging session 40 seamlessly continues between the first account user 29 and the second account user through the second messaging client 20 and the messaging client 26 as illustrated by the plurality of session messages 412 to 422. The messaging session 40 continues seamlessly without the second account user being necessarily aware of the transfer of the first client data from the first account user's first messaging client 14 to his/her second messaging client 20. It will be appreciated by one of choose to initiate a data transfer. As illustrated in FIG. 20, 15 ordinary skill in the art that although only a second account user is shown in FIG. 20 by way of example, the messaging session 40 can continue seamlessly between a plurality of account users and associated plurality of messaging clients.

Preferably, the first messaging client 14 is disconnected from the messaging session 40 upon completion of the data transfer. (not shown) It will be appreciated by one of ordinary skill in the art that the first messaging client 14 can be automatically disconnected from the messaging session 40 or alternatively the first messaging client 14 can be disconnected manually by the first account user 29. Similarly, it will be appreciated by one of ordinary skill in the art the first messaging client 14 can continue to be active in the messaging session 40 along with the second messaging client 20. (not shown)

FIG. 21 is a signaling flow diagram illustrating the interaction between the elements of the messaging communication system 10,170, according to the present invention. Specifically, FIG. 21 illustrates the interaction between the first messaging client 14, the second messaging client 20, the messaging client 26, and the message server 172, according to the present invention. In accordance with the present invention, as illustrated in FIG. 21, a second account user, such as the account user 30, logs onto the messaging client 26 and sends a notification signal 388 to the message server 172. For example, the messaging client 26 establishes the communication connection 28. The notification signal 388 for example, includes the connection information (i.e.: IP address and number of the port assigned to the messaging client) of the messaging client 26. Preferably, the notification signal 388 further includes the second account identifier of the second account user. Similarly, the first account user 29 logs onto the first messaging client 14 and sends a notification signal 386 to the message server 172. For example, the first messaging client 14 establishes the first communication connection 16. The notification signal 386 for example, includes the connection information (i.e.: IP address and number of the port assigned to the messaging client) of the first messaging client 14. Preferably, the notification signal 386 also includes the first account identifier of the first account user 29. It will be appreciated by one of ordinary skill in the art that alternatively, the notification signals 386 and 388 can be sent directly to one or more of the plurality of messaging clients 12. In response to receiving the notification signal 386 from the messaging client 26, and receiving the notification signal 388 from the first messaging client 14, the message server 172 sends a client availability signal 390 to the messaging client 26. The client availability signal 390 informs the second account user via the messaging client 26 that the first account user 29 is available for real time electronic communications such as participation in one or more messaging sessions. Similarly, in response to receiving the notification signal 386 from the

EXXIII

20

US005784001A

United States Patent [19]

Deluca et al.

[11] Patent Number:

5,784,001

[45] Date of Patent:

Jul. 21, 1998

[54]	METHOD AND APPARATUS FOR
	PRESENTING GRAPHIC MESSAGES IN A
	DATA COMMUNICATION RECEIVER

- [75] Inventors: Joan Deluca, Boca Raton; Douglas Kraul, Parkland; Charles Edward Batey, Jr., Lake Worth, all of Fla.
- [73] Assignee: Motorola, Inc., Schaumburg, Ill.
- [21] Appl. No.: 898,640
- [22] Filed: Jul. 21, 1997

Related U.S. Application Data

[63] Continuation doned.	ation of Se	: No. 5	60,604,	Nov.	20,	1995,	aban-
--------------------------	-------------	---------	---------	------	-----	-------	-------

[51]	Int. Cl. ⁶	G08B 5/22
[52]	U.S. Cl	340/825.44; 345/133
[58]	Field of Search	340/825.44; 345/133
		0.444400

[56] References Cited

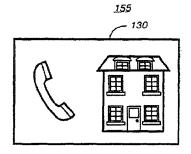
U.S. PATENT DOCUMENTS

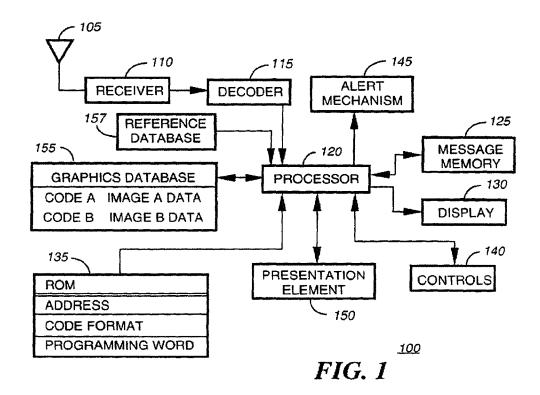
4,330,780	5/1982	Masaki 340/825.44
4,336,524	6/1982	Levine 340/825.44
4,429,306	1/1984	Macauley et al 345/195
4,704,608	11/1987	Sato et al 340/825.44
4,713,808	12/1987	Gaskill et al 340/825.44
4,860,005	8/1989	De Luca et al 340/825.44
4,870,402	9/1989	Deluca et al 340/825.44
4,951,039	8/1990	Schwendeman 340/825.44

5,157,391	10/1992	Weitzen	340/825.44
5,182,553	1/1993	Kung	340/825.44
5,212,721	5/1993	Deluca et al	379/57
5,223,831	6/1993	Kung et al	340/825.44
5,257,307	10/1993	Ise	340/825.44
5,347,269	9/1994	Vanden Heuvel et al	340/825.44
5,452,356	9/1995	Albert	340/825.44
5,512,916	4/1996	Merchant et al	340/825.44
5,561,702	10/1996	Lipp et al	340/825.44
5,574,439	11/1996	Miyashita	340/825.44

FOREIGN PATENT DOCUMENTS

0 393 794 A1	4/1990	European Pat. Off G08B 5/22
55-34710 (A)	3/1980	Japan .
2 197 103	5/1988	United Kingdom H04B 5/04
2 206 718	1/1989	United Kingdom H04B 5/04
9103885	3/1991	WIPO 455/154

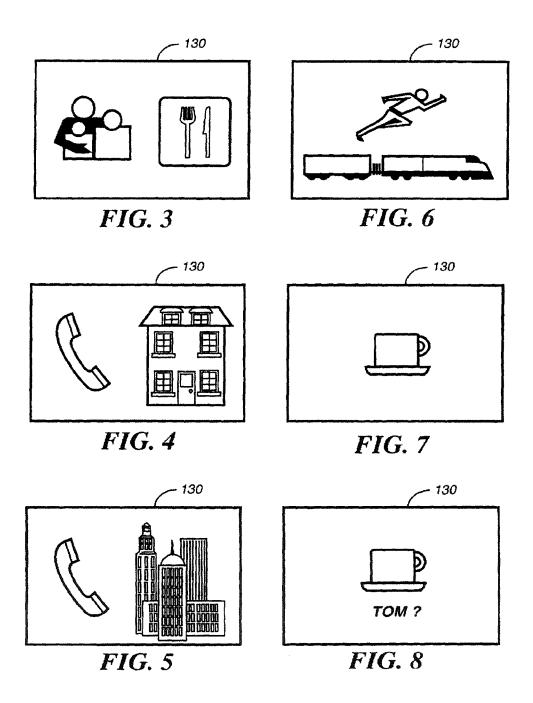

Primary Examiner—Brian Zimmerman Assistant Examiner—Edward Merz

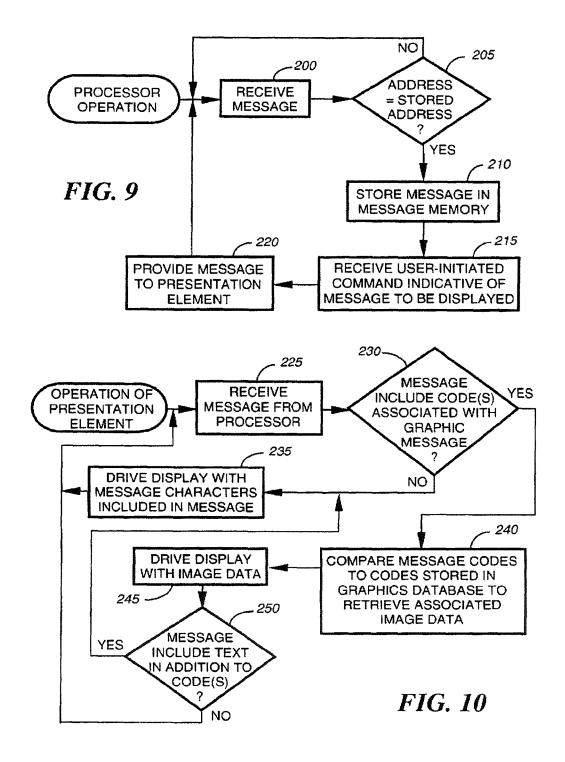

[7] ABSTRACT

A data communication receiver (100) includes a receiver (110) for receiving a message including at least one code, a database (155) for storing codes and image data associated with the codes, and a presentation element (150) for locating the at least one code in the database (155). The presentation element (150) then retrieves the image data associated with the at least one code is representative of at least one image. The data communication receiver (100) also includes a display (130) coupled to the presentation element (150) for presenting the at least one image as a graphic message.

6 Claims, 8 Drawing Sheets

CODE	IMAGE
#01	TELEPHONE
#02	HOUSE
#03	OFFICE
#04	FAMILY
#05	TRAIN
#06	PERSON RUNNING
#07	COFFEE MUG
#08	CLOCK FOLLOWED BY TIME
#09	FOOD PLATTER





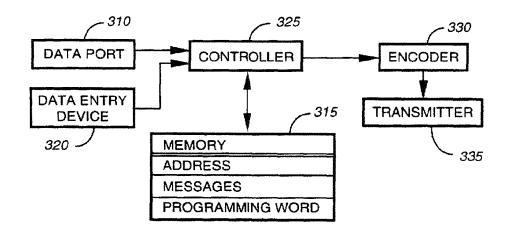

CODE	IMAGE
#01	TELEPHONE
#02	HOUSE
#03	OFFICE
#04	FAMILY
#05	TRAIN
#06	PERSON RUNNING
#07	COFFEE MUG
#08	CLOCK FOLLOWED BY TIME
#09	FOOD PLATTER

FIG. 2

<u>155</u>

Jul. 21, 1998

FIG. 11

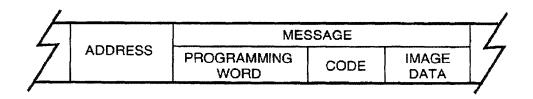


FIG. 12

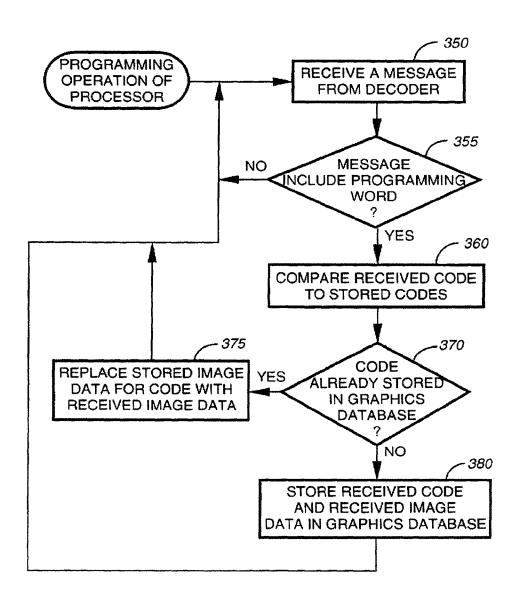


FIG. 13

KEY WORD	IMAGE
CALL, PHONE	TELEPHONE
COFFEE, DRINK	COFFEE MUG
LUNCH, DINNER	PLATTER
SEND, MAIL	ENVELOPE
L	1

Jul. 21, 1998

<u>500</u> FIG. 14

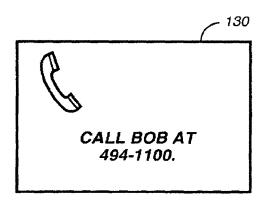


FIG. 15

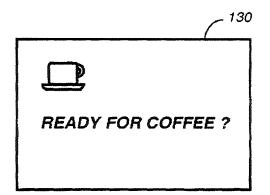


FIG. 16

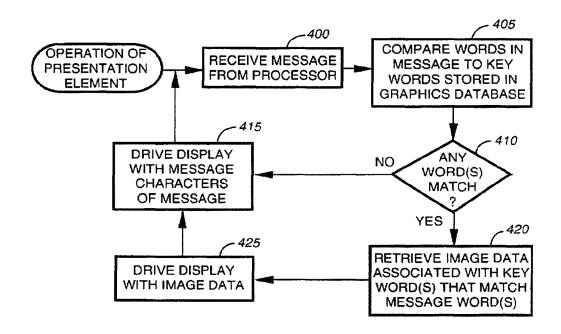
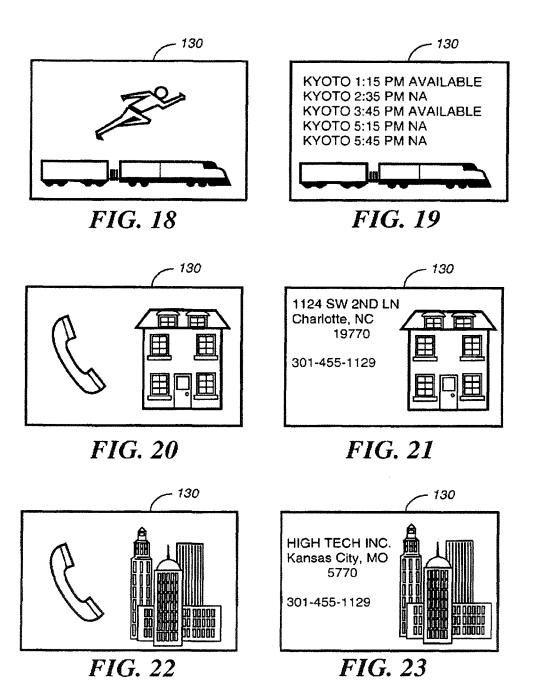



FIG. 17

Jul. 21, 1998

METHOD AND APPARATUS FOR PRESENTING GRAPHIC MESSAGES IN A DATA COMMUNICATION RECEIVER

This is a continuation of application Scr. No. 08/560,604. 5 filed Nov. 20, 1995 now abandoned.

FIELD OF THE INVENTION

This invention relates in general to data communication receivers having displays, and more specifically to data 10 receiver of FIG. 1 in accordance with the present invention. communication receivers that can display images.

BACKGROUND OF THE INVENTION

Selective call messages are generally originated by a person who wishes to contact the user of a data communi- 15 cation receiver. A message is usually provided to a paging terminal, then transmitted as a radio signal to the receiver. Once the data communication receiver has decoded and stored a message message reception is announced to the user by, for example, an alert such as an audible tone or 20 predetermined icon. For instance, some prior art devices include a standby display that presents a single, triangular icon for each stored message such that the user can determine the number of messages stored in the receiver. Data communication receivers employ predetermined icons to 25 provide other information. e.g., low battery or out-of-range status, as well.

However, text, rather than icons, is conventionally utilized to present the actual content of received messages to a user of a data communication receiver. Data communication 30 receivers that receive alphanumeric messages and the systems in which they are registered therefore usually are language-specific. As a result, a user who speaks a particular language is unable to understand received messages if he different language.

Thus, what is needed is a method and apparatus for providing selective call messages that are not languagespecific.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an electrical block diagram of a data communication receiver for presenting information in accordance with the present invention.

FIG. 2 is an example of codes and image data stored in a graphics database included in the data communication receiver of FIG. 1 in accordance with the present invention.

FIGS. 3-8 are illustrations depicting the presentation of graphic messages on a display of the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 9 is a flowchart depicting an operation of a processor included in the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 10 is a flowchart depicting an operation of a presentation element included in the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 11 is an electrical block diagram of a terminal for providing information to the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 12 is a signal diagram depicting an example of a programming message transmitted by the terminal of FIG. 11 to the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 13 is a flowchart depicting a programming operation 65 of the processor of the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 14 is an example of key words and image data stored in the graphics database in accordance with the present

FIGS. 15 and 16 are illustrations of supplemental graphic messages provided with text on the display of the data communication receiver of FIG. 1 in accordance with the

FIG. 17 is a flowchart depicting another operation of the presentation element included in the data communication

FIGS. 18-23 are illustrations further depicting the presentation of graphic messages on a display of the data communication receiver of FIG. 1 in accordance with the present invention.

DESCRIPTION OF A PREFERRED EMBODIMENT

FIG. 1 is an electrical block diagram of a data communication receiver 100, such as a pager, that includes an antenna 105 for receiving a radio signal and a receiver 110 for demodulating the radio signal. A decoder 115 coupled to the receiver 110 recovers information, such as selective call messages and addresses, included in the demodulated signal. The data communication receiver 100 further includes a processor 120 for processing the recovered information and for determining whether an address in the signal is equivalent to a pager address preferably stored in a memory, such as a read only memory (ROM) 135. A matching address indicates that the message is intended for reception by the data communication receiver 100. The ROM 135 preferably also stores a code format and a programming word, as will be discussed in greater detail below. A message memory 125 is further included in the data communication receiver 100 for storing the received messages intended for reception by roams into a system in which messages are transmitted in a 35 the data communication receiver 100. Controls 140 are coupled to the processor 120 for inputting user-initiated commands. such as a display command, and a display 130. such as a liquid crystal display, is coupled to the processor 120 for presenting information to the user. An alert mecha-40 nism 145 announces reception of a message to the user by generating an audible, vibratory, or visual alert.

According to the present invention, a presentation element 150 processes each received message to determine whether the message is to be presented graphically, i.e., whether the message comprises a "graphics message." the meaning of which is conveyed pictorially. Preferably, the data communication receiver 100 is able to receive both conventional alphanumeric messages and graphics messages, which are indicated by predetermined codes 50 included in received messages.

By way of example, predetermined characters commonly found on conventional telephone receivers can be used to designate selected codes representative of predetermined graphic images. A message originator can therefore press the buttons associated with the codes to provide graphics information to a selective call terminal, which transmits the codes as a radio signal. When at least one predetermined code is recognized by the data communication receiver 100, a graphics message comprising one or more graphic images is presented to the user of the receiver 100. According to the present invention, the graphic message conveys, in pictures, a universally understood meaning to the user of the data communication receiver 100. The presentation element 150 is preferably implemented in firmware stored in the ROM 135. However, hardware capable of performing equivalent operations can alternatively be used to implement the presentation element 150.

1

The graphic images available for presenting graphic messages are preferably stored by the data communication receiver 100 in, for example, a graphics database 155. According to the present invention, the graphics database 155 stores a predetermined list of codes, i.e., one or more predetermined characters or a pattern of bits. Each code is associated with image data stored in the database 155. The codes and image data associated therewith can be programmed into the receiver 110 by means such as the controls 140, downloading through a data port (not shown), or over-the-air programming through use of the stored programming word. Therefore, additional codes and image data can be conveniently added to the graphics database 155 as the need for new graphic images arises. Other information to be displayed can be stored in a reference database 157 with cross-references to numeric information. as will be explained in greater detail below.

FIG. 2 is an example of entries in the graphics database 155. As shown, codes recognized by the receiver 100 as indicative of graphic messages begin with the "#" character, which is followed by two numeric characters. In this format, up to one-hundred codes, each associated with image data, could be programmed into the database 155. It will be appreciated, though, that any combination of any number of characters could be utilized to designate graphic messages, as long as the message originator is aware of the codes and the data communication receiver 100 can recognize the codes.

As shown, each code is associated with image data representative of a particular image. For example, code 30 "#01" is associated with image data that represents the image of a telephone. "#02" is associated with a house, while "#03" is associated with an office. According to the present invention, reception of a display command for a received message including any of the stored codes will 35 result in the presentation of the associated image or images on the display 130.

Referring next to FIGS. 3-8. illustrations of different graphic messages on the display 130 are shown. FIG. 3, for instance, illustrates the presentation of the graphic message 40 "DINNER WITH FAMILY" in response to reception of the codes "#09#04." FIGS. 4 and 5 depict graphic messages indicating that the user should "CALL HOME" and "CALL THE OFFICE." respectively. In FIG. 5, reception of a display command for a message comprising the codes "#06#05" results in display of a graphic message that indicates "I AM GOING TO THE TRAIN." The graphic message of FIG. 7, associated with the code "#07." is understood to mean "LET'S GET COFFEE" OR "LET'S GET A DRINK."

FIG. 8 illustrates the combination of both a graphic message and a text message including, for example, alphanumeric characters. Reception of a display command for a message comprising the characters of "#07TOM?" or "TOM?#07" results in the presentation of the image asso- 55 ciated with the code "#07" as well as the presentation of any additional alphanumeric or numeric characters included in the message. As a result, graphic messages which need clarification can conveniently be supplemented by additional textual information presented substantially coincident with the graphic messages. For example, the user of a data communication receiver 100 may usually take a coffee break with his friend Bob. So, the display of a coffee mug with nothing more might indicate to the user that Bob is ready for coffee. When Tom wants to get coffee, he may therefore 65 need to include additional information, such as his name, to avoid confusion.

There may be circumstances, however, in which the receiver 100 is capable of receiving only numeric information or the message originator can only send numeric information. In such a case, the originator, e.g., Tom, can send a code as well as his telephone number. The message could then comprise "#073331111" or "3331111#07." The codes, as mentioned, are preferably in one or more predetermined formats recognized by the receiver 100, so the receiver 100 will still recognize "#07" as the code indicative of the coffee mug. Additionally, the receiver 100 can then look up the remainder of the message in the reference database 157 to determine which other display information should be displayed along with the coffee mug icon. When "3331111" is located in the reference database 157, the display information corresponding thereto is displayed with the coffee mug. For example, display information associated with the telephone number "3331111" could result in presentation of the name "TOM" with the coffee mug image. When the number is not found in the reference database 157. the number itself is preferably displayed with the coffee mug icon. In this manner, alphanumeric information can be displayed or conveyed (through the displayed telephone number) even though only numeric information is sent and

FIG. 9 is a flowchart of an operation of the processor 120. At step 200, the processor 120 receives a message. When, at step 205, the received address is equivalent to the receiver address stored in the ROM 135 (FIG. 1), the message is stored, at step 210, in the message memory 125. When, at step 215, a user-initiated display command is received for the message, the message is provided to the presentation element 150, at step 220.

Referring next to FIG. 10, an operation of the presentation element 150 in accordance with the present invention is depicted. When, at step 225, a message is received from the processor 120, the presentation element 150 determines, at step 230, whether the message includes at least one code associated with a graphic message. As mentioned, the codes associated with graphic messages are preferably in a predetermined format, such as a predetermined character, e.g., "#", followed by specific number of numerals. Therefore. the presentation element 150 can recognize a code associated with a graphic message by determining, with reference to the code format stored in the ROM 135, whether any characters included in the message are arranged in the predetermined code format. When the message does not include a code associated with a graphic message, the message is displayed, at step 235, in a conventional manner. In other words, the display 130 (FIG. 1) is driven with signals to generate the message characters on the display

When, on the other hand, the message does include one or more codes associated with a graphic message, the presentation element 150 compares, at step 240, each code included in the message to the entries in the graphics database 155 (FIG. 1). When a code in the message is determined to be equivalent to a code in the database 155, the image data associated with the matching code is retrieved and used, at step 245, to drive the display 130, thereby presenting the image to the user. When, at step 250, the message includes text in addition to the graphic message code or codes, the additional text is also presented, at step 235.

In accordance with the present invention, the data communication receiver 100 can present the content of received messages to a user by displaying a graphic image or a sequence of graphic images. The graphic images can fully replace a text message so that a universally understood message is presented pictorially to a user. As a result, a user of the receiver 100 can understand a presented message regardless of his language. The presentation of a telephone image and an office image, for example, is likely to be understood as "CALL THE OFFICE" regardless of the language of the user. In this manner, a sequence of two or more graphic images can be easily combined to convey messages to any user. An advantage of the present invention, therefore, is that a person who roams into a geographic region in which a different language is spoken can still receive messages that are easily understood. Also, persons who speak one language can advantageously receive and understand messages that are originated by speakers of different languages.

FIG. 11 is an electrical block diagram of a terminal 305 included in a communication system for transmitting information to the data communication receiver 100. The terminal 305 preferably includes a data port 310, such as a telephone interface, for receiving messages from message originators and a memory 315 for storing the messages until transmission. The memory 315 also stores addresses associated with data communication receivers, including the data communication receiver 100, that receive messages within the communication system and, when over-the-air programming of data communication receivers is desired, a programming word indicative of programming information. A data entry device 320, such as a keyboard, data port, or modern, provides user inputs so that an operator can update the addresses of the data communication receivers, add subscribers, or program data communication receivers.

A controller 325 coupled to the data port 310, the data entry device 320, and the memory 315 controls the operation of the terminal 305. The terminal 305 further comprises an encoder 330 for encoding messages and addresses using a communication protocol such as the conventional FLEXTM protocol and a transmitter 335 for transmitting the encoded information as a radio signal.

According to the present invention, the codes and the images used by the data communication receiver 100 in 40 forming graphic messages can be programmed to update images or to provide additional images. Programming can be accomplished by direct entry of information by the controls 140 (FIG. 1) of the data communication receiver 100, by over-the-air programming, or by any other means for 45 providing information to the data communication receiver 100.

FIG. 12 is a signal diagram of a radio signal which can be transmitted by the terminal 305 to the data communication receiver 100 for programming new or enhanced images. As 50 shown, the radio signal comprises the address of data communication receiver 100 followed by a programming message, which includes the predetermined programming word stored both by the terminal 305 and the data communication receiver 100. The programming word, which indicates to the data communication receiver 100 that the information appended to the word is to be utilized for programming the graphic database 155, preferably includes a predetermined character or sequence of characters. The message also includes a code, either existing or new, fol- 60 lowed by image data to be written into the graphics database 155. Therefore, as graphics technology results in higher resolution graphics that are more easily understood, new image data can be provided to the data communication receiver 100.

FIG. 13 is a flowchart depicting a programming operation of the processor 120 (FIG. 1) according to the present

invention. When, at step 350, a message is received by the processor 120 from the decoder 115, the processor 120 determines, at step 355, whether the message includes the programming word indicative of over-the-air programming. When the programming word is located, the received code is compared, at step 360, with codes stored in the graphics database 155. When, at step 370, the received code already exists in the database 155, the received image data overwrites the image data already stored in the graphics database 155, at step 375. When the received code is not found in the graphics database 155, the processor 120 stores, at step 380, both the received code and the received image data in the database 155. Although over-the-air programming is not the exclusive method for programming the data communication receiver 100, such a method provides for convenient dissemination of programming information without requiring that each user bring his or her data communication receiver into a service center for individual reprogramming.

FIG. 14 is an example of entries in a graphics database 500 in accordance with an alternate embodiment of the present invention. According to the alternate embodiment of the present invention, the data communication receiver 100 recognizes key words in conventional messages then, when the messages are displayed, images associated with the key words are displayed as well to supplement the message. For example, key words such as "CALL" and "PHONE" can be associated with the image of a telephone. Therefore, when a message includes the words "CALL" or "PHONE", the message would be displayed as text along with a supple-30 mental image of a telephone, as shown in the illustration of FIG. 15. FIG. 16 illustrates the display of the text message "READY FOR COFFEE?" along with a supplemental image of a coffee mug. According to the alternate embodiment of the present invention, the presence of the key word "COFFEE" in the received message triggers the display of the coffee mug image.

Referring next to FIG. 17, a flowchart depicts an operation of the presentation element 150 according to the alternate embodiment of the present invention. At step 400, the presentation element 150 receives a message from the processor 120 and then, at step 405, compares the words of the message with the key words stored in the graphics database 500. When, at step 410, no words match, the message is displayed, at step 415, in a conventional manner. When one or more message words are equivalent to key words in the graphics database 500, the image data associated with the key word or words is retrieved, at step 420, from the database 500. Thereafter, at steps 415, 425, the display 130 is driven to display both the message text and the supplemental image.

According to an alternate embodiment of the present invention, the graphics database 155 (FIG. 1) additionally stores database information about the different graphic images that can be displayed. This information augments universally-understood graphic messages and can be accessed via selection of a displayed image by the user. For example, the user could select a displayed image by touchpad technology, i.e., by touching the image on the display 130, or by operating controls 140 to move a cursor to highlight a displayed image. Examples of information that can be displayed are shown in FIGS. 18–23.

In FIG. 18. the "person running" icon and the "train" icon are displayed to indicate that a particular person is traveling by train or to a train. When the user selects the train icon. 5 such as by touch, database information associated with the train icon is retrieved from the graphics database 155 and provided to the display 130. Referring to FIG. 19. such

information could, for example, comprise information such as a train schedule. When the receiver 100 (FIG. 1) comprises a clock (not shown), the schedule could be displayed only for future times so that space on the display 130 is not wasted by presenting past information that may be only of 5 minimal use to the person reading the display 130. FIG. 20 depicts the display of the graphic message "CALL HOME," which is conveyed by universally-understood images of a telephone and a house. FIG. 21 shows an example of information that can be displayed when the house icon is selected by the user. When the user touches the house, database information such as the address of the house and the telephone number can be retrieved from the graphics database 155 and displayed to remind the user of important information.

FIGS. 22 and 23 show the use of other information in addition to that provided by the graphic message. In FIG. 22, the graphic message "CALL THE OFFICE" or "CALL WORK" is presented solely by graphic images. When the user touches the office, or otherwise selects the office image, 20 information about the office is presented. Such information can include, for example, the address and telephone number associated with the office.

Preferably, stored information, such as that in the graphics database 155, can be programmed into the data communication receiver 100 in a number of ways. For example, information could be entered via the controls 140 or via a data port (not shown) coupled to the processor 120. Alternatively, programming information could be provided to the data communication receiver 100 over the air for reception by the receiver 110. When information is programmed over the air, the user need not suffer the inconvenience of having to take the data communication receiver 100 into a service shop. Instead, information can be frequently updated without ever disturbing the user.

In summary, the data communication receiver as described above receives messages then, in response to predetermined information included in the received messages, displays graphic messages to the user to convey an easily understood, universal message. According to the present invention, this can be done by transmitting predetermined codes to the data communication receiver. Codes in a received message are looked up in a graphics memory to retrieve image data associated with the codes, then an 45 image or a sequence of images is advantageously presented on a display to convey a universally understood message. For example, two images, e.g., a telephone and a house, can be displayed together on the screen to convey the message "CALL HOME." This message will be understood regardless of the language spoken by the user of the data communication receiver. Alternatively, if a text message is desired, the text message can be displayed along with a supplemental image that reinforces the message.

Also, other important information associated with the 55 images forming the graphic messages can be conveniently stored and selectively presented to the user. This additional information could comprise, for example, train schedules associated with a train image, a description of a cafeteria menu associated with a food platter image, an address associated with an office image, etc. The user can easily access this information by selecting the icon, such as by touching the screen or highlighting the icon with a cursor.

It will be appreciated by now that there has been provided a method and apparatus for providing universal messages 65 that can be understood regardless of languages spoken by the user of a data communication receiver. What is claimed is:

 A method for displaying messages in a data communication receiver, the method comprising the steps of: receiving an alphanumeric message;

receiving a programming message that includes a key word and image data;

storing the key word and the image data in the database; referencing a database to determine whether at least one word included in the alphanumeric message matches at least one key word included in the database, wherein the at least one key word is associated with image data that is representative of at least one image;

presenting, when the alphanumeric message includes at least one word that matches at least one key word located in the database, the at least one image as a graphic message that is accompanied by the alphanumeric message on a display; and

presenting, when the alphanumeric message does not include at least one word that matches at least one key word located in the database, the alphanumeric message without an accompanying graphic message on the display.

2. The method of claim 1, wherein the step of receiving 25 the programming message comprises the step of:

receiving the programming message as a radio signal.

3. The method of claim 1, wherein the step of receiving the programming message comprises the step of:

receiving the programming message through use of controls on the data communication receiver.

4. A data communication receiver for presenting information, the data communication receiver comprising:

 a receiver for receiving an alphanumeric message including at least one word;

a database for storing key words and image data associated with the key words;

- a presentation element coupled to the receiver and the database for determining whether at least one word included in the alphanumeric message matches at least one key word included in the database, wherein the image data associated with the at least one key word is representative of at least one image;
- a display coupled to the presentation element for presenting, when the at least one word matches at least one key word, the at least one image as a graphic message accompanied by the alphanumeric message, and for presenting, when the at least one word does not match at least one key word; the alphanumeric message without an accompanying graphic message:

controls coupled to the processor for providing userinitiated commands thereto, wherein presentation of the alphanumeric message and any accompanying graphic message occurs in response to reception of a display command; and

programming means coupled to the processor and to the database for programming the database, the programming means further comprising:

the receiver for receiving a programming message including a key word and image data;

a memory for storing a programming word; and

storing means for storing the key word and the image data in the database in response to determining that the programming message includes the programming word.

5. A data communication receiver for presenting information, the data communication receiver comprising:

- a receiver for receiving an alphanumeric message including at least one word;
- a database for storing key words and image data associated with the key words;
- a presentation element coupled to the receiver and the database for determining whether at least one word included in the alphanumeric message matches at least one key word included in the database, wherein the image data associated with the at least one key word is representative of at least one image;
- a display coupled to the presentation element for presenting, when the at least one word matches at least one key word, the at least one image as a graphic message accompanied by the alphanumeric message, and for presenting, when the at least one word does not match at least one key word, the alphanumeric message without an accompanying graphic message;
- controls coupled to the processor for providing userinitiated commands thereto, wherein presentation of the alphanumeric message and any accompanying graphic message occurs in response to reception of a display command; and
- programming means coupled to the processor and to the database for programming the database, the programming means further comprising:
 - controls for receiving a programming message comprising a key word and image data; and

- storing means for storing the key word and the image data in the database.
- A data communication receiver for presenting information, the data communication receiver comprising:
 - a receiver for receiving a message;
 - a decoder coupled to the receiver for decoding the message to recover one or more alphanumeric words therefrom:
 - a memory coupled to the decoder for storing the message;
 - a database coupled to the decoder for storing a plurality of key words and image data associated therewith, the image data representative of images;
 - a presentation element coupled to the database for determining whether at least one alphanumeric word included in the message matches at least one key word included in the database; and
 - a display coupled to the presentation element for presenting, when at least one alphanumeric word matches at least one key word, a corresponding image as a graphic message accompanied by the message, and for presenting, when at least one alphanumeric word does not match at least one key word, the message unaccompanied by any graphic messages.

* * * *

EXXII

21

US005784001A

United States Patent [19]

Deluca et al.

[56]

Patent Number: [11]

5,784,001

Date of Patent:

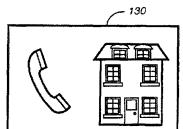
Jul. 21, 1998

[54]	METHOI	AND APPARATUS FOR	5,157,391	10/1992	Weitzen 340/825.44	
		TING GRAPHIC MESSAGES IN A	5,182,553		Kung 340/825.44	
		MMUNICATION RECEIVER	5,212,721		Deluca et al 379/57	
		The state of the s	5,223,831	6/1993	Kung et al 340/825.44	
[75]	Inventors:	Joan Deluca, Boca Raton; Douglas	5,257,307		Ise 340/825.44	
L - 3		Kraul, Parkland; Charles Edward	5,347,269	9/1994	Vanden Heuvel et al 340/825.44	
		Batey, Jr., Lake Worth, all of Fla.	5,452,356		Albert 340/825.44	
		Date; in Date Worth, and Of 11a.	5,512,916		Merchant et al 340/825.44	
[73]	Assignee	Motorola, Inc., Schaumburg, Ill.	5,561,702	10/1996	Lipp et al 340/825.44	
[.5]	rissignee. Wood ora, nic., Schaumburg, III.		5,574,439	11/1996	Miyashita 340/825.44	
[21]	Appl. No.:	898,640	FC	REIGN	PATENT DOCUMENTS	
[22]	Filed:	Jul. 21, 1997	0 393 794 A1	4/1990	European Pat. Off G08B 5/22	
LJ		G 1 1 1 1 1 1 1 1 1 1	55-34710 (A)	3/1980	Japan .	
	Rel	ated U.S. Application Data	2 197 103	5/1988	United Kingdom H04B 5/04	
	ALLI	act C.S. Application Data	2 206 718	1/1989	United Kingdom H04B 5/04	
[63]	Continuation	of Ser No. 560 604 Nov. 20, 1005 above	9103885	3/1991	WIPO 455/154	
[63] Continuation of Ser. No. 560,604, Nov. 20, 1995, abandoned.		of Ser. 140. 300,004, 140v. 20, 1993, adam-	Primary Examiner-Brian Zimmerman			
[51]	Int. Cl.6		Assistant Exar	niner—E	dward Merz	
[52]			[57]		ABSTRACT	
[58]		earch 340/825.44; 345/133.	A data comm	unication	receiver (100) includes a receiver	

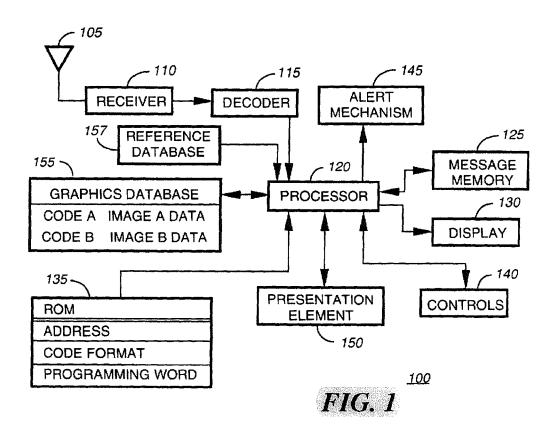
345/122

A data communication receiver (100) includes a receiver (110) for receiving a message including at least one code, a database (155) for storing codes and image data associated with the codes, and a presentation element (150) for locating the at least one code in the database (155). The presentation element (150) then retrieves the image data associated with the at least one code. The image data associated with the at least one code is representative of at least one image. The data communication receiver (100) also includes a display (130) coupled to the presentation element (150) for present-

References Cited


U.S. PATENT DOCUMENTS

4,330,780 4,336,524 4,429,306 4,704,608 4,713,808 4,860,005 4,870,402 4,051,030	6/1982 1/1984 11/1987 12/1987 8/1989 9/1989	Masaki Levine Macauley et al. Sato et al. Gaskill et al. De Luca et al. Deluca et al.	340/825.44 345/195 340/825.44 340/825.44 340/825.44 340/825.44
4,951,039		Schwendeman	


6 Claims, 8 Drawing Sheets

ing the at least one image as a graphic message.

CODE	IMAGE
#01	TELEPHONE
#02	HOUSE
#03	OFFICE
#04	FAMILY
#05	TRAIN
#06	PERSON RUNNING
#07	COFFEE MUG
#08	CLOCK FOLLOWED BY TIME
#09	FOOD PLATTER

155

CODE	IMAGE
#01	TELEPHONE
#02	HOUSE
#03	OFFICE
#04	FAMILY
#05	TRAIN
#06	PERSON RUNNING
#07	COFFEE MUG
#08	CLOCK FOLLOWED BY TIME
#09	FOOD PLATTER

<u> 155</u>

FIG. 2

METHOD AND APPARATUS FOR PRESENTING GRAPHIC MESSAGES IN A DATA COMMUNICATION RECEIVER

This is a continuation of application Ser. No. 08/560,604, 5 filed Nov. 20, 1995 now abandoned.

FIELD OF THE INVENTION

This invention relates in general to data communication receivers having displays, and more specifically to data 10 receiver of FIG. 1 in accordance with the present invention. communication receivers that can display images.

BACKGROUND OF THE INVENTION

Selective call messages are generally originated by a person who wishes to contact the user of a data communi- 15 cation receiver. A message is usually provided to a paging terminal, then transmitted as a radio signal to the receiver. Once the data communication receiver has decoded and stored a message, message reception is announced to the user by, for example, an alert such as an audible tone or 20 predetermined icon. For instance, some prior art devices include a standby display that presents a single, triangular icon for each stored message such that the user can determine the number of messages stored in the receiver. Data communication receivers employ predetermined icons to 25 provide other information, e.g., low battery or out-of-range

However, text, rather than icons, is conventionally utilized to present the actual content of received messages to a user of a data communication receiver. Data communication 30 receivers that receive alphanumeric messages and the systems in which they are registered therefore usually are language-specific. As a result, a user who speaks a particular language is unable to understand received messages if he roams into a system in which messages are transmitted in a 35 different language.

Thus, what is needed is a method and apparatus for providing selective call messages that are not languagespecific.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an electrical block diagram of a data communication receiver for presenting information in accordance with the present invention.

FIG. 2 is an example of codes and image data stored in a 45 graphics database included in the data communication receiver of FIG. 1 in accordance with the present invention.

FIGS. 3-8 are illustrations depicting the presentation of graphic messages on a display of the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 9 is a flowchart depicting an operation of a processor included in the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 10 is a flowchart depicting an operation of a presentation element included in the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 11 is an electrical block diagram of a terminal for providing information to the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 12 is a signal diagram depicting an example of a programming message transmitted by the terminal of FIG. 11 to the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 13 is a flowchart depicting a programming operation 65 of the processor of the data communication receiver of FIG. 1 in accordance with the present invention.

FIG. 14 is an example of key words and image data stored in the graphics database in accordance with the present

FIGS. 15 and 16 are illustrations of supplemental graphic messages provided with text on the display of the data communication receiver of FIG. 1 in accordance with the

FIG. 17 is a flowchart depicting another operation of the presentation element included in the data communication

FIGS. 18-23 are illustrations further depicting the presentation of graphic messages on a display of the data communication receiver of FIG. 1 in accordance with the present invention.

DESCRIPTION OF A PREFERRED **EMBODIMENT**

FIG. 1 is an electrical block diagram of a data communication receiver 100, such as a pager, that includes an antenna 105 for receiving a radio signal and a receiver 110 for demodulating the radio signal. A decoder 115 coupled to the receiver 110 recovers information, such as selective call messages and addresses, included in the demodulated signal. The data communication receiver 100 further includes a processor 120 for processing the recovered information and for determining whether an address in the signal is equivalent to a pager address preferably stored in a memory, such as a read only memory (ROM) 135. A matching address indicates that the message is intended for reception by the data communication receiver 100. The ROM 135 preferably also stores a code format and a programming word, as will be discussed in greater detail below. A message memory 125 is further included in the data communication receiver 100 for storing the received messages intended for reception by the data communication receiver 100. Controls 140 are coupled to the processor 120 for inputting user-initiated commands, such as a display command, and a display 130, such as a liquid crystal display, is coupled to the processor 120 for presenting information to the user. An alert mecha-40 nism 145 announces reception of a message to the user by generating an audible, vibratory, or visual alert.

According to the present invention, a presentation element 150 processes each received message to determine whether the message is to be presented graphically, i.e., whether the message comprises a "graphics message." meaning of which is conveyed pictorially. Preferably, the data communication receiver 100 is able to receive both conventional alphanumeric messages and graphics messages, which are indicated by predetermined codes 50 included in received messages.

By way of example, predetermined characters commonly found on conventional telephone receivers can be used to designate selected codes representative of predetermined graphic images. A message originator can therefore press the buttons associated with the codes to provide graphics information to a selective call terminal, which transmits the codes as a radio signal. When at least one predetermined code is recognized by the data communication receiver 100, a graphics message comprising one or more graphic images is presented to the user of the receiver 100. According to the present invention, the graphic message conveys, in pictures. a universally understood meaning to the user of the data communication receiver 100. The presentation element 150 is preferably implemented in firmware stored in the ROM 135. However, hardware capable of performing equivalent operations can alternatively be used to implement the presentation element 150.

The graphic images available for presenting graphic messages are preferably stored by the data communication receiver 100 in, for example, a graphics database 155. According to the present invention, the graphics database 155 stores a predetermined list of codes, i.e., one or more predetermined characters or a pattern of bits. Each code is associated with image data stored in the database 155. The codes and image data associated therewith can be programmed into the receiver 110 by means such as the controls 140, downloading through a data port (not shown), or over-the-air programming through use of the stored programming word. Therefore, additional codes and image data can be conveniently added to the graphics database 155 as the need for new graphic images arises. Other information to be displayed can be stored in a reference database 157 with cross-references to numeric information. as will be explained in greater detail below.

FIG. 2 is an example of entries in the graphics database 155. As shown, codes recognized by the receiver 100 as indicative of graphic messages begin with the "#" character, which is followed by two numeric characters. In this format, up to one-hundred codes, each associated with image data, could be programmed into the database 155. It will be appreciated, though, that any combination of any number of characters could be utilized to designate graphic messages. as long as the message originator is aware of the codes and the data communication receiver 100 can recognize the codes

As shown, each code is associated with image data representative of a particular image. For example, code "#01" is associated with image data that represents the image of a telephone. "#02" is associated with a house, while "#03" is associated with an office. According to the present invention, reception of a display command for a received message including any of the stored codes will result in the presentation of the associated image or images on the display 130.

stored, at step 216, in the message memory 125. When, at step 215, a user-initiated display command is received for the message is provided to the presentation element 150, at step 220.

Referring next to FIG. 10, an operation of the presentation is depicted. When, at step 225, a message is received from the processor 120, the presentation element 150 determines, at step 230, whether the message includes at least one code

Referring next to FIGS. 3-8. illustrations of different graphic messages on the display 130 are shown. FIG. 3, for instance, illustrates the presentation of the graphic message 40 "DINNER WITH FAMILY" in response to reception of the codes "#09#04." FIGS. 4 and 5 depict graphic messages indicating that the user should "CALL HOME" and "CALL THE OFFICE." respectively. In FIG. 5, reception of a display command for a message comprising the codes 45 "#06#05" results in display of a graphic message that indicates "I AM GOING TO THE TRAIN." The graphic message of FIG. 7, associated with the code "#07." is understood to mean "LET'S GET COFFEE" OR "LET'S GET A DRINK."

FIG. 8 illustrates the combination of both a graphic message and a text message including, for example, alphanumeric characters. Reception of a display command for a message comprising the characters of "#07TOM?" or "TOM?#07" results in the presentation of the image asso- 55 ciated with the code "#07" as well as the presentation of any additional alphanumeric or numeric characters included in the message. As a result, graphic messages which need clarification can conveniently be supplemented by additional textual information presented substantially coincident 60 with the graphic messages. For example, the user of a data communication receiver 100 may usually take a coffee break with his friend Bob. So, the display of a coffee mug with nothing more might indicate to the user that Bob is ready for coffee. When Tom wants to get coffee, he may therefore 65 need to include additional information, such as his name, to avoid confusion.

There may be circumstances, however, in which the receiver 100 is capable of receiving only numeric information or the message originator can only send numeric information. In such a case, the originator, e.g., Tom, can send a code as well as his telephone number. The message could then comprise "#073331111" or "3331111#07." The codes, as mentioned, are preferably in one or more predetermined formats recognized by the receiver 100, so the receiver 100 will still recognize "#07" as the code indicative of the coffee mug. Additionally, the receiver 100 can then look up the remainder of the message in the reference database 157 to determine which other display information should be displayed along with the coffee mug icon. When "3331111" is located in the reference database 157, the display information corresponding thereto is displayed with the coffee mug. For example, display information associated with the telephone number "3331111" could result in presentation of the name "TOM" with the coffee mug image. When the number is not found in the reference database 157. the number itself is preferably displayed with the coffee mug icon. In this manner, alphanumeric information can be displayed or conveyed (through the displayed telephone number) even though only numeric information is sent and received.

FIG. 9 is a flowchart of an operation of the processor 120. At step 200, the processor 120 receives a message. When, at step 205, the received address is equivalent to the receiver address stored in the ROM 135 (FIG. 1), the message is stored, at step 210, in the message memory 125. When, at step 215, a user-initiated display command is received for the message, the message is provided to the presentation element 150, at step 220.

Referring next to FIG. 10, an operation of the presentation element 150 in accordance with the present invention is processor 120, the presentation element 150 determines, at step 230, whether the message includes at least one code associated with a graphic message. As mentioned, the codes associated with graphic messages are preferably in a predetermined format, such as a predetermined character, e.g., "#", followed by specific number of numerals. Therefore, the presentation element 150 can recognize a code associated with a graphic message by determining, with reference to the code format stored in the ROM 135, whether any characters included in the message are arranged in the predetermined code format. When the message does not include a code associated with a graphic message, the message is displayed, at step 235, in a conventional manner. In other words, the display 130 (FIG. 1) is driven with 50 signals to generate the message characters on the display 130.

When, on the other hand, the message does include one or more codes associated with a graphic message, the presentation element 150 compares, at step 240, each code included in the message to the entries in the graphics database 155 (FIG. 1). When a code in the message is determined to be equivalent to a code in the database 155, the image data associated with the matching code is retrieved and used, at step 245, to drive the display 130, thereby presenting the image to the user. When, at step 250, the message includes text in addition to the graphic message code or codes, the additional text is also presented, at step 235.

In accordance with the present invention, the data communication receiver 100 can present the content of received messages to a user by displaying a graphic image or a sequence of graphic images. The graphic images can fully

X
II
B
IT

22

US005784001A

United States Patent [19]

Deluca et al.

[11] Patent Number:

5,784,001

[45] Date of Patent:

Jul. 21, 1998

[54]	METHOD AND APPARATUS FOR
	PRESENTING GRAPHIC MESSAGES IN A
	DATA COMMUNICATION RECEIVER

[75] Inventors: Joan Deluca, Boca Raton; Douglas Kraul, Parkland; Charles Edward

Batey, Jr., Lake Worth, all of Fla.

[73] Assignee: Motorola, Inc., Schaumburg, Ill.

[21] Appl. No.: 898,640

[56]

[22] Filed: Jul. 21, 1997

Related U.S. Application Data

[63]	Continuation doned.	of Ser.	No.	560,604,	Nov.	20,	1995,	aban-
------	---------------------	---------	-----	----------	------	-----	-------	-------

[51]	Int. Cl.6	******************************		G08B	5/22
[52]	U.S. Cl.	***************************************	340/825.	44: 345	/133

References Cited

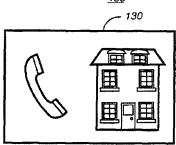
U.S. PATENT DOCUMENTS

4,330,780 4,336,524	6/1982	Masaki	340/825.44
4,429,306	1/1984	Macauley et al	345/195
4,704,608	11/1987	Sato et al	340/825.44
4,713,808	12/1987	Gaskill et al	340/825.44
4,860,005	8/1989	De Luca et al	340/825.44
4,870,402	9/1989	Deluca et al.	340/825.44
4,951,039	8/1990	Schwendeman	340/825.44

5,157,391	10/1992	Weitzen	340/825.44
5,182,553	1/1993	Kung	340/825.44
5,212,721	5/1993	Deluca et al	379/57
5,223,831	6/1993	Kung et al	340/825.44
5,257,307	10/1993	Ise	340/825.44
5,347,269	9/1994	Vanden Heuvel et al	340/825.44
5,452,356	9/1995	Albert	340/825.44
5,512,916	4/1996	Merchant et al	340/825.44
5,561,702		Lipp et al	
5,574,439	11/1996	Miyashita	340/825.44

FOREIGN PATENT DOCUMENTS

0 393 794 A1	4/1990	European Pat. Off	G08B	5/22
55-34710 (A)	3/1980	Japan .		
2 197 103	5/1988	United Kingdom	H04B	5/04
2 206 718	1/1989	United Kingdom	H04B	5/04
9103885		WIPO		


Primary Examiner—Brian Zimmerman Assistant Examiner—Edward Merz

[7] ABSTRACT

A data communication receiver (100) includes a receiver (110) for receiving a message including at least one code, a database (155) for storing codes and image data associated with the codes, and a presentation element (150) for locating the at least one code in the database (155). The presentation element (150) then retrieves the image data associated with the at least one code is representative of at least one image. The data communication receiver (100) also includes a display (130) coupled to the presentation element (150) for presenting the at least one image as a graphic message.

6 Claims, 8 Drawing Sheets

CODE	IMAGE
#01	TELEPHONE
#02	HOUSE
#03	OFFICE
#04	FAMILY
#05	TRAIN
#06	PERSON RUNNING
#07	COFFEE MUG
#08	CLOCK FOLLOWED BY TIME
#09	FOOD PLATTER

<u>155</u>

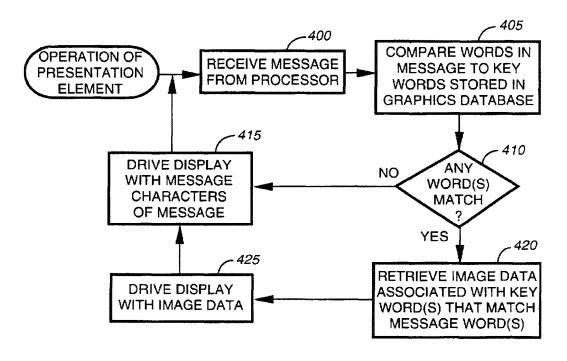


FIG. 17

The graphic images available for presenting graphic messages are preferably stored by the data communication receiver 100 in, for example, a graphics database 155. According to the present invention, the graphics database 155 stores a predetermined list of codes, i.e., one or more predetermined characters or a pattern of bits. Each code is associated with image data stored in the database 155. The codes and image data associated therewith can be programmed into the receiver 110 by means such as the controls 140, downloading through a data port (not shown), or over-the-air programming through use of the stored programming word. Therefore, additional codes and image data can be conveniently added to the graphics database 155 as the need for new graphic images arises. Other information to be displayed can be stored in a reference database 157 with 15 cross-references to numeric information. as will be explained in greater detail below.

FIG. 2 is an example of entries in the graphics database 155. As shown, codes recognized by the receiver 100 as indicative of graphic messages begin with the "#" character, which is followed by two numeric characters. In this format, up to one-hundred codes, each associated with image data, could be programmed into the database 155. It will be appreciated, though, that any combination of any number of characters could be utilized to designate graphic messages, as long as the message originator is aware of the codes and the data communication receiver 100 can recognize the codes.

As shown, each code is associated with image data representative of a particular image. For example, code 30 "#01" is associated with image data that represents the image of a telephone. "#02" is associated with a house, while "#03" is associated with an office. According to the present invention, reception of a display command for a received message including any of the stored codes will 35 result in the presentation of the associated image or images on the display 130.

Referring next to FIGS. 3-8. illustrations of different graphic messages on the display 130 are shown. FIG. 3, for instance, illustrates the presentation of the graphic message "DINNER WITH FAMILY" in response to reception of the codes "#09#04." FIGS. 4 and 5 depict graphic messages indicating that the user should "CALL HOME" and "CALL THE OFFICE," respectively. In FIG. 5, reception of a display command for a message comprising the codes 45 "#06#05" results in display of a graphic message that indicates "I AM GOING TO THE TRAIN." The graphic message of FIG. 7, associated with the code "#07." is understood to mean "LET'S GET COFFEE" OR "LET'S GET A DRINK."

FIG. 8 illustrates the combination of both a graphic message and a text message including, for example, alphanumeric characters. Reception of a display command for a message comprising the characters of "#07TOM?" or "TOM?#07" results in the presentation of the image asso- 55 ciated with the code "#07" as well as the presentation of any additional alphanumeric or numeric characters included in the message. As a result, graphic messages which need clarification can conveniently be supplemented by additional textual information presented substantially coincident 60 with the graphic messages. For example, the user of a data communication receiver 100 may usually take a coffee break with his friend Bob. So, the display of a coffee mug with nothing more might indicate to the user that Bob is ready for coffee. When Tom wants to get coffee, he may therefore 65 need to include additional information, such as his name, to avoid confusion.

There may be circumstances, however, in which the receiver 100 is capable of receiving only numeric information or the message originator can only send numeric information. In such a case, the originator, e.g., Tom, can send a code as well as his telephone number. The message could then comprise "#073331111" or "3331111#07." The codes, as mentioned, are preferably in one or more predetermined formats recognized by the receiver 100, so the receiver 100 will still recognize "#07" as the code indicative of the coffee mug. Additionally, the receiver 100 can then look up the remainder of the message in the reference database 157 to determine which other display information should be displayed along with the coffee mug icon. When "3331111" is located in the reference database 157, the display information corresponding thereto is displayed with the coffee mug. For example, display information associated with the telephone number "3331111" could result in presentation of the name "TOM" with the coffee mug image. When the number is not found in the reference database 157. the number itself is preferably displayed with the coffee mug icon. In this manner, alphanumeric information can be displayed or conveyed (through the displayed telephone number) even though only numeric information is sent and received.

FIG. 9 is a flowchart of an operation of the processor 120. At step 200, the processor 120 receives a message. When, at step 205, the received address is equivalent to the receiver address stored in the ROM 135 (FIG. 1), the message is stored, at step 210, in the message memory 125. When, at step 215, a user-initiated display command is received for the message, the message is provided to the presentation element 150, at step 220.

Referring next to FIG. 10, an operation of the presentation element 150 in accordance with the present invention is depicted. When, at step 225, a message is received from the processor 120, the presentation element 150 determines, at step 230, whether the message includes at least one code associated with a graphic message. As mentioned, the codes associated with graphic messages are preferably in a predetermined format, such as a predetermined character, e.g., "#", followed by specific number of numerals. Therefore, the presentation element 150 can recognize a code associated with a graphic message by determining, with reference to the code format stored in the ROM 135, whether any characters included in the message are arranged in the predetermined code format. When the message does not include a code associated with a graphic message, the message is displayed, at step 235, in a conventional manner. In other words, the display 130 (FIG. 1) is driven with 50 signals to generate the message characters on the display

When, on the other hand, the message does include one or more codes associated with a graphic message, the presentation element 150 compares, at step 240, each code included in the message to the entries in the graphics database 155 (FIG. 1). When a code in the message is determined to be equivalent to a code in the database 155, the image data associated with the matching code is retrieved and used, at step 245, to drive the display 130, thereby presenting the image to the user. When, at step 250, the message includes text in addition to the graphic message code or codes, the additional text is also presented, at step 235.

In accordance with the present invention, the data communication receiver 100 can present the content of received messages to a user by displaying a graphic image or a sequence of graphic images. The graphic images can fully replace a text message so that a universally understood message is presented pictorially to a user. As a result, a user of the receiver 109 can understand a presented message regardless of his language. The presentation of a telephone image and an office image, for example, is likely to be understood as "CALL THE OFFICE" regardless of the language of the user. In this manner, a sequence of two or more graphic images can be easily combined to convey messages to any user. An advantage of the present invention, therefore, is that a person who roams into a geographic region in which a different language is spoken can still receive messages that are easily understood. Also, persons who speak one language can advantageously receive and understand messages that are originated by speakers of different languages.

FIG. 11 is an electrical block diagram of a terminal 305 included in a communication system for transmitting information to the data communication receiver 100. The terminal 305 preferably includes a data port 310, such as a telephone interface, for receiving messages from message originators and a memory 315 for storing the messages until transmission. The memory 315 also stores addresses associated with data communication receivers, including the data communication receiver 100, that receive messages within the communication system and, when over-the-air programming of data communication receivers is desired, a programming word indicative of programming information. A data entry device 320, such as a keyboard, data port, or modem, provides user inputs so that an operator can update the addresses of the data communication receivers, add subscribers, or program data communication receivers.

A controller 325 coupled to the data port 310, the data entry device 320, and the memory 315 controls the operation of the terminal 305. The terminal 305 further comprises an encoder 330 for encoding messages and addresses using a 35 communication protocol such as the conventional FLEXTM protocol and a transmitter 335 for transmitting the encoded information as a radio signal.

According to the present invention, the codes and the images used by the data communication receiver 100 in 40 forming graphic messages can be programmed to update images or to provide additional images. Programming can be accomplished by direct entry of information by the controls 140 (FIG. 1) of the data communication receiver 100, by over-the-air programming, or by any other means for 45 providing information to the data communication receiver 100.

FIG. 12 is a signal diagram of a radio signal which can be transmitted by the terminal 305 to the data communication receiver 100 for programming new or enhanced images. As 50 the supplemental image. shown, the radio signal comprises the address of data communication receiver 100 followed by a programming message, which includes the predetermined programming word stored both by the terminal 305 and the data communication receiver 100. The programming word, which indicates to the data communication receiver 100 that the information appended to the word is to be utilized for programming the graphic database 155, preferably includes a predetermined character or sequence of characters. The lowed by image data to be written into the graphics database 155. Therefore, as graphics technology results in higher resolution graphics that are more easily understood, new image data can be provided to the data communication receiver 100.

FIG. 13 is a flowchart depicting a programming operation of the processor 120 (FIG. 1) according to the present

invention. When, at step 350, a message is received by the processor 120 from the decoder 115, the processor 120 determines, at step 355, whether the message includes the programming word indicative of over-the-air programming. When the programming word is located, the received code is compared, at step 360, with codes stored in the graphics database 155. When, at step 370, the received code already exists in the database 155, the received image data overwrites the image data already stored in the graphics database 155, at step 375. When the received code is not found in the graphics database 155, the processor 120 stores, at step 380, both the received code and the received image data in the database 155. Although over-the-air programming is not the exclusive method for programming the data communication receiver 100, such a method provides for convenient dissemination of programming information without requiring that each user bring his or her data communication receiver into a service center for individual reprogramming.

FIG. 14 is an example of entries in a graphics database 20 500 in accordance with an alternate embodiment of the present invention. According to the alternate embodiment of the present invention, the data communication receiver 100 recognizes key words in conventional messages then, when the messages are displayed, images associated with the key words are displayed as well to supplement the message. For example, key words such as "CALL" and "PHONE" can be associated with the image of a telephone. Therefore, when a message includes the words "CALL" or "PHONE", the message would be displayed as text along with a supple-30 mental image of a telephone, as shown in the illustration of FIG. 15. FIG. 16 illustrates the display of the text message "READY FOR COFFEE?" along with a supplemental image of a coffee mug. According to the alternate embodiment of the present invention, the presence of the key word "COFFEE" in the received message triggers the display of the coffee mug image.

Referring next to FIG. 17, a flowchart depicts an operation of the presentation element 150 according to the alternate embodiment of the present invention. At step 400, the presentation element 150 receives a message from the processor 120 and then, at step 405, compares the words of the message with the key words stored in the graphics database 500. When, at step 410, no words match, the message is displayed, at step 415, in a conventional manner. When one or more message words are equivalent to key words in the graphics database 500, the image data associated with the key word or words is retrieved, at step 420. from the database 500. Thereafter, at steps 415, 425, the display 130 is driven to display both the message text and

According to an alternate embodiment of the present invention, the graphics database 155 (FIG. 1) additionally stores database information about the different graphic images that can be displayed. This information augments universally-understood graphic messages and can be accessed via selection of a displayed image by the user. For example, the user could select a displayed image by touchpad technology, i.e., by touching the image on the display 130, or by operating controls 140 to move a cursor to message also includes a code, either existing or new, fol- 60 highlight a displayed image. Examples of information that can be displayed are shown in FIGS. 18-23.

> In FIG. 18, the "person running" icon and the "train" icon are displayed to indicate that a particular person is traveling by train or to a train. When the user selects the train icon, such as by touch, database information associated with the train icon is retrieved from the graphics database 155 and provided to the display 130. Referring to FIG. 19, such

EXIII

23

MICROSOFT PRESS NEW YORK, N.Y. 1(5)26-9000

COMPUTER DICTIONARY

SECOND

EDITION

THE COMPREHENSIVE
STANDARD FOR
BUSINESS, SCHOOL,
LIBRARY, AND HOME

PUBLISHED BY Microsoft Press A Division of Microsoft Corporation One Microsoft Way Redmond, Washington 98052-6399

Copyright © 1994 by Microsoft Press

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Microsoft Press computer dictionary: the comprehensive standard for business, school, library, and home / Microsoft Press. -- 2nd ed.

p. cm. ISBN 1-55615-597-2

1. Computers--Dictionaries. 2. Microcomputers--Dictionaries.

I. Microsoft Press. II. Title: Computer dictionary.

QA76.15.M54 1993 004'.03--dc20

93-29868

CIP

Printed and bound in the United States of America.

123456789 MLML 987654

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing Corporation.

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England Penguin Books Australia Ltd., Ringwood, Victoria, Australia Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

Project Editor: Casey D. Doyle Manuscript Editor: Alice Copp Smith

Technical Editors: Mary DeJong, Jeff Carey, Dail Magee, Jr., Jim Fuchs, Seth McEvoy

and the codes used to represent them, including not only letters but digits, punctuation marks, and other characters such as the dollar sign. The International Alphabet Number 5, for example, is represented by a 7-bit code similar to ASCII that has been standardized by the CCITT and the ISO for use in data transmission. See also ASCII, CCITT, character set, EBCDIC, extended ASCII, ISO.

alphabetic Having to do only with the letters in an alphabet.

alpha channel The high-order 8 bits of the 32 bits that define a pixel in some 24-bit graphics adapters. The alpha channel is used by some software to manipulate the 24 remaining bits that collectively represent each pixel's color information (8 bits for red, 8 bits for blue, and 8 bits for green) for such tasks as changing the pixel's color or masking the pixel.

Alpha chip See DECchip 21064.

alphageometric In computer graphics, particularly videotex and teletext systems, a display method that includes codes for alphanumeric characters as well as geometric primitives (shapes, such as horizontal and vertical lines, corners, and so on) that can be used to draw onscreen graphics. See also alphamosaic.

alphamosaic In computer graphics, particularly videotex and teletext systems, a display method that includes codes for alphanumeric characters and creates graphics on the screen as rectangular arrangements of elements, each element being a piece of the mosaic. See also alphageometric.

alphanumeric Comprising both letters and digits, sometimes also including control characters, space characters, and other special characters. *See also* ASCII, character set, EBCDIC.

alphanumeric display terminal A terminal capable of displaying characters (letters, numbers, and symbols) but not graphics.

alphanumeric mode See text mode.

alphanumeric sort A method of sorting similar to an alphabetic sort but that takes into account numbers, punctuation marks, and special characters. Typically, the order is as follows: punctuation marks, numbers, alphabetic characters (with the set of capital letters falling before the set of lowercase letters), any other characters in the set being sorted. The specific order for sorting often varies from application to application and from country to country.

Altair 8800 A small computer introduced in 1975 by Micro Instrumentation Telemetry Systems of New Mexico. See the illustrations. Sold primarily in kit form, the Altair was based on the 8-bit Intel 8080 microprocessor, had 256 bytes of random access memory, received input through a bank of switches on the front panel, and displayed output

