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behavior of an object is confined to such well-defined
locations and interfaces, changes (that is, code
modifications) in the object will have minimal impact on the
other objects and elements in the system. A second "fringe
benefit" of good encapsulation in object-oriented design and
programming is that the resulting code is more modular and
maintainable than code written using more traditional tech
niques.

The fact that objects are encapsulated produces another
10 important fringe benefit that is sometimes referred to as data

abstraction. Abstraction is the process by which complex
ideas and structures are made more understandable by the
removal of detail and the generalization of their behavior.
From a software perspective, abstraction is in many ways the

15 antithesis of hard-coding. Consider a software windowing
example: if every detail of every window that appears on a
user's screen in a graphical user interface (GUI)-based
program had to have all of its state and behavior hard-coded
into a program, then both the program and the windows it

20 contains would lose almost all of their flexibility. By
abstracting the concept of a window into a window object,
object-oriented systems permit the programmer to think only
about the specific aspects that make a particular window
unique. Behavior shared by all windows, such as the ability

25 to be dragged and moved, can be shared by all window
objects.

This leads to another basic component of OOT, which is
the class. A class includes a set of data attributes plus a set
of allowable operations (that is, methods) on the data

30 attributes. Each object is an instance of some class. As a
natural outgrowth of encapsulation and abstraction, OOT
supports inheritance. A class (called a subclass) may be
derived from another class (called a base class, a parent
class, etc.) wherein the subclass inherits the data attributes

35 and methods of the base class. The subclass may specialize
the base class by adding code which overrides the data
and/or methods of the base class, or which adds new data
attributes and methods. Thus, inheritance represents a
mechanism by which abstractions are made increasingly

40 concrete as subclasses are created for greater levels of
specialization. Inheritance is a primary contributor to the
increased programmer efficiency provided by OOP. Inherit
ance makes it possible for developers to minimize the
amount of new code they have to write to create applica-

45 tions. By providing a significant portion of the functionality
needed for a particular task, classes in the inheritance
hierarchy give the programmer a head start to program
design and creation. One potential drawback to an object
oriented environment lies in the proliferation of objects that

50 must exhibit behavior which is similar and which one would
like to use as a single message name to describe. Consider,
for example, an object-oriented graphical environment: if a
Draw message is sent to a Rectangle object, the Rectangle
object responds by drawing a shape with four sides. A

55 Triangle object, on the other hand, responds by drawing a
shape with three sides. Ideally, the object that sends the
Draw message remains unaware of either the type of object
to which the message is addressed or of how that object that
receives the message will draw itself in response. If this

60 ideal can be achieved, then it will be relatively simple to add
a new kind of shape later (for example, a hexagon) and leave
the code sending the Draw message completely unchanged.

In conventional, procedure-oriented languages, such a
linguistic approach would wreak havoc. In OOT

65 environments, the concept of polymorphism enables this to
be done with impunity. As one consequence, methods can be
written that generically tell other objects to do something

RELATED APPLICATIONS

FIELD OF THE INVENTION

BACKGROUND OF THE INVENTION

OBJECT-ORIENTED OPERATING SYSTEM

1
OBJECT-ORIENTED OPERATING SYSTEM

This application is a continuation of U.S. patent applica- 5

tion Ser. No. 08/521,085, filed Aug. 29, 1995, now aban
doned.

A portion of the disclosure of this patent application
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as it
appears in the Patent and Trademark Office patent files or
records, but otherwise reserves all copyright rights whatso
ever.

The present invention relates generally to object-oriented
computing environments, and more particularly to a system
and method for providing an object-oriented interface for a
procedural operating system.

Object-oriented technology (OOT), which generally
includes object-oriented analysis (OOA), object-oriented
design (OOD), and object-oriented programming (OOP), is
earning its place as one of the most important new tech
nologies in software development. OOT has already begun
to prove its ability to create significant increases in pro
grammer productivity and in program maintainability. By
engendering an environment in which data and the proce
dures that operate on the data are combined into packages
called objects, and by adopting a rule that demands that
objects communicate with one another only through well
defined messaging paths, OOT removes much of the com
plexity of traditional, procedure-oriented programming.

The following paragraphs present a brief overview of
some of the more important aspects of OOT. More detailed
discussions of OOT are available in many publicly available
documents, including Object Oriented Design With Appli
cations by Grady Booch (Benjamin/Cummings Publishing
Company, 1991) and Object-Oriented Requirements Analy
sis and Logical Design by Donald G. Firesmith (John Wiley
& Sons, Inc., 1993). The basic component of OOT is the
object. An object includes, and is characterized by, a set of
data (also called attributes) and a set of operations (called
methods) that can operate on the data. Generally, an object's
data may change only through the operation of the object's
methods.

A method in an object is invoked by passing a message to
the object (this process is called message passing). The
message specifies a method name and an argument list.
When the object receives the message, code associated with
the named method is executed with the formal parameters of
the method bound to them corresponding values in the
argument list. Methods and message passing in OOT are
analogous to procedures and procedure calls in procedure
oriented software environments. However, while procedures
operate to modify and return passed parameters, methods
operate to modify the internal state of the associated objects
(by modifying the data contained therein). The combination
of data and methods in objects is called encapsulation.
Perhaps the greatest single benefit of encapsulation is the
fact that the state of any object can only be changed by
well-defined methods associated with that object. When the
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DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

BRIEF DESCRIPTION OF THE DRAWINGS

Computing Environment

The present invention is directed to a system and method
for providing an object-oriented interface to a procedural

The present invention will be described with reference to
the accompanying drawings, wherein:

FIG. 1 illustrates a block diagram of a computer platfomn
in which a wrapper of the present invention operates;

FIG. 2 is a high-level flow chart illustrating the operation
of the present invention;

FIG. 3 is a more detailed flowchart illustrating the opera
tion of the present invention;

FIG. 4 is a block diagram of a code library containing an
object-oriented dass library of the present invention;

FIG. 5 is a class diagram of thread and task classes of the
present invention;

FIG. 6 is a class diagram of virtual memory classes of the
present invention;

FIGS. 7-9 are class diagrams of interprocess communi
50 cation classes of the present invention;

FIG. 10 is a class diagram of synchronization classes of
the present invention;

FIG. 11 is a class diagram of scheduling classes of the
55 present invention;

FIGS. 12-15 are class diagrams of fault classes of the
present invention;

FIG. 16 is a class diagram of host and processor set
(machine) classes of the present invention; and

FIG. 17 illustrates well-known icons for representing
class relationships and cardinality in class diagrams.

(2) task classes for enabling an application to access in an
object-oriented manner operating system services to
reference and control tasks, wherein the tasks each
represents an execution environment for threads
respectively associated with the tasks;

(3) virtual memory classes for enabling an application to
access in an object-oriented manner operating system
services to access and manipulate virtual memory in a
computer;

(4) interprocess communication (IPC) classes for
enabling an application to access in an object-oriented
manner operating system services to communicate with
other threads during run-time execution of the appli
cation in a computer;

(5) synchronization classes for enabling an application to
access in an object-oriented manner operating system
services to synchronize execution of threads;

(6) scheduling classes for enabling an application to
access in an object-oriented manner operating system
services to schedule execution of threads;

(7) fault classes for enabling an application to access in an
object-oriented manner operating system services to
process system and user-defined processor faults; and

(8) machine classes for enabling an application to access
in an object-oriented manner operating system services
to define and modify a host and processor sets.

Further features and advantages of the present invention,
as well as the structure and operation of various embodi
ments of the present invention, are described in detail below

30 with reference to the accompanying drawings, and in the
claims. In the drawings, identical reference numbers indicate
identical or functionally similar elements.

SUMMARY OF THE INVENTION

without requiring the sending object to have any knowledge
at all about the way the receiving object will understand the
message. Software programs, be they object-oriented,
procedure-oriented, rule based, etc., almost always interact
with the operating system to access the services provided by 5

the operating system. For example, a software program may
interact with the operating system in order to access data in
memory, to receive information relating to processor faults,
to communicate with other processes, or to schedule the
execution of a process. 10

Most conventional operating systems are procedure
oriented and include native procedural interfaces.
Consequently, the services provided by these operating
systems can only be accessed by using the procedures
defined by their respective procedural interfaces. If a pro
gram needs to access a service provided by one of these 15

procedural operating systems, then the program must
include a statement to make the appropriate operating sys
tem procedure call. This is the case, whether the software
program is object-oriented, procedure-oriented, rule based,
etc. Thus, conventional operating systems provide 20

procedure-oriented environments in which to develop and
execute software. Some of the advantages of OOT are lost
when an object-oriented program is developed and executed
in a procedure-oriented environment. This is true, since all
accesses to the procedural operating system must be imple- 25

mented using procedure calls defined by the operating
system's native procedural interface. Consequently, some of
the modularity, maintainability, and reusability advantages
associated with object-oriented programs are lost since it is
not possible to utilize classes, objects, and other OOT
features to their fullest extent possible.

One solution to this problem is to develop object-oriented
operating systems having native object-oriented interfaces.
While this ultimately may be the best solution, it currently
is not a practical solution since the resources required to
modify all of the major, procedural operating systems would 35

be enormous. Also, such a modification of these procedural
operating systems would render useless thousands of
procedure-oriented software programs. Therefore, what is
needed is a mechanism for enabling an object-oriented
application to interact in an object-oriented manner with a 40

procedural operating system having a native procedural
interface.

The present invention is directed to a system and method 45

of enabling an object-oriented application to access in an
object-oriented manner a procedural operating system hav
ing a native procedural interface. The system includes a
computer and a memory component in the computer. A code
library is stored in the memory component. The code library
includes computer program logic implementing an object
oriented class library. The object-oriented class library com
prises related object-oriented classes for enabling the appli
cation to access in an object-oriented manner services
provided by the operating system. The object-oriented
classes include methods for accessing the operating system
services using procedural function calls compatible with the
native procedural interface of the operating system. The
system also includes means for processing object-oriented
statements contained in the application and defined by the 60

class library by executing methods from the class library
corresponding to the object-oriented statements.
Preferably, the class library includes:

(1) thread classes for enabling an application to access in
an object-oriented manner operating system services to 65

spawn, control, and obtain information relating to
threads;
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the application programs 130, 132, 134 are adapted to
execute in different operating environments. For example,
the application programs BOA and BOB may be adapted to
operate in an object-oriented environment. The application

5 program 132 may be adapted to operate in a Microsoft
Windows environment, an IBM PS/2 environment, or a Unix
environment. As will be appreciated by those skilled in the
relevant art, the application programs BOA, BOB, and 132
cannot interact directly with the operating system 114 unless

10 the operating system 114 implements an environment in
which the application programs BOA, BOB, and 132 are
adapted to operate. For example, if the application 132 is
adapted to operate in the IBM PS/2 environment, then the
application 132 cannot directly interact with the operating

15 system 114 unless the operating system 114 is the IBM PS/2
operating system (or compatible). If the application pro
grams BOA and BOB are adapted to operate in an object
oriented environment, then the applications BOA, BOB
cannot directly interact with the operating system 114 since

20 the operating system 114 has a procedural interface. In the
example shown in FIG. 1, the application 134 is adapted to
operate in the computing environment created by the oper
ating system 114, and therefore the application 134 is shown
as being connected directly to the operating system 114.

The wrapper 128 is directed to a mechanism for providing
the operating system 114 with an object-oriented interface.
The wrapper 128 enables the object-oriented applications
BOA, BOB to directly access in an object-oriented manner
the procedural operating system 114 during run-time execu-

30 tion of the applications BOA, BOB on the computer plat
form 102. The wrapper 129 is conceptually similar to the
wrapper 128. The wrapper 129 provides an IBM PS/2
interface for the operating system 114, such that the appli
cation 132 can directly access in a PS/2 manner the proce-

35 dural operating system 114 (assuming that the application
132 is adapted to operate in the IBM PS/2 environmnent).
The discussion of the present invention shall be limited
herein to the wrapper 128, which provides an object
oriented interface to a procedural operating system having a

40 native procedural interface.
The wrapper 128 is preferably implemented as a code

library 110 which is stored in the RAM 108. The code library
110 may also be stored in the data storage device 120 and/or
the data storage medium 122. The code library 110 imple-

45 ments an object-oriented class library 402 (see FIG. 4). In
accordance with the present invention, the object-oriented
class library 402 indudes related object-oriented classes for
enabling an object-oriented application (such as the appli
cations BOA and BOB) to access in an object-oriented

50 manner services provided by the operating system 114. The
object-oriented classes comprise methods which indude
procedural function calls compatible with the native proce
dural interface of the operating system 114. Object-oriented
statements defined by the object-oriented class library 402

55 (such as object-oriented statements which invoke one or
more of the methods of the class library 402) are insertable
into the application 130 to enable the application 130 to
access in an object-oriented manner the operating system
services during run-time execution of the application 130 on

60 the computer platform 102. The object-oriented class library
402 is further described in sections below.

The code library 110 preferably includes compiled,
executable computer program logic which implements the
object-oriented class library 402. The computer program

65 logic of the code library 110 is not linked to application
programs. Instead, relevant portions of the code library 110
are copied into the executable address spaces of processes

5
operating system having a native procedural interface. The
present invention emulates an object-oriented software envi
ronment on a computer platform having a procedural oper
ating system. More particularly, the present invention is
directed to a system and method of enabling an object
oriented application to access in an object-oriented manner
a procedural operating system having a native procedural
interface during run-time execution of the application in a
computer. The present invention is preferably a part of the
run-time environment of the computer in which the appli
cation executes. In this patent application, the present inven
tion is sometimes called an object-oriented wrapper since it
operates to wrap a procedural operating system with an
object-oriented software layer such. that an object-oriented
application can access the operating system in an object
oriented manner.

FIG. 1 illustrates a block diagram of a computer platform
102 in which a wrapper 128, 129 of the present invention
operates. It should be noted that the present invention
alternatively encompasses the wrapper 128, 129 in combi
nation with the computer platform 102. The computer plat
form 102 includes hardware components 103, such as a
random access memory (RAM) 108 and a central processing
unit (CPU) 106. It should be noted that the CPU 106 may
represent a single processor, but preferably represents mul
tiple processors operating in parallel. The computer platform 25

102 also includes peripheral devices which are connected to
the hardware components 103. These peripheral devices
include an input device or devices (such as a keyboard, a
mouse, a light pen, etc.), a data storage device 120 (such as
a hard disk or floppy disk), a display 124, and a printer 126.
The data storage device 120 may interact with a removable
data storage medium 122 (such as a removable hard disk, a
magnetic tape cartridge, or a floppy disk), depending on the
type of data storage device used. The computer platform 102
also includes a procedural operating system 114 having a
native procedural interface (not shown). The procedural
interface includes procedural functions which are called to
access services provided by the operating system 102.

The computer platform 102 further includes device driv-
ers 116, and may include microinstruction code 210 (also
called firmware). As indicated in FIG. 1, in performing their
required functions the device drivers 116 may interact with
the operating system 114. Application programs 130, 132,
134 (described further below) preferably interact with the
device drivers 116 via the operating system 114, but may
alternatively interact directly with the device drivers 116. It
should be noted that the operating system 114 may represent
a substantially full-function operating system, such as the
Disk Operating System (DOS) and the UNIX operating
system. However, the operating system 114 may represent
other types of operating systems. For purposes of the present
invention, the only requirement is that the operating system
114 be a procedural operating system having a native
procedural interface. Preferably, the operating system 114
represents a limited functionality procedural operating
system, such as the Mach micro-kernel developed by CMU,
which is well-known to those skilled in the relevant art. For
illustrative purposes only, the present invention shall be
described herein with reference to the Mach micro-kernel. In
a preferred embodiment of the present invention, the com
puter platform 102 is an International Business Machines
(IBM) computer or an IBM-compatible computer. In an
alternate embodiment of the present invention, the computer
platform 102 is an Apple computer.

Overview of a Wrapper

Various application programs 130, 132, 134 preferably
operate in parallel on the computer platform 102. Preferably,
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substantive step of the flow chart 202, an object-oriented
statement which accesses a service provided by the operat
ing system 114 is located in the application 130Aduring the
execution of the application 130A on the computer platform

5 102. The object-oriented statement is defined by the object
oriented class library 402. For example, the object-oriented
statement may reference a method defined by one of the
classes of the class library 402. The following steps describe
the manner in which the statement is executed by the

10 computer platform 102.
In step 208, the object-oriented statement is translated to

a procedural function call compatible with the native pro
cedural interface of the operating system 114 and corre
sponding to the object-oriented statement. In performing

15 step 208, the statement is translated to the computer program
logic from the code library 110 which implements the
method referenced in the statement. As noted above, the
method includes at least one procedural function call which
is compatible with the native procedural interface of the

20 operating system 114. In step 210, the procedural function
call from step 208 is executed in the computer platform 102
to thereby cause the operating system 114 to provide the
service on behalf of the application 130A. Step 210 is
performed by executing the method discussed in step 208,

25 thereby causing the procedural function call to be invoked.
The operation of a preferred embodiment shall now be

described in more detail with reference to FIG. 3, which
illustrates a detailed operational flow chart 302 of the
present invention. Again, the present invention is described

30 in the context of executing the object-oriented application
130A on the computer platform 102. More particularly, the
present invention is described in the context of executing a
single object-oriented rstatement of the object-oriented
application 130A on the computer platform 102. The appli-

35 cation 130A includes statements which access services pro
vided by the operating system 114, and it is assumed that
such statements are defined by the class library 402 (in other
words, the programmer created the application 130A with
reference to the class library 402). As will be discussed in

40 greater detail below, the executable entity in the Mach
micro-kernel is called a thread. The processing organization
entity.in the Mach micro-kernel is called a task. A task
includes one or more threads (which may execute in
parallel), and an address space which represents a block of

45 virtual memory in which the task's threads can execute. At
any time, there may be multiple tasks active on the computer
platform 102. When executing on the computer platform
102, the application 130A could represent an entire task
(having one or more threads), or could represent a few

50 threads which are part of a task (in this case, the task would
have other threads which mayor may not be related to the
operation of the application 130A). The scope of the present
invention encompasses the case when the application 130A
is an entire task, or just a few threads of a task.

Referring now to FIG. 3, in step 308, it is determined
whether the computer program logic (also called computer
code) from the code library 110 which implements the
method referenced in the statement is present in the task
address space associated with the application 130A. If the

60 computer program logic is present in the task address space,
then step 316 is processed (described below). If the com
puter program logic is not present in the task address space,
then the computer program logic is transferred to the task
address space in steps 310,312, and 314. In step 310, it is

65 determined whether the library server (not shown) associ
ated with the code library 110 is known. The code library
110 may represent multiple code libraries (not shown)

Operational Overview of a Preferred Embodiment

The operation of the present invention shall now be
generally described with reference to FIG. 2, which illus
trates a high-level operational flow chart 202 of the present
invention. The present invention is described in the context
of executing the object-oriented application 130A on the
computer platform 102. In step 206, which is the first

during run-time. This is explained in greater detail below.
Since the computer program logic of the code library 110 is
not linked to application programs, the computer program
logic can be modified at any time without having to modify,
recompile and/or relink the application programs (as long as
the interface to the code library 110 does not change). As
noted above, the present invention shall be described herein
with reference to the Mach micro-kernel, although the use of
the present invention to wrap other operating systems falls
within the scope of the present invention.

The Mach micro-kernel provides users with a number of
services with are grouped into the following categories:
threads, tasks, virtual memnory, interprocess, communica
tion (IPC), scheduling, synchronization, fault processing,
and host/processor set processing. The class library 402 of
the present invention includes a set of related classes for
each of the Mach service categories. Referring to FIG. 4, the
class library 402 includes:

(1) thread classes 404 for enabling an application to
access in an object-oriented manner operating system
services to spawn, control, and obtain information
relating to threads,

(2) task classes 406 for enabling an application to access
in an object-oriented manner operating system services
to reference and control tasks, wherein the tasks each
represents an execution environment for threads
respectively associated with the tasks;

(3) virtual memory classes 408 for enabling an application
to access in an object-oriented manner operating sys
tem services to access and manipulate virtual memory
in a computer;

(4) IPC classes 410 for enabling an application to access
in an object-oriented manner operating system services
to communicate with other processes during run-time
execution of the application in a computer;

(5) synchronization classes 412 for enabling an applica
tion to access in an object-oriented manner operating
system services to synchronize execution of threads;

(6) scheduling classes 414 for enabling an application to
access in an object-oriented manner operating system
services to schedule execution of threads;

(7) fault classes 416 for enabling an application to access
in an object-oriented manner operating system services
to process system and user-defined processor faults;
and

(8) machine classes 418 for enabling an application to
access in an object-oriented manner operating system
services to define and modify a host and processor sets.

The class library 402 may include additional classes for
other service categories that are offered by Mach in the
future. For example, security services are currently being
developed for Mach. Accordingly, the class library 402 may
also include security classes 420 for enabling an application 55

to access in an object-oriented manner operating system
security services. As will be appreciated, the exact number
and type of classes included in the class library 402 depends
on the implementation of the underlying operating system.
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Threads

Mach Services

The executable entity in Mach is known as a thread.
Threads have several aspects that enable them to execute in
the system. A thread is always contained in a task, which
represents most of the major resources (e.g., address space)
of which the thread can make use. A thread has an execution
state, which is basically the set of machine registers and

This section provides an overview of the abstractions and
services provided by the Mach micro-kernel. The services
are described for each of the major areas of the Mach
micro-kernel. As noted above, these include: threads, tasks,
virtual memory, IPC, scheduling, synchronization services,
hardware faults, and host/privilege services (also called
machine services). The Mach micro-kernel is further dis
cussed in many publicly available documents, including: K.
Loepere, editor, "Mach 3 Kernel Principles", Open Software
Foundation and Carnegie Mellon University, Draft Indus
trial Specification, September 1992 and November 1992; K.
Loepere, editor, "Mach 3 Kernel Interfaces", Open Software
Foundation and Carnegie Mellon University, Draft Indus
trial Specification, September 1992 and November 1992; K.
Loepere, editor, "Mach 3 Server Writer's Guide", Open
Software Foundation and Carnegie Mellon University, Draft
Industrial Specification, September 1992 and November
1992; K. Loepere, editor, "Mach 3 Server Writer's
Interfaces", Open Software Foundation and Carnegie Mel
lon University, Draft Industrial Specification, September
1992 and November 1992; A. Silberschatz, J. Peterson, P.
Galvin, Operating System Concepts, Addison-Wesley, July
1992; and A. Tanenbaum, Modern Operating Systems, Pren
tice Hall, 1992.

particular compiler which compiles the application program
130A. For example, the run-time conventions may specify
that when an instruction accessing an operating system
service is encountered, corresponding code from the code

5 library 110 should be transferred to the task address space
(via the associated library server) and executed. Compiler
run-time conventions are generally well known. As will be
appreciated, run-time conventions are specific to the par
ticular compilers used. The run-time conventions for use

10 with the present invention and with a particular compiler
would be apparent to one skilled in the art based on the
disclosure of the present invention contained herein, par
ticularly to the disclosure associated with the flow chart 302
in FIG. 3. As described above, the wrapper 128 of the

15 present invention is implemented as a code library 110
which includes computer program logic implementing the
object-oriented class library 402. Alternatively, the wrapper
128 may be implemented as a hardware mechanism which
essentially operates in accordance with the flow chart 302 of

20 FIG. 3 to translate object-oriented statements (defined by the
class library 402) in application programs to procedural
function calls compatible with the procedural interface of
the operating system 114. Or, the wrapper 128 may be
implemented as a background software process operating on

25 the computer platform 102 which captures all accesses to the
operating system 114 (made by object-oriented statements
defined by the class library 402) and which translates the
accesses to procedural function calls compatible with the
procedural interface of the operating system 114. Other

30 implementations of the wrapper 128 will be apparent to
those skilled in the relevant art based on the disclosure of the
present invention contained herein.

related to the wrapper 128, wherein each of the code
libraries include the computer program logic for one of the
object-oriented classes of the class library 402. As those
skilled in the relevant art will appreciate, there may also be
other code libraries (not shown) completely unrelated to the
wrapper 128.

Associated with the code libraries are library servers, each
of which manages the resources of a designated code library.
A processing entity which desires access to the computer
program logic of a code library makes a request to the code
library's library server. The request may include, for
example, a description of the desired computer program
logic and a destination address to which the computer
program logic should be sent. The library server processes
the request by accessing the desired computer program logic
from the code library and sending the desired computer
program logic to the area of memory designated by the
destination address. The structure and operation of library
servers are well known to those skilled in the relevant art.
Thus, in step 310 it is determined whether the library server
associated with the code library 110 which contains the
relevant computer program logic is known. Step 310 is
performed, for example, by referencing a library server table
which identifies the known library servers and the code
libraries which they service. If the library server is known,
then step 314 is processed (discussed below). Otherwise,
step 312 is processed. In step 312, the library server asso
ciated with the code library 110 is identified. The identity of
the library server may be apparent, for example, from the
content of the object-oriented statement which is being
processed.

After the library server associated with the code library
110 is identified, or if the library server was already known,
then step 314 is processed. In step 314, a request is sent to
the library server asking the library server to copy the 35

computer program logic associated with the method refer
ence in the statement to the task address space. Upon
completion of step 314, the library server has copied the
requested computer program logic to the task address space.
Preferably, the code library 110 is a shared library. That is, 40

the code library 110 may be simultaneously accessed by
multiple threads. However, preferably the computer pro
gram logic of the code library 110 is physically stored in
only one physical memory area. The library server virtually
copies computer program logic from the code library 110 to 45

task address spaces. That is, instead of physically copying
computer program logic from one part of physical memory
to another, the library server places in the task address space
a pointer to the physical memory area containing the rel
evant computer program logic. In step 316, the computer 50

program logic associated with the object-oriented statement
is executed on the computer platform 102. As noted above,
in the case where the object-oriented statement accesses the
operating system 114, the computer program logic associ
ated with the method contains at least one procedural 55

function call which is compatible with the native procedural
interface of the operating system 114. Thus, by executing the
method's computer program logic, the procedural function
call is invoked and executed, thereby causing the operating
system 114 to provide the service on behalf of the applica- 60

tion 130A.
The above-described performance in the computer plat

form 102 of steps 306, 308, 310, 312, and 314 is due, in large
part, to the run-time environment established in the com
puter platform 102. As will be appreciated by those skilled 65

in the relevant art, the run-time environment of the computer
platform 102 is defined by the run-time conventions of the
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Virtual Memory

Mach supports several features in its virtual memory
(VM) subsystem. Both the external client interfaces as well

65

objects and attributes associated with them. A task funda
mentally comprises three things. A task contains multiple
threads, which are the executable entities in the system. A
task also has an address space, which represents virtual

5 memory in which its threads can execute. And a task has a
port name space, which represents the valid IPC ports
through which threads can communicate with other threads
in the system. Each of these fundamental objects in a task is
discussed in greater detail in the following sections. Note

10 that a task is not, of itself, an executable entity in Mach.
However, tasks can contain threads, which are the execution
entities. A task has a number of other entities associated with
it besides the fundamental ones noted above. Several of
these entities have to do with scheduling decisions the kernel

15 needs to make for the threads contained by the task. The
scheduling parameters, processor set designation, and host
information all contribute to the scheduling of the task's
threads. A task also has a number of distinguished interpro
cess communication ports that serve certain pre-defined

20 functions. Ports and other aspects of interprocess commu
nication are discussed at length in a later section. For now,
it is sufficient to know that port resources are accumulated
over time in a task. Most of these are managed explicitly by
the programmer. The distinguished ports mentioned above

25 generally have to do with establishing connections to several
important functions in the system. Mach supplies three
"special" ports with each task. The first is the task self port,
which can be used to ask the kernel to perform certain
operations on the task. The second special port is the

30 bootstrap port, which can be used for anything (it's as
environment-specific) but generally serves to locate other
services. The third special port that each task has is the host
name port, which allows the task to obtain certain informa
tion about the machine on which it is running. Additionally,

35 Mach supplies several "registered" ports with each task that
allow the threads contained in the task to communicate with
certain higher-level servers in the system (e.g., the Network
Name Server, the "Service" Server, and the Environment
Server).

Two other useful sets of ports exist for each task that
allow fault processing and program state sampling to be
performed. Thefault ports of a task provide a common place
for processor faults encountered by threads in the task to be
processed. Fault processing is described more fully in a later

45 section. The PC sample port allows profiling tools to repeat
edly monitor the execution state of the threads in the task.
Many operations are possible for tasks. Tasks can be created
and terminated. Creation of a new task involves specifying
some existing task as a prototype for the initial contents of

50 the address space of the new task. A task can also be
terminated, which causes all of the contained threads to be
terminated as well. The threads contained in a task can be
enumerated and information about the threads can be
extracted. Coarse-grain execution of a task (more precisely,

55 the threads in the task) can be controlled through suspend
and resume operations. Each task has a suspend count that
is incremented and decremented by the suspend and resume
operations. The threads in the task can execute as long as the
suspend count for the containing task is zero. When the

60 suspend count is positive, all threads in the task will be
blocked until the task is subsequently resumed. Finally, the
various parameters and attributes associated with a task
(e.g., scheduling priority) can be queried and set as desired.

The basic organizational entity in Mach for which
resources are managed is known as a task. Tasks have many

other data that make up its context. A thread is always in one
of several scheduling states: executing, ready to execute, or
blocked for some reason. Threads are intended to be light
weight execution entities. This is to encourage the program
mer to make use of multiple threads in applications, thus
introducing more concurrency into the system than has been
found in traditional operating systems. Although threads are
not without some cost, they really are fairly minimal and the
typical application or server in a Mach environment can take
advantage of this capability.

Threads do have some elements associated with them,
however. The containing task and address space, as well as
the execution state, have already been discussed. Each
thread has a scheduling policy, which determines when and
how often the thread will be given a processor on which to
run. The scheduling services are discussed in more detail in
a later section. Closely tied to the scheduling policy of a
thread is the optional processor set designation, which can
be used in systems with multiple processors to more closely
control the assignment of threads to processors for poten
tially greater application performance. As indicated before,
an address space (task) can contain zero or more threads,
which execute concurrently. The kernel makes no assump
tions about the relationship of the threads in an address space
or, indeed, in the entire system. Rather, it schedules and
executes the threads according to the scheduling parameters
associated with them and the available processor resources
in the system. In particular, there is no arrangement (e.g.,
hierarchical) of threads in an address space and no assump
tions about how they are to interact: with each other. In order
to control the order of execution and the coordination of
threads to some useful end, Mach provides several synchro
nization mechanisms. The simplest (and coarsest) mecha
nism is thread-level suspend and resume operations. Each
thread has a suspend count, which is incremented and
decremented by these operations. A thread whose suspend
count is positive remains blocked until the count goes to
zero.

Finer synchronization can be obtained through the use of
synchronization objects (semaphores or monitors and
conditions), which allow a variety of different synchroniza
tion styles to be used. Threads can also interact via inter- 40

process communication (IPe). Each of these services is
described in more detail in later sections. Basic operations
exist to support creation, termination, and getting and setting
attributes for threads. Several other control operations exist
on threads that can be performed by any thread that has a
send right to the intended thread's control port. Threads can
be terminated explicitly. They can also be interrupted from
the various possible wait situations and caused to resume
execution with an indication that they were interrupted.
Threads can also be "wired", which means that they are
marked as privileged with respect to kernel resources, i.e.,
they can consume physical memory when free memory is
scarce. This is used for threads in the default page-out path.
Finally, threads also have several important IPC ports (more
precisely, the send or receive rights to these ports), which are
used for certain functions. In particular, each thread has a
thread self port, which can be used to perform certain
operations on the thread by itself. A thread also has a set
offault ports which is used when the thread encounters a
processor fault during its execution. There is also a distin
guished port that can be used for gathering samples of the
thread's execution state for monitoring by other threads such
as debuggers or program profilers.

Tasks
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Interprocess Communication

Mach has four concepts that are central to its interprocess
communications facilities: Ports, Port Sets, Port Rights, and
Messages. One of these concepts, Port Rights, is also used
by Mach as a means to identify certain common resources in
the system (such as threads, tasks, memory objects, etc.).

Ports

Threads use ports to communicate with each other. A port
is basically a message queue inside the kernel that threads
can add messages to or remove message from, if they have
the proper permissions to do so. These "permissions" are
called port rights. Other attributes associated with a port,
besides port rights, include a limit on the number of mes
sages that can be enqueued on the port, a limit on the
maximum size of a message that can be sent to a port, and
a count of how many rights to the port are in existence. Ports
exist solely in the kernel and can only be manipulated via
port rights.

with the pager whenever it needs to get data for page faults
or when it needs to page-out data due to page replacements.
This protocol, which is known as the External Memory
Management Interface (or EMMI), also handles the initial-

S ization sequences for memory objects when they are mapped
by client tasks and the termination sequences when any
associated memory regions are deallocated by client tasks.

There can be any number of pagers running in the system
depending on which memory objects are in use by the

10 various client tasks. Pagers will typically be associated with
the various file systems that are mounted at a given time, for
example. Pagers could also exist to support certain database
applications, which might have needs for operations beyond
what is supported by the file system. Pagers could also exist

15 for certain servers that wish to supply data to their clients in
non-standard ways (e.g., generating the data computation
ally rather than retrieving it from a storage subsystem). The
micro-kernel always expects to have a certain distinguished
pager known as the default pager running in the system. The

20 default pager is responsible for managing the memory
objects associated with anonymous virtual memory such
stacks, heaps, etc. Such memory is temporary and only of
use while a client task is running. As described above, the
main entities in the Mach VM system are regions, memory

25 objects, and pagers. Most clients, however, will deal with
virtual memory through operations on ranges of memory. A
range can be a portion of a region or it could span multiple
contiguous regions in the address space. Operations are
provided by Mach that allow users to allocate new ranges of

30 virtual memrory in the address space and deallocate ranges
as desired. Another important operaition allows a memory
object to be mapped into a range of virtual memory as
described above. Operations are also available to change the
protections on ranges of memory, change the inheritance

35 characteristics, and wire (or lock) the pages of a range into
physical memory. It is also possible to read ranges of
memory from another task or write into ranges in another
task provided that the control port for the task is available.
Additional services are available that allow the user to

40 specify the expected reference pattern for a range of
memory. This can be used by the kernel as advice on ways
to adapt the page replacement policy to different situations.
Yet another service is available to synchronize (or flush) the
contents of a range of memory with the memory object(s)

45 backing it. Finally services are available to obtain informa
tion about regions and to enumerate the contents of a task's
address space described in terms of the regions it contains.

as the internal implementation offer features that are not
found in many other operating systems. In broadest terms,
the Mach virtual memory system supports a large sparsely
populated virtual address space for each of the tasks running
in the system. Clients are provided with general services for
managing the composition of the address space. Some
aspects of the VM system are actually implemented by
components that are outside of the micro-kernel, which
allows great flexibility in tailoring certain policy functions to
different system environments. The internal architecture of
the Mach VM system has been divided into machine
independent and machine-dependent modules for maximum
portability. Porting to a new processor/MMU architecture is
generally a small matter of implementing a number of
functions that manipulate the basic hardware MMU struc
tures. Mach has been ported to a number of different
processor architectures attesting to the portability of the
overall kernel and the virtual memory system in particular.
The address space of a Mach task contains a number of
virtual memory regions. These regions are pieces of virtual
address space that have been allocated in various ways for
use by the task. They are the only locations where memory
can be legitimately accessed. All references to addresses
outside of the defined regions in the address space will result
in an improper memory reference fault. A virtual memory
region has several interesting attributes. It has a page
aligned starting address and a size, which must be a multiple
of the system page size. The pages, in the region all have the
same access protections; these access protections can be
read-only, read-write, or execute. The pages in a region also
have the same inheritance characteristic, which may be used
when a new task is created from the current task. The
inheritance characteristic for pages in a region can be set to
indicate that a new task shoud inherit a read-write copy of
the region, that it should inherit a virtual copy of the region,
or that it should inherit no copy of the region. A read-write
copy of a region in a new address space provides a fully
shared mapping of the region between the tasks, while a
virtual copy provides a copy-on-write mapping that essen
tially gives each task its own copy of the region but with
efficient copy-on-write sharing of the pages constituting the
region.

Every virtual memory region is really a mapping of an
abstract entity known as a memory object. A memory object
is simply a collection of data that can be addressed in some
byte-wise fashion and about which the kernel makes no
assumptions. It is best thought of as some pure piece of data
that can either be explicitly stored some place or can be
produced in some fashion as needed. Many different things
can serve as memory objects. Some familiar examples 50

include files, ROMs, disk partitions, or fonts. Memory
objects have no pre-defined operations or protocol that they
are expected to follow. The data contained in a memory
object can only be accessed when it has been tied to a VM
region through mapping. After a memory object has been 55

mapped to a region, the data can be accessed via normal
memory read and write (load and store) operations. A
memory object is generally managed by a special task
known as an external memory manager or pager. A pager is
a task that executes outside of the micro-kernel much like 60

any other task in the system. It is a user-mode entity whose
job is to handle certain requests for the data of the memory
objects it supports. As threads in a client task reference the
pages in a given region, the kernel logically fills the pages
with the data from the corresponding byte addresses in the 65

associated memory object. To accomplish this the kernel
actually engages in a well-defined (and onerous) protocol
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Port Sets

Message Transmission Semantics

Mach IPC is basically asynchronous in nature. A thread
sends a message to a port, and once the message is queued
on the port the sending thread continues execution. A receive
on a port will block if there are no message, queued on the
port. For efficiency there is a combined send/receive call that
will send a message and immediately block waiting for a
message on a specified reply port (providing a synchronous
model). A time-out can be set on all message operations

Messages

A Mach IPC message comprises a header and an in-line
data portion, and optionally some out-of-line memory
regions and port rights. If the message contains neither port
rights nor out-of-line memory, then it is said to be a simple
message; otherwise it is a complex message. A simple
message contains the message header directly followed by
the in-line data portion. The message header contains a
destination port send right, an optional send right to which
a reply may be sent (usually a send-once right), and the
length of the data portion of the message. The in-line data is
of variable length (subject to a maximum specified on a
per-port basis) and is copied without interpretation. A com
plex message consists of a message header (with the same
format as for a simple message), followed by: a count of the
number of out-of-line memory regions and ports, disposition
arrays describing the kernel's processing of these regions
and ports, and arrays containing the out-of-line descriptors
and the port rights

The port right disposition array contains the desired
processing of the right, i.e., whether it should be copied,
made, or moved to the target task. The out-of-line memory
disposition array specifies for each memory range whether
or not it should be de-allocated when the message is queued,
and whether the memory should be copied into the receiving
task's address space or mapped into the receiving address
space via a virtual memory copy-on-right mechanism. The
out-of-line descriptors specify the size, address, and align
ment of the out-of-line memory region. When a task receives
a message, the header, in-line data, and descriptor arrays are
copied into the addresses designated in the parameters to the
receive call. If the message contains out-of-line data, then
virtual memory in the receiving task's address space is
automatically allocated by the kernel to hold the out-of-line
data. It is the responsibility of the receiving task to deallo
cate these memory regions when they are done with the data.

Port sets provide the ability to receive from a collection of
ports simultaneously. That is, receive rights can be added to
a port set such that when ai receive is done on the port set,
a message will be received from one of the ports in the set.
The name of the receive right whose port provided the
message is reported by the receive operation.

60

associated port is destroyed. That is, all port names repre
senting send or send-once rights for a port whose receive
right is deallocated become dead names. A task can request
notification when one of its rights becomes dead. The kernel

5 keeps a system-wide count of the number of send and
send-once rights for each port. Any task that holds a receive
right (such as a server) can request a notification message be
sent when this number goes to zero, indicating that there are
no more senders (clients) for the port. This is called a no

10 more senders notification. The request must include a send
right for a port to which the notification should be sent.

15
Port Rights

A thread can add a message to a port's message queue if
it has a send right to that port. Likewise, it can remove a
message from a port's message queue if it has a receive right
to that port. Port rights are considered to be resources of a
task, not an individual thread. There can be many send rights
to a port (held by many different tasks); however, there can
only be one receive right to a port. In fact, a port is created
by allocating a receive right and a port is destroyed only
when the receive right is deallocated (either explicitly or
implicitly when the task dies). In addition, the attributes of
a port are manipulated through the receive right. Multiple
threads (on the same or different tasks) can send to a port at
the same time, and multiple threads (on the same task) can 15

receive from a port at the same time. Port rights act as a
permission or capability to send messages to or receive
messages from a port, and thus they implement a low-level
form of security for the system. The "owner" of a port is the
task that holds the receive right. The only way for another 20

task to get a send right for a port is if it is explicitly given
the right---either by the owner or by any task that holds a
valid send right for the port. This is primarily done by
including the right in a message and sending the message to
another task. Giving a task a send right grants it permission 25

to send as many messages to the port as it wants. There is
another kind of port right called a send-once right that only
allows the holder to send one message to the port, at which
time the send-once right become invalid and can't be used
again. Note that ownership of a port can be transferred by 30

sending the port's receive right in a message to another task.

Tasks acquire port rights either by creating them or
receiving them in a message. Receive rights can only be
created explicitly (by doing a port allocate, as described
above); send rights can be created either explicitly from an 35

existing send or receive right or implicitly while being
transmitted in a message. A send-once right can be created
explicitly or implicitly from a receive right only. When a
right is sent in a message the sender can specify that the right
is either copied, moved, or a new right created by the send 40

operation. (Receive rights can only be moved, of course.)
When a right is moved, the sender looses the right and the
receiver gains it. When copied, the sender retains the right
but a copy of the right is created and given to the receiver.
When created, the sender provides a receive right and a new 45

send or send-once right is created and given to the receiver.
When a task acquires a port right, by whatever means, Mach
assigns it a name. Note that ports themselves are not named,
but their port rights are. (Despite this fact, the creators of
Mach decided to refer to the name of a port right with the 50

term port name, instead of the obvious port right name). This
name is a scalar value (32-bits on Intel machines) that is
guaranteed unique only within a task (which means that
several tasks could each have a port name with the same
numeric value but that represent port rights to totally dif- 55

ferent ports) and is chosen at random. Each distinct right
held by a task does not necessarily have a distinct port name
assigned to it. Send-once rights always have a separate name
for each right. Receive and send rights that refer to the same
port, however, will have the same name.

Port rights have several attributes associated with them:
the type of the right (send, send-once, receive, port set, or
dead name), and a reference count for each of the above
types of rights. When a task acquires a right for a port to
which it already has send or receive rights, the correspond- 65

ing reference count for the associated port name is incre
mented. A port name becomes a dead name when its
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Faults

Host and Processor Sets

Mach defines processor sets to group processors and it
defines scheduling policies that can be associated with them.
Mach provides two scheduling policies: timeshare and fixed
priority. The timeshare policy is based on the exponential
average of the threads' usage of the CPU. This policy also
attempts to optimize the time quantum based on the number
of threads and processors. The fixed priority policy does not
alter the priority but does round-robin scheduling on the
threads that are at the same priority. A thread can use the
default scheduling policy of its processor set or explicitly
use anyone of the scheduling policies enabled for its
processor set. A maximum priority can be set for a processor
set and thread. In Mach the lower the priority value, the
greater the urgency.

Mach exports the notion of the host, which is essentially
an abstraction for the computer on which it is executing.
Various operations can be performed on the host depending
on the specific port rights that a task has for the host.
Information that is not sensitive can be obtained by any task
that holds a send right to the host name port. Examples of
such information include the version of the kernel or the
right to gain access to the value of the system clock. Almost
all other information is considered sensitive, and a higher
degree of privilege is required to get or manipulate the
information. This added level of privilege is implied when a
task holds a send right to the host control port (also known
as the host privilege port). This right must be given out very
carefully and selectively to tasks, because having this right
enables a task to do virtually everything possible to the

65 kernel, thus by-passing the security aspects of the system
supported by the IPC services. Various operations can be
performed with this added privilege, including altering the

The Mach fault handling services are intended to provide
a flexible mechanism for handling both standard and user
defined processor faults. The standard kernel facilities of
threads, messages, and ports are used to provide the fault
handling mechanism. (This document uses the word "fault"
where the Mach documentation uses the word "exception".
Such terminology has been changed herein to distinguish
hardware faults from the exception mechanism of the C++
language). Threads and task have fault port(s). They differ in
their inheritance rules and are expected to be used in slightly
different ways. Error handling is expected to be done on a
per-thread basis and debugging is expected to be handled on

30 a per-task basis. Task fault ports are inherited from parent to
child tasks, while thread fault ports are not inherited and
default to no handler. Thread fault handlers take precedence
over task fault handlers. When a thread causes a fault the
kernel blocks the thread and sends a fault message to the

35 thread's fault handler via the fault port. A handler is a task
that receives a message from the fault port. The message
contains information about the fault, the thread, and the task
causing the fault. The handler performs its function accord
ing to the type of the fault. If appropriate, the handler can get

40 and modify the execution state of the thread that caused the
fault. Possible actions are to clear the fault, to terminate the
thread, or to pass the fault on to the task-level handler. Faults
are identified by types and data. Mach defines some
machine-independent fault types that are supported for all
Mach implementations (e.g., bad access, bad instruction,

45
breakpoint, etc.). Other fault types can be implementation
dependent (e.g., f-line, co-processor violation, etc.).

15

which will abort the operation if the message is unable to be
sent (or if no message is available to be received) within the
specified time period. A send call will block if it uses a
send-right whose corresponding port has reached its maxi
mum number of messages. If a send uses a send-once right, 5

the message is guaranteed to be queued even if the port is
full. Message delivery is reliable, and messages are guar
anteed to be received in the order they are sent. Note that
there is special-case code in Mach which optimizes for the
synchronous model over the asynchronous model; the fastest 10

IPC round-trip time is achieved by a server doing a receive
followed by repeated send/receive's in a loop and the client
doing corresponding send/receive's in a loop on its side.

Synchronization

Currently, Mach provides no direct support for synchro
nization capabilities. However, conventional operating sys
tems routinely provide synchronization services. Such syn
chronization services employ many well-known
mechanisms, such as semaphores and monitors and
conditions, which are described below. Semaphores are a
synchronization mechanism which allows both exclusive
and shared access to a resource. Semaphores can be acquired
and released (in either an exclusive or shared mode), and
they can optionally specify time-out periods on the acquire
operations. Semaphores are optionally recoverable in the
sense that when a thread that is holding a semaphore
terminates prematurely, the counters associated with the
semaphore are adjusted and waiting threads are unblocked
as appropriate.

Monitors and conditions are a synchronization mecha
nism which implements a relatively more disciplined (and
safer) style of synchronization than simple semaphores. A
monitor lock (also called a mutex) is essentially a binary
semaphore that enables mutually exclusive access to some 50

data. Condition variables can be used to wait for and signify
the truth of certain programmer-defined Boolean expres
sions within the context of the monitor. When a thread that
holds a monitor lock needs to wait for a condition, the
monitor lock is relinquished and the thread is blocked. Later, 55

when a another thread that holds the lock notifies that the
condition is true, a waiting thread is unblocked and then
re-acquires the lock before continuing execution. A thread
can also perform a broadcast operation on a condition, which
unblocks all of the threads waiting for that condition. 60

Optional time-outs can also be set on the condition wait
operations to limit the time a thread will wait for the
condition.

Scheduling

Since Mach is multiprocessor capable, it provides for the
scheduling of threads in a multiprocessor environment.

Port Rights as Identifiers

Because the kernel guarantees both that port rights cannot
be counterfeited and that messages cannot be misdirected or
falsified, port rights provide a very reliable and secure
identifier. Mach takes advantage of this by using port rights
to represent almost everything in the system, including 20

tasks, threads, memory objects, external memory managers,
permissions to do system-privileged operations, processor
allocations, and so on. In addition, since the kernel can send
and receive messages itself (it represents itself as a "special"
task), the majority of the kernel services are accessed via 25

IPC messages instead of system-call traps. This has allowed
services to be migrated out of the kernel fairly easily where
appropriate.
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Thread Classes

FIG. 5 is a class diagram 501 of the thread classes 404 and
the task classes 406. The thread classes 404 provide an
object-oriented interface to the tasking and threading func
tionality of Mach 114. A number of the thread classes 404
are handle classes (so noted by their name), which means
that they represent a reference to the corresponding kernel
entity. The null constructors on the handle classes create an
empty handle object. An empty handle object does not
initially correspond to any kernel entity-it must be initial
ized via streaming, an assignment, or a copy operation.

45 Calling methods on an empty handle will cause an exception
to be thrown. Multiple copies of a handle object can be
made, each of which point to the same kernel entity. The
handle objects are internally reference-counted so that the
kernel entity can be deleted when the last object representing

50 it is destroyed.
TThreadHandle is a concrete class that represents a thread

entity in the system. It provides the methods for controlling
and determining information about the thread. It also pro
vides the mechanism for spawning new threads in the

55 system. Control operations include killing, suspending/
resuming, and doing a death watch on it. Constructing a
TThreadHandle and passing in a TThreadProgram object
causes a new thread to be constructed on the current task.
The first code run in the new thread are the Prepare( ) and

60 Run() methods of the TThreadProgram object. Destroying
a TThreadHandle does not destroy the thread it represents.
There may also be a cancel operation on the TThreadHandle
object. Note that each TThreadHandle object contains a send
right to the control port for the thread. This information is

65 not exported by the interface, in general, but because it does
contain a port right the only stream object a TThreadPro
gram can be streamed into is a TIPCMessageStream.

convenience purposes. The Booch icons are discussed in
Object Oriented Design With Applications by Grady Booch,
referenced above. The wrapper class library 402 is prefer-
ably implemented using the well-known C++ computer
programming language. However, other programming lan
guages could alternatively be used. Preferably, the class
descriptions are grouped into SPI (System Programming
Interface), API (Application Programming Interface),
Internal, and "Noose" methods-indicated by #ifndef state
ments bracketing the code in question (or by comments for
Noose methods). SPI interfaces are specific to the particular
computer platform being used. For illustrative purposes, the
wrapper class library 402 is presented and described herein
with respect to a computer platform operating in accordance
with the IBM MicroKernel (which is based on Mach Version
3.0) or compatible. Persons skilled in the relevant art will
find it apparent to modify the SPI classes to accommodate
other computer platforms based on the teachings contained
herein.

API interfaces are included in the wrapper class library
402 regardless of the platform the system is running on. The
Internal interfaces are intended for use only by low-level
implementors. The Noose methods are provided solely to
enable an application 130 operating with the wrapper 128 to

25 communicate with an application 134 (or server) that was
written to run on Mach 114 directly. They provide access to
the raw Mach facilities in such a way that they fall outside
of the intended object-oriented programming model estab
lished by the wrapper 128. Use of Noose methods is highly

30 discouraged. The SPI and API (and perhaps the Internal)
classes and methods are sufficient to implement any
application, component, or subsystem.

Security

Mach may include other categories of services in addition
to those described above. For example, Mach may include
services relating to security. In accordance with the Mach
security services, every task carries a security tokert, which
is a scalar value that is uninterpreted by Mach. There is a
port called the hcost security port that is given to the
bootstrap task and passed on to the trusted security sever. A
task's security token can be set or changed by any task that
holds a send right to the host security port, while no special
permissions are needed to determine the value of a tasks
security token (other than holding the task's control port, of 35

course). At the time a Mach IPC message is received, the
security token of the sender of the message is returned as one
of the output parameters to the receive function. Tasks that
hold the host security port can send a message and assign a
different security token to that message, so that it appears to 40

have come from another task. These services can be used by
upper layers of the system to implement various degrees of
security.

Wrapper Class Library

This section provides an area-by-area description of the
object-oriented interface for the services provided by the
Mach micro-kernel. This object-oriented interface to the
Mach services represents the wrapper class library 402 as
implemented by the code library 110. The wrapper class
library 402 includes thread classes 404, task classes 406,
virtual memory classes 408, IPC classes 410, synchroniza
tion classes 412, scheduling classes 414, fault classes 416,
and machine classes 418 are discussed. The wrapper class
library 402 may include additional classes, such as security
classes 420, depending on the services provided by the
underlying operating system 114. Each area is described
with a class diagram and text detailing the purpose and
function of each class. Selected methods are presented and
defined (where appropriate, the parameter list of a method is
also provided). Thus, this section provides a complete opera
tional definition and description of the wrapper class library
402. The implementation of the methods of the wrapper
class library 402 is discussed in a later section.

The class diagrams are presented using the well-known
Booch icons for representing class relationships and cardi
nality. These Booch icons are presented in FIG. 17 for

system's clock setting, obtaining overall performance and
resource usage statistics for the system, and causing the
machine to re-boot.

Mach also exports the notions of processors and processor
sets, which allow tasks to more carefully specify when and 5

on what processors its threads should execute. Processors
and processor sets can be enumerated and controlled with
the host privilege port. A processor represents a particular
processor in the system, and a processor set represents a
collection of processors. Services exist to create new pro- 10

cessor sets and to add processors to a set or remove them as
desired. Services also exist to assign entire tasks or particu-
1ar threads to a set. Through these services a programmer can
control (on a coarse grain) when the threads and tasks that
constitute an application actually get to execute. This allows 15

a programmer to specify when certain threads should be
executed in parallel in a processor set. The default assign
ment for tasks and threads that do not explicitly use these
capabilities is to the system default processor set, which
generally contains any processors in the system that aren't 20

being used in other sets.
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35

40 Task Classes
See FIG. 5 for a class diagram of the task classes 406.

TTaskHandle is a concrete base class that encapsulates all
the attributes and operations of a basic Mach task. It can be
used to refer to and control any task on the system.
TTaskHandle cannot be used directly to create a task,
however, because it doesn't have any knowledge about any
runtime environment. It does provide sufficient protocol, via
protected methods, for subclasses with specific runtime
knowledge to be created that can spawn tasks
(TCETaskHandle, below, is an example of such a class).
TTaskHandle objects can only be streamed into and out of
TIPCMessageStreams and sent via IPC to other tasks, and
they are returned in a collection associated with
TCETaskHandle. The task control operations associated
with a TTaskHandle include killing the task, suspending and
resuming the task, and doing a deathwatch on the task. The
informational methods include getting its host, getting and
setting its registered ports, enumerating its ports or virtual
memory regions, getting its fault ports, enumerating its

60 threads, etc. TTaskHandle includes the following methods:
TTaskHandle (EExecutionThread) creates a task handle

for the specified thread.
Suspend ( ) suspends the task (i.e., all threads contained

by the task). Resume ( ) resumes the task (i.e., all
threads contained by the task).

Kill ( ) terminates the task-all threads contained by the
task are terminated.

WaitForDeathOf ( ) const performs death watch on the
thread-blocks calling thread until the thread (*this)
terminates. CreateDeathInterest ( ) creates a notifica
tion interest for the death of the thread (*this). When
the thread termi nates the specified TInterest gets a
notification.

TThreadProgram is an abstract base class that encapsu
lates all the information required to create a new thread. This
includes the code to be executed, scheduling information,

10 and the thread's stack. To use, it must be subclassed and the
Begin and Run methods overridden, and then an instantia
tion of the object passed into the constructor for TThread
Handle to spawn a thread. The Begin routine is provided to
aid startup synchronization; Begin is executed in the new

15 thread before the TThreadHandle constructor completes,
and the Run routine is executed after the TThreadHandle
constructor completes. The methods CopyThreadSchedule
and GetStackSize return the default thread schedule and
stack size. To provide values different from the default, these

20 methods should be overridden to return the desired thread
schedule and/or stack size. TThreadProgram includes the
following methods:

TThreadProgram (const TText& taskDescripteon): Task
Description provides a text description of a task that
can be access via the TTaskHandle::GetTaskDescrip
tion method. Only in effect if the object is passed a
TTaskHandle constructor. If default constructor is used
instead, the interface will synthesize a unique name for
TTaskHandle::GetTaskDescription to return.

GetStackSize ( ) returns the size of the stack to be set up
for the thread. Override this method if you don't want
the "default" stack size.

GetStack ( ): Used to set up the thread's stack. Override
this method if you want to provide your own stack.

Run ( ) represents the entry point for the code to be run
in the thread. OVERRIDE THIS METHOD to provide
the code the thread is to execute.

Attempting to stream into other TStream objects will cause
an exception to be thrown.

TThreadHandle provides a number of methods for use by
debuggers and the runtime environment, and for supporting
interactions with Mach tasks running outside of the envi- 5

ronment established by the wrapper 128. These methods
include getting and setting the state of a thread, spawning an
"empty" thread in another task, getting the thread's fault
ports, returning a right to the thread's control port, and
creating a TThreadHandle handle from a thread control port
send right.

As noted above, the wrapper 128 establishes a computing
environment in which the applications 130 operate. For
brevity, this computing envirornment established by the
wrapper 128 shall be called CEo With regard to the wrapper
128, TThreadHandle spawns a CE runtime thread on the
current task. A thread can also be spawned on another task,
instead of on the current task, by using the CreateThread
methods in the TTaskHandle class and in subclasses of
TTaskHandle. (Creating a thread on another task is not
recommended as a general programming model, however.)
To spawn a CE thread on another CE task, the TCETaskHan
dle::CreateThread method is used by passing it a TThread
Program describing the thread to be run. To spawn a non-CE
thread (that is, a thread which does not operate in the 25

computing environment established by the wrapper 128), the
CreateThread method is used on the appropriate subclass of
TTaskHandle (that is, the subclass of TTaskHandle that has
been created to operate with the other, non-CE computing
environment). For example, to spawn an IBM OS2 thread on 30

an OS2 task, you might use a
TOS2TaskHandle::CreateThread method. It is not possible
to run a CE thread on a non-CE task, nor is it possible to run
a non-CE thread on a CE task.

TThreadHandle includes the following methods:
TThreadHandle (const TThreadProgram&

copyThreadCode): creates a new thread in the calling
task-makes an internal COPY of the
TThreadProgram, which is deleted upon termination of
the thread.

TThreadHandle (TThreadProgram* adoptThreadCode):
creates a new thread in the calling task-ADOPTs
adoptThreadCode which is deleted upon termination of
the thread. The resources owned by the thread are also
discarded. A copy of the TThreadProgram is NOT 45

made.
TThreadHandle (EExecution yourself creates a thead

handle for the calling thread.
TStream streams in a TThreadHandle object to a TIPC- 50

MessageStream.
CopyThreadSchedule ( ) returns a pointer to the Sched

uling object (e.g., TServerSchedule, TUISchedule etc)
that is used to schedule the objiect. Allocates memory
for the TThreadSchedule object which has to be dis- 55

posed of by the caller.
SetThreadSchedule (const TThreadSchedule&

newSchedule) sets the scheduling object in the thread
to the newSchedule object. This allows one to control
the way a thread is scheduled

GetScheduleState (TThreadHandle&
theBlockedOnThread) allows one to query the current
state of the thread (theBlockedOnThread) on which this
thread is blocked.

CancelWaitAndPostException ( ) const causes a blocking 65

kernel call to be unblocked and a TKernelException to
be thrown in the thread (*this).
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associated TThreadProgram of the root thread (passed
to constructor). The string is guaranteed to be unique,
and a string will be synthesized by the interface if no
description is passed to the TThreadProgram construc
tor.

NotifyUponCreation (Tinterest* notifyMe) synchro
nously notifies the caller of every new task creation in
the system. There is no (*this) task object involved. The
task from which this call originates is the receiver ofthe
notification.

Virtual Memory Classes

FIG. 6 is a class diagram 601 for the virtual memory
classes 408. Note that TTaskHandle is a class that represents
a task. TTaskHandle has already been discussed under the
Task classes 406 section. For virtual memory operations,
objects of type TTaskHandle serve to specify the address
space in which the operation is to occur. Most of the virtual
memory operations that can be performed in Mach are

20 represented as methods of TTaskHandle. The various meth
ods of TTaskHandle that operate on virtual memory take
TMemorySurrogate objects as parameters. See the various
methods under the TTaskHandle description for further
details. A number of the memory classes have copy con
structors and/or assignment operators. It should be noted
that the memory classes contain references to the memory
and not the actual memory itself. Therefore when memory
class objects are copied or streamed, only the references
within them are copied and not the actual memory. The
TMemorySurrogate class contains explicit methods for
doing copies of the memory it references.

TMemorySurrogate is a class that represents a contiguous
range of memory in the virtual address space. It has a
starting address and a size (in bytes). TMemorySurrogates
can be used to specify ranges of memory on which certain
operations are to be performed. They are typically supplied
as arguments to methods of TTaskHandle that manipulate
the virtual memory in the address space associated with the
task. This class is used to specify/supply a region of memory
with a specific size. The class itself does not allocate any
memory. It just encapsulates existing memory. It is the
responsibility of the caller to provide the actual memory
specified in this class (the argument to the constructor). This
class is NOT subclassable.

TChunkyMemory is an abstract base class that manages
memory in chunks of a specified size. Memory is allocated
in chunks (of the specified chunkSize), but the user still
views the memory as a series of bytes. TChunkyMemory
includes the following methods:

LocateChunk (size_t where, TMemorySurrogate&
theContainingRange) looks up in the collection of
chunks and returns in theContainingRange the address
of the memory and the chunksize.

CutBackTo (size_t where) cuts back to the chunk con
taining "where" i.e. the chunk at the offset where will
become the last chunk in the list.

AllocateMemoryChunk (TMemorySurrogate&
theAllocatedRange) is called by clients to allocate new
chunks of memory as needed. Returns the allocated
range.

THeapChunkyMemory is a concrete class that manages
chunky memory on a heap.

TVMChunkymemory is a concrete class that manages
65 chunky memory using virtual memory.

TMemoryRegionInfo is a class used with virtual memory
regions in a task's address space. It provides memory

60
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WaitForDeathOf ( ) performs death watch on the task

The calling thread blocks until the task (*this) termi
nates. CreateDeathInterest ( ) creates a notification
interest for the death of the task. The thread specified in
the TInterest object gets a notification when the task 5

(*this) terminates.
AllocateMemory (size_t howManyBytes, TMemorySur

rogate& newRange) allocates a range of (anonymous)
virtual memory anywhere in the task's address space.
The desired size in bytes is specified in howMany- 10

Bytes. The starting address (after page alignment) and
actual size of the newly allocated memory are returned
in newRange.

AllocateReservedAddressMemory (const TMemorySur
regate& range, TMemorySurrogate& newRange) allo-

15cates a range of (anonymous) virtual memory at a
specified reserved address in the task's address space.
The range argument specifies the address and size of
the request. The newRange returns the page aligned
address and size of the allocated memory.

GetRemotePorts
(TCo llection < TRemote Po rtRigh tHandle > &
thePortSet) gets list of ports on *this task. The caller is
responsible for de-allocating the memory in the
returned Collection.

virtual void CreateFaultAssociationCollection 25

(TCollection<FaultAssociation>& where) return Fault
Ports registered for this Task.

TCETaskHandle is a subclass of TTaskHandle that rep
resents a Mach task executing with the CE runtime system
(recall that that CE represents the computing environment 30

established by the wrapper 128), and embodies all the
knowledge required to set up the CE object environment. It
can be used to spawn a new task by passing a TThreadPro
gram into its constructor. The new task is created with a
single thread, which is described by the TThreadProgram 35

object passed into the TCETaskHandle constructor. There is
also a constructor that will allow a TCETaskHandle to be
constructed from a TTaskHandle. To insure that a non-CE
runtime task is not wrapped with a TCETaskHandle, the
constructor consults the CE loader/library server (that is, the 40

loaderllibrary server operating in the CE environment) to
make sure the task being wrapped has been registered with
it. This is done automatically (without any user
intervention). TCETaskHandle includes the following meth-
ods: 45

TCETaskHandle (const TThreadProgram& whatToRun)
creates a new task and a thread to execute specified
code. The new thread executes the code in 'whatTo
Run'.

50
TCETaskHandle (EExecutionTask) wraps task of cur-

rently executing thread.
TCETaskHandle (const TThreadProgram& whatToRun,

const TOrderedCollection<TLibrarySearcher>&
librarySearchers) creates a new task and a thread to 55

execute specified code with specified ibrary search. The
librarysearchers specifies the list of libraries to be used
for resolving names.

TCETaskHandle (const TTaskHandle& aTask) creates a
CE task object from a generic task object.

AddLibrarySearcher (const TLibrarySearcher&
newLibSearcher) adds a library searcher for the task
loader uses newLibrarySearcher first to re.solve lib
referneces i.e. the newLibrarySearcher is put on the top
of the collection used to resolve references.

GetTaskDescription (TText& description) const returns a
string description of the task-gets the string from the
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attribute information (like Inheritance, Protection etc.). It
also provides access to the memory object associated with
the region of memory and to the actual memory range
encapsulated in the memory region. Nested inside TMemo
ryRegionInfo is the TMemoryAttributeBundle class that 5

defines all the memory attributes of any memory region.
This is useful when one wants to get/set all the memory
attributes (or to re-use memory attributes with minimal
changes). TMemoryAttributeBundle is also used in the class
TTaskHandle to deal with mapping memory objects into a 10

task's address space. TMemoryRegionInfo includes the fol
lowing methods:

EMemoryProtection {kReadOnly, kReadWrite, kEx
ecute} specifies the protection for the memory.

EMemoryInheritance {kDontInherit, kReadWriteInherit, 15

kCopyInherit} specifies the inheritance attribute for the
memory.

EMe mo ry B e h avio r {kRe fe re nceS e que n tial,
kReferenceReverseSequential, kReferenceRandom} 20

specifies how memory might be referenced.
EMemoryAttribute {kCacheable, kMigrateable} specifies

how machine specific properties of memory might be
managed.

EMemoryAdvice {kWillUse, kWontUse} specifies how 25

memory will be used.
TMemoryObjectHandle is a base class that represents the

notion of a Mach memory object. It embodies the piece of
data that can be mapped into virtual memory. System servers
that provide TMemoryObjectHandles to clients will sub- 30

class from TMemoryObjectHandle in order to define spe
cific types of memory objects such as files, device partitions,
etc. For the client of general virtual memory services, the
main use of TMemoryObjectHandle and the various sub
classes is to provide a common type and protocol for data 35

that can be mapped into a task's address space.
TChunkyStream is a concrete class (derived from

TRandomAccessStream) that embodies a random access
stream backed by chunks of memory. The chunk size can be
specified or a default used. The chunks can be enumerated. 40

This class provides a common function of theTMemory
class without incurring the overhead of maintaining the
memory as contiguous. If the remaining functionality of
TMemory is required other classes could be defined.

TContiguousMemoryStream is a concrete class that uses 45

contiguous memory (supplied by the client). Since it is
derived from TRandonAccessStream, all random access
operations (like Seeko( )) are applicable to TContiguous
MemoryStream objects.

InterProcess Communication (IPe) Classes

The IPC classes 410 represent the Mach IPC message
abstraction. Note that all messaging behavior is on the
message classes; the port right classes are basically for
addressing the message. The usage model is preferably as 55

follows: A TIPCMessageStream is instantiated, objects are
streamed into it, and the TIPCMessageStream: :Send method
is called with an object representing a destination send-right
passed as an argument. To receive a message, a TIPCMes
sageStream is instantiated and its Receive method called, 60

passing in a receive-right object as an argument. When the
Receive returns, objects can be streamed out of the TIPC
MessageStream object. Note that the TIPCMessageStream
objects are reusable. A more detailed description of the IPC
classes 410 follow with reference to FIG. 7, which illustrates 65

a class diagram 702 of IPC message classes, FIG. 8 which
illustrates a class diagram 802 of IPC out-of-line memory

26
region classes, and FIG. 9 which illustrates a class diagram
902 of IPC port right classes.

Message Classes

MIPCMessage is an abstract base class that represents a
Mach IPC message. It provides all the methods for setting up
the fields of the header, the disposition array, and the port
and out-of-line memory arrays. It also contains all the
protocol for message sending and receiving. It provides
rudimentary protocol (exported as a protected interface) to
child classes for setting up the in-line message data. The
classes TIPCMessageStream and TIPCPrimitiveMessage
derive from this class, and provide the public methods for
adding data to the message. MIPCMessage includes the
following methods:

GetReplyPort (TPortSendSideHandle& replyPort) is
valid for receive side only. Returns a reply port object,
if one was sent with the message. Only returns it the
first time this is called after message is received.
Otherwise returns false.

TSecurityToken GetSendersSecurityToken( ) is valid for
receive side only. Returns the security token of the task
that sent this message.

SetSendersSecurityToken(const TSecurityToken&
impostorSecurityToken, const TPortSendRight&
hostSecurityPort) is valid for send side only. The next
time the message is sent, it will carry the specified
security token instead of the one for the task that
actually does the send. Takes effect ONLY FOR THE
NEXT SEND, and then reverts back to the actual
sender's security token value.

Methods for sending/receiving IPC messages (Note that
all these methods have an optional TTime timeout value. If
you don't want a timeout, specify kPositiveInfinity. All these
methods replace any existing value for reply port in msg
header. For those methods that allow specification of a reply
port, the disposition of the reply port right, as well as the port
right itself, is passed via a MIPCMessage::TReplyPortDis
position object. This is the only wa y to set the reply port,
since the disposition state is only valid for the duration of the
send. Objects for port rights whose dispositions are MOVE
become invalid once the send takes place.):

Send (const TPortSendSideHandle& destinationport,
const TTime& timeout=kPositiveInfinity) is a one-way,
asynchronous send.

Send (const TPortSendSideHandle& destinationport,
const TReplyPortDisposition& replyPort, const
TTime& timeout=kPositiveInfinity) is an asynchronous
send, with send (-once) reply port specified.

Receive (const TPortReceiveSideHandle& sourcePort,
const TTime& timeout=kPositiveInfinity) is a "block
ing" receive.

SendAndReceive (const TPortSendSideHandle& send
Port const TPortReceiveSideHandle& receivePort,
const TTime& timeout=kPositiveInifinity) sends a
message, blocks and receives a reply (reply port is a
send-once right constructed from receivePort).

SendAndReceive (const TPortSendSideHandle&
sendport, const TPortReceiveSideHandle&
receivePort, MIPCMessage& receiveMsg, const
TTime& timeout=kPositiveInfinity) send message,
block and receive reply(reply port is a send-once right
constructed from receivePort). Message is received into
a new message object to avoid overwrite.

ReplyAndReceive (const TPortSendSideHandle&
replyToPort, const TPortReceiveSideHandle&
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level interface to the Mach message system. Data is pro
vided to and from the message header and body via get and
set calls. There is no streaming capability. This is a concrete
class that represents a Mach IPC message. In-line data is
added to the message by passing in a TMemorySurrogate.
Port rights, arrays, and OOLdata must be added and
extracted explicitly using the appropriate methods.

TOutOfLineMemorySurrogate represents an out-of-line
memory range that is to be included in an IPC message. It
uses TMemorySurrogate in its implementation, and only
adds disposition information to the startaddress and length
information already contained in TMemorySurrogate. This
class is the same as a TMemorySurrogate, except it includes
disposition information used when sending the message, and
may represent the storage associated with the range. This
class includes streaming operators, methods to set/get the
range, and methods to set/get disposition information.

20

65

The following classes represent all the valid types of
Mach port rights. These classes all share the following
general behaviors: In general, when a port right object is
instantiated it increments the kernel's reference count for
that right, and when a port right object is destroyed it
decrements the kernel's port right reference count. However,
note that port right objects are handles for the "real" kernel
port right entities. They can be copied, in which case there
may be two objects that refer to the same kernel port right

30 entity. These copies are reference counted internally so that
when all the objects that refer to a port right are deleted, the
kernel's port right reference count is decremented. When a
port right becomes a dead name (i.e., when the port it
belonged to is destroyed), attempts to use methods on the
representative object will throw an exception (excluding
those operations, like setting the reference counts, that are
valid on dead names).

TPortRightHandle is an abstract base class that represents
the notion of a port right. It contains all the protocol common
to each type of port right, such as getting the port name,
requesting dead name notification, testing to see if the port
right is a dead name, etc. (The port name is returned as a
mach_port_name_t type, and is provided as a way to
interact with Mach servers not written using the object
wrappers.) It also serves as a common super class to allow
a generic type representing all types of ports to be passed
polymorphically. TPortSenderHandle and TPortReceiver
Handle derive from these classes. This class includes meth
ods for streaming support (This class and any classes that
contain it can only be streamed into or out of the TIPCMes
sageStream class. Attempting to stream into any other
TStream will throw an exception at runtime.), Getters/
Setters, and methods for requesting notifications (Must
provide a send-once right that the notification is to be sent
to. MAKE a send-once right by passing (by reference) a
receive right. MOVE a send-once right by ADOPTING a
send-once right.)

TPortSenderHandle is an abstract class that represents any
port right that an IPC message can be sent to. E.g., this is the
type that MIPCMessage::Send takes as the destination and
reply ports. The classes TPortSendRightHandle and TPort-
SendOnceRightHandle derive from this class. This class
includes methods for streaming support, and Getters and
setters.

TPortSendRightHandle represents a port send right. It
supports all the typical operations that can be performed on
a send right. It is created by passing a valid TPortReceiv-
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receivePort, const TTime& timeout=kpositiveInfinity):
sends back a reply, blocks and receives a new message.

ReplyAndReceive (const TPortSendSideHandle&
replyToPort, const TPortReceiveSideHandle&
receiveport, MIPCMessage& receiveMsg, const 5

TTime& timeout=kPositiveInfinity) sends back a reply,
blocks and receives a new message.

Subclasses' methods for getting/setting port right fields in
header (Remote and Local Ports: On SEND side, REMOTE
PORT specifies the destination port, and LOCAL PORT 10
specifies the reply port. On RECEIVE side, REMOTE
PORT specifies the reply port (port to be replied to) and
LOCAL PORT specifies the port received from. The way the
port was (or is to be) transmitted is returned in theDisposi
tion. It can have values: MACH_MSG_TYPE_(MOVE_
RECEIVE, MOVE_SEND, MOVE_SEND_ONCE, 15

COPY_SEND, MAKE_SEND, MAKE_SEND
ONCE}.):

GetRemotePort: pass in the remote port right, and specify
the disposition.

PORT RIGHT methods:
MovePortRightDescriptor: sender is giving away the port:

right to the destination. Works on Send, SendOnce, and
Receive rights.

CopyPortSendRightDescriptor: sender is creating a copy 25

of the send right at the destination.
MakePortSendRightDescriptor: a new send right will be

created at the destination.
MakePortSendOnceRightDescriptor: a new send once

right will be created at the destination.
TIPCMessageStream is a concrete class that provides a

stream-based IPC messaging abstraction. This is the recom
mended class to be used for IPC operations. It derives from
MIPCMessageDescriptor and from TStream. To send a
message, a user of TIPCMessageStream streams in the data 35

to be sent, including port-rights (TPortRightHandle
derivatives), out-of-line memory regions
(TOutOfLineMemorySurrogate), port-right arrays
(TPortRightHandleArray), objects containing any or all of
these, and any other object or data type desired. TIPCMes- 40

sageStream will automatically set up the appropriate data
structures for the port rights, port right arrays, and out-of
line memory in the message header, and put a place holder
in the stream so that these elements will be streamed out of
the message in the appropriate place in the stream. Once the 45

data has been streamed in, the message is sent using the Send
method, supplying the appropriate destination port right
(TPortSenderHandle) and optionally a reply port. To receive
a message, the Receive method is called, supplying a receive
right (TPortReceiverHandle) for the port to be received 50

from. The data just received can then streamed out of the
TIPCMessageStream.

TIPCMessageStream also provides two methods for
doing a combined send and receive operation, designed to
provide commonly-used message transmission semantics 55

(and to take advantage of fast-paths in the Mach micro
kernel). SendAndReceive does a client-side synchronous
style send and then blocks in a receive to pick up the reply
message. ReplyAndReceive does a server-side send of
(presumably) a reply message and then immediately blocks 60

in a receive awaiting the next request. Both calls require that
a destination port and a receive port be specified.
Additionally, the SendAndReceive method automatically
creates the appropriate send-once right from the supplied
receive right and passes it along as the reply port.

TIPCPrimitiveMessage is a concrete class that derives
from MIPCMessage and provides a more rudimentary, low
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Synchronization Classes

FIG. 10 is a class diagram 1002 of the synchronization
classes 412, which are used to invoke the synchronization
services of Mach. As discussed above, the synchronization
classes 412 employ semaphores and monitors and condi
tions. TSemaphore is a class that provides the general
services of a counting semaphore. When acquiring a
semaphore, if some other task already has acquired the
semaphore, the calling thread blocks (no exception thrown).
But if the semaphore is invalid for some reason, an excep
tion is thrown. This class includes the following methods:

Acquire: acquire the semaphore in exclusive mode.

Acquire (const Trime& maximumWait): acquire the
semaphore in exclusive mode, with time-out.

AcquireShared (): acquire the semaphore in shared mode.
AcquireShared (const TTime& maximumWait): acquire

the semaphore in shared mode, with time-out.
Release ( ): release the previously acquired semaphore.
AnyThreadsWaiting ( ): returns true if the semaphore

currently has threads waiting to acquire it.

Wait Groups

MWaitable and TWaitGroup are classes that provide for
message dispatching and the ability to wait for more than
one type of message source at the same time. TWaitGroup
is a class that provides the ability to set up a collection of
objects derived from MWaitable such that a thread can use
the Wait method to receive a message from any of the
MWaitable objects. It also provides for automatic dispatch
ing of the received message. Multi-Wait Operations are
called repeatedly by a task to receive messages. They are
multi thread safe so there can be more than one thread
servicing messages. This class includes methods for
manipulating the members of the TWaitGroup. For example,
GetListOfWaitables returns a list of MWaitables in this
group. MWaitable is an abstract base class that associates a
port with an internal handler method (HandleIPCMessage).
It also provides a common base class for collecting together
via the TWaitGroup class Receive Rights and other classes
based on Receive Rights.

TWaitablePortReceiveRightHandle is a convenience class
that derives from both TPortReceiveRightHandle and
MWaitable. It is an abstract base class whose subclasses can
be added to a TWaitGroup to provide for multi-wait/
dispatching of Mach message IPC with other MWaitable
subclasses.

TPortRightHandleArray is a concrete class that represents
an array of port rights that can be sent as an out-of-line
descriptor in an IPC message. It can contain any kind of port
right, and the disposition of the port right (i.e., how it is to

5 be transferred to the target task) is specified for each port
right in the array. This class implements an array of port
rights that can be sent as an out-of-line descriptor in an IPC
message (along with port rights and out-of-line memory).
This class includes methods for Streaming Support, Meth-

10 ods to add elements to the array (SEND SIDE), and Methods
to remove elements from the array (RECEIVE SIDE).

TRemotePortRightHandle is a concrete class that is used
to refer to a port right in another task. It does not contain
most of the usual port right methods, since it is not intended

15 to be used to perform those types of functions but merely to
act as a name or handle for the remote port right. Construct
ing this class DOES NOT create a port right-it only
represents a port right that already exists in another task.

eRightHandle or TPortSendRightHandle into the
constructor, or by streaming it out of a TIPCMessageStream.
This class includes methods that create an empty TPortS
endRightHandle object without affecting the kernel refer
ence counts, constructors that create a new Send Right in the
current task, methods for Streaming Support, and Getters
and setters.

TPortSendOnceRightHandle represents a port send-once
right. It supports all the typical operations that can be
performed on a send-once right. It is created by passing a
valid TPortRecieveRightHandle into the constructor, or by
streaming it out of a TIPCMessageStream. When a message
is sent to an object of this class, making the send-once right
invalid, all subsequent attempts to send to this object will
cause an exception to be thrown. In addition, the object will
be marked as invalid and attempts to use methods of the
object will also cause exceptions to be thrown (except for
methods for initializing the object, obviously). This class
includes Constructors that create a TPortSendOnceRight
Handle object without, Constructors that create a new Send
Once right on the current task, methods for Streaming 20

Support, and Getters and setters.
TPortReceiverHandle is an abstract class that represents

any port right that an IPC message can be received from.
E.g., this is the type that MIPCMessage::Receive takes as
the port to receive from. The classes TPortRightReceive- 25

Handle and TPortSetHandle derive from this class. This
class includes methods for Streaming Support, and Getters
and setters.

TPortReceiveRightHandle represents a port receive right.
It supports all the typical operations that can be performed 30

on a receive right, such as requesting no-more-senders
notification, setting and getting the port's maximun message
size and queue length, getting and setting its make-send
count, etc. If a TPortReceiveRightHandle is instantiated
(other than with the null or copy constructors) it causes a 35

port and receive right to be created. The copy constructor
creates another object (an alias) that references the same
receive right. These objects are internally reference counted,
such that when the last object referencing a particular
receive right is destroyed, it destroys the receive right (and 40

the port) it represents, causing all extant rights to that port
to become dead names. This class is a concrete class that
represents a port receive right. By definition, the actual
kernel port entity is created when a receive right is created,
and destroyed when a receive right is destroyed. Since this 45

class is a handle, creation and destruction of the receive right
is not necessarily tied to creation and deletion of a TPor
tReceiveRightHandle. For example, the default constructor
does not actually create a receive right, but just an empty
object. This class includes Constructors that create a TPor- 50

tReceiveRightHandle object without creating a port or
affecting the kernel reference counts, Constructors that cre-
ate new Receive Rights and Ports, methods to make an
uninitialized object valid, creating a receive right (and
therefore a port) in the process, Streaming Support, Receive 55

Right/Port manipulation methods, Getters and setters, and
Methods for requesting notifications.

TPortSetHandle represents a port set. It has methods for
adding, removing, and enumerating the TPortReceiveRight
Handle objects representing the receive rights contained in 60

the port set, methods for getting and setting its make send
count, etc. If a TPortSetHandle is instantiated with a default
constructor, it causes a port set to be created. If it is
instantiated using the copy constructor, an alias is created for
the same port set. When the last object representing a 65

particular port set is deleted, it destroys the port set. This
class cannot be streamed.
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TApplicationSchedule is a class used with those threads
that support an application's longer running parts. Such
threads run for appreciable amounts of time. When an
application or window is activated, the threads in the asso
ciated task become more urgent so that the threads become
more responsive.

TPseudoRealTimeThreadSchedule is a class that allows
tasks to specify their relative urgency in the fixed priority
class by setting their level within its range. The task schedule
exports the number of levels that are allowable and the
default base level. If a level is requested that would cause the
value to be outside the class range an exception will be
thrown. This class includes the following methods:

SetLevel (PriorityLevels theLevel): Set the level of the
task. A lower number is more urgent.

RetumNumberOfLevels ( ): Return the number of levels
of urgency fgr this scheduling object.

ReturnDefaultLevel ( ): Return the default level of
urgency for this scheduling object. The default level is
relative to the scheduling class's most urgent priority.

Fault Classes

FIGS. 12, 13, 14, and 15 present class diagrams 1202,
1220, 1302, 1402, and 1502 of the fault classes 416, which
are used to invoke the fault services of Mach. For the classes
that represent fault messages (for example,
TIPCIdentityFaultMessage, TIPCIdentityFaultMessage,
etc.), it is necessary to dedicate a single port for each
message type. That is, the user should ensure that only one
type of message will be received on any given port that is
used for fault handling. Preferbly, the fault classes 416

TThreadSchedule is a concrete base class that embodies
the scheduling behavior of a thread. It defines the thread's
actual, default, and maximum priorities. The lower the
priority value, the greater the urgency. Each processor set

5 has a collection of enabled TTHreadSchedules and a default
one. A thread may be assigned any TThreadSchedule that is
enabled on the processor set on which the thread is running.
The priority may be set up to the maximum value defined by
TThreadSchedule, but use of this feature is strongly dis-

10 couraged. Specific scheduling classes (TidleSchedule,
TServerSchedule etc.) are made available using this class as
the base. However (since there are no pure virtual functions
in this class) derived classes are free to create objects of this
class if necessary (but it may not be required to do so).

15 TThreadSchedule objects (using polymorphism) are used to
specify scheduling policy for threads. The subclasses pre
sented below should be used to determine the appropriate
priority and proper range.

TIdleThreadSchedule is a concrete subclass of TThread-
20 Schedule for those threads that are to run when the system

is idle. They only run when nothing else in the system can
run. This category, in general, would be used for idle timing,
maintenance, or diagnostic threads.

TServerSchedule is a concrete subclass ofTThreadSched-
25 ule for server threads. Server threads must be very respon

sive. They are expected to execute for a short time and then
block. For services that take an appreciable amount of time,
helper tasks with a different kind of TThreadSchedule
(TSupportSchedule) should be used.

30
TUserInterfaceSchedule is a concrete subclass of

TThreadSchedule for those application tasks that should be
responsive and handle the application's human interface.
They typically run for a short time and then block until the

35 next interaction.

Scheduling Classes

FIG. 11 is a class diagram 1102 of the scheduling classes 65

414, which are used to invoke the scheduling services of
Mach.

lLocalSemaphore is a class that represents a counting
semaphore that can be acquired in an exclusive or shared
mode. The major operations are acquire and release. An
optional time-out value can be specified on the acquire
operation to limit the time spent waiting if desired. This class
mplements 'local' semaphores, which may only be used
within a task (address space) and have no recovery seman
tics.

lRecoverableSemaphoreHandle is a class that represents
a semaphore that behaves like a TLocalSemaphore with the
additional property that the semaphore is "recoverable".
Recoverability means that when a thread holding the sema
phore terminates abnormally, the counts are adjusted, and
any waiting threads are appropriately unblocked. An excep
tion is raised in each such thread indicating that the sema
phore was recovered and the integrity of any associated user
data may be suspect. Note that for abnormal termination of
a thread that had acquired the semaphore in a shared fashion,
no exceptions need be raised in other threads since the
associated data should only have been accessed in a read
only fashion and should still be in a consistent state. This
class includes the following methods:

GetCurrentHolders: returns a collection of the current
threads holding the semaphore.

SetRecovered: sets state of the semaphore to 'recovered',
removing a previous 'damaged' state.

Destroy: removes the recoverable semaphore from the
system

TMonitorEntry is a class that represents the lock
(sometimes called a mutex) associated with a monitor. The
constructor for this class actually causes the monitor lock to
be acquired, and the act of exiting the local scope (which
causes the destructor to be called) causes the monitor lock to
be relinquished. If another task is already in the monitor, the
thread attempting to enter the monitor will be blocked in the
TMonitorEntry constructor until the preceding thread(s)
leave the monitor. This class includes operators new and
delete which are private so that TMonitorEntry's can only be
allocated on the stack, thus providing automatic entry and 40

exit (and the associated monitor lock acquire and release)
with scope entry and exit.

TMonitorCondition is a class that represents a condition
variable that is associated with some monitor. The major
operations are wait, notify, and broadcast. The wait opera- 45

tion causes the current thread to wait for the condition to be
notified, and while the thread is blocked the monitor lock is
relinquished. Notify and broadcast are called by a thread
executing inside the monitor to indicate that either one or all
of the threads waiting on the condition should be unblocked 50

when the notifying (or broadcasting) thread exits the moni
tor. When a waiting thread is unblocked, it attempts to
reaquire the monitor lock (one thread at a time in the case of
a broadcast), at which point it resumes executing in the
monitor. An optional time-out value can be specified to limit 55

the time spent waiting for a condition. Other than construc
tion and destruction, all methods of TMonitorCondition
must be called only from within the monitor.

TMonitorLock is a class that represents a lock on a
monitor. It is passed into the constructors for TMonitorEntry 60

and TMonitorCondition to indicate which monitor is being
aquired or to which monitor a condition is to be associated.
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Implementation of Wrapper Methods

34
classes. The machine classes 418 are used to invoke the
services related to Mach's machine and multiprocessor
support.

TProcessorHandle is a concrete class representing a pro
cessor. A processor can be started, exited, added to a
TPrivilegedProcessorSetHandle, return information, and be
sent implementation-dependent controls.

TPrivilegedProcessorSetHandle is a concrete class pro
viding the protocol for a processor set control port. Objects
of this class can: enable and disable scheduling policies, set
the maximum priority for the processor set, return statistics
and information, enumerate the tasks and threads, and assign
thread, and tasks to the processor set. Client access to objects
of this class should be highly restricted to protect the
individual processors and the processor set.

TProcessorSetHandle is a concrete class providing the
protocol for a processor set name port. Objects of this class
can return basic information about the processor set (the
number of processors in the processor set, etc.) but they
cannot cause any damage to the processor set.

As noted above, the Mach and the Mach procedural
interface are well-known. The wrapper class library 402, and
the operation of the methods of the wrapper class library
402, have been defined and described in detail above.
Implementation of the methods defined by the wrapper class
library 402 is described below by considering selected
methods from the wrapper class library 402. Persons skilled
in the relevant art will find it apparent to implement the other
methods of the wrapper class library 402 based on the
well-known specification of the Mach, the discussion above
regarding the wrapper class library 402, and the discussion
below regarding the implementation of the wrapper meth
ods. The implementation of the kill( ) method from the
TThreadHandle class of the thread classes 404 is shown in
Code Example 2, below. A routine called "example1" is
shown in Code Example 1, below. The "examplel" routine

65 includes a decomposition statement which causes the kill( )
method to be executed. © Copyright, Taligent Inc., 1993
void examplel(TThreadHandle& aThread)

THostHandle is a non-privileged concrete class that emb
cdies the name port to the kernel's host object. Objects of

20 this class can return some host information, and return the
default processor set. Objects of this class are useful to get
information from the host (such as kernel version, maximum
number of CPUs, memory size, CPU type, etc.) but cannot
cause any damage to the host. Users should be provided
access to objects of this class rather than the highly privi
1eged TPrivilegedHostHandle objects.

TPrivilegedHostHandle is a concrete class that embodies
the privileged port to the kernel's host object. The privileged
host port is the root of Mach's processor management. The
holder of the privileged host port can get access to any port
on the system. The basic privilege mechanism provided by
the kernel is restriction of privileged operations to tasks
holding control ports. Therefore, the integrity of the system
depends on the close holding of this privileged host port.
Objects of this class can: get boot information and host
statistics, reboot the system, enumerate the privileged pro-

15 cessor sets, communicate with non-CE entities, and enumer
ate the processors.

33

Host and Processor Set Classes

FIG. 16 is a class diagram 1602 for the machine classes
418, which are also called herein the host and processor set

include a processor-specific set of classes for each processor
106 that the operating system 114 runs on. Alternatively, the
fault classes 414 may include generally generic classes
which apply to multiple processors. The Motorola-68000
specific classes are presented herein for illustrative 5

purposes, and is not limiting. Persons skilled in the relevant
art will find it apparent to generate processor-specific classes
for other processors based on the teachings contained herein.

lFaultType is an abstract base class that represents a fault.
It is subclassed to provide the processor-unique fault values. 10

It identifies the fault by processor and fault id. The following
three classes are subclasses of TFaultType:

TMC680XOFaultType represents a fault type on a
Motorola 68K processor. It identifies the possible 68K type
values and CPU descriptor.

TMC680XOBadAccessFauitType represents a bad access
type on a Motorola 68K processor.

TMC680XOAddressFaultType represents an address error
type on a Motorola 68K processor.

TFaultDesignation is a class that encapsulates the
destination, the format for a fault message, and the types of
faults for which the message should be sent for a task or
thread. This class allows you to specify on a task or thread
basis that the fault message of the requested type for the 25

specified fault types should be sent to the port indicated by
the send right.

lFaultTypeSet encapsulates a set of fault types.
lFaultData is a class that encapsulates fault data provided

by the kernel in addition to the processor state. Not all faults 30

have fault data. The fault data is provided in the fault
message and is available from the thread state.

TlPCFaultMessage is a class that encapsulates the fault
message sent by the kernel on behalf of the thread that got
the Fault. It is used to receive and reply to the Fault. Three 35

subclasses (below) are provided for the three possible kinds
of data that might be sent with the fault message. The
message may include the identification of the faulting task
and thread, or the state of the faulting thread, or both sets of
information. TIPCIdentityFaultMessage encapsulates the 40

Fault message containing the identity of the thread that got
the Fault. It is used to receive and reply to the Fault.
TTPCStateFaultMessage encapsulates the Fault message
containing the thread state of the thread that got the Fault. It
is used to receive and reply to the Fault. TIPCStateAndI- 45

dentityFaultMessage encapsulates the Fault message con
taining the thread state and identity of the thread that got the
Fault. It is used to receive and reply to the Fault.

TThreadState is an abstract class that represents the CPU
state of a thread. Subclasses actually define the processor 50

specific forms. There is no information in the class. All work
is done in the derived classes. All queries for CPU state will
return a TMC680XOState pointer which has to be cast at
runtime to the correct derived class object. Derived sub
classes are specific to particular processors, such as many of 55

the subclasses shown in FIGS. 12, 13, 14, and 15 which are
dependent on the Motorola 68xxx line of processors. Such
subclasses include TMC680XOState, which is a concrete
class that represents the 680xO CPU state of a thread. Other
examples include TMC680XOCPUState, which encapsu- 60

lates the CPU state available for all 68K states, and
TMC680XOCPUFaultState, which encapsulates the 68K
fault state available for all 68K states.
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Where:
IThreadControlPort is an instance variable of the

TThreadHandle class that contains the Mach thread 25

control port for the thread the class represents.
TKernelException is the c++ exception class that is

thrown when a kernel routine gets an error.
THROW, TRY, CATCH, and ENDTRY are part of the

C++ language that allow you to throw and catch C++ 30

exceptions.
The implementation of the suspend( ) method from the

TTaskHandle class of the task classes 406 is shown in Code
Example 4, below. A routine called "example2" is shown in
Code Example 3, below. The "example2" routine includes a 35

decomposition statement which causes the suspends method
to be executed.

printf("Couldn't kill thread "); / / error occured trying to kill

void example1(IThreadHandle& aThread)
{

kern_return_error;
if((error ~ thread_terminate(IThreadControIPort)) !~

KERN_SUCCESS)
THROW(TKerneIException( )); / / Error indicator

/ / Get thread's

struct task_thread_sched_infor schedlnfo;
thread_sched_info schedlnfoPtr ~ schedlnfo;
mach_ffisg_type_llumber_t returnedSize;
returnedSize ~ sizeof (schedlnfo);
void thread_info (IThreadControIPort, THREAD_SCHED_
INFO,schedlnfoPtr, &returnedSize);
return (schedlnfo.cur_priority);

PriorityLevels curPriority;
curPriority ~ aSchedule.GetLevel ( );
current priority
/ /...

}
CODE EXAMPLE 6

Where:
IThreadControlPort is an instance variable of the TPseu

doRealTimeThreadSchedule class. It contains the
Mach thread control port of the thread for which the
class is a schedule.

The implementation of the GetKernelVersion( ) method
from the THostHandle class of the machine classes 418 is
shown in Code Example 8, below. A routine called
"example4" is shown in Code Example 7, below. The
"example4" routine includes a decomposition statement
which causes the GetKernelVersion( ) method to be
executed.

36
The implementation of the GetLevel( ) method from the

TPseudoRealTimeThreadSchedule class of the scheduling
classes 414 is shown in Code Example 6, below. A routine
called "example3" is shown in Code Example S, below. The

5 "example3" routine includes a decomposition statement
which causes the GetLevel( ) method to be executed.

20

10 void example3(TPseudoReaITimeThreadSchedule& aSchedule)
{

}
15 CODE EXAMPLE 5

PriorityLevels TPseudoRealTimeThreadSchedule: :GetLevel( )
{

35

/ / terminates aThread immediatlyaThread.Kill( );

TRY
{

}
CATCH(TKerneIException)
(

}
ENDTRY;
/ /...

}
CODE EXAMPLE 2

}
CODE EXAMPLE 1
void TTreadHandle::Kill( )
{

printf("Couldn't suspend threads "); / / error occured

void example2(ITaskHandle& aTask)
{

}
CODE EXAMPLE 3
void TTaskHandle::Suspend( )
{

aTask.Suspend( ); / / get version

void host_kernel_version(fHostPort, the Version);

}
CODE EXAMPLE 7
void THostHandle::GetKerneIVersion (kernel_version_t& the Version)
{

}
CODE EXAMPLE 8

40

void example4(THostHandle& aHost)
{

kernel_versioll_t version;
aHost.GetKernelVersion (&version);
of kernel currently

45 running
/ /...

50

/ / suspend all threads on task a Task

TRY
{

}
CATCH(TKerneIException)
(

}
ENDTRY;
/ /...

kern_return_t error;
if((error ~ task_suspend(ITaskControIPort)) !~KERN_SUCCESS)

THROW(TKerneIException( )); / / Error indicator
}
CODE EXAMPLE 4

Where:
fTaskControlPort is an instance variable of the

TTaskHandle class that contains the Mach thread con
trol port for the task the class represents.

TKernelException is the C++ exception class that is
thrown when a kernel routine gets an error.

THROW, TRY, CATCH, and ENDTRY are part of the
C++ language that allow you to throw and catch C++
exceptions.

Where:
55 fHostPortis an instance variable of the THostHandleclass

that contains the Mach host control port for the host the
class represents.

The implementation of the GetMakeSendCount() method
from the TPortReceiveRightHandle class of the IPC classes

60 410 is shown in Code Example 10, below. A routine called
"exampleS" is shown in Code Example 9. below. The
"exampleS" routine includes a decomposition statement
which causes the GetMakeSendCount( ) method to be
executed. As evident by its name, the GetMakeSendCount( )

65 method accesses the Mach to retrieve a make send count
associated with a port. The GetMakeSendCount( ) method
includes a statement to call mach_port~et_attributes,
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means for making determinations during runtime execu
tion if object-oriented methods to be invoked are
present in the executable program memory; and

a runtime loader, responsive to the determinations, to
selectively load required object-oriented methods into
the executable program memory during runtime before
invocation of the object-oriented methods.

2. The computer system of claim 1, wherein the proce
dural program logic code further comprises:

procedural program logic code portions specific to each
object-oriented method to issue one or more procedural
function calls compatible with the native interface to
control the native system services performed by the
hardware environment to correspond to the native
system services required by the object-oriented
method.

3. The computer system of claim 1, wherein the runtime
loader further comprises:

means for selectively loading related portions of the
procedural program logic code into the executable
program memory upon runtime loading of the selected
object-oriented methods.

4. The computer system of claim 3, wherein the proce
dural operating system further comprises:

an operating system based on Windows or Unix.
5. The computer system of claim 3 wherein the computer

hardware further comprises:
a Unix or Apple or IBM compatible computer environ

ment.
6. The computer system of claim 3 wherein the procedural

30 program logic code further comprises:
means for causing the procedural operating system to

provide one or more of the following native system
servIces:
thread services, task services, virtual memory services,

inter-process communication (IPC) services, syn
chronization services, scheduling services, fault
services, processor and processor set services, port
services, security services, file system services and
graphical user interface (GUI) services.

7. A method for operating a computer system, comprising
the steps of:

executing a procedural operating system on computer
hardware, the procedural operating system including a
native interface, responsive to procedural function
calls, for providing native system services;

issuing calls during runtime, compatible with the native
interface, to provide the native system services in
response to invocations of object-oriented methods
requiring such native system services;

determining during runtime if object-oriented methods to
be invoked during runtime execution are present in
executable program memory associated with the com
puter hardware; and

selectively loading the object-oriented methods into the
executable program memory during runtime before
invocation thereof, if not yet loaded.

8. The method of claim 7, wherein the step of selectively
loading the object-oriented methods further comprises the
step of:

loading related portions of a procedural program logic
code for issuing the calls, compatible with the native
interface, to provide the native system services in
response to invocations of the selectively loaded
object-oriented methods.

9. The method of claim 8, wherein the step of executing
a procedural operating system on computer hardware further
comprises the step of:

15

10

50

/ / port status infor
returned by Mach
/ / size of info
returned by

void mach_port~et_attributes(fTheTask,fThePortName,
MACH_PORT_RECEIVE_STATUS,

Variations on the present invention will be obvious to
persons skilled in the relevant art based on the discussion
contained herein. For example, the scope of the present
invention includes a system and method of enabling a
procedural application to access in a procedural manner an
object-oriented operating system having a native object
oriented interface during run-time execution of the applica
tion in a computer. This embodiment of the present inven
tion preferably operates by locating in the application a
procedural statement which accesses a service provided by 35

the operating system, and translating the procedural state
ment to an object-oriented function call (i.e., method) com
patible with the native object-oriented interface of the oper
ating system and corresponding to the procedural statement.
The object-oriented function call is executed in the computer 40

to thereby cause the operating system to provide the service
on behalf of the application. While various embodiments of
the present invention have been described above, it should
be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and 45

scope of the present invention should not be limited by any
of the above-described exemplary embodiments, but should
be defined only in accordance with the following claims and
their equivalents.

What is claimed is:
1. A computer system, comprising:
computer hardware for performing native system ser

vices;
a procedural operating system, having a native interface,

for controlling the computer hardware to perform the 55

native system services;
object oriented methods requiring native system services;
procedural program logic code, responsive to invocations

of the object-oriented methods during runtime, for
causing the procedural operating system to control the 60

computer hardware to perform the required native
system services;

executable program memory associated with the com
puter hardware for runtime execution of the procedural
operating system, invocations of the object-oriented 65

methods and related portions of the procedural program
logic code;

which is a Mach procedurally-oriented system call that
returns status information about a port. In
GetMakeSendCount( ), fTheTask is an instance variable of
the TPortReceiveRightHandle object that contains the task
control port of the associated task, and fThePortName is an 5

instance variable of the TPortReceiveRightHandle object
that contains the port right name of the port represented by
the TPortReceiveRightHandle object.

&thelnfo, &theSize);
retum(thelnfo.mps_mscount);

}CODE EXAMPLE 10

void example5(TPortReceiveRightHandle& aReceiveRight)
{

unsignd long count;
count ~ aReceiveRight.GetMakeSendCount( );
/ /...

}
CODE EXAMPLE 9
unsigned long TPortReceiveRightHandle::GetMakeSendCount( )
{
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performance of native system services, to execute pre
determined procedural code to control the native sys
tem services performed by the hardware environment
to correspond to the native system services required by
the object-oriented method.

15. The method of claim 13, wherein the step of issuing
procedural function calls to the operating system in response
to invocations of selected object-oriented methods further
comprises the step of:

providing procedural logic code, responsive to the invo-
cation of each object-oriented method requiring the
performance of native system services, to issue, moni
tor and adapt one or more procedural function calls to
control the native system services performed to corre-
spond to the native system services required by the
object-oriented method.

16. A method for operating a computer system including
a memory, comprising the steps of:

storing in the memory a library of procedural program
logic code;

said library including first procedural program logic code
which is responsive to invocations of object-oriented
methods, for causing a procedural operating system to
control the computer system to perform first type native
system services;

said library including second procedural program logic
code which is responsive to invocations of object
oriented methods, for causing a procedural operating
system to control the computer system to perform
second type native system services different from said
first type;

executing a procedural operating system in the memory,
the procedural operating system including a native
interface responsive to procedural function calls, for
providing native system services;

running an object-oriented program in a task address
space of the memory, the program including an object
oriented method requiring the second type native sys
tem services;

determining during runtime whether said second type
procedural program logic code is available in said task
address space; and

loading said second type procedural program logic code
into said task address space during runtime.

45 17. A method for operating a computer system including
an executable program memory, comprising the steps of:

storing in the computer system a library of procedural
program logic code;

said library including first procedural program logic code
which is responsive to invocations of object-oriented
methods, for causing a procedural operating system to
control the computer system to perform first type native
system services;

said library including second procedural program logic
code which is responsive to invocations of object
oriented methods, for causing a procedural operating
system to control the computer system to perform
second type native system services different from said
first type;

executing a procedural operating system in the executable
program memory, the procedural operating system
including a native interface responsive to procedural
function calls, for providing native system services;

running an object-oriented program in the executable
program memory, the program including an object
oriented method requiring the second type native sys
tem services;

15

50

executing a procedural operating system, based on Win
dows or Unix, in a Unix or IBM compatible computer
environment.

10. The method of claim 7, wherein the step of issuing
calls, compatible with the native interface, to provide the 5

native system services in response to invocations of object
oriented methods requiring such native system services,
further comprises the step of:

adapting the native services provided by the procedural
operating system to be compatible with the native 10

system services required by the associated object
oriented method.

11. The method of claim 10 wherein the step of issuing
calls compatible with the native interface further comprises
the step of:

providing one or more of the following native system
serVIces:
thread services, task services, virtual memory services,

inter-process communication (IPC) services, syn
chronization services, scheduling services, fault 20

services, processor and processor set services, port
services, security services, file system services and
graphical user interface (GUI) services.

12. A method for operating a computer system, compris
ing the steps of:

executing a procedural operating system, based on Win
dows or Unix operating systems, on a Unix or IBM
compatible computer hardware environment;

providing an object-oriented interface, executing on the
computer hardware environment, and responsive to 30

object-oriented programming, for instantiating objects
from object-oriented classes, encapsulating data for
exclusive use with each object, and invoking object
oriented methods in the objects for operating on the
encapsulated data;

providing procedural programming logic code, respon
sive during runtime to selected ones of said invoked
object-oriented methods requiring native system
services, for issuing procedural calls, compatible with
a native interface of the procedural operating system, to 40

cause the hardware environment to provide the native
system services in response to the object-oriented
methods; and

loading the methods during runtime before invocation
thereof;

whereby a choice of which system implementation to use
can be deferred to run-time.

13. The method of claim 12 wherein the step of providing
procedural programming logic code for issuing procedural
calls further comprises the step of:

issuing procedural function calls to the operating system
in response to invocations of selected object-oriented
methods for causing the procedural operating system to
control the computer hardware environment to provide
one or more of the following native system services:
thread services, task services, virtual memory services,

inter-process communication (IPC) services, syn
chronization services, scheduling services, fault
services, processor and processor set services, port
services, security services, file system services and 60

graphical user interface (GUI) services.
14. The method of claim 13, wherein the step of issuing

procedural function calls to the operating system in response
to invocations of selected object-oriented methods further
comprises the step of:

providing procedural logic code, responsive to the invo
cation of each object-oriented method requiring the
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determining during runtime whether said second type
procedural program logic code is available in the
executable program memory; and

loading said second type procedural program logic code
into the executable program memory during runtime.

18. A method for operating a computer system including
an executable program memory, comprising the steps of:

storing in the computer system a library of procedural
program logic code which is responsive to invocations
of object-oriented methods, for causing a procedural 10

operating system to control the computer system to
perform native system services;

executing a procedural operating system in the executable
program memory, the procedural operating system 15

including a native interface responsive to procedural
function calls, for providing native system services;

running an object-oriented program in the executable
program memory, the program including an object
oriented method requiring native system services;

determining during runtime whether procedural program
logic code is available in the executable program
memory to provide said required native system ser
vices; and

loading procedural program logic code from said library 25

into the executable program memory during runtime to
provide said required native system services.

19. A method for operating a computer system including
an executable program memory, comprising the steps of:

storing in the computer system a library of procedural 30

program logic code which is responsive to invocations
of object-oriented methods, for causing a procedural
operating system to control the computer system to
perform native system services;

executing a procedural operating system in the computer 35

system, the procedural operating system including a
native interface responsive to procedural function calls,
for providing native system services;

running an object-oriented program in the executable 40

program memory, the program including an object
oriented method requiring native system services;

determining during runtime whether procedural program
logic code is available in the executable program
memory to provide said required native system ser- 45

vices; and

loading procedural program logic code from said library
into the executable program memory during runtime to
provide said required native system services.

20. A computer system including an executable program 50
memory, comprising:

a library of procedural program logic code in the com
puter system which is responsive to invocations of
object-oriented methods, for causing a procedural oper
ating system to control the computer system to perform 55

native system services;
a procedural operating system in the computer system, the

procedural operating system including a native inter
face responsive to procedural function calls, for pro
viding native system services;

an object-oriented program in the executable program
memory, the program including an object-oriented
method requiring native system services;

a processor in the computer system for determining
during runtime whether procedural program logic code

is available in the executable program memory to
provide said required native system services; and

said processor loading procedural program logic code
from said library into the executable program memory
during runtime to provide said required native system
servIces.

21. A method for operating a computer system including
an executable program memory, comprising the steps of:

storing in the computer system a library of procedural
program logic code which is responsive to invocations
of object-oriented methods, for causing a procedural
operating system to control the computer system to
perform native system services;

executing a procedural operating system in the computer
system, the procedural operating system including a
native interface responsive to procedural function calls,
for providing native system services;

running an object-oriented program in the executable
program memory, the program including an object
oriented method requiring native system services;

determining during runtime whether procedural program
logic code is available in the executable program
memory to provide said required native system ser
vices;

loading procedural program logic code from said library
into the executable program memory during runtime to
provide said required native system services;

invoking said object-oriented method of said object
oriented program during runtime; and

responding with said loaded procedural program logic
code to said invoking step to cause said procedural
operating system to control the computer system to
perform said required native system services.

22. A computer system including an executable program
memory, comprising:

a library of procedural program logic code in the com
puter system which is responsive to invocations of
object-oriented methods, for causing a procedural oper
ating system to control the computer system to perform
native system services;

a procedural operating system in the computer system, the
procedural operating system including a native inter
face responsive to procedural function calls, for pro
viding native system services;

an object-oriented program in the executable program
memory, the program including an object-oriented
method requiring native system services;

a processor in the computer system for determining
during runtime whether procedural program logic code
is available in the executable program memory to
provide said required native system services;

said processor loading procedural program logic code
from said library into the executable program memory
during runtime to provide said required native system
services;

said processor invoking said object-oriented method of
said object-oriented program during runtime; and

said loaded procedural program logic code responding to
said invoking to cause said procedural operating system
to control the computer system to perform said required
native system services.

* * * * *


