Amgen Inc. v. F. Hoffmann-LaRoche LTD et al

Page 1 of 9

Doc. 1165 Att. 9

EXHIBIT H

6/20/2007

Exhibits: 1-8

Volume 1, Pages 1-281

UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF MASSACHUSETTS

Certified Copy

Civil Action No. 05 Civ. 12237 WGY

AMGEN INC.

Plaintiff

VS.

F. HOFFMANN-LA ROCHE LTD.,

ROCHE DIAGNOSTICS GmbH, and

HOFFMANN-LA ROCHE INC.

Defendants

VIDEOTAPED DEPOSITION OF EDWARD E. HARLOW, JR., Ph.D.

Wednesday, June 20, 2007, 8:52 a.m.

Duane Morris LLP 470 Atlantic Avenue Boston, Massachusetts

** TRANSCRIPT DESIGNATED CONFIDENTIAL ***

FARMER ARSENAULT BROCK LLC
Reporting For:
LiveNote World Service
221 Main Street, Suite 1250
San Francisco, California 94105
Phone: 415-321-2300
Fax: 414-321-2301

Reported by: ALAN H. BROCK, RDR, CRR

1	modified glycoprotein?
2	MR. BROMBERG: Objection.
3	A. Try the question again now I've lost
4	the train of thought.
5	Q. Would one of skill in the art as of
6	December 1983 have had a reasonable expectation that
7	with a DNA sequence in hand he or she could produce
8	a properly modified, post-translationally modified
9	secreted glycoprotein?
10	A. It depends.
11	Q. You know I'm going to follow up. What
12	does it depend on?
13	A. I won't be mean. It depends on the
14	protein under study.
15	Q. As of December 1983 is it your opinion
16	that one of skill in the art had a reasonable
17	expectation of success in producing a recombinant
18	erythropoietin that had undergone proper
19	post-translational modification to achieve an in
20	vivo biologically active protein?
21	A. With the available clone, yes.
22	Q. Now, among the post-translational
23	modifications that you've identified, I'd like to
24	focus for a moment on glycosylation. So can you
25	describe briefly what "glycosylation" means?

1	Α.	Addition of various sugar moieties to a
2	polypeptide	in this case, anyway, to a
3	polypeptide	•
4	Q.	There are a number of different kinds of
5	glycosylatio	on; correct?
6	Α.	There are.
7	Q.	And different types of host cells
8	produce dif	ferent types of sugars?
9	Α.	Yes.
-10	Q.	And different types of host cells
11	produce dif	ferent sugars with different branch
12	structures?	
13	A.	Correct.
14	Q.	Can small changes in glycosylation
15	produce sign	nificant changes in a protein's
16	biological	activity?
17	Α.	I think that is known, yes.
18	Q.	Was it known in 1983?
19	Α.	Yes.
20	Q.	Different proteins require different
21	kinds of gl	ycosylation?
22	A.	Yes.
23	Q.	And some glycoproteins do not require
24	glycosylation	on in order to be biologically active in
25	vivo; corre	ct?

1	Α.	That's my understanding.
2	Q.	Was that known in 1983?
3	Α.	That I don't know.
4	Q.	In addition to glycosylation, there are
5	other post-	translational modifications that were
6	known in 19	83; correct?
7	Α.	There were. Yes, there were.
8	Q.	Do different cells in different cell
9	lines affec	t post-translational modifications
10	differently	?
11	Α.	Yes.
12	Q.	And do different proteins require
13	different p	ost-translational modifications?
14	Α.	Yes.
15	Q.	Can different post-translational
16	modificatio	ns lead to different species of any given
17	protein?	
18	Α.	Define "species."
19	Q.	Okay. Can different post-translational
20	modificatio	ns affect the in vivo biological activity
21	of any give	n protein?
22		MR. BROMBERG: Objection.
23	A.	You've gotten more complicated. Try it
24	a different	way, please.
25	Q.	Can differences in the
æ		

1	correct?		
2	A. That's my understanding, yes.		
3	Q. And so the fact that you were able to		
4	produce in a particular mammalian host cell another		
5	glycoprotein that does not require glycosylation for		
6	in vivo activity would not provide one of ordinary		
7	skill in the art a reasonable expectation that that		
8	particular host cell would have produced functional		
9	glycosylation of a human protein, would it?		
10	MR. BROMBERG: Objection.		
11	A. I don't agree with that logic.		
12	Q. Why not?		
13	A. You've posed a situation that doesn't		
14	lead to an outcome that's required.		
15	Q. Well, if a protein does not require		
16	glycosylation for in vivo activity, the fact that		
17	you see in vivo activity even of a glycosylated		
18	protein can't provide you with any certainty that		
19	the host employed produces functional or correct		
20	glycosylation, can it?		
21	A. That part's true, yes.		
22	Q. Okay. And so if what had been shown as		
23	of 1983, December 1983, is that a protein that did		
24	not require glycosylation for in vivo activity was		
25	produced using a particular host cell, one of		

- 1	
1	ordinary skill in the art would not have had a
2	reasonable expectation based on that fact that the
3	particular host cell employed could produce EPO with
4	a functional glycosylation, would they have?
5	A. I think that is true.
6	Q. Okay. So, to put it into simpler terms,
7	by December 1983 you cite to various examples where
8	CHO cells had been used to produce recombinant
9	glycoproteins; correct?
10	A. Correct.
11	Q. And in fact, I think it's at Paragraph
12	25 of your report, you say, "CHO cells were well
13	known by 1983 to express foreign glycoproteins
14	having their known in vivo biological activity."
15	A. What paragraph are we on?
16	Q. It's Page 11, Paragraph 25. Do you see
17	that?
18	A. Yes.
19	Q. So first of all, here you use the term
20	"in vivo biological activity"; correct?
21	A. Yes.
22	Q. What did you mean by it in this
23	sentence?
24	A. The series of different responses that
25	are often referred to as "in vivo." We talked

1	recombinant	glycoprotein has biological activity
2	Α.	Okay.
3	Q.	and it can have biological activity
4	even without	glycosylation
5	Α.	Yes.
6	Q.	does the demonstration of biological
7	activity pro	ovide any certainty that the
8	glycosylation imparted on that particular	
9	glycoprotei	n is functional?
10		MR. BROMBERG: Objection.
11	Α.	So the glycoprotein is glycosylated, and
12	the glycosy	lation isn't needed. Does that mean that
13	the protein	
14	Q.	Does that tell you anything about the
15	function of	the glycosylation, whether it's
16	functional?	
17	Α.	You know, it depends. It's a
18	meaningless	combination of things in the logic.
19	Q	Okay, let me give you a specific
20	example. A	lpha interferon
21	Α.	Okay.
22	Q.	is a known glycoprotein.
23	Α.	Good.
24	Q.	You produce it in a CHO cell, you get
25	glycosylate	d alpha interferon.

1	
1	A. Uh-huh.
2	Q. If you had unglycosylated alpha
3	interferon and you stick unglycosylated alpha
4	interferon into a body, you get in vivo biological
5	activity.
6	A. Okay.
7	Q. If you stick glycosylated CHO-produced
8	recombinant alpha interferon into a body, you get in
9	vivo activity.
10	A. Yep.
11	Q. Does the demonstration of in vivo
12	activity for recombinant alpha interferon tell you
13	anything about whether the CHO cell can impact
14	functional glycosylation on a recombinant human
15	protein?
16	A. It says nothing about glycosylation.
17	Q. It doesn't tell you one way or another
18	whether the host cell employed can make functional
19	glycosylation; correct?
20	A. That's correct.
21	Q. Now, by December of 1983 it was known
22	that EPO was a heavily glycosylated protein; is that
23	correct?
24	A. That's my understanding.
25	Q. In fact, by that date it was known that