

EXHIBIT D

Apple, Inc. v. Motorola, Inc. et al Doc. 12 Att. 4

Dockets.Justia.com

http://dockets.justia.com/docket/illinois/ilndce/1:2011cv08540/262961/
http://docs.justia.com/cases/federal/district-courts/illinois/ilndce/1:2011cv08540/262961/12/4.html
http://dockets.justia.com/

(19) United States
(12) Reissued Patent

Cleron et al.

111
USOORE39486E

(10) Patent Number: US RE39,486 E
(45) Date of Reissued Patent: Feb. 6,2007

(54) EXTENSIBLE, REPLACEABLE NETWORK
COMPONENT SYSTEM

5,634,129 A * 5/1997 Dickinson
5,669,005 A * 9/1997 Curbow

(75) Inventors: Michael A. Cleron, Menlo Park, CA
(US); Stephen Fisher, Menlo Park, CA
(US); Timo Bruck, Mountain View, CA
(US)

EP
GB

FOREIGN PATENT DOCUMENTS

°631 456 A2 * 12/1994
2 242 293 * 1/1990

OTHER PUBLICATIONS

Related U.S. Patent Documents

(73) Assignee: Apple Computer, Inc., Cupertino, CA
(US)

(21) Appl. No.: 10/408,789

(22) Filed: Apr. 3, 2003

(Under 37 CFR 1.47)

ABSTRACT(57)

(Continued)

20 Claims, 8 Drawing Sheets

Reinhardt, Andy, "The Network with Smarts" BYTE, Oct.
1994, pp. 51-64.*
Lippman, Stanley B., "C++ Primer" 2nd edition, Addison
Wesley, 1991, pp. 394-397.*
Potel et al; The Architecture of the Taligent System; Dr.
Dobbs Journal on CD-ROM, SP 94. *
Rush, Jeff; OpenDoc; Dr. Dobb's Journal on CD-ROM, SP
94.*
Piersol, Kurt; A Close-Up of OpenDoc; AIXpert, Jun.
1994.*

An extensible and replaceable network-oriented component
system provides a platform for developing networking navi
gation components that operate on a variety ofhardware and
software computer systems. These navigation components
include key integrating components along with components
configured to deliver conventional services directed to com
puter networks, such as Gopher-specific and Web-specific
components. Communication among these components is
achieved through novel application programming interfaces
(APIs) to facilitate integration with an underlying software
component architecture. Such a high-modular cooperating
layered-arrangement between the network component sys
tem and the component architecture allows any existing
component to be replaced, and allows new components to be
added, without affecting operation of the network compo
nent system.

Primary Examiner-William Thomson
(74) Attorney, Agent, or Firm-Fenwick & West LLP

6,212,575
Apr. 3, 2001
08/435,377
May 5,1995

(2006.01)
(2006.01)

U.S. PATENT DOCUMENTS

References Cited

U.S. Cl. 719/328; 719/329; 709/201;
709/202; 709/203

Field of Classification Search 719/328-329;
709/200-203

See application file for complete search history.

5,297,249 A * 3/1994 Bernstein et al.
5,339,430 A * 8/1994 Lundin et al.
5,481,666 A * 1/1996 Nguyen et 31.
5,530,852 A * 6/1996 Meske, Jr. et al.
5,537,526 A * 7/1996 Anderson
5,548,722 A * 8/1996 Jalalian
5,581,686 A * 12/1996 Koppolu et 31.
5,584,035 A * 12/1996 Duggan et 31.

(58)

(56)

Reissue of:
(64) Patent No.:

Issued:
Appl. No.:
Filed:

Int. Cl.
G06F 9/00
G06F 9/46

(52)

(51)

r 400

OPERATING SYSTEM !I2(l

HARDWARE lli!

US RE39,486 E
Page 2

OTHER PUBLICATIONS

Schmidt et al; "An object-oriented framework for develop
ing network server daemons", C+++ World Conference, pp.
1-15, Oct. 1993.*
"Leveraging object-oriented frameworks", Taligent white
paper, 1993.*
Andert, Glerk; "Object-Frameworks in the Taligent OS",
IEEE electronic Library, pp. 112-121, 1994.*
Helm et aI, "Integrating infonnation retrieval and domain
specific approaches for browsing and retrieval in object-o
riented class libraries", ACM Digital Library, 1991.*
Monnard et al; An object-oriented scripting environment for
the WEBSs electronic book system' ACM Digital Library,
1992.*
NOIT, Henry. "Cyberdog could be a breakthrough if it's Kept
on a leash", MacWeek, Nov. 14, 1994, v8, n45, p. 50.*
Hess, Robert, "Cyberdog to fetch Internet Resources for
Open Doc apps." MacWeek, Nov. 7, 1994, v8, n44, p. 44.*
Harkey et aI, "Object component suites", Datamation, Feb.
15, 1995, v41, n3, p. 44.*

Prosise, Jeff, "Much ado about object", PC Magazine, Feb.
7, 1995, v14, n3, p. 257.*

Bonner, Paul, "Component software: putting the pieces
together", Computer Shopper, Sep. 1994, v14, n9, p. 532.*

Gruman, Galen, "OpenDoc & OLE 2.0", MacWorld, Nov.
'94, vll, nil, p. 96.*

Spiegel, Leo "OLE promises barrier-free computing", Info
World, Mar. 6, '95, v17, nlO, p. 53. *

Develop, The Apple Technical Journal, "Building an Open
Doc Part Handler", Issue 19, Sep. 1994, pp. 6-16.*

S.H. Goldberg and J.A. Mounton, Jr. A Base for Portable
Communications Software, IBM Systems Journal, vol. 30
(1991) No.3, Armonk, NY, pp. 259-279.*

E.C. Arnold and D.W. Brown, Object Oriented Software
Technologies Applied to Switching System Architecture and
Software Development Processes, AT&T Bell Laboratories,
Naperville, IL, vol. II, pp. 97-106.*

* cited by examiner

u.s. Patent Feb. 6,2007 Sheet 1 of 8 US RE39,486 E

c.!l.
LL

,...

a:
w
>a:

0 ('.J W
a 'r"" (f).,..-

"
8- 0

~
C') -0

C\I

~'-:- w
z :::;
w ()

:::::i '---

0 0
I... r-- 0 0; 0

N

a: a:
w w
> >.
a: a:
w wen en-..
; I-

Z
w

8
~

:J
(') Co)

0 ~
0
C\I

a: a:w w
> >

(' a: a:w w
(f) CJ)

•.. •

~
!Z'w 0
::i 0

~ Co)
('I')-- r-

0.,...,..

r -0
r'. ~-- Z

0 W
0 ::iN

Co)--

8
M

aa-

u.s. Patent Feb. 6,2007 Sheet 2 of 8 US RE39,486 E

.
C!l
u:

N

@ • I • I
~ .• .1·· . • ..T
Kl ~ · - .

~ 8li ~0 1 ,

C") e iC\J

I ~ ~
~I 1J r?~
-f-

~r:
~ -r-

CJi
jo:..: 0"-~~ ~

~
~l.J~

p.:

C\I 10= -..,:.~ C\I

~ .~
Io!

~ .~
\...s

· ° .Lt ~

~
,....
.~~

r-- ,:: ,..:."!'f-!.~,:.==.'""'~,:= io=o
CD .~ ~,;.:
C\I (J • II I I
N •

<D

--- ~-
<lO

0T""",.
C\I r-

......
C\I N

"'> L.... l-.
a:~ a:

~Wa: t:::

~~
::::> :::> 00 n.. :E

) a: (' .U -(w:!W 0 <C ~8z 0
.....

C\I
~

C\I
:::;

N C\I

r>
0
U')
C\J

<lO
M
C\I

V,

~
/

r r'"
0

v ~...,. 1'00~ C\I
C\I

"....

r t'. l./l
II)

P.l (I).
C\I

I
g
N

30
0,

,- 3
5

0
\

C
O

M
P

U
T

E
R

N
E

TW
O

R
K

_(
32

2
.--

32
0
\J

M
A

S
S

M
E

M
O

R
Y

(D
IS

K
)

3
2
4
~

t
r

31
8

,....
.,-
-

'-
1

_.
1/

0
C

IR
C

U
IT

R
Y

e • 7J
).

• ~ ~ ~ ~ = ~ ""
f'j

('
D ?' ~C
l\ N o o
.:J

3
1
6
~
· L

C
P

U

~
1
0

L,1
4

rF
J = ('D ('

D (.
H o Q
O

F
IG

.
3

M
E

M
O

R
Y

d rJ
l ~ W \C ~ Q

O
0'

1

~

I
,

/
--

-
"

r
--

-
"\

.

N
E

lW
O

R
K

N
E

TW
O

R
K

I
.....

N
E

TW
O

R
K

N
E

TW
O

R
K

C
O

M
Po

C
O

M
Po

A
P

P
LI

C
.

A
P

P
LI

C
.

C
O

M
P

O
N

E
N

T
C

O
M

P
O

N
E

N
T

C
O

M
P

O
N

E
N

T
C

O
M

P
O

N
E

N
T

[
I

1

-
,

N
E

TW
O

R
K

4
5

0
,

C
O

M
P

O
N

E
N

T
LA

Y
E

R

r
•

.,
~

I-C
O

M
P

O
N

E
N

T
A

R
C

H
IT

E
C

TU
R

E
LA

Y
E

R
m

l
I

O
P

E
R

A
TI

N
G

S
Y

S
TE

M
~

;
H

A
R

D
W

A
R

E
!1

Q

80

FI
G

.4

r40
0

e • 7J
).

• ~ ~ ~ ~ = ~ ""
f'j

('
D ?' ~C
l\ N o o
.:J

rF
J = ('D ('

D ,j;
o,

.

o Q
O d rJ
l ~ W \C ~ Q

O
0'

1

~

rF
J =('D ('

D U
l

o Q
O d rJ
le • 7J
).

• ~ ~ ~ ~ = ~ ~ W ",
'C ~ Q
O

0'
1

~""
f'j

('
D ?' ~C
l\ N o

54
4

0
:J

F
IG

.S

53
2

/5
0

0

.D
IS

P
LA

Y
A

D
A

P
TE

R
52

6

CO
M

PU
TE

R
N

El
W

O
RK

~

SC
RE

EN
B

U
FF

E
R

S2
Q

NE
TW

OR
K

AD
AP

TE
R

5
ti

§

CO
M

PO
N

EN
T

LA
YE

R
5Q

§

W
IN

DO
W

M
AN

AG
ER

il
l

O
PE

RA
TI

N
G

SY
ST

EM
§.

1Q

--
--

--
55

6

NE
TW

OR
K

BU
FF

ER
5

§
2

N
E

TW
O

R
K

IN
TE

RF
A

CE
~

CO
M

PO
N

EN
T

~

rF
J =('D ('

D C
l\ o Q
O""
f'j

('
D ?' ~C
l\ N o o
.:Je • 7J
).

• d rJ
l

~ ~ ~ ~ = ~ ~ W ",
'C ~ Q
O

0'
1

~

W
IN

D
O

W
M

A
N

A
G

E
R

il
l

O
P

E
R

A
TI

N
G

S
Y

S
TE

M
§.

U
2

V
IE

W
IN

G
E

D
IT

O
R

66
0

66
2

D
IS

P
A

TC
H

E
R

O
B

JE
C

T
62

6

60
8

W
IN

D
O

W
O

B
JE

C
T

~ FI
G

.6

C
O

M
P

O
N

E
N

T
LA

Y
E

R
Q

Q
§

A
R

B
IT

R
A

T
O

R
O

B
JE

C
T

§
1

2

C
O

M
P

O
N

E
N

T
O

B
JE

C
T

60
2

61
2

G
R

A
P

H
IC

IN
TE

R
FA

C
E

O
B

JE
C

T
§5

Q

u.s. Patent Feb. 6,2007 Sheet 7 of 8

702

US RE39,486 E

/700

704

GOPHERITEM

ARTICLE

710

CVBERITEM

706

WEBITEM

FIG. 7

/"800

802

FIG. 8

rF
J =- ('D ('

D Q
O

91
6

0 Q
O

91
8

e • 7J
).

• ~ ~ ~ ~ = ~ ""
f'j

('
D ?' ~C
l\ N o o
.:J d rJ
l ~ W \C ~ Q

O
0'

1

~

92
0

F
IG

.
9

X
T

E
N

S
IO

N

C
V

B
E

R
E

X
T

E
N

S
IO

N

9
0
0
~

90
2

9
0
6
,
-
~

C
O

M
P

O
N

E
N

T

l
~~

90
4

(

90
8
""

'-t-
B

A
S

E
C

O
M

P
O

N
E

N
T

1
+

-
-
-
~

B
A

S
E

E

j
~

91
0

G
O

P
H

E
R

B
R

O
W

S
E

R
A

R
T

IC
LE

B
R

O
W

S
E

R
LJ

91
2

r

l>
W

E
B

B
R

O
W

S
E

R
T

E
X

T
V

IE
W

E
R

91
4

~
•

N
e

w
s
G

R
o

u
p

B
R

O
W

S
E

R
P

IC
T

U
R

E
V

IE
W

E
R

US RE39,486 E
2

65

The Telnet service allows users to log onto computers
coupled to the networks, while the network protocol pro
vides a bulletin-board service to its subscribers.
Furthennore, the various data fonnats of the infonnation
available on the Internet include lPEG images, MPEG
movies and fl-Iaw sound files.

Coincided with the design of these services has been the
development of applications for implementing the services
on the client/server architecture. Accordingly, applications

10 are available for users to obtain files from computers con
nected to the Internet using the FTP protocol. Similarly,
individual applications allow users to log into remote com
puters (as though they were logging in from tenninals
attached to those computers) using the Telnet protocol and,

15 further, to view lPEG images and MPEG movies. As a
result, there exists a proliferation of applications directed to
user activity on the Internet.

A problem with this vast collection of application-specific
protocols is that these applications are generally

20 unorganized, thus requiring users to plod through them in
order to satisfyingly, and profitably, utilize the Internet. Such
lack of uniformity is time consuming and disorienting to
users that want to access particular types of infonnation but
are forced to use unfamiliar applications. Because of the

25 enonnous amount of different types of information available
on the Internet and the variety of applications needed to
access those infonnation types, the experience of using the
Internet may be burdensome to these users.

An alternative to the assortment of open applications for
30 accessing infonnation on the Internet is a "closed" applica

tion system, such as Prodigy, CompuServe or America
Online. Each of these systems provide a fill range of
well-organized services to their subscribers; however, they
also impose restrictions on the services developers can offer

35 for their systems. Such constraint of "new" service devel
opment may be an unreasonable alternative for many users.

Two fashionable services for accessing information over
the Internet are Gopher and the World-Wide Web ("Web").

40 Gopher consists of a series of Internet servers that provide
a "list-oriented" interface to information available on the
networks, the information is displayed as menu items in a
hierarchical manner. Included in the hierarchy of menus are
documents, which can be displayed or saved, and searchable

45 indexes, which allow users to type keywords and perfonn
searches.

Some of the menu items displayed by Gopher are links to
information available on other servers located on the net
works. In this case, the user is presented with a list of

50 available information documents that can be opened. The
opened documents may display additional lists or they may
contain various data-types, such as pictures or text,
occasionally, the opened documents may "transport" the
user to another computer on the Internet.

The other popular infonnation services on the Internet is
the Web. Instead of providing a user with a hierarchical
list-oriented view of information, the Web provides the user
with a "linked-hypertext" view. Metaphorically, the Web
perceives the Internet as a vast book of pages, each ofwhich

60 may contain pictures, text, sonnd, movies or various other
types of data in the fonn of documents. Web documents are
written in HyperText Markup Language (HTML) and Web
servers transfer HTML documents to each other through the
HyperText Transfer Protocol (HTTP).

The Web service is essentially a means for naming
sources of information on the Internet. Anned with such a
general naming convention that spans the entire network

FIELD OF THE INVENTION

CROSS REFERENCE TO RELATED
APPLICATIONS

BACKGROUND OF THE INVENTION

1
EXTENSIBLE, REPLACEABLE NETWORK

COMPONENT SYSTEM

This invention is related to the following copending U.S.
Patent Applications:

U.S. patent application Ser. No. 08/435,374, titled
REPLACEABLE AND EXTENSIBLE NOTEBOOK
COMPONENT OF A NETWORK COMPONENT SYS
TEM.

U.S. patent application Ser. No. 08/435,862, titled
REPLACEABLE AND EXTENSIBLE LOG COMPO
NENT OF A NETWORK COMPONENT SYSTEM;

U.S. patent application Ser. No. 08/435,213, titled
REPLACEABLE AND EXTENSIBLE CONNECTION
DIALOG COMPONENT OF A NETWORK COMPO
NENT SYSTEM;

U.S. patent application Ser. No. 08/435,671, titled
EMBEDDING INTERNET BROWSER/BUTTONS
WITHIN COMPONENTS OF A NETWORK COMPO
NENT SYSTEM; and

U. S. patent application Ser. No. 08/435,880, tilted
ENCAPSULATED NETWORK ENTITY REFERENCE
OF A NETWORK COMPONENT SYSTEM, each ofwhich
was filed on May 5,1995 and assigned to the assignee of the
present invention.

This invention relates generally to computer networks
and, more particularly, to an architecture for building
Internet-specific services.

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi- 5

cation; matter printed in italics indicates the additions
made by reissue.

The Internet is a system of geographically distributed
computer networks interconnected by computers executing
networking protocols that allow users to interact and share
information over the networks. Because of such wide-spread
information sharing, the Internet has generally evolved into
an "open" system for which developers can design software
for performing specialized operations, or services, essen
tially without restriction. These services are typically imple
mented in accordance with a client/server architecture,
wherein the clients, e.g., personal computers or
workstations, are responsible for interacting with the users
and the servers are computers configured to perfonn the
services as directed by the clients.

Not surprisingly, each of the services available over the
Internet is generally defined by its own networking protocol. 55

A protocol is a set of rules governing the fonnat and
meaning of messages or "packets" exchanged over the
networks. By implementing services in accordance with the
protocols, computers cooperate to perform various
operations, or similar operations in various ways, for users
wishing to "interact" with the networks. The services typi
cally range from browsing or searching the information
having a particular data fonnat using a particular protocol to
actually acquiring infonnation of a different format in accor
dance with a different protocol.

For example, the file transfer protocol (FTP) service
facilitates the transfer and sharing of files across the Internet.

US RE39,486 E
3 4

SUMMARY OF THE INVENTION

Briefly, the invention comprises an extensible and
replaceable network-oriented component system that pro-

that is controlled by a hand-operated pointing device, such
as a mouse, or by pressing keys of a keyboard.

The graphical objects typically included with each win
dow region are sizing boxes, buttons and scroll bars. These
objects represent user interface elements that the user can
point at with the pointer (or a cursor) to select or manipulate.
For example, the user may manipulate these elements to
move the windows around on the display screen, and change
their sizes and appearances so as to arrange the window in

10 a convenient manner. When the elements are selected or
manipulated, the underlying application program is
informed, via the window environment, that control has
been appropriated by the user.

A menu bar is a further example of a user interface
15 element that provides a list of menus available to a user.

Each menu, in turn, provides a list of command options that
can be selected merely by pointing to them with the mouse
controlled pointer. That is, the commands may be issued by
actuating the mouse to move the pointer onto or near the

20 command selection, and pressing and quickly releasing, i.e.,
"clicking" a button on the mouse.

In contrast to this typical application-based computing
environment, a software component architecture provides a
modular document-based computing arrangement using

25 tools such as viewing editors. The key to document-based
computing is the compound document, i.e., a document
composed of many different types of data sharing the same
file. The types of data contained in a compound document
may range from text, tables and graphics to video and sound.

30 Several editors, each designed to handle a particular data
type offonnat, can work on the contents of the document at
the same time, unlike the application-based computing envi
ronment.

35 Since many editors may work together on the same
document, the compound document is apportioned into
individual modules of context for manipulation by the
editors. The compound-nature ofthe document is realized by
embedding these modules within each other to create a

40 document having a mixture of data types. The software
component architecture provides the foundation for assem
bling documents of differing contents and the present inven
tion is directed to a system for extending this capability to
network-oriented services.

Therefore, it is among the objects of the present invention
to simplifY a user's experience on computer networks with
out sacrificing the flexibility afforded the user by employing
existing protocols and data types available on those net
works.

Another object of the invention is to provide a system for
users to search and access information on the Internet
without extensive understanding or knowledge of the under
lying protocols and data fonnats needed to access that
information.

Still another object of the invention is to provide a
document-based computing system that enables users to
develop modules for services directed to infonnation avail
able on computer networks.

Still yet another object of the invention is to provide a
60 platform that allows third-party developers to extend a

layered network component system by building new com
ponents that seamlessly interact with the system compo
nents.

system, developers are able to build information servers that
potentially any user can access. Accordingly, Gopher
servers, HTTP servers, FTP servers, and E-mail servers have
been developed for the Web. Moreover, the naming conven
tion enables users to identifY resources (such as directories
and documents) on any of these servers connected to the
Internet and allow access to those resources.

As an example, a user "traverses" the Web by following
hot items of a page displayed on a graphical Web browser.
These hot items are hypertext links whose presence are
indicated on the page by visual cues, e.g., underlined words,
icons or buttons. When a user follows a link (usually by
clicking on the cue with a mouse), the browser displays the
target pointed to by the link which, in some cases, may be
another HTML document.

The Gopher and Web information services represent
entirely different approaches to interacting with infonnation
on the Internet. One follows a list-approach to infonnation
that "looks" like a telephone directory service, while the
other assumes a page-approach analogous to a tabloid news
paper. However, both of these approaches include applica
tions for enabling users to browse infonnation available on
Internet servers. Additionally, each of these applications has
a unique way of viewing and accessing the information on
the servers.

Netscape Navigator™ ("Netscape")is an example of a
monolithic Web browser application that is configured to
interact with many of the previously-described protocols,
including HTFF, Gopher and FTP. When instructed to
invoke an application that uses one of these protocols,
Netscape "translates" the protocol to hypertext. This trans
lation places the user farther away from the protocol
designed to run the application and, in some cases, actually
thwarts the user's Internet experience. For example, a dis
cussion system requiring an interactive exchange between
participants may be bogged down by hypertext translations.

The Gopher and Web services may further require addi
tional applications to perfonn specific functions, such as
playing sound or viewing movies, with respect to the data
types contained in the documents. For example, Netscape
employs helper applications for executing applications hav
ing data fonnats it does not "understand". Execution ofthese
functions on a computer requires interruption of processing
and context switching (i.e., saving of state) prior to invoking 45

the appropriate applications. Thus, if a user operating within
the Netscape application "opens" an MPEG movie, that
browsing application number must be saved (e.g., to disk)
prior to opening an appropriate MPEG application, e.g.,
Sparkle, to view the image. Such an arrangement is ineffi- 50

cient and rather disruptive to processing operations of the
computer.

Typically, a computer includes an operating system and
application software which, collectively, control the opera
tions of the computer. The applications are preferably task- 55

specific and independent, e.g., a word processor application
edits text, a drawing application edits drawings and a
database application interacts with infonnation stored on a
database storage unit. Although a user can move data from
one application to the other, such as by copying a drawing
into a word processing file, the independent applications
must be invoked to thereafter manipulate that data.

Generally, the application program presents infonnation
to a user through a window of a graphical user interface by
drawing images, graphics or text within the window region. 65

The user, in tum, communicates with the application by
"pointing" at graphical objects in the window with a pointer

US RE39,486 E
5 6

BRIEF DESCRIPTION OF THE DRAWINGS

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT

The above and further advantages of the invention may be
better understood by referring to the following description in
conjunction with the accompanying drawings in which:

FIG. 1 is a block diagram of a network system including
a collection of computer networks interconnected by client
and server computers;

FIG. 2 is a block diagram of a client component, such as
a personal computer, on which the invention may advanta
geously operate;

FIG. 3 is a block diagram ofa server computer of FIG. 1;
FIG. 4 is a highly schematized block diagram of a layered

component computing arrangement in accordance with the
invention;

FIG. 5 is a schematic illustration of the interaction of a
component, a software component layer and an operating
system of the computer of FIG. 2;

FIG. 6 is a schematic illustration of the interaction
between a component, a component layer and a window
manager in accordance with the invention;

FIG. 7 is a simplified class hierarchy diagram illustrating
a base class CyberItem, and its associated subclasses, used
to construct network component objects in accordance with
the invention;

FIG. 8 is a simplified class hierarchy diagram illustrating
a base class CyberStream, and its associated subclasses, in
accordance with the invention; and

FIG. 9 is a simplified class hierarchy diagram illustrating
a base class CyberExtension, and its associated subclasses,
in accordance with the present invention.

FIG. 1 is a block diagram of a network system 100
comprising a collection of computer networks 110 intercon
nected by client computers ("clients") 200, e.g., worksta
tions or personal computers, and server computers
("servers") 300. The servers are typically computers having
hardware and software elements that provide resources or
services for use by the clients 200 to increase the efficiency
of their operations. It will be understood to those skilled in
the art that, in an alternate embodiment, the client and server
may exist on the same computer; however, for the illustra
tive embodiment described herein, the client and server are
separate computers.

Several types of computer networks 110, including local
area networks (LANs) and wide area networks (WANs),
may be employed in the system 100. A LAN is a limited area
network that typically consists of a transmission medium,

15

network system merely invokes the appropriate component
and component viewing editor configured to operate with
the data type and format. Such "seamless" integration
among components is a significant feature of the modular
cooperating architecture described herein.

A third advantage of the novel network system is directed
to the cooperating relationship between the system and the
underlying software computer architecture. Specifically, the
novel network components are based on the component

10 architecture technology to therefore ensure cooperation
between all components in an integrated manner. The soft
ware component architecture is configured to operate on a
plurality of computers, and is preferably implemented as a
software layer adjoining the operating system.

vides a platform for developing network navigation com
ponents that operate on a variety of hardware and software
computer system. These navigation components include key
integrating components along with components, such as
Gopher-specific and Web-specific components, configured
to deliver conventional services directed to computer net
works. Communication among these components is
achieved through novel application programming interfaces
(APIs) to facilitate integration with an underlying software
component architecture. Such a highly-modular cooperating
layered-arrangement between the network component sys
tem and the component architecture allows any existing
component to be replaced, and allows new components to be
added, without affecting operation of the novel network
component system.

According to one aspect of the present invention, the
novel system provides a network navigating service for
browsing and accessing information available on the com
puter networks. The information may include various data
types available from a variety of sources coupled to the 20

computer networks. Upon accessing the desired
information, component viewing editors are provided to
modifY or display, either visually or acoustically, the con
tents of the data types regardless of the source of the
underlying data. Additional components and component 25

viewing editors may be created in counection with the
underlying software component architecture to allow inte
gration of different data types and protocols needed to
interact with information on the Internet.

In accordance with another aspect of the invention, the 30

component system is preferably embodied as a customized
framework having a set of interconnected abstract classes
for defining network-oriented objects. These abstract classes
include CyberItem, CyberStream and CyberExtension, and
the objects they define are used to build the novel navigation 35

components. Interactions among these latter components
and existing components of the underlying software archi
tecture provide the basis for the extensibility and replace
ability features of the network component system.

40
Specifically, CyberItem is an object abstraction which

represents a "resource on a computer-network", but which
may be further expanded to include resources available at
any accessible location. CyberStream is an object abstrac
tion representing a method for downloading information 45

from a remote location on the computer network, while
CyberExtension represents additional behaviors provided to
the existing components for integration with the network
component system.

The novel network system captures the essence of a 50

"component-based" approach to browsing and retrieving
network-oriented information as opposed to the monolithic
application-based approach ofprior browsing systems. Such
a component-based system has a number of advantages.
First, if a user does not like the way a particular component 55

operates, that component can be replaced with a different
component provided by another developer. In contrast, if a
user does not like the way a monolithic application handles
certain protocols, the only resource is to use another service
because the user cannot modify the application to perform 60

the protocol function in a different manner. Clearly, the
replaceability feature of the novel network component sys
tem provides a flexible alternative to the user.

Second, the use of components is substantially less dis
ruptive than using helper applications in situations where a 65

monolithic application confronts differing data types and
formats. Instead of "switching" application layers, the novel

US RE39,486 E
7 8

series ofcomputers sold by International Business Machines
Corp. These computers have resident thereon, and are con
trolled and coordinated by, operating system software, such
as the Apple® System 7®, IBM OS2®, or the Microsoft®
Windows® operating systems.

As noted, the present invention is based on a modular
document computing arrangement as provided by an under
lying software components architecture, rather than the
typical application-based environment of prior computing

10 systems. FIG. 4 is a highly schematized diagram of the
hardware and software elements of a layered component
computing arrangement 400 that includes the novel
network-oriented component system of the invention. At the
lowest level there is the computer hardware, shown as layer

15 410. Interfacing with the hardware is a conventional oper
ating system layer 420 that includes a window manager, a
graphic system, a file system and network-specific
interfacing, such as a TCP/IP protocol stack and an Apple-
talk protocol stack.

The software component architecture is preferably imple-
mented as a component architecture layer 430. Although it
is shown as overlaying the operating system 420, the com
ponent architecture layer 430 is actually independent of the
operating system and, more precisely, resides side-by-side

25 with the operating system. This relationship allows the
component architecture to exist on multiple platforms that
employ different operating systems.

In accordance with the present invention, a novel net-
30 work:oriented component layer 450 contains the underlying

technology for implementing the extensible and replaceable
network component system that delivers services and facili
tates development of navigation components directed to
computer networks, such as the Internet. As described

35 further herein, this technology includes novel application
programming interfaces (APIs) that facilitate communica
tion among components to ensure integration with the
underlying component architecture layer 430. These novel
APIs are preferably delivered in the form of objects in a

40 class hierarchy.
It should be noted that the network component layer 450

may operate with any existing system-wide component
architecture, such as the Object Linking and Embedding
(OLE) architecture developed by the Microsoft Corporation;

45 however, in the illustrative embodiment, the component
architecture is preferably OpenDoc, the vendor-neutral,
open standard for compound documents developed by,
among others, Apple Computer, Inc.

Using tools such as viewing editors, the component
50 architecture layer 430 creates a compound document com

posed of data having different types and formats. Each
differing data type and format is contained in a fundamental
unit called a computing part or, more generally, a "compo
nent" 460 comprised of a viewing editor along with the data

55 content. An example of the computing component 460 may
include a MacDraw component. The editor, on the other
hand, is analogous to an application program in a conven
tional computer. That is, the editor is a software component
which provides the necessary functionality to display a

60 component's contents and, where appropriate, present a user
interface for modifYing those contents. Additionally, the
editor may include menus, controls and other user interface
elements.

According to the invention, the network component layer
65 450 extends the functionality of the underlying component

architecture layer 430 by defining network-oriented compo
nents 480. Included among these components are key inte-

such as coaxial cable or twisted pair, while a WAN may be
a public or private telecommunications facility that inter
connects computers widely dispersed. In the illustrative
embodiment, the network system 100 is the Intemet system
of geographically distributed computer networks.

Computers coupled to the Internet typically communicate
by exchanging discrete packets of information according to
predefined networking protocols. Execution of these net
working protocols allow users to interact and share infor
mation across the networks. As an illustration, in response to
a user's request for a particular service, the client 200 sends
an appropriate information packet to the server 300, which
performs the service and returns a result back to the client
200.

FIG. 2 illustrates a typical hardware configuration of a
client 200 comprising a central processing unit (CPU) 210
coupled between a memory 214 and input/output (I/O)
circuitry 218 by bidirectional buses 212 and 216. The
memory 214 typically comprises random access memory
(RAM) for temporary storage of information and read only 20

memory (ROM) for permanent storage of the computer's
configuration and basic operating commands, such as por
tions of an operating system (not shown). As described
further herein, the operating system controls the operations
of the CPU 210 and client computer 200.

The I/O circuitry 218, in turn, connects the computer to
computer networks, such as the Internet computer networks
250, via a bidirectional bus 222 and to cursor/pointer control
devices, such as keyboard 224 (via cable 226) and a mouse
230 (via cable 228). The mouse 230 typically contains at
least one button 234 operated by a user of the computer. A
conventional display monitor 232 having a display screen
235 is also connected to I/O circuitry 218 via cable 238. A
pointer (cursor) 240 is displayed on windows 244 of the
screen 235 and its position is controllable via the mouse 230
or the keyboard 224, as is well-known. Typically, the I/O
circuitry 218 receives information, such as control and data
signals, from the mouse 230 and keyboard 224, and provides
that information to the CPU 210 for display on the screen
235 or, as described further herein, for transfer over the
Internet 250.

FIG. 3 illustrates a typical hardware configuration of a
server 300 of the network system 100. The server 300 has
many of the same units as employed in the client 200,
including a CPU 310, a memory 314, and I/O circuitry 318,
each of which are interconnected by bidirectional buses 312
and 316. Also, the I/O circuitry connects the computer to
computer networks 350 via a bidirectional bus 322. These
units are configured to perform functions similar to those
provided by their corresponding units in the computer 200.
In addition, the server typically includes a mass storage unit
320, such as a disk drive, connected to the I/O circuitry 318
via bidirectional bus 324.

It is to be understood that the I/O circuits within the
computers 200 and 300 contain the necessary hardware, e.g.,
buffers and adapters, needed to interface with the control
devices, the display monitor, the mass storage unit and the
networks. Moreover, the operating system includes the nec
essary software drivers to control, e.g., network adapters
within the I/O circuits when performing I/O operations, such
as the transfer of data packets between the client 200 and
server 300.

The computers are preferably personal computers of the
Macintosh® series of computers sold by Apple Computer
Inc., although the invention may also be practiced in the
context of other types of computers, including the IBM®G)

9
US RE39,486 E

10

20

grating components (such as notebook, log and connection
dialog components) along with components configured to
deliver conventional services directed to computer
networks, such as Gopher-specific and Web-specific com
ponents. Moreover, the components may include FTP
specific components for transferring files across the net
works. Telnet-specific components for remotely logging
onto other computers, and JPEG-specific and MPEG
specific components for viewing image and movie data
types and formats.

A feature of the invention is the ability to easily extend,
or replace, any of the components of the layered computing
arrangement 400 with a different component to provide a
user with customized network-related services. As described
herein, this feature is made possible by the cooperating
relationship between the network component layer 450 and
its underlying component architecture layer 430. The inte
grating components communicate and interact with these
various components of the system in a "seamlessly inte
grated" manner to provide basic tools for navigating the
Internet computer networks.

FIG. 4 also illustrates the relationship of applications 490
to the elements of the layered computing arrangement 400.
Although they reside in the same "user space" as the
components 460 and network components 480, the applica
tions 490 do not interact with these elements and, thus,
interface directly to the operating system layer 420. Because
they are designed as monolithic, autonomous modules,
applications (such as previous Internet browsers) often do
not even interact among themselves. In contrast, the com
ponents of the arrangement 400 are designed to work
together via the common component architecture layer 430
or, in the case of the network components, via the novel
network component layer 450.

Specifically, the invention features the provision of the
extensible and replaceable network-oriented component sys
tem which, when invoked, causes actions to take place that
enhance the ability of a user to interact with the computer to
search for, and obtain, information available over computer
networks such as the Internet. The information is manifested
to a user via a window environment, such as the graphical
user interface provide by System 7 or Windows, that is
preferably displayed on the screen 235 (FIG. 2) as a graphi
cal display to facilitate interactions between the user and the
computer, such as the client 200. This behavior ofthe system
is brought about by the interaction of the network compo
nents with a series of system software routines associated
with the operating system 420. These system routines, in
turn, interact with the components architecture layer 430 to
create the windows and graphical user interface elements, as
described further herein.

The window environment is generally part of the operat
ing system software 420 that includes a collection of utility
programs for controlling the operation of the computer 200.
The operating system, in turn, interacts with the components
to provide higher levels functionality, including a direct
interface with the user. A component makes use of operating
system functions by issuing a series of task commands to the
operating system via the network component layer 450 or, as
is typically the case, through the component architecture
layer 430. The operating system 420 then performs the
requested task. For example, the component may request
that a software driver of the operating system initiate trans
fer of a data packet over the networks 250 or that the
operating system display certain information on a window
for presentation to the user.

FIG. 5 is a schematic illustration of the interaction of a
component 502, software component layer 506 and an

operating system 510 of a computer 500, which is similar to,
and has equivalent elements of, the client computer 200 of
FIG. 2. As noted, the network component layer 450 (FIG. 4)
is integrated with the computer architecture layer 430 to
provide a cooperating architecture that allows any compo
nent to be replaced or extended, and allows new components
to be added, without affecting operation of the network
component system, accordingly, for purposes of the present
discussion, the layers 430 and 450 may be treated as a single

10 software component layer 506.

The component 502, component layer 506 and operating
system 510 interact to control and coordinate the operations
of the computer 500 and their interaction is illustrated
schematically by arrows 504 and 508. In order to display

15 information on a screen display 535, the component 502 and
component layer 506 cooperate to generate and send display
commands to a window manager 514 of the operating
system 510. The window manager 514 stores information
directly (via arrow 516) into a screen buffer 520.

The window manager 514 is a system software routine
that is generally responsible for managing windows 544 that
the user views during operation of the network component
system. That is, it is generally the task of the window
manager to keep track ofthe location and size of the window

25 and window areas which must be drawn and redrawn in
connection with the network component system of the
present invention.

Under control of various hardware and software in the
30 system, the contents of the screen buffer 520 are read out of

the buffer and provided, as indicated schematically by arrow
522, to a display adapter 526. The display adapter contains
hardware and software (sometimes in the form of firmware)
which converts the information in the screen buffer 520 to a

35 form which can be used to drive a display screen 535 of a
monitor 532. The monitor 532 is connected to display
adapter 526 by cable 528.

Similarly, in order to transfer information as a packet over
the computer networks, the component 502 and component

40 layer 506 cooperate to generate and send network
commands, such as remote procedure calls, to a network
specific interface 540 of the operating system 510. The
network interface comprises system software routines, such
as "stub" procedure software and protocol stacks, that are

45 generally responsible for forming the information into a
predetermined packet format according to the specific net
work protocol used, e.g., TCP/IP or Apple-talk protocol.

Specifically, the network interface 540 stores the packet
directly (via arrow 556) into a network buffer 560. Under

50 control of the hardware and software in the system, the
contents of the network buffer 560 are provided, as indicated
schematically by arrow 562, to a network adapter 566. The
network adapter incorporates the software and hardware,
i.e., electrical and mechanical interchange circuits and

55 characteristics, needed to interface with the particular com
puter networks 550. The adapter 566 is connected to the
computer networks 550 by cable 568.

In a preferred embodiment, the invention described herein
is implemented in an object-oriented programming (OOP)

60 language, such as C++, using System Object Model (SaM)
technology and OOP techniques. The C++ and SaM lan
guages are well-known and many articles and texts are
available which describe the languages in detail. In addition,
C++ and SaM compilers are commercially available from

65 several vendors. Accordingly, for reasons of brevity, the
details of the C++ and SaM languages and the operations of
their compilers will not be discussed further in detail herein.

US RE39,486 E
11 12

nent layer 506 and the window manager 514, respectively,
the latter of which may be an object-oriented program.
Interaction between a component, component layer and a
window manager is illustrative in greater detail in FIG. 6.

In general, the component layer 606 interfaces with the
window manager 614 by creating and manipulating objects.
The window manger itselfmay be an object which is created
when the operating system is started. Specifically, the com
ponent layer creates window objects 630 that create the

10 window manager to create associated windows on the dis
play screen. This is shown schematically by an arrow 608.
In addition, the component layer 606 creates individual
graphic interface objects 650 that are stored in each window
object 630, as shown schematically by arrows 612 and 652.

15 Since many graphic interface objects may be created in
order to display many interface elements on the display
screen, the window object 630 communicates with the
window manager by means of a sequence of drawing
commands issued from the window object to the window

20 manager 614, as illustrated by arrow 632.
As noted, the component layer 606 functions to embed

components within one another to form a component docu
ment having mixed data types and formats. Many different
viewing editors may work together to display, or modifY, the

25 data contents of the documents. In order to direct keystrokes
and mouse events initiated by a user to the proper compo
nents and editors, the component layer 606 includes an
arbitrator 616 and a dispatcher 626.

The dispatcher is an object that communicates with the
30 operating system 610 to identifY the correct viewing editor

660, while the arbitrator is an object that informs the
dispatcher as to which editor "owns" the stream of key
strokes or mouse events. Specifically, the dispatcher 626
receives these "human-interface" events from the operating

35 system 610 (as shown schematically by arrow 628) and
delivers them to the correct viewing editor 660 via arrow
662. The viewing editor 660 then modifies or displays, either
visually or acoustically, the contents of the data types.

Although OOP offers significant improvements over other
40 programming concepts, software development still requires

significant outlays of time and effort, especially if no pre
existing software is available for modulation. Consequently,
a prior art approach has been to provide a developer with a
set of preferred, interconnected classes which create a set of

45 objects and additional miscellaneous routines that are all
directed to performing commonly-encountered tasks in a
particular environment. Such predefined classes and librar
ies are typically called "frameworks" and essentially provide
a pre-fabricated structure for a working document.

For example, a framework for a user interface might
provide a set of predefined graphic interface objects which
create windows, scroll bars, menus, etc. and provide the
support and "default" behavior for these interface objects.
Since frameworks are based on object-oriented techniques,

55 the predefined classes can be used as base classes and the
built-in default behavior can be inherited by developer
defined subclasses and either modified or overridden to
allow developers to extend the framework and create cus
tomized solutions in a particular area of expertise. This

60 object-oriented approach provides a major advantage over
traditional programming since the progranliller is not chang
ing the original program, but rather extending the capabili
ties of that original program. In addition, developers are not
blindly working through layers of code because the frame-

65 work providers architectural guidance and modeling and, at
the same time, frees the developers to supply specific actions
unique to the problem domain.

As will be understood by those skilled in the art, OOP
techniques involve the definition, creation, use and destruc
tion of "objects". These objects are software entities com
prising data elements and routines, or functions, which
manipulate the data elements. The data and related functions
are treated by the software as an entity that can be created,
used and deleted as if it were a single item. Together, the data
and functions enable objects to model virtually any real
world entity in terms of its characteristics, which can be
represented by the data elements, and its behavior, which
can be represented by its data manipulation functions. In this
way, objects can model concrete things like computers,
while also modeling abstract concepts like numbers or
geometrical designs.

Objects are defined by creating "classes" which are not
objects themselves, but which act as templates that instruct
the compiler how to construct an actual object. A class may,
for example, specifY the number and type of data variables
and the steps involved in the functions which manipulate the
data. An object is actually created in the program by means
of a special function called a "constructor" which uses the
corresponding class definition and additional information,
such as arguments provided during object creation, to con
struct the object. Likewise objects are destroyed by a special
function called a "destructor". Objects may be used by
manipulating their data and invoking their functions.

The principle benefits of OOP techniques arise out of
three basic principles encapsulation, polymorphism and
inheritance. Specifically, objects can be designed to hide, or
encapsulate all, or a portion of, its internal data structure and
internal functions. More specifically, during program design,
a program developer can define objects in which all or some
of the data variables and all or some of the related functions
are considered "private" or for use only by the object itself.
Other data or functions can be declared "public" or available
for use by other programs. Access to the private variables by
other programs can be controlled by defining public func
tions for an object which access the object's private data.
The public functions form a controlled and consistent inter
face between the private data and the "outside" world. Any
attempt to write program code which directly accesses the
private variables causes the compiler to generate an error
during program compilation which error stops the compila
tion process and prevents the program from being run.

Polymorphism is a concept which allows objects and
functions that have the same overall format, but that work
with different data, to function differently in order to pro
duce consistent results. Inheritance, on the other hand,
allows program developers to easily reuse pre-existing pro
grams and to avoid creating software from scratch. The 50

principle of inheritance allows a software developer to
declare classes (and the objects which are later created from
them) as related. Specifically, classes may be designated as
subclasses of other base classes. A subclass "inherits" and
has access to all of the public functions of its base classes
just as if these functions appeared in the subclass.
Alternatively, a subclass can override some or all of its
inherited functions or may modifY some or all of its inherited
functions merely by defining a new function with the same
form (overriding or modification does not alter the function
in the base class, but merely modifies the use of the function
in the subclass). The creation of a new subclass which has
some of the functionality (with selective modification) of
another class allows software developers to easily customize
existing code to meet their particular needs.

In accordance with the present invention, the component
502 and windows 544 are "objects" created by the compo-

US RE39,486 E
13 14

customized components allow users to see different kinds of
data using different kinds of protocols, or to create compo
nents that function differently from existing components.

In accordance with the invention, the customized frame
work has a set of intercounected abstract classes for defining
network-oriented objects used to build these customized
network components. These abstract classes include
CyberItem, CyberStream and CyberExtension and the
objects they define are used to build the novel network

10 components. Interactions among these latter components
and existing components of the underlying software archi
tecture provide the basis for the extensibility and replace
ability features of the network component system.

In order to further understand the operations of these
network component objects, it may be useful to examine
their construction together with the major function routines
that comprise the behavior of the objects. In examining the
objects, it is also useful to examine the classes that are used
to construct the objects (as previously mentioned the classes
serve as templates for the construction of objects). Thus, the
relation of the classes and the functions inherent in each
class can be used to predict the behavior of an object once
it is constructed.

FIG. 7 illustrates a simplified class hierarchy diagram 700
of the base class CyberItem 702 used to construct the
network component object 602. In general, CyberItem is an
abstraction that may represent resources available at any
location accessible from the client 200. However, in accor
dance with the illustrative embodiment, a CyberItem is
preferably a small, self-contained object that represents a
resource, such as a service, available on the Internet and
subclasses of the CyberItem base class are used to construct
various network component objects configured to provide
such services for the novel network-oriented component
system.

For example, the class GopherItem 704 may be used to
construct a network component object representing a "thing
in Gopher space", such as a Gopher directory, while the
subclass WebItem 706 is derived from CyberItem and
encapsulates a network component object representing a
"thing in Web space, e.g. a Web page. Similarly, the subclass
NewsGroupItem 708 may be used to construct a network
object representing a newsgroup and the class Article 710 is
configured to encapsulate a network component object rep
resenting an article resource on an Internet server.

Since each of the classes used to construct these network
component objects are subclasses of the CyberItem base
class, each class inherits the functional operators and meth-

50 ods that are available from that base class. For example,
methods associated with the CyberItem base class for return
ing an icon family and a name are assumed by the subclasses
to allow the network components to display CyberItem
objects in a consistent marmer. The methods associated with
the CyberItem base class include (the arguments have been
omitted for simplicity):

GetRefCount 0;
IncrementRefCount 0;
Release 0;
SetUpFromURL 0;
ExternalizeContent 0;
StreamToStorageUnit 0;
StreamFromStorageUnit 0;
Clone 0;
Compare 0;
GetStringProperty 0;

There are many kinds of framework available, depending
on the level of the system involved and the kind of problem
to be solved. The types of frameworks range from high-level
frameworks that assist in developing a user interface, to
lower-level frameworks that provide basic system software
services such as communications, printing, file systems
support, graphics, etc. Commercial examples of application
type frameworks include MacApp (Apple), Bedrock
(Symantec), OWL (Borland), NeXT Step App Kit (NeXT)
and Smalltalk-80 MVC (ParcPlace).

While the framework approach utilizes all the principles
of encapsulation, polymorphism, and inheritance in the
object layer, and is a substantial improvement over other
programming techniques, there are difficulties which arise.
These difficulties are caused by the fact that it is easy for 15

developers to reuse their own objects, but it is difficult for
the developers to use objects generated by other programs.
Further, frameworks generally consist of one or more object
"layers" on top of a monolithic operating system and even
with the flexibility of the object layer, it is still often 20

necessary to directly interact with the underlying system by
means of awkward procedure calls.

In the same way that a framework provides the developer
with prefab functionality for a document, a system
framework, such as that included in the preferred 25

embodiment, can provide a prefab functionality for system
level services which developers can modify or override to
create customized solutions, thereby avoiding the awkward
procedural calls necessary with the prior art framework. For
example, consider a customizable network interface frame- 30

work which can provide the foundation for browsing and
accessing information over a computer network. A software
developer who needed these capabilities would ordinarily
have to write specific routines to provide them. To do this
with a framework, the developer only needs to supply the 35

characteristic and behavior of the finished output, while the
framework provides the actual routines which perform the
tasks.

A preferred embodiment takes the concept of frameworks 40

and applies it throughout the entire system, including the
document, component, component layer and the operating
system. For the commercial or corporate developer, systems
integrator, or OEM, this means all of the advantages that
have been illustrated for a framework, such as MacApp, can 45

be leveraged not only at the application level for things such
as text and graphical user interfaces, but also at the system
level for such services as printing, graphics, multi-media,
file systems and, as described herein, network-specific
operations.

Referring again to FIG. 6, the window object 630 and the
graphic interface object 650 are elements of a graphical user
interface of a network component system having a customi
zable framework for greater enhancing the ability of a user
to navigate or browse through information stored on servers 55

coupled to the network. Moreover, the novel network system
provides a platform for developing network navigation
components for operation on a variety of hardware and
software computer systems.

As noted, the network components are preferably imple- 60

mented as objects and communication among the network
component objects is effected through novel application
programming interfaces (APIs). These APIs are preferably
delivered in the form of objects in a class hierarchy that is
extensible so that developers can create new components 65

and editors. From an implementation viewpoint, the objects
can be subclassed and can inherit from base classes to build

US RE39,486 E
15 16

ICyberExtension ();
Components displaying !be contents of CyberItem object

AddCyberItemToLog ();
ShowLogWindow ();
IsLogWindowShown ();
AddCyberItemToNotebook ();
AddCyberItemsToNotebook ();
ShowNotebookWindow ();
IsNotebookWindowShown ();
SetLogFinger ();
ClearLogFinger ();
Notebook and Log Menu Handlers

SetCyberItem ();
GetCyberItem ();
GetCyberItemWindow ();
IsCyberItemSelected ();
GetSelectedCyberItems ();
Notebook and Log Tools

InstallServicesMenu ();
AdjustMenus ();
DoCommand ().

In summary, the novel network system described herein
35 captures, the essence of a "comprehensive-based" approach

to browsing and retrieving network-oriented information as
opposed to the monolithic application-based approach of
prior browsing systems. Advantages of such a component
based system include the ability to easily replace and extend

40 components because of the cooperating relationship
between the novel network-oriented component system and
the underlying component architecture. This relationship
also facilitates "seamless" integration and cooperation
between components and component viewing editors when
confronted with differing data types and formats.

45 While there has been shown and described an illustrative
embodiment for implementing an extensible and replaceable
network component system, it is to be understood that
various other adaptations and modifications may be made
within the spirit and scope of the invention. For example,
additional system software routines may be used when
implementing the invention in various applications. These
additional system routines include dynamic link libraries
(DLL), which are program files containing collections of
window enviroument and networking functions designed to
perform specific classes of operations. These functions are
invoked as needed by the software component layer to
perform the desired operations. Specifically, DLLs, which
are generally well-known, may be used to interact with the
component layer and window manager to provide network
specific components and functions.

The foregoing description has been directed to specific
embodiments of this invention. It will be apparent, however,
that other variations and modifications may be made to the
described embodiments, with the attainment of some or all
oftheir advantages. Therefor, it is the object of the appended
claims to cover all such variations and modifications as
come within the true spirit and scope of the invention.

In accordance with the invention, the class Gopher
Browser 910 may be used to construct a Gopher-like net
work browsing component and the class WebBrowser 912
may be able to construct a Web-like network browsing
component. Likewise, a TextViewer subclass 918 may
encapsulate a network component configured to display text
and a PictureViewer subclass 920 may construct a compo
nent for displaying pictures. The methods associated with
the CyberExtension class include (the arguments have been

10 omitted for simplicity):

SetDefaultName 0;
GetURL 0;
GetIconSuite 0;
CreateCyberStream 0;
Open 0;
OpenInFrame 0;
FindWindow O.
In some instances, a CyberItem object may need to spawn

a CyberStream object in order to obtain the actual data for
the object it represents. FIG. 8 illustrates a simplified class
hierarchy diagram 800 of the base class CyberStream 802.
As noted, CyberStream is an abstraction that serves as an
API between a component configured to display a particular
data format and the method for obtaining the actual data.
This allows developers to design viewing editors that can 15

display the content of data regardless of the protocol
required to obtain that data.

For example, a developer may design a picture viewing
editor that uses the CyberStream API to obtain data bytes
describing a picture. The actual data bytes are obtained by a 20

subclass of CyberStream configured to construct a compo
nent object that implements a particular protocol, such as
Gopher and HTTP. That is, the CyberStream object contains
the software commands necessary to create a "data stream"
for transferring information from one object to another. 25

According to the invention, a GopherStream subclass 804 is
derived from the CyberStream base class and encapsulates a
network object that implements the Gopher protocol, while
the class WebStream 806 may be used to construct a network
component configured to operate in accordance with the 30

HTTP protocol.
The methods associated with the CyberStream class, and

which are contained in the objects constructed from the
subclasses, include (the arguments have been omitted for
simplicity):

GetStreamStatus 0;
GetTotalDataSize 0;
GetStreamError 0;
GetStatusString 0;
OpenWithCallback 0;
Open 0;
GetBuffer 0;
ReleaseBuffer 0;
Abort O.
FIG. 9 is a simplified class hierarchy diagram of the base

class CyberExtension 902 which represents additional
behaviors provided to components of the underlying soft
ware component architecture. Specifically, CyberExtension
are the mechanisms for adding functionality to, and extend- 50

ing the APIs of, existing components so that they may
communicate with the novel network components. As a
result, the CyberExtension base class 902 operates in con
nection with a Component base class 906 through their
respective subclasses BaseExtension 904 and BaseCompo- 55

nent 908.
The CyberExtension base class provides an API for

accessing other network-specific components, such as note
books and logs, and for supporting graphical user interface
elements, such as menus. CyberExtension objects are used 60

by components that display the contents of CyterItem
objects. This includes browser-like components such as a
Gopher browser or Web browser, as well as JPEG-specific
components which display particular types of data such as
pictures. The CyberExtension objects also keep track of the 65

CyberItem objects which these components are responsible
for displaying.

US RE39,486 E
17 18

constructing a network navigation component that imple
ments a protocol.

9. The computing arrangement of claim 6 wherein the
application programming interfaces comprise means for
constructing a network navigation component that provides
additional functionality to existing computing components
to enable communication among the components.

10. The computing arrangement of claim 9 wherein the
computing component comprises a computing part having a
viewing editor and data content.

11. The computing arrangement of claim 10 wherein the
computing component functions to one of transfer files over
the networks, remotely log onto another computer coupled
to the networks and view images on a screen of the com
puting arrangement.

12. The computing arrangement of claim 10 wherein the
network navigation component comprises a browsing com
ponent.

13. The computing arrangement of claim 10 wherein the
network navigation component comprises a component for
one of displaying text and displaying movies on a screen of
the computing arrangement.

14. An extensible and replaceable layered component
computing arrangement residing on a computer adapted to
be coupled on a computer network, the layered arrangement
comprising:

a software component architecture layer interfacing with
an operating system to control the operations of the
computer, the software component architecture layer
defining a plurality of computing components;

a network component layer adapted to be coupled to at
least one network navigation component that provides
a service directed to the computer network, the network
component layer including an application program
ming interface; and

a number of interconnected abstract classes included in
the application programming interface, at least on
abstract class for defining a network navigation object
that represents a resource available on the computer
network, the network component layer coupled to the
software component architecture layer to facilitate
communication among the network navigation compo
nent and at least one computing component.

15. The layered arrangement of claim 14, wherein the
45 abstract class defines a network navigation object that

represents a method of downloading information from a
remote location on the computer network

16. The layered arrangement of claim 14, wherein the
abstract class defines a network navigation object that
represents additional behaviors provided to the computing
components ofthe software component architecture layerfor
integrating with the network component layer.

17. The layered arrangement of claim 14, wherein the
network navigation object is adapted to browse the com
puter network

18. The layered arrangement of claim 14, wherein the
network navigation object is adapted to display text on a
computer display.

19. The layered arrangement of claim 14, wherein the
60 network navigation object is adapted to display images on a

computer display.
20. The layered arrangement of claim 14, wherein the

network navigation object includes software commands for
creating a datastream for transferring information between

65 objects in the layered component computing arrangement.

What is claimed is:
1. An extensible and replaceable layered component com

puting arrangement residing on a computer coupled to a
computer network, the layered arrangement comprising:

a software component architecture layer interfacing with
an operating system to control the operations of the
computer, the software component architecture layer
defining a plurality of computing components; and

a network component layer for developing network navi
gation components that provide services directed to the 10

computer network, the network component layer
includes application programming interfaces; and

a first class included in the application programming
interfaces to construct a first network navigation object
that represents different network resources available on 15

the computer network, wherein the network component
layer coupled to the software component architecture
layer in integrating relation to facilitate communication
among the computing and network navigation compo
nents.

2. The computing arrangement of claim 1 wherein the 20

network navigation components are objects.
3. The computing arrangement of claim 1 wherein the

application programming interfaces further comprise a sec
ond class for constructing a second network navigation
object representing a data stream for transferring informa- 25

tion among objects of the arrangement.
4. The computing arrangement of claim 3 wherein the first

network navigation object is an Item object and the second
network navigation object is a Stream object, and wherein
the Item object spawns the Stream object to obtain infor- 30

mation from the network resource that the Item object
represents.

5. The computing arrangement of claim 3 wherein the
application programming interfaces further comprise a third
class for constructing a third network navigation object 35

representing additional behaviors provided to computing
components of the software component architecture layer to
thereby enable communication between the computing com
ponents and the network navigation components.

6. An extensible and replaceable layered component com- 40

puting arrangement for providing services directed to infor
mation available on computer networks, the computing
arrangement comprising:

a processor;
an operating system;
a software component architecture layer coupled to the

operating system to control the operations of the
processor, the software component architecture layer
defining a plurality of computing components; and

a network component layer for creating network naviga- 50

tion components configured to search and obtain infor
mation available on the computer networks, the net
work component layer includes application
programming interfaces; and

means for constructing a network navigation component 55

that represents different resources available on the
computer network, wherein the network component
layer is integrally coupled to the software component
architecture layer to ensure communication among the
computing and network navigation components.

7. The computing arrangement of claim 6 wherein the
network component layer and software component architec
ture layer comprise means for embedding components
within one another to form a compound document having
mixed data types and formats.

8. The computing arrangement of claim 6 wherein the
application programming interfaces comprise means for

