

EXHIBIT AA

Motorola Mobility, Inc. v. Microsoft Corporation Doc. 74 Att. 27

Dockets.Justia.com

http://dockets.justia.com/docket/florida/flsdce/1:2010cv24063/368653/
http://docs.justia.com/cases/federal/district-courts/florida/flsdce/1:2010cv24063/368653/74/27.html
http://dockets.justia.com/

(12) United States Patent
Sherwin, Jr. et al.

(54) METHOD AND SYSTEM FOR
CONFIGURING A TIMER

(75) Inventors: Bruce J Sherwin, Jr., Woodinville, WA
(US); Eric Nelson, Woodinville, WA
(US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 392 days.

(21) Appl. No.: 111089,957

(22) Filed:

(65)

Mar. 25, 2005

Prior Publication Data

(51)

(52)
(58)

US 2006/0218429 Al Sep. 28, 2006

Int. Cl.
G06F 1/04 (2006.01)
G06F 1/12 (2006.01)
G06F 5/06 (2006.01)
G06F 11/00 (2006.01)
G06F 3/00 (2006.01)
G06F 9/44 (2006.01)
G06F 9/46 (2006.01)
G06F 13/00 (2006.01)
U.S. Cl. 713/600; 714/55; 719/328
Field of Classification Search 713/600;

714/55; 719/328
See application file for complete search history.

202
APPLICATION

204

CALL SET
INTERRUPT KERNEL

TIMER API WITH
-

rL PARAMETERS SET INTERRUPT
/

TIMER -

API
APPLICATION J

224
MANAGED
MEMORY --- f226

111111 111
US007383460B2

(10) Patent No.: US 7,383,460 B2
Jun. 3,2008 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

5,519,851 A * 5/1996 Bender et al. 710/301

6,078,747 A * 6/2000 Jewitt 717/164
2003/0204792 Al * 1012003 Cahill et al. 714/55

2005/0022166 Al * 112005 Wolff et aI 717/124

* cited by examiner

Primary Examiner---Chun Cao
Assistant Examiner-Jaweed A Abbaszadeh
(74) Attorney, Agent, or Firm-Christensen O'Counor
Johnson Kindness PLLC

(57) ABSTRACT

The present invention facilitates access to timers in a com­
puting device. In particular, a timer system facilitates con­
figuring a hardware interrupt timer in a computing device,
the timer being guaranteed to expire at a specific time in a
non-real-time environment. A calling application passes
parameters to a hardware independent application program­
ming interface (API) to the hardware interrupt timer. The
hardware independent API validates the parameters and
relays them to a hardware dependent API. The hardware
dependent API establishes a connection with the timer in
accordance with the validated parameters, and executes a
service routine associated with the application upon expi­
ration of the timer.

15 Claims, 7 Drawing Sheets

TIMER SYSTEM
EXAMPLE YlJJ.

208 ;J
210

f--
212

HAL

V- 214

SET INTERRUPT
1/

APPLICATION ~ (ABSOLUTE EXPIRATION TIME) ... TIMER
INTERRUPT API

SERVICE

~ ROUTINE
216~ 1218

TIMER INTERRUPT
HPET

206 ----------- SERVICE ROUTINE

APPLICATION MAIN COUNTER, E.G.,
INTERRUPT AN UP COUNTER J.2Jl.

SERVICE
ROUTINE COMPARATOR

REGISTERSm
TlMERO llM,
TIMER 1 22llL
TlMER2 llK,

ETC.

u.s. Patent Juo. 3, 2008 Sheet 1 of 7

TIMER SYSTEM
OVERVIEW 100

~
JI02A

TIMER APPLICATION, E.G., A
TEST ROUTINE, DEVICE

SIMULATOR, OR OTHER TYPE
OF SYSTEM SOFTWARE USING

A TIMER

~

--------fo----

TIMER
APPLICATION,

V I02B

f 104

E.G., A TEST HARDWARE-INDEPENDENT
ROUTINE, DEVICE TIMER APPLICATION
SIMULATOR, OR 14-----i~ PROGRAMMING INTERFACE,
OTHER TYPE OF E.G., A KERNEL MODE EXPORT

SYSTEM ROUTINE
SOFTWARE USING

A TIMER

US 7,383,460 B2

USER MODE

KERNEL MODE

f I06

HARDWARE-DEPENDENT
TIMER APPLICATION

PROGRAMMING INTERFACE,
E.G., A HARDWARE

ABSTRACTION LAYER (HAL)
ROUTINE

HARDWARE
ABSTRACTION LAYER

- - - - - - - - ----
f 108

HARDWARE
INTERRUPT

TIMER, E.G., A HIGH
PRECISION EVENT TIMER

(HPET)

Fig. 1.

HARDWARE
LAYER

v
APPLICATION

r- 204 ,/
CALL SET 208

INTERRUPT KERNEL
TIMER API WITH

SET INTERRUPT V
210

PARAMETERS
~ TIMER ..

i- 224
API

APPLICA TION / MANAGED HAL
MEMORY -- -

f226
SET INTERRUPT

APPLICATION ~ (ABSOLUTE EXPIRATION TIME) - TIMER
INTERRUPT

~
API

SERVICE
ROUTINE

216~
- TIMER INTERRUPT

206 SERVICE ROUTINE

APPLICATION
INTERRUPT

SERVICE
ROUTINE

•

Fig. 2.

...... .I.. ~,, ... ~.I..,. ...

EXAMPLE ZJlJl.

rl
212

~ 214
/

r ;218

HPET

MAIN COUNTER, E.G.,
AN UP COUNTER m

COMPARATOR
REGISTERSm
TIMERO WL!,
TIMER 1 222lL
TIMER2 nK..

ETC.

e
•
7Jl •
~
~
~
~ = ~

2-
?
(.H
~

N
o
o
QO

rFJ

=­('D
('D
N

o
-....l

d
rJl
-....l
W
QO
W
~
0'1 =
= N

u.s. Patent Juo. 3, 2008

HARD WARE ABSTRACTION LAYER
OVERVIEW 300

~
302

\
HAL

304 --
~ SET

INTERRUPT
TIMER

INTERRUPT
TIMER

SERVICE ROUTINE

~
(ISR) 306

APPLICATION -~ INTERRUPT

---- SERVICE
308

ROUTINE
(ISR)

Sheet 3 of 7 US 7,383,460 B2

r---

,./

.........

.................................... /310

'-..:
.........

Exanp1e L:lgic:
SetInt:ezzuptTimer 0
IntTimerServioeRout:ine () I

A.!FlicaaonTimerServioeRout:ine 01
if (Period:i.cInt:H:xie) (

}

I
I
I

)

Fig. 3.

u.s. Patent Juo. 3, 2008 Sheet 4 of 7 US 7,383,460 B2

400 HARDWARE-INDEPENDENT TIMER API 402

\ VALIDATE ARGUMENTS PASSED BY INVALID
APPLICATION (E.G., TIMER INTERVAL)

f4JO

DEREGISTER, IF
APPLICABLE

418

VALID f 404

VERIFY CALLING APPLICATION'S
PRIVILEGES

PRIVILEGED

f 406

HAS
APPLICATION

PROVIDED AN APPLICATION
ISR

f 408

VALIDATE APPLICATION ISR,

412

NOT
PRIVILEGED

INVALID (CHECK WHETHER ALREADY
REGISTERED, VALIDATE 1-----+\

DEVICE OBJECT,
DEREGISTER IF NULL, ETC.)

VALID f414

CALL HAL
SET INTERRUPT TIMER API

416

Fig. 4.

u.s. Patent Juo. 3, 2008 Sheet 5 of 7 US 7,383,460 B2

500 \ ~RDWARE-DEPENDENTTIMERAPI

'\,/ ~ 502 1

REPEAT IF
PERIODIC

MODE
I

REGISTER THE TIMER INTERRUPT
SERVICE ROUTINE (ISR) ON AN

A VAILABLE HARDWARE
INTERRUPT, E.G., TIMER 0,1, OR 2

IN AN HPET TIMER

;504

INSERT THE APPLICATION ISR
INTO THE TIMER ISR

~

;506

SET THE HARDWARE TIMER MODE
TO THE SPECIFIED MODE,

E.G., PERIODIC OR
APERIODIC (LE., ONE-SHOT)

, ;508

UPDATE THE HARDWARE TIMER

(
COMPARATOR REGISTER WITH
THE NEXT EXPIRATION TIME

;510

\ INITIATE THE TIMER ISR

, ;512

RETURN TO APPLICATION WHEN THE
TIMER ISR HAS ENDED AND THE TIMER IS

NO LONGER NEEDED BY THE
APPLICATION

Fig. 5.

)

~~-

APPLICATION PARAMETERS

SERVICE
V V- 604 ROUTINE

CALLKERNAL V POINTER
SET INTERRUPT

TIMER API IRQL Y
INTERVAL ~

~ ~ MODE
vi

TIME POINTER ~

DEVICE OBJECT ~

ADDITIONAL
PARAMETERS ... '"
Fig.6A.

~~~ 

v-606A 

v-606B 

~606C 

; 
II 

1"'- 606D 

""'- 606E 

~606F 

,-606G 

TIMER SYSTEM 
EXAMPLE Qflfl. 

r 
KERNAL 

(610 

KERNEL SET 
INTERRUPT 
TIMER API 

8 

e 
• 
7Jl • 
~ 
~ 
~ 
~ = ~ 

~ = ? 
(.H 
~ 

N 
0 
0 
QO 

rFJ 

=­('D 
('D ..... 
0\ 

o .... 
-....l 

d 
rJl 
-....l 
W 
QO 
W 
~ 
0'1 = 
= N 



608 

~ 

KERNEL VALIDATED 
PARAMETERS 

SERVICE 
KERNEL SET 

~ 610 ROUTINE V 
INTERRUPT V POINTER 
TIMER API 

Y IRQL 

1/ 
+ ) I INTERVAL 

MODE ~ r 612 
CALL HAL SET / INTERRUPT 

TIME POINTER ~ TIMER API 

I DEVICE OBJECT 1----

ADDITIONAL 
PARAMETERS .•. ~ 

Fig.6B. 

v-614A 

614B 

~614C 

~ 

~614D 
-,/ 

,-614E 

,-614F 

614G 
-------

TIMER SYSTEM 
EXAMPLE (CONT'D) 600 

;V 

HAL 

i-' 

HAL SET / INTERRUPT 
TIMER API 

618 

e 
• 
7Jl • 
~ 
~ 
~ 
~ = ~ 

~ = = 
(.H 
~ 

N 
0 
0 
QO 

rFJ 

=­('D 
('D ..... 
-....l 
o .... 
-....l 

d 
rJl 
-....l 
W 
QO 
W 
~ 
0'1 = 
= N 



US 7,383,460 B2 
1 

METHOD AND SYSTEM FOR 
CONFIGURING A TIMER 

TECHNICAL FIELD 

In general, the present invention relates to timers in a 
computing device and, more particularly, to configuring 
timers in a computing device. 

2 
be optionally modified to initiate an application ISR speci­
fied by the calling application. 

According to another aspect of the invention, configuring 
timer hardware that is guaranteed to expire at a specified 
time may include configuring timer hardware to expire in an 
aperiodic or periodic mode. When configuring timer hard­
ware to expire in the aperiodic mode, the timer is guaranteed 
to expire once at a specified time. In the periodic mode, the 

BACKGROUND 

Operating systems, such as Microsoft's Windows NT, 
typically provide the ability to program a timer. However, 
such timers are not guaranteed to expire at a programmed 
time; rather, they are only guaranteed to not expire before 
the programmed time. The lack of specificity of the time at 
which the timer expires makes the timer unsuitable for many 
applications. For example, certain test scenarios, perfor­
mance and/or power consumption algorithms require a timer 
that is guaranteed to expire at a certain time, even when used 
in a non-real-time enviroument, such as the environment 
provided by Windows NT. 

10 timer is guaranteed to expire more than once, at a specified 
interval. In the periodic mode, the timer may be further 
guaranteed to expire more than once at a specified interval 
commencing at a specified time. 

According to still another aspect of the invention, the 
15 method for configuring timer hardware may include an 

application programming interface (API) comprising a hard­
ware-independent API and a hardware-dependent API. A 
timer application may call the hardware-independent API 
specifYing, among other parameters, at least one of an 

Timers that are guaranteed to expire at a certain time are 
typically hardware timers. For example, personal computer 
hardware provided by Intel Corporation supports a mini­
mum of three such hardware timers, referred to as High 
Precision Event Timers ("HPET"). 

20 interval, an interrupt request level (IRQL), and an applica­
tion ISR. Among the functions provided by the hardware­
independent API is validation of the specified parameters, 
verification of the calling application's privileges, and reg-

25 istration or deregistration of the application ISR. 

In Windows NT, access to computer hardware is con­
trolled by the Windows NT hardware abstraction layer 
("HAL"). Among the advantages of a HAL is that a single 30 

device driver can use standard HAL routines to support a 
device on many different hardware platforms, making 
device driver development much easier, and allowing dif­
ferent hardware configurations accessible in a similar man­
ner. However, because the HAL operates at a level between 35 

the hardware and the Windows NT executive services, a 
disadvantage of the HAL is that applications and device 
drivers are unaware of hardware-dependent details, such as 
I/O interfaces and interrupt controllers, including the HPET 
timers. Applications and device drivers are no longer 40 

allowed to deal with hardware directly and must make calls 
to HAL routines to determine hardware-specific informa­
tion. As a result, access to HPET timers that have the 
necessary specificity (i.e., access to timers that are guaran­
teed to expire at a certain time) for use in certain test 45 

scenarios, performance and/or power consumption algo­
rithms is either not permitted, or is difficult at best. 

According to yet another aspect of the invention, the 
hardware-independent API may, in turn, call the hardware­
dependent API, passing, among other parameters, the speci­
fied time, interval, IRQL, and application ISR. Among the 
functions provided by the hardware-dependent API is the 
registration of a timer ISR on an available hardware inter-
rupt, wrapping the application ISR into the timer ISR, 
setting the timer mode of operation to periodic when an 
interval is specified, updating the hardware timer's com­
parator register with the specified time and/or interval, 
initiating the timer ISR upon expiration of the timer, initi-
ating the application ISR from the timer ISR, and returning 
control to the calling application. 

In accordance with yet other aspects of the present 
invention, a computer-accessible medium for facilitating 
access to timers in a computing device is provided, including 
a medium for storing data structures and computer-execut­
able components for establishing a connection between an 
application and a hardware timer, specifYing and validating 
parameters for the operation of the hardware timer, initiating 
the timer on behalf of the application, and returning control 
to the application when the timer has ended. The data 
structures define the hardware timer parameters, and other SUMMARY 

The foregoing problems with the prior state of the art are 
overcome by the principles of the present invention, which 
is directed toward methods, systems, computer program 
products, and data structures for facilitating access to timers 
in a computing device. The present invention is further 
directed toward methods, systems, computer program prod­
ucts, and data structures for configuring a timer in a com­
puting device, the timer being guaranteed to expire at a 
specific time in a non-real-time environment. 

50 timer data in a manner that is generally consistent with the 
above-described systems and methods. Likewise, the com­
puter-executable components, including the hardware-inde­
pendent and hardware-dependent APls to the hardware 
timers, are capable of performing actions generally consis-

55 tent with the above-described systems and methods. 

According to one aspect of the invention, a method is 60 

provided for configuring timer hardware that is guaranteed 
to expire at a specified time in a non-real time environment. 
Upon expiration, the method may return control to the 
calling application in the non-real-time environment, includ­
ing providing a generic software callback to the calling 65 

application. Upon expiration, the method may further ini­
tiate the timer's interrupt service routine (ISR), which may 

BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing aspects and many of the attendant advan­
tages of this invention will become more readily appreciated 
as the same become better understood by reference to the 
following detailed description, when taken in conjunction 
with the accompanying drawings, wherein: 

FIG. 1 is a block diagram overview of an exemplary timer 
system and one suitable operating environment in which 
access to a timer may be facilitated in accordance with the 
present invention; 



US 7,383,460 B2 
3 

FIG. 2 is a block diagram illustrating in further detail an 
arrangement of certain components of the timer system 
illustrated in FIG. 1 for implementing an embodiment of the 
present invention; 

FIG. 3 is a block diagram illustrating in further detail 
certain aspects of a hardware-dependent interface fonned in 
accordance with an embodiment of the present invention; 

FIG. 4 is a flow diagram illustrating certain aspects of a 
hardware-independent application programming interface 
for implementing an embodiment of the present invention; 10 

FIG. 5 is a flow diagram illustrating certain aspects of a 
hardware-dependent application programming interface for 
implementing an embodiment of the present invention; 

FIG. 6A is a block diagram illustrating certain aspects of 
a hardware-independent application programming interface 15 

for implementing an embodiment of the present invention; 
and 

FIG. 6B is a block diagram illustrating certain aspects of 

4 
ware-independent timer application programming interface 
(API) 104. The hardware-independent API 104 is configured 
to receive a number of parameters from the timer applica­
tions 102A, 102B, such as a pointer to an application 
interrupt service routine (ISR) that should be initiated upon 
expiration of the timer, the mode of the timer, i.e., periodic 
or aperiodic, the interval at which the timer should expire, 
and so forth. 

During operation of the timer 100, a hardware-indepen­
dent timer API 104 initiates the establishment of a connec­
tion between the calling timer application 102A, 102B, and 
the timer 108 by, among other actions, validating parameters 
received from the calling timer application, verifying 
whether the application is authorized to set an interrupt timer 
using the API 104, and if so, relaying the validated param­
eters to a hardware-dependent API 106. The hardware-
dependent API 106 completes the process of establishing the 
connection between the calling timer application 102A, 
102B, and the hardware timer 108 by, among other actions, a hardware-dependent application programming interface 

for implementing an embodiment of the present invention. 20 setting the hardware timer in accordance with the validated 
parameters received from the calling timer application. 

DETAILED DESCRIPTION In one embodiment, in the context of an operating system 
such as the Microsoft Windows NT operating system, the 
hardware-independent timer API 104 may be implemented To successfully run certain types of test routines, device 

simulators, or other types of application or system software 
on a computing device, the software must have access to a 
timer that is guaranteed to expire at a specified time and/or 
at a specified interval. However, the functionality of a timer 
that is guaranteed to expire at a specified time and/or 
specified interval may not always be accessible to the 
application or system software that needs it. For example, in 
the Microsoft Windows NT environment, the hardware 
application layer (HAL) does not permit application and 
system software to directly access the hardware-specific 
information needed to use a hardware timer, such as the 
High Precision Event Timer (HPET) timer that is provided 
with Intel computer hardware. Unfortunately, hardware tim-

25 in a kernel mode export driver. A kernel mode export driver 
may be advantageously used to implement certain hardware­
independent aspects of a method for facilitating access to a 
timer in accordance with an embodiment of the invention. In 
one embodiment, the kernel mode export driver is a kernel 

30 mode dynamic link library (DLL) capable of being loaded 
by other components of an operating system. The hardware­
independent timer API 104 may be implemented in a routine 
that is part of the hardware abstraction layer, or HAL. A 
HAL routine has access to the various components of the 

ers are generally the only timers that are guaranteed to expire 

35 timer 108 that are necessary to establish a connection with 
and set the timer according to the validated parameters 
received from the calling timer application 102A, 102B by 
way of the hardware-independent API 104. 

In one embodiment, the timer 108 may be a high precision at a specified time. To address this and other problems with 
accessing timers, a computing system suitable for imple­
menting a method for facilitating access to a timer guaran­
teed to expire at a specified time or interval in accordance 
with embodiments of the present invention is described in 
detail in the following discussion. 

40 event timer (HPET) such as that provided in Intel computer 
hardware. Establishing a connection with the timer 108 and 
setting the timer in accordance with an embodiment of the 
invention will be described in further detail below. 

As already noted, guaranteed timers are generally hard- 45 

ware timers. Since the specific details of programming a 
hardware timer may vary from one hardware platform to the 
next, certain aspects of the method for facilitating access to 
a timer in accordance with embodiments of the present 
invention are typically performed in a hardware-indepen- 50 

dent component, and certain other aspects of the method are 
typically performed in a hardware-dependent component. 

FIG. 1 is a block diagram overview of an exemplary timer 
system 100 and one suitable operating environment in which 
access to a timer may be facilitated in accordance with the 55 

present invention. As shown, the timer system 100 may 
include a timer application 102A and/or 102B, residing in 
either the user mode or the kernel mode, needing access to 
a timer that can be guaranteed to expire at a specified time 
and/or at a specified interval. Examples of such timer 60 

applications include, but are not limited to, various system 
timer test routines, device simulators, processor power man­
agement testing routines, scheduling algorithms, and kernel 
performance algorithms. 

The timer applications 102A, 102B, establish a connec- 65 

tion with a timer 108 that is guaranteed to expire at a 
specified time and/or a specified interval through a hard-

FIG. 2 is a block diagram illustrating in further detail an 
arrangement of certain components of the timer system 
illustrated in FIG. 1 for implementing an embodiment of the 
present invention. A calling application 202 contains a 
process to call a kernel mode routine 208 having a set 
interrupt timer API 210 capable of receiving one or more 
parameters. In one embodiment, the calling application 202 
may pass parameters 204 that specifY the various timer 
settings, such as the mode, the interval, the interrupt request 
level (IRQL) at which the kernel mode routine 208 is to run, 
and an interrupt service routine (ISR) 206 (or a name or 
pointer to an application ISR) that should be run upon 
expiration of the timer with which the calling application 
202 ultimately establishes a connection. In one embodiment, 
the parameters 204 may also include a pointer or other 
reference to an area of application managed memory 224 in 
which will be written the actual time that the timer with 
which the calling application 202 ultimately establishes a 
connection will expire, also referred to as the absolute 
expiration time 226. 

In one embodiment, the set interrupt timer API 210 
validates the parameters 204 and verifies whether the calling 
application 202 is authorized to set a timer using the API 
210. The API 210 then passes the validated parameters to a 



US 7,383,460 B2 
5 

HAL routine 212, also having a set interrupt timer API 214 
corresponding to the API 210. 

In one embodiment, the HAL routine 212 includes its own 
timer interrupt service routine (ISR) 216, or a pointer to a 
timer ISR, that should be run upon expiration of the timer 
with which the calling application 102A, 102B, or 202 
ultimately establishes a connection. In one embodiment, the 
timer ISR 216 may be modified to embed the application 
ISR 206, also referred to as wrapping the application ISR 
206 in the timer ISR 216, or otherwise run the application 10 

ISR 206 upon the expiration of the timer. 

6 
In one embodiment, the expiration time at which the 

hardware interrupt timer 208 should expire is derived from 
at least one of the validated parameters received by the HAL 
routine 302, including the parameters that specified the 
interval and mode with which to set the interrupt timer using 
process 304. For example, in a typical embodiment, the 
expiration time is the current clock time plus the amount of 
time represented by the interrupt interval specified in the 
parameters passed by the calling application 102A, 102B. 

In one embodiment, the HAL routine 302 also writes the 
expiration time to an application-managed area of memory 
224 (FIG. 2) in the computing device, the pointer to which 
may optionally be specified in the validated parameters 
received by the HAL routine 302. Writing the expiration 

In one embodiment, the HAL set interrupt timer API 214 
accesses an available HPET timer 218 and sets the timer by, 
among other actions, writing an expiration time at which the 
timer 218 should expire in a corresponding comparator 
register 222, where the corresponding comparator register 
includes, for example, comparator registers corresponding 

15 time to this area of memory enables the application to have 
access to the actual time at which the hardware timer 108 is 
set to expire, referred to as the absolute expiration time 226 
(FIG. 2). to Timer 0, 222A, Timer 1, 222B, or Timer 2, 222C, each 

located at different offsets in the available HPET timer. In 
one embodiment, the HAL set interrupt timer API 214 also 20 

writes the expiration time at which the timer 218 should 
expire in an area of application managed memory 224, the 
location of which may be conveyed to the HAL set interrupt 
timer API 214 in one of the validated parameters. The 
operation of the HAL set interrupt timer API 214 will be 25 

discussed in further detail with reference to FIG. 3, below. 

The HAL routine 302 may also include a process to 
service the interrupts generated by the timer 108, i.e., a timer 
ISR 306. The timer ISR process 306 contains the logic to set 
the next expiration time, or to stop the interrupts, depending 
on the mode specified in the validated parameters received 
by the HAL routine 302. For example, when the mode is 
periodic, the derivation and writing of the expiration time is 
repeated indefinitely, i.e., until the calling application ter-
minates the connection to the timer; otherwise the derivation 
and writing of the expiration time is carried out once only, 
i.e., the timer is a one-shot timer. 

Once the timer 108 has been set, the connection between 
the calling application 102A, 102B, or 202 and the timer 
108, or 218 is established. The general behavior of the timer 30 

108 is to generate an interrupt at the specified IRQL when 
the timer expires in accordance with the mode and interval 
specified in the parameters. For example, when using an 
HPET timer 218, the timer expires when the main counter 
220 of the timer reaches the value written to the comparator 
register 222A, 222B, or 222C, where the value written to the 
comparator register is derived from the mode and interval 
specified in the parameters passed by the calling application 
202. The general behavior and operation ofHPET timers are 
known in the art and are set forth in Intel's Intel Architec- 40 

ture/Personal Computer (lA/PC) HPET (High Precision 
Event Timers) Specification, Revision 1.0a, October 2004. 
Accordingly, details regarding HPET timers will not be 
further discussed except as the operation and general behav-

In one embodiment, the HAL routine 302 may modifY the 
timer ISR 306 to include an additional process to further 
service the interrupts generated by the timer 108. For 
example, with reference to FIG. 2, the additional process 
may be an application ISR 206 that is typically supplied by 

35 the calling application 202 as specified in the validated 
parameters. Depending on the particular embodiment, the 
calling application 102A, 102B, 202 may supply an appli­
cation ISR 206 indirectly, by name or by pointer, or directly 
as executable code. 

In an actual embodiment, the HAL routine 302 may be 
implemented in the example code 310 illustrated in FIG. 3, 
and set forth below in Table I. 

ior of the HPET timer pertains to the described embodiments 45 ___________ T_A_B_L_E_I _________ _ 
of the present invention. 

FIG. 3 is a block diagram illustrating in further detail a 
hardware abstraction layer (HAL) overview 300 of a hard­
ware-dependent interface formed in accordance with an 
embodiment of the present invention. In one embodiment, 50 

the hardware-dependent interface to a timer may include a 
HAL routine 302 corresponding to HAL routine 212 in FIG. 
2. 

The HAL routine 302 includes a process 304 to initially 
set a hardware interrupt timer 108 in accordance with the 55 

validated parameters received from the calling application 
102A, 102B, or 202 (in FIGS. 1, 2). As already noted, when 
using an HPET timer 218, the set interrupt timer process 304 
may include, among other actions, writing an expiration 
time at which the HPET timer 218 should expire in the 60 

corresponding timer's comparator register 222, where the 
corresponding timer is one of the timers, e.g., Timer 0 222A, 
Timer 1 222B, or Timer 2, 222C, with which the calling 
application 202 has established a connection. The process 
304 may include other actions to initially set the hardware 65 

interrupt timer 108 depending on the particular type of 
hardware interrupt timer that is being used. 

HAL Set Interrupt Timer and Service Interrupt Timer Example Logic 

SetInterruptTimer( ) 
IntTimerServiceRoutine( ) 

ApplicationTimerServiceRoutine( ) 
if (PeriodicIntMode) { 

SetNextInterruptTime 
}else { 

StopInterrupt 

FIG. 4 is a flow diagram illustrating certain aspects of a 
hardware-independent timer API 104 (in FIG. 1) for imple­
menting an embodiment of the present invention. In par­
ticular, the hardware-independent logic 400 embodied in the 
hardware-independent timer API 104 will be described with 
reference to the foregoing descriptions of the various com­
ponents of a timer system overview 100 referenced in FIG. 
1 and the timer system example 200 referenced in FIG. 2, 
including, among others, the calling application 102A, 
102B, 202 and parameters passed by the application, e.g., 
the parameters 204 and the application ISR 206, the hard­
ware-dependent timer API 106 and example component 212, 



US 7,383,460 B2 
7 

including the timer API 214 and the timer ISR 216, and the 
hardware interrupt timer 108 such as the HPET timer 218. 

8 
The hardware-independent logic 400 continues at process 

block 414, where the timer system 100 transfers control to 
the hardware-dependent portion of the 100, i.e., the hard­
ware-dependent API 106, the description of which is refer­
enced in connector circle 416 at FIG. 5 below. 

FIG. 5 is a flow diagram illustrating certain aspects of a 
hardware-dependent timer API 106 (in FIG. 1) for imple­
menting an embodiment of the present invention. In par­
ticular, the hardware-dependent logic 400 embodied in the 
hardware-dependent timer API 106 will be described with 
reference to the foregoing descriptions of the various com-
ponents of a timer system overview 100 referenced in FIG. 
1 and the timer system example 200 referenced in FIG. 2, 
including, among others, the calling application 102A, 

The hardware-independent logic 400 begins at process 
block 402 with validating the arguments, e.g., parameters 
204 passed by the calling timer application 202. In a typical 5 

embodiment, validating the parameters includes, among 
other actions, insuring that the mode has been specified as 
periodic or aperiodic, making sure that the calling timer 
application 102A, 102B, 202 has expressed the specified 
time interval in appropriate system time units, e.g., 100- 10 

nanosecond intervals, and that the specified interval is of 
sufficient duration to use with the available hardware timer 
108. For example, when setting an HPET timer 218, as a 
practical matter, the interval specified in parameters 204 
should be sufficiently long enough to allow the derived 
expiration time to be written to a comparator register 222 
before the main counter 220 actually reaches that time. 
Otherwise, the hardware-dependent timer API 106, e.g., the 
HAL API 214, will not be able to set the HPET timer 218 
properly. 

15 102B, 202 and parameters passed by the application, e.g., 
the parameters 204 and the application ISR 206, the hard­
ware-dependent timer API 106 and example components 
212, including the timer API 214 and the timer ISR 216, and 
the hardware interrupt timer 108 such as the HPET timer 

20 218. 
Additional cross-validation of two or more arguments 

may be performed, such as that described below in blocks 
406 and 408 with reference to the application ISR and an 
associated device object, both of which may also be speci­
fied in parameters 204. If any of the parameters 204 are 25 

invalid, either alone or in combination, the hardware-inde­
pendent timer API 104 branches to termination fail process 
412 to return to the calling application with an appropriate 
error message. 

The hardware-dependent logic 500 begins at process 
block 502 to register the timer ISR, e.g. the timer ISR 216 
contained in HAL routine 212, on an available hardware 
interrupt, i.e., on one of the timers, Timer 0, 222A, Timer 1, 
222B, or Timer 2, 222C in an available HPET timer 218. 
Registering the timer ISR initiates the connection between 
the calling application 102A, 102B, and the hardware inter­
rupt timer 108. 

In one embodiment, the hardware-dependent logic 500 
The hardware-independent logic 400 continues at process 

block 404 with verifYing the calling application's privileges, 
i.e., making sure that the calling application 102A, 102B, 
202 is operating at a system privilege level that allows 
access to the various components of the timer 100, such as 
the APIs 104 and 106, and the hardware interrupt timer 108. 
If the application If the calling application 102A, 102B, 202 
is not authorized, the hardware-independent timer API 104 
branches to termination fail process 412 to return to the 
calling application with an appropriate error message. 

The hardware-independent logic 400 continues at deci­
sion block 406 to determine whether the calling application 
102A, 102B, 202, has provided an application ISR, such as 
application ISR 206 (FIG. 2). The application ISR 206 may 
be provided in any number of ways, but is typically provided 
by passing a pointer to an application ISR 206 in the 
parameters 204. In one embodiment, when an application 
ISR 206 has not been provided, the hardware-independent 
logic 400 may optionally perform a process 410 to deregister 
any previously specified application ISR 206, after which 
control is returned at termination block 418 to the calling 
application 102A, 102B, 202. Otherwise, if an application 
ISR 206 has been provided, the hardware-independent logic 
400 may optionally perform a process 408 to validate the 
application ISR 206, including cross-validating the applica­
tion ISR 206 with a device object, also specified in param­
eters 204. For example, if the pointer to the application ISR 
206 is null, and the device object points to the same location 
used to register the current application ISR 206, the hard­
ware-independent logic 400 may optionally perform a pro­
cess 410 to deregister the current application ISR. If the 
device object points to a different location in the calling 
application's memory than that used to register the current 
application ISR 206, the application ISR 206 that was 
provided cannot be validated, and the hardware-independent 
timer API 104 branches to termination fail process 412 to 
return to the calling application with an appropriate error 
message. 

30 continues at process block 504 by inserting (also referred to 
as embedding or wrapping) the application ISR into the 
timer ISR. For example, as described with reference to 
FIGS. 2 and 3, the HAL routine 302 (reference 212 in FIG. 
2) set interrupt timer process 304 (reference 214 in FIG. 2) 

35 inserts the application ISR 308 (reference 206 in FIG. 2) into 
the timer ISR 306 (reference 216 in FIG. 2). 

In one embodiment, the hardware-dependent logic 500 
continues at process block 506 by setting the hardware 
interrupt timer 108 to an aperiodic mode or periodic mode, 

40 depending on the mode that was specified in the parameters 
passed by the calling application 102A, 102B. Setting the 
timer 108 to the periodic mode will cause the timer to 
generate an interrupt at regular time intervals, as indicated in 
the interval specified in the parameters, e.g. parameters 204. 

45 Setting the timer 108 to the aperiodic mode will cause the 
timer 108 to generate just one interrupt, based on the interval 
specified in the parameters. 

In one embodiment, the hardware-dependent logic 500 
continues at process block 508 to update the hardware 

50 interrupt timer 108 with the actual expiration time. The 
actual expiration time will be determined by the interval that 
was specified in the parameters passed by the calling appli­
cation 102A, 102B. As such, the interval represents a 
relative time at which the timer 108 will expire, and the 

55 actual time depends on the current clock time, also referred 
to as the current system time of the computing device in 
which the hardware interrupt timer resides. In a typical 
embodiment, at process block 508 the specified interval is 
added to the current system time to obtain the actual 

60 expiration time. When the timer system 100 is being imple­
mented in a device using an HPET timer 218, the actual 
expiration time is written to the comparator register 222 
corresponding to the timer, Timer 0, 222A, Timer 1, 222B, 
or Timer 2, 222C, on which the timer ISR 216 was registered 

65 in process block 502. In one embodiment, at process block 
508, the actual expiration time may be optionally written to 
an area of application managed memory, such as memory 



US 7,383,460 B2 
9 

224 in FIG. 2, the location of which is detennined by a 
pointer or other infonnation specified in the parameters 
passed by the calling application 102A, 102B. This enables 
the calling application 102A, 102B to have access to the 
actual expiration time of the timer with which a connection 
has been established. 

10 
periodic or aperiodic mode, a time pointer 614E, that 
specifies the location in application-managed memory in 
which the actual time that the timer is set to expire is to be 
written, another pointer 614F to application managed 
memory associated with the interrupt service routine pointer 
614A, and other additional parameters 614G relayed by the 
call 612. 

As noted earlier, there are several scenarios in which the 
above-described timer system 100 may be particularly use­
ful, including processor power management testing, device 
simulation, system timer testing, and to quantifY the relative 
load of interrupts currently being serviced at a particular 
IRQL. 

For example, in the processor power management testing 

The hardware-dependent logic 500 continues at process 
block 510 to initiate the timer ISR (and embedded applica­
tion ISR, if any), upon expiration of the timer 108. The 
processes in process blocks 508 and 510 are repeated when 10 

the timer is set to periodic mode, incrementing the actual 
expiration time by the time in the specified interval until, at 
termination process 512, the application terminates the 
connection that was established with the timer 108, or the 
timer otherwise stops operating. 15 scenario, a processor in the relatively light C1 idle state will 

resume to CO more quickly than it will from the deeper C2 
idle state; likewise for C3 and C4. The deeper the idle state, 
the more power savings, but the higher the exit latency. 

In one embodiment, the appropriate error messages 
referred to in FIGS. 4 and 5 may include, but are not limited 
to, an insufficient resources message indicating that another 
application ISR may have already registered with the API, a 
hardware timer not supported message indicating that suit- 20 

able hardware interrupt timers are not present in the com­
puting device, and an invalid parameter message indicating 
that one or more parameters 204 are invalid, or the combi­
nation of parameters is invalid. 

FIGS. 6A and 6B illustrate further details of an example 25 

implementation 600 of a timer system 100. In particular, 
FIG. 6A is a block diagram illustrating certain aspects of a 
hardware-independent application programming interface 
for implementing an embodiment of the present invention. 
As shown, a calling application 602 contains a call 604 to a 30 

kernel mode routine 608 having a set interrupt timer API 
610. Passed in the call 604 are one or more parameters 606, 
including an interrupt service routine pointer 606A that 
points to an application-provided ISR to be run upon expi­
ration of the timer, an IRQL 606B that specifies the request 35 

level at which the application-provided ISR is to operate, an 
interval 606C, that specifies a unit of time after which the 
timer should expire, a mode 606D, that specifies whether the 
timer should operate in periodic or aperiodic mode, a time 
pointer 606E, that specifies the location in application- 40 

managed memory in which the actual time that the timer is 
set to expire is to be written, and another pointer 606F to 
application managed memory associated with the interrupt 
service routine pointer 606A. Other additional parameters 
606G may be passed in the call 604 depending on the 45 

implementation. For example, in some implementations, the 
calling application 602 may specify a value representing the 
set of processors on which device interrupts can occur. As 
another example, in some implementations, the calling 
application 602 may specifY yet another pointer to an area in 50 

application managed memory that represents a service con­
text that will be supplied to the application-provided ISR 
when executed upon expiration of the timer. 

In FIG. 6B, the kernel mode routine 608 having a set 
interrupt timer API 610 further includes a call 612 to a 55 

hardware application layer (HAL) routine 616 having its 
own set interrupt timer API 618. The HAL set interrupt timer 
API 618 receives the validated parameters 614 passed by the 
call 612 from the kernel mode routine. The validated param­
eters 614 correspond to the parameters 606 passed by the 60 

calling application 602, and include an interrupt service 
routine pointer 614A that points to an application-provided 
ISR to be run upon expiration of the timer, an IRQL 614B 
that specifies the request level at which the application­
provided ISR is to operate, an interval 614C, that specifies 65 

a unit of time after which the timer should expire, a mode 
614D, that specifies whether the timer should operate in 

Since an interrupt returns the processor to the CO running 
state, it may be possible to determine which processor idle 
state a processor is in based on the relative latency in 
servicing that interrupt, i.e., the exit latency. To calculate the 
exit latency, a calling timer application 102A calls the set 
interrupt timer APIs 610, 618, to the HPET timer to specifY 
an interval to generate an interrupt at time T1, and then 
queries the HPET timer's up counter at time T2 in the timer 
application ISR associated with that interrupt. The exit 
latency equals time T1 subtracted from time T2. 

In the device simulation scenario, a device simulator 
would ordinarily need to usurp all of the capacity of one 
CPU to successfully simulate a device in a multi-processor 
system. However, using the functionality of the set interrupt 
timer APIs 610, 618 to perfonn periodic processing at a very 
high resolution at a nearly guaranteed rate allows the simu-
lation to run instead on an UP processor system. An example 
is the simulation of USB isochronous data transfers used for 
streaming video and audio. A real USB 2.0 controller is 
equipped with a processor that polls a shared-memory 
structure every 125 micro-seconds to check for data that 
needs to be moved. A calling application simulates the 
polling of the shared-memory using the set interrupt timer 
APIs 610, 618 to generate an interrupt and poll the memory 
at a rate that is very close to the real controller without 
usurping the processor. 

As already discussed, in the system timer testing scenario, 
testing is difficult in a system operating Microsoft Windows 
NT, because timers are never guaranteed to expire at a 
specific time, but rather are guaranteed not to expire before 
a specific time. Also, there are no APIs to determine which 
timers are in use on a given system. By using the set 
interrupt timer APIs 610, 618 to generate a non-shared 
hardware interrupt to drive an application ISR, the system 
timer test routines may provide a higher degree of assurance 
that the timer will expire at the specific time that the calling 
application intended. This is because hardware interrupts are 
generally serviced with much less latency than the software 
deferred procedure calls used in the kernel mode architec­
ture. Furthennore, hardware interrupts are not directly tied 
to the processing load of a system, allowing more aggressive 
testing of hardware timers and measuring software latencies. 

In the scenario of quantifYing the relative load of inter­
rupts currently being serviced at a particular IRQL, the set 
interrupt timer APIs 610, 618 may be used to observe trends 
in interrupt latency over long periods of time. Possible 
consumers for this infonnation include: test tools, stress 
scenarios, perfonnance calculations, scheduling algorithms, 
and power state transition algorithms. 



US 7,383,460 B2 
11 

The foregoing discussion has been intended to provide a 
brief, general description of a computing system suitable for 
implementing various features of the invention. Although 
described in the general context of a personal computer, 
those skilled in the art will appreciate that the invention may 
be practiced with many other computer system configura­
tions. For example, the invention may be practiced with a 
personal computer operating in a standalone environment, or 
with multiprocessor systems, minicomputers, mainframe 
computers, and the like. In addition, those skilled in the art 10 

will recognize that the invention may be practiced on other 
kinds of computing devices including laptop computers, 
tablet computers, personal digital assistants (PDA) , or any 
device upon which computer software or other digital con­
tent is installed. 15 

For the sake of convenience, some of the description of 
the computing system suitable for implementing various 
features of the invention included references to the Windows 

12 
the parameter included in the request and verifying that 
the application is authorized to set the hardware inter­
rupt timer; 

relaying the validated request to the hardware-dependent 
process, the hardware-dependent process comprising: 
(a) a timer interrupt service routine containing logic to 

set an expiration time and the application interrupt 
service routine, and a second set interrupt timer API 
corresponding to the first set interrupt timer API; 

setting the hardware interrupt timer in the hardware­
dependent process to expire in accordance with the 
validated request, wherein setting the hardware inter­
rupt timer comprises storing the expiration time in the 
hardware interrupt timer and storing the expiration time 
in the area of the application managed memory; 

inserting the application interrupt service routine in the 
timer interrupt service routine scheduled to execute 
upon expiration of the timer; and 

returning control to the application when execution of the 
timer interrupt service routine and the inserted appli­
cation interrupt service routine is complete. 

NT operating system. However, those skilled in the art will 
recognize that those references are only illustrative and do 20 

not serve to limit the general application of the invention. 
For example, the invention may be practiced in the context 2. The method of claim 1, wherein the group of param­

eters also includes arm interval representing a period of time 
after which the hardware interrupt timer is requested to 

25 expire, and wherein validating the request includes deter­
mining that the interval is of substantially sufficient duration 
to set the hardware interrupt timer. 

of other operating systems such as the LINUX or UNIX 
operating systems. 

Certain aspects of the invention have been described in 
terms of programs executed or accessed by an operating 
system in conjunction with a personal computer. However, 
those skilled in the art will recognize that those aspects also 
may be implemented in combination with various other 
types of program modules or data structures. Generally, 
program modules and data structures include routines, sub­
routines, programs, subprograms, methods, interfaces, pro­
cesses, procedures, functions, components, schema, etc., 
that perform particular tasks or implement particular abstract 
data types. 

The embodiments of the invention in which an exclusive 
property or privilege is claimed are defined as follows: 

1. A method for configuring a timer in a computing 
device, the method comprising: 

receiving a request from an application to set a hardware 
interrupt timer, the application including: 
(a) a process that causes said request to be sent to a 

kernel mode routine having a first set interrupt timer 
application programming interface (API) capable of 
receiving said request, 

(b) an application managed memory, and 

3. The method of claim 1, wherein validating the request 
includes determining that the mode is one of periodic and 

30 aperiodic. 
4. The method of claim 1, wherein the group of param­

eters also includes a parameter that specifies an application 
interrupt service routine that is to be executed upon expira­
tion of the hardware interrupt timer, and wherein validating 

35 the request includes determining that the application inter­
rupt service routine is properly registered. 

5. The method of claim 4, wherein the group of param­
eters also includes a parameter that specifies a device object, 
and wherein validating the request includes determining that 

40 the application service routine corresponds to the device 
object. 

6. The method of claim 4, wherein setting the hardware 
interrupt timer includes registering a timer service routine to 
be executed upon expiration of the hardware interrupt timer, 

45 the timer service routine being modified to run the applica-
tion service routine. 

(c) an application interrupt service routine to be run 
upon expiration of the hardware interrupt timer, said 50 

request including a parameter chosen from the group 
comprising: 

7. A system to configure a timer in a computing device, 
the system comprising: 

a timer substantially guaranteed to expire at a time 
certain; 

a hardware-independent interface to the timer, wherein 
the hardware-independent interface is a kernel mode 
routine having a set interrupt timer application pro­
gramming interface (API) for receiving parameters 
associated with a request from the application to set the 
timer, and validating the request, wherein validating the 
request includes validating the parameters by the hard­
ware-independent interface; 

(i) a mode in which the hardware interrupt timer is 
requested to operate; 

(ii) an interval; 
(iii) a reference to an area of the application managed 

memory in which a hardware-dependent process 

55 

is to store a value representing an actual time at 
which the hardware interrupt timer has been set to 
expire in accordance with the validated request, 60 

and 
(iv) an interrupt request level at which the applica­

tion interrupt service routine should execute; 
validating the request in a hardware-independent process, 

said hardware-independent process comprising the ker- 65 

nel mode routine having the first set interrupt timer 
API, wherein validating the request includes validating 

a hardware-dependent interface to the timer; and 
a processor in which the hardware-independent interface 

operates to validate a request from an application to set 
the timer and to relay the validated request to the 
hardware-dependent process, and further in which the 
hardware-dependent interface operates to set the timer 
to expire in accordance with the validated request and 
to execute a timer interrupt service routine upon expi­
ration of the timer. 



US 7,383,460 B2 
13 

8. The system of claim 7, wherein the timer is a high 
precision event timer (HPET). 

9. The system of claim 8, wherein the hardware-depen­
dent interface operates to set the timer by writing an actual 
time at which the HPET should expire to a comparator 
register associated with the HPET, the actual tune being 
determined by the hardware-dependent interface in accor­
dance with the validated request. 

10. The system of claim 7, wherein the parameters specify 
an interval representing a period of time after which the 10 

hardware interrupt timer is requested to expire, and wherein 
the processor operates to validate the request by determining 
that the interval is of substantially sufficient duration to set 
the timer. 

11. The system of claim 7, wherein the parameters specify 15 

a mode in which the timer is requested to operate, and 
wherein the processor operates to validate the request by 
determining that the mode is one of periodic and aperiodic. 

12. The system of claim 7, wherein the hardware-depen­
dent interface is a hardware application layer (HAL) routine 20 

having an interface to receive the validated parameters 
associated with the request relayed from the hardware­
independent interface. 

13. The system of claim 7, wherein the hardware-depen­
dent interface further operates to execute an application 25 

service routine upon expiration of the timer. 
14. A computer-accessible medium having instructions 

for setting a timer in a computing device when executed by 
a processor included in said computing device, the instruc-
tions comprising: 30 

a hardware-independent process to: 
(a) receive a request from an application to set a timer 

in the computing device, the timer being substan-

14 
tially guaranteed to expire at a time certain; wherein 
said request contains at least one parameter, the at 
least one parameter chosen from the group compris­
ing: 
(i) a mode in which the hardware interrupt timer is 

requested to operate; 
(ii) an interval; 
(iii) a reference to an area of the application managed 

memory in which a hardware-dependent process 
is to store-a value representing an actual, time at 
which the hardware interrupt timer has been set to 
expire in accordance with the validated request, 
and 

(iv) an interrupt request level at which the applica­
tion interrupt service routine should execute; 

(b) determine whether the application is privileged to 
make the request; 

(c) validate parameters associated with the request; and 

a hardware-dependent process to set the timer to expire in 
accordance with the validated parameters. 

15. The computer-accessible medium of claim 14, 
wherein the instructions comprising the hardware-dependent 
process further include instructions to: 

insert an application service routine in a timer service 
routine scheduled to execute upon expiration of the 
timer; and 

return control to the application when execution of the 
timer service routine and inserted application service 
routine is complete. 

* * * * * 


	AA
	US7383460(B2)
	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract


