

GROUP EXHIBIT R

Motorola Mobility, Inc. v. Microsoft Corporation Doc. 74 Att. 18

Dockets.Justia.com

http://dockets.justia.com/docket/florida/flsdce/1:2010cv24063/368653/
http://docs.justia.com/cases/federal/district-courts/florida/flsdce/1:2010cv24063/368653/74/18.html
http://dockets.justia.com/

(12) United States Patent
Shell et ai.

(54) LOADING STATUS IN A HYPERMEDIA
BROWSER HAVING A LIMITED AVAILABLE
DISPLAY AREA

(75)

(73)

(*)

Inventors: Scott R. Shell; Kevin Timothy
Shields, both of Redmond; Anthony
Kitowitz, Kirkland, all of WA (US)

Assignee: Microsoft Corporation, Redmond, WA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

(21) Appl. No.: 08/851,877

(22) Filed: May 6, 1997

(51) Int. CI? .. G06F 17/00
(52) U.S. CI. .. 707/526; 707/102
(58) Field of Search 707/1-576; 345/24-440

(56) References Cited

U.S. PATENT DOCUMENTS

4,266,253 A * 5/1981 Matherat 345/24
5,467,459 A * 11/1995 Alexander et al. 345/514
5,731,813 A * 3/1998 O'Rourke et al. 345/349
5,760,771 A * 6/1998 Blonder et al. 345/302
5,774,666 A * 6/1998 Portuesi 709/218
5,877,766 A * 3/1999 Bates et al. 345/357
5,973,692 A * 10/1999 Knowlton et al. 345/348
5,983,005 A * 11/1999 Monteiro et al. 709/231

56

54

file .Edit ~iew F~yorites

Welcome to Microsoft Pocket Internet
E)(plorer for Microsoffil Windows@ CEo

111111 111
US006339780Bl

(10) Patent No.:
(45) Date of Patent:

US 6,339,780 BI
Jan. 15,2002

6,101,510 A * 8/2000 Stone et al. 707/513

OTHER PUBLICATIONS

Smallman et al. "Information availability in 2D and 3D
displays", IEEE Computer Graphics and Applications, vol.
21 Issue 5, Sep./Oct. 2001, pp. 51-57.*
Hu et aI., "Parameterizable fonts based on shape compo­
nents", IEEE Computer Graphics and Applications, vol. 21
Issue 3, May/lun. 2001, pp. 70-85.*
Liu et aI., "Web-based peer review: the learner as both
adapter and reviewer", Education, IEEE Transactions on,
vol. 44 Issue 3, Aug. 2001, pp. 246-251. *
www.sciam.com/200/1100issue/1100stjohnbox1.html.*

* cited by examiner

Primary Examiner-Thomas Black
Assistant Examiner-David lung
(74) Attorney, Agent, or Firm~ee & Hayes, PLLC

(57) ABSTRACT

Described herein is a portable computer having a limited
display area. An Internet or other hypermedia browser
executes on the portable computer to load and display
content in a content viewing area. During times when the
browser is loading content, the browser displays a
temporary, animated graphic element over the content view­
ing area. The graphic element is removed after the content
is loaded, allowing unobstructed viewing of the loaded
content.

42 Claims, 3 Drawing Sheets

r- 50 ,..

• Microsoft Windows
CE Home Page
Web Tutorial

Optimized for

'11~,~r;E @

62

Copyright© 1 996 Microsoft Corporation

iijis~li!l~;"~:,,ft~-"":J J
54~

u.s. Patent Jan. 15,2002 Sheet 1 of 3 US 6,339,780 BI

~-20

7

~24
i--"-----.-----~--~~~~~~~~~~~~~_____!

---1
~======~-=-========================~~

32 -
~~/--7L=::7~~~~

~ ~ L=::7 L::.7 ~7 L=::7 ~ L::.7

22
'----~~~~~-------

30 L 26

u.s. Patent Jan. 15,2002 Sheet 2 of 3 US 6,339,780 BI

40~
~-~~-~

Processor

-20
_~ ____ L

~----,~42 'I,
Memory

I

(Operating '\
System

'" ~

44

49

Display With
Touch Screen

r----------- \ !

r Hypermedia / ~------~\
i Browser v
\,"--_. _________ J

28 r----.----------------}
I\. Keyboard

32..-/1

file .Edil '{iew F~YOliles

'H' .'
56

o;~'" ,~,

• Microsoft Windows __ ,,'.,., __ """_,,-__..

54------.

Welcome to Microsoft Pocket Internet
E)(plorer for Microsoft® Windows@ CE.

CE Home Page
• Web Tutorial

r~~~---~~------"

: Optimized for

I Microsoft· @
t Pocket IE ,

Copyright © 1996 Microsoft Corporation

64

- 62

u.s. Patent Jan. 15,2002 Sheet 3 of 3 US 6,339,780 BI

56

54

59 58~\

'"
;- 60

/
1L...::,E_ile---c_=-E d_it---c~=-i_ew __ F=-~v_o_ri_te--..Js!~II{j]l~1 :[4'm

Welcome to Microsoft Pocket Internet
E)(plorer for Microsofttll Windows@ CEo

• Microsoft Windows
CE Home Page

• Web Tutorial

rm 0 0 0 d f r phmlze or

i M icc os oW (jjj) i Pocket IE '.

CopytOight© 1996 Microsoft Corporation

62

US 6,339,780 Bl
1

LOADING STATUS IN A HYPERMEDIA
BROWSER HAVING A LIMITED AVAILABLE

DISPLAY AREA

2
cases involving long delays, users might be inclined to
believe that their browsers have become inoperative. To
avoid this situation, browsers typically include some type of
status display indicating progress in loading content. In

TECHNI CAL FIELD

This invention relates hypermedia content browsers such
as World Wide Web browsers.

BACKGROUND OF THE INVENTION

5 many browsers, this consists of a stationary icon such as a
flag or globe that becomes animated during periods when
content is being loaded. For instance, such an icon might
comprise a flag that is normally stationary but that flutters or
waves during content loading. An icon such as this is

"Hypermedia" is a metaphor for presenting information in
which text, images, sounds, and actions become linked
together in a complex, non-sequential web of associations
that permit a user to browse through related content and
topics, regardless of the presented order of the topics. The
term "hypermedia" arises from the similar term "hypertext,"
which was originally coined to describe the linked text­
based documents.

10 positioned in a tool area or status area outside of the content
viewing area. The icon is visible at all times, but is animated
only when content is being loaded.

One very recent development relating to this subject is the
emergence of a number of popular, small, handheld com-

15 puting devices that potentially support Internet browsing.

Hypermedia content is widely used for navigation and
information dissemination on the "World-Wide Web" 20

(WWW or Web) of the Internet. An application program
referred to as a hypermedia browser, hypertext browser,
"Web browser" is normally used to retrieve and render
hypermedia content from the WWW, although such a
browser is also useful for browsing hyperlinked content 25

from other sources.

Hypermedia content is commonly organized as docu­
ments with embedded control information. The embedded
control information includes formatting specifications, indi­
cating how a document is to be rendered by the Web 30

browser. In addition, such control information can include
links or "hyperlinks": symbols or instructions telling the
Web browser where to find other related WWW documents.
A hyperlink from one hypermedia topic to another is nor­
mally established by the author of a hypermedia document, 35

although some applications allow users to insert hyperlinks
to desired topics.

A hyperlink is typically rendered by a Web browser as a
graphical icon or as highlighted keywords. A user "acti- 40

vates" or "follows" a hyperlink by clicking on or otherwise
selecting the icon or highlighted keywords. Activating a link
causes the Web browser to load and render the document or
resource that is targeted by the hyperlink.

Hyperlink usage is not limited to the Internet. Various 45

multimedia applications and other hypermedia resources
utilize hypertext to allow users to navigate through different
pieces of information content. For instance, an encyclopedia
program might use hyperlinks to provide cross-references to
related articles within an electronic encyclopedia. The same 50

program might also use hyperlinks to specify remote infor­
mation resources such as WWW documents.

Hypermedia browsers have evolved in recent years and
are available from several sources. Microsoft's Internet
Explorer is one example of a popular browser that is 55

particularly suitable for browsing the WWW and other
similar network resources. Browsers such as the Internet
Explorer typically have a content viewing area or window,
in which textual or other graphical content is displayed.
Browser controls such as menus, status displays, and tool 60

icons are located in areas or windows adjacent the viewing
area, so that they do not obstruct or interfere with the
viewing area.

One persistent characteristic of WWW browsing is that
significant delays are often encountered when loading docu- 65

ments and other multimedia content. From the user's
perspective, such delays can be quite frustrating. In severe

These include palmtops, pocket computers, personal digital
assistants, personal organizers, and the like. In this
disclosure, this class of computing devices is generally
referred to as "handheld personal computers", "handheld
PCs", or "H/PCs".

One of the most desirable characteristics of H/PCs is their
portability. The compact, portable H/PCs provide a user with
real computer-like applications-such as email, PIM
(personal information management), spreadsheet, and word
processing. Hypermedia browsers are among the application
programs available for H/PCs. A traveling user can receive
email messages, schedule meetings or appointments, and
browse the Internet from the H/Pe.

To keep H/PCs small, compromises are of course neces­
sary. Chief among the design compromises is an undersized
display. Screen space is very limited. Traditional user inter­
face techniques which users are accustomed to on desktop
computers are not available for H/PC displays due to the
limited size. Additionally, the screen must be efficiently
utilized to enable effective data input from the stylus.

With a hypermedia or Internet browser, in particular, there
may not be room enough on the available display to imple­
ment an animated status display such as described above.

The inventors, however, have developed a method of
implementing a status display even within the limited dis­
play areas available on popular H/PCs.

SUMMARY OF THE INVENTION

In accordance with the invention, a browser has a content
viewing area that is used for displaying graphical hyperme­
dia content. A temporary, animated graphic element is
presented in a corner of the content viewing area during
times when the browser is loading content. The graphic
element is not displayed during any other times.

BRIEF DESCRIPTION OF THE DRAWINGS

The same reference numbers are used throughout the
drawings to reference like components and features.

FIG. 1 is a perspective view of a handheld computing
device in an open position.

FIG. 2 is a block diagram of the handheld computing
device.

FIGS. 3 and 4 are illustrations of displays generated by a
hypermedia browser in accordance with the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 shows a handheld computing device 20. As used
herein, "handheld computing device" means a small com-

US 6,339,780 Bl
3

puting device having a processing unit that is capable of
running one or more application programs, a display, and an
input mechanism such as a keypad, a touch-sensitive screen,

4
embodiments, the browser might be stored on a portable or
removable type of computer-readable storage medium such
as a floppy disk or EPROM (eraseable read-only memory).
As used here, the term "hypermedia browser" refers to an a track ball, a touch-sensitive pad, a miniaturized QWERTY

keyboard, or the like. 5 application or application program that is capable of dis­
playing or otherwise rendering hypermedia content and of
loading additional or alternative hypermedia content in
response to a user's selection of hyperlinks.

The handheld computing device 20 is embodied as a
handheld personal computer. The terms "handheld comput­
ing device" and "handheld personal computer" (or handheld
PC or H/PC) are used interchangeably throughout this
disclosure. However, in other implementations, the hand- 10

held computing device may be implemented as a personal
digital assistant (PDA), a personal organizer, a palmtop
computer, a computerized notepad, or the like. The invention
can also be implemented in other types of computers and
computer-like or computer-controlled devices having 15

graphical display surfaces.

Handheld computing device 20 has a casing 22 with a
cover or lid 24 and a base 26. A liquid crystal display (LCD)

Browser 48 has access to a hypermedia resource 49.
Often, this resource will be the Internet. However, other
sources of hyperlinked content are frequently available and
can be efficiently browsed in accordance with the invention.
Computer 20 includes a network interface or modem (not
shown) for accessing the hypermedia resource.

FIG. 3 shows an example of a graphical display 50
generated by a hypermedia browser 48 in conjunction with
operating system 44. The display includes a number of
elements that are generated by making appropriate system
calls to the operating system in accordance with well-known 28 with a touch-sensitive screen is mounted to lid 24. Lid 24

is hinged to base 26 to pivot between an open position,
which exposes display 28, and a closed position, which
protects the display. The device is equipped with a stylus 30
to enter data through touchscreen display 28 and a miniature
QWERTY keyboard 32. Stylus 30 and keyboard 32 are both
mounted in base 26. Although the illustrated implementation
shows a two-member H/PC 20 with a lid 24 and a base 26,
other implementations of the H/PC might comprise an
integrated body without hinged components, as is the case
with computerized notepads (e.g., Newton® from Apple
Computers).

20 protocols. Specifically, Windows® CE supports a subset of
the Win32 API set used in the Windows® 95 operating
system. These APIs allow an application program to create
a variety of on-screen controls with minimal effort.

In this case, the graphical display 50 includes a taskbar 52
25 presented by the Windows® CE operating system. Browser

48 presents a main window 54, above taskbar 52. Browser
main window 54 in this example has three primary compo­
nents. The largest screen area is dedicated to a content
viewing area 56. This is the area in which graphical hyper-

30 media content is displayed.

Content viewing area 56 is bordered along its upper edge
by a toolbar 58. Toolbar 58 is similar in appearance to
toolbars used in other application programs designed for the
Windows® operating environment, with some characteris­
tics that are unique to the Windows® CE environment. One
characteristic that is unique to Windows® CE is that the
toolbar includes both a menu area 59 and an icon area 60. In

FIG. 2 shows functional components of the handheld
computing device. It has a processor 40, a computer­
readable storage medium or memory 42, a display 28, and a
keyboard 32. Memory 42 generally includes both volatile 35

memory (e.g., RAM) and non-volatile memory (e.g., ROM,
PCMCIA cards, etc.). The H/PC 20 has a power supply 46
that supplies power to the electronic components. The power
supply 46 is preferably implemented as one or more batter­
ies. The power supply 46 might further represent an external
power source that overrides or recharges the built-in
batteries, such as an AC adapter or a powered docking
cradle.

previous versions of Windows®, these features were pre-
40 sen ted within their own distinct areas. Another Windows®

CE characteristic is that the toolbar is located on what would
have been the "title bar" of previous Windows® application
programs. The toolbar thus includes an "X" icon 61 that is
used to close the browser application. In previous versions

45 of Windows®, the toolbar would have been below or
otherwise separate from the title bar.

An operating system program 44 is resident in the
memory 42 and executes on the processor 40. The operating
system 44 is a multitasking operating system that allows
simultaneous execution of multiple applications. The oper­
ating system employs a graphical user interface windowing
environment that presents applications and documents in
specially delineated areas of the display screen called "win- 50

dows." Each window can act independently, including its
own menu, toolbar, pointers, and other controls, as if it were

A scroll bar 62 borders content viewing area 56 along its
right side. Scroll bar 62 is used to vertically scroll the
content that is presented in content viewing area 56.

In contrast to prior art hypermedia browsers, browser 48
does not include a permanent "loading status" icon. In fact,
no portion of main window 54 is dedicated permanently to
displaying loading status. Rather, the browser is configured
to display a temporary graphic element 64 over content

a virtual display device. The handheld computing device
may be implemented with other types of operating systems
that support a graphical user interface. 55 viewing area 56 during times when the browser is loading

content. This temporary graphic element is preferably ani­
mated (such as the waving Microsoft® flag shown), and is
displayed only when the browser is loading content. It is

The operating system 44 is preferably the Windows® CE
operating system from Microsoft Corporation that is con­
figured to execute application programs such as application
program 48 shown in FIG. 2. The Windows® CE operating
system is a derivative of Windows® brand operating 60

systems, such as Windows® 95, that is especially designed
for handheld computing devices having limited display
areas.

In the described embodiment of the invention, application
program 48 is an Internet or other hypermedia browser. The
browser is stored as a sequence of program instructions in
memory 42, for execution by processor 40. In other

removed when the browser is not loading content. FIG. 4
shows display 50 after content has been loaded, during a
period when no additional content is being loaded. Graphic
element 64 has been removed in FIG. 4 because the current
Internet page has been completely loaded.

The temporary graphic element is preferably located in a
65 corner of the content viewing area, and obstructs a portion

of the viewing area. The upper right corner is preferred
because this position is often blank in Internet documents.

US 6,339,780 Bl
5

The graphic element is created by opening a conventional
window in conjunction with the Window® CE windowing
operating environment.

This method of displaying loading status achieves the
objective of alerting users during periods of time when 5
content is actually being loaded. It does this without requir­
ing a permanent allocation of screen real estate, thus freeing
space for other functions. Although there might be some
obstruction of hypermedia content, such obstruction is
minor and temporary. 10

The invention has been described primarily in terms of its
visual and functional characteristics. However, the invention
also includes a method of browsing a hyperlink resource
such as the Internet or some other network or data source
having linked hypermedia content. The method includes a 15

steps of loading content from the hyperlink resource in
response to user selection of hyperlinks contained in said
content, and of displaying the content in a content viewing
area. The invention also includes a step of displaying a
temporary graphic element over the content viewing area 20

during the loading step. The temporary graphic element is
removed when content is no longer being loaded.

Although the invention has been described in language
specific to structural features and/or methodological steps, it
is to be understood that the invention defined in the 25

appended claims is not necessarily limited to the specific
features or steps described. Rather, the specific features and
steps are disclosed as preferred forms of implementing the
claimed invention.

What is claimed is: 30
1. A hypermedia browser embodied on a computer­

readable medium for execution on an information process­
ing device having a limited display area, wherein the hyper­
media browser has a content viewing area for viewing
content and is configured to display a temporary graphic 35

element over the content viewing area during times when the
browser is loading content, wherein the temporary graphic
element is positioned over the content viewing area to
obstruct only part of the content in the content viewing area,
wherein the temporary graphic element is not content and 40

wherein content comprises data for presentation which is
from a source external to the browser.

2. A hypermedia browser as recited in claim 1, wherein
the browser is configured to display the temporary graphic
element over the content viewing area only during times 45

when the browser is loading visible content.
3. A hypermedia browser as recited in claim 1, wherein

the temporary graphic clement indicates to a user that the
browser is loading content.

4. A hypermedia browser as recited in claim 1, wherein 50

the temporary graphic element disappears when the brows­
er's loading of content is complete to indicate to a user that
such loading of content is complete.

6
9. A hypermedia browser as recited in claim 1, wherein

the temporary graphic element conveys status information of
the browser.

10. A hypermedia browser of claim 1, wherein content is
data formatted for presentation which is selected from a
group consisting of visible effects of a markup language,
visible text of such a markup language, and visible results of
a scripting language.

11. A hypermedia browser of claim 1, wherein content is
data formatted for presentation which is selected from a
group consisting of HTML, text, SGML, XML, java,
XHTML, JavaScript, streaming video, VRML, Active X,
Flash. scripting language for the world wide web.

12. An information processing device comprising:
a processor;
a display;
a hypermedia browser executing on the processor to load

and display content in a content viewing area on the
display;

wherein the hypermedia browser displays a temporary
graphic element over the content viewing area during
times when the browser is loading visible content;

wherein the temporary graphic element is positioned only
over a portion of the content viewing area and obstructs
only part of the visible content in the content viewing
area; and

wherein the temporary graphic element indicates to a user
that the browser is loading content and content com­
prises data for presentation which is from a source
external to the browser.

13. An information processing device as recited in claim
12, wherein the temporary graphic element is animated.

14. An information processing device as recited in claim
12, wherein the hypermedia browser displays the temporary
graphic element in a corner of the content viewing area.

15. An information processing device as recited in claim
12, wherein the hypermedia browser displays the temporary
graphic element within a temporary window in a windowing
operating environment.

16. An information processing device as recited in claim
12, wherein:

the temporary graphic element is animated; and
the hypermedia browser displays the temporary graphic

element within a temporary window in a windowing
operating environment.

17. A hypermedia browser of claim 12, wherein content is
data formatted for presentation which is selected from a
group consisting of visible effects of a markup language,
visible text of such a markup language, and visible results of
a scripting language.

18. A hypermedia browser of claim 12, wherein content is
data formatted for presentation which is selected from a
group consisting of HTML, text, SGML, XML, java,
XHTML, JavaScript, streaming video, VRML, Active X, 5. A hypermedia browser as recited in claim 1, wherein

the temporary graphic element is animated. 55 Flash. scripting language for the world wide web.
19. A method of browsing a hyperlink resource, compris­

ing the following steps:
6. A hypermedia browser as recited in claim 1, wherein

the hypermedia browser displays the temporary graphic
element in a corner of the content viewing area.

7. A hypermedia browser as recited in claim 1, wherein
the hypermedia browser presents the temporary graphic 60

element within a temporary window in a windowing oper­
ating environment.

8. A hypermedia browser as recited in claim 1, wherein:
the temporary graphic element is animated; and
the hypermedia browser presents the temporary graphic 65

element within a temporary window in a windowing
operating environment.

loading content from the hyperlink resource in response to
user selection of hyperlinks contained in said content;

displaying the content in a content viewing area;
displaying a temporary graphic element over the content

viewing area during the loading step, wherein the
temporary graphic element obstructs only part of the
content in the content viewing area;

wherein the loading, the content displaying, and the
temporary graphic element displaying steps occur at
least partially concurrently; and

US 6,339,780 Bl
7

wherein content comprises data for presentation which is
from a source external to the browser.

20. An information processing device as recited in claim
12, wherein the temporary graphic element is not content.

21. An information processing device as recited in claim
12, wherein the temporary graphic element disappears when
the browser's loading of content is complete to indicate to a
user that such loading of content is complete.

22. A method as recited in claim 19, wherein the tempo­
rary graphic element is not content.

23. A method as recited in claim 19, wherein the tempo­
rary graphic element indicates to a user that the loading step
is being performed.

24. A method as recited in claim 19, further comprising
removing the temporary graphic element once the loading
step is complete to indicate to a user that the loading step is
complete.

8
content viewing area that the graphic element obstructed
when the element was displayed.

34. A hypermedia browser of claim 32, wherein content is
data formatted for presentation which is selected from a

5 group consisting of visible effects of a markup language,
visible text of such a marh.'Up language, and visible results of
a scripting language.

35. A hypermedia browser of claim 32, wherein content is
data formatted for presentation which is selected from a

10 group consisting of HTML, text, SGML, XML, java,
XHTML, JavaScript, streaming video, VRML, Active X,
Flash. scripting language for the world wide web.

36. A computer-readable medium having computer­
executable instructions that, when executed by a computer,
perform a method of indicating a content "load status" of a

15 hypermedia browser having a content viewing area for
viewing content, the method comprising:

25. A method as recited in claim 19, further comprising an
additional step of animating the temporary graphic element.

26. A method as recited in claim 19, wherein the display- 20

ing step includes displaying the temporary graphic element

displaying loaded content within the content viewing area
of a screen of a hypermedia browser, the screen is
without a "load status" graphic element, wherein a
"load status" graphic element indicates a current con­
tent load status of the hypermedia browser; in a corner of the content viewing area.

27. A method as recited in claim 19, wherein the display­
ing step includes displaying the temporary graphic element
within a temporary window in a windowing operating 25

environment.
28. A method as recited in claim 19, further comprising an

additional step of animating the temporary graphic element,
wherein the displaying step includes displaying the tempo­
rary graphic element within a temporary window in a 30

windowing operating environment.
29. A computer-readable storage medium containing

instructions that are executable for performing the steps
recited in claim 19.

receiving an instruction to load new content into the
content viewing area;

loading such new content into the content viewing area;
and

while loading, displaying a "load status" graphic element
over the content viewing area so that the graphic
element obstructs only part of the content in such
content viewing area; and

wherein content comprises data for presentation which is
[rom a source external to the browser.

37. A hypermedia browser of claim 36, wherein content is
30. A hypermedia browser of claim 19, wherein content is

data formatted for presentation which is selected from a
group consisting of visible effects of a markup language,
visible text of such a markup language, and visible results of
a scripting language.

35 data formatted for presentation which is selected from a
group consisting of visible effects of a markup language,
visible text of such a markup language, and visible results of
a scripting language.

31. A hypermedia browser of claim 19, wherein content is
data formatted for presentation which is selected from a
group consisting of HTML, text, SGML, XML, java,
XHTML, JavaScript, streaming video, VRML, Active X,
Flash. scripting language for the world wide web.

32. A method of indicating a content "load status" of a
hypermedia browser having a content viewing area for
viewing content, the method comprising:

displaying loaded content within the content viewing area
of a screen of a hypermedia browser, the screen being
without a "load status" graphic element, wherein a
"load status" graphic element indicates a current con­
tent load status of the hypermedia browser;

receiving an instruction to load new content into the

38. A hypermedia browser of claim 36, wherein content is
40 data formatted for presentation which is selected from a

group consisting of HTML, text, SGML, XML, java,
XHTML, JavaScript, streaming video, VRML, Active X,
Flash. scripting language for the world wide web.

39. A computer-readable medium as recited in claim 36
45 further having additional computer-executable instructions

that perform a method comprising, upon completion of the
loading, removing the "load status" graphic element to
reveal the part of the content in the content viewing area that
the graphic element obstructed when the element was dis-

50 played.
40. An information processing device comprising:
a processor;
a display;

content viewing area; 55 a hypermedia browser executing on the processor to load
and display content in a content viewing area on the
display;

loading such new content into the content viewing area;
and

while loading, displaying a "load status" graphic element
over the content viewing area so that the graphic
element obstructs only part of the content in such 60

content viewing area; and

wherein content comprises data for presentation which is
from a source external to the browser.

33. A method as recited in claim 32 further comprising, 65

upon completion of the loading, removing the "load status"
graphic element to reveal the part of the content in the

wherein the hypermedia browser is configured to operate
in a content-loading mode and a content-loaded mode;

in the content-loaded mode, the hypermedia browser
displays loaded content in the content viewing area and
no "load status" graphic element is displayed, wherein
absence of such "load status" graphic element indicates
that the browser is in the content-loaded mode;

in the content-loading mode, the hypermedia browser
loads content, displays such content in the content

US 6,339,780 Bl
9

viewing area as it loads, and displays a "load status"
graphic element over the content view area obstructing
part of the content displayed in the content viewing
area, wherein presence of such "load status" graphic
element indicates that the browser is in the content- 5

loading mode; and

wherein content comprises data for presentation which is
from a source external to the browser.

41. A hypermedia browser of claim 40, wherein content is
data formatted for presentation which is selected from a

10
group consisting of visible effects of a markup language,
visible text of such a markup language, and visible results of
a scripting language.

42. A hypermedia browser of claim 40, wherein content is
data formatted for presentation which is selected from a
group consisting of HTML, text, SGML, XML, java,
XHTML, JavaScript, streaming video, VRML, Active X,
Flash. scripting language for the world wide web.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,339,780 Bl Page 1 of 1
DATED : January 15, 2002
INVENTOR(S) : Shell et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 5,
Line 15, change "steps" to -- step --.

Signed and Sealed this

Seventeenth Day of September, 2002

Attest:

JAMES E. ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

(12) United States Patent
Toepke et al.

(54) SOFT INPUT PANEL SYSTEM AND METHOD

(75) Inventors: Michael G. Toepke, Bellevue, WA (US);
Jeffrey R. Blum, Seattle, WA (US);
Kathryn L. Parker, Fall City, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

This patent is subject to a tenninal dis­
claimer.

(21) Appl. No.: 10/989,877

(22) Filed: Nov. 15, 2004

(65)

(63)

(51)

(52)

(58)

(56)

Prior Publication Data

US 2005/0088421 Al Apr. 28, 2005

Related U.S. Application Data

Continuation of application No. 10/072,111, filed on
Feb. 8, 2002, now Pat. No. 6,819,315.

Int. Cl.
G06F 31041 (2006.01)
U.S. Cl. 345/173; 3451179; 345/905;

715/825
Field of Classification Search 3451173,

3451179,347,762,156,901,905,87; 715/808,
715/825-829; 395/340

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

1011991 Lapeyre
711992 Kaehler

5,058,046 A
5,128,672 A
5,252,951 A 1011993 Tannenbaum et al.

(Continued)

.. ~
I .,.

MANAGER

.,
I..- IIMCaliback

111111 111

EP

US007411582B2

(10) Patent No.:
(45) Date of Patent:

US 7,411,582 B2
* Aug. 12, 2008

FOREIGN PATENT DOCUMENTS

0464712 111992

(Continued)

OTHER PUBLICATIONS

"Function-independent Approach to Driving Soft Keyboards," IBM
Technical Disclosure Bulletin, vol. 33, No.4, pp. 159-161 (Sep. 1,
1990).

(Continued)

Primary Examiner-Richard Hjerpe
Assistant Examiner-Kimnhung Nguyen

(57) ABSTRACT

A method and system for receiving user input data into a
computer system having a graphical windowing environ­
ment. A touch-sensitive display screen for displaying images
and detecting user activity is provided. A management com­
ponent connects to the graphical windowing environment to
create an input panel window for display on the screen. An
input method which may be a COM object is selected from
multiple input methods available, and installed such that the
input method can call functions of the management compo­
nent. Each input method includes a corresponding input
panel, such as a keyboard, which it draws in the input panel
window. When the user taps the screen at the input panel, the
input method calls a function of the management component
to pass corresponding input infonnation appropriate infonna­
tion such as a keystroke or character to the management
component. In response, the management component com­
municates the user data to the graphical windowing environ­
ment as a message, whereby an application program receives
the message as if the message was generated on a hardware
input device.

31 Claims, 8 Drawing Sheets

I HARDWARE 36
KEYBOARD

~
I KEYBOARD 6.

DRIVER

~
GRAPHICAL

~D WINDOWING
ENVIRONMENT _

I--

63 -.... IInputMethod

INPUT METHOD J .~ APPLICATIONS I--
I--

US 7,411,582 B2
Page 2

u.s. PATENT DOCUMENTS 6,094,197 A 7/2000 Buxton et al.

RE34,476 E 1211993 Norwood
5,276,794 A 111994 Lamb, Jr.
5,517,578 A 511996 Altman et al.
5,528,743 A 611996 Tou et al.
5,574,482 A 1111996 Niemeier
5,596,702 A 111997 Stucka et al. 395/40
5,644,339 A 711997 Mori et al. 345/173
5,748,512 A 511998 Vargas
5,760,773 A * 611998 Berman et al. 715/808
5,777,605 A 711998 Yoshinobu et al.
5,781,181 A 711998 Yanai et al.
5,818,425 A 1011998 Wantetal.
5,838,302 A 1111998 Kuriyama et al.
5,914,707 A * 611999 Kono 345/173
5,936,614 A 811999 An etal.
5,956,423 A 911999 Frink et al. 382/187
6,008,799 A 1211999 Van Kleeck
6,018,335 A 112000 Onley
6,031,525 A 212000 Perlin
6,069,628 A 5/2000 Farry et al. 345/348

JP
JP
JP
JP
WO

6,295,052 Bl 912001 Kato et al.
6,819,315 B2 * 1112004 Toepke et al. 345/173

FOREIGN PATENT DOCUMENTS

01-191226
06-324806

08-22385
08-328805

W09209944

8/1989
1111994

111996
12/1996
6/1992

OTHER PUBLICATIONS

"Soft Adaptive Follow-Finger Keyboard for Touch-Screen Pads,"
IBM Technical Disclosure Bulletin, vol. 36, No. 11, pp. 5-7, (Nov. 1,
1993).
Kano, Nadine, Developing International Software for Windows 95
and Windows NT, Chapter 7, Appendix N and Appendix 0, Microsoft
Press, pp. 202-229, 553-556, 557-563.
International Search Report in Corresponding PCT Application No.
PCTIUS98/26683.

* cited by examiner

System Memory

(RAM) 25

OPERATING 28 Processing 22 SYSTEM - Unit

APPLICATION
29 PROGRAMS -

OTHER PROGRAM
MODULES 30

PROGRAM 31
DATA -

(ROM) 24

I BIOS 26 I
FLASH
PORT

(SLOT)

OPERATING APPLICATION OTHER 30
SYSTEM PROGRAMS PROGRAM

28 29 MODULES

20
Touch

Sensitve
21

,DiSPlay

Video Driver

External
Devices

PROGRAM
DATA

31 F/G_ 1

32

33

Screen
Input

Detector

34

39

~
7Jl
•
~
~
~
~ = ~

~
~
N
~

N
o
o
QO

rFJ

=­('D
('D
o
QO

d
rJl
-....l
~

"""'"
"""'" 11.
QO
N

= N

u.s. Patent Aug. 12, 2008 Sheet 2 of8

61

58~

\

SIP
MANAGER

..

'-.. /~IMCalibaCk
63 '+ 'f IInputMethod

64

INPUT METHOD -
U 29

FIG. 2

US 7,411,582 B2

HARDWARE LJ36
KEYBOARD

-

KEYBOARD 62
DRIVER_~

GRAPHICAL
WINDOWING

ENVIRONMENT _-"-__

APPLICATIONS

60

u.s. Patent Aug. 12, 2008 Sheet 3 of8

SELECT
APPLICA TION

SET
FOCUS

SIP/1M
SELECTION

ACCEPT INPUT,

- - 300

302

- 304

US 7,411,582 B2

(PROCESS); - 306
PASS TO SIP MANAGER

VIA CALLBACK

1r

OS RECEIVES ""'------ 308
INPUT DATA

APPLICATION
RECEIVES DATA ..-- 310

FROM OS

FIG. 3

u.s. Patent

.! Q)
min
mo
0-
~(J

Aug. 12, 2008

:E
....
(J
Q) -Q)

0

"'C
S
(,)

:E.!
-Q)

t/)
Q)

C

.!!c enG)
CDC.
00
I-

Sheet 4 of8 US 7,411,582 B2

~
0"'C • ~Q) (!) .- In
~.2 ii: D.,0
0

u.s. Patent Aug. 12, 2008 Sheet 5 of8 US 7,411,582 B2

World Clock EJ0
Time Home Visiting Alarms

@ Seattle, WA. 0 Tokyo 68

6:00:37 PM I 11:00:37 PM I
6/20/97 I V I 6/21/97 I V I

32

Home Visiting

56 ~Start ~ B 12:28 PM

FIG. 5

u.s. Patent Aug. 12, 2008 Sheet 6 of8 US 7,411,582 B2

World Clock El0
Time Home Visiting Alarms

@ Seattle, WA. 0 Tokyo 68

6:00:37 PM I 11:00:37 PM I
6/20/97 IV I 6/21/97 IVI

32

Home Visiting

72 _ Keyboard
---r---l (I Handwriting

\) Grafti

56 ~Start ~ B 12:28 PM IO'6J

FIG. 6

u.s. Patent Aug. 12, 2008 Sheet 7 of8 US 7,411,582 B2

World Clock EJ0
Time Home Visiting Alarms

@ Seattle, WA. 0 Tokyo

6:00:37 PM I 11:00:37 PM I
6/20/97 I V I 6/21/97 I V I

68
32

50

56 Il. ~ B 12:28 PM

FIG. 7

u.s. Patent

808

CACHE SIP
CHANGE

Aug. 12, 2008 Sheet 8 of8

RECEIVE
WM_SETTINGCHANGE

MESSAGE

NO

810

CALL
SystemParameterslnfo(),

RECEIVE SIP STATE

ADJUST BASED ON
SIP STATE

FIG. 8

US 7,411,582 B2

800

812

US 7,411,582 B2
1

SOFT INPUT PANEL SYSTEM AND METHOD

CROSS-REFERENCE TOo RELATED
APPLICATION

This is a continuation of U.S. patent application Ser. No.
10/072,111 filed Feb. 8, 2002, which is a continuation of U.S.
patent application Ser. No. 08/991,277 filed Dec. 16, 1997.

FIELD OF THE INVENTION
10

2
OBJECTS AND SUMMARY OF THE

INVENTION

Accordingly, it is an object of the present invention to
provide an improved method system for entering user data
into a computer system.

Another object of the present invention is to provide the
method and system for user data entry that is both efficient
and flexible.

In accomplishing those objects, it is a related object to
provide a method and system of the above kind that functions
with touch-sensitive input mechanisms.

The invention relates generally to computer systems, and
more particularly to the input of data into a computer system.

Yet another object is to provide a method and system as
characterized above that enables a plurality of applications to

15 receive user input from a common input method.
BACKGROUND OF THE INVENTION

Small, mobile computing devices such as personal desktop
assistants including hand-held and palm-top computers and 20

the like are becoming important and popular user tools. In
general, they are becoming small enough to be extremely
convenient while consuming less and less battery power, and

A related object is to provide a method and system that
enables selection of one or more input methods for each
application from among a set of interchangeable input meth­
ods.

Yet another object is to provide such a method and system
that is cost-effective, reliable, extensible and simple to imple­
ment.

Briefly, the present invention provides a method and sys­
tem for receiving user data input into a computer system, such

at the same time becoming capable of running more and more
powerful applications.

Although such devices continue to shrink in size, size
limitations are being reached as a result of human limitations.
For example, a full character keyboard that enables user data
input carmot be so small that human fingers carmot depress
the individual keys thereon. As a result, the size of such
devices (e.g., palm -top computers) has become limited to that
which can accommodate a full character keyboard for an

25 as a computer system having a graphical windowing environ­
ment. The invention may utilize a touch-sensitive display
screen for displaying images and detecting user contact there­
with (or proximity thereto). A management component
operatively connected to the graphical windowing environ-

30 ment creates an input panel window for display on the screen.

average user.

An input method is selected from among a plurality of such
input methods and installed, whereby the input method can
call functions of the management component. Each input
method includes a corresponding input panel, such as a key-One solution to reducing the size of the portion of the

device that receives user input is to provide a touch-sensitive
display, and thereby substantially eliminate the need for a
physical keyboard. To this end, an application program such
as a word processor displays a keyboard, whereby the user
enters characters by touching the screen at locations corre­
sponding to the displayed keys. Of course, touch screen
devices can also be used simultaneously with devices having

35 board, which it draws in the input panel window. When user
data is received via the input panel, the input method calls a
function of the management component to pass the user data
thereto, and in response, the management component com­
municates the user data to the graphical windowing environ-

a physical keyboard, whereby characters can also be entered

40 ment such as in a windows message. An application program
receives the message, such as corresponding to a keystroke, as
if the message was generated on a hardware keyboard.

by manually pressing the keys of the physical keyboard.

While a touch-screen device serves to provide a suitable
means of user data entry, the data entry panel is typically part

Other objects and advantages will become apparent from
the following detailed description when taken in conjunction

45 with the drawings, in which:

of the application program, i.e., each application needs to
develop its own touch-sensitive interface. As a result, a sub­
stantial amount of duplication takes place. For example, both 50

the word processor and a spreadsheet program require alpha­
numeric keyboard input, whereby each provides its own
touch-screen keyboard interface. Other types of programs,
such as a calculator program, need a numeric keypad with
additional keys representing mathematical operations. This 55

makes each program larger, more complex and consumes
computer system resources.

Alternatively, the operating system can supply all the vir­
tual keyboards and thus eliminate the redundancy, however
this limits applications to using only those virtual keyboards 60

supplied by the operating system. Newer applications (e.g.,
those added by plug-in modules) are unable to provide an
input mechanism that is more tailored to its particular needs.
For example, a new paintbrush program may need its own
graphical input screen. In sum, there is a tradeoff between 65

flexibility and efficiency that is inherent with present user data
input mechanisms.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram representing a computer system
into which the present invention may be incorporated;

FIG. 2 is a block diagram representing various components
and connections therebetween for implementing inter­
changeable input panels according to an aspect of the present
invention;

FIG. 3 is a flow diagram generally representing a process
for getting user input from a selected input method to a
selected application in accordance with one aspect of the
present invention;

FIG. 4 is a state diagram generally representing SIP selec­
tion states;

FIG. 5 represents a display on a touch-sensitive display
screen on an exemplary computing device;

FIG. 6 represents a display on a touch-sensitive display
screen on an exemplary computing device providing the abil­
ity to select from among interchangeable input panels III

accordance with the present invention;

US 7,411,582 B2
3

FIG. 7 represents a display on a touch-sensitive display
screen wherein a keyboard has been selected as an input panel
in accordance with the present invention; and

FIG. 8 is a flow diagram representing the general steps
taken in response to a change in SIP status.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

4
as a parallel port, game port or universal serial bus (USB). The
hand-held device 20 may further include or be capable of
connecting to a flash card memory (not shown) through an
appropriate connection port (e.g., slot) 42 and interface 43. A
number of hardware buttons 44 such as switches, buttons
(e.g., for switching application) and the like may be further
provided to facilitate user operation of the device 20, and are
also connected to the system via a suitable interface 45. An
infrared port 46 and corresponding interface/driver 47 are

Exemplary Operating Environment
FIG. 1 and the following discussion are intended to provide

10 provided to facilitate communication with other peripheral
devices, including other computers, printers, and so on (not
shown). It will be appreciated that the various components
and connections shown are exemplary and other components
and means of establishing communications links may be

a brief, general description of a suitable computing environ­
ment in which the invention may be implemented. Although
not required, the invention will be described in the general
context of computer-executable instructions, such as program
modules, being executed by a hand-held computing device
such as a personal desktop assistant. Generally, program
modules include routines, programs, objects, components,
data structures and the like that perform particular tasks or 20

implement particular abstract data types.

15 used.

Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system con­
figurations, including palm-top, desktop or laptop personal
computers, mobile devices such as pagers and telephones, 25

multi-processor systems, microprocessor-based or program­
mable consumer electronics, network PCs, minicomputers,
mainframe computers and the like. The invention may also be
practiced in distributed computing environments where tasks
are perfonned by remote processing devices that are linked 30

through a communications network. In a distributed comput­
ing environment, program modules may be located in both
local and remote memory storage devices.

With reference to FIG. 1, an exemplary system for imple­
menting the invention includes a general purpose computing 35

device in the form of a hand-held personal computing device
20 or the like, including a processing unit 21, a system
memory 22, and a system bus 23 that couples various system
components including the system memory to the processing
unit 21. The system bus 23 may be any of several types of bus 40

structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes read-only
memory (ROM) 24 and random access memory (RAM) 25.A
basic input/output system 26 (BIOS), containing the basic 45

routines that help to transfer infonnation between elements
within the hand-held computer 20, such as during start-up, is
stored in the ROM 24.

Soft Input Panel
The soft input panel architecture is primarily designed to

enable character, key-based and other user data input via the
touch screen 32 of the device 20 rather than a physical key­
board 36. However, as can be appreciated, a given computer
system 20 may optionally and additionally include a physical
keyboard, as represented by the dashed box 36 of FIG. 2.
Moreover, as will become apparent, the "soft input panel"
need not be an actual touch-sensitive panel arranged for
directly receiving input, but may alternatively operate via
another input device such as the microphone 34. For example,
spoken words may be received at the microphone 34, recog­
nized, and displayed as text in an on-screen window, i.e., a
soft input panel.

FIG. 2 shows a block diagram implementing the SIP archi­
tecture in accordance with one aspect of the present invention.
The computer system 20 includes an operating system (OS)
28 such as the graphical windowing environment 60. Such a
graphical windowing environment 60 is generally operational
to receive user input through a variety of devices including the
keyboard 36, a mouse (not shown), a digitizer (not shown)
and so on. In turn, the graphical windowing environment 60
may provide such user input to an application having "input
focus," typically in the form of a keyboard character event.
Note that a number of applications 29 may be executable by
the computer system, however one application that is cur­
rently running is said to have "input focus" and receive the
input.

In accordance with one aspect of the present invention, the
present architecture employs a SIP manager 58 to provide a
single and flexible interface for a plurality of different input
methods 64. In general, the SIP manager 58 provides key­
strokes from a selected input method 64 to the graphical A number of program modules are stored in the ROM 24

and/or RAM 25, including an operating system 28 (preferably
Windows CE), one or more application programs 29, other
program modules 30 and program data 31. A user may enter
commands and information into the hand-held computer 20
through input devices such as a touch-sensitive display screen
32 with suitable input detection circuitry 33. Other input
devices may include a microphone 34 connected through a
suitable audio interface 35 and a physical (hardware) key­
board 36 (FIG. 2). The output circuitry of the touch-sensitive
display 32 is also connected to the system bus 23 via video
driving circuitry 37. In addition to the display 32, the device
may include other peripheral output devices, such as at least
one speaker 38 and printers (not shown).

50 windowing environment 60 (e.g., the Windows CE operating
system 28). Once received, the graphical windowing environ­
ment 60 sends information corresponding to the user input
data to an application 29 (i.e., the application whose window
currently has input focus) in the form of that keystroke, mouse

Other external input or output devices 39 such as a joystick,
game pad, satellite dish, scanner or the like may be connected
to the processing unit 21 through an RS-232 or the like serial
port 40 and serial port interface 41 that is coupled to the
system bus 23, but may be connected by other interfaces, such

55 or other message placed in the message queue of the applica­
tion's window. The passing of such messages is well known in
Windows programming and is described in "Programming
Windows 95," Charles Petzold, Microsoft Press (1996),
hereby incorporated by reference. As a result, any application

60 capable of handling keyboard input may be used with any
appropriately-configured input method 64. Indeed, if an
optional keyboard 36 is present, keystrokes are directly pro­
vided by a keyboard driver 62 to the graphical windowing
environment 60, whereby appropriate keystrokes are likewise

65 placed in the message queue of the active application's win­
dow without the application being provided with infonnation
as to the source.

US 7,411,582 B2
5

Input methods 64 may include, for example, various dif­
ferent displayable keyboards, (soft keyboards), a calculator, a
formula and/or equation editor, chemical symbol template,
voice recognition, handwriting recognition, shorthand sym­
bol recognition (such as "Graffiti"), or other application- 5

optimized input methods (e.g. a barcode reader). The SIP
manager 58 provides a user interface for pennitting a user to
toggle a SIP window (panel) 50 (FIG. 7) between an opened
and closed state, as described in more detail below. The SIP
manager 58 also provides a user interface enabling user selec- 10

tion from a displayable list of available input methods. A user
interacting with the user interface may select an input method
64, and in response, the SIP manager 58 loads and calls the
selected input method 64. In a preferred embodiment, each of
the input methods communicates with the SIP manager 58 15

through a COM (Component Object Model) interface shown
as IIMCallback 61 and IInputmethod 63. A COM object
comprises a data structure having encapsulated methods and
data that are accessible through specifically defined inter­
faces. A detailed description of COM objects is provided in 20

the reference entitled "Inside OLE," second edition, Kraig
Brockschmidt (Microsoft Press), hereby incorporated by ref­
erence.

6
to Unicode characters representing digits, another input
method may convert mathematical entries into a Unicode
result (e.g., an entry of'3+6=' sends a '9' to the SIP manager
58), while yet another may be an equation editor (e.g., the
characters "Sqrt" are converted into a single Unicode value
representing a square root symbol). After any such process-
ing, the input method 64 passes those digits to the SIP man­
ager 58, which in turn passes those digits to the graphical
windowing environment 60. The application receives the
character data from the graphical windowing environment 60
as if the user had entered those digits on a physical keyboard,
regardless of the input method used.

As shown in FIGS. 5-7, the soft input panel (SIP) function­
ality of the system collectively includes the visible window 50
(FIG. 7), a visible SIP button 52, and various methods and
functions (described below). As shown in FIG. 7, the SIP
window 50 is a rectangular area provided by the input method
64 that can be hidden or shown at the user's (or an application
program's) request. The visible SIP button 52 is located on a
taskbar56 or the like, and provides a touch-sensitive interface
by which the user displays or hides the SIP window 50. Thus,
as represented in the state diagram of FIG. 4, the window 50
toggles between an open, visible state (FIG. 7) and a closed,
hidden state (FIG. 5) as the user taps the SIP button 52. A

25 present design implements a 240 pixel wide by 80 pixel high
SIP window 50 that is fixed (docked) on the display 32 at a
position just above the taskbar 56. As will become apparent
below, the soft input panel design supports other SIP window

Generally, when the SIP window 50 is toggled between
on/off by a user, as will be described in more detail below, the
SIP manager 58 informs the selected input method 64 to
correspondingly open/close the SIP window 50 through the
IInputmethod mechanism 63. When a new input method is
selected, the SIP manager 58, through the mechanism 63,
informs any of the previously selected input methods to exit, 30

and loads the newly selected input method. The mechanism
63 may also be utilized by the SIP manager 58 to obtain
information specific to a selected input method, as also
described in detail below.

The selected input method 64 may also communicate
information to the SIP manager 58 via the IIMCallback
mechanism 61, such as which character or characters were
entered by a user, irrespective of whether the character or
characters are generated through keyboard selection, hand­
writing recognition, voice recognition, a fonnula editor, cal­
culator or the like. Such character input is generally passed to
the SIP manager 58, preferably received as (or converted to)
a Unicode character (for Windows CE) by the SIP manager 58
and output to the graphical windowing environment 60. Com­
mand key information, such as "Ctrl" on a keyboard, may also
be provided by the input method 64 to the SIP manager 58 via
interface 61.

SIP and input method-specific infonnation may also be
communicated through the SIP manager 58, and ultimately to
the focused application 29, when the application is optimized
for operating with a SIP (i.e., is "SIP-aware") as described in
more detail below.

The system operates as generally represented in the steps
of FIG. 3. Once an application is selected and has focus (steps
300-302), an input method 64 is selected therefor at step 304.
Note that the input method 64 may be selected by the user, or
a default input method may be selected for use with a particu-

50 sizes or positions.
To this end, the operating system 28 creates a dedicated

thread (the SIP manager 58) that registers itself as a SIP
thread with the Windows CE system. The thread creates the
SIP window 50, perfonns other SIP initialization, and then
enters a message loop to respond to messages and user inter-

35 face activity in the SIP window 50. The thread also serves to
dispatch messages to an Input Method's window, and calls
into the Input Method 64 to permit the Input Method 64 to
create windows that will respond as special SIP windows.

The SIP manager thread 58 is given special status by the
40 system. For example, windows created by the SIP manager 58

thread are topmost windows, and ordinarily will not be
obscured by other windows, except, e.g., when the taskbar 56
is activated in an auto-hide mode while the SIP window 50 is
displayed. In this case, the SIP window 50 remains displayed

45 in its current location and the taskbar 56 is displayed on top of
the SIP window 50. More generally, any user interface ele­
ment for controlling the SIP may (and should) be placed on
top of (rather than underneath) the SIP window 50, whenever
the controlling user interface element and the SIP window 50

50 overlap.
Moreover, when tapped on, the SIP window 50 (and any

child windows thereof such as pushbuttons, text entry fields,
scrollbars and the like) will not receive the input focus as
would conventional program windows. In this manner, the

55 user may interact with the SIP window 50 without changing
the system focus. As can be appreciated, changing the system
focus each time the user inputs data into the SIP window 50
would be undesirable. The SIP button 52 will also not cause a lar application. Additionally, the input method 64 may be one

that remains after having been selected for a previous appli­
cation, i.e., a particular input method stays the same as the 60

user switches between various applications. In any event, the
input method 64 displays a SIP window 50 when selected.

change of focus for the same reason, i.e., it is undesirable to
cause the window with focus to lose focus by tapping on the
SIP button 52 to bring out the SIP window 50.

In accordance with one aspect of the present invention, the
As the user inputs data at step 306, appropriate data is

passed to the SIP manager 58 via the IIMCallback mecha­
nism 61, described below. Note that the input method 64 may 65

first process the received data at step 306. By way of example,
one particular input method 64 may convert barcode symbols

SIP system enables the selective installation of a specified
Input Method 64. As generally described above, each Input
Method 64 is an interchangeable component by which the
user provides character, text or other user data via the touch-
screen display (or some other input device). More particu-

US 7,411,582 B2
7

larly, the SIP manager 58 preferably exposes a COM interface
that enables the selective installation of Input Methods 64.
The Input Method 64 occupies space inside a SIP window 50
created by the system.

Preferably, the Input Method 64 comprises a Component
Object Model (COM) object that implements the IInput­
Method interface. Notwithstanding, the Input Method 64 and
SIP manager 58 can comprise virtually any components
capable of communicating with one other through some 10

mechanism, such as by receiving, responding to, and making
function calls.

8

Typedef struet {
DWORD ebSize
DWORD
RECT
RECT
DWORD

fdwFlags
re VisibleDesktop
reSipReet
dwlmDataSize

Void *pvlmData
} SIPINFO;

The cbSize field may be filled in by the application pro­
gram 29 and indicates the size of the SIPINFO structure. This
field allows for future enhancements while still maintaining
backward compatibility, and indeed, the size of the SIPINFO
structure may be used to indicate the version to the compo­
nents of the system. The fdwFlags field represents the state
information of the SIP window 50, and can be a combination
of three flags. A SIPF _ON flag that is set indicates that the SIP
window 50 is visible (i.e., not hidden), while a set SIPF _DOC
flag indicates the SIP window 50 is docked (i.e. not floating).
A set SIPF _LOCKED flag indicates that the SIP window 50
is locked, i.e., the user caunot change its visible or hidden
status. Note that a given implementation may not allow float-

The Input Method 64 is responsible for drawing in the SIP
window 50 and responding to user input in the SIP window
50. Typically, the Input Method 64 will respond to user input 15

and convert that input into characters which are then sent to
the SIP manager 58 via exposed SIP functions. By way of
example, one Input Method 64 includes a default QWERTY
(alpha) keyboard 66 shown in FIG. 7. More particularly, this
Input Method 64 displays an image of the keyboard 66 on the 20

screen 32, and converts taps on that keyboard 66 (detected as
screen coordinates) into characters which are sent to the SIP
manager 58 and thereby to the system. Input Methods may be
written by application vendors, and are added to the system
using COM component installation procedures.

25 ing or locked SIP windows, however the capability is present
within the system.

The user interacts with the Input Method 64 manifested in
the visible SIP window 50 to create system input. As best
represented by the state diagram of FIG. 4 and as shown in
FIG. 6, the user can select a different Input Method by tapping
a SIP menu button 70 on thetaskbar56 that provides a pop-up 30

input method list 72 into the SIP window 50. The user can also
select among available Input Methods via a control panel
applet (not shown) or the like. The SIP control panel applets
communicate with the operating system 28 using the registry

35 and the exposed SIP-aware functionality described below.

As will be described in detail below, the various compo­
nents cooperate to expose functions, structures, and window
messages that enable system applications 29 to respond to
changes in the SIP state. An application 29 that uses this 40

functionality to adjust itself appropriately to SIP changes is
considered "SIP-aware." Other applications may be SIP­
aware yet choose to retain their original size (and thus be
partially obscured by the SIP window 50) when appropriate.
Moreover, and as also described below, there are exposed 45

functions that enable applications to programmatically alter
the SIP state.

The rcVisibleDesktop field contains a rectangle, in screen
coordinates, representing the area of the screen desktop 68
not obscured by the SIP window 50. If the SIP window 50 is
floating (not docked), this rectangle is equivalent to the user­
working area. Full-screen applications wishing to respond to
SIP window 50 size changes can generally set their window
rectangle data structure ("rect") values to this RECT data
structure's values. If the SIP window 50 is docked and does
not occupy an entire edge (top, bottom, left or right), then this
rectangle represents the largest rectangle not obscured by the
SIP window 50. However, the system may provide available
desktop space 68 not included in the RECT data structure.

Next, the rcSipRect field contains the rectangle, in screen
coordinates, representing the size and location of the SIP
Window 50. Applications 29 will generally not use this infor­
mation, unless an application 29 wants to wrap around a
floating SIP window 50 or a docked SIP window 50 that is not
occupying an entire edge.

The dw ImDataSize field contains the size of the data
pointed to by the PvImData member, which is the next field,
i.e., a pointer to the Input Method-specific data. The data are
defined by the Input Method 64.

Whenever the state of the SIP window 50 changes, i.e., a
Notwithstanding, applications 29 need not be aware of the

SIP system in order to benefit from the present invention.
Indeed, one aspect of the present invention is that applications
do not ordinarily recognize whether data received thereby
originated at a hardware input device such as the keyboard 36
or via user activity (e.g., contact or proximity detected by the
screen 32 and detection circuitry 33) within the soft input
panel window 50. This enables applications to operate with
virtually any appropriate input method, irrespective of
whether that application is SIP-aware.

50 new Input Method has been selected and/or a visibility, dock­
ing or size change has occurred, a message, WM_SET­
TINGCHANGE, is sent to all top-level windows, as generally
represented at step 800 of FIG. 8. In this manner, an applica­
tion 29 can adjust it self to the new state of the SIP window 50,

Turning to an explanation of the mechanism that facilitates
the operation of an Input Method 64 installed by the SIP
manager 58, a SIP-aware application 29 is notified when the
SIP window 50 changes state and what the new, current state
of the SIP window 50 is. The state includes whether the status
of the SIP window 50 is visible or hidden, whether the SIP
window 50 is docked or in a floating condition, and the size
and position of the SIP window 50. As shown in the table
below, a data structure (SIPINFO) contains this SIP informa-
tion:

55 such as by adjusting its size in response to this message. To
this end, a flag, SPCSETSIPINFO, is sent with this message
to indicate when SIP information has changed, and another
flag, SPCSETCURRENTIM, when the current Input Method
has changed. As shown at step 802 of FIG. 8, the flag is tested

60 to determine if the message is SIP-related or another type of
setting change message (whereby it is handled at step 804). If
SIP-related, for performance reasons, the applications that
are not currently active in the foreground cache these SIP
changes (steps 806-808). If the application's window is

65 active, the application can adjust its size and/or window (steps
810-812). For example, as shown in FIGS. 5 and 6, when the
SIP window 50 of FIG. 7 is hidden and an active application

US 7,411,582 B2
9

29 notified, the application 29 may use the additional desktop
space 68 to display more information such as the analog clock
faces. Note that an application 29 that has cached a SIP
change when inactive can query the current SIP state when
activated to subsequently adjust itself in an appropriate man- 5

ner in accordance with the information that is returned.
To query the SIP manager 58, another function, SHSipInfo,

is provided so that applications 29 can determine information
about the SIP window 50 and Input Method 64. In general, if
this function succeeds, the return value will be nonzero, while 10

if this function fails, the return value will equal zero and
extended error information will be available via a GetLastEr­
ror() call.

The following table sets forth the structure of this call:

SHSipInfo (

);

UINT uiAction
UINT uiParam
PYOID pvParam
UINT fwinIni

15

20

The uiAction parameter can include the values SIP _SET­
SIPINFO, SPCGETSIPINFO, SPCSETCURRENTIM and 25

SPCGETCURRENTIM. SIP _SETSIPINFO indicates that

10
The IInputMethod Interface

IInputMethod is the interface implemented by the Input
Method 64 components. The SIP manager 58 calls the meth­
ods of this interface to notifY the Input Method 64 of state
changes, and request action and information from the Input
Method 64. In general, if the called method succeeds, a suc­
cess is returned, and conversely, if the method fails, a failure
result is returned. The following table sets forth the method
calls available in this IInputMethod interface:

Interface IinputMethod : Iunknown
{

HRESULT Select ([in] HWND hwndSip);
HRESULT Deselect(void);
HRESULT Showing (void);
HRESULT Hiding (void);
HRESULT GetInfo ([out] IMINFO *pimi);
HRESULT ReceiveSipInfo ([in] SIPINFO *psi);
HRESULT RegisterCallback ([in] IIMCallback* pIMCallback);
HRESULT GetImData ([in] DWORD dwSize, [out] LPVOID
pvImData);
HRESULT SetImData ([in] DWORD dwSize, [in] LPVOID
pvImData);
HRESULT UserOptionsDlg ([in] HWND hwndParent);

pvParam points to a SIPINFO structure (described above).
The cbsize, dwImDataSize and pvImDataSize are filled in
before calling the SHSipInfo function. In response to this call,
the SIPINFO structure is filled in with the current SIP size,
state, and visible desktop rectangle. If both dWImDataSize
and pvImData are nonzero, the data size and pointer are sent
to the Input Method 64. If the Input Method 64 is called but
does not provide Input Method-specific data, or the format or
size of the data passed in is not in a format recognized by the
Input Method 64, then the SHSipInfo function call fails (re­
turns zero). If the size and format are supported by the Input
Method 64, the Input Method 64 fills in the buffer that is
pointed to by pvImData with the Input Method-specific data.
Typically, an application 29 will set the pv ImDataSize to zero
and pv ImData to NULL.

An Input Method 64 will ordinarily receive a Select(),
GetInfo(), ReceiveSipInfo() and Register Callback()
method call, in sequence, before rendering the SIP window 50
space or responding to user actions. When the SIP window 50

30 is displayed (i.e., turned on), Showing() will be called by the
SIP manager 58, after which the Input Method 64 issues a
WM_PAINT message to render the SIP window 50.

The Select() method is called when the Input Method 64
35 has been selected into the SIP. The Input Method 64 generally

performs any desired initialization in response to this call.
The Input Method is responsible for drawing the entire client
area of the SIP window 50, and thus ordinarily creates its
windows and imagelists (collections of displayable bitmaps

40 such as customized icons) in response to this call. For
example, the window handle of the SIP window 50 is pro­
vided to the Input Method 64 as a parameter accompanying
this Select() method call, and the Input Method normally
creates a child window of this SIP window 50. The Input

A uiAction of SPCSETSIPINFO indicates that pvParam
points to a SIPINFO structure. The SIP window 50 size and
state are set to the values specified in the SIPINFO structure.
Before changing a SIP value, the application 29 should first
obtain the current SIP state by calling SHSipInfo with
SPCGETSIPINFO, then change whatever specific SIP state
values it wishes to change before making the SPCSETSIP­
INFO call. The cbSize field is set to the size of the SIP in the
structure, and if both pvImDataSize and pvImData are not
zero, the data size and pointer are sent to the Input Method 64.
The SHSipInfo call fails if the Input Method 64 is called and
does not allow setting Input Method-specific data, or if the
format or size of the passed data is not in a format recognized
thereby. If a size and format are supported by the Input 55

Method 64, the Input Method 64 uses the data to set Input
Method-specific information. Typically, an application will

45 Method 64 is also provided with a pointer to a value, which is
set to nonzero by the Input Method 64 if the method call is
successful or zero if not successful.

The Deselect() method is called when the Input Method 64
has been selected out of the SIP. The Input Method's window

50 should be destroyed in response to this call, and the Input
Method 64 will typically perform any other cleanup at this
time.

The Showing() method will cause the SIP window 50 to be
shown upon return from the call. Note that the SIP window 50
is not visible prior to this call, and that once the SIP window
50 is shown, this window and its children will receive paint
messages. Conversely, the Hiding() method hides the SIP
window 50 upon return from the call. Accordingly, the Show­
ing() and Hiding() methods are used to toggle the SIP
window 50 between its open and closed states.

set the pvImDataSize to zero and pvImData to NULL.
SPCSETCURRENTIM indicates that pvParam points to a

CLSID structure which specifies the CLSID of the Input 60

Method 64 to which the SIP will switch. If the CLSID is not The GetInfo() method is called when the system is request­
ing information about the Input Method 64. The information
requested includes flags indicating any special properties of
the Input Method 64, the handles of two imagelists which

valid, or if the specified Input Method 64 cannot be loaded,
the call fails (return value equals zero) and a default Input
Method 64 (e.g., the QWERTY-like keyboard 66) is loaded.

Lastly, a uiAction of SPCGETCURRENTIM indicates
that pvParam points to a CLSID structure that receives the
CLSID of the currently selected Input Method 64.

65 contain masked bitmaps that are to be displayed on the SIP
button 52 when that Input Method 64 is active, indices into the
specified imagelists, and a rectangle indicating the preferred

US 7,411,582 B2
11

size and placement of the Input Method 64. The call includes
a parameter, pimi, which is a pointer to a data structure
(IMINFO) that the Input Method 64 should fill in with appro­
priate data. The call also provides a pointer to a value that the
Input Method should set to nonzero to indicate success and 5

zero to indicate failure. More particularly, the IMINFO data
structure is represented in the following table:

12
passes an IIMCallback interface pointer as a parameter to the
Input Method 64, whereby the Input Method 64 can call
methods on this interface to send information back to the SIP
manager 58 as described below. The Input Method 64 uses the
callback interface pointer to send keystrokes to applications
29 via the SIP manager 58 and to change its SIP taskbar button
icons 52.

The GetImData() method is called when an application
program 29 has asked the SIP for the SIPINFOdata structure

Typedef struct {
DWORD cbSize;
HIMAGELIST hIrnageNarrow;
HIMAGELIST hIrnageWide;
lnt iNarrow;
IntiWide;

10 and has provided a non-NULL pointer for the pvImData
member of the SIPINFO structure. The application 29 will
ordinarily cause this call to be made when requesting some
special information from the Input Method 64. Two param­
eters are passed with this call, dwsize, the size of the buffer

DWORD fdwFlags;
Rect rcSipRect;

15 pointed to by pvImData, and pvImData, a void pointer to a
block of data in the application 29.

} IMINFO; With this call, the application 29 is essentially requesting
that the Input Method 64 fill the block with information,
wherein the size and format of the data are defined by the The cbSize field contains the size of the IMINFO structure,

and is filled in by the SIP manager 58 prior to calling calling
GetInfo(). The hImageNarrow field is a handle to an image­
list containing narrow (16x 16) masked bitmaps for the Input
Method 64. Similarly, hImageWide is a handle to the image­
list containing wide (32xI6) masked bitmaps. The SIP man­
ager 58 displays one of the bitmaps (e.g., on the taskbar 56) to
indicate the Input Method 64 that is currently selected. Note
that the SIP manager 58 may use the 16x16 or 32x16 bitmaps

20 Input Method 64. This call is designed for Input Methods 64
that wish to provide enhanced functionality or information to
applications. By way of example, a SIP-aware application
may wish to know whether a character was entered by way of
the SIP or by some other means. An input method 64 can thus

25 respond to the application's request by filling the block.
The SetImData() method is called when an application 29

has set the SIPINFO data structure and has provided a non­
NULL pointer for the pvImData member of the SIPINFO
structure. The application 29 will ordinarily cause this call to

at various times depending on how it wishes to display the
bitmap.

30 be made when requesting that the Input Method 64 set some
data therein. The parameters passed with this call include
dwsize, the size of the buffer pointed to by pvImData, and
pvImData, a void pointer to a block of data in the application

The iNarrow field is an index into the hImageNarrow
imagelist indicating which bitmap of several possible from
that (narrow) imagelist should currently be displayed. Simi­
larly, the iwide field is an index into the hImageWide image­
list indicating which bitmap from that (wide) image list 35

should currently be displayed. Note that the Input Method 64
can initiate a change of the bitmap displayed in the SIP
taskbar button 52 by calling IIMCallback::SetImages (de­
scribed below).

64.

The IIMCallback Interface
The Input Method 64 uses the IIMCallback interface to call

methods in the SIP manager 58, primarily to send keystrokes
to the current application or to change the icon that the taskbar
56 is displaying in the SIP button 52. The Input Method 64
ordinarily calls the IIMCallback methods only in response to
a call thereto which was received through an IInputMethod
method call. In general, if the function succeeds, the return
value will be a success HRESULT, while conversely, if the

The fdwFlags field indicates the visible, docked and locked 40

states (SIPF _ON SIPF _DOCKED and SIPF _LOCKED) of
the Input Method 64, as well as any special Input Method
flags that may be defined in the future. Note that the SIP state
flags are ignored for the GetInfo() method, but are used in the
SetImInfo callback method as described below.

45 function fails, the return value is a failure HRESULT.
Lastly, the rcSipRect field describes the size and placement

of the SIP rectangle. The sizing and placement information
returned from GetInfo() may be used by the SIP when deter­
mining an initial default size and placement. When used, the
SetImInfo callback method (described below) specifies the 50

new size and placement of the SIP window 50.
The ReceiveSipInfo() method provides information to the

Input Method 64 about the SIP window, including the current
size, placement and docked status thereof. This call is made
whenever the user, an application 29 or the Input Method 64 55

changes the SIP state. When the SIP manager 58 sends this
information during Input Method initialization, the SIP man­
ger 58 is informing the Input Method 64 of the default SIP
settings. The Input Method 64 can choose to ignore these
defaults, however the values given are ones that either the user 60

has selected or values that have been recommended as
expected or accepted SIP values for that platform. A pointer to
the SIPINFO structure that includes this information is
passed with this call.

The RegisterCallback method is provided by the SIP man- 65

ager 58 to pass a callback interface pointer to the Input
Method 64. In other words, the RegisterCallback method call

The following table represents the IIMCallback Interface:

Interface IIMCallback :
Iunknown

Hresult SetImlnfo(
IMINFO *pimi);

Hresult SendVirtualKey (
BYTE bVk,
DWORD dwFlags);

Hresult SendCharEvents(
UINTuVk,
UINT uKeyFlags,
UINT uChars,
UINT *puShift,
UINT *puChars);

Hresult SendString(
BSTR ptrzStr,
DWORD dwChars);

The first callback, SetImInfo() is called by the Input
Method 64 to change the bitmaps shown on the SIP taskbar

US 7,411,582 B2
13

button 52 representing the current SIP, or to change the vis­
ible/hidden state of the SIP window 50. It is also sent by the
Input Method 64 to the SIP manager 58 as a notification when
the Input Method 64 has changed the size, placement or
docked status of the SIP window 50. By this mechanism, the 5

various Input Methods 64 are able to alert the SIP manager 58
to these types of changes so that the two remain synchronized.
By way of example, an Input Method 64 may wish to have a
user interface element which allows the user to toggle
between a docked state and a floating state, or between one or 10

more subpanels (e.g. keyboard with buttons to switch to a
number and/or symbol panel or intemational symbol panel).
The Input Method 64 uses this call to inform the SIP manager

14
The SendCharEvent callback allows an Input Method 64 to

send Unicode characters to the window having focus, while
also determining what WM_KEYDOWN and WM_KEYUP
messages the application 29 should receive. This allows the
Input Method 64 to determine its own keyboard layout, as it
can associate any virtual key with any characters and key
state. In keeping with one aspect of the invention, applications
29 thus see keys as if they were sent from a keyboard (i.e., they
get WM_KEYDOWN, WM_CHAR, and WM_KEYUP
messages). Thus, unlike the SendVirtuaIKey() function, this
function does not affect the global key state. By way of
example, with the SendCharEvent callback, the Input Method
64 can determine that the shifted (virtual key) VK_ C actually

58 of each change in state.
Although not necessary to the invention, all values passed

15 sent the Unicode character Ox5 5 64. The shift state flag (speci­
fied in the puShift parameter, described below) that is asso­
ciated with the first character to be sent determines whether a
WM_KEYDOWN or WM_KEYUP is generated.

in the IMINFO structure are used by the SIP manager 58.
Consequently, the Input Method 64 should first determine the
current state of the SIP window 50 as provided by the SIP
manager 58 in the SIPINFO structure received via a prior
ReceiveSipInfo() method call, described above. Then, the 20

Input Method 64 should make changes to only those settings
in which a change is desired, and pass a full set of values back
in the IMINFO structure. The pimi parameter is sent as a
pointer to an IMINFO structure representing the new Input
Method 64 settings, including the size, placement and state of 25

the SIP window 50 as well as the desired Input Method 64
images.

Parameters include uVk, the virtual keycode sent in the
WM_KEYUP or WM_KEYDOWN message generated as a
result of this function, and a uKeyFlags parameter, a set of
KEY state flags that are translated into the lKEYData param­
eter received in the WM_CHAR, WM_KEYUP or
WM_KEYDOWN messages received by the application 29
as a result of this call. Only the KeyStateDownFlag, Key­
StatePrevDownFlag, and KeyStateAny AltFlag key state flags
are translated into the resulting lKeyData parameter. The
uChars parameter represents the number of characters corre­
sponding to this key event, while the puShift parameter is a

In response to the SetImInfo() call, the SIP manager 58
will show or hide the SIP window 50 as specified in the
fdwFlags of the IMINFO structure. However, the SIP man­
ager 58 will not resize or move the SIP window 50 if
requested, but will instead update the size and placement
information returned to applications 29 when queried. If the
specified values represent a change from the current SIP state,
the SIP manager 58 will notifY applications 29 that the SIP
state has changed via a WM_SETTINGCHANGE message,
described above.

30 pointer to a buffer containing the corresponding KEY_
STATE]LAGS for each character to be sent. If the KeyStat­
eDownFlag bit is sent, this function generates a WM_KEY­
DOWN message, otherwise it generates a WM_KEYUP
message. Lastly, the puchars parameter is a pointer to a buffer

35 containing the characters to be sent.

The SendVirtualKey() callback is used by an Input Method
64 to simulate a keystroke for a virtual key, e. g., a character or
the like entered via the touch screen display 32 or some other
Input Method 64. The key event will be sent to the window
which currently has focus (i.e., the window which would have
received keyboard input had a key been pressed on an external
keyboard). The SendVirtualKey callback modifies the global 45

key state for the virtual key sent, whereby, for example, an
Input Method 64 can use this function to send SHIFT, CON­
TROL, andALT key-up and key-down events, which will be
retrieved correctly when the application 29 calls the GetKey­
State() API. The SendVirtualKey callback should be used to 50

send virtual key events that do not have associated characters
(i.e., keys that do not cause a WM_CHAR sent as a result of
TranslateMessage. Note that WM_ CHAR, TranslateMessage
and other key-related messages are described in the reference
"Programming Windows 95", Charles Petzold, supra). If 55

character-producing virtual keys are sent via this function,
they will be modified by the global key state. For example, a
virtual key ofVK_5 that is sent when the shift state is down
will result in a '%' WM_ CHAR message for certain keyboard
layouts.

An Input Method 64 may use the SendString callback to
send an entire string to the window which currently has the
focus, whereby a series ofWM_CHAR messages are posted
to the application 29. An Input Method 64 would typically use

40 this callback after it has determined an entire word or sen-

Parameters sent with this callback include b Vk, which is
the virtual keycode of the key to simulate, and dwFlags. The
dwFlags may be a combination of a SIPKEY _KEYUP flag,
(used to generate either a WM_KEYUP or WM_KEY­
DOWN), a SIPKEY _SILENT flag, (the key press will not
make a keyboard click even if clicks are enabled on the
device), or zero.

60

tence has been entered. For example, a handwriting recog­
nizer or speech recognizer Input Method 64 will use the
SendString callback after it has determined that a full word or
sentence has been entered.

Parameters of the SendString callback include ptszStr, a
pointer to a string buffer containing the string to send, and
dwSize, the number of characters to send. This number does
not include the null-terminator, which will not be sent.

As can be seen from the foregoing detailed description,
there is provided an improved method system for entering
user data into a computer system. The method and system are
both efficient and flexible, and function with touch-sensitive
input mechanisms. With the system and method, a plurality of
applications can receive user input from a common input
method, while interchangeable input methods may be
selected from among a set thereof for each application. The
method and system are cost-effective, reliable, extensible and
simple to implement.

While the invention is susceptible to various modifications
and alternative constructions, a certain illustrated embodi­
ment thereof is shown in the drawings and has been described
above in detail. It should be understood, however, that there is
no intention to limit the invention to the specific form dis-

65 closed, but on the contrary, the intention is to cover all modi­
fications, alternative constructions, and equivalents falling
within the spirit and scope of the invention.

US 7,411,582 B2
15

What is claimed is:
1. In a computing environment, a computer-implemented

method comprising:
displaying an actuatable icon representative of an input

method list that includes one or more selectable input
methods for one or more computer programs, wherein
each input method is a computer-executable software
component distinct from the computer programs;

in response to actuation of the actuatable icon, displaying
the input method list;

receiving a selection of an input method from the input
method list;

10

16
defined interface set such that the executable input
method is connectable to the application programs;

opening an input window on a display of the computer
system independent of a window of an active application
program; and

displaying an interactive input panel in the input window,
the interactive input panel corresponding to the selected
executable input method such that information corre­
sponding to user input received by the selected execut­
able input method via the interactive input panel is pro­
vided to the active application program as if the
information was received via user input at a hardware
input device. installing an input method component that corresponds to

the selected input method, the input method component
causing an interactive input panel to be displayed;

receiving input via the interactive input panel; and
providing the input to a computer program of the one or

more computer programs as if the infonnation was

12. The computer-readable medium of claim 11 further
15 comprising, providing an input panel button on the display of

the computer system, the input panel button being responsive
to open and to close the input window.

received via user input received from a hardware input
device.

2. The method of claim 1 wherein providing the input to the
computer program comprises communicating infonnation
representative of the input to a graphical windowing environ­
ment.

13. The computer-readable medium of claim 11 further
comprising, providing a Software Input Panel (SIP) menu

20 button on the display of the computer system, the SIP menu
button being actuatable to display a selectable list of the
plurality of executable input methods.

14. The computer-readable medium of claim 13 further
comprising, receiving a selection of one of the plurality of

3. The method of claim 2 wherein communicating the
information comprises passing the information to an inter­
face.

4. The method of claim 2 further comprising, communi­
cating the information from the graphical windowing envi­
ronment to an application program, wherein the computer
program includes the application program, wherein the infor­
mation is provided to the application program in a same
manner as if the input was received via a hardware keyboard.

25 executable input methods displayed in the list as a selected
executable input method, and in response, closing any open
input window, and opening a new input window correspond­
ing to the selected executable input method.

15. At least one computer-readable medium having com-
30 puter-executable instructions, which when executed perfonn

steps, comprising:

5. The method of claim 2 wherein providing the input to the 35

computer program comprises placing the information, by the
graphical windowing environment, in a message in a message
queue of the computer program, wherein the message queue
capable to receive messages corresponding to input from the
selected input method and messages corresponding to input 40

from a hardware input device.
6. The method of claim 1 wherein the selected input

method corresponds to a displayed keyboard, and wherein
receiving input via the interactive input panel that corre­
sponds to the selected input method comprises receiving 45

information corresponding to a keyboard character entered
via the displayed keyboard.

7. The method of claim 1 wherein the selected input
method corresponds to a handwriting input area, and wherein
receiving input via the interactive input panel that corre- 50

sponds to the selected input method comprises receiving
information corresponding to handwritten data.

8. The method of claim 1 further comprising, hiding the
input panel.

9. The method of claim 1 further comprising, docking the 55

input panel.
10. At least one computer-readable medium having com­

puter-executable instructions, which when executed perfonn
the method of claim 1.

11. At least one computer-readable medium having com- 60

puter-executable instructions stored thereon, which when
executed by a computer system perfonn steps, comprising:

selecting one of a plurality of executable input methods for
supplying user input to the computer system, wherein
each executable input method is an interchangeable soft- 65

ware component distinct from one or more application
programs, each executable input method having a

presenting icons corresponding to a plurality of input
methods available for a computer application, wherein
each input method is a computer-executable software
component distinct from the computer application;

invoking a selected input method in response to a user
selecting an icon corresponding to the selected input
method, including presenting an input panel window;
and

accepting user data entered in the input panel window for
the computer application, wherein the user data is pro­
vided to the computer application as if the user data was
received from a hardware input device.

16. The computer-readable medium of claim 15 wherein
accepting user data includes detecting user interaction with a
touch-sensitive display.

17. The computer-readable medium of claim 15 wherein
each input method comprises a component object model
(COM) object, and wherein the step of invoking the selected
input method includes the step of instantiating the COM
object.

18. The computer-readable medium of claim 15 further
comprising converting the user data to a Unicode character
value.

19. In a computing environment, a system comprising,
a manager component stored on one or more computer­

readable media and configured:
to manage selection of a selected input method from one

or more available stored input methods, wherein each
input method is a computer-executable software com­
ponent distinct from one or more computer programs,
and

to send input data corresponding to a user input received
at the selected input method to a graphical windowing
environment; and

the graphical windowing environment to receive the input
data and to send the input data to a computer program of

US 7,411,582 B2
17

the one or more computer programs, wherein the input
data is sent to the computer program as if the input data
was received via user input received from a hardware
input device.

20. The system of claim 19 wherein the computer program
comprises an application program having focus.

21. The system of claim 19 further comprising an input
panel window corresponding to the selected input method.

18
26. The system of claim 19 wherein the manager compo­

nent transfers information from the computer program to the
selected input method.

27. The system of claim 19 wherein the selected input
method calls functions in the manager component via a
defined interface set.

28. The system of claim 19 wherein the selected input
method comprises an object.

22. The system of claim 21 wherein the selected input
method presents an image representing a keyboard on the
input panel window.

29. The system of claim 19 wherein the selected input
10 method draws an input panel in an input panel window dis­

played in the graphical windowing environment.
23. The system of claim 21 wherein the manager compo­

nent selectively displays and hides the input panel window.
24. The system of claim 21 wherein interaction with the

input panel does not cause the input panel window to receive 15

focus.
25. The system of claim 19 where the input method is

displayed on a touch-sensitive display screen.

30. The system of claim 29 wherein the manager compo­
nent selectively displays and hides the display of the input
panel window.

31. The system of claim 29 wherein the manager compo­
nent docks the input panel window.

* * * * *

	US6339780(B1,X601)
	Bibliography
	Drawing
	Description
	Claims
	Certificate of Correction
	Certificate of Correction

	US7411582(B2)
	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

