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New molecules and formulations of recombinant
human erythropoietin

Steven G. Elliott

Amgen Inc., One Amgen Center Drive, M/S 29-1-A, Thousand Oaks, CA 91320, USA

Introduction

Recombinant human erythropoietin (tHuEPO), is a glycoprotein hormone

commonly used for the treatment of anemia associated with chronic kidney

disease [1-3]. It is also indicated for the treatment of anemia associated with

s cancer, human immunodeficiency syndrome virus (HIV) infection, and for use

in surgical situations to reduce allogeneic blood transfusion requirements. (For

further information see Chapters 9, 10, 11, and 12). A number of studies have

shown that rHuEPQO is well tolerated and effective at ameliorating anemia,

restoring energy levels, and improving patient quality of life in these indica-
tions. The clinical benefits of rHuEPO are well understood and appreciated.

The endogenous EPO protein is naturally optimized for maintenance of
hemostasis in the body where the protein can be produced on demand in the
amounts needed. However, that which is optimal for natural in vivo production
may be sub-optimal in the context of clinical intervention. For example,
rHuEPO must be administered frequently by injection to be efficacious. The
discomfort of injections and the inconvenience to the patient and healthcare
provider burdens both groups.

Approaches to enhancing a drug’s properties have included new formula-
tions and delivery systems of the existing drugs whereby the circulating con-
centration of the drug is maintained for extended periods of time (sustained
delivery). Such improvement can be accomplished in several ways, including
use of pumps or slow-release formulations. Alternatively, proteins can be mod-
ified chemically with attached polymers that confer a longer half-life (sus-
tained duration of action). Attempts to modify the protein itself by in vitro
mutagenesis or through protein fusions to other peptides or protein hormones
have been explored. Glycoengineering has been successfully applied to
rHuEPO. With this process, new carbohydrate attachment points are intro-
duced into the protein, increasing the amount of attached carbohydrate and
increasing in vivo activity and serum half-life without substantially lowering in
vitro activity. The new molecule can be administered with extended dosing
intervals with no loss of efficacy.
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242 S.G. Elliott

The inherent limitations of rHUuEPO due to its peptidic composition or
mechanism of action can potentially be bypassed entirely with new molecular
entities such as small molecules or antibodies (EPO mimetics). These com-
pounds may have advantageous biological or chemical properties not present
in rHuEPO, such as an oral route of delivery, (small molecule), or structural
conformations that hold little in common with EPO, thus exploiting different
routes of elimination. Finally, stimulation of erythropoiesis by mechanisms
different from those of rHUEPO, such as those steps upstream or downstream
from receptor activation step, have been attempted. This chapter discusses new
molecules being considered or developed and their limitations, if any.

Considerations of new formulations and drug entities

The purpose of any therapeutic intervention is to treat the patient without caus-
ing harm, and rHuEPO has been particularly successful in this regard. The
molecule is very effective at stimulating erythropoiesis with minimal side-
effects. This excellent safety profile has created a high standard against which
any new erythropoiesis-stimulating molecule will be measured. Not only
should a new drug entity have improved properties, but it should also match
the excellent safety profile of rHuEPO. The preferred properties of any new
drug or formulation include retention or increase in efficacy and lack of new
or unwanted side-effects or toxicities.

One particular concern is anti-EPO antibodies [4]. (See Chapter 14 for fur-
ther information.) Antibody formation to new drug entities is important not
only because the drug may lose efficacy, but also because such antibodies
might cross-react with endogenously produced EPO resulting in pure red cell
aplasia, a very serious and severe form of anemia. Potential causes for anti-
body formation not only include the structure of the molecule itself, but also
the breakdown products or aggregates generated during manufacturing or stor-
age. Accordingly, new drugs should be designed and manufacturing proce-
dures put in place to minimize this risk.

EPO molecules with altered activity

One approach to increase activity of EPO is to alter the interaction with the
EPO receptor (EPOR). EPO activates erythroid precursor cells by binding and
activating EPOR on the surface of erythroid progenitor cells [5]. (See
Chapters 3 and 5 for further discussion.) Receptor activation occurs through
homodimerization, whereby the two EPOR binding sites on a single EPO
molecule crosslink two EPOR [6]. The two binding sites on rHuEPO have dif-
ferent affinities, high (approximately 1 nM) and low (approximately 10 pM)
[7]. Initial binding is to the high-affinity binding site, followed by homod-
imerization of the receptor by binding to the low-affinity binding site [8].
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Molecules that alter or increase affinity at either of the two sites can have
increased activity.

Despite numerous attempts to identify them, no erythropoietic molecules
suitable for clinical development have been reported that increase biological
effect as a consequence of increased receptor affinity. The reasons are several-
fold. First is the theoretical concern that antibodies, were they to develop in
patients, may be targeted to the changed region of the molecule and would be
neutralizing because they would interfere with the EPO:EPOR interaction.
Should these antibodies cross-react with endogenous EPO, pure red cell apla-
sia would likely result. A second reason is that increased affinity does not
always translate into increased in vivo activity because there are additional
requirements beyond receptor binding required to effect a biologic response in
vivo. Each receptor-binding event is transient because EPO:EPOR complexes
are rapidly internalized and degraded [9, 10]. In addition, the EPOR-signaling
pathway is down-modulated shortly after activation [10-12]. Thus, in vivo ery-
thropoiesis requires continuous stimulation of multiple EPOR through multi-
ple binding events. As a consequence, molecules cleared quickly have low in
vivo activity. For example, increased in vitro activity and increased receptor
affinity have been observed with EPO analogs that remove sialic acid from
carbohydrates or remove N-linked carbohydrates entirely [13, 14]; however,
these molecules have reduced in vivo activity due to a more rapid clearance
[13, 15]. Increased concentrations can partially compensate for the increased
clearance; however, these compounds must be administered more frequently to
be fully efficacious.

Changes in rHuEPO amino acid sequence can result in increased stability.
These changes can include removal of amino acids that are unstable (trypto-
phan [16]); or are subject to oxidation (methionine), deamidation (asparagine),
or changes that confer increased conformational stability, such as those that
stabilize alpha helices or connecting loops. Such molecules may be more
amenable to long-term storage or suitable for formulations where more stable
EPO molecules are essential, such as in slow-release formulations or automat-
ed delivery systems. Removal of proteolytic cleavage sites by in vitro mutage-
nesis can enhance in vivo stability. It may be possible to remove antigenic
sites, thereby reducing immunogenicity.

Compounds that bind through the high-affinity site but do not dimerize
because of reduced binding at the low-affinity site can function as antagonists
[8]. Such molecules may have some clinical utility for treatment of EPO
responsive polycythemias, and several such molecules have been described [8,
17].

Molecules with increased serum half-life

A longer duration of action can allow for reduced frequency of administration.
One approach that has been successfully applied to rHUEPO is glycoengineer-
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244 S.G. Elliott

ing [18]. Glycoengineered molecules bind and activate EPOR in the same
manner as rHuUEPQ, resulting in similar biological responses while at the same
time reducing clearance and enhancing activity [19]. Other strategies to
increase duration of action of EPO included chemical modifications, such as
the addition of a polyethylene glycol molecule (pegylation) or gene fusions
between EPO and other proteins. In these cases, the goal is to reduce clearance
rate by increasing hydrodynamic size.

Glycoengineering

rHuEPO is a glycoprotein hormone consisting of approximately 40% carbo-
hydrate [20]. The carbohydrate component consists of three N-linked carbo-
hydrates attached to Asp at amino acid positions 24, 38, and 83, and an
O-linked carbohydrate attached to Ser at amino acid position 126 [20] (Fig. 1).
Unlike the invariant protein sequence, the carbohydrate is variable in structure,
resulting in glycoforms with modest differences in sizes, structures, and sugar
content [22, 23]. A typical N-linked carbohydrate made by mammalian cells is

ONONONONG)
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Figure 1. Amino acid sequence of human erythropoietin. Recombinant human erythropoietin
(rHuEPO) is 165 amino acids in length [21]. Disulfide bonds (-S-S-) join Cys7 to Cys161 and Cys29
to Cys33. The 3 N-linked glycosylation attachment points are at Asn24, Asn38, and Asn83 and the
O-linked carbohydrate is attached to Ser126. Forked structures schematically depict the attached car-
bohydrates.




New molecules and formulations of recombinant human erythropoietin 245

branched with two to four arms. The end of each arm is usually capped by a
sialic acid; sialic acid content exhibits microheterogeneity in the different gly-
coforms. The sialic acid is of importance because it is the only negatively-
charged sugar on the carbohydrate. Variations in the amount of sialic acid can
affect the electrostatic properties of the molecules to which it is attached.

The carbohydrate is essential for in vivo but not for in vitro biological activ-
ity [13, 24]. The sialic acid component of carbohydrate, in particular, plays a
critical role in the in vivo biological activity of rHuEPO. Removal of sialic acid
from the carbohydrate of EPO results in almost complete loss of in vivo activ-
ity [14, 25]. Studies on glycoforms of rHUEPO containing different sialic acid
contents demonstrated a direct relationship between increased sialic acid con-
tent and increased in vivo activity [19]. The increased in vivo activity was due
to an increased serum half-life of the molecule and not increased receptor
affinity. The theoretical maximum number of sialic acids on rHuEPO is 14 (up
to four sialic acids for each of the three N-linked carbohydrates and up to two
sialic acids for the O-linked carbohydrate) [23]. It was hypothesized that in
vivo activity may be increased beyond that observed with tHuEPO by adding
new sialic acid containing N-linked carbohydrates. Each new N-linked chain
could add up to four additional sialic acids.

To add more N-linked carbohydrate, new N-linked glycosylation sites were
introduced into the amino acid sequence of EPO. N-linked carbohydrate is
attached to an Asn present in the consensus sequence Asn-Xxx-Ser/Thr (where
Xxx can be any amino acid except proline) [26]. This sequence is necessary
but not sufficient for N-linked carbohydrate addition [27]. During synthesis of
a glycoprotein, appropriate consensus sequences are recognized by oligotrans-
ferases in the cell, resulting in attachment of carbohydrate. This carbohydrate
is subsequently modified by the action of additional intracellular enzymes. The
protein is then secreted from the cell into the circulation [28].

For the purpose of potentially developing a new drug with properties supe-
rior to then available products, it became apparent that simply adding an
N-linked consensus sequence to rHuEPO would not be sufficient. The changes
needed to be introduced in such a way that the resultant molecule was effi-
ciently glycosylated and retained activity, conformation, and stability. To
increase the likelihood of success, the amino acid changes were introduced
into a region of the molecule distal to the receptor-binding site to ensure that
the molecule would efficiently activate EPOR. This effort was aided by struc-
ture-function studies that defined the active sites of THuEPO and determination
of amino acids important for maintenance of structure [17, 29, 30].

EPO glycosylation analogs with introduced N-linked glycosylation consen-
sus sequences were constructed and tested [18]. Several candidates containing
additional carbohydrate had acceptable activity and conformation characteris-
tics. Two of these consensus sequences (Asn30-Thr32 and Val87-Asng&8-
Thr90) were combined to generate a new molecule with two additional
N-linked carbohydrates. This molecule (darbepoetin alfa) had near-normal in
vitro activity, was glycosylated efficiently, and had a similar conformation and
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stability to rHuEPO. The carbohydrate content was increased from 40% 1o
51%, the size from approximately 30 Kd to approximately 37 Kd, and the
maximum number of sialic acids was increased from 14 to 22.

Studies in mice administered darbepoetin alfa revealed that more rHuEPO
was required to obtain a response similar to that of darbepoetin alfa [18, 19].
In pre-clinical studies, animals were administered rHuEPO or darbepoetin alfa
at various dose intervals. The relative in vivo activity difference of rHuEPO
and darbepoetin alfa increased as the dosing interval increased. Three-fold
more rHUEPO than darbepoetin alfa was required to elicit a similar response
when the drugs were administered three times per week. This difference
increased to 13-fold when the molecules were administered at weekly intervals
[19]. The increased in vivo activity and the differing potencies with changes in
dose interval could be explained by an observed three-fold increase in serum
half-life of darbepoetin alfa over rHuEPO [19, 31]. The observation that the
serum half-life increased in proportion to the number of added carbohydrate
chains indicated that the carbohydrate directly affected clearance. Testing in
humans mirrored the results found in animals. The serum half-life of darbepo-
etin administered intravenously was increased approximately three-fold {31].
In clinical trials, patients were converted from rHuEPO administered two to
three times per week to darbepoetin alfa administered once per week or from
weekly rHuEPO to once-every-other-week darbepoetin alfa. The hemoglobin
concentrations were successfully maintained with the less frequent dosing
schedule [32, 33]. More recently, clinical results suggest that hemoglobin con-
centrations can be successfully maintained when darbepoetin alfa is adminis-
tered at once every three to four weeks dosing intervals [34].

One theoretical concern with any alteration in a protein’s amino acid sequence
or structure is immunogenicity. Several characteristics of darbepoetin alfa and its
methods of manufacture, minimize the potential for antibody formation. The
particular amino acid substitutions in darbepoetin alfa had a minimal effect on
structure and stability. The carbohydrate and sialic acid content of the material
selected during the purification process was maximized for several reasons: first,
the higher carbohydrate content enhances the in vivo activity. Secondly, carbo-
hydrate can increase solubility and stability of proteins thereby inhibiting for-
mation of aggregates and other byproducts [35-38]. Finally, N-linked carbohy-
drate is large relative to the peptide backbone giving the carbohydrate a “shield-
ing” effect potentially inhibiting antibody formation. Antibody formation was
monitored during clinical trials with darbepoetin alfa and in all patient samples
examined, no neutralizing antibody was detected [33, 39].

Pegylation

Pegylation of proteins has been used successfully to increase serum half-life
of proteins [40]. Pegylation involves chemical attachment of the polymer,
polyethylene glycol (PEG), to reactive regions of proteins or carbohydrates.
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Pegylated molecules have an increased hydrodynamic size because they create
a “water shell” around the molecule. The attachment of PEG is thought to
improve solubility and possibly reduce immunogenicity due to shielding by
the conjugate. In addition, the increased hydrodynamic size can result in
reduced clearance and thus increase in vivo activity.

Mixing activated polyethylene polymers with proteins under appropriate
chemical reaction conditions produces pegylated proteins. The duration of the
drug development process using this strategy is relatively short because exist-
ing starting materials can often be used for the chemical reaction. PEG is
thought to be relatively inert and non-immunogenic by itself, so it isa suitable
starting material for protein-conjugate therapeutics.

One issue with drugs made by solution or solid-phase chemistry can be poor
specificity of conjugation in the chemical reaction or generation of undesirable
by-products. Many pegylation chemistries have been tried to reduce undesir-
able by-products, improve the specificity and efficacy of PEG attachments,
and minimize immunogenicity risk of the protein conjugate while maximizing
the in vitro and in vivo activity of the resultant molecule {41]. The current
chemistries typically target the reactive amino groups on Lys or the amino ter-
minal amine. tHuEPO has eight Lys, some of which are part of the active site
[17]. Therefore, some pegylated EPO molecules conjugated to Lys may have
low activity because PEG may interfere with receptor binding and activation.
Other pegylated EPO molecules may have low activity because attached poly-
mer results in structural alterations that interfere with receptor interaction.

Analogs of proteins can be made to increase specificity. For example, Cys
substitutions at targeted regions can allow addition of the conjugate with high
specificity to the sulfhydryl group [42, 43]. Another strategy is to make pegy-
lated EPO synthetically: During synthesis, a PEG-conjugated amino acid
could be introduced instead of the unconjugated amino acid. This approach
allows specific targeting of particular amino acid positions for PEG attach-
ment, such as the glycosylation sites, and reduces heterogeneity and the poten-
tial for loss of in vitro activity. It is not clear that these molecules will retain
the same stability, in vivo activity, and lack of immunogenicity as their glyco-
sylated counterparts, however.

Fusion proteins

Several EPO gene fusion proteins have been reported, including EPO/inter-
leukin-3 (IL-3) [44], and EPO/granulocyte-macrophage colony-stimulating
factor (GM-CSF) [45]. The theory behind creation of such molecules is that
they can impart to the fusion protein biologic properties of both molecules.
One can imagine that co-administration of an early-acting growth factor such
as rHuIL-3 with tHuEPO can increase efficacy of rHuEPO. The fusion protein
being larger may impart increased activity for both partners because of
reduced clearance. The fusion protein also ensures that both molecular entities
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are simultaneously present. Simultaneous administration by fusing two drugs
can simplify administration, especially when the two proteins have different
pharmacokinetic parameters. The ability to independently adjust dosing of the
fusion partners is lost, however. Furthermore, the difficulty in retaining a non-
immunogenic structure has been a challenge and neither EPO/IL-3 nor
EPO/GM-CSF fusion molecules have been approved for use in humans.

EPO dimer has been generated as a potential therapeutic [46, 47]. In gener-
al, the increased size can reduce clearance because of slowed transport out of
the serum compartment [46]. EPO dimer may also have increased in vitro
activity due to altered avidity to the receptor [48].

The two protein partners are typically joined by a linker peptide that includ-
ed Gly, Ala, and Ser. These three amino acids are thought to result in linkers
that are flexible and relatively inert, allowing independent folding of the two
proteins into their appropriate three-dimensional structures. Full in vitro activ-
ity of both proteins in fusion proteins does not always occur [44]. The fusion
proteins have been reported to have increased risk of immunogenicity [49],
presumably because of altered folding or stability.

EPO mimetics

rHuEPO is currently administered by either subcutaneous or intravenous injec-
tion. Because of its large size and peptidic nature, delivery by other routes such
as oral or transdermal or by inhalation can be quite challenging. The potential
use of rHuEPO for treatment of neuronal trauma by promoting neuronal sur-
vival [50] is limited by its poor transport across the blood brain barrier [51].
One possible solution is a small molecule, an EPO mimetic, capable of stimu-
lating EPOR. EPO mimetics are compounds that mimic the activity of EPO
but bear no structural homology. EPO mimetics can have new biological or
biophysical properties not present in EPO. Designed appropriately, such a
compound has the potential to be delivered by routes that are more convenient
than currently in use for tHuEPO.

Significant challenges are associated with the identification and develop-
ment of a useful small molecule EPO mimetic. First, the need to be small to
be delivered orally is confounded by the need to be large enough to have suf-
ficient affinity for EPOR to be effective. The compound must have appropri-
ate pharmacokinetic parameters so that it persists sufficiently long in the serum
to be efficacious. Finally, the compound should not have unwanted side-effects
due to either toxicities of the compound itself or breakdown products of it. In
spite of these challenges, work has proceeded and progress has been made in
attempts to identify lead compounds that may be amenable to oral delivery.

Several strategies have been used to identify EPO mimetics. The first is to
screen peptide and small molecule libraries for those compounds that can stim-
ulate erythropoiesis using in vitro bioassays as screens. According to this strat-
egy, an understanding of the mechanism of activation is not necessary, and
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compounds active in the assay may activate EPOR by a different mechanism
than by rHuEPO. Another strategy is to identify molecules that directly bind
to and agonize EPOR in a manner similar to that of tHuEPO. The latter strat-
egy can be performed in two steps: the first step is to identify compounds that
bind EPOR and the second step is to covalently link the compounds into biva-
lent dimers that can agonize the receptor by EPOR homodimerization.

The latter strategy takes advantage of the observation that an EPOR mutant
containing an Argl29 to Cys129 mutation was constitutively active [52]. A
disulfide bond formed between the Cys129 residues on the receptors resulted in
homodimerization and receptor activation demonstrating that EPO was not
essential for receptor activation (Fig. 2). X-ray crystallography results demon-
strated that EPOR forms a 2:1 complex with EPO [57]. Each receptor uses the
same region on its surface to bind to two surfaces on EPO, resulting in recep-
tor homodimerization. Further confirmation of the homodimerization mecha-
nism was the discovery of agonist monoclonal IgG antibodies that could
homodimerize EPOR [53]. Anti-EPOR antibodies activated because they were
bivalent, had two binding sites, and could simultaneously bind and cross-link
two EPOR (Fig. 2). Monovalent, Fab fragments could bind but did not agonize

. EPO Small

EPO Agonist EPOdimer mimetic  Compound 5 molecule
Antibody N A N

peptide mimetic

A A

Signal
transduction
HCP action
terminates
signal

Figure 2. Mechanism of erythropoietin receptor (EPOR) activation. EPOR are homodimerized
because of the two asymmetric receptor-binding sites on rHuEPO. EPO binding results in phospho-
rylation of EPOR, JAK-2 recruitment, and phosphorylation of JAK-2. The activation of JAK-2 results
in downstream signaling events. Hematopoietic cell phosphatase (HCP) can bind the activated (phos-
phorylated) receptor resulting in dephosphorylation of JAK-2, thereby terminating signal transduc-
tion. The EPO mimetic compounds; agonist antibody [53], EPO dimer [46, 47], EPO mimetic peptide
(54), compound 5 [55], and small-molecule mimetics [55, 56] can all homodimerize and activate
EPOR in a manner similar to that of rHuEPO.
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the receptor, confirming a requirement for bivalent binding. Wrighton and col-
leagues screened peptide phage libraries and one peptide was identified that
could bind and agonize EPOR [54]. This peptide, AF11154, had no homology
to EPO. It self associates into dimers to form a bivalent molecule that could
homodimerize EPOR in a 2:2 mimetic:EPOR complex [58]. Additional
sequence modification of this peptide resulted in EMP1, a 20-amino acid pep-
tide with an approximate 50-fold increase in affinity over the starting peptide
(Tab. 1). The affinity was increased more by covalent linkage of the peptide
[59]. The activity of this peptide was still significantly lower (500-fold) than
that of rHUEPO when tested in an in vitro bioassay. In addition, the in vivo
activity was very low (25,000-fold less than rHUEPO). This work demonstrat-
ed, however, that a molecule smaller than tHUEPO could successfully dimerize
and activate the receptor. An attempt to discover other EPO agonist peptides by
another group was also successful [61]. The in vitro activity was not increased,
however, and the size of this peptide was not decreased compared with EMPL1.

One explanation for the low in vivo activity of mimetic peptides is their
rapid clearance. One group addressed this problem by creating a fusion protein
between EMP1 and a larger protein, plasminogen activator inhibitor
(PAI1)[60], resulting in an increase in molecular weight from 4.8 Kd to 66 Kd.
The in vivo activity was significantly increased (2500-fold); its in vivo activi-
ty, however, was still significantly less than that of rtHuEPO (100-fold) and the
ability to be delivered orally was compromised by the size increase.

The peptide mimetics described above are significantly larger (4.2 Kd) than
the preferred size of an orally bioavailable compound (<0.6 Kd). These pep-
tides may be used to design lead compounds of smaller size. Some small mol-
ecule agonists have been isolated based on the EMP1 structure [56]; however,
their in vitro activities were low (Tab. 1). An independent approach was to
directly screen for small-molecule EPO mimetics that could dimerize EPOR.
Small molecule libraries containing compounds with two-fold symmetry were
screened to find dimerizing compounds that agonize the receptor [55, 63]. This
strategy did not result in discovery of agonist compounds, however. A small
molecule (compound 1, approximately 5 Kd) that bound but did not agonize
EPOR was discovered. Compound 1 was made active in vitro by oligomeriz-
ing it with a multivalent crosslinker resulting in a molecule (compound 5) con-
taining eight compound-1 molecules joined together. Compound 5 binding to
EPOR was increased somewhat (10-fold) over that of compound 1; however,
the size (6.4 Kd) was greater than that required to be orally bioavailable. In
addition, its in vitro activity was low relative to rHUEPO and the compound
had toxicity. The feasibility of the small-molecule approach to discovery of
small molecules that could agonize EPOR was demonstrated, however.

Further progress in development of small molecule EPO mimetics has been
slow. Progress has been made with the development of small molecules that
can agonize other cytokine receptors including granulocyte colony-stimulating
factor receptor [64] and insulin receptor [65]. The insulin mimetic is notewor-
thy in that it is orally active in rodents [66]. This work demonstrates that small
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molecules can be identified that can activate cytokine receptors and retain
properties suitable for oral delivery.

EPO mimetics without homodimerization

Difficulties with development of small molecules that activate EPOR by
dimerization can be bypassed by targeting a different mechanism. One report
describes a peptide that activates EPOR by binding to a domain on EPOR sim-
ilar to major histocompatibility complex (MHC) peptides (Fig. 2). This 23-
amino acid peptide is reported to have both in vitro and in vivo EPO activity
[62]. The molecule appears to activate by binding EPOR at a region distal to
its binding site (transmembrane domain), suggesting that it activates different-
ly than does rHuEPQ. The mechanism may be similar to that of the virus enve-
lope protein, gp55, that also activates-EPOR by an interaction with the EPOR
transmembrane region [67, 68]. The nature of how activation EPOR occurs by
gp55 is not understood.

Another approach to mimetic discovery is to modulate steps downstream
from receptor activation such as by inhibiting hematopoietic cell phosphatase
(HCP) [69, 70]. HCP is an enzyme that dephosphorylates JAK-2, a kinase that
is part of the EPO signal transduction cascade [5]. JAK-2 is normally activat-
ed (phosphorylated) as a consequence of EPOR activation. HCP binds to acti-
vated (phosphorylated) EPOR and then dephosphorylates JAK-2, terminating
signal transduction. Truncated EPOR lack the HCP binding site, and thus HCP
cannot dephosporylate JAK-2, resulting in hypersensitivity of the receptor to
EPO. EPOR truncations have been described in humans whereby the affected
individuals have increased hemoglobin concentrations but very low EPO con-
centrations due to a hypersensitive EPOR [71, 72]. These observations suggest
that small molecule antagonists of HCP may result in increased EPOR activi-
ty that increases erythropoiesis in the absence of added EPO.

One concern of HCP inhibitors relates to observations associated with HCP
mutations in mice. These mice (motheaten) have a defective HCP gene [73]
and have multiple hematopoietic abnormalities, including increases in
macrophages, lymphocytes, and erythrocytes. HCP is a negative regulator for
several different cytokine receptors besides EPOR [69, 70, 74, 75]. Although
HCP inhibitors may be effective at increasing erythroid cell number, increases
in cell number of other hematopoietic cells may limit the usefulness of these
compounds.

Gene therapy

Controlled delivery of EPO genes to humans is another promising approach
for EPO therapy. Early work in this field depended on direct injection of plas-
mid DNA containing constitutively active EPO genes into the muscles of mice
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[76], resulting in a measurable increase in hematocrit. Several concerns
became apparent from these studies, including inefficient and variable delivery
of the EPO gene and subsequent variations in EPO concentration. EPO expres-
sion also decreased over time. Expression systems and gene delivery methods
with improved efficiency have been reported [77—80]. Current EPO gene ther-
apy protocols require repeated administration of EPO genes. In addition there
is concern that the therapy may be irreversible or result in altered gene expres-
sion resulting in tumorigenicity. Over-expression of EPO genes could result in
polycythemia with little ability to correct the condition.

The efficiency and irreversibility concerns have been addressed by devel-
oping implantable capsules containing EPO-expressing cells [81]. The cap-
sules can be removed, halting EPO delivery. A further improvement would be
to construct vectors whereby EPO expression is controlled by a small mole-
cule such as tetracycline, enabling increased EPO expression in response to
oral administration of the gene activator [82]. Controlled expression of the
EPO gene has been demonstrated in mice using tetracycline [77, 78, 83],
mifepristone [84], or rapamycin [85]. Additional advances are the develop-
ment of vectors where EPO expression is controlled by oxygen tension [82],
or methods that target the kidney for gene transfer [86]. Despite these
advances, safe and controlled EPO delivery using gene therapy methods suit-
able for human use remains a distant but tantalizing opportunity.

New formulations and devices

Endogenous EPO concentration is exquisitely controlled in the body by rapid
changes in expression. In contrast, protein therapeutics are placed in a non-
physiologic environment for extended periods of time, which in some
instances may be years. Safe storage in any formulation requires that condi-
tions and formulations be designed to minimize formation and accumulation
of unnatural breakdown products or alterations in EPO structure. Inappropriate
formulations that do not maintain the integrity of the product can risk expos-
ing the patient to an abnormal form of the protein.

Formulations containing rHuEPO have been successfully developed and
used safely and effectively for more than a decade. Despite the success of cur-
rent formulations, change is sometimes required to keep up with regulatory or
safety concerns or to allow for new technologies, such as new devices or deliv-
ery systems. Such manufacturing and formulation changes included removal
of excipients such as human serum albumin or bovine-derived products.

Prolonged stimulation of erythropoiesis is one desirable property that may
be addressed by new delivery systems, including devices that allow controlled
release of rHUEPO over a long time. This approach necessitates that the mol-
ecule remain stable in the device for a prolonged period of time. Another
approach is to introduce rHuEPO into a biodegradable matrix that degrades
slowly over time (slow release) [87, 88]. This strategy requires development of
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methods to immobilize rHUuEPO in a matrix, such as microparticles, that
breakdown at predictable rates and release the product in a controlled manner.

The use of an appropriate slow-release process has not been successful for
several reasons. The main one is a requirement that the protein remain intact
and unchanged during both the processing of the material and during the pro-
longed exposure in the body. Protein integrity is a particularly difficult require-
ment in biodegradable matrices because the protein is in a concentrated hydrat-
ed state at physiologic temperatures for extended periods of time. Small
amounts of contaminating rHuEPO aggregates, misfolded rHuEPO, or break-
down products may compromise not only efficacy but also safety (immuno-
genicity). Another concern is that too rapid breakdown of the matrix may
result in excessive delivery resulting in an overdose.

Conclusions

Nearly two decades have passed from the heady days when the EPO gene was
cloned and rHuEPO was first administered to a patient. Recombinant HUEPO
has proven to be a safe and efficacious molecule for EPO replacement thera-
py, setting the bar high for any improvements that may follow. Nonetheless
there remains a desire for better erythropoietic molecules, new formulations,
or more useful delivery systems. The discovery, development and regulatory
approval of darbepoetin alfa shows that it is possible to improve EPO replace-
ment therapy in a safe and effective manner. In this case, darbepoetin alfa per-
forms the same function as rHuEPQ, but has increased in vivo activity and
reduced serum clearance, and a similar safety profile. Further progress is antic-
ipated as new devices that can simplify the administration of these drugs are
developed. Additional changes in rHuEPO or in formulations are anticipated
that may need to be developed to allow effective use of these delivery devices.
The futuré will be exciting as small-molecule EPO mimetics are discovered,
though matching the safety profile of rHuEPO presents a substantial hurdle to
any small-molecule program. New erythropoietic agents may be administered
orally. Permanent correction of anemia may occur through gene therapy, there-
by allowing additional treatment opportunities. These developments may
require extensive research and testing; however, many believe that these devel-
opments are not a question of if, but when.
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