Red Bend Software, Inc. et al v. Google Doc. 46 Att. 30

EXHIBIT 30

Dockets.Justia.com

http://dockets.justia.com/docket/court-madce/case_no-1:2009cv11813/case_id-125212/
http://docs.justia.com/cases/federal/district-courts/massachusetts/madce/1:2009cv11813/125212/46/30.html
http://dockets.justia.com/

0000 0 O

.
United States Patent [19] (1) Patent Number: 5,481,713
Wetmore et al. _ 451 Date of Patent: Jan. 2, 1996
[54] METHOD AND APPARATUS FOR PATCHING No Author, IBM Technical Disclosure Bulletin, vol. 35, No,
CODE RESIDING ON A READ ONLY 7, Dec, 1992, pp. 8-13, “Method and Mechanism for
MEMORY DEVICE Dynamic Loader” see p. 11 line 41, p. 13 line 32,
[75] Inventors: Russ Wetmare, Santa Clara; Philip Bradley et al., IBM Technical Disclosure Builetin, vol. 21,
Nguyen, Santa Cruz; Ricardo Batista, No. 44, Sep. 1984, pp. 2187-2188, “Method of Customiz-
Santa Clara, all of Calif, ing Patches for Bach Hardware Configuration” see whole
doucument,

[73] Assignee: Appic Computer, Inc., Cupertino,
! Primary Examiner—Kevin A. Kriess
(211 Appl. No.: 58,877 Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor & Zaf-

man
(22} Filed: -~ May 6, 1993

[51] Int, CL° : GOGF 9/44 [57] ABSTRACT ,
[2? E‘zfldle S h 364/DIG. 1 :glsg 020 A method and apparatus for generating patching resources in
[58} OF DEATELL rovvsmcnrssissasirrnes 3‘9‘ 5” 00 6 5 6 an information processing system having operating instrue-
700, tions on a Read Only Memory Device. The present invention
. simplifies the patch generation and installation processes, A
(56] References Cited patch resource is generated and used by a patch installation
1.S. PATENT DOCUMENTS process. Patch resources are generated for each ROM ver-

sion by comparing previous ROM versions to the new ROM

version. A patch resource is comprised of a plurality of
j’gég'?gg gﬁggg Ihfm Sl gggﬂgg entries, each of which defines a vector table address, an
4:751:703 6/1988 Picon ct 4. ... T Te7110 offset into the vector table and the routine to be inserted, By
4,802,119 1/1989 Heene et al. 364/000 comparing routines between the ROM versions, routines
4,831,517 5/1989% Crouse et al. .. . 3647200 which are different or new are identified. These routines will
4,982,360 1/1991 Johnson et &l .uveeeees wrererans 3647500 become patch resource eatries. For patch installation, the
ROM version number for the installed ROM is deterniined;

4542433 9/1985 Patrick etal..

FOREIGN PATENT DOCUMENTS the proper patching resource is relrieved, and the patch
15940 9/1992 WIPQ . resource entries cause the patches to be installed. Patch
00633 1/1993 WIPO. ’ installation is performed by the steps of modifying vector

OTHER PUBLICATIONS tables to ?ncljlde the addresses for the new routines.

No Author, IBM Technical Disclosure Bulletin, vol. 31, No.
1, Jun. 1988, pp. 294298, “Dual Indirect RAM/ROM)
Jumptables for Firmware Updates™ see whole document, 18 Claims, 5 Drawing Sheeis

Start

Compilz and/or
Assemble Desired Source 401
Files to Create Object Files

" Vectorize Object Files to 402
Create Modifled Object Filss

Link Modified Object Files 450
to Create Final Binaries

Write Final Binaries 404
to ROM

End

RedBend0008199

U.S. Patent Jan. 2, 1996 Sheet 1 of 5 5,481,7 13

Data Storage] //////7 ///_///7
Device Processor RAM /
105 102 103 %
T ////V7'/
Keyboard Bus 101
o .
ROM
104
Cursor Contro! //
Device
107
Display
Device FlG 1
108
Hardcopy
Device
109
Application
FlG 2 Space
. 202
System Heap
201

RedBend0008200

U.S. Patent

Jan. 2, 1996

FIG. 3

Sheet 2 of 5

303 ™1

Reference to
Entry Point

304~

Entry Point

ROM Code
3N

5,481,713
Table Pointer
305
‘.__
Pointer
toCode [~ 307
RAM Code
302

" RedBend0008201

U.S. Patent Jan. 2, 1996 Sheet 3 of 5 5,481,713

FIG. 4 FIG. 5

Compite and/or Identify Entry Points in
Assemble Desired Source |~ 401 Objez Fiier¥o Create 0
Files to Create Object Files Vector Table Source File
oisipssrst |- el |
.reate odified Object Files Vegtor Table Object File

Link Modified Object Files | 40 Create a Symbol Table

10 Create Final Binaries from Vector Table ~ 503
Objeclt File

e o Read Each Object Files
Write ;lns‘laﬂnaﬂes ~ 404 Checking Entry Pointsto | 504

See the Names in the
Symbol Table

@ - [Match Found Change

Name of Entry Point and }~-505

Insert Vector Code in
the Object File

if No Match Found 506

Produce Error mesage

!

Generate Vector Table
Initialization Code From 507
Vector Source Table

End

RedBend0008202

U.S. Patent

Jan. 2, 1996 Sheet 4 of 5 5,481,713

FIG. 6

MaxBlock vDirect,
SwapZone vinDirect, $0000, $0580,
SendBit vinDirectJmp, $2050, $0004, AQ,]
KeyTable vNoVector $2060, $0006, 00, (has DSPhasSinger)
T 4 r'y 4
Vector Name
Vector Type ;
Vecior Table Handle
Vector Table Offset
Dispatch Register
Runtime Conditions -

FIG. 7a

Compare the Routines Between

a First ROM Yersion and a 701
Second ROM Version

For Each Replacement Routine,

Generate a Version Patch Resource |~ 702
Entry for Replacement Patch

y

For Each New Routine to an Existing
Function, Generate a Vector Patch [~703
Resource Entry for Add Routine Paich

v

For Each New Function Routine,
Generate a Vector Patch Resource 704
Entry for Add Function Routine

End

~ RedBend0008203

U.S. Patent

724
!

Jan. 2, 1996

Sheet 5 of 5

FIG. 7b

5,481,713

Identify Vector Patch
Resources Corresponding | 791
to ROM Version of

System Being Upgrade

—

Identity Whether Entry in
Resource is for Replacement
of Old Routine or New
Functionality or New

| Routines to Existing Function

Replace Existing
Table Entry With
New Entry

Create New
t— Vector Table With
New Entries

796

Replacement
of-Old Routine?

725

New
Functionality?

No

Add New Entries to 707

Existing Vector Table

— 3

End

RedBend0008204

5,481,713

1
METHOD AND APPARATUS FOR PATCHING
CODE RESIDING ON A READ ONLY
MEMORY DEVICE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present. invention relates to the field of compuler
operating systems and the underlying code stracture thereof,
in particular to applying fixes 0 code residing on static
storage such as a Read Only Memory device.

2. Description of the Related Arl

It is well known that a computer system rclies on oper-
ating software, ie. an operating system, to enable basic
computer functionality. For example, an operating system
allows a user to store and retrieve files on a storage medium,
Various approaches are used to provide the operating system
software as part of the computer system. One approach
utilized in IBM compatible computer systems is to provide
a Basic Input Ountput System (BIOS) on a Read Only
Memory (ROM) device. The BIOS contains the instructions
for interaction between the various components of the
computer system. The remainder of the Operating system

functonality is loaded in Random Access Memory (RAM).
In such implementations, the vast majority of the operating -

system functionality is loaded into the RAM. Other aspects
of the operating environment namely the user interface
tools, also would exist on RAM, This approach has the
drawback of utilizing RAM which could otherwise be used
for application programs.

- An altemnalive approach is to provide as much operating
system functionality Into ROM as possible. This has the
desired effect of freeing up RAM for application programs.
This approach is used for the operating system for the
Apple® Macintosh® family of computers, available from
Apple Computer, Inc. of Cupertino, Calif. The organization
of the Macintosh operating software between ROM and
RAM as well as the Macintosh environment in general, is
discussed in the publication emitled “Inside Macintosh
Volume I, available from Addison-Wesley Publishing com-
pany.

The: portion of the Macintosh operating environment that
resides in ROM is comprised of two parts; the operating
system and the uvser interface toolboxes. The operating
system portion provides traditional operating system func-
tionality, The toolboxes provides a standardized set of tools
for application development, Examples of toolboxes incinde
the QuickDraw Manager (for drawing figures on a display)
Sound Manager and Resource Manger. The use of such
toolboxes would be well known to ope having familiarity
with developing applications for the Apple Macintosh fam-
ily of computers,

In the Macintosh environment routines based in ROM are
typically accessed using what is known as the A-Trap
dispatching mechanism. The A-Trap dispatching mechanism
is described in the publicadon “Programmer’s Gunide To
MPW Volume 1, Mark Andrews, available from Addison-
Wesley publications (MPW is an acronym for Macintosh
Programmer’s Workshop). The A-Trap dispatching mecha-
nism allows for the calling of the ROM based routines
symbolically through the trap dispatcher, rather than by
absolute ROM address. :

One problem with storing code in ROM s that it is static
and cannot be fixed (absent physically replacing and re-
writing the ROM). Accordingly, adding functionality or
fixing *bugs” found in the operating system ROM code is
very tricky. To fix a bug or add functionality, one must either
patch the vectors maintained by the A-Trap dispatching

jin)

20

25

40

50

60

2

mechanism, or patch the private vectors maintained by some
of the tool box managers, “Patch” is a term of art which
refers to new code introduced to fix prior code or to add
functionality. A ROM vector causes a jump to a location in
RAM where the patch code may reside. However, because
there are a limited number of such vectors, most of the code
is called directly and cannot be easily patched.

To patch non-vectorized code, one must be very creative.

In some cases, all clients of the offending code can be
patched. Clients in this context refets to code that calls or

receives data from the offending code. In other cases a -

routine called by the offending routine may be patched to fix
what the calling routine did wrong, This is called a “come
from” patch and it usually identifies the caller by comparing
the return address with a known absolute address. When
small patches are made to large routines, it is common
practice to call the existing code in ROM to save memiory.

"Usually this is done by jumping to the absolute address in

the ROM. In doing so, the absolutc address in ROM
becomes hard coded into the patch,

Because of these absolute addresses hard-coded into the
patches, the ROM is very difficult to maintain. Much care
must be taken to assure any changes or additions to the ROM

will not change the addresses of the existing code. This has.

the undesirable effect of making the ROM based code
non-relocatable (because of code reliance on absolute
addresses). This becomes even more difficult as more oper-
ating system code is written in high level languages.

Despite such obstacles, it is desirable to place operating
systern functionality in ROM because it reduces the amount
needed for RAM, Consequently, this frees RAM resources
to be used for application software programs, Another
advantage is that it is easier to protect ROM based code from
unauthorized copying.

Moreover, as application sofiware becomes integrated
into base functionality of computer system, it is likely the

application software itself will become ROM based. As]

more functionality is placed in ROM, the foregoing main-
tenance difficulties are compounded.

Thus, it is an object of the present invention to provide a
mechanism for generating code that will in reside in ROM
s titat patches or additional function may be added with
greater ease. It is a further object of the present invention to
simplify the paich installation process.

SUMMARY

The present invention is directed towards a method and
apparatus for generating patches for static operating instruc-
tions executing on a computer system. The present invention
is particularly useful in the generation of programs that are
stored on a static storage device such as a Read Only
Memory (ROM) device. Since the code on ROM cannot be
fixed without removing the ROM from the computer system,
patches must be implemented by vectors into the ROM code
that resides on system Random Access Memory (RAM). As
the introduction of new operating software must take into
account various previous versions of the operating software,
the task of patch generation can be arduous,

The present invention simplifies the patch generation and
installation processes. Patch resources embody the different
routines between the different routines in the various ROM
versions. Patch resources are generated for each ROM
version by comparing the previous ROM versions to the new
ROM version. A patch resource defines a vector table
address, an offset into the vector table and the routine to be

RedBend0008205

5,481,713

3

inserted. By comparing routines of the ROM versions,
routines which are different or new are identified. These
routines will then be used to create patch resource entries, A
paich resource entry effectively provides for replacement of
a routine, adding routines or the addition of new functions.

For patch installation, the ROM version number for the
installed ROM is determined; the proper patching resource
is retrieved, and the patch resource entries cause the patches
to be installed. Patch installation is performed through
modification of existing vector table entrics (replacing a
routine), adding new vector tablé entries (adding new rou-
tines to an existing function) or adding a new vector table
(adding new routines for new functions).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating the basic compo-
nents of a computer system as may be utilized by the
currently preferred embodiment of the present invention.

HIG. 2 iliustrates the general organization of Random
Access Memory (RAM) of the currently preferred embedi-
ment of the present invention.

FIG. 3 illustrates the implementation of an indirect vector
as may be utilized in the currently preferred embodiment of
the present invention.

FIG. 4 is a flowchart which describes the steps of creating
a vectorized ROM as may be perfornted in the currently
preferred embodiment of the present invention.

FIG. 5is a flowchart which describes the specific steps for
vectorizing an object file as may be performed in the
currently preferred embodiment of the present invention.

FIG. 6 is a chart illustrating a Vector Table Source File as
may be utilized by the currently preferred embodiment of
the present invention,

FIG. 7a is a flowchart describing the steps for generating

- vector patch resources, as may be performed by the currently
prefemred embodiment of the present invention.

FIG. 7b is a flowchart describing the steps for vector table
updating that is performed during patching, as may be
performed by the cumently preferred embodiment of the
present invention,

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

This spectfication is related to, and hereby fully incorpo-
rates by reference, Ser. No. 08/058,876, entitled “Method
And Apparatus For Vectorizing The Contents Of A Read
Only Memory Device Without Modifying Underlying
Source Code”, filed on May 6, 1993, and assigned to the
same assignee, Apple Computer, Inc..

A method and apparatus for patching coded instructions
residing in a Read Only Memory (ROM) device, in a
computer system is described, In the following description,
mumerous specific details are set forth such as coding
examples, in order to provide a thorough understanding of
the present invention. It will be apparent, however, to one
skilled in the art that the present invention may be practiced
without these specific details. In other instances, well-known
circuits, control logic and coding techniques have not been
shown in detail in order not to unnecessazily obscure the
present invention.

The following description will include various code
examples of assembly language instructions of the Motorola
6BOXO family of microprocessors. Further, various refer-
ences are made (¢ the structure of the operating environment
of the Apple Macintosh. In both instances, one familiar with
programming in the Macintosh environment would be famil-

5

15

20

25

30

40

45

50

58

60

65

4

iar with such references and related concepts.

Overview of the Computer System of the Preferred
Embodiment

The computer system of the preferred embodiment is

" described with reference to FIG, 1. The present invention is

preferably implemented on a general purpose microcom-
puter in which a significant amount of operating or appli-
cation sofiware resides on a static memory device, such as
one of the members of the Apple® Macintosh® family of
computers. In any event, a computer Syslem as may be
utilized by the preferred embodiment generally comprises a

. bus or other communication means 101 for communicating

information, a processing means 102 conpled with said bus

. 101 for processing information, a random access memory
. (RAM) or other storage device 103 (commonly referred to

as 2 main memory) coupled with said bus 101 for sioring
information and instructions for said proeessor 192, a read
only memory (ROM) or other static storage device 104
coupled with said bus 101 for storing static information and
instructions for said processor 102, a data storage device
105, such as a magnetic disk and disk drive, coupled with
said bus 101 for storing information and instructions, an
alphanumeric input device 106 inclnding aiphanumeric and
other keys coupled to said bus 101 for communicating
information and command selections to said processor 102,
a cursor control device 107, such as a mouse, track-ball,
cursor control keys, etc., coupled to said bus 101 for
communicating information and command selections to said
processor 102 and for controlling cursor movement, and a
display device 108 coupled to bus 1 for displaying textual,
graphical or video output, Additionally, it is useful if the

system includes a hardcopy device 109, such as a printer, for -

providing permanent copies of information. The hardcopy
device 109 is coupled with the processor 102 through bus
101.

The computer system of FIG. 1 may be both a system
which generates the.vectorized ROM code or a system
which utilizes the vectorized ROM code, or both. In a

- computer system having the vectorized code of the present

invention, it is the ROM 104 that will contain the static code.
Non-static code and vector tables will reside in the RAM
103, Fusther, during the generation of such vectorized code,
a processor on a computer system, such as the processor 102
of FIG. 1, will perform processing function means, For
example, the vectorizing and linking of object files would be
performed by the processor 102, ’

The organization of RAM 103 as found on the preferred
Apple Macintosh System is illustrated in FIG. 2. For the
purposes of this description, consider the RAM as organized
into two arcas: system beap 201 and application-space 202.
The system heap area 201 contains all the operating system
code and utilities. As will be desctibed in more detail below,
it is in this system heap area 201 that the vector tables are
loaded and stored. The application space 202 is the available
mernory for applications programs.

OVERVIEW OF ROM VECTORIZATION

As noted above with respect to the prior art, there are
numerous benefits of having ROM based code. However, as
code in ROM is static, patching to apply fixes or add
functionality is tricky and requires patching to an existing
vector. Although veciors are used on the A-Trap mechanism
and locally by some toolbox mangers, the number of vectors
is far too few for maintaining a dynamic and robust oper-

RedBend0008206

5,481,713

5

ating environment. Consequently the present invention pro-
vides a means for generalizing the introduction of vectors
into ROM based code. It should be noted that the fact that
this code is to reside on ROM is not meant to limit the scope
of the present invention. Any system that utilizes “static”
code on, for example “FLASH” memory magnetic or optical
disk media or other storage devices, could be utilized
without cansing departure from the spirit and scope of the
present invention.

Another benefit of this technique is that the programmer
need not be constrained or concerned about the absolute
physical addresses in the ROM, All the programmer has to
be concemed about is generating the source code. Moreover
as there is no change to the source code, the use of vectors
is transparent to the programmer. This will greatly simplify
ROM maintenance and allow products to be developed and
introduced into the marketplace at a much quicker pace.

ROM vectorization is the process by which static program
code that is to be installed in ROM is modified to create
external references to a vector table in RAM. The entries.in
the vector table contain pointers to the location of the
various code that will be exccuted. Generally, when the
ROM code is vectorized, entry points for external routines
are replaced by a reference to a table and an offset into the
table. The comesponding table entry will then point to the
location of the routine. So as the ROM code is execating,
upon encountering a reference to an external routine, e.g. a
subroutine or function call, the actual entry point will
reference the vector table and the corresponding entry in the
vector table will point to (e.g. have the address of, orbe a
JMP instruction to) the actual code to be execuied,

The effect of vectorization is described with reference to
FIG. 3. Referring to FIG. 3, fllustrated is ROM based code
301 and RAM code 302, The only thing illustrated here in
the RAM code 302 is the vector table 306, In any event,
ROM code 301 will contain a reference to an entry point
303. The entry point may be a sub-routine, function, macro
or 2 jump to a label somewhere else in the ROM code 301.
Note that various other linkage code to allow return after the
sub-routine or function is not illustrated but is assumed to
exist, The reference 10 entry point 303 will effectively point
to entry point 304. Without vectorization, the executable
code would be immediately following the entry point 304.
With vectorization, the location of entry point 304 has been
modified to be a reference to a table pointer 305 that resides
in RAM. The table pointer 308 is the vecior in this example.
The table pointer 305 will point to vector table 306 which
resides in RAM code 302 (specifically the system heap
area).

As noted above, the reference to the table would in most
cases include an offset into the vector table 306, Assuming
the offset, the entry 307 will contain a pointer to the location
where the code to be executed would reside, While the entry
367 may simply peint back into the ROM, in the instance of
a patch, the entry 307 may contain a pointer to an updated
routine located somewhere in the RAM 302,

In the currently preferred embodiment, the foregoing
example describes an “Indirect Vector” type (i.e. the table
pointer 305). The currently preferred embodiment includes
two other vector types; a Direct Vector and an Indirect Jump
Vector. A Direct Vector is longword in low memory that
contains the address of the routine. A Direct Vector is used
when execution speed is the paramount concerz. The Indi-
rect Yector Jump is similar to the Indirect Vector but differs
by using a Jump 1able in place of a vector table. The Indirect
Vector Jump is used in sitvations when a scratch register

45

50

55

6

isn’t available and the code is in cache.

Vectorization facilitates mainienance of ROM based code
by removing the need to rely on actual physical addresses in
ROM when fixing “bugs™. The term “bug” is a term well
known to those skilled in the art and in the context of
sofiware design, refers to the existence of logic or other
errors which causes a software program to malfunction.
Bagically, through the vectorization of the present invention,
more entry points into the ROM are created, thus providing
more locations at which the ROM may be accessed and code
fixed. Further, it eliminates the need to hard code absolute
addresses into the patched code. In other words, the ROM
code is modolarized to a greater extent so that respective
modules may be more easily replaced.

Organization of Vector Tables

In the Macintosh environment, the varicus application
development tools are organized into toolboxes. Control of
a toolbox is performed by it’s “ioolbox manager”. In the
currently preferred embodiment each *toolbox manager”
will have it’s own vector table. For example, in the Apple
Macintosh environment, the Window manager, Dialog man-
ager and QuickDraw manager all have their own vector
tables. By arranging the vector routines in groups the tables
in system software may be easily expanded. Also, complete
tables can be replaced with new one when a tool box
manager is rewritten, Each vector table is accessed through
a pointer stored in low memory.

Another advantage of crganization into vector groups, is
that intermal ROM code can make use of the vector tables
directly. New ROM source code couid be developed taking
advantage of the vector groups assigned so far. Using this
technique a vector table does not need to have a predefined
size.

By keeping the vectors in their own respective groups, |

vector table initialization may occur independently (as will
be described in greater-detail below, vector tables must be
initialized before use). Vectorized routines must have their
vector table entry initialized, This is accomplished by cre-
ating a small routine for each vector group which takes care
of the vector table initialization, As will be described below,
the initialization routine is created during the vectorization
DEOCESS.

ROM Vectorization

The manner in which the code in a ROM is vectorized is
illustrated by the steps in the flowchart of FIG. 4. First, the
source files are compiled (in the case of a high level
language) or assembled (in the case of assembler langnage
source) 1o create object files, step 401. The object fites are
then vectorized to create vectorized object files, step 402. It
is sipnificant that only the object files are modified. The
source files are not touched. Object files contain a series of
defined records, each one containing specific items such as
the object code for a routine, the name of a routine, external
reference. from one routine to another, or comments. In
object files the references to other routines have not been
resolved. Therefore object files are an ideal place to alter the
code without modifying the source code files, The steps for
vectorization are described in more detail below with respect
to FIG. §.

The object files are then linked together to create the final
binary values which will be written t0 ROM, step 403, This
is performed throngh a traditional linkage editing step.
Finally, after the object files have been “linked” together to
create the final binaries, the ROM image is created, siep 404,

RedBend0008207

5,481,713

7 .
* FIG. 5 is a fiowchart illustrating the steps for vectorizing
an object file. Referring to FIG. 5, the entry points of the
object file are first identified to create a vector table source
file, step 501, An entry point may be the name of a routine
or & label in the file. Generally, an entry point is merely a
location in the code which may be entered via a symbolic
reference. It is these entry points which become the code
access points which are vectorized. The vector table source
file is a set of assembly language instructions The vector
table source file is described in greater detail below. Next,

- the vector table is assembied in order to creaic a vector table

object file, step 502. For each entry in the vector table source
file there is & corresponding module in a vector object file,
Each of these modules has one entry point with the vector’s
name and one content record containing the glue code used
to patch the original routine. An example of modules in the
vector table object file are illustrated in Table 1.

TABLE 1
Vector Table Object File
Proc Export
MaxBlock jmp ([$0584))
EndProc
SwapZone move.1 $2030, a0
. move,l §08(a0), a0
Jjmp (a)-
EndProc
-SendBit move.l $2060, a0
jmp $06(a0)
EndProc

Referring to Table 1, three (3) entry points, MaxBlock,
SwapZone and SendBit are illustrated. Each of the three
entty points includes the “vector code” for accessing the
routine. The vector code presented, which is written in the
Motorola 680X0 Assembler language, is exemplary. It
would be apparent to one skilled in the art that the func-
tionality performed by this code can be implemented using
different instruction formats or a different Assembler Lan-
guage {one supported by the processor of the underlying
computer system),

The entry MaxBlock is an example of a Direct Vector, The
instruction jmp ([$05841) will cause a direct jump to the
location of the routine, Here the address of the desired
routine is contained in the memory location address $0584.
Note that the term jump as used here refers to program
execution to continue at the address jumped to.

The entry SwapZone is an example of an Indirect Vector.
Here the instruction move.1 $2050,a0 moves the contents of
the location $2050 (the address for the vector table) into
register a0. The instruction move.l $08(a0),a0 causes the
offset $08 to be added to the contents of the register a0, At
this point the register a0 contains the address for the vector
table entry of the desired routine, The jmp(a0) instruction
causes a jump to the contents of the vector table entry, which
is the entry address of the desired routine,

The entry SendBit is an example of an Indirect Jump
Vector. The instruction move.] $2060,a0 causes the contents
of address $2060 to be moved into the register a0, The
instruction jmp $06(a0) causes a jump to the address that is
offset by $06 from the contents of the register aD. The
address jumped to will contain another jump instruction to
the entry address of the desired routine.

10

8

Once the vector table object file is created, the vectorized
object file is created by replacing the entry point references
with the appropriate vector code. Referring back te FIG. 5,
a symbol table containing the vector names and the vector
code is created, step 503. Each of the object files are then
processed by comparing entry point names to the names in
the symbol table, step 504. If a match is found, the entry
point name in the object file is changed and the vector code
is inserted in the object file, step 505. This will effectively
cause the linkage editor to reference the vector code for ail
calls made to the original eniry point, If no maich is found
an error/warning message is issued, step 506, After all the
object files are vectorized, the vector table initialization code

" is generated from the vector source table (using a different

20

25

30

35

40

435

50

55

60

set of macros then that used to create the vector table object
file), step 507. '

For maintenance purposes, each vectorized routine can be
a version number so that updates and additions to the routine
can be made. Updates and additions to routines is described
in greater detail below.

Table 2 is an example of a routine which has been
vectorized.

TABLE 2
Vectorization Example
Proc Export
BEFORE
YECTORIZATION
MaxBlock link af, #04
unik aé
Tl
EndProc
AFTER
VECTORIZATION
V.. MexBlock link a6, #04
unlk ab
s
MaxBlock jmp ([50584])
. EndProc

Referring to Table 2, before vectorization a routine Max-

Block performs the instructions between the code PROC
Export and ENDPROC, In this cxample, MaxBlock is
vectorized to contain a direct vector. After vectorization, the
entry name label has been changed to _v__MaxBlock. The
vector code with the original label MaxBlock is then
appended to the original code sequence_v_MBlock. Here
the label MaxBlock has the jmp ([$0584]) instraction.
Absent any patches, the location $0584 will contain the
address 1o the label_v_ MaxBlock.

Starting 2 System with a Vectorized ROM

As noted above, a vectorized ‘ROM does require that
vector initjalization code be called before a vector is used.
ROM source code does not need to be modified except for
the calling of the corresponding initialization routine. The
initialization rontine must be called from within the ROM
before any vectorized routine can be used. This is done
automatically at boot (system stari-up) time,

Each toolbox manager in ROM has its own vector table
pointer in low memory. In the cumently preferred embodi-
ment these memory locations have been pre-assigned and
are stored in a text file where all of the vector information
is kept. When a vector initialization routine is called, it
initializes the vector table pointers so that they point o the

RedBend0008208

5,481,713

9

right location in ROM. Generally, the vector initialize rou-
tine will allocate memory in the system heap for the vector
table, put the vector table address in the given low memory
location, and set-up the vector table with the routine’s
addresses.

In the comently preferred embodiment, the initialization
routine is called three (3) times during the boot process. It
is called first when it is determined that there is memory
available, then again after the Memory Management Unit for
the computer system has been setup and finally after the
systern heap has been created and the system memory
initialized to FE. After this third call, the vector pointers are
stable and patching can take place, Patching is described in
more detail below. However, it would be apparent to one
skilled in the art that initialization could be implemented so
that it occurs at other times during the system starf-up
process. Such implementations would nof depart from the
spirit and scope of the present invention.

Vector Directory

In the currently preferred embodiment the ROM will also
contain a directory that describes all the various vectors.
This is provided to facilitate the use of program debuggers.
Generally, the address of the vector directory will be main-
tained at a predetermined location in ROM. The information
concerning vectors is organized by vector type. Conse-
quently, the vector directory contains pointers to varions
vector information tables. The vector information tables will
contain a count of the vectors in the table, as well as pointers
to the name of the corresponding entry point and the original
code in ROM. -

Vector Table Source File

As is apparent from the foregoing description, in the
currently preferred embediment vectors are implemented
using assembly language source files. This provides flex-
ibility at little cost and allowing the performance of condi-
tional comypilation. Each entry in the vector table source file
will have a format depending upon the vector type. An
example of the Vector Table Source file is provided in FIG.
6. The following is a description of the various fields in the
vector source file, '

Vector Name is the case sensitive name of the rootine to

be vectorized.

Vector Type is a macro that specifies which type of vector
to apply to the particular routine.

Vector Table Handle is the address where the pointer to
the particular vector table can be found a nmtime. For
direct vectors, the field rnakes little sense and should be
zero, It would be possible to allocate a vector table
pointer for direct veciors that could point to address
zerQ or 1o the base of the appropriate trap dispatch
teble. This would allow all the vector utility code to
work the same regardless of the vector type.

Vector Table Offset is the offset into the vector table. For
direct vectors, this is the absolute address of the vector
itself.

Dispaich Register identifies a register that can be used to
optimize the routine dispatch. If this field is zero or
omitied, no optimization will take place.

Runtime Conditions This field can be used to selcct which
code to install at runtime. The constants given must be
compatible with the test for macro.

—

0

—

5

20

35

45

50

60

65

10

As described above, during the vectorization process, the
vector table source file is compiled to produce an object file
used by the vectorization tool. It is then recompiled using an
alternate set of macros to produce the code that initializes the
vector table,

Patching A Vectorized ROM

As the purpose of vectorizing the code is to facilitate
fixing bugs or adding functionality, it is now useful to
describe how it is dome. The term patching is used to
describe the process for creating and installing patches to the
ROM that add functionality or fix bugs. In this particular
instance, we are talking about patches applied to ROM
vectors.

One difficulty in making patches results from the need 10
support prior versions of the ROM and the ROM code with
each released ROM the vectorized routine will have a
version number, If a bug is discovered or a new function is
added to the routine, then the new routine will have a higher
version number when distributed with the new system disk.
A ROM maintenance data base will keep track® of ali
different versions of all the vectorized routines as well as
which version belongs to what ROM and is smart enough to
include the right version for each system release.

The patch mechanism of the currently preferred embodi-
ment creales a vector patch resource to contain the new
vectorized routines. A resource in the Macintosh environ-
ment refers to a static block of data that may be created,
stored and manipulated independently from the program
code. The vector patch resource is distributed on the system
disk.

The system disk contains the.portion of the operating
system environment that does not reside on ROM, In the
currently preferred embodiment. The system disk 1s used to
create the operating environment for a computer.

In the currently preferred embodiment, an entry in the
vector patch resource has the format illustrated in Table 3.

TABLE 3
Vector Patch Resource Entry Format
FIELD USE
VectorTable Pointer Painter to Vector Table in Low
Memory
VectorTable Entry Offset into Vector Table For Entry
. For The Routine
Size of vectorized Rontine Specific Size of Rovtine in Bytes
Vectorized Routine The New Code to Be Inserted

Referring to Table 3, the VectorTable Pointer and Vec-
torTable Entry are used to identify the Vector Table and the
entry for the routine in the vector table, respectively, corre-
sponding to the code that is to be inserted. The size of the
Vectorized Routine precedes the actual Vectorized code.

The vector patch resource will typically contain numerous
entries corresponding to the number of patches or the added
functionality being provided. Note that there will be a vector
patch resource for each version of the ROM that supports
vectorized routines. Each vector patch resource will have an
identifier corresponding to the ROM versions on which it
should be loaded. So during the installation process the
proper vector patch resource must be identified,

Vector patch resources are created when the operating
system is updated and installed when the operating system
is “built”. The operating system is “built” whenever a user
wishes to update their computer operating system software
to a later release or version level, In the currently preferred
embediment of the present invention, a tool termed ROM-

RedBend0008209

5,481,713

1

Patch, is provided which automatically creates the vector
patch resources. ROMPatch compares the object files of two
versions of the vectorized ROM code to identify routines
which are different or new. In the currently preferred
embodiment, routines which are different is accomplished
via a Cyclical Redundancy Check (CRC) operation. How-

ever, other techniques, e.g. assigning each routine a version -

number and simply comparing these version numbers, may
be utitized without departure from the spirit and scope of the
present invention. In any event, when afl the patched rou-
tines are found, the vector patch resource is generated.

The operation of the ROMPatch tool is further described
with reference to FIG. 7a . Referring to FIG. 7a , the version
information of routines of a first (pervious) ROM version to
asecond (new) ROM version, step 701. As described above,
a CRC operation may be performed between corresponding
routines to determine if it has been chanped. For each
routine that is identified as a replacement routine, i.¢, 4 new
routine that will replace an existing routing, a vector patch
resource entry for a replacement patch is created, step 702.
A routine may be identified as a replacement routine by
determining that the routine exists in both versions. For each
routine that is identified as a new routine for an existing
function, a vector resource patch entry for adding a routine
to an existing function is generated, step 703, Here, 2
function will have it's own vector table. So this will involve
adding an entry to an existing vector table. Finatly, for each
new function routine, a vector patch resource eniry for
adding new function is generated, step 704, This will involve
causing a new vector table to be created as well as the offset
for the entries to be loaded into the vector table. The
information for creation of new tables would come from the
new ROM version object file,

To perform the patching a NewVector loader is included
with the system disk and it’s sole purpose is to update and
add vectorized routines, At boot time, the vector patch
resource from the system files are loaded and only the vector
patch resources with ID equal to or greater than the version
of the ROM will be loaded. The operation of the New Vector

loader is described with respect to the flowchart in FIG. 7b
", First, the vector paich resource corresponding to the ROM

version of the system being npdated is identified, step 721,
The remaining steps are performed for each entry in the
vector patch resource that has been identified. When the
vector patch resource is received, the entry must be identi-
fied a8 a replacement of an old routine, new functionality or
a new routine, step 722. A determination is made if it is the
replacement of an old routine, step 723, and if it is the
existing table entry is replaced with a new entry, step 724,
If it is not replacement of an old routine, a determination is
then made if it is a new routine, step 725, and if it i5, a new
vector table is created with new entries, step 726. If it is not
a replacement of an old routine or new functionality, then it
must be a new rontine for an existing function. In this case,
the new entries are simply added to the existing vector table,
step 727. :

- Adding new entries to an existing vector table is accom-
plished by re-sizing the pointer to the vector table to make
room for the new entries. In the currently preferred embodi-
ment, in situations where the pointer cannot be re-sized, a
new pointer is allocated and the old vector table is copied to
the new location and then the new entries are added to the
table and finally the low memory vector table pointer is

_updated with the new location. Other implementations may
use other techmiques, but would not depart from the spirit
and scope of the present invention.

e

0

—

5

25

30

45

60

635

12

The patching technique described is used for each of the
vector types. Use of other tables or additional indirection,
6.2, a pointer to another table, would not depart from the
spirit and scope of the present invention.
While the present invention has been described with
reference to a computer operating system and FIGS, I-t will
be appreciated that the figures are for illustration only, and
do not limit the spirit and scope of the present invention. In
addition, it will be noted that the present invention may be
realized nsing a variety of computer programming languages
and hardware, and is note limited to any particular hardware
and software configuration. The present invention may be
utilized in any embodiment which has code stored in a read
only storage device such as 2 ROM. For example, a micro-
processor controller for controlling various operations of an
automobile may embody the present invention. Similar
types of embodiments would be within the scope of the
present invention.
Thus, a method for vectorizing object files for storage in
a static storage device is disclosed.
We claim:
1. A method for applying patches to code fesiding on a
Read Only Memory (ROM) device, said code having a
plurality- of functions, each of said plurality of fonctions
having a plurality of routines, wherein each routine is
accessed through a vector table entry in a Random Access
Memory (RAM) device, said code corresponding to one of
a plurality of ROM release levels, said method comprising
the steps of:
) generating a plurality of patch resources, said plurality
of patch resources including a patch resource for each
of said plurality of ROM release levels, each of said
patch resources having a plurality of patch resource
entries, each of said patch resource eniries including a
new routine;
b) identifying the ROM release level for said ROM device
to be patched;
c) retrieving from said plurality of patch resources a
selected patch resource, said selected patch resource
corresponding to said identificd ROM release level; for
each. patch. resource entry in said selected patich
Tesource
d) if said new routine is a routine for replacing an existing
routine of said plurality of routines, then
d1) identifying an existing vector table entry in said
RAM device, said existing vector table entry being
~ the vector table entry for said existing routine, and
d2) updating said existing vector table entry to cause
said existing vector table entry to refer to said new
routine;
¢) if said new routine is a routine for adding functionality
to an existing function of said plurality of functions,
then
el1} identifying an existing vector table in said RAM
device, said existing vector table being a vector table
corresponding to said existing function, and

€2) adding a new vector table eniry to said existing
vector table, wherein said new vector table entry
includes 2 reference to said new routine; and

f) if said new routine is a routine for adding a new
function to supplement said pluratity of functions, then
2) creating a new vector table in said RAM device,

said new vector table including a reference to said
new routine.

2. The method as recited in claim 1 wherem said step of
generating said plurality of patch resources is further com-
prised of the steps of:

RedBend0008210

5,481,713

13
for each ROM release level of said plurality of ROM
release levels

determining if a given routine in a new ROM rclease

level has a corresponding routine in said each ROM
release level;

if a corresponding routine does exist, comparing the

given routing to said corresponding routine to detes-
ming if a difference exists, and if a difference does
exist, creating a patch resource entry for said given
routine; and .

" if a corresponding routine does not exist, creating a
patch resource entry for said given routine based on
addressing information from said new ROM release
level.

. 3. The method as recited in claim 1 wherein said step of

generating said plurality of paich resources comprises the
step of storing address information in said plurality of patch
resource entries, wherein said addressing information
includes a vector table pointer to a vector table in said RAM
device and an offset into said vector table,

4. The method as recited in claim 3 wherein:

said step of identifying said existing vector table entry in

said RAM device is further comprised of steps of:

identifying a vector table from said vector table pointer
of said patch resource entry;

identifying a vector table entry from said offset of said
patch resource entry; and ‘

said step of updating said existing vector table entry

comprises the steps of; :

determining a load address for said new routine; and

replacing the contents of said vector table entry with
said load address,

§. The method as recited in claim 4 wherein said step of
adding said new vector table entry to said existing vector
table is further comprised of the steps of:

identifying said existing vector table from said vector

table pointer of said patch resource entry;
determining a load address for said new routine;

adding said new vector table entry imto said existing

vector table; and

inserting said load address into said new vector table

eatry.

6. The method as recited in claim 5 wherein said step of
creating said new vector table is further comprised of the
steps oft

identifying a new vector table from said vector table

pointer of said patch resource entry;

allocating storage for said new vector tabie;
determining a load address for said new routine;
adding a vector table entry into said new vector table; and

inserting said load address info said added vector table

entry..

7. In an information processing system having a random
access memory (RAM) device and a first version of oper-
ating softvare siored in a vectotized Read Only Memory
(ROM) device, said first version of operating softwarc
providing a plurality of functions, said plurality of functions
being implemented by a plurality of routires stored in said
ROM device, wherein said plurality of routines are accessed
through a vector table in said RAM device, a method for
installing paiches for utilizing a second version of said
operating software, said method comprising the steps of:

a) retrieving a selected patch resource, said selected patch

resource comprised of 2 plurality of patch resource
eniries for replacing routines of said plurality of rou-

10

20

25

30

35

40

45

50

55

60

65

14

tines, adding new routines to functions of said plurality
of functions or adding new routines for new funckions
not provided in said first version of operating software,
each of said patch resource entries comprised of
address information for identifying a vector table entry
in said vector table and a routine; for each patch
resource enry in gaid selected paich resource:

b} wpdating said vector table entry if said patch resource
entry is for replacing a routine;

¢) adding vector table entries to said vector table if said
patch resource entry is for adding new routines
existing functions; and

d) creating a new vector table in said RAM device if said
patch respurce entry is for adding new routines for new
function.]

8. The method as recited in claim 7 wherein said step of
updating a vector table entry if said patch resource entry is
for replacing a routine is further comprised of the steps of:

determining a first load address for a routine in said paich
Iesource entry;

determining a vector table entry location from said
address information of said patch resource entry; and

entering said first load address into said vector table entry
location.

9. The method as recited in claim 7 wherein said step of
adding vector table entries to a vector table if said patch
resource entry is for adding new routines is further com-
prised of the steps of:

determining a second load address for a routine in said
patch resource entry;

creating a mew vector table entry from said address
information of said patch resource entry; and

entering said second load address into said vector table
entry location.

10. The method as recited in claim 7 wherein said step of
creating a new vector table if said patch resource entry is for
adding new function is further comprised of the steps of:

determining a new vector table address from said address
information of said patch resource entry;

creating said new vector table;

deterrnining a third load address for said routine in said
paich resource entry;

adding a vector table entry into said new vector table; and

inserting said third load address into said added vector
table entry.

11. A method for generating paich resource files for a
plurality of previous versions of operating software based on
a new version of operating software, wherein said new
version of operating software is stored in a storage device,
wherein each of said plurality of previous versions of
operating software is stored ir a vectorized Read Only
Memory (ROM) device coupled to a corresponding Random
Access Memory (RAM) device, wherein each of said plu-
rality of previous versions of operating software includes a
plurality of routines, each of said routines being accessed
through a vector table stored in said comesponding RAM
device, said method comprising the steps of:

a) assigning a ROM version number for each ROM
device, said ROM version number for each ROM
device corresponding to the version of operating soft-
ware residing on said each ROM device:

b) for each version of said plurality of previous versions
of operating software,
bl) reading said previous version of operating software

from the ROM device upon which said previous
version is stored;

RedBend0008211

5,481,713

15

b2) comparing the new version of operating software
with the previous version of operating software;

b3} generating a patch resource based on the differ-
ences between said previous version of operating
software and said new version of operating software,
said patch resonrce comprised of a plurality of patch
resource entries, each of said patch resource entries
comprising vector table addressing information and
a routine, wherein said vector table addressing infor-
mation of each patch resource eniry indicates a
location in said corresponding RAM device to store
a load location of said rontine, wherein said routine
is a rontine of said new version of operating software

that differs from routines of said previous version of -
15

operating software: and
b4} storing said patch resonrce on a digital storage
device,

12, The method as recited in claim 11 wherein said step
of generating a patch resourée is further comprised of the
siep of:

determining if a given routine in sald new version of

operating software has a corresponding routine in said
previous version of operating software:

if a corresponding routine does exist, comparing the given

routine to the corresponding routine to determine if a
difference exists, and if a difference exists, creating a
patch resource entry, wherein the patch resource entry
includes the given routine, wherein the vector table
addressing information of said patch resource entry
indicates the location of 2 specific vector table eniry in
said corresponding RAM device, wherein said specific
vector table entry contains a reference to said corre-
sponding routine; and

if a comresponding routine does not exist, creating a patch

resource entry that inchides said given routine based on
addressing information from said new version of oper-
ating software.

13. The method as recited in claim 12 wherein said step
of creating said patch resource entry includes the step of
creating a patch resource entry in which said addressing
information is a vector table pointer for identifying a vector
table which contains said specific vector table entry and a
vector table offset for identifying a location of said specific
vector table entry in said vector table,

14. 'The method as recited in claim 13 wherein said step
of creating a paich resource entry for said new routine based
on addressing information from said new version of oper-
ating software is further comprised of retrieving a vector
table pointer and a vector table offset from said new version
of operating software and storing said vecior table pointer
and said vector table offset in said patch resounrce entry.

15. The method as recited in claim 14 wherein said step
of creating a patch resource entry for said new routine based
on addressing information from said new ROM release level
is further comprised of retrieving a vector table pointer and
a vector table offset from said new ROM release level.

16. A method for npdating a first operating software stored
in a read only memory {ROM) device based on a second

. operating software, wherein sald first operating software

20

e

16

includes a first plurality of rootines, wherein said first
operating software provides a first plurality of functicns,
wherein said second operating software includes a second
plurality of routines, wherein said second operating software
provides a second plurality of functions, the method com-
prising the steps of:
storing in a random access memory (RAM) device a
plurality of vector tables, wherein each vector table
corresponds to a function of said first plurality of
functions;
storing in each vector table a plurality of vector table
entries, wherein each vector table entry of said plurality
of vector table entries includes a reference to one of
said first. plurality of routines stored in said RO
device; ‘
comparing said first plurality of routines to said second
plurality of routines to determine a set of modified
routines, said set of modified routines being routines of
said first plurality of routines that correspond to but are
different from a routine in said second plurality of
routines;
for each modified routine in said set of modified rountines
determining the vector table eniry of said plarality of
vector table entries that refers to said modified
routine; and o
updating said reference in said vector table entry to
cause said referenice to point to said routine of said
second plurality of routines that corresponds to said
modified routine.
17. The method of claim 15 further comprising the steps
of ’
determining a set of new routines, said set of new routines
being routines of said second plurality of routines that
has corresponds to a corresponding function of said
first plurality of functons but do rot have a correspond-
ing routine in said first plurality of routines;
. for each new routine in said set of new routines
. determining the vector table of said plurality of vector
tables that corresponds to said comresponding function;
storing in said vector table a new vector table entry,
wherein said new vector table entry iacludes a refer-
ence to said new routine,
18. The method of claim 15 further comprising the steps
of: '
determining .2 set of new functions, said set of new
functions being functions of said second plurality of
functions that do not have corresponding functions in
said first plurality of functions;
for each new function in said set of new functions
creating & new vector table in said RAM device;
storing in said new vector table & plurality of vector table
enlries, wherein each of said plurality of vector table
entries includes a reference to a routine of said second
plurality of routines which implement said new fune-
tion.

RedBend0008212

