Motorola Mobility, Inc. v. Microsoft Corporation Doc. 21 Att. 5

EXHIBIT E

Dockets.Justia.com

http://dockets.justia.com/docket/florida/flsdce/1:2010cv24063/368653/
http://docs.justia.com/cases/federal/district-courts/florida/flsdce/1:2010cv24063/368653/21/5.html
http://dockets.justia.com/

a2 United States Patent

Sherwin, Jr. et al.

US007383460B2

US 7,383,460 B2
Jun. 3,2008

(10) Patent No.:
45) Date of Patent:

(54)

(73)

(73)

*)

@

22

(65)

(51

(52)
(58)

Assignee:

Notice:

Appl. No.:

METHOD AND SYSTEM FOR
CONFIGURING A TIMER

Inventors: Bruce J Sherwin, Jr., Woodinville, WA
(US); Eric Nelson, Woodinville, WA

(US)

(Us)

Microsoft Corporation, Redmond, WA

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 392 days.

Filed:

11/089,957

Mar. 25, 2005

Prior Publication Data

US 2006/0218429 Al

Int. Cl.
GO6F 1/04
GO6F 1/12
GO6F 5/06
GO6F 11/00
GO6F 3/00
GO6F 9/44
GO6F 9/46
GO6F 13/00

US.CL ..o
Field of Classification Search

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

Sep. 28, 2006

713/600; 714/55; 719/328

713/600;
714/55; 719/328

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,519,851 A * 5/1996 Bender et al. 710/301
6,078,747 A * 6/2000 Jewittc.cccouvnrereneeennn. 717/164
2003/0204792 Al* 10/2003 Cahill et al. 714/55
2005/0022166 Al1* 1/2005 Wolff et al. 717/124

* cited by examiner

Primary Examiner—Chun Cao

Assistant Examiner—Jaweed A Abbaszadeh

(74) Attorney, Agent, or Firm—Christensen O’Connor
Johnson Kindness PLL.C

(57) ABSTRACT

The present invention facilitates access to timers in a com-
puting device. In particular, a timer system facilitates con-
figuring a hardware interrupt timer in a computing device,
the timer being guaranteed to expire at a specific time in a
non-real-time environment. A calling application passes
parameters to a hardware independent application program-
ming interface (API) to the hardware interrupt timer. The
hardware independent API validates the parameters and
relays them to a hardware dependent API. The hardware
dependent API establishes a connection with the timer in
accordance with the validated parameters, and executes a
service routine associated with the application upon expi-
ration of the timer.

15 Claims, 7 Drawing Sheets

/202 TIMER SYSTEM
APPLICATION T EXAMPLE 200
204
CALL SET /208
INTERRUPT KERNEL
TIMER API WITH L 210
PARAMETERS SET INTERRUPT
TIMER
L API 212
APPLICATION 224 a
MANAGED HAL
MEMORY |~ 214
/ 226
SET INTERRUPT
APPLICATION (ABSOLUTE EXPIRATION TIME) L »] TIMER
INTERRUPT API
SERVICE 18
ROUTINE
Y
216 TIMER INTERRUPT HPET f
206 —————____| | SERVICE ROUTINE
APPLICATION MAIN COUNTER, E.G.,
INTERRUPT AN UP COUNTER 220
SERVICE
ROUTINE COMPARATOR
REGISTERS 222
TIMER 0 2224,

TIMER1 222B,

TIMER 2 222C,
ETC.

U.S. Patent Jun. 3, 2008 Sheet 1 of 7

TIMER SYSTEM
OVERVIEW 100

TIMER
APPLICATION,
E.G., A TEST
ROUTINE, DEVICE
SIMULATOR, OR
OTHER TYPE OF
SYSTEM
SOFTWARE USING
A TIMER

/1024

TIMER APPLICATION, E.G., A
TEST ROUTINE, DEVICE
SIMULATOR, OR OTHER TYPE
OF SYSTEM SOFTWARE USING
A TIMER

HARDWARE-INDEPENDENT
TIMER APPLICATION
PROGRAMMING INTERFACE,
E.G., A KERNEL MODE EXPORT
ROUTINE

HARDWARE-DEPENDENT
TIMER APPLICATION
PROGRAMMING INTERFACE,
E.G.,, A HARDWARE
ABSTRACTION LAYER (HAL)
ROUTINE

HARDWARE
INTERRUPT
TIMER, E.G., A HIGH
PRECISION EVENT TIMER
(HPET)

Fig. 1.

US 7,383,460 B2

USER MODE

KERNEL MODE

HARDWARE

ABSTRACTION LAYER

US 7,383,460 B2

Sheet 2 of 7

Jun. 3,2008

U.S. Patent

[] .MN
..U rh m N * m
D77 T YAWIL
@it T HAWIL
‘Viie 0 ¥AWIL v
772 SYALSIOAY
JOLVIVINODI ANILNOY
ADINYAS
072 ¥AINNOD d1 NV LdNAIAINT
“D°'q ‘YAINNOD NIVIW NOILIYOI'lddV
ANLLNO0Y ADIAYAS 90T
LadH LdNIYTINI YTWIL - oIz k
ENK ANIINOY
ADINYAS
IdV LdNIYTINI
YAWIL 1 (TWIL NOLLVYIdXA ALNTOSTV) NOLLVII'TddV
LIdNAAAINI LTS
d 927 S
pIz — » AJONAW
TVH \ dd9VNVH
P2z | NOILIVIOI'TddV
4 4 IdV
YAWIL -
| LdNYYAINI IAS N
017 _ HIIM IdV YTWII
TANYIN LdNYYAINI
\/\ 90z IAS 1TV
vz |
002 ATdWVXA NOLLVOITddV
WALSAS YAWIL 207/

U.S. Patent Jun. 3, 2008

HARDWARE ABSTRACTION LAYER
OVERVIEW 300

302

304 -

\

SET
INTERRUPT
TIMER

INTERRUPT
TIMER
SERVICE ROUTINE

306 - (ISR)

APPLICATION
INTERRUPT
N TSsERVICE
ROUTINE
(ISR)

308

Sheet 3 of 7 US 7,383,460 B2

Example Logic: ~
SetInterruptTimer () ~
IntTimerServiceRoutine () |
ApplicationTimerServi iceRoutine ()|
if (PeriodicIntMode) { |
SetNextInterruptTime
Jelse { |
StopInterrupt I

Fig. 3.

U.S. Patent Jun. 3, 2008 Sheet 4 of 7 US 7,383,460 B2

DWARE-INDEPENDENT TIMER API /— 402

HAR
\/\ VALIDATE ARGUMENTS PASSED BY INVALID
APPLICATION (E.G., TIMER INTERVAL)

VALID / 404
Y
NOT

VERIFY CALLING APPLICATION'S PRIVILEGED
PRIVILEGES

PRIVILEGED
HAS

/ 406

APPLICATION

PROVIDED AN APPLICATION

ISR
2

NO

410 4
wa “

VALIDATE APPLICATION ISR,
(CHECK WHETHER ALREADY| INVALID \
REGISTERED, VALIDATE FAIL
DEVICE OBJECT,
DEREGISTER IF NULL, ETC.)

414
VALID
v /

CALL HAL
SET INTERRUPT TIMER API

DEREGISTER, IF
APPLICABLE

418
4 416

RETURN

Fig. 4.

U.S. Patent

Jun. 3, 2008 Sheet 5 of 7 US 7,383,460 B2

00 HARDWARE-DEPENDENT TIMER API

REPEATIF
PERIODIC
MODE

/ 502

REGISTER THE TIMER INTERRUPT
SERVICE ROUTINE (ISR) ON AN
AVAILABLE HARDWARE
INTERRUPT, E.G., TIMER 0, 1, OR 2
IN AN HPET TIMER

' / 504

INSERT THE APPLICATION ISR
INTO THE TIMER ISR

/ 506

SET THE HARDWARE TIMER MODE
TO THE SPECIFIED MODE,
E.G., PERIODIC OR
APERIODIC (LE., ONE-SHOT)

v / o

UPDATE THE HARDWARE TIMER
COMPARATOR REGISTER WITH
THE NEXT EXPIRATION TIME

0
, S

INITIATE THE TIMER ISR

‘ / 512

RETURN TO APPLICATION WHEN THE
TIMER ISR HAS ENDED AND THE TIMER IS

NO LONGER NEEDED BY THE
APPLICATION

Fig. 5.

US 7,383,460 B2

Sheet 6 of 7

Jun. 3,2008

U.S. Patent

IdV ¥9WIL
LdNYAAINT
LAS TANIAN

QE\\

V9 ‘L

9909
4909 ~J

2909

asny

L

T SYALANWVYIVd
TVNOILLIAdav

£

LIOAL40 HIIAAA

YAINIOd ANIL

TVNYIN

209_/

v,

009 ATdWVXd
WALSAS YHANWIL

D909 _

909 __1

V909 __

AAON

TVANHINI

1041

NN N

4AINIOd
ANILNOY
AIIAHAS

909 (\

SHALANVYVd

P09 —

IdV ¥ANWIL
LdNYIAINI LAS
TVNYAN TTVD

z09_/

NOLLYDI'TddV

US 7,383,460 B2

Sheet 7 of 7

Jun. 3,2008

U.S. Patent

'q9 S1d

—~ | ~syarawvavd
P9 TVNOLLIAAV

Ar19 W 1oargo aoiaaa

N IdV YANILL
arn9 YAINIOd AWIL TINTNAINT
— LAS TVH TTVD
a9y TAOW 9 —
A TvaddIN a
_
P19 % 1081
1dV ¥AWIL » IdV ¥ANIL
LdNAAAINT qrr9 YAINIOd LdNAYALNI
LAS TVH A anunow 079 LAS TANYAN
B VPI9 ADINYAS
819
SYALANWVIVA
TVH aqaLvariva TANYAN
919_/ 9/

A

009 (A,.INODJ ATdWVXH

WHLSAS ¥ANWIL

809

US 7,383,460 B2

1

METHOD AND SYSTEM FOR
CONFIGURING A TIMER

TECHNICAL FIELD

In general, the present invention relates to timers in a
computing device and, more particularly, to configuring
timers in a computing device.

BACKGROUND

Operating systems, such as Microsoft’s Windows NT,
typically provide the ability to program a timer. However,
such timers are not guaranteed to expire at a programmed
time; rather, they are only guaranteed to not expire before
the programmed time. The lack of specificity of the time at
which the timer expires makes the timer unsuitable for many
applications. For example, certain test scenarios, perfor-
mance and/or power consumption algorithms require a timer
that is guaranteed to expire at a certain time, even when used
in a non-real-time environment, such as the environment
provided by Windows NT.

Timers that are guaranteed to expire at a certain time are
typically hardware timers. For example, personal computer
hardware provided by Intel Corporation supports a mini-
mum of three such hardware timers, referred to as High
Precision Event Timers (“HPET”).

In Windows NT, access to computer hardware is con-
trolled by the Windows NT hardware abstraction layer
(“HAL”). Among the advantages of a HAL is that a single
device driver can use standard HAL routines to support a
device on many different hardware platforms, making
device driver development much easier, and allowing dif-
ferent hardware configurations accessible in a similar man-
ner. However, because the HAL operates at a level between
the hardware and the Windows NT executive services, a
disadvantage of the HAL is that applications and device
drivers are unaware of hardware-dependent details, such as
1/0 interfaces and interrupt controllers, including the HPET
timers. Applications and device drivers are no longer
allowed to deal with hardware directly and must make calls
to HAL routines to determine hardware-specific informa-
tion. As a result, access to HPET timers that have the
necessary specificity (i.e., access to timers that are guaran-
teed to expire at a certain time) for use in certain test
scenarios, performance and/or power consumption algo-
rithms is either not permitted, or is difficult at best.

SUMMARY

The foregoing problems with the prior state of the art are
overcome by the principles of the present invention, which
is directed toward methods, systems, computer program
products, and data structures for facilitating access to timers
in a computing device. The present invention is further
directed toward methods, systems, computer program prod-
ucts, and data structures for configuring a timer in a com-
puting device, the timer being guaranteed to expire at a
specific time in a non-real-time environment.

According to one aspect of the invention, a method is
provided for configuring timer hardware that is guaranteed
to expire at a specified time in a non-real time environment.
Upon expiration, the method may return control to the
calling application in the non-real-time environment, includ-
ing providing a generic software callback to the calling
application. Upon expiration, the method may further ini-
tiate the timer’s interrupt service routine (ISR), which may

10

15

20

25

30

35

40

45

50

55

60

65

2

be optionally modified to initiate an application ISR speci-
fied by the calling application.

According to another aspect of the invention, configuring
timer hardware that is guaranteed to expire at a specified
time may include configuring timer hardware to expire in an
aperiodic or periodic mode. When configuring timer hard-
ware to expire in the aperiodic mode, the timer is guaranteed
to expire once at a specified time. In the periodic mode, the
timer is guaranteed to expire more than once, at a specified
interval. In the periodic mode, the timer may be further
guaranteed to expire more than once at a specified interval
commencing at a specified time.

According to still another aspect of the invention, the
method for configuring timer hardware may include an
application programming interface (API) comprising a hard-
ware-independent APl and a hardware-dependent API. A
timer application may call the hardware-independent API
specifying, among other parameters, at least one of an
interval, an interrupt request level (IRQL), and an applica-
tion ISR. Among the functions provided by the hardware-
independent API is validation of the specified parameters,
verification of the calling application’s privileges, and reg-
istration or deregistration of the application ISR.

According to yet another aspect of the invention, the
hardware-independent API may, in turn, call the hardware-
dependent API, passing, among other parameters, the speci-
fied time, interval, IRQL, and application ISR. Among the
functions provided by the hardware-dependent API is the
registration of a timer ISR on an available hardware inter-
rupt, wrapping the application ISR into the timer ISR,
setting the timer mode of operation to periodic when an
interval is specified, updating the hardware timer’s com-
parator register with the specified time and/or interval,
initiating the timer ISR upon expiration of the timer, initi-
ating the application ISR from the timer ISR, and returning
control to the calling application.

In accordance with yet other aspects of the present
invention, a computer-accessible medium for facilitating
access to timers in a computing device is provided, including
a medium for storing data structures and computer-execut-
able components for establishing a connection between an
application and a hardware timer, specifying and validating
parameters for the operation of the hardware timer, initiating
the timer on behalf of the application, and returning control
to the application when the timer has ended. The data
structures define the hardware timer parameters, and other
timer data in a manner that is generally consistent with the
above-described systems and methods. Likewise, the com-
puter-executable components, including the hardware-inde-
pendent and hardware-dependent APIs to the hardware
timers, are capable of performing actions generally consis-
tent with the above-described systems and methods.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same become better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings, wherein:

FIG. 1 is a block diagram overview of an exemplary timer
system and one suitable operating environment in which
access to a timer may be facilitated in accordance with the
present invention;

US 7,383,460 B2

3

FIG. 2 is a block diagram illustrating in further detail an
arrangement of certain components of the timer system
illustrated in FIG. 1 for implementing an embodiment of the
present invention;

FIG. 3 is a block diagram illustrating in further detail
certain aspects of a hardware-dependent interface formed in
accordance with an embodiment of the present invention;

FIG. 4 is a flow diagram illustrating certain aspects of a
hardware-independent application programming interface
for implementing an embodiment of the present invention;

FIG. 5 is a flow diagram illustrating certain aspects of a
hardware-dependent application programming interface for
implementing an embodiment of the present invention;

FIG. 6A is a block diagram illustrating certain aspects of
a hardware-independent application programming interface
for implementing an embodiment of the present invention;
and

FIG. 6B is a block diagram illustrating certain aspects of
a hardware-dependent application programming interface
for implementing an embodiment of the present invention.

DETAILED DESCRIPTION

To successfully run certain types of test routines, device
simulators, or other types of application or system software
on a computing device, the software must have access to a
timer that is guaranteed to expire at a specified time and/or
at a specified interval. However, the functionality of a timer
that is guaranteed to expire at a specified time and/or
specified interval may not always be accessible to the
application or system software that needs it. For example, in
the Microsoft Windows NT environment, the hardware
application layer (HAL) does not permit application and
system software to directly access the hardware-specific
information needed to use a hardware timer, such as the
High Precision Event Timer (HPET) timer that is provided
with Intel computer hardware. Unfortunately, hardware tim-
ers are generally the only timers that are guaranteed to expire
at a specified time. To address this and other problems with
accessing timers, a computing system suitable for imple-
menting a method for facilitating access to a timer guaran-
teed to expire at a specified time or interval in accordance
with embodiments of the present invention is described in
detail in the following discussion.

As already noted, guaranteed timers are generally hard-
ware timers. Since the specific details of programming a
hardware timer may vary from one hardware platform to the
next, certain aspects of the method for facilitating access to
a timer in accordance with embodiments of the present
invention are typically performed in a hardware-indepen-
dent component, and certain other aspects of the method are
typically performed in a hardware-dependent component.

FIG. 1 is a block diagram overview of an exemplary timer
system 100 and one suitable operating environment in which
access to a timer may be facilitated in accordance with the
present invention. As shown, the timer system 100 may
include a timer application 102A and/or 102B, residing in
either the user mode or the kernel mode, needing access to
a timer that can be guaranteed to expire at a specified time
and/or at a specified interval. Examples of such timer
applications include, but are not limited to, various system
timer test routines, device simulators, processor power man-
agement testing routines, scheduling algorithms, and kernel
performance algorithms.

The timer applications 102A, 102B, establish a connec-
tion with a timer 108 that is guaranteed to expire at a
specified time and/or a specified interval through a hard-

10

15

20

25

30

35

40

45

50

55

60

65

4

ware-independent timer application programming interface
(API) 104. The hardware-independent API 104 is configured
to receive a number of parameters from the timer applica-
tions 102A, 102B, such as a pointer to an application
interrupt service routine (ISR) that should be initiated upon
expiration of the timer, the mode of the timer, i.e., periodic
or aperiodic, the interval at which the timer should expire,
and so forth.

During operation of the timer 100, a hardware-indepen-
dent timer API 104 initiates the establishment of a connec-
tion between the calling timer application 102A, 102B, and
the timer 108 by, among other actions, validating parameters
received from the calling timer application, verifying
whether the application is authorized to set an interrupt timer
using the API 104, and if so, relaying the validated param-
eters to a hardware-dependent API 106. The hardware-
dependent API 106 completes the process of establishing the
connection between the calling timer application 102A,
102B, and the hardware timer 108 by, among other actions,
setting the hardware timer in accordance with the validated
parameters received from the calling timer application.

In one embodiment, in the context of an operating system
such as the Microsoft Windows NT operating system, the
hardware-independent timer API 104 may be implemented
in a kernel mode export driver. A kernel mode export driver
may be advantageously used to implement certain hardware-
independent aspects of a method for facilitating access to a
timer in accordance with an embodiment of the invention. In
one embodiment, the kernel mode export driver is a kernel
mode dynamic link library (DLL) capable of being loaded
by other components of an operating system. The hardware-
independent timer API 104 may be implemented in a routine
that is part of the hardware abstraction layer, or HAL. A
HAL routine has access to the various components of the
timer 108 that are necessary to establish a connection with
and set the timer according to the validated parameters
received from the calling timer application 102A, 102B by
way of the hardware-independent API 104.

In one embodiment, the timer 108 may be a high precision
event timer (HPET) such as that provided in Intel computer
hardware. Establishing a connection with the timer 108 and
setting the timer in accordance with an embodiment of the
invention will be described in further detail below.

FIG. 2 is a block diagram illustrating in further detail an
arrangement of certain components of the timer system
illustrated in FIG. 1 for implementing an embodiment of the
present invention. A calling application 202 contains a
process to call a kernel mode routine 208 having a set
interrupt timer API 210 capable of receiving one or more
parameters. In one embodiment, the calling application 202
may pass parameters 204 that specify the various timer
settings, such as the mode, the interval, the interrupt request
level (IRQL) at which the kernel mode routine 208 is to run,
and an interrupt service routine (ISR) 206 (or a name or
pointer to an application ISR) that should be run upon
expiration of the timer with which the calling application
202 ultimately establishes a connection. In one embodiment,
the parameters 204 may also include a pointer or other
reference to an area of application managed memory 224 in
which will be written the actual time that the timer with
which the calling application 202 ultimately establishes a
connection will expire, also referred to as the absolute
expiration time 226.

In one embodiment, the set interrupt timer API 210
validates the parameters 204 and verifies whether the calling
application 202 is authorized to set a timer using the API
210. The API 210 then passes the validated parameters to a

US 7,383,460 B2

5

HAL routine 212, also having a set interrupt timer API 214
corresponding to the API 210.

In one embodiment, the HAL routine 212 includes its own
timer interrupt service routine (ISR) 216, or a pointer to a
timer ISR, that should be run upon expiration of the timer
with which the calling application 102A, 102B, or 202
ultimately establishes a connection. In one embodiment, the
timer ISR 216 may be modified to embed the application
ISR 206, also referred to as wrapping the application ISR
206 in the timer ISR 216, or otherwise run the application
ISR 206 upon the expiration of the timer.

In one embodiment, the HAL set interrupt timer API 214
accesses an available HPET timer 218 and sets the timer by,
among other actions, writing an expiration time at which the
timer 218 should expire in a corresponding comparator
register 222, where the corresponding comparator register
includes, for example, comparator registers corresponding
to Timer 0, 222A, Timer 1, 222B, or Timer 2, 222C, each
located at different offsets in the available HPET timer. In
one embodiment, the HAL set interrupt timer API 214 also
writes the expiration time at which the timer 218 should
expire in an area of application managed memory 224, the
location of which may be conveyed to the HAL set interrupt
timer API 214 in one of the validated parameters. The
operation of the HAL set interrupt timer API 214 will be
discussed in further detail with reference to FIG. 3, below.

Once the timer 108 has been set, the connection between
the calling application 102A, 102B, or 202 and the timer
108, or 218 is established. The general behavior of the timer
108 is to generate an interrupt at the specified IRQL when
the timer expires in accordance with the mode and interval
specified in the parameters. For example, when using an
HPET timer 218, the timer expires when the main counter
220 of the timer reaches the value written to the comparator
register 222A, 222B, or 222C, where the value written to the
comparator register is derived from the mode and interval
specified in the parameters passed by the calling application
202. The general behavior and operation of HPET timers are
known in the art and are set forth in Intel’s Intel Architec-
ture/Personal Computer (IA/PC) HPET (High Precision
Event Timers) Specification, Revision 1.0a, October 2004.
Accordingly, details regarding HPET timers will not be
further discussed except as the operation and general behav-
ior of the HPET timer pertains to the described embodiments
of the present invention.

FIG. 3 is a block diagram illustrating in further detail a
hardware abstraction layer (HAL) overview 300 of a hard-
ware-dependent interface formed in accordance with an
embodiment of the present invention. In one embodiment,
the hardware-dependent interface to a timer may include a
HAL routine 302 corresponding to HAL routine 212 in FIG.
2.

The HAL routine 302 includes a process 304 to initially
set a hardware interrupt timer 108 in accordance with the
validated parameters received from the calling application
102A, 102B, or 202 (in FIGS. 1, 2). As already noted, when
using an HPET timer 218, the set interrupt timer process 304
may include, among other actions, writing an expiration
time at which the HPET timer 218 should expire in the
corresponding timer’s comparator register 222, where the
corresponding timer is one of the timers, e.g., Timer 0 222A,
Timer 1 222B, or Timer 2, 222C, with which the calling
application 202 has established a connection. The process
304 may include other actions to initially set the hardware
interrupt timer 108 depending on the particular type of
hardware interrupt timer that is being used.

45

6

In one embodiment, the expiration time at which the
hardware interrupt timer 208 should expire is derived from
at least one of the validated parameters received by the HAL
routine 302, including the parameters that specified the
interval and mode with which to set the interrupt timer using
process 304. For example, in a typical embodiment, the
expiration time is the current clock time plus the amount of
time represented by the interrupt interval specified in the
parameters passed by the calling application 102A, 102B.

In one embodiment, the HAL routine 302 also writes the
expiration time to an application-managed area of memory
224 (FIG. 2) in the computing device, the pointer to which
may optionally be specified in the validated parameters
received by the HAL routine 302. Writing the expiration
time to this area of memory enables the application to have
access to the actual time at which the hardware timer 108 is
set to expire, referred to as the absolute expiration time 226
(FIG. 2).

The HAL routine 302 may also include a process to
service the interrupts generated by the timer 108, i.e., a timer
ISR 306. The timer ISR process 306 contains the logic to set
the next expiration time, or to stop the interrupts, depending
on the mode specified in the validated parameters received
by the HAL routine 302. For example, when the mode is
periodic, the derivation and writing of the expiration time is
repeated indefinitely, i.e., until the calling application ter-
minates the connection to the timer; otherwise the derivation
and writing of the expiration time is carried out once only,
i.e., the timer is a one-shot timer.

In one embodiment, the HAL routine 302 may modify the
timer ISR 306 to include an additional process to further
service the interrupts generated by the timer 108. For
example, with reference to FIG. 2, the additional process
may be an application ISR 206 that is typically supplied by
the calling application 202 as specified in the validated
parameters. Depending on the particular embodiment, the
calling application 102A, 102B, 202 may supply an appli-
cation ISR 206 indirectly, by name or by pointer, or directly
as executable code.

In an actual embodiment, the HAL routine 302 may be
implemented in the example code 310 illustrated in FIG. 3,
and set forth below in Table 1.

TABLE 1

HAL Set Interrupt Timer and Service Interrupt Timer Example Logic

SetInterruptTimer()
IntTimerServiceRoutine()
ApplicationTimerServiceRoutine()
if (PeriodicIntMode) {
SetNextInterruptTime

telse {

StopInterrupt
}

FIG. 4 is a flow diagram illustrating certain aspects of a
hardware-independent timer API 104 (in FIG. 1) for imple-
menting an embodiment of the present invention. In par-
ticular, the hardware-independent logic 400 embodied in the
hardware-independent timer API 104 will be described with
reference to the foregoing descriptions of the various com-
ponents of a timer system overview 100 referenced in FIG.
1 and the timer system example 200 referenced in FIG. 2,
including, among others, the calling application 102A,
102B, 202 and parameters passed by the application, e.g.,
the parameters 204 and the application ISR 206, the hard-
ware-dependent timer API 106 and example component 212,

US 7,383,460 B2

7

including the timer API 214 and the timer ISR 216, and the
hardware interrupt timer 108 such as the HPET timer 218.

The hardware-independent logic 400 begins at process
block 402 with validating the arguments, e.g., parameters
204 passed by the calling timer application 202. In a typical
embodiment, validating the parameters includes, among
other actions, insuring that the mode has been specified as
periodic or aperiodic, making sure that the calling timer
application 102A, 102B, 202 has expressed the specified
time interval in appropriate system time units, e.g., 100-
nanosecond intervals, and that the specified interval is of
sufficient duration to use with the available hardware timer
108. For example, when setting an HPET timer 218, as a
practical matter, the interval specified in parameters 204
should be sufficiently long enough to allow the derived
expiration time to be written to a comparator register 222
before the main counter 220 actually reaches that time.
Otherwise, the hardware-dependent timer API 106, e.g., the
HAL API 214, will not be able to set the HPET timer 218
properly.

Additional cross-validation of two or more arguments
may be performed, such as that described below in blocks
406 and 408 with reference to the application ISR and an
associated device object, both of which may also be speci-
fied in parameters 204. If any of the parameters 204 are
invalid, either alone or in combination, the hardware-inde-
pendent timer API 104 branches to termination fail process
412 to return to the calling application with an appropriate
error message.

The hardware-independent logic 400 continues at process
block 404 with verifying the calling application’s privileges,
i.e., making sure that the calling application 102A, 102B,
202 is operating at a system privilege level that allows
access to the various components of the timer 100, such as
the APIs 104 and 106, and the hardware interrupt timer 108.
If the application If the calling application 102A, 102B, 202
is not authorized, the hardware-independent timer API 104
branches to termination fail process 412 to return to the
calling application with an appropriate error message.

The hardware-independent logic 400 continues at deci-
sion block 406 to determine whether the calling application
102A, 102B, 202, has provided an application ISR, such as
application ISR 206 (FIG. 2). The application ISR 206 may
be provided in any number of ways, but is typically provided
by passing a pointer to an application ISR 206 in the
parameters 204. In one embodiment, when an application
ISR 206 has not been provided, the hardware-independent
logic 400 may optionally perform a process 410 to deregister
any previously specified application ISR 206, after which
control is returned at termination block 418 to the calling
application 102A, 102B, 202. Otherwise, if an application
ISR 206 has been provided, the hardware-independent logic
400 may optionally perform a process 408 to validate the
application ISR 206, including cross-validating the applica-
tion ISR 206 with a device object, also specified in param-
eters 204. For example, if the pointer to the application ISR
206 is null, and the device object points to the same location
used to register the current application ISR 206, the hard-
ware-independent logic 400 may optionally perform a pro-
cess 410 to deregister the current application ISR. If the
device object points to a different location in the calling
application’s memory than that used to register the current
application ISR 206, the application ISR 206 that was
provided cannot be validated, and the hardware-independent
timer API 104 branches to termination fail process 412 to
return to the calling application with an appropriate error
message.

20

25

40

45

55

8

The hardware-independent logic 400 continues at process
block 414, where the timer system 100 transfers control to
the hardware-dependent portion of the 100, i.e., the hard-
ware-dependent API 106, the description of which is refer-
enced in connector circle 416 at FIG. 5 below.

FIG. 5 is a flow diagram illustrating certain aspects of a
hardware-dependent timer API 106 (in FIG. 1) for imple-
menting an embodiment of the present invention. In par-
ticular, the hardware-dependent logic 400 embodied in the
hardware-dependent timer API 106 will be described with
reference to the foregoing descriptions of the various com-
ponents of a timer system overview 100 referenced in FIG.
1 and the timer system example 200 referenced in FIG. 2,
including, among others, the calling application 102A,
102B, 202 and parameters passed by the application, e.g.,
the parameters 204 and the application ISR 206, the hard-
ware-dependent timer API 106 and example components
212, including the timer API 214 and the timer ISR 216, and
the hardware interrupt timer 108 such as the HPET timer
218.

The hardware-dependent logic 500 begins at process
block 502 to register the timer ISR, e.g. the timer ISR 216
contained in HAL routine 212, on an available hardware
interrupt, i.e., on one of the timers, Timer 0, 222A, Timer 1,
222B, or Timer 2, 222C in an available HPET timer 218.
Registering the timer ISR initiates the connection between
the calling application 102A, 102B, and the hardware inter-
rupt timer 108.

In one embodiment, the hardware-dependent logic 500
continues at process block 504 by inserting (also referred to
as embedding or wrapping) the application ISR into the
timer ISR. For example, as described with reference to
FIGS. 2 and 3, the HAL routine 302 (reference 212 in FIG.
2) set interrupt timer process 304 (reference 214 in FIG. 2)
inserts the application ISR 308 (reference 206 in FIG. 2) into
the timer ISR 306 (reference 216 in FIG. 2).

In one embodiment, the hardware-dependent logic 500
continues at process block 506 by setting the hardware
interrupt timer 108 to an aperiodic mode or periodic mode,
depending on the mode that was specified in the parameters
passed by the calling application 102A, 102B. Setting the
timer 108 to the periodic mode will cause the timer to
generate an interrupt at regular time intervals, as indicated in
the interval specified in the parameters, e.g. parameters 204.
Setting the timer 108 to the aperiodic mode will cause the
timer 108 to generate just one interrupt, based on the interval
specified in the parameters.

In one embodiment, the hardware-dependent logic 500
continues at process block 508 to update the hardware
interrupt timer 108 with the actual expiration time. The
actual expiration time will be determined by the interval that
was specified in the parameters passed by the calling appli-
cation 102A, 102B. As such, the interval represents a
relative time at which the timer 108 will expire, and the
actual time depends on the current clock time, also referred
to as the current system time of the computing device in
which the hardware interrupt timer resides. In a typical
embodiment, at process block 508 the specified interval is
added to the current system time to obtain the actual
expiration time. When the timer system 100 is being imple-
mented in a device using an HPET timer 218, the actual
expiration time is written to the comparator register 222
corresponding to the timer, Timer 0, 222A, Timer 1, 222B,
or Timer 2, 222C, on which the timer ISR 216 was registered
in process block 502. In one embodiment, at process block
508, the actual expiration time may be optionally written to
an area of application managed memory, such as memory

US 7,383,460 B2

9

224 in FIG. 2, the location of which is determined by a
pointer or other information specified in the parameters
passed by the calling application 102A, 102B. This enables
the calling application 102A, 102B to have access to the
actual expiration time of the timer with which a connection
has been established.

The hardware-dependent logic 500 continues at process
block 510 to initiate the timer ISR (and embedded applica-
tion ISR, if any), upon expiration of the timer 108. The
processes in process blocks 508 and 510 are repeated when
the timer is set to periodic mode, incrementing the actual
expiration time by the time in the specified interval until, at
termination process 512, the application terminates the
connection that was established with the timer 108, or the
timer otherwise stops operating.

In one embodiment, the appropriate error messages
referred to in FIGS. 4 and 5 may include, but are not limited
to, an insufficient resources message indicating that another
application ISR may have already registered with the API, a
hardware timer not supported message indicating that suit-
able hardware interrupt timers are not present in the com-
puting device, and an invalid parameter message indicating
that one or more parameters 204 are invalid, or the combi-
nation of parameters is invalid.

FIGS. 6A and 6B illustrate further details of an example
implementation 600 of a timer system 100. In particular,
FIG. 6A is a block diagram illustrating certain aspects of a
hardware-independent application programming interface
for implementing an embodiment of the present invention.
As shown, a calling application 602 contains a call 604 to a
kernel mode routine 608 having a set interrupt timer API
610. Passed in the call 604 are one or more parameters 606,
including an interrupt service routine pointer 606A that
points to an application-provided ISR to be run upon expi-
ration of the timer, an IRQL 606B that specifies the request
level at which the application-provided ISR is to operate, an
interval 606C, that specifies a unit of time after which the
timer should expire, a mode 606D, that specifies whether the
timer should operate in periodic or aperiodic mode, a time
pointer 606E, that specifies the location in application-
managed memory in which the actual time that the timer is
set to expire is to be written, and another pointer 606F to
application managed memory associated with the interrupt
service routine pointer 606A. Other additional parameters
606G may be passed in the call 604 depending on the
implementation. For example, in some implementations, the
calling application 602 may specify a value representing the
set of processors on which device interrupts can occur. As
another example, in some implementations, the calling
application 602 may specify yet another pointer to an area in
application managed memory that represents a service con-
text that will be supplied to the application-provided ISR
when executed upon expiration of the timer.

In FIG. 6B, the kernel mode routine 608 having a set
interrupt timer API 610 further includes a call 612 to a
hardware application layer (HAL) routine 616 having its
own set interrupt timer API 618. The HAL set interrupt timer
API 618 receives the validated parameters 614 passed by the
call 612 from the kernel mode routine. The validated param-
eters 614 correspond to the parameters 606 passed by the
calling application 602, and include an interrupt service
routine pointer 614A that points to an application-provided
ISR to be run upon expiration of the timer, an IRQL 614B
that specifies the request level at which the application-
provided ISR 1is to operate, an interval 614C, that specifies
a unit of time after which the timer should expire, a mode
614D, that specifies whether the timer should operate in

10

15

20

25

30

35

40

45

50

55

60

65

10

periodic or aperiodic mode, a time pointer 614E, that
specifies the location in application-managed memory in
which the actual time that the timer is set to expire is to be
written, another pointer 614F to application managed
memory associated with the interrupt service routine pointer
614A, and other additional parameters 614G relayed by the
call 612.

As noted earlier, there are several scenarios in which the
above-described timer system 100 may be particularly use-
ful, including processor power management testing, device
simulation, system timer testing, and to quantify the relative
load of interrupts currently being serviced at a particular
IRQL.

For example, in the processor power management testing
scenario, a processor in the relatively light C1 idle state will
resume to CO more quickly than it will from the deeper C2
idle state; likewise for C3 and C4. The deeper the idle state,
the more power savings, but the higher the exit latency.
Since an interrupt returns the processor to the C0 running
state, it may be possible to determine which processor idle
state a processor is in based on the relative latency in
servicing that interrupt, i.e., the exit latency. To calculate the
exit latency, a calling timer application 102A calls the set
interrupt timer APIs 610, 618, to the HPET timer to specify
an interval to generate an interrupt at time T1, and then
queries the HPET timer’s up counter at time T2 in the timer
application ISR associated with that interrupt. The exit
latency equals time T1 subtracted from time T2.

In the device simulation scenario, a device simulator
would ordinarily need to usurp all of the capacity of one
CPU to successtully simulate a device in a multi-processor
system. However, using the functionality of the set interrupt
timer APIs 610, 618 to perform periodic processing at a very
high resolution at a nearly guaranteed rate allows the simu-
lation to run instead on an UP processor system. An example
is the simulation of USB isochronous data transfers used for
streaming video and audio. A real USB 2.0 controller is
equipped with a processor that polls a shared-memory
structure every 125 micro-seconds to check for data that
needs to be moved. A calling application simulates the
polling of the shared-memory using the set interrupt timer
APIs 610, 618 to generate an interrupt and poll the memory
at a rate that is very close to the real controller without
usurping the processor.

As already discussed, in the system timer testing scenario,
testing is difficult in a system operating Microsoft Windows
NT, because timers are never guaranteed to expire at a
specific time, but rather are guaranteed not to expire before
a specific time. Also, there are no APIs to determine which
timers are in use on a given system. By using the set
interrupt timer APIs 610, 618 to generate a non-shared
hardware interrupt to drive an application ISR, the system
timer test routines may provide a higher degree of assurance
that the timer will expire at the specific time that the calling
application intended. This is because hardware interrupts are
generally serviced with much less latency than the software
deferred procedure calls used in the kernel mode architec-
ture. Furthermore, hardware interrupts are not directly tied
to the processing load of a system, allowing more aggressive
testing of hardware timers and measuring software latencies.

In the scenario of quantifying the relative load of inter-
rupts currently being serviced at a particular IRQL, the set
interrupt timer APIs 610, 618 may be used to observe trends
in interrupt latency over long periods of time. Possible
consumers for this information include: test tools, stress
scenarios, performance calculations, scheduling algorithms,
and power state transition algorithms.

US 7,383,460 B2

11

The foregoing discussion has been intended to provide a
brief, general description of a computing system suitable for
implementing various features of the invention. Although
described in the general context of a personal computer,
those skilled in the art will appreciate that the invention may
be practiced with many other computer system configura-
tions. For example, the invention may be practiced with a
personal computer operating in a standalone environment, or
with multiprocessor systems, minicomputers, mainframe
computers, and the like. In addition, those skilled in the art
will recognize that the invention may be practiced on other
kinds of computing devices including laptop computers,
tablet computers, personal digital assistants (PDA), or any
device upon which computer software or other digital con-
tent is installed.

For the sake of convenience, some of the description of
the computing system suitable for implementing various
features of the invention included references to the Windows
NT operating system. However, those skilled in the art will
recognize that those references are only illustrative and do
not serve to limit the general application of the invention.
For example, the invention may be practiced in the context
of other operating systems such as the LINUX or UNIX
operating systems.

Certain aspects of the invention have been described in
terms of programs executed or accessed by an operating
system in conjunction with a personal computer. However,
those skilled in the art will recognize that those aspects also
may be implemented in combination with various other
types of program modules or data structures. Generally,
program modules and data structures include routines, sub-
routines, programs, subprograms, methods, interfaces, pro-
cesses, procedures, functions, components, schema, etc.,
that perform particular tasks or implement particular abstract
data types.

The embodiments of the invention in which an exclusive
property or privilege is claimed are defined as follows:
1. A method for configuring a timer in a computing
device, the method comprising:
receiving a request from an application to set a hardware
interrupt timer, the application including:

(a) a process that causes said request to be sent to a
kernel mode routine having a first set interrupt timer
application programming interface (API) capable of
receiving said request,

(b) an application managed memory, and

(c) an application interrupt service routine to be run
upon expiration of the hardware interrupt timer, said
request including a parameter chosen from the group
comprising:

(1) a mode in which the hardware interrupt timer is
requested to operate;

(i) an interval;

(iii) a reference to an area of the application managed
memory in which a hardware-dependent process
is to store a value representing an actual time at
which the hardware interrupt timer has been set to
expire in accordance with the validated request,
and

(iv) an interrupt request level at which the applica-
tion interrupt service routine should execute;

validating the request in a hardware-independent process,
said hardware-independent process comprising the ker-
nel mode routine having the first set interrupt timer

API, wherein validating the request includes validating

15

20

35

40

45

55

60

12

the parameter included in the request and veritying that
the application is authorized to set the hardware inter-
rupt timer;

relaying the validated request to the hardware-dependent
process, the hardware-dependent process comprising:
(a) a timer interrupt service routine containing logic to

set an expiration time and the application interrupt
service routine, and a second set interrupt timer API
corresponding to the first set interrupt timer API;
setting the hardware interrupt timer in the hardware-
dependent process to expire in accordance with the
validated request, wherein setting the hardware inter-
rupt timer comprises storing the expiration time in the
hardware interrupt timer and storing the expiration time
in the area of the application managed memory;
inserting the application interrupt service routine in the
timer interrupt service routine scheduled to execute
upon expiration of the timer; and

returning control to the application when execution of the
timer interrupt service routine and the inserted appli-
cation interrupt service routine is complete.

2. The method of claim 1, wherein the group of param-
eters also includes arm interval representing a period of time
after which the hardware interrupt timer is requested to
expire, and wherein validating the request includes deter-
mining that the interval is of substantially sufficient duration
to set the hardware interrupt timer.

3. The method of claim 1, wherein validating the request
includes determining that the mode is one of periodic and
aperiodic.

4. The method of claim 1, wherein the group of param-
eters also includes a parameter that specifies an application
interrupt service routine that is to be executed upon expira-
tion of the hardware interrupt timer, and wherein validating
the request includes determining that the application inter-
rupt service routine is properly registered.

5. The method of claim 4, wherein the group of param-
eters also includes a parameter that specifies a device object,
and wherein validating the request includes determining that
the application service routine corresponds to the device
object.

6. The method of claim 4, wherein setting the hardware
interrupt timer includes registering a timer service routine to
be executed upon expiration of the hardware interrupt timer,
the timer service routine being modified to run the applica-
tion service routine.

7. A system to configure a timer in a computing device,
the system comprising:

a timer substantially guaranteed to expire at a time

certain;

a hardware-independent interface to the timer, wherein
the hardware-independent interface is a kernel mode
routine having a set interrupt timer application pro-
gramming interface (API) for receiving parameters
associated with a request from the application to set the
timer, and validating the request, wherein validating the
request includes validating the parameters by the hard-
ware-independent interface;

a hardware-dependent interface to the timer; and

a processor in which the hardware-independent interface
operates to validate a request from an application to set
the timer and to relay the validated request to the
hardware-dependent process, and further in which the
hardware-dependent interface operates to set the timer
to expire in accordance with the validated request and
to execute a timer interrupt service routine upon expi-
ration of the timer.

US 7,383,460 B2

13

8. The system of claim 7, wherein the timer is a high
precision event timer (HPET).

9. The system of claim 8, wherein the hardware-depen-
dent interface operates to set the timer by writing an actual
time at which the HPET should expire to a comparator
register associated with the HPET, the actual tune being
determined by the hardware-dependent interface in accor-
dance with the validated request.

10. The system of claim 7, wherein the parameters specify
an interval representing a period of time after which the
hardware interrupt timer is requested to expire, and wherein
the processor operates to validate the request by determining
that the interval is of substantially sufficient duration to set
the timer.

11. The system of claim 7, wherein the parameters specify
a mode in which the timer is requested to operate, and
wherein the processor operates to validate the request by
determining that the mode is one of periodic and aperiodic.

12. The system of claim 7, wherein the hardware-depen-
dent interface is a hardware application layer (HAL) routine
having an interface to receive the validated parameters
associated with the request relayed from the hardware-
independent interface.

13. The system of claim 7, wherein the hardware-depen-
dent interface further operates to execute an application
service routine upon expiration of the timer.

14. A computer-accessible medium having instructions
for setting a timer in a computing device when executed by
a processor included in said computing device, the instruc-
tions comprising:

a hardware-independent process to:

(a) receive a request from an application to set a timer
in the computing device, the timer being substan-

10

15

20

14

tially guaranteed to expire at a time certain; wherein

said request contains at least one parameter, the at

least one parameter chosen from the group compris-
ing:

(i) a mode in which the hardware interrupt timer is
requested to operate;

(i1) an interval;

(iii) a reference to an area of the application managed
memory in which a hardware-dependent process
is to store-a value representing an actual, time at
which the hardware interrupt timer has been set to
expire in accordance with the validated request,
and

(iv) an interrupt request level at which the applica-
tion interrupt service routine should execute;

(b) determine whether the application is privileged to
make the request;

(c) validate parameters associated with the request; and

a hardware-dependent process to set the timer to expire in

accordance with the validated parameters.

15. The computer-accessible medium of claim 14,
wherein the instructions comprising the hardware-dependent
process further include instructions to:

insert an application service routine in a timer service

routine scheduled to execute upon expiration of the
timer; and

return control to the application when execution of the

timer service routine and inserted application service
routine is complete.

	EXHIBIT cover sheets.pdf
	US7383460
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

