Red Bend Software, Inc. et al v. Google Doc. 48

UNITED STATES DISTRICT COURT
DISTRICT OF MASSACHUSETTS

EASTERN DIVISION
RED BEND LTD., and
RED BEND SOFTWARE INC., Civil Action No. 09-cv-11813-DPW
Plaintiffs,
DECLARATION OF MARTIN G.
v. WALKER, PhD, IN SUPPORT OF
GOOGLE’S OPPOSITION TO
GOOGLE INC,, PLAINTIFFS MOTION FOR A
PRELIMINARY INJUNCTION
Defendant.

I, Martin G. Walker, Ph.D., provide the following expert report:

I have been retained as an expert by the law firm of Bingham McCutchen LLP, counsel
of record for Google, Inc. (hereafter “Google™) in the above-captioned matter. This
declaration is based on my personal knowledge and experience as well as my
investigation in this matter and reflects my expert opinions on certain issues to which I
may testify.

I. EDUCATION AND EXPERIENCE.

1. My CV (Exhibit A) contains an overview of my thirty years of experience
in the high technology industry in Silicon Valley as well as a list of my recent
publications. I received a BSEE from the Massachusetts Institute of Technology in 1973,
MSEE from Stanford University in 1976, and a PhD in electrical engineering from
Stanford University in 1979. During my career, I founded, served as President, a
Member of the Board of Directors, and as Chief Scientist of Analog Design Tools. Later,

I founded, served as a Board Member and Executive Vice President of Symmetry Design

1 CONFIDENTIAL
ATTORNEY’S EYES ONLY

Dockets.Justia.com


http://dockets.justia.com/docket/court-madce/case_no-1:2009cv11813/case_id-125212/
http://docs.justia.com/cases/federal/district-courts/massachusetts/madce/1:2009cv11813/125212/48/
http://dockets.justia.com/

Systems, Inc. Next I founded, served as CEO, (later Executive Vice President), and
Member of the Board of Directors of Frequency Technology. Ihave also served as the
CTO Knowledge Networks, an internet based consumer market research startup.

2. During my career, I have been responsible for design and development of
several complex software programs. Additionally, to support my research activity at
Stanford University, I wrote a special purpose program to aide in debugging a computer
system that I designed. This program included a component called a “dis-assembler” that
the examines executable programs and identifies the individual instructions that make up
the program. I have gained direct industry experience understanding and managing
software programs of the type and complexity of the software program at issue. As part
of my management of software development, I also became familiar with the process of
providing software updates to end-users and the process of creating and applying update
patches in particular.

3. Recently, I have undertaken numerous consulting assignments that
involved evaluating computer software code in the context of litigation. For instance, I
analyzed code allegedly created by defendants in matters involving misappropriation of
trade secrets to determine whether and to what extent the code incorporated the plaintiff’s
trade secrets. I have also analyzed software code to determine if the code practiced cited
methods of patents. Thus I have a personal understanding of the normal standards in the
industry regarding analysis of source code in litigation contexts. Additionally, I have
testified in patent litigation contexts.

II. OTHER TESTIMONY.

4. A complete list of recent matters in which I have participated is attached
as Exhibit B.

III. OVERVIEW OF ASSIGNMENT AND OPINIONS EXPRESSED.

5. I understand that Plaintiffs in the above matter (“Red Bend”) have accused
a component of Google Chrome Browser (“Courgette”) of infringing certain claims of
Red Bends US Patent No. 6,546,552 (the ‘552 patent). I was asked to investigate the

DECLARATION OF MARTIN G. WALKER 2 .
CONFIDENTIAL

ATTORNEY’S EYES ONLY



operation of Courgette, and determine whether Courgette did in fact infringe the properly
construed claims of the ‘552 patent. As part of this investigation, I was also asked to
form an opinion regarding the proper construction of certain terms used in the asserted
claims of the ‘552 patent, and to consider questions relating to the validity of the 552
patent. Finally, I was asked to review the declaration of Stephen A Edwards in Support
of Plaintiffs’ Motion (referred to here in as the “Edwards Decl”), and to comment on his
conclusions and methodology in light of all material I reviewed.

6. This declaration presents my findings at this time after having reviewed
the issues as raised by Red Bend and its expert, Dr. Edwards, by Motion for Preliminary
Injunction and the underlying evidence.

7. In summary, for the reasons discussed below, I have found that the ‘552
patent not infringed by Google’s Courgette program and that the ‘552 patent is invalid. 1
also have found that Dr. Edwards used an unreliable methodology to reach his opinions.

8. I am generally familiar with the Claim Construction, Non-Infringement
and Invalidity analysis processes through prior engagements I have had in patent
infringement actions. I have been informed by Counsel in this action that claim
construction involves interpreting claims as a matter of law from the perspective of one
of ordinary skill in the art at the time of the invention, and that claim terms are given
meaning by their usage in the claims themselves, the patent and the prosecution history.
Additionally, other evidence (such as dictionaries) may also be used to determine the
meaning of the words to a person of ordinary skill in the art at the time of the invention. I
have also been informed that it is not necessary to rely on extrinsic evidence if the
meaning of the claims is clear from the intrinsic evidence.

9. [ am informed that the infringement analysis involves a comparison of
each and every element of the claims, as properly construed, with an accused product. If
all elements are found literally in the accused device then the claim is infringed literally.
However, if one or more elements are not found in the accused device literally then there
can be no literal infringement. I am also informed that infringement can be found under

DECLARATION OF MARTIN G. WALKER 3
CONFIDENTIAL

ATTORNEY’S EYES ONLY



the doctrine of equivalents if the accused device includes elements that while not literally
the same are nonetheless only insubstantially different. I understand that the doctrine of
equivalents cannot compensate for functionality that is wholly missing from an accused
product or where the element that differs was the subject of argument to the patent office
in support of patentability.

10.  1am informed that for a finding of invalidity of a patent under 35 U.S.C.
§102, which is termed invalidity by anticipation, each and every element of a claim, as
properly construed, must be found either explicitly or inherently in a single prior art
reference. 1 have been informed that a claimed invention is unpatentable under 35 U.S.C.
§103 if the differences between the invention and the prior art are such that the subject
matter as a whole would have been obvious at the time the invention was made to a
person having ordinary skill in the art to which the subject matter pertains. Obviousness,
as I have been informed, is based on the scope and content of the prior art, the differences
between the prior art and the claim, the level of ordinary‘ skill in the art and secondary
indicia of obviousness to the extent they exist.

IV. COMPENSATION AND MATERIALS REVIEWED.

11. I am being reimbursed for my time in this matter at the rate of $400 per
hour. My compensation is not dependent upon the outcome of this case. In addition to
any material expressly mentioned in this report, I considered the material identified in
Exhibit C.

V. BACKGROUND.

12.  1have reviewed the declaration of Stephen A Edwards in Support of
Plaintiffs’ Motion (referred to here in as the “Edwards Decl”). Included in the Edwards
Decl is a section where he provides some background on the technology at issue. 1
generally agree with that section (] 9-14) and so as to help clarify the issues before the
Court, I will not duplicate his discussion. However, I would like to elucidate a few
additional details regarding memory references that are important to understand in the
context of the operation of the accused device, Courgette.

DECLARATION OF MARTIN G. WALKER 4 CONFIDENTIAL
ATTORNEY’S EYES ONLY



13.  Generally, machine instructions of the type described by Dr. Edwards may
include several types of memory references. One type, explicitly discussed by Dr.
Edwards is references to other executable instructions. Another type of instruction refers
to data. For example a machine instruction may mean “Copy the contents of memory
location XXX into memory location YYY.” Thus this instruction would have two
memory references, XXX and YYY. Further, the computer may use one of two methods
to refer to memory locations (be they references to instructions or data): “absolute
addresses,” and “relative addresses.” Absolute addresses are like parcel numbers at the
assessor’s office: they uniquely identify your property, or the address in memory.
Another way to refer to your address is to say it is “two doors down from Carl’s house.”
Such an address is called a relative address. In machine language, a sample reference
might be: “take the value of register R, add 2, and use the result as an address.” This is
called a relative reference since the address in the instruction (“2”) is interpreted relative
to the value stored in register R. Courgette is adapted for use only on the instructions for
the Intel processors, and such instructions use all four types of addresses discussed above.
THE 552 PATENT.

14. [ have reviewed the ‘552 patent and its prosecution history. I have also
reviewed the opening Red Bend Brief on Preliminary Injunction as well as the
declaration and deposition testimony of Dr. Edwards, Red Bend’s expert, on the ‘552
patent. Based on my review, I find the following aspects of the ‘552 patent most
important for purposes of this case.

15.  The ‘552 patent relates to a very specific process for creating and
distributing software upgrades to old programs. When a new program is created updating
an old program, the ‘552 patent teaches using this specific process for capturing the
differences between the old and the new program in a compact difference result which
can then be distributed as a patch.

16.  1believe that the following aspect of the ‘552 patent is key and
fundamental to the process described, and note that the inventors of the ‘552 patent, Red

DECLARATION OF MARTIN G. WALKER 5
CONFIDENTIAL

ATTORNEY’S EYES ONLY



Bend’s counsel and Dr. Edwards also have flagged this approach to creating difference

results within the ‘552 patent as important:

The present invention is based on the observation that the
relatively large size of the difference result stems from the
alterations of reference in reference entries as a result of
other newly inserted entries (and/or entries that were
deleted).

On the basis of this observation, the invention aims at
generating a modified old program and a modified new
program, wherein the difference in references in
corresponding entries in said new and old programs as
explained above, will be reflected as invariant entries in the
modified old and new programs. The net effect is that the
invariant reference entries (between the modified old
program and the modified new program), will not appear
in the difference result, thereby reducing its size as
compared to a conventional difference result obtained by
using hitherto known techniques.

This quote is taken from the ‘552 patent at column 3, lines 31 - 46. It is also found in its
entirety at page 6 of Red Bend’s opening Motion (emphasis above found in Red Bend’s
Motion). Dr. Edwards also refers to this language and in particular the problems of insert
delete modifications making a patch file needlessly large at paragraph 15 and also in his

deposition at 128:19-129:10. See Manning Decl Ex 26.

17. In essence (as set forth above), ‘the 552 patent is based on the fact that
differences between an old and a new executable program are largely caused by
alterations of references (i.e. addresses) that are incidentally changed in reference entries
(i.e., instructions that refer to addresses) because of newly inserted (or deleted)
instructions forming the transition from the old to the new program. The patent solves
this problem by replacing corresponding addresses in the new and old program that
changed only due to address shifting from insert/delete modifications with “invariant
references.” The replacement is made in a modified old and a modified new program.
Thereafter, the modified old and new programs are run through a difference generator
and the address changes due only to insert/delete are “neutralized” because of the

DECLARATION OF MARTIN G. WALKER 6
CONFIDENTIAL

ATTORNEY’S EYES ONLY



invariant references assigned and disappear from the difference result. See ‘552 patent at
1:59-2:9 and 3:27-3:46 and 10:3-15 and 14:65-15:8. Dr. Edwards includes a very similar
summary in paragraphs 15-17 of his declaration.

18.  In addition to the patent, the prosecution history also emphasizes a process
of identifying insert/delete modifications and assigning invariant references to the
affected addresses in the old and new program so that they disappear from the difference

result:

A major problem arises when applying these [prior art diff]
methods to executable program files . . . . The problem
arises from the fact that executable programs are generated
from sources and in that process many references are
inserted into these executable files. These references do
not refer symbolically to other location of the program, as
may be the case in source files, but they refer to addresses -
sequential locations in the program file. . . .

Consider, for example, an extreme example where a change
in the first source of line [sic.] may lead to actual change of
some first executable file, in which few bytes were added
but also all references must change since they refer to
locations that now have been moved farther for the amount
of bytes added at the beginning. To simply reflect all the
changed references when computing a difference, one must
include them all. In accordance with the present application
such a need is reduced or eliminated, and what is required,
is just to send the first few modified bytes . . . . The
modification is effected in such as way that the references
become “invariant” . . . .

Office Action at 7. RedBend 000150 (Manning Decl. Ex. 2)

19.  The patent also is clear that it applies to forming difference results on
executable programs. Both Dr. Edwards and I consider executable programs to include
“object code,” and to involve machine language instructions, as opposed to a higher level
language such as source code. See Dr. Edwards’ declaration at paragraph 11-12.

20.  The prosecution history further clarifies that in extracting the difference
between two versions of executable files as defined in independent Claim 1, “there is no

source involved, and neither statements, not any textual or other symbolic representation

DECLARATION OF MARTIN G. WALKER 7
CONFIDENTIAL

ATTORNEY’S EYES ONLY



of the program even exist.” See Response to Office Action mailed October 2, at 8, 17-20
RedBend 000151 (Manning Decl. Ex. 2). The applicant makes the same argument
relative to all claims of the patent, regardless of whether the claim uses the terms
“executable program” or “data table” to describe on what the difference is being
generated. See 8, 10-11 and the following quote on page 11 of the Response to the

October 2 office action:

Claims 35-68 are basically similar to claims 1 to 34,
respectively, except for the fact that they recite data table
instead of executable program. Data table is discussed on
page 4, line 9 of the application and do not embrace
source code as in Okuzumi. It is accordingly submitted
that ... 42-44 ... 55-57 are not anticipated by Okozumi for
the reasons discussed in detail above with reference to
claims 1 to 3, 8-10. ...

21. I have worked with counsel on a claim construction chart that embodies
definitions that I am comfortable with based on the above principles. The chart lays out
Google’s constructions next to Dr. Edwards, where applicable, and is attached as Exhibit -+
D.

22. The specification of the ‘552 Patent also emphasizes the importance of
replacing “substantially” reference entry in the old and new programs. For instance, in
the section entitled “SUMMARY OF THE INVENTION,” the description of the
invention includes “scanning the old program and for substantially each reference entry
perform” performing certain steps (see ‘552 Patent at 3:53-54). It is significant that this
same or similar language is repeated more than 20 times in the specification. Thus
addressing “substantially all” of the reference entries should be thought of as an
important part of the invention described in the ‘552 Patent.

VI. GOOGLE’S COURGETTE PROGRAM.

23.  After studying the ‘552 Patent, and coming to an understanding of the
claims, I next began to analyze the operation of the accused program, Courgette. I found
that the operation of Courgette was relatively complex, with different parts of the
program interacting in subtle ways. Thus I realized that it was important to follow a

DECLARATION OF MARTIN G. WALKER 8
CONFIDENTIAL

ATTORNEY’S EYES ONLY



careful and thorough methodology to determine the operation. After I understood the
operation of Courgette, I compared the operation of Courgette to the asserted claims as
properly construed. This section presents the methodology necessary to determine the
operation of Courgette, a detailed discussion of its operation, and finally a comparison of

the operation of Courgette to the asserted claims of the ‘552 Patent.
A. Methodology.

24.  The detailed operation of computer software programs is notoriously
difficult to determine by merely studying the source code. Particularly in the case of
object-oriented code such as Courgette, subtle errors of analysis can lead to profound
errors in conclusions regarding the operation of the code. While there may be others,
there are at least three sources of uncertainty associated with analyzing source code by
looking only at the source code: a) Mistaken identity; b) Difficulty in tracking cause and
effect across a complex piece of software; and ¢) difficulty appreciating the structure and
content of data objects created by software.

25.  Mistaken identity can occur easily in the case of object-oriented code
when multiple methods have the same name. In that case, an incorrect assumption can
occur regarding which method is actually used by the program during its execution. In
other words, some source that is part of a program may never actually be used, while an
overlooked portion is in fact used and called by the same or similar name.

26.  Difficulty in tracking cause and effect across a complex piece of software
arises from a problem of trying to mentally track a very long sequence of operations with
a rigorous and accurate understanding of those operations. This is difficult to do for a
simple piece of software, for example presented to a college professor for grading. It is
nearly impossible for any commercially useful piece of software.

27.  Difficulty appreciating the structure and content of data objects created by
software is caused again by complexity and the fact that the object oriented programming

styles can blur the definition of data structures across multiple files. It is therefore

DECLARATION OF MARTIN G. WALKER 9
CONFIDENTIAL

ATTORNEY’S EYES ONLY



difficult to appreciate how the data and structures fit together without examining how the
program actually creates and uses the data structures themselves and data within those
structures.

28.  Because analyzing source code alone is problematic, if the complete
source code is available, it is standard practice in the industry to compile and run the
alleged infringing source code in order to truly understand the operation. The operation
can thus be studied through several means including (i) use of a “debugger” (which
allows the one to follow each step in the operation of the program and the source code
corresponding to each step in the operation of a running program as well as the content
and organization of data structures created by the running program), (ii) turning on
debugging statements included by the program’s authors (that are disabled during normal
operation), and/or (iii) adding debugging statements to further document the program’s
operation. Failure to follow such standard industry practice may lead to significant errors
in analysis and result in an unknown and unknowable error rate in opinions offered
regarding the operation of the alleged infringing source code.

29. In the instant case, all source code for Courgette is available and has been
posted by Google on its website as open source software. Dr. Edwards, Red Bend’s
technical expert, also notes “A software developer, or anyone with a C++ compiler and
little experience, would be able to use the code posted by Google.” (See Edwards Decl at
It is part of Google’s Chrome browser software open source distribution and is found at
http://build.chromium.org/buildbot/archives/chromium_tarball.html, The Courgette
source code itself is written in C++ programming language which is an industry standard
object oriented programming language, and is made available to permit downloading and
compiling it into a stand alone executable program.

30.  In order to analyze Courgette, [ downloaded the source code and followed
the directions posted by Google on the dev.chromium.org website to compile the program
and operate it using industry standard software development tools, including a debugger.
My analysis and findings are based on studying the source code, using a debugger to run

DECLARATION OF MARTIN G. WALKER 10 CONFIDENTIAL
ATTORNEY’S EYES ONLY



and analyze the source and compiled Courgette code as it runs and reviewing the content
of log files created by Courgette. I noted that the Courgette distribution included two
programs to be used to confirm proper operation of Courgette and I used those programs
as inputs to Courgette for purposes of analysis. I also created my own test programs to
further understand and illustrate how Courgette creates patch files used to update
programs. Additionally, I added additional debugging statements to the Courgette
program so that it would further document data structures as Courgette created its patch
files.

31. 1 also used external documents, - ~and
the two documents identified by Dr. Edwards in paragraph 7 of his declaration as
background information to help understand where to start my analysis. Based on my
experience, I knew that observation of the actual operation of the software in a proper
software development environment as described above was necessary to conduct an
accurate analysis.

B. Findings

32. I found, as a result of my analysis, that Courgette operates in a very
different manner than the 552 patent describes. While Courgette is a program that
generates a patch file for updating an old program and can do so on executable programs,
the internal operation is completely different and the algorithmic approach is completely
different from what is described in the ‘552 patent.

33.  In this regard, the ‘552 patent is based on the premise that differences
(particularly in addresses) between an old and new program due to insertion and/or
deletion of instructions can be completely eliminated from a patch file. See discussion
above in section VI. The patent requires identification and processing of “substantially
all references,” relating to insertion or deletion of instructions and states that those
references are “reflected as invariant references in the corresponding entries” of the new

and old programs.

DECLARATION OF MARTIN G. WALKER 11
CONFIDENTIAL

ATTORNEY’S EYES ONLY



34, By contrast, Courgette does not identify insertion or deletion of
instructions and rather preserves any unique addresses that it does find in the old and the
new programs in symbolic data structures and then compresses differences efficiently.
Moreover, Courgette does not identify every reference entry or even substantially every
reference entry within the old or the new program. In particular, Courgette recognizes all
absolute addresses but only certain relative addresses that are used as references. Based
on my analysis, Courgette only recognizes a minority of relative addresses associated
with reference entries (i.e. instructions). For instance, Courgette does not recognize any
instruction having a relative address that refers to data and only three' instructions among
dozens that use relative addresses to refer to other instructions. These unrecognized
instructions are commonly found in executable programs such as the ones that Dr.
Edwards and I analyzed. An excerpt from an executable program considered by Dr.
Edwards is attached in Exhibit E, and Dr. Edward’s testimony regarding the references is
included in the Manning Decl., Ex. 26 at 217:9 to 220:19. Dr. Edwards testified that,
although he couldn’t say what percentage of reference entries were ignored by Courgette,
he acknowledged (and I agree) that not all reference entries are analyzed.

35. My findings at this stage address Courgette’s generation of a patch, but
not the process of applying the patch because none of the asserted claims require
applying the patch. I discuss its operation below in the order that program operates.

36.  Courgette begins by inputting an old and new program and then parses the
programs to create unique data structures apparently developed by Google to represent
each program. The data structures themselves are obviously distinct from executable
programs. For the purpose of illustrating the operation of Courgette, I created a simple
program. Then I made a few changes to the source code. These two versions of the code
are attached as Exhibit F. The left column is the “old” program. The right column is the

“new” program. The symbols in the middle identify insertions (“>"), deletions (“<”), and

! These instructions include “JMP,” “CALL,” and “Jcc.” Jcc (conditional jump) includes
approximately 30 sub instructions of which Courgette recognizes most but not all. See
the method ParseRel32RelocsFromSection in the file disassembler.cc.

DECLARATION OF MARTIN G. WALKER 12
CONFIDENTIAL

ATTORNEY’S EYES ONLY



changes (“|”).

37.  Both of these were compiled into executable code (the “old” program, and
the “new” program. An excerpt of this code is attached as Exhibit G.? Courgette
disassembles these executable programs and creates symbolic data structures from the
information in the executable programs. Courgette’s initial data structures for each of the
old and the new program include the following parts:

(i) A designation specifying the function of each byte in a symbolic function list.

The designations include “DEF” for bytes Courgette does not analyze further and

which Courgette incorporates directly into the function list; “ABS32” for bytes

which are 32 bit absolute addresses; “REL32” for bytes which are 32 bit relative
addresses; and two additional codes for special addresses. An excerpt of this list
is attached as Exhibit H. Bytes that are labeled DEF are not analyzed further by

Courgette. Thus if Courgette does not recognize a reference entry, the bytes

associated with that reference entry are coded as DEF bytes. If the reference

entry changes in the new program due to insert or delete modifications, these
reference entries will not be further processed, and will appear in the difference
result, as explained below.

(ii) A list of 32-bit absolute addresses and corresponding index values in a table

known as a hash array. In short, the table data may be retrieved by value as well

as by using a pointer into the table. Exhibit I is a table showing the listing for the
reference entries that Courgette recognized. This table is related to the function
list above through the numbers in the first column. For instance, the first ABS32
reference in Exhibit J has a value of 0x00D24890. This would refer to the entry
in Exhibit I with the matching number (in this case, the last highlighted line).

Thus this ABS32 reference entry has an address of 1719¢ and an index value of

122.

2 The entire executable listing for even this simple program is over 13,000 lines long,
much too detailed to be attached in its entirety.

DECLARATION OF MARTIN G. WALKER 13 CONFIDENTIAL
ATTORNEY’S EYES ONLY



(iii) A list of 32 bit relative addresses and corresponding index values in a table

known as a hash array similarly organized as with the absolute addresses. In

short, as above, this table data may be retrieved by value as well as by using a

pointer into the table.

38. A simple comparison between Exhibit G (the executable program) and
Exhibits H and I show significant differences. On the one hand the executable program is
a sequence of bytes in machine language ready for execution by a computer. On the
other hand, the data structures used in Courgette reflect a parsing and dissection of each
of the old and the new program into symbolic data structures no longer resembling a
program.

39. Once the above data structures are created through the disassembly
process, an adjustment step is performed on the data structure corresponding to the new
program. This step consists of modifying the values of the indexes in the ABS32 and
REL32 tables associated with the new program so as to preserve all of addresses in the
new program and make efficient reassignments of indices to each address. The goal is to
make the list of indexes in the new program resemble more closely the list of indexes in
the old program. Exhibit J shows the data structures of the adjusted new program. As
can be seen, all addresses are still present in the adjusted program; none have been
replaced.

40.  After the data structure for the new program is adjusted, Courgette
performs a further step of encoding the two data structures into eight streams, one set
corresponding to the old program and one set corresponding to the new program. An

exemplar is shown in Exhibit K and the eight streams are:

(i) A control stream consisting of the following commands: copy, copyl, abs32,
rel32 and origin. Copy means to copy n bytes from the byte stream into the
output (n is determined by the next entry in the size stream). Copyl means to
copy 1 byte from the byte stream into the output without reference to the size
stream. Abs32 and Rel32 mean to use the next address in the address stream
corresponding to next sequential index. The origin means to copy the next
address of the special address stream.

DECLARATION OF MARTIN G. WALKER 14 CONFIDENTIAL
ATTORNEY’S EYES ONLY



(i) A size stream which specifies the number of bytes in the byte stream
corresponding to each Copy command.

(ii1) A byte stream which corresponds to DEF bytes that Courgette treats in bulk
for purposes of compression. As mentioned above, this stream includes reference
addresses that Courgette did not recognize as such.

(iv) A stream of all 32bit absolute addresses used in the old and the new program.
(v) A stream of all 32bit relative addresses used in the old and the new program.

(vi) A stream of index values corresponding to 32 bit absolute addresses as they
occur in the old or new program.

(vii) A stream of index values corresponding to 32 bit relative addresses as they
occur in the old or new program.

(viil) An origin stream corresponding to a list of special addresses used by the old
and new programs.

41.

42.  Atall times, Courgette preserves all addresses it finds in the new and the
old programs by memorializing them in the data structures and the streams corresponding
to the old and the new programs. All addresses Courgette finds are also inputs to the
difference program used to generate the patch. Courgette preserves and uses all
addresses, without analyzing addresses to determine whether they were caused by insert
and/or delete modifications. In fact, the Courgette approach does not identify insert and
delete modifications at all when processing the old and the new programs.

VII. COURGETTE DOES NOT INFRINGE THE ‘552 PATENT.

43.  Based on my review and findings identified above from analyzing and
running Courgette, and looking at the additional documents identified by Dr. Edwards, 1
can summarize my non-infringement findings by observing that each asserted claim

requires substantially all of the references that change due to insert/delete modifications

DECLARATION OF MARTIN G. WALKER 15

CONFIDENTIAL
ATTORNEY’S EYES ONLY



between the old and the new program to be removed and replaced by invariant references
prior to generating the difference result. The invariant references are reflected in the
modified programs in executable form in place of the reference addresses which
disappear from the difference result. By way of contrast, with Courgette, all addresses
are preserved and included in the difference calculation, regardless of whether they
changed due to insert/delete modifications or otherwise. I have also found that Courgette
does not recognize close to all or substantially all references as claimed, and does not
generate modified programs preserving their executable format prior to creating a
compact difference result. Courgette preserves and reflects all unique addresses it
recognizes and all unique addresses it doesn’t recognize in the difference result. The
drawing attached as Exhibit L. compares salient features of the method claimed in the
*552 Patent with the operation of Courgette, as I have described above.

44.  Consider a case when a few lines are inserted at the beginning of a large
program causing thousands of reference addresses to change in the new program. With
the claimed method of the ‘552 patent, only the added lines will be included in the
compact difference result because the reference address changes will not appear in the
difference result. By contrast with Courgette, the insertion of the same few lines at the
beginning of the same program will cause a difference result that includes not only the
newly added lines but also all of the thousands of unique reference addresses that
changed that Courgette recognized and all of the reference addresses that Courgette did
not recognize in the compact difference result.

45.  The following paragraphs elaborate on these non-infringement findings
further based on the analysis that I have done. In this regard, the following claim

elements (b)(i) are not present in Courgette:

“substantially each reference in an entry in said old
program that is different than corresponding entry in said
new program due to delete/insert modifications that form
part of the transition between said old program and new
program are reflected as invariant references in the
corresponding entries in said modified old and modified
new programs”’

DECLARATION OF MARTIN G. WALKER 16 CONFIDENTIAL
ATTORNEY’S EYES ONLY



and
“substantially each reference in an entry in said old data
table that is different than corresponding entry in said new
data table due to delete/insert modifications that form part
of the transition between said old data table and new data
table are reflected as invariant references in the

corresponding entries in said modified old and modified
new data tables”

46.  For this element, which bears these two formulations among the asserted
independent claims 8, 21, 42, and 55, Courgette does not meet the element for several
independent reasons.

47.  First, the above claim element requires looking for any references that are
different due to insert/delete modifications. Courgette completely omits this requirement
and operates differently. Specifically, Courgette creates symbolic data structures and
symbolic encoded streams of data and processes them without any reference to whether
addresses are changing due to insert delete modification. There is no suggestion in any
evidence that.I have looked at, including the Courgette code as it runs and appears, or any.: . .

ancillary document relied on by Dr. Edwards, including

48. Second, Courgette cannot recognize “substantially all references” as
required by this element. Rather, as discussed above, Courgette is only equipped to
process addresses associated with certain instructions (or reference entries). It ignores

relative addresses associated with the majority of x86 instructions.

49.  Third, the claim language above requires “reflecting substantially all

DECLARATION OF MARTIN G. WALKER 17
CONFIDENTIAL

ATTORNEY’S EYES ONLY



references ... as invariant references” in the modified old and new (programs or data
tables). The patent teaches doing this so that these references, which change only due to
insert delete modifications, appear to be “invariant” and are therefore not reflected in the
difference result. By contrast, I have found with Courgette, by analyzing the code and
observing the output that it generates, that all unique address references recognized by
Courgette are preserved in symbolic data structures by Courgette (in address streams sent
to the difference generator) and are included in the difference result directly, even when
changed due to insert/delete modifications. All reference addresses not recognized by
Courgette are also included in the symbolic data structures (in the byte stream sent to the
difference generator) and also appear in the difference result, even when different due to
insert/delete modifications.

50.  Dr. Edwards relies on Courgette’s use of index values as meeting the
“reflecting as invariant reference” language within the claims. But Courgette uses index
values to represent unique reference addresses in addition to preserving all unique- .=«
reference addresses themselves that it recognizes. The indices, however, are not a
substitute for the addresses. The indices do not conceal the unique reference addresses
from the difference generator or the difference result. Thus, the index values cannot and
do not act as invariant references as claimed.

51.  1do not believe that the Courgette code itself or the ancillary descriptions
of the Courgette program relied on by Dr. Edwards could lead one to conclude that
element (b)(i) of the asserted claims is met.

52. The asserted ‘552 patent claims also require generating a “modified old
program” and “modified new program”, or “modified old data table” and “modified new
data table” and using those modified programs (or data tables) to generate a compact
difference result. The old program and data table and are required to be executable and
not symbolic, as are their modified forms. This is clear in the prosecution history where
the applicants argue that symbolic representations are not used as discussed in paragraph
20 above and where the applicant argued that a modified program does not include the

. WALKE 1
DECLARATION OF MARTIN G R 8 CONFIDENTIAL

ATTORNEY’S EYES ONLY



creation of an index table separate from the program to distinguish the Miller patent
identified by the examiner. See Comments on Statement of Reasons for Allowance, at
1,2. RedBend0000173-174 (Manning Decl. Ex. 2).

53.  The ‘552 patent also requires executable programs and modified versions
of those programs still in executable form. (See paragraph 20 above). Unlike the ‘552
patent, Courgette generates ancillary data tables and streams that are no longer in
executable form. They symbolically reflect information from the old and new programs,
but do not resemble in any way an executable program. The symbolic data structures are
first derived by disassembling the old and the new programs and then are further
abstracted into symbolic streams that represent separately collect relevant information in
streams, such as addresses, indexes bytes, size data and other control information in a
format. This symbolic information used by the difference generator cannot be considered
in executable format.

54. I have attached as Exhibit M claim charts further summarizing my
analysis of the asserted claims in light of the above principles. For purposes of my
analysis, I treat asserted independent claims 8, 21, 42 and 55 the same as claim 42. Both
Red Bend and Edwards do the same, and I agree with this approach. For all of reasons
stated above and in the attached claim charts, I believe that Courgette is very different
from the ‘552 patent and does not infringe any of the asserted independent claims, or
claims 9, 10, 23, 24, 43, 44, 56, and 57 depending on them.

55.  Finally, I note that in light of the above discussion, there is required
functionality of the claims, including “substantially each reference,” and/or “due to
insert/delete modifications” that is missing from Courgette. In addition, based on
comments made to the patent office, the patentee specifically excluded symbolic
representations of the program from the scope of the patent. This is inconsistent with
Courgette, which does use symbolic code as discussed above. Therefore, it is my

opinion that Courgette does not infringe the ‘552 Patent under the doctrine of equivalents.

DECLARATION OF MARTIN G. WALKER 19 CONFIDENTIAL

ATTORNEY’S EYES ONLY



VIII. THE EDWARDS DECLARATION.

A. Unreliable Methodology
56.

For instance, his claim chart states the method “AssignOne” of the file
adjustment_method.cc performs certain key steps of the method. However, this method

is never invoked during the operation of the accused device.

Further, Dr. Edwards opines that the “the difference calculation operates on the
modified old program (asm_old) and the modified new program (asm_new_adjusted).”
(Edwards Decl Exh C.) Had Dr. Edwards studied the operation of Courgette, he would
have realized that the difference calculation actually operates on the “encoded” program
data structures, not the “assembly” program data structures as he states in his claim chart.
Further, he would have realized, contrary to what is in his claim chart, that there are no
objects termed “asm_old” or “asm_new_adjusted” used by Courgette. Similarly, he
would have realized that there is no actual program “m” used by Courgette, nor is there is
any actual program “p” used by Courgette as he states in his claim chart (Exhibit C) to
the Edwards Decl.

57.

DECLARATION OF MARTIN G. WALKER 20 CONFIDENTIAL
ATTORNEY’S EYES ONLY



It is industry
practice that such sources can provide an introduction that can help an expert in gain
understanding of the operation of the source code, but it is also standard industry practice
that the ultimate basis for an infringement opinion should be the source code itself, not
someone else’s summary of its operation.

58. By his flawed methodology it is clear that Dr. Edwards failed to meet
industry standards for a reliable expert opinion. As a result, his opinions contain
numerous and expected factual errors and erroneous conclusions about what code is
actually used, what data structures created by the running code actually contain and how

the code actually operates.

B. Mistakes and Inconsistencies

59.  Inhis opinion, Dr. Edwards identifies a series of steps performed by
Courgette that allegedly constitute meeting the limitations of the asserted claims. For
reasons discussed in detail above, it is my opinion that Dr. Edwards is wrong in his
analysis. Even more to the point, Courgette does not work in the manner in which he
briefly states. In particular, Dr. Edwards states in his claim chart that “the user” is
instructed to operate Courgette. For example he states that “the user is instructed to
disassemble and adjust using the Courgette executable by invoking it using a different
switch -disadj.” In fact, using Courgette in this manner would not cause Courgette to
perform the elements of the claimed method as he has identified in his opinion. (In this
example, Courgette would not produce compact differences, an essential element of the
claimed method.) That Dr. Edwards makes this same type of error with respect to the
“.dis” and “-disadj” switch 4 times in his declaration simply underlines the unreliability
of the methodology employed by Dr. Edwards in his analysis of Courgette.

60.  Dr. Edwards makes the following errors in his analysis of the claims of the

DECLARATION OF MARTIN G. WALKER 21
© CONFIDENTIAL

ATTORNEY’S EYES ONLY



‘552 Patent:

* He treated the claim terms as having different meanings for infringement
and validity and/or representations made to the patent office to get the

patent to issue.
C. Post-Declaration Activity is Not Helpful or Specific

61.  Just prior to his deposition, Dr. Edwards produced evidence of additional
investigations that he undertook subsequent to signing his declaration. I have reviewed
these notes and I listened to deposition testimony and have reviewed the transcript of his
deposition testimony regarding this post-declaration activity.

62.

63.  Inparticular, Dr. Edwards’ infringement analysis is incomplete in at least
the following ways. He has not identified anything in Courgette that looks for and
processes references affected by insert/delete modifications. He also appears to agree
that the asserted claims require processing all of the references (at least for purposes of
invalidity) yet he acknowledges that Courgette does not handle many instructions with

DECLARATION OF MARTIN G. WALKER 22
CONFIDENTIAL

ATTORNEY’S EYES ONLY



relative addresses. (See for example Manning Decl. Ex. 26 178:14-183:3, 217:9-218:22,
and 242:8-243:4.) He also recognizes for invalidity purposes that unless the old and new
programs are executable they are not within the scope of the claims, but yet does not
address the fact that Courgette dissembles executable files into symbolic data structures
before creating difference results on those structures.

64. Dr. Edwards also realizes that his declaration is wrong with respect to

alleged infringement of element (b)(1).

However, as of the time of this writing, Dr. Edwards has not
supplemented his report to correct these errors. Further, based on my review of his
deposition testimony, I still do not understand what if any basis Dr. Edwards has for
believing that Courgette infringes element (b)(i) of Claim 42. Dr. Edward’s deposition
testimony was neither helpful nor specific on this point.

IX. INVALIDITY

65. I am familiar with technology for patching software that predated the ‘552
patent, including that which is discussed in the background section of the ‘552 patent.
Based on my understanding of the ‘552 patent, the inventors were able to get the patent
allowed over the prior art cited in the file history because the inventors argued that the
invention was: (i) limited to creating differences on executable code and not source code,
(ii) limited to creating a difference result on modified old and new executable programs,
rather than ancillary tables or information; and (iii) limited to using invariant references
to make address differences disappear from the difference result. All of these aspects
appear to me to be included in one prior art reference that I have reviewed, namely U.S.
Patent No. 5,481,713 by Wetmore, et al. (Attached to the Manning Decl. as Ex. 30, here
after the “Wetmore ‘713 Patent.”) In my opinion the Wetmore patent meets all of the
elements of the asserted claims, including the above aspects of the ‘552 patent.

66.  Like the ‘552 patent, the Wetmore patent discloses patching or updating

DECLARATION OF MARTIN G. WALKER 23
CONFIDENTIAL

ATTORNEY’S EYES ONLY



an executable program that would normally reside in read-only memory (“ROM”).
While Wetmore refers to the executable code as “object code,” both Dr. Edwards and I
treat object code and executable code as the same -- both are programs at the lowest level
comprised of machine language instructions. See Edwards Decl at paragraph 11, 12.

67. To allow patching, according to Wetmore the code is first modified by
“vectorizing” it to replace references with labels that are jumps to modifiable code
residing in random access memory (“RAM?”). Program patches or updates are then
created by generating the difference results between the “vectorized” versions of the old
and new executable programs. The difference result is provided to the user’s computer to
update or patch the executable program, and the user’s computer generates the updated
executable program based upon the difference results and executable program already
present at the user’s computer. (Wetmore '713 Patent 10:62 - 11:12)

68. The Wetmore prior art patent discloses all of the steps required by the
asserted independent claims.of the ‘552 patent, namely: a) generating a modified old
program (a vectorized program that replaces references with invariant values); b)
generating a modified new program (a vectorized program where the invariant references
are the replaced, vectorized addresses); and ¢) generating a difference result between the
modified old and modified new programs (generating a difference result between the
vectorized programs) to generate a difference result.’” Wetmore thus in my opinion
anticipates all of the asserted claims, rendering it invalid under 35 U.S.C. § 102.

69.

70.  In my opinion, Wetmore teaches executable code because object code is

executable code that includes machine language instructions. Dr. Edwards apparently

3 Wetmore '713 Patent (a) col.4 11.38-39; col.5 11.1-3, 10-17, 18-31; FIG. 4; (b) col.4
11.38-39; col.5 11.1-3, 10-17; col.10 11.6-14, col.11 11.2-12; Fig 4; (c) col.5 11.18-56; col.6
1.45 — co0l.8 1.52; FIGS. 3-5

DECLARATION OF MARTIN G. WALKER 24 CONFIDENTIAL
ATTORNEY’S EYES ONLY



agreed with this view as well in paragraphs 11 and 12 of his declaration.

71.  Additionally, while Wetmore may not explicitly teach vectorizing all
references, it does not exclude doing so and there is no reason that someone following the
teaching of Wetmore would not apply Wetmore to vectorize all references in a program
being patched. I believe this would be obvious to try.

72. [ have reviewed the Reexamination papers filed by Google requesting
Reexamination of the 552 patent to the extent that they relate to Wetmore and agree with
those portions of the Reexamination papers. Ihave not reviewed other references or
arguments contained within the Reexamination papers. I also agree with the claim charts
comparing the Wetmore patent to the ‘552 patent claims and have attached copies of
those charts here as Exhibit O.

73. The invalidity charts attached demonstrate that the asserted independent
claims of the ¢552 Patent, including claims 8, 21, 42, and 55 are invalid as anticipated and
obvious. 1 further submit that dependent claims 9, 10, 23, 24, 43, 55, and 57 are also
invalid as either anticipated by Wetmore inherently or obvious over Wetmore. These
dependent claims merely add that updates can occur over a communications network and
specifically the Internet. In my opinion, communication networks including the Internet

is generally how most patches were applied at the time of the invention.

X. APPLICABILITY OF COURGETTE TO OTHER OPERATING
ENVIRONMENTS

74.  Ttis undisputed that the Courgette code as it exists today creates compact
difference results only for executable programs written for the Intel x86 instruction set
and stored in the Windows PE executable file format. In his declaration at paragraph 24,
Dr. Edwards states that the Courgette software is “easily adaptable to processing
executable files for other platforms, such as those found in mobile devices.” Dr. Edwards
is wrong. He has ignored or is unaware of at least the following factors that tic Courgette
to x86 instructions and the PE file format:

 Courgette relies on an optional section of the PE file format to recognize

DECLARATION OF MARTIN G. WALKER 25
CONFIDENTIAL

ATTORNEY’S EYES ONLY



75.

all absolute addresses;

Courgette relies on recognizing 3 of the x86 instructions by their signature
bits to detect the few types of relative references that it processes;
Courgette relies on the fact that the Windows C++ compiler used for the
Chrome browser project produces PE files that make use of the optional
section for specifying absolute addresses; and

In short, Courgette relies on short cuts that are specific to Windows PE
and x86 to simplify the very complex process of parsing executable code
and trying to match reference addresses and corresponding instructions. It
by no means clear that other platforms, particularly mobile platforms,
include the same or even similar structures -- and probably they do not.

Since all of the above dependencies in Courgette limit Courgette to

producing compact differences of executables that use the x86 instruction set in the

Windows PE file format, it is my opinion that adapting the Courgette algorithms to other .

platforms would be far from easy, and would in fact require substantial engineering

resources if it could be accomplished at all. I further understand that Google has not

attempted to use Courgette beyond the Chrome project and I am not surprised given my

findings in this section. (See Manning Decl. Ex. 9, GOOG00039449)

I declare under penalty of perjury that the foregoing is true and correct.

Executed on; March 1, 2010 in Palo.Alto, CA.

DECLARATION OF MARTIN G. WALKER 26

'f’wig’{’;‘é{&f&'——g_;d é’g/ wfz:»/é/’c"‘-»\_
MARTIN G. WALKER, PH.D. T

CONFIDENTIAL
ATTORNEY’S EYES ONLY




