

EXHIBIT J

Apple, Inc. v. Motorola, Inc. et al Doc. 12 Att. 10

Dockets.Justia.com

http://dockets.justia.com/docket/illinois/ilndce/1:2011cv08540/262961/
http://docs.justia.com/cases/federal/district-courts/illinois/ilndce/1:2011cv08540/262961/12/10.html
http://dockets.justia.com/

5,929,852
Jui. 27, 1999

[11]

[45]

111
US005929852A

Patent Number:

Date of Patent:

United States Patent [19]

Fisher et ai.

[54] ENCAPSUIATED NETWORK ENTITY
REFERENCE OF A NETWORK
COMPONENT SYSTEM

5,819,090 10/1998 Wolf et al. 345/335 X

FOREIGN PATENT DOCUMENTS

[75] Inventors: Stephen Fisher; Michael A. Cleron,
both of Menlo Park; Timo Bruck,
Mountian View, all of Calif.

WO
A9107719 5/1991 WIPO.

OTHER PUBLICATIONS

Related U.S. Application Data

[63] Continuation of application No. 08/435,880, May 5, 1995,
abandoned.

[73] Assignee: Apple Computer, Inc., Cupertino,
Calif.

[21] Appl. No.: 09/007,691

[22] Filed: Jan. 15, 1998

ABSTRACT[57]

20 Claims, 14 Drawing Sheets

Develop, The Apple Technical Journal, "Building an Open­
Doc Part Handler", Issue 19, Sep., 1994, pp. 6-16.
Baker, S. "Mosaic-Surfing at Home and Abroad," Proceed­
ings ACM SIGUCCS User Services Conference XXII, Oct.
16-19, 1994, pp. 159-163.
PCT International Search Report dated Oct. 22, 1996 in
corresponding PCT Case No. PCT/US96/06376.
MacWeek, Nov. 7, 1994, vol. 8, No. 44, Cyberdog to Fetch
Internet Resources for OpenDoc APPS, Robert Hess.
Opinion, MacWeek Nov. 14, 1994, The Second Decade,
Cyberdog Could Be a Breakthrough if it's Kept on a Leash,
Henry Norr.

Primary Examiner-Joseph H. Feild
Attorney, Agent, or Firm-Cesari & McKenna, LLP

A network-oriented component system efficiently accesses
information from a network resource located on a computer
network by creating an encapsulated network entity that
contains a reference to that resource. The encapsulated entity
is preferably implemented as a network component stored
on a computer remotely displaced from the referenced
resource. In addition, the encapsulated entity may be mani­
fested as a visual object on a graphical user interface of a
computer screen. Such visual manifestation allows a user to
easily manipulate the entity in order to display the contents
of the resource on the screen or to electronically forward the
entity over the network.

References Cited

4/1993 Vertelney et al. 395/936 X
1/1996 Nguyen et al. 395/762
3/1996 Dickinson 395/160
6/1996 Meske, Jr. et al. 395/600
7/1996 Sauter 395/762
8/1996 Jalalian et al. . 395/200.1

11/1996 Marianetti, II 395/200.08
8/1997 Nakajima et al. 345/302
3/1998 Cleron et al. 395/200.01
3/1998 Souder et al. 345/335 X
7/1998 Holleran et al. 345/335

U.S. PATENT DOCUMENTS

5,202,828
5,481,666
5,500,929
5,530,852
5,537,546
5,548,722
5,574,862
5,659,791
5,724,506
5,724,556
5,781,189

[56]

[51] Int. CI.6 G06T 1/00
[52] U.S. CI. 345/335
[58] Field of Search 345/335, 339,

345/348, 356; 395/701, 200.47, 200.48,
680, 681, 682, 683, 684

604

VIEWING
EDITOR

660

GRAPHIC
INTERFACE

OBJECT
2QQ

COMPONENT LAYER 606

ARBITRATOR
OBJECT

616

WINDOW
OBJECT

2aQ

OPERATING
SYSTEM

21.Q

WINDOW
MANAGER

ill

u.s. Patent Jui. 27, 1999 Sheet 1 of 14 5,929,852

a:
w
>a:

0 ('--' w
0

..-- (J)..--..--

"
0..--

0 0

~
('t) -0

C\I I-

~~
Z
W

Z ...J
W ()

...J -
() 0
-- 0 0; 0

C\I

a: a:
w w
> >a: a:
w w
(J) (J)-•

! I-
Z
W0 ::J0 rJ('t) ()

0 "'-----
0
C\I

a: a:
w w
> >

("- a: a:
w w
(J) (J)

•- \
I-

~
Z
W 0
...J 0

0 ()
('t)

C\I ('--
0..--
..--

r -0
r\.. I-..--

..-- Z
0 w
0 ::JC\I

()
"'-----

o
o
('t)

oo..--

u.s. Patent Jui. 27, 1999 Sheet 2 of 14 5,929,852

C\I

(!J
u.

C\I

@ • , + !
~ ~ ~ Mj .. ~ M M

rr "I,... • _ 0

aI~11: I ~ t---t

",El J.

~ ~ ~ ,...:::! J
~F"-r- t,l

~ ,,::F- ~'li
f'-'. ~f'-" ,..:! VV

~
C\Icry ~~f-" C\IC\I ~ ...:.f-'O .

~ ...=.f-2.
~~f-'.

~
~~f-"- >
~~~

r- F ~~ :li
~~~ N..!!.
~
~~ Jco

~C\I 0 ~ H I !
C\I

'"

'-- ~~

co
0or- V

C\I or- or-

~
C\I C\I

>- L... \-..
a:~ a: >-Wa: I- a:1- 0 :::> :::> 0
~~

() a..
~

) a: -(' () "(~W ()
W

Oz co ~
0

or-
C\I() C\I C\I

C\I ::::: or-

C\I C\I

~
0
LO
C\I

co
cry
C\I

v

rJ/
r "-. rv v

v - C\I
C\I

"......
...............

r t'- /l
LO

C\I cry
cry C\I

(
o
o
C\I

u.s. Patent Jui. 27, 1999 Sheet 3 of 14 5,929,852

.
<.!J
u.

co aT""" ~
Ct') T""" T"""

t......
Ct') Ct')

>- >- l-.. lr...a: a:
0 ~ >-
~- ::::> a:
W~ ::::> 0
~(J) () a..

~

(J)8. 'J
a: -(' () l W
() <0 ~(J)
0

T"""
C\I« ~

Ct')
:::::: T"""

~ C\I Ct')
Ct')

~
a
C\I
Ct')

C\I
C\I
Ct')

V.

a:~
Wa:

(~O

~~a
LO ~W
Ct') Oz

()(
a
a
Ct')

~ =:-d • 'JJ
.

• ~ ~ ~ = ~ o, '""'
"
~'J

J. =­ ~ ~N ~-
..
J

'""'
"

'0 '0 '0 U
l

.... \C N \C 0
0

U
l

N

r
40

0

49
0

FI
G

.
4

48
0

/
--

-
'\

r
N

E
T

W
O

R
K

N
E

T
W

O
R

K
I

-..-
N

E
T

W
O

R
K

N
E

T
W

O
R

K
C

O
M

P
o

C
O

M
P

o
A

P
P

LI
C

.
A

P
P

LI
C

.
C

O
M

P
O

N
E

N
T

C
O

M
P

O
N

E
N

T
C

O
M

P
O

N
E

N
T

C
O

M
P

O
N

E
N

T

1
1

I

--

•
N

E
T

W
O

R
K

4
5

0
'\.

.
C

O
M

P
O

N
E

N
T

LA
Y

E
R

~
~

~
~

I
C

O
M

P
O

N
E

N
T

A
R

C
H

IT
E

C
T

U
R

E
LA

Y
E

R
43

0
I

O
P

E
R

A
T

IN
G

S
Y

S
T

E
M

42
0

t
H

A
R

D
W

A
R

E
41

0

d • 'JJ
.

• 'J
J. =­ ~ ~ U
l

o, '""'
"
~~ ~ ~ = U

l
.... \C N \C 0

0
U

l
N~ =:- N ~-
..
J

54
4

'""'
"

'0 '0 '0

F
IG

.
5

53
2

DI
SP

LA
Y

A
D

A
PT

ER
52

6

/
5

0
0

CO
M

PU
TE

R
N

ET
W

O
RK

55
0

SC
RE

EN
BU

FF
ER

52
0

N
ET

W
O

RK
A

D
A

PT
ER

56
6

CO
M

PO
N

EN
T

LA
YE

R
50

6

W
IN

D
O

W
M

AN
AG

ER
51

4

O
PE

RA
TI

N
G

SY
ST

EM
51

0

..
..

--
-

55
6

N
ET

W
O

RK
BU

FF
ER

56
0

N
ET

W
O

RK
IN

TE
RF

A
CE

54
0

CO
M

PO
N

EN
T

50
2

N ~-
..
J

'""'
"

'0 '0 '0~ ~ ~ =d • 'JJ
.

• 'J
J. =­ ~ ~ 0'
1 o, '""'
"
~~ =:- U

l
.... \C N \C 0

0
U

l
N

W
IN

D
O

W
M

A
N

A
G

E
R

61
4

O
P

E
R

A
T

IN
G

S
Y

S
T

E
M

61
0

V
IE

W
IN

G
E

D
IT

O
R

66
0

66
2

D
IS

P
A

T
C

H
E

R
O

B
JE

C
T

62
6

60
8

F
IG

.
6

W
IN

D
O

W
O

B
JE

C
T

63
0

C
O

M
P

O
N

E
N

T
LA

Y
E

R
60

6

A
R

B
IT

R
A

T
O

R
O

B
JE

C
T

6
1

6

C
O

M
P

O
N

E
N

T
O

B
JE

C
T

60
2

61
2

G
R

A
P

H
IC

IN
T

E
R

F
A

C
E

O
B

JE
C

T
65

0

u.s. Patent

o,.....
l"-

I

Jui. 27, 1999

oC\J

~I

Sheet 7 of 14 5,929,852

en z
fB '<tl 0
0""" t-oF'- <C
<C t-~

zCX: f'-
wO .
ZLL (!)
OZ u.c.. z

w ~O
0-0 Ot-a: 4::

::::> C\JI 0Or=: 0
en >
w z
ex:

u.s. Patent Jui. 27, 1999 Sheet 8 of 14 5,929,852

804

GOPHERITEM

ARTICLE

810

802 /800
~----<--

CYBERITEM

806

WEBITEM

FIG. 8

FIG. 9

/""900

902

d • 'JJ
.

• 'J
J. =­ ~ ~ '0 o, '""'
"
~~ ~ ~ = N ~-
..
J

'""'
"

'0 '0 '0~ =:- U
l

.... \C N \C 0
0

U
l

N

F
IG

.
10

10
18

10
16

10
20

X
T

E
N

S
IO

N

C
V

B
E

R
E

X
T

E
N

S
IO

N

1
0
0
0
~

10
02

10
06

,,
--

,.
-

C
O

M
P

O
N

E
N

T

~
l

10
04
7

1
0

0
8

,"
,,

-
B

A
S

E
C

O
M

P
O

N
E

N
T
~

-
-
-
~

B
A

S
E

E

~
l

L
10

10

G
O

P
H

E
R

B
R

O
W

S
E

R

I
A

R
T

IC
LE

B
R

O
W

S
E

R

~
10

12
r

L>
W

E
B

B
R

O
W

S
E

R
T

E
X

T
V

IE
W

E
R

10
14

l5
c

N
E

W
S

G
R

O
U

p
B

R
O

W
S

E
R

P
IC

T
U

R
E

V
IE

W
E

R

u.s. Patent Jui. 27, 1999 Sheet 10 of 14 5,929,852

oo
r­
r-

::2:(1) ::2:
W(I)

~(.) ~O)

II:~ II:~
~~

W
Q) I (I)

CI. 0..0.: o..E
CI. O~ 00
c:c C)J::: C)J::

~ " c.o
0
r-
r-

oq-
0
r- «r-

T'"""

T'"""

CJ
LL

0
r-
r-
r-

C\I oq-
r-
r- ::2:r-

II: W
W Z ~

C/) 0 II:
~ C/} W
0 Z I (I)

W 0..-II: 02:III ~

II: X <!J~
W W
I II:

0a.. W

0
(D

>-<!J ()

u.s. Patent Jui. 27, 1999 Sheet 11 of 14 5,929,852

f 1100

~GOPHERITE
~ Home Page

WEBBROWSER

~ GOPHERITEM
~ Home Page

GOPHERBROWSER

.------.........".1110

.------......&..,..1120

FIG. 118

u.s. Patent Jui. 27, 1999 Sheet 12 of 14 5,929,852

f 1100

Rpple

~ GOPHERITEM
.... Home Page

1106

GOPHERBROWSER

r----------L".1110

......------~1120

WEsBROWSER

~GOPHERITE
.... Home Page

1130

FIG.11C

u.s. Patent Jui. 27, 1999 Sheet 13 of 14 5,929,852

,1100

,.------------''-L..1110

GOPHERBROWSER

1106

WEsBROWSER

~ GOPHERITEM
~ Home Page

III GOPHERITEM
Happy Face

~ GOPHERITEM
~ Home Page

1140

Home Page

Home Page

Click Me!

Click me too!

Click me first!

FIG.11D

u.s. Patent Jui. 27, 1999 Sheet 14 of 14 5,929,852

12

1208

1210

1202

START

,.
C)1204

USER DOUBLE-CLICKS ON I

HOME PAGE ICON

, ~ 1206

GOPHERBROWSER COMPONENT RECEIVES
"DOUBLE-CLICKING" EVENT AND CALLS OPEN

METHOD OF HOME PAGE GOPHERITEM COMPONENT

r S
GOPHERITEM COMPONENT CREATES WEBBROWSER

COMPONENT AND PASSES ITSELF TO NEWLY
CREATED CYBEREXTENSION COMPONENT

r

WEBBROWSER COMPONENT NOTIFIED THAT
GOPHERITEM COMPONENT HAS BEEN ASSIGNED AND
GOPHERITEM COMPONENT INSTRUCTED TO CREATE
GOPHERSTREAM COMPONENT TO DOWNLOAD DATA

1r 5
12

GOPHERITEM COMPONENT CALLS OPEN METHOD OF
WEBBROWSER COMPONENT TO DISPLAY DATA ON SCREEN

r 1214

FINISH

1200'\

FIG. 12

5,929,852
2

The Telnet service allows users to log onto computers
coupled to the networks, while the netnews protocol pro­
vides a bulletin-board service to its subscribers.
Furthermore, the various data formats of the information
available on the Internet include JPEG images, MPEG
movies and ,u-Iaw sound files.

Two fashionable services for accessing information over
the Internet are Gopher and the World-Wide Web ("Web").
Gopher consists of a series of Internet servers that provide

10 a "list-oriented" interface to information available on the
networks; the information is displayed as menu items in a
hierarchical manner. Included in the hierarchy of menus are
documents, which can be displayed or saved, and searchable
indexes, which allow users to type keywords and perform

15 searches.

Some of the menu items displayed by Gopher are links to
information available on other servers located on the net­
works. In this case, the user is presented with a list of
available information documents that can be opened. The

20 opened documents may display additional lists or they may
contain various data-types, such as pictures or text;
occasionally, the opened documents may "transport" the
user to another computer on the Internet.

The other popular information service on the Internet is
25 the Web. Instead of providing a user with a hierarchical

list-oriented view of information, the Web provides the user
with a "linked-hypertext" view. Metaphorically, the Web
perceives the Internet as a vast book of pages, each of which
may contain pictures, text, sound, movies or various other

30 types of data in the form of documents. Web documents are
written in HyperText Markup Language (HTML) and Web
servers transfer HTML documents to each other through the
HyperText Transfer Protocol (HTTP).

The Web service is essentially a means for naming
sources of information on the Internet. Armed with such a
general naming convention that spans the entire network
system, developers are able to build information servers that
potentially any user can access. Accordingly, Gopher

40 servers, HTTP servers, FTPservers, and E-mail servers have
been developed for the Web. Moreover, the naming conven­
tion enables users to identify resources (such as documents)
on any of these servers connected to the Internet and allow
access to those resources.

As an example, a user "traverses" the Web by following
hot items of a page displayed on a graphical Web browser.
These hot items are hypertext links whose presence are
indicated on the page by visual cues, e.g., underlined words,
icons or buttons. When a user follows a link (usually by

50 clicking on the cue with a mouse), the browser displays the
target pointed to by the link which, in some cases, may be
another HTML document.

The Gopher and Web information services represent
entirely different approaches to interacting with information

55 on the Internet. One follows a list-approach to information
that "looks" like a telephone directory service, while the
other assumes a page-approach analogous to a tabloid news­
paper. However, both of these approaches include applica­
tions for enabling users to browse information available on

60 Internet servers. Additionally, each of these applications has
a unique way of viewing and accessing the information on
the servers.

Netscape Navigator™ ("Netscape") is an example of a
monolithic Web browser application that is configured to

65 interact with many of the previously-described protocols,
including HTTP, Gopher and FTP. When instructed to
invoke an application that uses one of these protocols,

35
networks
tools for

FIELD OF THE INVENTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

BACKGROUND OF THE INVENTION

1
ENCAPSULATED NETWORK ENTITY

REFERENCE OF A NETWORK
COMPONENT SYSTEM

This invention is related to the following copending U.S.
patent applications:

U.S. patent application Ser. No. 08/435,377, titled
EXTENSIBLE, REPLACEABLE NETWORK COMPO­
NENT SYSTEM;

U.S. Pat. No. 5,784,619 issued Jul. 21, 1998, titled
REPLACEABLE AND EXTENSIBLE NOTEBOOK
COMPONENT OF A NETWORK COMPONENT SYS­
TEM;

U.S. patent application Ser. No. 08/435,862, titled
REPLACEABLE AND EXTENSIBLE LOG COMPO­
NENT OF A NETWORK COMPONENT SYSTEM;

U.S. Pat. No. 5,724,506, issued Mar. 3, 1998, titled
REPLACEABLE AND EXTENSIBLE CONNECTION
DIALOG COMPONENT OF A NETWORK COMPO­
NENT SYSTEM; and

U.S. Pat. No. 5,781,189 issued Jul. 14, 1998, titled
EMBEDDING INTERNET BROWSER/BUTTONS
WITHIN COMPONENTS OF A NETWORK COMPO­
NENT SYSTEM, each of which was filed May 5,1995 and
assigned to the assignee of the present invention.

This invention relates generally to computer
and, more particularly, to an architecture and
building Internet-specific services.

This application is a continuation of U.S. patent appli- 5

cation Ser. No. 08/435,880, filed May 5, 1995, now aban­
doned.

The Internet is a system of geographically distributed
computer networks interconnected by computers executing
networking protocols that allow users to interact and share
information over the networks. Because of such wide-spread
information sharing, the Internet has generally evolved into 45

an "open" system for which developers can design software
for performing specialized operations, or services, essen­
tially without restriction. These services are typically imple­
mented in accordance with a client/server architecture,
wherein the clients, e.g., personal computers or
workstations, are responsible for interacting with the users
and the servers are computers configured to perform the
services as directed by the clients.

Not surprisingly, each of the services available over the
Internet is generally defined by its own networking protocol.
A protocol is a set of rules governing the format and
meaning of messages or "packets" exchanged over the
networks. By implementing services in accordance with the
protocols, computers cooperate to perform various
operations, or similar operations in various ways, for users
wishing to "interact" with the networks. The services typi­
cally range from browsing or searching for information
having a particular data format using a particular protocol to
actually acquiring information of a different format in accor­
dance with a different protocol.

For example, the file transfer protocol (FTP) service
facilitates the transfer and sharing of files across the Internet.

3
5,929,852

4
Netscape "translates" the protocol to hypertext. This trans­
lation places the user farther away from the protocol
designed to run the application and, in some cases, actually
thwarts the user's Internet experience. For example, a dis­
cussion system requiring an interactive exchange between 5

participants may be bogged down by hypertext translations.
The Gopher and Web services may further require addi­

tional applications to perform specific functions, such as
playing sound or viewing movies, with respect to the data
types contained in the documents. For example, Netscape 10

employs helper applications for executing applications hav­
ing data formats it does not "understand". Execution of these
functions on a computer requires interruption of processing
and context switching (i.e., saving of state) prior to invoking
the appropriate application. Thus, if a user operating within
the Netscape application "opens" a MPEG movie, that 15

browsing application must be saved (e.g., to disk) prior to
opening an appropriate MPEG application, e.g., Sparkle, to
view the image. Such an arrangement is inefficient and
rather disruptive to processing operations of the computer.

Typically, a computer includes an operating system and 20

application software which, collectively, control the opera­
tions of the computer. The applications are preferably task­
specific and independent, e.g., a word processor application
edits words, a drawing application edits drawings and a
database application interacts with information stored on a 25

database storage unit. Although a user can move data from
one application to the other, such as by copying a drawing
into a word processing file, the independent applications
must be invoked to thereafter manipulate that data.

Generally, the application program presents information 30

to a user through a window of a graphical user interface by
drawing images, graphics or text within the window region.
The user, in turn, communicates with the application by
"pointing" at graphical objects in the window with a pointer
that is controlled by a hand-operated pointing device, such 35

as a mouse, or by pressing keys of a keyboard.
The graphical objects typically included with each win­

dow region are sizing boxes, buttons and scroll bars. These
objects represent user interface elements that the user can
point at with the pointer (or a cursor) to select or manipulate. 40

For example, the user may manipulate these elements to
move the windows around on the display screen, and change
their sizes and appearances so as to arrange the window in
a convenient manner. When the elements are selected or
manipulated, the underlying application program is 45

informed, via the window environment, that control has
been appropriated by the user.

A menu bar is a further example of a user interface
element that provides a list of menus available to a user.
Each menu, in turn, provides a list of command options that 50

can be selected merely by pointing to them with the mouse­
controlled pointer. That is, the commands may be issued by
actuating the mouse to move the pointer onto or near the
command selection, and pressing and quickly releasing, i.e.,
"clicking" a button on the mouse. 55

In contrast to this typical application-based computing
environment, a software component architecture provides a
modular document-based computing arrangement using
tools such as viewing editors. The key to document-based
computing is the compound document, i.e., a document 60

composed of many different types of data sharing the same
file. The types of data contained in a compound document
may range from text, tables and graphics to video and sound.
Several editors, each designed to handle a particular data
type or format, can work on the contents of the document at 65

the same time, unlike the application-based computing envi­
ronment.

Since many editors may work together on the same
document, the compound document is apportioned into
individual modules of content for manipulation by the
editors. The compound-nature of the document is realized by
embedding these modules within each other to create a
document having a mixture of data types. The software
component architecture provides the foundation for assem­
bling documents of differing contents and the present inven­
tion is directed to a system for extending this capability to
network-oriented services.

To remotely access information stored on a resource ofthe
network, the user typically invokes a service configured to
operate in accordance with a protocol for accessing the
resource. In particular, the user types an explicit destination
address command that includes a uniform resource locator
(URL). The URL is a rather long (approximately 50
character) address pointer that identifies both a network
resource and a means for accessing that resource. The
following is an example of a hypothetical URL address
pointer to a remote resource on a Web server:

http:/aaaa.bbb.cc/hypertext/DdddEeeee!WWW/Ffffffff.html

It is apparent that having to type such long destination
address pointers can become quite burdensome for users that
frequently access information from remote resources.

Therefore, it is among the objects of the present invention
to simplify a user's experience on computer networks with­
out sacrificing the flexibility afforded the user by employing
existing protocols and data types available on those net­
works.

Another object of the invention is to provide a system for
users to search and access information on the Internet
without extensive understanding or knowledge of the under­
lying protocols and data formats needed to access that
information.

Still another object of the invention is to provide users
with a simple means for remotely accessing information
stored on resources connected to computer networks.

SUMMARY OF IRE INVENTION

Briefly, the invention comprises a network-oriented com­
ponent system for efficiently accessing information from a
network resource located on a computer network by creating
an encapsulated network entity that contains a reference to
that resource. The encapsulated entity is preferably imple­
mented as a network component stored on a computer
remotely displaced from the referenced resource. In
addition, the encapsulated entity may be manifested as a
visual object on a graphical user interface of a computer
screen. Such visual manifestation allows a user to easily
manipulate the entity in order to display the contents of the
resource on the screen or to electronically forward the entity
over the network.

In the illustrative embodiment of the invention, the ref­
erence to the network resource is preferably a "pointer",
such as a uniform resource locator (URL), that identifies the
network address of the resource, e.g., a Gopher browser or
a Web page. In addition to storing the pointer, the encapsu­
lated entity also contains information for invoking appro­
priate network components needed to access the resource.
Communication among the network components is achieved
through novel application programming interfaces (APIs) to
facilitate integration with an underlying software component
architecture. Such a cooperating architecture allows the
encapsulated entity and network components to "transport"
the user to the network location of the remote resource.

5,929,852
5 6

hardware and software elements that provide resources or
services for use by the clients 200 to increase the efficiency
of their operations. It will be understood to those skilled in
the art that, in an alternate embodiment, the client and server

5 may exist on the same computer; however, for the illustra­
tive embodiment described herein, the client and server are
separate computers.

Several types of computer networks 110, including local
area networks (LANs) and wide area networks (WANs),

10 may be employed in the system 100. ALAN is a limited area
network that typically consists of a transmission medium,
such as coaxial cable or twisted pair, while a WAN may be
a public or private telecommunications facility that inter­
connects computers widely dispersed. In the illustrative

15 embodiment, the network system 100 is the Internet system
of geographically distributed computer networks.

Computers coupled to the Internet typically communicate
by exchanging discrete packets of information according to
predefined networking protocols. Execution of these net-

20 working protocols allow users to interact and share infor­
mation across the networks. As an illustration, in response to
a user's request for a particular service, the client 200 sends
an appropriate information packet to the server 300, which
performs the service and returns a result back to the client

25 200.

FIG. 2 illustrates a typical hardware configuration of a
client 200 comprising a central processing unit (CPU) 210
coupled between a memory 214 and input/output (I/O)

30 circuitry 218 by bidirectional buses 212 and 216. The
memory 214 typically comprises random access memory
(RAM) for temporary storage of information and read only
memory (ROM) for permanent storage of the computer's
configuration and basic operating commands, such as por-

35 tions of an operating system (not shown). As described
further herein, the operating system controls the operations
of the CPU 210 and client computer 200.

The I/O circuitry 218, in turn, connects the computer to
computer networks, such as the Internet networks 250, via a

40 bidirectional bus 222 and to cursor/pointer control devices,
such as a keyboard 224 (via cable 226) and a mouse 230 (via
cable 228). The mouse 230 typically contains at least one
button 234 operated by a user of the computer. A conven­
tional display monitor 232 having a display screen 235 is

45 also connected to I/O circuitry 218 via cable 238. A pointer
(cursor) 240 is displayed on windows 244 of the screen 235
and its position is controllable via the mouse 230 or the
keyboard 224, as is well-known. The I/O circuitry 218
receives information, such as control and data signals, from

50 the mouse 230 and keyboard 224, and provides that infor­
mation to the CPU 210 for display on the screen 235 or, as
described further herein, for transfer over the Internet 250.

FIG. 3 illustrates a typical hardware configuration of a
server 300 of the network system 100. The server 300 has

55 many of the same units as employed in the client 200,
including a CPU 310, a memory 314 and I/O circuitry 318,
each of which are interconnected by bidirectional buses 312
and 316. Also, the I/O circuitry connects the computer to
computer networks 350 via a bidirectional bus 322. These

60 units are configured to perform functions similar to those
provided by their corresponding units in the computer 200.
In addition, the server typically includes a mass storage unit
320, such as a disk drive, connected to the I/O circuitry 318
via bidirectional bus 324.

It is to be understood that the I/O circuits within the
computers 200 and 300 contain the necessary hardware, e.g.,
buffers and adapters, needed to interface with the control

BRIEF DESCRIPTION OF THE DRAWINGS

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT

Specifically, the encapsulated entity component is an
object of the network-oriented component system that is
preferably embodied as a customized framework having a
set of interconnected abstract classes. A CyberItem class
defines the encapsulated entity object which interacts with
other objects of the network system to remotely access
information from the referenced resource. Since these
objects are integral elements of the cooperating component
architecture, any type of encapsulated network entity may be
developed with consistent behaviors, i.e., these entities may
be manifested as visual objects that can be distributed and
manipulated iconically.

Advantageously, the inventive encapsulation technique
described herein provides a user with a simple means for
accessing information on computer networks.

FIG. 1 is a block diagram of a network system 100
comprising a collection of computer networks 110 intercon­
nected by client computers ("clients") 200, e.g., worksta- 65

tions or personal computers, and server computers
("servers") 300. The servers are typically computers having

The above and further advantages of the invention may be
better understood by referring to the following description in
conjunction with the accompanying drawings in which:

FIG. 1 is a block diagram of a network system including
a collection of computer networks interconnected by client
and server computers;

FIG. 2 is a block diagram of a client computer, such as a
personal computer, on which the invention may advanta­
geously operate;

FIG. 3 is a block diagram of the server computer of FIG.
1;

FIG. 4 is a highly schematized block diagram of a layered
component computing arrangement in accordance with the
invention;

FIG. 5 is a schematic illustration software of the interac­
tion of a component, a software component layer and an
operating system of the computer of FIG. 2;

FIG. 6 is a schematic illustration of the interaction
between a component, a component layer and a window
manager in accordance with the invention;

FIG. 7 is a schematic diagram of an illustrative encapsu­
lated network entity object in accordance with the invention;

FIG. 8 is a simplified class heirarchy diagram illustrating
a base class CyberItem, and its associated subclasses, used
to construct network component objects in accordance with
the invention;

FIG. 9 is a simplified class heirarchy diagram illustrating
a base class CyberStream, and its associated subclasses, in
accordance with the invention;

FIG. 10 is a simplified class hierarchy diagram illustrating
a base class CyberExtension, and its associated subclasses,
in accordance with the present invention;

FIGS. 11A-11D are highly schematized diagrams illus­
trating the interactions between the network component
objects, including the encapsulated network entity object of
FIG. 7; and

FIG. 12 is an illustrative flowchart of the sequence of
steps involved in invoking, and accessing, information from
a referenced network resource.

5,929,852
7 8

component's contents and, where appropriate, present a user
interface for modifying those contents. Additionally, the
editor may include menus, controls and other user interface
elements. The network component layer 450 extends the
functionality of the underlying component architecture layer
430 by defining network-oriented components 480 that
seamlessly integrate with these components 460 to provide
basic tools for efficiently accessing information from net­
work resources located on, e.g., servers coupled to the
computer networks.

FIG. 4 also illustrates the relationship of applications 490
to the elements of the document computing arrangement
400. Although they reside in the same "user space" as the
components 460 and network components 480, the applica­
tions 490 do not interact with these elements and, thus,

15 interface directly to the operating system layer 420. Because
they are designed as monolithic, autonomous modules,
applications (such as previous Internet browsers) often do
not even interact among themselves. In contrast, the com-
ponents of the arrangement 400 are designed to work
together and communicate via the common component
architecture layer 430 or, in the case of the network
components, via the novel network component layer 450.

Specifically, the invention features the provision of the
network-oriented component system which, when invoked,
causes actions to take place that enhance the ability of a user
to interact with the computer to create encapsulated entities
that contain references to network resources located on
computer networks, such as the Internet. The encapsulated
entities are manifested as visual objects to a user via a
window environment, such as the graphical user interface
provided by System 7 or Windows, that is preferably dis­
played on the screen 235 (FIG. 2) as a graphical display to
facilitate interactions between the user and the computer,
such as the client 200. This behavior of the system is brought
about by the interaction of the network components with a
series of system software routines associated with the oper-
ating system 420. These system routines, in turn, interact
with the component architecture layer 430 to create the
windows and graphical user interface elements, as described
further herein.

The window environment is generally part of the operat­
ing system software 420 that includes a collection of utility
programs for controlling the operation of the computer 200.
The operating system, in turn, interacts with the components
to provide higher level functionality, including a direct
interface with the user. A component makes use of operating
system functions by issuing a series of task commands to the
operating system via the network component layer 450 or, as
is typically the case, through the component architecture
layer 430. The operating system 420 then performs the
requested task. For example, the component may request
that a software driver of the operating system initiate trans­
fer of a data packet over the networks 250 or that the
operating system display certain information on a window
for presentation to the user.

FIG. 5 is a schematic illustration of the interaction of a
component 502, software component layer 506 and an
operating system 510 of a computer 500, which is similar to,
and has equivalent elements of, the client computer 200 of
FIG. 2. As noted, the network component layer 450 (FIG. 4)
is integrated with the component architecture layer 430 to
provide a cooperating architecture that allows any encapsu­
lated entity and network component to "transport" the user
to the network location of a remote resource; accordingly,
for purposes of the present discussion, the layers 430 and
450 may be treated as a single software component layer
506.

devices, the display monitor, the mass storage unit and the
network. Moreover, the operating system includes the nec­
essary software drivers to control, e.g., network adapters
within the I/O circuits when performing I/O operations, such
as the transfer of data packets between the client 200 and 5

server 300.

The computers are preferably personal computers of the
Macintosh® series of computers sold by Apple Computer
Inc., although the invention may also be practiced in the
context of other types of computers, including the IBM® 10

series of computers sold by International Business Machines
Corp. These computers have resident thereon, and are con­
trolled and coordinated by, operating system software, such
as the Apple® System 7®, IBM OS2®, or the Microsoft®
Windows® operating systems.

As noted, the present invention is based on a modular
document computing arrangement as provided by an under­
lying software component architecture, rather than the typi-
cal application-based environment of prior computing sys­
tems. FIG. 4 is a highly schematized diagram of the 20

hardware and software elements of a layered component
computing arrangement 400 that includes the novel
network-oriented component system of the invention. At the
lowest level there is the computer hardware, shown as layer
410. Interfacing with the hardware is a conventional oper- 25

ating system layer 420 that includes a window manager, a
graphic system, a file system and network-specific
interfacing, such as a TCP/IP protocol stack and an Apple­
talk protocol stack.

30
The software component architecture is preferably imple-

mented as a component architecture layer 430. Although it
is shown as overlaying the operating system 420, the com­
ponent architecture layer 430 is actually independent of the
operating system and, more precisely, resides side-by-side 35

with the operating system. This relationship allows the
component architecture to exist on multiple platforms that
employ different operating systems.

In accordance with the present invention, a novel
network-oriented component layer 450 contains the under- 40

lying technology for creating encapsulated entity compo­
nents that contain references to network resources located on
computer networks. As described further herein, communi­
cation among these components is achieved through novel
application programming interfaces (APIs) to ensure inte- 45

gration with the underlying component architecture layer
430. These novel APIs are preferably delivered in the form
of objects in a class hierarchy.

It should be noted that the network component layer 450
may operate with any existing system-wide component 50

architecture, such as the Object Linking and Embedding
(OLE) architecture developed by the Microsoft Corporation;
however, in the illustrative embodiment, the component
architecture is preferably OpenDoc, the vendor-neutral,
open standard for compound documents developed by, 55

among others, Apple Computer, Inc.
Using tools such as viewing editors, the component

architecture layer 430 creates a compound document com­
posed of data having different types and formats. Each
differing data type and format is contained in a fundamental 60

unit called a computing part or, more generally, a "compo­
nent" 460 comprised of a viewing editor along with the data
content. An example of the computing component 460 may
include a MacDraw component. The editor, on the other
hand, is analogous to an application program in a conven- 65

tional computer. That is, the editor is a software component
which provides the necessary functionality to display a

5,929,852
9 10

represented by the data elements, and its behavior, which
can be represented by its data manipulation functions. In this
way, objects can model concrete things like computers,
while also modeling abstract concepts like numbers or

5 geometrical designs.

Objects are defined by creating "classes" which are not
objects themselves, but which act as templates that instruct
the compiler how to construct an actual object. A class may,
for example, specify the number and type of data variables

10 and the steps involved in the functions which manipulate the
data. An object is actually created in the program by means
of a special function called a "constructor" which uses the
corresponding class definition and additional information,
such as arguments provided during object creation, to con-

15 struct the object. Likewise objects are destroyed by a special
function called a "destructor". Objects may be used by
manipulating their data and invoking their functions.

The principle benefits of OOP techniques arise out of
three basic principles: encapsulation, polymorphism and

20 inheritance. Specifically, objects can be designed to hide, or
encapsulate, all, or a portion of, its internal data structure
and internal functions. More specifically, during program
design, a program developer can define objects in which all
or some of the data variables and all or some of the related

25 functions are considered "private" or for use only by the
object itself. Other data or functions can be declared "pub­
lic" or available for use by other programs. Access to the
private variables by other programs can be controlled by
defining public functions for an object which access the

30 object's private data. The public functions form a controlled
and consistent interface between the private data and the
"outside" world. Any attempt to write program code which
directly accesses the private variables causes the compiler to
generate an error during program compilation which error

35 stops the compilation process and prevents the program
from being run.

Polymorphism is a concept which allows objects and
functions that have the same overall format, but that work

40 with different data, to function differently in order to pro­
duce consistent results. Inheritance, on the other hand,
allows program developers to easily reuse pre-existing pro­
grams and to avoid creating software from scratch. The
principle of inheritance allows a software developer to

45 declare classes (and the objects which are later created from
them) as related. Specifically, classes may be designated as
subclasses of other base classes. A subclass "inherits" and
has access to all of the public functions of its base classes
just as if these functions appeared in the subclass.

50 Alternatively, a subclass can override some or all of its
inherited functions or may modify some or all of its inherited
functions merely by defining a new function with the same
form (overriding or modification does not alter the function
in the base class, but merely modifies the use of the function

55 in the subclass). The creation of a new subclass which has
some of the functionality (with selective modification) of
another class allows software developers to easily customize
existing code to meet their particular needs.

In accordance with the present invention, the component
60 502 and windows 544 are "objects" created by the compo­

nent layer 506 and the window manager 514, respectively,
the latter of which may be an object-oriented program.
Interaction between a component, component layer and a
window manager is illustrated in greater detail in FIG. 6.

In general, the component layer 606 interfaces with the
window manager 614 by creating and manipulating objects.
The window manager itself may be an object which is

The component 502, component layer 506 and operating
system 510 interact to control and coordinate the operations
of the computer 500 and their interaction is illustrated
schematically by arrows 504 and 508. In order to display
information on a screen display 535, the component 502 and
component layer 506 cooperate to generate and send display
commands to a window manager 514 of the operating
system 510. The window manager 514 stores information
directly (via arrow 516) into a screen buffer 520.

The window manager 514 is a system software routine
that is generally responsible for managing windows 544 that
the user views during operation of the network component
system. That is, it is generally the task of the window
manager to keep track of the location and size of the window
and window areas which must be drawn and redrawn in
connection with the network component system of the
present invention.

Under control of various hardware and software in the
system, the contents of the screen buffer 520 are read out of
the buffer and provided, as indicated schematically by arrow
522, to a display adapter 526. The display adapter contains
hardware and software (sometimes in the form of firmware)
which converts the information in the screen buffer 520 to a
form which can be used to drive a display screen 535 of a
monitor 532. The monitor 532 is connected to display
adapter 526 by cable 528.

Similarly, in order to transfer information as a packet over
the computer networks, the component 502 and component
layer 506 cooperate to generate and send network
commands, such as remote procedure calls, to a network­
specific interface 540 of the operating system 510. The
network interface comprises system software routines, such
as "stub" procedure software and protocol stacks, that are
generally responsible for formating the information into a
predetermined packet format according to the specific net­
work protocol used, e.g., TCP/IP or Apple-talk protocol.

Specifically, the network interface 540 stores the packet
directly (via arrow 556) into a network buffer 560. Under
control of the hardware and software in the system, the
contents of the network buffer 560 are provided, as indicated
schematically by arrow 562, to a network adapter 566. The
network adapter incorporates the software and hardware,
i.e., electrical and mechanical interchange circuits and
characteristics, needed to interface with the particular com­
puter networks 550. The adapter 566 is connected to the
computer networks 550 by cable 568.

In a preferred embodiment, the invention described herein
is implemented in an object-oriented programming (OOP)
language, such as C++, using System Object Model (SOM)
technology and OOP techniques.

The C++ and SOM languages are well-known and many
articles and texts are available which describe the languages
in detail. In addition, C++ and SOM compilers are commer­
cially available from several vendors. Accordingly, for rea­
sons of brevity, the details of the C++ and SOM languages
and the operations of their compilers will not be discussed
further in detail herein.

As will be understood by those skilled in the art, OOP
techniques involve the definition, creation, use and destruc­
tion of "objects". These objects are software entities com­
prising data elements and routines, or functions, which
manipulate the data elements. The data and related functions
are treated by the software as an entity that can be created,
used and deleted as if it were a single item. Together, the data 65

and functions enable objects to model virtually any real­
world entity in terms of its characteristics, which can be

11
5,929,852

12
created when the operating system is started. Specifically,
the component layer creates window objects 630 that cause
the window manager to create associated windows on the
display screen. This is shown schematically by an arrow
608. In addition, the component layer 606 creates individual 5

graphic interface objects 650 that are stored in each window
object 630, as shown schematically by arrows 612 and 652.
Since many graphic interface objects may be created in
order to display many interface elements on the display
screen, the window object 630 communicates with the 10

window manager by means of a sequence of drawing
commands issued from the window object to the window
manager 614, as illustrated by arrow 632.

As noted, the component layer 606 functions to embed
components within one another to form a compound docu- 15

ment having mixed data types and formats. Many different
viewing editors may work together to display, or modify, the
data contents of the document. In order to direct keystrokes
and mouse events initiated by a user to the proper compo­
nents and editors, the component layer 606 includes an 20

arbitrator 616 and a dispatcher 626.

The dispatcher is an object that communicates with the
operating system 610 to identify the correct viewing editor
660, while the arbitrator is an object that informs the
dispatcher as to which editor "owns" the stream of key- 25

strokes or mouse events. Specifically, the dispatcher 626
receives these "human-interface" events from the operating
system 610 (as shown schematically by arrow 628) and
delivers them to the correct viewing editor 660 via arrow
662. The viewing editor 660 then modifies or displays, either 30

visually or acoustically, the contents of the data types.

Although OOP offers significant improvements over other
programming concepts, software development still requires
significant outlays of time and effort, especially if no pre- 35

existing software is available for modification.
Consequently, a prior art approach has been to provide a
developer with a set of predefined, interconnected classes
which create a set of objects and additional miscellaneous
routines that are all directed to performing commonly- 40

encountered tasks in a particular environment. Such pre­
defined classes and libraries are typically called "frame­
works" and essentially provide a pre-fabricated structure for
a working document.

For example, a framework for a user interface might 45

provide a set of predefined graphic interface objects which
create windows, scroll bars, menus, etc. and provide the
support and "default" behavior for these interface objects.
Since frameworks are based on object-oriented techniques,
the predefined classes can be used as base classes and the 50

built-in default behavior can be inherited by developer­
defined subclasses and either modified or overridden to
allow developers to extend the framework and create cus­
tomized solutions in a particular area of expertise. This
object-oriented approach provides a major advantage over 55

traditional programming since the programmer is not chang­
ing the original program, but rather extending the capabili­
ties of that original program. In addition, developers are not
blindly working through layers of code because the frame­
work provides architectural guidance and modeling and, at 60

the same time, frees the developers to supply specific actions
unique to the problem domain.

There are many kinds of frameworks available, depending
on the level of the system involved and the kind of problem
to be solved. The types of frameworks range from high-level 65

frameworks that assist in developing a user interface, to
lower-level frameworks that provide basic system software

services such as communications, pnntmg, file systems
support, graphics, etc. Commercial examples of application­
type frameworks include MacApp (Apple), Bedrock
(Symantec), OWL (Borland), NeXT Step App Kit (NeXT)
and Smalltalk-80 MVC (ParcPlace).

While the framework approach utilizes all the principles
of encapsulation, polymorphism, and inheritance in the
object layer, and is a substantial improvement over other
programming techniques, there are difficulties which arise.
These difficulties are caused by the fact that it is easy for
developers to reuse their own objects, but it is difficult for
the developers to use objects generated by other programs.
Further, frameworks generally consist of one or more object
"layers" on top of a monolithic operating system and even
with the flexibility of the object layer, it is still often
necessary to directly interact with the underlying system by
means of awkward procedure calls.

In the same way that a framework provides the developer
with prefab functionality for a document, a system
framework, such as that included in the preferred
embodiment, can provide a prefab functionality for system
level services which developers can modify or override to
create customized solutions, thereby avoiding the awkward
procedural calls necessary with the prior art frameworks. For
example, consider a customizable network interface frame­
work which can provide the foundation for browsing and
accessing information over a computer network. A software
developer who needed these capabilities would ordinarily
have to write specific routines to provide them. To do this
with a framework, the developer only needs to supply the
characteristic and behavior of the finished output, while the
framework provides the actual routines which perform the
tasks.

A preferred embodiment takes the concept of frameworks
and applies it throughout the entire system, including the
document, component, component layer and the operating
system. For the commercial or corporate developer, systems
integrator, or OEM, this means all of the advantages that
have been illustrated for a framework, such as MacApp, can
be leveraged not only at the application level for things such
as text and graphical user interfaces, but also at the system
level for such services as printing, graphics, multi-media,
file systems and, as described herein, network-specific
operations.

Referring again to FIG. 6, the window object 630 and the
graphic interface object 650 are elements of a graphical user
interface of a network component system having a customi­
zable framework for greatly enhancing the ability of a user
to efficiently access information from a network resource on
computer networks by creating an encapsulated entity that
contains a reference to that resource. The encapsulated entity
is preferably implemented as a network component of the
system and stored as a visual object, e.g., an icon, for display
on a graphical user interface. Such visual display allows a
user to easily manipulate the entity component to display the
contents of the resource on a computer screen or to elec­
tronically forward the entity over the networks.

Furthermore, the reference to the network resource is a
pointer that identifies the network address of the resource,
e.g., a Gopher browser, a Web page or an E-mail message.
FIG. 7 is a schematic diagram of an illustrative encapsulated
network entity object 700 containing a pointer 710. In one
embodiment of the invention, the pointer may be a uniform
resource locator (URL) having a first portion 712 that
identifies the particular network resource and a second
portion 714 that specifies the means for accessing that

5,929,852
13

resource. More specifically, the URL is a string of approxi­
mately 50 characters that describes the protocol used to
address the target resource, the server on which the resource
resides, the path to the resource and the resource filename.
It is to be understood, however, that other representations of
a "pointer" are included within the principles of the
invention, e.g., a Post Office Protocol (POP) account and
message identification (ID).

In addition to storing the pointer, the encapsulated entity
also contains information 720 for invoking appropriate
network components needed to access the resource. Com­
munication among these network components is achieved
through novel application programming interfaces (APIs).
These APIs are preferably delivered in the form of objects in
a class hierarchy that is extensible so that developers can
create new components. From an implementation viewpoint,
the objects can be subclassed and can inherit from base
classes to build customized components that allow users to
see different kinds of data using different kinds of protocols,
or to create components that function differently from exist­
ing components.

In accordance with the invention, the customized frame­
work has a set of interconnected abstract classes for defining
network-oriented objects used to build the customized net­
work components. These abstract classes include
CyberItem, CyberStream and CyberExtension and the
objects they define are used to build the novel network
components. A description of these abstract classes is pro­
vided in copending and commonly assigned U.S. patent
application titled Extensible, Replaceable Network Compo­
nent System, filed May 5, 1995, which application is incor­
porated by reference as though fully set forth herein.

Specifically, the CyberItem class defines the encapsulated
entity object which interacts with objects defined by the
other abstract classes of the network system to "transport"
the user to the network location, i.e., remotely access
information from the referenced resource and display that
information to the user at the computer. Since these objects
are integral elements of the cooperating component
architecture, any type of encapsulated network entity may be
developed with consistent behaviors, i.e., these entities may
be manifested as visual objects that can be distributed and
manipulated iconically.

FIG. 8 illustrates a simplified class hierarchy diagram 800
of the base class CyberItem 802 used to construct the
encapsulated network entity component object 602. In
accordance with the illustrative embodiment, subclasses of
the CyberItem base class are used to construct various
network component objects configured to provide such
services for the novel network-oriented component system.
For example, the subclass GopherItem 804 is derived from
the CyberItem class 802 and encapsulates a network entity
component object representing a "thing in Gopher space",
such as a Gopher directory.

Since each of the classes used to construct these network
component objects are subclasses of the CyberItem base
class, each class inherits the functional operators and meth­
ods that are available from that base class. Accordingly,
methods associated with the CyberItem base class for, e.g.,
instructing an object to open itself, are assumed by the
subclasses to allow the network components to display
CyberItem objects in a consistent manner.

In some instances, a CyberItem object may need to spawn
a CyberStream object in order to obtain the actual data for
the object it represents. FIG. 9 illustrates a simplified class
hierarchy diagram 900 of the base class CyberStream 902

14
which is an abstraction that serves as an API between a
component configured to display a particular data format
and the method for obtaining the actual data. Specifically, a
CyberStream object contains the software commands nec-

5 essary to create a "data stream" for transfering information
from one object to another. According to the invention, a
GopherStream subclass 904 is derived from the Cyber­
Stream base class 902 and encapsulates a network object
that implements the Gopher protocol.

FIG. 10 is a simplified class hierarchy diagram 1000 of10
the base class CyberExtension 1002 which represents addi-
tional behaviors provided to components of the underlying
software component architecture. For example, CyberEx­
tension objects add functionality to, and extend the APIs of,
existing components so that they may communicate with the15
novel network components, such as the encapsulated entity
objects. As a result, the CyberExtension base class 1002
operates in connection with a Component base class 1006
through their respective subclasses BaseExtension 1004 and

20 BaseComponent 1008.
CyberExtension objects are used by components that

display the contents of CyberItem objects; this includes
browser-like components, such as a Gopher browser or Web
browser, along with viewer-like components, such as lPEG,

25 MPEG or text viewers. The CyberExtension objects also
keep track of the CyberItem objects which these components
are responsible for displaying. In accordance with the
invention, the class GopherBrowser 1010 may be used to
construct a Gopher-like network browsing component and

30 the class WebBrowser 1012 may be used to construct a
Web-like network browsing component.

FIGS. llA-llD are highly schematized diagrams illus­
trating the interactions between the novel network-oriented
components, including the encapsulated (CyberItem) net-

35 work entity component according to the invention. It is to be
understood that the components described herein are objects
constructed from the interconnected abstract classes. In
general, a user has "double clicked" on an icon of a graphical
user interface 1100 displayed on a computer screen. The

40 icon represents, e.g., a Gopher directory displayed in a
Gopher browser application. Initially, a GopherBrowser
component 1110 displays two icons representing CyberItem
components, the icons labeled (GopherItem) Happy Face
1104 and (GopherItem) Home Page 1106. These latter

45 components represent the contents of a Gopher directory
labeled (GopherItem) Apple 1114.

In FIG. llA, the left side of the diagram illustrates a
GopherBrowser component 1110 that is displayed on the
computer screen, i.e., the right side of the diagram. The

50 GopherBrowser component has a CyberExtension compo­
nent 1112 which keeps track of the GopherItem components.
When the user double clicks on the Home Page GopherItem
icon 1106, the GopherBrowser component 1110 receives this
event and issues a call to an "Open" method of a Home Page

55 GopherItem component; this call instructs the GopherItem
component 1106 to open itself.

Specifically, and referring to FIG. lIB, the GopherItem
component 1106 creates a component of the appropriate type
to display itself. For this example, the GopherItem prefer-

60 ably creates a WebBrowser component 1120. Once created,
the WebBrowser component further creates a CyberExten­
sion component 1122 for storing the Home Page Gopher­
Item component (now shown at 1124). In accordance with
the invention, the Home Page GopherItem component is a

65 network entity containing a pointer that points to the net­
work address of a Gopher server storing the appropriate Web
page.

15
5,929,852

16

65

50

In FIG. llC, the CyberExtension component 1122 then
notifies the WebBrowser component 1120 that it has been
assigned a GopherItem component 1124 to display. The
WebBrowser component 1120 calls a method CreateCyber­
Stream of the GopherItem to create a GopherStream com- 5

ponent 1130 for downloading the appropriate data.
Thereafter, the WebBrowser component 1120 begins asy­
chronously downloading an HTML document from the
appropriate Gopher server (not shown).

Control of the execution of this process then returns to the 10

GopherItem component 1124 in FIG. lID. This component,
in turn, issues a call to an Open method of the WebBrowser
component 1120, which causes the downloaded HTML
document to appear on the screen (now shown at 1140). For
a further understanding of the invention, FIG. 12 provides an 15

illustrative flowchart 1200 of the sequence of steps involved
in invoking, and accessing, information from a referenced
network resource, as described above.

In summary, the network-oriented component system
provides a customizable framework that enables a user to 20

create an encapsulated entity containing a reference to a
network resource on a computer network. Advantageously,
the inventive encapsulation technique allows a user to
simply manipulate visual objects when accessing informa­
tion on the network. Instead of having to type the destination 25

address of a resource, the user can merely "drag and drop"
the icon associated with entity anywhere on the graphical
user interface. When the user "double clicks" on the icon,
the entity opens up in a window and displays the contents of
the resource at that network location. Since the address is 30

encapsulated within the network reference entity, the user
does not have to labor with typing of the cumbersome
character string.

While there has been shown and described an illustrative 35

embodiment for implementing an extensible and replaceable
network component system, it is to be understood that
various other adaptations and modifications may be made
within the spirit and scope of the invention. For example,
additional system software routines may be used when 40

implementing the invention in various applications. These
additional system routines include dynamic link libraries
(DLL), which are program files containing collections of
window environment and networking functions designed to
perform specific classes of operations. These functions are 45

invoked as needed by the software component layer to
perform the desired operations. Specifically, DLLs, which
are generally well-known, may be used to interact with the
component layer and window manager to provide network­
specific components and functions.

The foregoing description has been directed to specific
embodiments of this invention. It will be apparent, however,
that other variations and modifications may be made to the
described embodiments, with the attainment of some or all
of their advantages. Therefore, it is the object of the 55

appended claims to cover all such variations and modifica­
tions as come within the true spirit and scope of the
invention.

What is claimed is:
1. A method of efficiently accessing information from a 60

network resource located on a computer network for display
on a computer coupled to the network, the network resource
having one or more associated data types, each data type
being accessible by a corresponding object-oriented soft­
ware component, the method comprising the steps of:

defining at least one network component that integrates
the object-oriented software components needed to

access the one or more data types associated with the
network resource;

creating an encapsulated entity component containing a
reference to a location of the network resource on the
computer network, the encapsulated entity component
also identifying the at least one network component
that was defined for the network resource;

storing the encapsulated entity component as a visual
object on the computer;

in response to manipulation of the visual object with a
pointing device, displaying the contents of the network
resource on a screen of the computer by invoking the
object-oriented software components integrated by the
at least one identified network component.

2. The method of claim 1 wherein the step of displaying
comprises the step of invoking a first network component for
displaying the contents of the referenced network resource
on the screen, the first network component comprising a
browsing component.

3. The method of claim 2 wherein the step of displaying
further comprises the step of invoking a second network
component for transfering the contents of the referenced
network resource to the first network component, the second
network component comprising a data stream component.

4. The method of claim 3 further comprising the step of
creating objects for communication among the encapsulated
entity and network components through application pro­
gramming interfaces.

5. The method of claim 4 wherein the step of creating
comprises the step of constructing the encapsulated entity
component from an Item object defined by an Item object
class.

6. The method of claim 5 wherein the step of creating
comprises the step of spawning a Stream object from the
Item object, the Stream object representing the data stream.

7. Apparatus for efficiently accessing information from a
network resource located on a computer network for display
on a computer coupled to the network, the network resource
having one or more associated data types, each data type
being accessible by a corresponding object-oriented soft­
ware component, the apparatus comprising:

an object-oriented software component architecture layer
configured to define at least one network component
that integrates the object-oriented software components
needed to access the one or more data types associated
with the network resource; and

an encapsulated network entity component cooperating
with the component architecture layer and containing a
reference to the network resource and an identifier for
the at least one network component that was defined for
the network resource wherein, the encapsulated net­
work entity component is manifested as visual object
on a display screen of the computer and further
wherein, the encapsulated network entity component is
adapted for manipulation by a pointing device of the
computer to display contents of the network resource
on the screen by invoking the object-oriented software
components integrated by the at least one identified
network component.

8. The apparatus of claim 7 further comprising:
an operating system interfacing with the component archi­

tecture layer to control the operations of the computer;
and

a network component layer coupled to the component
architecture layer to form a cooperating component
computing arrangement.

5,929,852
17 18

means for storing the encapsulated entity component as a
visual object on the computer; and

means, responsive to manipulation of the visual object
with a pointing device, for displaying contents of the
network resource on a screen of the computer by
invoking the object-oriented software components inte­
grated by the at least one identified network compo­
nent.

16. The apparatus of claim 15 wherein the means for
displaying comprises means for invoking a first network
component for displaying the contents of the referenced
network resource on the screen, the first network component
comprising a browsing component.

17. The apparatus of claim 16 wherein the means for
displaying further comprises means for invoking a second
network component for transfering the contents of the
referenced network resource to the first network component,
the second network component comprising a data stream
component.

18. The apparatus of claim 17 further comprising means
for creating objects for communication among the encapsu­
lated entity and network components through application

25 programming interfaces.
19. The apparatus of claim 18 wherein the means for

creating comprises means for constructing the encapsulated
entity component from an Item objected defined by an Item
object class.

20. The apparatus of claim 19 wherein the means for
creating comprises means for spawning a Stream object
from the Item object, the Stream object representing the data
stream.

9. The apparatus of claim 8 wherein the cooperating
component computing arrangement generates the encapsu­
lated network entity.

10. The apparatus of claim 9 wherein the reference to the
network resource is a pointer that identifies the address of 5

the network resource on a computer network.
11. The apparatus of claim 10 wherein the pointer is a

uniform resource locator.
12. The apparatus of claim 11 wherein the uniform

resource locator has a first portion that identifies the network 10

resource and a second portion that specifies a means for
accessing that resource.

13. The apparatus of claim 11 wherein the uniform
resource locator is a character string that describes a proto­
col used to address the network resource, a server on which 15

the resource resides, a path to the resource and a resource
filename.

14. The apparatus of claim 10 wherein the pointer is a post
office protocol account.

15. Apparatus for efficiently accessing information from a 20

network resource located on a computer network for display
on a computer coupled to the network, the network resource
having one or more associated data types, each data type
being accessible by a corresponding object-oriented soft­
ware component, the apparatus comprising:

means for defining at least one network component that
integrates the object-oriented software components
needed to access the one or more data types associated
with the network resource;

means for creating an encapsulated entity component 30

containing a reference to a location of the network
resource on the computer network, the encapsulated
entity component also identifying the at least one
network component that was defined for the network
resource;

